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ABSTRACT

Nonsense-mediated mRNA decay (NMD) plays a crucial role in normal physio-
logical processes by co-regulating the expression of a wide group of genes includ-
ing cancer-related pathways. Although the role of NMD in cancer is integral,
its exact contribution is often regarded as paradoxical with NMD playing both
tumor-promoting and tumor-suppressing roles. The development of more effec-
tive cancer treatment strategies demands a better understanding of the impact of
NMD in cancer. The current study explores the role of NMD in the context of
cancer by analysing the functional outcomes of alternative splicing coupled NMD
in 10 epithelial cancers. It makes use of isoform switching analysis and weighted
gene co-expression network analysis to identify a set of pan-cancer-wide switching
hub genes. The study reports 6 NMD-sensitive hub genes across multiple carcino-
mas, with 4 genes being directly or indirectly involved in tumorigenesis. Notably,
the findings support an anti-tumorigenic role of NMD as evidenced by the down-
regulation of potentially oncogenic isoforms of TIMM17B and FAM136A genes
as well as increased isoform usage of potentially tumor-suppressing ZNRD1 gene.
However, the results also report the upregulation in the isoform usage of protein-
coding isoforms of CDK20, a potentially oncogenic gene. It can be concluded that
cancer genes possess the capacity to manipulate NMD processes, thereby con-
tributing to tumor progression. Consistent with the prevailing view, this research
substantiates both pro- and anti-tumorigenic functions of NMD in cancer. Nev-
ertheless, it broadens our understanding of the nuanced interplay between NMD

and cancer genes.

Keywords: Cancer, NMD, Isoform, gene.

xXviil



CHAPTER 1: INTRODUCTION

1.1 Alternative Splicing

The central dogma of molecular biology has laid down the pivotal foundation
of the flow of genetic information from DNA to RNA to a functional product
called Protein. The DNA contains the necessary information required to make
all the proteins. RNA is a messenger molecule that carries this information to
cellular machinery through transcription and decodes it into a functional product
called proteins via translation [1]. Post-transcriptional modifications following
protein biosynthesis are biochemical changes that are crucial for its homology and
function. Alternative splicing is an essential post-transcriptional phenomenon that
allows a single gene to produce various transcripts, also known as isoforms, that
may have distinct, similar, or opposing functions, thereby increasing proteome
diversity [2]. In the cell, the RNA quality control mechanism has evolved at
various levels of gene regulation to ensure the removal of mis-spliced or aberrant
alternatively transcribed transcripts isoforms [3]. Notably, alternative splicing
can degrade mRNA by a phenomenon called nonsense-mediated decay (NMD)
possessing premature termination codons (PTCs), which are detrimental to cell

survival [4].

1.1.1 Alternative Splicing Fvents

Different spliced events in eukaryotes are characterised by the rearrangement or
skipping of exons and portions of introns (junctions) as shown in the Figure 1.1.
Exon skipping or cassette exon is when the exon is spliced out of the nascent or
primary transcript and is the most common type of event in mammals [5]. Kim
(2007) compared expressed sequence tag (EST) data of eight eukaryotic species
and revealed that the frequency of exon skipping phenomenon grows moderately

from invertebrates to vertebrates [6]. Mutually exclusive exons are characterised
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by splicing one out of the two exons while the other retains [7]. An alternative
donor site is an event in which an alternative 5’ splice junction (donor site) is used
that changes the 3’ boundary of the upstream exon. Whereas, in the Alternative
acceptor site event, an alternative 3’ splice junction (acceptor site) is used that
changes the 5" boundary of the downstream exon. Intron retention is an important
event mainly occurring in plants in which part of the intron is not spliced out

correctly and remains in the final mRNA [8].

Pre-mRNA mRNA
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—

B. Alternative splicing
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Figure 1.1: Schematic Representation of different types of splicing events [9]

These events give rise to transcripts that carry different biological functions
that vary in their protein-protein interactions, sub-cellular localisation, or even
catalytic behaviour. More than 90% of the eukaryotic genes in mammals gener-
ate multiple isoforms, and aberrant splicing has become the cause of many dis-
eases in humans [10]. According to the latest statistics by GENCODE release 25,
there are approximately 60,000 annotated genes, out of which 20,000 are protein-
coding genes and 144,0000 transcripts. This statistic suggests seven transcripts

per protein-coding gene.
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1.1.2 Significance of Alternative Splicing Analysis

Alternative splicing significantly affects tissue specificity, developmental stages,
disease conditions and cellular processes taking place in the human body. Dysreg-
ulation of alternative splicing can cause muscle dysfunction, neurodegenerative dis-
orders, auto immune diseases including cancers; this emphasises the need to anal-
yse the expression at isoform level [11]. To date, several studies have demonstrated
gene-level expression at RNA sequencing (RNA-seq) and microarray platforms.
However, less is known about isoform expression and its abundance estimation us-
ing these platforms. RNA seq, exon arrays, and reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) have been developed that adopt unique
approaches to evaluate and estimate isoform expression. In the past, tiling arrays
and exon junction arrays using oligonucleotide probe sets have been proposed to
study splicing events [12]. Nevertheless, with the advent of high-throughput se-
quencing, RNA seq became the choice of researchers to study alternative splicing.
An advanced form of exon microarrays, junction arrays, can work as an alternative
to RNA-Seq for the detection of splice events with equal accuracy when it comes
to well-described regions of trancriptome. Nevertheless, RNA-Seq is more flexible

and stronger specifically for the detection of novel transcripts splicing events [13].

1.1.3 Computational Analysis of Alternative Splicing

Alternative splicing has been studied by characterising the analyses into two main
categories: 1) when the subject of analysis is transcripts/isoforms abundance es-
timation/quantification and its relative or absolute expression (isoform and exon
based tools are commonly used). 2) when the analysis is focused primarily on
splicing events such as cassette exons, alternative 5° splice site, mutually exclusive

exons, intron retention and alternative termination sites.

Various computational tools (as shown in Table 1.1) are used for differential

splicing analysis [14].
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Table 1.1: Overview of the Differential Splicing analysis approaches and tools [14]

Approach Tools

Isoform-based Cufflinks/cuffdiff2, DiffSplice, Ballgown
Exon-based DEXSeq, EdgeR, Limma, JunctionSeq, DRIMSeq
Event-based dSpliceType, MAJIQ, rMATS, SUPPA

1.2 Computational Analysis of Transcript Isoforms

The investigation of aberrant splicing events and isoform quantification has been
shaped not only by the development of the techniques but also by the statistical
approaches and algorithms being designed for their authentic biological interpre-
tations. With the advent of the alternative splicing (AS) analysis tools, it became
necessary to categorise how existing gene-level expression can be differentiated
from transcript-level expression. Therefore, researchers termed gene-level expres-
sion analysis as a conventional ‘union exon based’ approach while transcript level
expression analysis as a ‘transcript-based approach’ [15]. The transcript level dy-
namics [16] among isoforms may not be observed and detected with gene-level
analysis because of the following reasons: Cancellation (the abundance of tran-
scripts changing in the opposite direction cancels out upon conversion to gene
abundance), Dominance (change in the abundance of the minor transcript can be
masked by the abundance of the dominant transcript, also known as the canonical
transcript) or, Collapsing (different transcripts of a gene with minute effect size or
abundance in the same direction do not cause significant change when observed
after summation for differential gene expression but their independent changes,
relative or absolute, constitute substantial evidence for differential expression at

isoform level).

These dynamic changes are necessary to study at the transcript level, crucial
for gene regulation, and contribute to the physiological mechanism leading to any
phenotypic change. The transcript-based approach has been widely studied for
statistical analysis by differentiating between relative and absolute isoform expres-

sion analysis. Change in the absolute abundance of individual transcripts isoforms
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across conditions is referred to as differential transcript expression (DTE). In con-
trast, change in the relative abundance of individual transcripts isoforms across
conditions is known as differential transcript usage (DTU) [17]. The difference be-
tween differential gene expression (DGE), differential transcript expression (DTE)

and differential transcript usage (DTU) has been illustrated in Figure 1.2.

Gene

Isoform 1 Isoform 2
Differential Gene Differential Transcript Differential Transcript
a Expression (DGE) b Expression (DTE) c Usage (DTU)
z 30%
[s]
2 70%
g 21
I 17
2 0 70%
8 30%
4
Normal Cancer Normal Cancer Normal Cancer

Figure 1.2: Graphical representation of the three types of differential expression anal-

ysis (DGE, DTE and DTU)

The Figure 1.2 represents differential biological expression across changing
biological conditions. For instance, if a gene has two isoforms where isoform 1 is
the canonical or primary isoform while isoform 2 is the secondary isoform then the
sum of the expression of individual isoforms will be termed as gene expression. An
overall change in the gene expression or sum of all individual changes to transcript
isoforms of that gene is known as differential gene expression (DGE). As shown in
Figure 1.2(a), expression of the gene is significantly higher in Normal than Cancer.
In other words, the gene is down-regulated in cancer. In 1.2(b), the absolute
abundance or expression of individual isoforms of the gene increases or decreases
in the individual condition representing DTE. In 1.2(c) The contribution of the
individual transcript to the overall gene expression across conditions changes. This
change in the relative abundance of the individual transcript isoforms is known as

differential transcript usage (DTU) and represents isoform switching events.
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1.3 Isoform Switching in Cancer

The importance of analysing isoforms instead of genes has been highlighted by
many examples showing functionally essential changes in the body [17]. Typi-
cally, coding genes have a transcript isoform expressed significantly higher than
other alternatively spliced transcript isoforms, often known as canonical isoforms.
Under unfavourable circumstances like disease states, the dominance completely
shifts from canonical to the other alternative transcript isoforms. One splicing
phenotype in cancers can be isoform switching [11]. Isoform switching is the rela-
tive abundance of different isoforms of the same gene that is significantly different
in different cell types or when disease cells are compared to normal as shown in

Figure 1.2(c).

Cancer is one of the most extensively reported diseases where isoform switch-
ing and modification of splicing patterns has been observed. Isoform switches
extensively influence protein domains from protein families which are frequently
found to be mutated in cancer. In addition to that, some of these switches often
act as cancer drivers or modulate or modify the interaction network of cancer-
driving proteins. Consequently, isoform switches could potentially contribute to
tumor progression either independently or in conjunction with mutated cancer-

driver genes [18].

1.4 Nonsense-mediated mRNA decay

Nonsense mutations or PTCs account for a significant(10-30%) fraction of genetic
diseases including cancer, making them potential therapeutic targets for suppres-
sion therapies [19, 20]. Eukaryotic cell has developed some proofreading mecha-
nisms which maintain the integrity of transcriptome by downregulating abnormal
transcripts. Nonsense-mediated mRNA decay (NMD) is one such surveillance
pathway that helps regulate mRNA quality by degrading aberrant transcripts
that harbour NMD-stimulating factors, specifically premature termination codons
(PTCs) [21]. Besides post-transcriptional surveillance, NMD has also shown to

target a significant quantity of normal transcripts playing an active role in gene
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expression regulation pertaining to cellular requirements [22]. This suggest that
NMD controls not only quality but also quantity of transcriptome regulating a

wide variety of genes.

1.4.1 NMD Substrates

Before initiating the degradation of transcript, NMD must distinguish between
the potential NMD-targeted transcripts from other normal transcripts by identi-
fying NMD-activating factors present on the transcript. As a surveillance pathway,
NMD targets PTC-harbouring aberrant transcripts containing genetic mutations,
aberrant splicing or inaccurate transcription. As a gene expression fine-tuning
mechanism, NMD degrades normal transcripts commonly marked by the presence
of NMD-stimulating factors (as shown in the Figure 1.4) including unusually long
3" untranslated region (UTR), upstream open reading frame (uORF) and presence
of intron in the 3" UTR [22]. In addition to these factors, NMD can also be trig-
gered by programmed ribosomal frameshifting in yeast and coupling mechanism

of NMD and alternative splicing in mammals [23, 24].

NMD

RINA Quality Regulation of Gene
Control Expression
Aberrant Normal
transcripts transcripts

Figure 1.3: Role of NMD as Quality Control and Gene Expression Regulation Pathway

1.4.2 Mechanism of NMD Pathway

Nonsense-mediated mRNA decay works by identifying and flagging NMD targets
leading to degradation of such transcripts by activating enzyme complexes. In
order to explain the identification of PTC by NMD, two major models have been
proposed: 3" UTR exon junction complex (EJC) dependent NMD and 3 UTR
EJC-independent NMD. Among mammals, the EJC dependent model relies on
the mammalian '50-55" nucleotides rule. Some NMD targets violate the 50-55 nts
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thicker rectangles represent exons while black lines represent introns.

Green arrows denote start codons, and red stop signs indicate stop codons.

[25]

rule and are degraded by EJC-independent NMD. As the molecular mechanisms
involved in EJC-independent NMD are not clear, the EJC-dependent model and
the ’50-55 nts’ rule is used in bioinformatics to predict NMD-sensitivity of an

mRNA transcript [26].

EJC-dependent NMD depends on the presence of EJC such that whenever a
PTC is located more than 50-55 nucleotides upstream of at least one exon—exon
junction in an mRNA, the transcript becomes a target of NMD. This rule, re-
ferred to as "50-55 nucleotide rule', is the dominant approach for NMD-target
identification in mammals [27]. Under normal circumstances, EJC is displaced by
ribosomes during translation and mRNA transcript is converted into a functional
protein. On the contrary, PTC-harbouring transcripts retain EJC 50-55 bases
downstream of stop codon resulting in the activation of NMD marked by the for-
mation of SURF complex [28]. As illustrated in Figure 1.5, the NMD surveillance
complex called SURF (SMG1-UPF1-eRF1-eRF3) complex is formed by the inter-
action of kinase protein SMG1, UPF'1 helicase and eukaryotic polypeptide release
factors eRF1 and eRF3 [29]. Eventually, SURF complex binds with EJC complex
and interacts with UPF2 and UPF3b proteins forming so-called decay-inducing
DECID complex which stimulates SMG1-mediated phosphorylation of UPF1 pro-
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tein [28]. Activation of UPF1 protein results in the recruitment of SMG5, SMG6
and SMGT proteins which stimulate decapping and deadenylation of the mRNA
transcript exposing it to nucleases and other degrading factors [30, 31, 32, 33].

eRF3 \
> %
- AAAAA 3

DECID complex

SURF complex

5!

AAAAA3

Remodeling and cleavage

5’

PTC

Figure 1.5: Mechanism of EJC dependent NMD pathway in mammalian cells [34]

Variations of this classical NMD pathway exist among different organisms
where NMD has been perceived as a "branched network" among vertebrates in-
volving a variety of factors that can contribute towards UPF1 activation. Thus,
NMD is probably manifested in the form of multiple routes depending upon the
properties of transcript, cell, tissue, or physiological condition. Moreover, inhi-
bition of a specific branch or NMD route may potentially act as a therapeutic

avenue towards treating the given disease [25, 35].

1.4.3 Regulation of NMD

Nonsense-mediated mRNA decay has been reported to be regulated in a cell and
tissue-specific manner with different cell and tissue types representing different

potentials for eliciting NMD. Similarly, NMD activity and NMD targets also vary
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across different conditions hinting towards dependence of NMD efficiency on cell
and tissue type. For instance, NMD is more efficient in Hela cells as compared to
MCET cells [36]. Likewise, differential NMD efficiency has been observed in mice
across varying tissue types [37]. Moreover, NMD activity is also regulated de-
velopmental stage-wise in different eukaryotes. Nevertheless, reviewers also point
toward the epigenetic basis of NMD regulation. A better understanding of the
regulatory mechanism behind NMD and the study of NMD homeostasis is crucial
for elucidating the role of NMD across different biological processes and conditions

[35).

The molecular mechanism behind NMD regulation under such contexts is not
yet clear, however, based on some pieces of evidence it has been speculated that
NMD activity might be regulated by differential expression of NMD factors or
varying translation rate [35]. Generally, NMD activity is influenced by genetic
background and quantity of nonsense transcripts in the cell [38]. Evidence also
suggests the presence of feedback regulation in the NMD pathway directed by
different branches of NMD operating in a tissue-specific manner [39]. Autoregu-
latory unproductive splicing operates in a plethora of splicing factors and simi-
lar elements involved in splicing and post-transcriptional modifications. Splicing
factor proteins, such as SC35 and polypyrimidine tract binding protein (PTB),
autoregulate their own production by inhibiting splicing of their transcripts and
creating a negative feedback loop [40, 41, 42]. In this way, such autoregulated
splicing factors not only maintain their concentration but also regulate splicing of

other pre-mRNAs [43].

1.5 Alternative Splicing and NMD

NMD-sensitive transcripts can be produced by various mechanisms in the cell with
mRNA splicing being the most extensively studied cause. Alternative splicing
(AS) is an efficient mechanism for achieving proteome-level diversity and com-
plexity among eukaryotes. However, AS is also a lead source of aberrant mRNAs
with around one-third of all AS events leading to PTCs which are then targeted
by NMD [44]. Intron retention in 3° UTR, poison cassette exons, and exon skip-

10
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ping are some of the most frequent AS events that generate NMD-triggering iso-

forms [45].

Although mechanisms related to the generation and degradation of PTC*
transcripts have been outlined, the exact purpose of their abundant generation is
still unclear. They might get produced as a result of splicing errors or "side effects"
of a particular gene. However, most explanations are somehow connected with the
coupling of mRNA splicing and NMD. AS-NMD coupling, known as Regulated
Unproductive Splicing and Translation (RUST), acts as an additional regulatory
mechanism that can down-regulate expression of a certain gene in order to meet

requirements of the cell [45, 46].

Gene Locus

Transcriptional - Transcription Factors | 1y, opiption
Regulation

Pre mRNA

Splicing Factors . ici
RUST plicing JProductne Splicing

Productive
mRNA

JTranslation

Protein

Figure 1.6: Regulated Unproductive Splicing and Translation (RUST)
1.5.1 Mechanism of action of AS-NMD

During transcription, transcriptional regulation regulates the amount of transcrip-
tion products with the help of transcription factors. However, once the pre-mRNA

has been produced, the transcriptional regulation is no longer enough and there

11
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must be some kind of additional regulatory mechanism to maintain the quantity
of the productive mRNA which is to be translated into protein. Gene regulation
through the coupled action of alternative splicing and nonsense-mediated mRNA
decay (AS-NMD), often referred to as RUST, comes in handy at this point. Splic-
ing factors work analogous to transcription factors by altering the abundance of
productive isoforms and eventually directing the overall gene expression. They reg-
ulate the production of functional or primary isoforms relative to NMD-targeted
aberrant isoforms by choosing alternative splice sites. For instance, the inclusion or
exclusion of an alternative exon can give rise to frameshift and PTC+ transcripts.
Likewise, the exclusion of intron from 3> UTR can produce an NMD-sensitive
transcript. Consequently, change in splicing patterns alters the ratio of produc-
tive to NMD-targeted isoforms and therefore the rate of protein production [43,
46). Polypyrimidine tract binding protein (PTB) is one of the commonly studied
genes regulated by RUST. Higher PTB concentration is balanced by NMD target-
ing of PTB transcripts. In other words, PTC is introduced in PTB protein coding
transcripts leading to their degradation by NMD. On the contrary, decreased pro-
portion of PTB are compensated by reducing the degradation levels [42, 43].

1.5.2 Significance of AS-NMD

Regulated unproductive splicing is a widespread regulatory mechanism found to
be conserved between kingdoms, ranging from yeast and plants to higher ani-
mals like humans [47]. Coupled action of NMD and alternative splicing provides
a cost-effective regulatory approach by preventing wasted translation. Although
both mechanisms can play their role as regulatory pathways individually, their
coupled action presents additional benefits. For instance, alternative splicing can
effectively regulate gene expression by producing non-functional proteins with the
help of splicing factors, however, NMD prevents accumulation of potentially harm-

ful truncated proteins [43].

Generally, RUST acts as an additional fine-tuning mechanism in the cell. It
regulates expression of a wide variety of genes including RNA-binding proteins

while allowing the autoregulation of various splicing factors and temporal control

12
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of larger genes [42, 43]. Tt also enables and directs tissue-specific and development-

dependent production of proteins such as MID1 [48].

It has been widely proposed that perturbing RUST may lead to the predispo-
sition of diseases [45]. One of the very recent reports suggests a strong connection
between dysregulation of RUST and failure of pancreatic cells in diabetes [49].
Moreover, it is also noteworthy that one of the most common groups of genes reg-
ulated by AS-NMD is cancer-related genes (i.e., oncogenes and tumor suppressor

genes) pointing towards the crucial role of AS-NMD in cancer.

1.6 Role of NMD in Cancer

Besides maintaining the quality of mRNA transcripts, NMD plays a crucial role in
normal physiological processes by co-regulating the expression of a wide group of
genes including cancer-related pathways [26]. Under normal circumstances, NMD
has a protective role against cancer, but during cancer role of NMD has been re-
ported as that of “bipolar” nature [50]. On the one hand, under-activity of NMD
during cancer progression suggests a tumor-suppressing role of NMD. Reports
show that NMD factors are often down-regulated in cancerous cells leading to
under-activity of NMD. As NMD regulates the expression of genes involved in cell
growth, differentiation, survival, apoptosis etc.; in order for tumors to proliferate,
NMD must be inhibited or at least lowered in some manner. Inhibition of NMD
results in the up-regulation of certain growth factors, immune infiltration and con-
sequently metastasis. Such tumor-suppressing role of NMD has been seen in many
cancers including hepatocellular carcinoma and pancreatic adenosquamous carci-
noma [51, 52]. As a quality control mechanism, degrades many PTC-harbouring
dominant-negative TSGs which can otherwise antagonise with the wild-type genes

and compromise their role as tumor-suppressors [53, 54].

Contrary to its normal tumor-suppressing role, NMD has been extensively
reported to be an active facilitator in cancer progression by inactivating TSGs.
It can be due to NMD targeting the wild-type, PTC-harbouring TSGs which

might preserve their function even when translated into truncated proteins [50].
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Cancer cells exploit NMD-TSGs association for their own benefit in many ways
(adding NMD-resistant mutations in dominant-negative alleles, biallelic inactiva-
tion, NMD-stimulating mutations in wild-type alleles), making NMD a tumor-
promoting mechanism [55, 56]. Moreover, NMD has been reported to induce
anti-tumor immunity suggesting that NMD inhibition can help increase the effec-

tiveness of cancer immunotherapy [57, 58].

In conclusion, the role of NMD in cancer is complex and conflicting results
have been reported, demanding for the requirements of more research in the area.
Distinguishing whether NMD has a tumor-suppressing or tumor-promoting role

in cancer is important for designing therapeutic targets against cancer.

1.7 Gaps in the Literature

Besides surveillance, NMD is extensively involved in the regulation of genes includ-
ing cancer-related genes. Previous studies have reported both tumor-suppressing
and -enhancing role of NMD. In conclusion, the role of NMD in cancer is complex,
and conflicting results have been reported, demanding the requirements of more re-
search in the area. Exploring the splicing and switching patterns of NMD-targeted
isoforms with primary isoforms will enable us to better understand the contribu-
tion of MD towards cancer. Distinguishing whether NMD has a tumor-suppressing
or tumor-promoting role in cancer is important for selecting therapeutic targets

against cancer.

1.7.1 Limitations of using NMD Modulation for Cancer

Although NMD inhibition has been widely proposed as part of cancer therapy
and a few NMD inhibitors have been clinically tried, such an approach has yet
to overcome certain limitations. For instance, the application of global NMD
inhibitors in cancer therapy can mute the tumor-suppressing function of NMD as
well. Moreover, available NMD inhibitors are not sufficiently specific in choosing
their substrates, leading to the deregulation of other cellular processes. However,

the use of chemically modified antisense oligonucleotides (ASOs) mediated NMD
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inhibition can potentially help overcome this problem [26]. Likewise, the use of
NMD inhibition in cancer immunotherapy is also met with limitations such as a
low response rate of NMD inhibition approach and absence of already existing

immune response against tumor [59].

In conclusion, although having a paradoxical role in cancer, NMD presents a
useful opportunity in cancer therapy. Keeping in view all the above-mentioned
limitations of using NMD modulation for treating cancer, it can be easily deduced
that more research is required in the field. The development of a successful treat-
ment is not feasible without grasping the horizons of the NMD-cancer relationship.
Better characterisation of NMD in cancer can help overcome the existing limita-
tions as well as design personalised treatment strategies. This has become now
more feasible with the advancement in full-length reads sequencing techniques and

better computational tools.

1.8 Problem Statement

Nonsense-mediated mRNA decay (NMD) is one of the key features of the patho-
physiology of cancer but the exact contribution of the pathway towards cancer is
paradoxical as it can act both as a tumor suppressor and a tumor promoter path-
way. It is crucial to explore the effects of NMD in the context of cancer to develop
more effective cancer treatment strategies. Our study aims to understand the
role of nonsense-mediated mRNA decay in epithelial cancers by investigating the
transcriptional landscape of NMD-sensitive genes while exploring their coupling

alternative splicing and NMD (AS-NMD) profiles.

1.9 Aims and Objectives

General Objective: To prepare a tentative pathway using Gene Set Enrichment
Analysis (GSEA) and literature to understand the role of common Nonsense-

mediated mRNA decay (NMD) sensitive genes in epithelial cancers.

o To elucidate whether common NMD-sensitive genes exist in various epithelial
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cancers.
e To identify the NMD-targeted hub genes common in all cancers

» To understand the role of the identified genes in different biological pathways

using Enrichment analysis
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2.1 Differential Splicing in Cancer

As oncogenes and tumor suppressor genes contain multiple promoters and alterna-
tively spliced variants, differentially spliced genes are common among metastatic
cancer cells. Aberrant alternative splicing mechanism results in alternative tran-
scripts being more dominantly expressed than in normal tissues, often leading to
tumor initiation, progression, and adaptation. Isoform switching is commonly im-
plicated in cancer, resulting in an increased interest in isoform-specific and splicing

event-targeting therapies against cancer [60].

Cancer-related pathways are frequently targeted by alternative splicing events.
Alterations in the regulation and expression levels of splicing factors have been
linked with metastatic colonization prominently in the case of prostate cancer cells
and their derivatives. Some of these splicing proteins include ESRP1, ESRP2,
and RBFOX2, NOVA1 and MBNL3. Along with their potential contribution to
epithelial-mesenchymal transition, such differentially regulated SF proteins also
influence a plethora of AS events as well as other key regulators such as CD44 and

GRHL1, involved in regulating cell growth, motility, and signalling [61].

2.2 Isoform switching in Cancer

Advances in sequencing and transcriptome reconstruction at isoform resolution
have led to the identification and analysis of isoform switching. For example,
isoform switches in cancer have been analysed by a group of scientists [62] us-
ing nine cancer types from “The cancer genome atlas” (TCGA). They identified
244 genes with significant isoform switches, out of which 59 were found in mul-
tiple cancer types (pan-cancer switches) with FBLN2 being the most common

at the pan-cancer level. However, this and other studies have only observed iso-
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form switching and have not estimated the potential consequence of the identified

switches.

Despite the transcriptome reconstruction and profiling at isoform resolution,
isoform-based expression analysis is rare. Studies mostly identify individual iso-
form switches and analyse their frequency rather than characterising them or
predicting their functional impact. In addition to that, reports also associate the
presence of mutations with splice variants and isoform switching. Nevertheless, a
few researchers have moved their focus from individual switches to the functional

effects of isoform usage on the predisposition of diseases specifically cancer.

2.2.1 Pan-cancer Studies of Isoform Switches

Pan-cancer isoform switching studies investigate same and unique switching pat-
terns between various cancer types. To date, three major bioinformatics analyses
(63, 18, 64] have been documented which use genome-wide sequencing data from
TCGA and PCAWG databases to analyse isoform switching patterns alongside

their functional impact at the pan-cancer level.

Systematic analysis performed on samples from 11 TCGA cancers exploring
functional consequences and impact of cancer-associated splicing events reported
splicing changes as one of the key features of tumors. A subset of such splic-
ing changes has been reported to potentially act as alternative splicing drivers.
Although alternative splicing events are generally mapped with isoform switching
events, more than 30% of the switches remained unmapped. Isoform switches were
found to affect protein-protein interaction networks mostly by modifying protein
domains. Similarly, switching between coding and NMD-sensitive or non-coding
transcripts may impact regulatory networks. Moreover, the study proposed that
a subset of alternative splicing events observed in tumor samples highlight inde-
pendent oncogenic processes that could explain the impact of functional trans-
formations in cancer and hence could be termed as alternative splicing drivers

[18].

Another similar study determined isoform switching in 12 different TCGA

cancers using RNA-seq data from more than 55000 cancer patients and reported
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potential functional impact of pan-cancer switches. The results showed that 19%
of the genes contained isoform switches with functional consequences, with 31
switches identified as powerful biomarkers across multiple cancers based on pa-
tient survival analysis. The most common consequences marked protein domain
loss, ORF loss, or gain of signal peptides. Furthermore, PPI network revealed
enrichment of cell signalling genes mainly AKT1 and VEGFA as hub genes with

switching in the former appearing in 5 different cancers [63].

In another comprehensive study, 1209 cancer samples covering 27 cancer types
and subtypes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) and
normal samples from Genotype-Tissue Expression (GTEx) were retrieved. The
idea of cancer-specific most dominant transcripts (cMDT) was introduced. For a
cMDT, a transcript must be the most dominant transcript (MDT) first. Signifi-
cantly expressed most dominant transcripts unique to PCAWG samples in contrast
to GTEx samples were termed as cMDT. Novel isoform specific protein-protein
interactions were performed to assess the functional and pathogenic consequences.
According to the study, most cancer-specific MDTs were caused by genomic muta-
tions. Correlation analyses were performed between coding and noncoding muta-
tions and alternatively spliced cancer-specific MDTs. Interestingly, 22 transcripts
from 19 genes having cMDT switch were found in 100% of the cancer samples.
The highest number of cMDT switches were detected in breast, ovarian and female
reproductive organ carcinomas. Head and neck carcinomas, glioma, melanomas,
and beta-cell non-Hodgkin lymphomas showed the least number of the cMDT
switches. The study showed that different cancers had different levels of switching

and it can be cancer-specific [64].

Genome-wide studies use different statistical approaches and parameters to
determine isoform switches. When focusing on cancer-specific isoform switches
between dominant transcripts then comparing MDTs (as in [64]) is ideal. However,
when considering the minor transcripts switches as well, then isoform usage is a
more suitable parameter. This is achievable by comparing either the Isoform
Fraction (IF) computed from FPKM values (as in [63]) or Proportion Spliced-In

(PSI) score computed from TPM values (as in [18]) between two conditions. It
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has been suggested that, based on the use of statistical tests, the Vitting-Seerup
approach is more appropriate when comparing AS changes between matched or
unmatched cohorts, while the other two approaches are to be used when the focus

is to be retained on patient-specific differences [65].

2.3 Nonsense-mediated mRNA Decay in Cancer

Generally, studies attempt to predict the NMD-sensitivity of a transcript using
the mammalian 50-55 nucleotides rule, however, there can be other underlying
factors such as mutations and AS events which affect the NMD-sensitivity of a
transcript as well. As mutations can cause PTC and elicit NMD, researchers
often correlate the type and frequency of mutations with the NMD-sensitivity of
genes. One such study [55] analysed more than a million mutations across TCGA
cancer data and reported 73,855 NMD-causing mutations with STAD, BLCA, and
UCEC carrying most of the burden among all 24 TCGA cancers. These NMD-
elicit mutations predominantly targeted DNA repair, DNA or RNA binding, and

chromatin remodelling pathways.

Mostly NMD targets are identified using knockdown experiments where one
or more NMD factors are muted so that depleting NMD-targets can be stabilised
and detected. One of the major challenges in studying characterising NMD targets
is short-read sequencing. With the advent of long-read sequencing technologies,
the identification of many novel NMD candidates has become feasible. Karousis
et al. (2021) utilised NMD factors knockdown followed by nanopore sequencing to
identify NMD-targeted mRNAs in human cell lines. The study reported several
genes with multiple AS events leading to NMD. Additionally, a higher frequency of
NMD-sensitive transcripts was marked by the inclusion of alternative exons rather
than intron retention or alternative splice sites. Overall, the study reported that
most NMD targets follow the mammalian NMD rule and can be both normal and
aberrantly spliced transcripts with degradation of aberrant mRNA isoforms being
the primary purpose of NMD. Nevertheless, innate variations in gene products
and regulatory processes like NMD allow cells the flexibility to adapt in response

to environmental alterations or developmental changes [66].
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2.3.1 NMDe-elicit Mutations

Association of mutation type with NMD stimulation showed that two-thirds of
all TCGA mutations that elicit NMD were either frameshift indels or nonsense
mutations. Although mutations predominantly associated with NMD stimulation
are nonsense mutations (exhibited by TSGs), most frequent mutations in onco-
genes are missense [67]. In cancer, NMD causes loss of function in genes by loss of
expression. A subset of genes most affected by NMD is TSGs where NMD results
in loss of function of gene by loss of expression. On the contrary, NMD only causes

hypofunction in non-TSGs while occurring at low frequency [55].

2.3.2 AS-NMD Interplay

Widespread coupling of nonsense-mediated mRNA decay and alternative splicing
has been reported extensively in the literature. For instance, Lewis et al. (2003)
analysed RefSeq data and reported that 1106 genes undergo AS to produce 1989
NMD-sensitive mRNA isoforms. Such extensive AS-NMD coupling hints towards
the crucial role of NMD in cellular processes. Another study utilising NMD inhi-
bition found that muting of NMD contributes to the deregulation of AS, as NMD
inhibition strongly impacts levels of splicing regulators. This presents another

evidence for the intricate interplay between AS and NMD machinery [68].

2.4 Pathophysiology of NMD in Cancer

2.4.1 Stress, NMD, and Tumorigenesis

Tumor cells are exposed to various cellular stresses ranging from hypoxia and nu-
trient deprivation to oxidative stress and reduced pH. In order to survive and adapt
to such a stressful micro-environment, cells must bring about some modifications
in cellular processes and induce adaptive mechanisms. Integrated stress response
(ISR) and unfolded protein response (UPR) are two such responsive pathways ac-
tivated by the cell to re-establish homeostasis. NMD regulates a plethora of genes

involved in ISR and UPR, hindering their activation under low stresses. How-
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ever, prolonged stress activates ISR and eventually UPR, which in turn inhibits
NMD by activating eukaryotic translation initiation factor 2 alpha (elF2a). For
instance, it has been observed that hypoxia suppresses NMD which causes the
stabilisation of NMD-sensitive transcripts including stress-responsive mRNAs. In
addition to that, phosphorylation of elF2a induces global attenuation of protein
synthesis and eventual suppression of NMD. It also induces the production of
stress-responsive factors which help cells adapt to stresses and survive in the tumor
micro-environment. On the same note, the generation of reactive oxygen species
(ROS) activates eukaryotic translation initiation factor 2 alpha (elF2a) which sup-
presses NMD, making the cell more tolerant to oxidative stress. Moreover, amino
acid deprivation in tumor micro-environment suppresses NMD eventually upregu-
lating amino acid transporters which help cell maintain homeostasis. In addition
to its stress-responsive role, elF2a is also required for stimulating autophagy in the
cell, which contributes towards maintaining homeostasis under amino acid depri-
vation, cell survival, and tumorigenesis. High levels of prolonged stress can trigger

UPR which helps cells adapt and shut down after stress has ceased [54, 69].

Concisely, ISR, UPR, and NMD are associated in a symbiotic regulation.
Stress in tumor microenvironment causes activation of elF2a which, via some
unclear molecular mechanisms, leads to NMD suppression eventually enhancing
ISR and UPR. Activation of ISR and UPR, in turn, promotes cell survival. A sim-
ilar relationship exists between NMD and apoptosis. If stress persists even after
ISR and UPR, the last resort for cells is to trigger apoptosis. Additionally, exces-
sive stress induces caspases that cleave UPF1, which deregulates NMD activation
leading to stabilisation of pro-apoptotic factors that are otherwise targeted by
NMD. Normally, NMD inhibits apoptosis, however, induction of apoptosis leads
to attenuation of NMD. All this evidence suggests that tumor micro-environment

modulates NMD to benefit tumorigenesis.

2.4.2 Controversial role of NMD in Cancer

Mutations in UPF1 in various cancers including pancreatic adenosquamous car-

cinoma (ASC), liver hepatocellular carcinoma (HCC) and lung adenocarcinoma
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(ADC) lead to suppression of NMD causing upregulation of different growth factors
and growth pathways which eventually lead to metastasis, immune infiltration and
enhanced malignancy of tumor. Likewise, oncoprotein interaction causes upregu-
lation of UPF3A which naturally inhibits NMD, resulting in tumor aggressiveness.
These reports show the anti-tumorigenic role of NMD. However, NMD also has

shown a tumorigenic role specifically against tumor suppressor genes [50].
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Figure 2.1: Pro- and anti-tumorigenic roles of NMD in cancer [50]

PTC acquisition leading to NMD degradation of TSGs results in either com-
plete inactivation of the PTC+ allele or haploinsufficiency of the wild-type allele.
On the contrary, if the TSG transcript acquires a mutation that renders it NMD-
resistant, translation of that transcript produces a protein with a dominant nega-
tive function on the wild-type allele. In this way, partial or complete inactivation
of TSG by NMD can be beneficial for cancer. Conclusively, the role of NMD in

cancer is complex and controversial [50].

2.5 Modulating NMD Pathway in Cancer Treatment

The controversial, both pro- and anti-tumorigenic, behaviour of NMD in cancer
imposes the greatest challenge in using NMD in cancer therapy. NMD inhibitors
have been designed and clinically tried in cancer therapy. Likewise, NMD activa-
tion has been also proposed for treating cancer. However, the application of NMD

modulation in cancer therapy is highly dependent on the genetic context of the
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patient /disease, cancer type, and other related factors. Nevertheless, NMD mod-
ulation can be used as personalised therapy alongside traditional cancer therapies

to enhance the efficacy of cancer treatment.

2.5.1 NMD Inhibition in Cancer therapy

Inhibition of NMD has been long speculated as an appropriate approach for en-
hancing the efficacy of cancer therapy. As NMD regulates transcription levels and,
directly or indirectly, influences many cellular processes; it can be deduced that
NMD could easily impact a plethora of cell responses. Cancer therapy usually de-
pends upon inducing apoptosis, which is inhibited by NMD), it has been tested and
observed that muting NMD promotes the efficacy of anti-tumor drugs in cancer
cell lines. There are three major ways in which NMD inhibition induces apoptosis

[70].
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Figure 2.2: The triple effect of NMD inhibition on cancer cells [70]

Firstly, inhibition of NMD helps cell enter apoptosis by stabilising the PTC+
transcripts and increasing the proportion of truncated or harmful peptides in the
cell. Some of these peptides can induce deleterious action, reinforcing apoptosis
[71]. Moreover, apoptosis reinforces NMD inhibition by cleaving NMD factors
(as discussed in section 2.4.1). Secondly, NMD inhibition can help restore the
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expression of TSGs, leading to the inhibition of cell growth and eventual apopto-
sis. Additionally, TSGs reactivation increases the efficacy of cancer treatment by
making the cell sensitive to chemotherapy as well [72]. Lastly, muting NMD helps
elicit a stronger immune response by allowing the antigens which are otherwise
degraded by NMD. Underactivity of NMD allows aberrant transcripts to be trans-
lated into truncated peptides which are then presented at the cell surface, flagging
the cell to immune cells. Subsequently, the C-terminus end of the aberrant protein
is recognised by immune cells as a foreign antigen, inducing an immune response

that results in the elimination of that cancer cell [57].

2.5.2 NMD Activation in Cancer therapy

Some cancer types including HCC and ASC could benefit from NMD activation
(as discussed in 2.4.2) by making use of the anti-tumor role of NMD. The main
side effect of global NMD activation is that it could enhance the tumorigenic func-
tion of NMD as well. However, gene-specific activation of NMD is safer and the
use of oligonucleotides to induce NMD of only oncogenic transcripts can overcome
the aforementioned challenge[54]. Furthermore, it has been speculated that NMD
activation can be used in combination with traditional immunotherapy to help
protect normal or non-cancer cells [73]. Nevertheless, designing such NMD activa-
tors is a challenging task and NMD activating approaches, though proposed, are
not yet fully developed.
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The study explores the role of NMD in epithelial cancers by identifying isoform
switches in multiple carcinomas and investigating the splicing/switching patterns
of NMD-sensitive transcripts. Another goal is to find an association between dif-
ferential usage of NMD-sensitive transcripts and functional consequences leading
to predisposition or inhibition of cancer. This can give major insights into how
NMD-targeted genes may contribute to tumor progression or suppression. The

overall methodology designed for accomplishing these goals is shown in 3.1

Data Aquisition and Isoform Switching ER B NMD -Based
Filtering i BT =
: Analysis Filtering
(TCGA, GTEx) (R EGELE

Figure 3.1: General Workflow of Project

3.1 Data Retrieval from TCGA

RNA-seq is a high throughput sequencing technology to study transcriptome-
wide dynamics of gene expression analysis. Currently, RNA-seq datasets can be
retrieved from public databases such as GEO (Gene Expression Omnibus) [74],
Array Express [75] NCBI (The National Centre for Biotechnology Information)
[76], ENA (The European Nucleotide Archive) [77], SRA (The Sequence Read
Archive) [76] and TCGA (The cancer genome atlas) [78]. For this study, data was
retrieved from TCGA.
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TCGA is a well-coordinated omics data hub outlining the molecular basis
of cancer in a comprehensive manner. TCGA legacy data accumulated at Ge-
nomic Data Commons (GDC) has been mapped with older genomes having UCSC
annotations and contains batch effects. However, Toil workflow was developed
to recompute raw data from TCGA, Pacific Pediatric Neuro-Oncology Consor-
tium (PNOC:https://pnoc.us/), Genotype Tissue Expression Project (GTEx) [79],
Therapeutically Applicable Research to Generate Effective Treatments (TAR-
GET:https://ocg.cancer.gov/programs/target) was realigned to create a consis-
tent and batch-effects free meta-analysis of all four datasets with new Ensembl
annotations [80]. Toil recomputed data is publicly available at Xena browser
(http://xena.ucsc.edu) and presents an excellent resource for bioinformatics anal-

ysis.

For this study, TOIL RSEM transcript expected count dataset (RNA-seq data
quantified with RSEM) along with the corresponding probemap was downloaded
from the same section of Xena browser. The dataset consists of log2 transformed
expression data from 10530 samples with 198,620 isoforms for 33 TCGA cancers.
For gene co-expression network analysis, gene expression dataset along with the
corresponding gene probemap was downloaded from the TCGA PANCAN section
of Xena browser. The dataset consisted of log2 transformed RSEM expected
count data of 10530 samples with 60,499 genes/identifiers for same 33 TCGA
cancers. As the TOIL RSEM expected count data form both transcript and gene
expression has been aligned using hg38.p3, gencode v23 comprehensive model,
corresponding GTF and FASTA sequence file were downloaded from FEnsembl
(https://www.gencodegenes.org/human /releases3.html).

In addition to raw counts, clinical and phenotype data was also retrieved from
the TCGA PANCAN section of Xena browser. Clinical data basically contains
updated survival data for patients from whom samples were extracted. Phenotype
dataset consisted of sample type (tumor or adjacent) and primary disease (cancer),
and survival data contains curated clinical data of cancer patients such as their

age, race, tumor stage etc.
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3.2 Data Pre-processing and Sample Selection

3.2.1 TCGA Cancer and Samples Selection

The initially downloaded PANCAN transcript expression dataset contained sam-
ples from all 33 TCGA cancers. For the current study, carcinomas and adenocarci-
nomas with 20% or more samples harbouring NMD-elicit TSGs based on pan-can
analysis [55] were selected. Selected tumor types were further narrowed down to
cancers with >10 paired samples, finally leaving with only 10 TCGA cancers as
listed in Table 3.1.

Table 3.1: List of selected epithelial cancer types

Cancer Abbrev.
Bladder Urothelial Carcinoma BLCA
Stomach Adenocarcinoma STAD
Head & Neck Squamous Cell Carcinoma ~ HNSC
Kidney Clear Cell Carcinoma KIRC
Colon Adenocarcinoma COAD
Esophageal Carcinoma ESCA
Lung Squamous Cell Carcinoma LUSC
Lung Adenocarcinoma LUAD
Liver Hepatocellular Carcinoma LIHC
Breast Invasive Carcinoma BRCA

For each selected cancer, subset of patients was obtained for transcript as well
as gene expression separately, using sample IDs from the survival data. Samples
with either ‘Solid Tissue Normal’ or Primary Tumor’ type, here referred to as Adja-
cent and Tumor respectively, were extracted. In case of transcript expression data,
paired samples were extracted for paired analysis, while for the unpaired analysis
all the paired samples and additional 50 randomly selected ‘Primary Tumor’ sam-
ples were extracted. Corresponding clinical, phenotype and gene expression data

were also retrieved for the selected patients. Summary of the selected samples for
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each cancer is in Table 4.1.

3.2.2 Pre-processing of Expression Data

As the downloaded expression data was log2(x+1) transformed, antilog was taken,
and pseudo count of 1 was subtracted from each of the read counts so that raw read
counts could be obtained. The approach was applied for both transcript and gene
expression data. However, gene expression data needed to be further pre-processed
before feeding it to WGCNA pathway. Thus, VST transformation of Deseq2 was
utilised. Transcript expression data, on the other hand, was directly fed into the

IsoformSwitchAnalyzeR(ISAR) as the package requires raw read counts.

3.3 Differential Isoform Usage Analysis

The transcript expression files generated in the previous step were then analysed,
individually for each cancer type, using a Bioconductor package called Isoform-
SwitchAnalyzeR [63]. IsoformSwitchAnalyzeR (ISAR) identifies isoform switches,
by calculating isoform usage and applying statistical methods, from RNA-Seq
derived quantification of full-length isoforms. It allows the integration of vari-
ous annotations ranging from the addition of ORFs to prediction analysis from
external tools. One distinguishing feature of ISAR is that it can predict the
NMD-sensitivity of transcripts using the mammalian NMD rule. The analysis
can be carried out either at genome-wide analysis or even at the individual gene
level. By allowing the integration of analysis from external tools, it helps predict
the functional consequences of the identified switches as well as study their AS
patterns, thereby enhancing the useability of RNA-Seq data at the isoform res-
olution. The functions and steps implemented using ISAR are described in the

coming subsections.

3.3.1 Importing Data into R

Isoform data was imported into R using importRdata() function of ISAR. It

required previously retrieved (as mentioned in section 3.1) isoform quantification,
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GTF and FASTA sequence files and manually curated design table obtained from
phenotype file enlisting sample ID and its corresponding condition (Adjacent or
Tumor). The importRdata() function takes in all these files and performs several

computations required for further analysis.

Briefly, the function performs various roles including correction of some of
the annotation problems such as unassigned transcripts and merged genes created
when doing transcript assembly; and calculation of isoform abundance (and nor-
malises data) in the form of FPKM or RPKM values. Furthermore, it obtains
gene expression by adding the expression of isoforms belonging to the same gene.
Subsequently, it calculates mean isoform and gene expression values and computes
log2 fold change (FC), Isoform Fraction (IF), and dIF values from the mean gene
and isoform expression values. Moreover, it also structures data into switchAna-
lyzeRlist by annotating each isoform with its genomic annotations (such as ORFs

and genomic coordinates), conditions, and other computed values.

Here, IF is defined as the fraction of expression or quantifies the proportion of
the parent gene expression originating from a specific isoform. Whereas dIF is the
difference in the isoform usage or the difference in isoform fraction in each condi-
tion. It measures the effect size (like fold changes are in gene/isoform expression

analysis).

IF1 = isovaluel
GENEyaluel
TF9 — Z'Sovalue2
JENEyalue2

dIF =1F2—-1F1

where isovaluel and isovalue2 represent the expression value of transcript(n)
in condition 1 and condition 2 respectively. Likewise, genevaluel and genevalue2
represent the expression value of gene(n) in condition 1 and condition 2 respec-

tively.
The obtained switchAnalyzeRlist concatenated with isoformFeatures and
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other annotations are then further used to analyse isoform switches.

3.3.2 Pre-filtering

Lowly expressed transcripts or genes can bring uncertainty to analysis. Removal
of isoforms with low IF values helps simplify analysis by filtering out isoforms
that contribute too minimally to the gene expression. Genes with a single isoform
cannot have differential isoform usage. Similarly, genes with very low change in
isoform fraction cannot contribute significantly to functional consequences. Thus,
such unwanted data must be removed in order to make further analysis better and

simpler.

The preFilter () function was used to filter out uninteresting transcripts and
genes including non-expressed or lowly expressed transcripts and genes, single
isoform genes, genes without differential isoform usage, and isoforms with very

low isoform fraction (IF).

Following cut-off values were utilised for pre-filtering: Gene expression = 1;

Isoform expression = 0; IF value = 0.05; dIF value = 0.1.

3.3.3 Identifying Isoform Switches

The function isoformswitchTestDEXSeq() performed the differential isoform us-
age test, enabling the switch identification. The function has incorporated another
Bioconductor statistical package called DEXSeq [81]. DEXSeq was initially de-
signed to implement differential exon usage, but the concept has been updated for

differential usage at isoform resolution in the ISAR package.

DEU = no.ofexonsfromthecontainingtranscript
- no.ofallthetranscriptsfromthegene

Where DEU is the change in the relative usage of the exons caused by the

experimental condition.

For a transcript, the formula calculates as: for each transcript or part of a
transcript in each sample, and it counts how many reads map to this transcript

and counts how many reads map to any other transcript of the same gene. It then
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considers the ratio of the two counts and how it changes across conditions to infer
changes relatively. This method is called bin read counting and can be carried out

either at the exon or transcript level.

The ISAR tests the significance of the change in isoform usage with the
Mann—Whitney U test. The isoform switch with absolute dIF value greater than
the selected cut-off and FDR less than the selected level of significance represents a
significant change in isoform usage. In other words, two parameters used by ISAR
to define a significant isoform switch include the alpha argument (which indicates
the statistical significance of switch between 2 conditions in the form of FDR
corrected P-value also called the Q-value cut-off) and the dIFcutoff argument

(which indicates the minimum change in isoform usage i.e., |dIF|).

For the current study, isoformSwitchTestDEXSeq() function was used to
test significance of isoform switches. Non-switching genes were removed using
the ‘reduceToSwitchingGenes’ argument. A default g-value cut-off of 0.05 was
used. The output Excel file from DEXSeq contains different columns enlisting
annotated accession IDs of each of the transcripts and their corresponding meta-
data, statistical calculations, and statistical parameters evaluated via the DEXSeq

function.

3.3.4 Analysing Open Reading Frames (ORFs)

IsoformSwitchAnalyzeR provides three options for analysing open reading frames
(ORFs). Firstly, it can analyse only known isoforms that have already been added
from the annotation database (via GTF file) in the form of CDS. secondly, it
can analyse novel isoforms only by predicting ORFs if a completely de-novo iso-
form reconstruction was performed and annotated ORFs are not available in the
database. Thirdly, it can analyse both the novel and the known isoforms by first
adding ORFs from GTF file and then predicting ORFs for isoforms with no ORF.

The third option was utilised for this study as the GTF file was available. The
AnalyzeNovelIsoformORF () function was used to predict the open reading frames
(ORF) and NMD-sensitivity of the isoforms. Out of the four methods available

for the prediction of ORF, ’longest.AnnotatedWhenPossible’ (which identifies
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the longest ORF in a novel isoform that has the same CDS start sites as one of the
annotated isoforms) was applied. Moreover, for predicting the NMD-sensitivity of

the given isoform PTC Distance of 50 was used.

3.3.5 FExtracting FASTA Sequences

The extractSequence () function of ISAR was used to extract nucleotide (NT)
and amino acid (AA) sequences of the transcripts corresponding to the genomic
coordinates of the isoforms from the sequences of the reference genome. The
sequences (NT and AA) are outputted as FASTA file formats and can be further

utilised for external tools analysis.

3.3.6 Visualisation

Results of ISAR were visualised using switch plots, enrichment plots, and volcano
plots. The switchplot () function was used for the final visualisation of the gene-
specific switch plots. Similarly, the extractSplicingEnrichment() function of
ISAR provided the AS events enrichment across conditions. The volcano plot was

generated using ggplot () function.

3.4 WGCNA

WGCNA is an R package which develops a co-expression network utilising Pear-
son correlation by default or a customised distance measure. There are several
other functions of WGCNA i.e., co-expression network analysis, module detection,
Meta-correlation analysis. For this purpose, there are several libraries (functions)
present in WGCNA. It uses hierarchical clustering and has several ‘tree cutting’
options for the identification of modules. Hence WGCNA is the most frequently

used tool, well supported and documented [82].

3.4.1 Data Input and Pre-processing

Before inputting data into WGCNA workflow, data needed to be cleaned in order

to make it suitable for network analysis. For each cancer type, genes with sig-
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nificant isoform switches were extracted and their gene expression was retrieved
from the PANCAN gene expression data. Pre-filtering was performed to keep
only genes with total sum of 20 or more reads across the samples. Subsequently,
expression dataset was subjected to variance stabilising transformation using the
vst() function of DESeq2 package (Love, Huber, and Anders 2014). Data was
cleaned by removing genes and samples with excessive missing values as well as
samples regarded as outliers by sample clustering. Appropriate cut height was
selected, and outlier samples were removed. Moreover, clinical data was loaded
into R and traits were related with the sample dendrogram. Same process was

performed for each cancer dataset.

3.4.2 Constructing Co-expression Network

Data prepared in the previous step was then used to run WGCNA workflow.
Appropriate soft-thresholding power (), the minimum power value with scale-
free topology fit index reaching threshold of 0.90, was chosen for each cancer
dataset using PickSoftThreshold() function of WGCNA. Additionally, Pearson
correlation for each gene pair was computed, raised to the selected power, and then

used to calculate the signed adjacency matrix with the adjacency() function.

Subsequently, the Topological Overlap Matrix (TOM) was computed, via the
TOMsimilarity() function, to use it as input for hierarchical clustering analysis,

and gene modules were detected by using a dynamic tree-cutting algorithm.

(> Qi Ay + aij)

T min(kik; + 1 — aij)

Where TOMi j denotes TOM matrix, aiu represents values between gene pairs
(i, u), (i, j) and (u, j), respectively obtained for signed adjacency matrix. Whereas

connectivity of genes i and j are represented by ki and kj respectively.
The TOM matrix was then converted to the DistTOM (dis-similarity TOM)
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matrix. This dis-similarity TOM matrix was used for the hierarchical clustering

algorithm to construct modules.

The hclust () function was used to construct a hierarchical clustering tree of
genes which presents highly co-expressed genes in the form of closely interlinked
branches with very small distances. Eigengenes for each module were calculated
and then clustered based on their correlation in order to identify the most similar
modules which can then be merged into larger modules. Merging of modules is

crucial as it helps bring together the genes that have similar expression profiles.

3.4.3 Detecting Clinically Interesting Modules

After the detection of modules, the next step is to relate of modules with clinical
traits in order to determine clinically significant modules. Detection of interesting
modules and hub genes requires two parameters: Gene Significance (GS) which
shows the correlation between the gene and the trait, and Module Membership
(MM) which represents the similarity between genes of every module by correlating

module eigengene with the gene expression profile.

Module eigengenes (MEs, the first principal component of a module) were
correlated with external traits to identify highly correlated module with disease
status (Adjacent vs Tumor) and to investigate the most significant associations,
in the form of heat maps. Heat maps were generated with correlation and p-
value for co-expression modules of each cancer by relating modules to disease
status. Module(s) with highest significant (p-value<0.05) correlation with ‘Tumor’
as disease status was selected as the interesting module. Eventually, GS vs MM
scatter plot for interesting module(s) was visualised. It should represent a high

correlation with p-value less than the level of significance (0.05).
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3.4.4 Identifying Hub Genes

Hub genes are defined as the genes which interact with many other genes in
a gene network and thus potentially play significant role in biological system.
In WGCNA, hub genes are characterised based on high MM and GS values.
For this study, hub genes were determined if gene had high module connectiv-
ity (cor.geneModuleMembership >= 0.75) and high clinical trait relationship

(cor.geneTraitSignificance >= 0.2).

3.5 Pan-Cancer-Wide Genes

For each TCGA cancer, genes were selected at the intersection between WGCNA
hub genes and ISAR switching genes. The selected genes for individual cancer were
integrated to get Pan-cancer-wide genes. Switching hub genes that reoccurred in
more than 3 cancer types were selected as Pan-cancer wide (PANCAN) hub genes.

These genes were then used for further analysis.

3.5.1 Enrichment Analysis

Gene-set enrichment analysis (GSEA) is a useful technique to help functionally
characterise large gene lists, such as the results of gene expression experiments.
This technique finds functionally coherent gene-sets, such as pathways, that are
statistically over-represented in each gene list. The idea is to visualise the asso-
ciation between the switching genes and disease or biological pathway. Various
software and web-based tools are available for performing functional analysis. For
this study, gprofiler2 and Enrichr were used [83, 84, 85]. Users provide a list
of genes of interest and select the annotation categories from different sources
to determine enrichment. Go terms, KEGG pathways, Reactome pathways, and

Uniprot key terms were explored.
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3.5.2 Literature Search

The role of selected pan-cancer-wide hub genes in cancer was explored using ex-
tensive literature studies. Based on the findings, the genes were categorised as
either oncogenes or tumor suppressor genes (TSGs). The potential role of the
selected genes in tumor progression or suppression was accommodated based on

their interactions and general functions as well.

3.5.3 AS-NMD Patterns

Alternative splicing, isoforms usage and NMD sensitivity of transcript variants of

the finally selected genes were explored by visualising switch-plots.
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4.1 Data Selection and Preprocessing

Out of all TCGA cancers, data for only 10 epithelial cancer types was retrieved.
Expression data for only a subset of patients was obtained for each selected cancer.
For paired analysis, all available paired samples were extracted. All the paired
samples and an additional 50 randomly selected ‘Primary Tumor’ samples were
obtained for unpaired analysis. A summary of the selected samples for each cancer

is in Table 4.1.

Table 4.1: Summary of the selected samples for each cancer

Paired Unpaired Samples
Cancer

Samples Tumor Adjacent

BLCA 19 88 19
STAD 33 116 33
HNSC 43 136 43
KIRC 72 194 72
COAD 26 102 26
ESCA 13 76 13
LUSC 30 150 50
LUAD 28 166 28
LIHC 20 150 20
BRCA 109 268 109

The selected samples were subjected to preprocessing. Log transformation of
expression data resulted in raw expression count data obtained which was further
utilised for switching and WGCNA analysis. The resulting transcript expression
count was fed to ISAR while gene expression data was further subjected to Vari-

ance stabilising transformation (VST). The VST transformation helped generate
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a matrix of values with stabilised variance across the range of mean values. In
other words, the transformation resulted in normalised data suitable for WGCNA

analysis.

4.2 Isoform Switching in Individual Cancer Types

In order to determine isoform switches in cancer, Toil recomputed RSEM tran-
script expression was utilised. Switching analysis was performed separately for
each cancer type. Pre-filtering removed more than 80% of the transcripts in each
dataset. For each cancer type, differential usage of remaining isoforms was tested
using paired as well as unpaired approaches separately. Results obtained for indi-

vidual cancers are summarised in tables 4.2 and 4.3.

Table 4.2: Summary of Paired Isoform Switching Analysis
PAIRED

Cancer

isoDTU | gDTU | isoNMD | gNMD

BLCA 8327 2760 1485 1105
LUAD 9416 3124 1722 1287
LUSC 13501 4470 2377 1795
LIHC 5050 1814 903 711
KIRC 9109 3070 1596 1237
STAD 8701 2726 1457 1086
ESCA 6362 1982 1127 845
COAD 9415 3143 1677 1257
HNSC 7566 2561 1312 1003
BRCA 7921 2630 1333 1011

For the paired analysis, on average, around 8,000 switching isoforms (isoDTU)
and more than 2700 switching genes (gDTU) were found. Out of which, more than
1400 isoforms were NMD-sensitive (isoNMD), belonging to more than 1100 NMD-
sensitive genes (gNMD) on average. For the unpaired analysis, around 10,000
switching isoforms (isoDTU) with 3200 switching genes (gNMD) were found on

average across all 10 cancers. Moreover, on average, more than 1700 isoforms
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Table 4.3: Summary of Unpaired Isoform Switching Analysis
UNPAIRED

Cancer

isoDTU | gDTU | isoNMD | gNMD

BLCA 9432 3060 1645 1219
LUAD 10277 3352 1866 1372
LUSC 13853 4479 2438 1821
LIHC 6154 2106 1100 831

KIRC 11618 3798 2026 1537
STAD 11615 3602 1984 1475
ESCA 8443 2623 1435 1081
COAD 10203 3409 1758 1335
HNSC 8041 2667 1412 1064
BRCA 9382 3092 1609 1198

were NMD-sensitive (isoNMD), belonging to more than 1200 NMD-sensitive genes
(gNMD). On average, 8537 switching isoforms with 10427 NMD-sensitive genes
and 9902 switching isoforms with 1299 NMD-sensitive genes were found using

paired and unpaired isoform switching analysis respectively.

4.3 Overlapping Switches Across Cancer Types

Isoform switches of different tumors were compared in order to retrieve switches
that are common among cancer types. The comparison was performed separately
for the results of paired and unpaired analysis. In the case of paired analysis, only
19 switching genes were common across all cancer types; whereas in the case of
unpaired analysis, 45 switching genes were common across all cancer types. These

genes are listed in 4.4 and 4.5 respectively.
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AC012593.1 | FAM153A RPGR TRPV4
AKRI1C2 MAPKIIP1L | RPP30 TTLLA4
CCDC144A | POLB TCAIM WWP1
CLEC18C RNF7 TMEM184C | ZNF775
FAM122C RP11-408H1.3 | TNFRSF10A

Table 4.4: List of switching genes common across all cancers for paired analysis

AIM1L CDC37L1-AS1 | KCNAB2 PLS1 SSX5
AKR1C2 CORO7 KCNH2 POLB TCEB1
ANKRD34C-AS1 | FAIM KCTD17 PRUNE TMEM184C
ARV1 FAM122C KIAA0020 | PYCR2 TNFRSF10A
ATG4C FAM153A LINCO00879 | RET TRPV4
ATXNI10 FKBP1A MBIP RP11-408H1.3 | WWP1

Ch FYN MCFD2 RPGR XPO7
CALCOCO2 IL6ST MYH14 RPL37P6 ZNF208
CCDC144A INTS6 ORMDL3 | SPATA1 ZNF213

Table 4.5: List of switching genes common across all cancers for unpaired analysis

Overall commonality and recurrence of switching genes were visualised using

Upset plots and bar plots (as shown in Figures 4.1 - 4.4) respectively. Upset plots

were created using complexHeatmap package in R [86]. The mode as “intersect”

was used and combinations with the degree of intersection greater than 7 were

plotted. In other words, the frequency of switching genes common across different

combinations of more than 7 cancer types was visualised.
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UpSet Plot of Paired Switching Analysis
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Figure 4.1: UpSet Plot of Paired Isoform Switching Analysis
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Figure 4.4: Recurrence Frequency Bar-plot of Switching Genes in Unpaired Analysis
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UpSet Plot of Unpaired Switching Analysis
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Figure 4.2: UpSet Plot of Unpaired Isoform Switching Analysis

Only 11 switching genes were common across all 10 cancers for both paired
and unpaired analysis as illustrated by the Venn diagram in Figure 4.5. These

genes are listed below in Table 4.6.
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Reoccurrence of Genes across Cancer types
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Figure 4.3: Recurrence Frequency Bar-plot of Switching Genes in Paired Analysis
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Figure 4.5: Venn diagram of paired and unpaired switching genes
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Table 4.6: Common switching genes between paired and unpaired switching analysis

 GemeNames

AKRI1C2 RPGR
CCDC144A TMEM184C
FAM122C TNFRSF10A

FAM153A TRPVA4

POLB WWP1

RP11-408H1.3

4.4 Weighted Gene Co-expression Network Analysis
4.4.1 Sample Clustering and Network Construction

Weighted gene co-expression network analysis was performed in order to get genes
of interest that are highly correlated with tumor conditions. The normalised
gene expression data was examined for outliers using hierarchical clustering and
outlying samples were removed based on suitable cut-off height for each cancer
dataset. Dendrograms obtained for all 10 cancers are provided in Figures A.11 -

A.20.

For each cancer dataset, appropriate soft-thresholding power was selected for
generating the weighted co-expression network based on suitable scale-free fit
(threshold = 0.8) and mean connectivity (shown in Figures A.1 - A.10). Although
80% of the threshold was chosen, power was selected by observing individual
graphs and choosing the power value at which the fit index reaches a plateau. The
weighted gene co-expression network was generated individually for each cancer
type and modules were obtained. Genes with the most similar expression profiles
clustered into the same module. Modules with similar profiles were merged by us-
ing cut-height = 0.25. Dendrograms of genes clustered on the topological overlap
matrix (TOM) based on dissimilarity, mapped with the original as well as merged
module colours, are given in Figures A.31 - A.40. Parameters used for the network

generation process are summarised in Table 4.7.
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Table 4.7: Selection of Parameters for Running WGCNA. Switching genes represent
the genes initially input for WGCNA. The respective number of samples

were removed based on sample cut-height.

= o 00 N oo J ot B ©

4.4.2 Relating Modules with Traits

The obtained modules were correlated with disease status (external trait) to find
their biological significance. A module with the highest significant correlation
with disease (tumor) status was selected for each cancer type as shown in Figures
4.6 - 4.15. The threshold of p-value<0.05 was set as a criterion to determine the

significance of correlated modules.

46



CHAPTER 4: RESULTS

Module—trait Relationships
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Figure 4.6: Module-trait Relationship for BLCA
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Figure 4.7: Module-trait Relationship for LUAD
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Module—trait Relationships
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Figure 4.8: Module-trait Relationship for LUSC
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Module—trait Relationships
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Figure 4.9: Module-trait Relationship for LIHC
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Module—trait Relationships
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Figure 4.10: Module-trait Relationship for KIRC
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Module—trait Relationships
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Figure 4.11: Module-trait Relationship for STAD
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Module—-trait Relationships
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Figure 4.12: Module-trait Relationship for ESCA
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Module—trait Relationships

MEblack
MEgreen

MElightcyan

MEblue

MEtan
MEmidnightblue
MEcyan

MEred
MEgreenyellow
MEpurple
MEsalmon

MEyellow

MEgrey .

-0.029 0.029
(0.8) (0.8)

0.5

Figure 4.13: Module-trait Relationship for COAD
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Module—trait Relationships

MEbrown 09 oo
MEblue
MEblack
MEgreen
MEyellow 0.5
MEmagenta
MEpurple
MEpink
MEgrey60
MEcyan

MEmidnightblue

MEgreenyellow
MEred .
MElightcyan
MEturquoise

MEgrey

Figure 4.14: Module-trait Relationship for HNSC
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Figure 4.15: Module-trait Relationship for BRCA

Moreover, heatmap and eigengene network for module-trait association are

given in Figures A.21 - A.40 for individual cancer types. Only one module was

obtained for each cancer dataset except for LUSC which produced two interesting

modules equally correlated with tumor status.

Finally, intramodular analysis was conducted and the association between

Module membership and Gene significance was visualised for each selected module

as shown in Figures 4.16 - 4.25.
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Module membership vs. Gene significance
cor=0.7, p=6.9e-66
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Figure 4.16: Module membership in the selected module for BLCA
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Module membership vs. Gene significance
cor=0.89, p<le-200
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Figure 4.17: Module membership in the selected module for LUAD
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Module membership vs. Gene significance
cor=0.89, p=4.2e-122
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Figure 4.18: Module membership in the selected module for LUSC
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Module membership vs. Gene significance
cor=0.69, p=6.3e-51
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Figure 4.19: Module membership in the selected module for LIHC
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Gene Significance for Tumor

Module membership vs. Gene significance
cor=0.92, p<le-200
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Figure 4.20: Module membership in the selected module for KIRC

61



CHAPTER 4: RESULTS

Module membership vs. Gene significance
cor=0.65, p=3.3e-36
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Figure 4.21: Module membership in the selected module for STAD
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Module membership vs. Gene significance
cor=0.76, p=5.6e-41
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Figure 4.22: Module membership in the selected module for ESCA
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Module membership vs. Gene significance
cor=0.91, p=7e-154
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Figure 4.23: Module membership in the selected module for COAD
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Module membership vs. Gene significance
cor=0.82, p=5.1e-80
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Figure 4.24: Module membership in the selected module for HNSC
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Module membership vs. Gene significance
cor=0.88, p=1.8e-117
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Figure 4.25: Module membership in the selected module for BRCA

A strong and statistically significant (p-value<0.05) correlation between Mod-
ule membership vs. gene significance of the selected modules was expected. Se-

lected modules along with their properties are provided in Table 4.8.

The aim was to assess the degree of association between these two parameters.
A robust and statistically significant correlation, as denoted by a p-value less than
0.05, was observed. It signifies the extent to which the membership of genes within
a given module aligns with their biological significance in the context of the studied
phenomenon. In other words, the graphs show that the selected modules play a

pivotal and statistically validated role in cancer.
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Table 4.8: Selected WGCNA modules together with their properties

BLCA blue 439 0.68 0.7 43
LUAD brown 794 0.81 0.89 94
LUSC yellow 354 0.53 0.89 76
LIHC turquoise 351 0.77 0.69 38
KIRC black 231 0.8 0.92 203
STAD pink 290 0.69 0.65 48
ESCA green 211 0.7 0.76 54
COAD red 399 0.8 0.91 120
HNSC blue 324 0.9 0.82 53
BRCA green 359 0.78 0.88 82

4.4.3 Hub Genes FExtraction

After getting co-expressed genes from WGCNA, hub genes were extracted based on
gene significance and module membership value of genes. For individual modules,
hub genes were extracted using criteria: |GS|>=0.2, MM>=0.75. The hub genes
selection criterion resulted in 38 to 203 hub genes from each module for individual
cancer types. The perimeters and measures for individual cancer sets are shown

in the Table 4.8.

In total, 811 hub genes were extracted with 488 unique genes. Only 122 hub
genes showed re-occurrence across cancers. The frequency of hub genes is shown
in Figure 4.26. As evident from the bar chart, only 68 hub genes were present in

3 or more different TCGA cancers.
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Reoccurence of Hub genes across Cancer types
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Figure 4.26: Recurrence Frequency Bar-plot of Hub Genes

4.5 Selection of Pan-cancer-wide genes

Pan-cancer-wide hub genes were extracted by integrating switching hub genes of
individual cancer types. Intersection operation between hub genes and switching
genes for individual cancers resulted in integrated 176 hub genes, out of which
only 55 possessed NMD-sensitive transcripts. Out of the 68 pan-cancer-wide (>3
cancers) hub genes, only the switching hub genes that reoccurred in 3 or more
cancer types were selected. The selection resulted in 20 hub genes that showed
isoform switching in either paired or unpaired analysis. The commonality of hub
genes across cancer types Figure 4.27. These pan-cancer-wide switching hub genes
were extracted and used for further analysis. The list of the genes is given in Table

4.9.
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Table 4.9: Pan-cancer-wide switching hub genes

LIMS3 ZNRD1
C19orf43 BRCA1
ADAMTSL1 CDK20
FKBPS COPB1
GGA1 FAM136A
FUNDC2P2 NEK9
MCAT PAH
PSMA3 PPP1R9A

ST6GALNAC4 RPL23AP7
UQCRC1 TIMM17B

LUSC LUAD LIHC HNSC COAD KIRC ESCA BRCA STAD

(25) (37) (12) (13) (28) (60) (14) (28) (15)

B&?f; 0 10 2 4] 3 2 6 8 5
LLE;:] 0 0 4] 1 0 1 5 0
LL’E’;\;:; 3 0 8 5 7 11 7

LI[I;I;I] 4] 5 0 4 2 3
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=sch s s
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(28)

Figure 4.27: Heatmap showing commonality of hub genes across cancer types

4.6 NMD genes

Out of the selected 20 PANCAN switching hub genes, only 6 genes (C19orf43,
ZNRD1, CDK20, FAM136A, LIMS3, and TIMM17B) involved NMD-sensitive

transcripts during isoform switching. In other words, these genes showed an iso-
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form switch of PTC+ transcript with protein-coding isoform.

Among the six genes under scrutiny, three genes exhibited a positive differ-
ential isoform fraction (dIF) for the NMD-sensitive transcript. In contrast, the
remaining three genes demonstrated a divergent pattern, indicating a contrary
behavior in terms of isoform regulation. The list of the selected NMD-sensitive

switching hub genes along with their frequency across cancer types and isoform

expression is shown in Table 4.10.

Table 4.10: NMD-sensitive Pan-cancer wide switching hub genes

Frequency

Present In

PTC+ transcript

C19orf43

ZNRD1

CDK20
FAM136A
LIMS3
TIMM17B

3
3
3
3

BLCA, LUAD, STAD,
KIRC, ESCA, BRCA
BLCA, LUAD, COAD,
BRCA

BLCA, ESCA, BRCA
LUAD, KIRC, ESCA
LIHC, STAD, BRCA
LIHC, STAD, ESCA

4.7 AS-NMD Patterns of Selected Genes

An extensive literature search was utilised to find out the role of the given genes
in cancer and whether they acted as TSG or oncogene. Isoform switching pattern,
NMD susceptibility, and phenotypic role of each gene were studied with respect to

cancer. Lastly, AS-NMD and switching patterns of genes of interest were studied

expression

Down-regulated

Down-regulated

Down-regulated
Up-regulated
Up-regulated
Up-regulated

using ISAR switch plots illustrated in Figures 4.28 - 4.33.
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The isoform switch in C190rf43 (Adjacent vs Tumour)

ENSTOD000552273.5
Increased usage)

NMD Insensitive

ENSTO0000591254.1
{Decraased usage)

=
.

NMD Sensitive

Figure 4.28: Switch Plot of C190rf43
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Figure 4.29: Switch Plot of ZNRD1

The isoform switch in CDK20 (Adjacent vs Tumour)

ENSTO0000330854.9
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(Decressed usage)

NMD Sensitive

As evident from the switch plots (illustrated in Figures 4.28, 4.29 and 4.30),
C19orf43, CDK20 and ZNRD1 genes showed significant isoform switches. In all
three cases, the switching was characterised by a notable decrease in the isoform
usage of the NMD-sensitive transcript, accompanied by a corresponding increase
in the usage of the protein-coding transcript. On the contrary, the other 3 genes
(FAM136A, LIMS3, and TIMM17B) showed the opposite transition. In other
words, the isoform switch in each of these genes was marked by a significant

increase in isoform usage of the NMD-sensitive transcript, accompanied by a cor-

Figure 4.30: Switch Plot of CDK20
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responding decrease in the usage of the protein-coding transcript as shown in

Figures 4.31, 4.32 and 4.33.

The isoform switch in LIMS3 (Adjacent vs Tumour)
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Figure 4.31: Switch Plot of LIMS3
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Figure 4.32: Switch Plot of FAMMI136A
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Figure 4.33: Switch Plot of TIMM17B

Such intriguing shifts in isoform usage suggest a dynamic regulatory mech-
anism that potentially influences the functional role of these genes in cellular
processes. Further exploration of these isoform switches may unveil novel insights
into the molecular mechanisms governing gene expression and their implications

in physiological and pathological conditions.
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4.8 Functional Analysis

The selected pan-cancer-wide switching hub genes (57 in total) were subjected to
functional analysis using gprofiler2 and enriched GO terms and pathways were
visualised. Protein binding activity and protein metabolic pathways were found
to be among the enriched GO terms. Besides, enrichment was observed in REAC-
TOME pathways associated with DNA repair mechanisms. The top 10 enriched

pathways are shown in Figure 4.34.

Post-translational protein modification REAC:R-HSA-5... 1.642x1077
Metabolism of proteins REAC:R-HSA-3... 2.228%1077
DNA Repair REAC:R-HSA-7... 6.609x10™%
Membrane Trafficking REAC:R-HSA-1... 1.403x1073
Disease REAC:R-HSA-1... 3.221x1073
Deubiquitination REACR-HSA-5..  3.519x1073
Vesicle-mediated transport REAC:R-HSA-5... 4726x1073
Viral Infection Pathways REAC:R-HSA-9... 1.295%1072
ER to Golgi Anterograde Transport REAC:R-HSA-1... 1.531x1072
Metabolism REAC:R-HSA-1... 2.158x1072

Figure 4.34: Enriched REACTOME Terms
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Epithelial cancers are the most prevalent among all cancers causing an increas-
ing number of cancer-related deaths globally [87]. Cancer treatment has emerged
as a serious challenge due to the heterogeneous nature of cancer as well as the
complexity of the plethora of mechanisms associated with tumor progression [88].
In this study, we explored the multifaceted role of Nonsense-Mediated mRNA
Decay (NMD) in epithelial cancers. Generally, nonsense-mediated mRNA decay
(NMD) is an eukaryotic post-transcriptional surveillance and gene expression reg-
ulation mechanism that selectively degrades aberrant mRNA transcripts. More-
over, cancer-related pathways are frequently targeted by alternative splicing events
leading to isoform switching. Alternative splicing coupled with NMD (AS-NMD)
maintains the integrity of transcriptome and fine-tunes gene expression levels un-
der normal cellular conditions. However, disruption in the normal execution of

this pathway can lead to many diseases including cancer [43, 45, 49].

Although the role of NMD in cancer is important, its contribution to the
disease is complex [50]. On the one hand, tumors down-regulate NMD factors in
order to grow, survive, and evolve. Reports show that inhibition of NMD results in
the up-regulation of certain growth factors, immune infiltration, and consequently
metastasis. Moreover, NMD degrades many PTC-harbouring dominant-negative
TSGs which can otherwise antagonise with the wild-type genes and compromise
their role as tumor-suppressors [51, 52, 53, 54]. On the other hand, NMD aggra-
vates cancer by inactivating or disrupting tumor-suppressor genes in many ways
(adding NMD-resistant mutations in dominant-negative alleles, biallelic inacti-
vation, NMD-stimulating mutations in wildtype alleles), making NMD a tumor-
promoting mechanism [55, 56, 57, 58]. The conflict can be resolved by exploring
the transcriptional and translational profiles of various cancers in more depth.
Distinguishing whether NMD has a tumor-suppressing or tumor-promoting role

in cancer is important for designing therapeutic targets against cancer. Our pri-
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mary research objective was to elucidate the impact of AS-NMD on cancer pro-
gression, shedding light on whether NMD acts as an aggravating force through the
degradation of tumor suppressor genes or as a suppressive mechanism by targeting

oncogenes.

Our study delved into the role of Nonsense-Mediated mRNA Decay (NMD)
in epithelial cancers by investigating isoform switches across multiple carcino-
mas. A key focus was to analyse the splicing patterns of NMD-sensitive genes
and their association with functional consequences related to cancer predisposi-
tion or inhibition. For this purpose, transcript expression and gene expression
data were extracted from the TOIL RSEM and TCGA PANCAN datasets, re-
spectively. Individual cancer datasets for selected cancer types (BLCA, LUSC,
LUAD, LIHC, KIRC, COAD, ESCA, HNSC, STAD, and BRCA) were extracted,
pre-processed and annotated in order to perform isoform usage analysis (using
isoformSwitchAnalyzeR) as well as gene co-expression analysis (using WGCNA)
on transcript expression and gene expression data, respectively. After extraction
of hub genes based on high module connectivity and adequate clinical trait re-
lationship in WGCNA, switching hub genes common across 3 or more cancers
were extracted resulting in 55 PANCAN switching hub genes. It was further ex-
plored that only 28 genes showed significant NMD sensitivity with at least one

PTC-containing transcript showing switching with the protein-coding transcript.

Eventually, 6 NMD-sensitive hub genes exhibiting isoform switching that re-
curred in 3 or more cancers were extracted and in order to investigate the role of
NMD in such genes, the switching pattern of the genes was observed as well as
their role (i.e. oncogene or TSG) in cancer was studied. C19orf43, ZNRD1, and
CDK20 possessed down-regulated PTC+ transcript being switched with protein-
coding isoform. While, FAM136A, TIMM17B, and LIMS3 possessed up-regulated
PTC+ transcript being switched with protein-coding isoform (with the exception
of FAM136A showing negatively regulated PTC+ transcript in ESCA).

CDK20 (Cyclin-Dependent Kinase 20) is one of the most important regulators
of cell cycle checkpoints, involved in major cell cycle regulatory pathways including

Wnt, EZH2/NF-B, and other signaling pathways [89, 90]. Reports suggest the
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involvement of CDK20 in cell proliferation via activation of CDK2 or increasing
cyclin D expression, both of which promote cell growth and survival [91, 92].
Moreover, CDK20 has been reported to aid in chemotherapy resistance in lung
cancer [93]. It has been suggested as one of the most crucial factors that contribute
to cell survival and growth in other cancer types as well [94]. Concisely, the role

of CDK20, in general terms, is tumorigenic.

ZNRDL1 is a transcription-related gene that shows tumor-suppressing effects by
disrupting the cell cycle and hindering cell growth [95]. It has been reported to be
downregulated in a few cancers including esophageal cancer and gastric cancer [96,
97]. ZNRD1 suppresses cell growth by halting the G1 to S phase progression of the
cell cycle via inhibition of transcriptional activity of cyclin D1 and CDK4 as well
as upregulation of other apoptosis-inducing factors [98]. Moreover, knockdown of
ZNRD1-AS1, the antisense IncRNA of ZNRD1, which shows expression opposite
to that of ZNRD1 gene has been reported to help inhibit tumor proliferation
[99]. Conclusively, findings suggest a tumor suppressor function for the ZNRD1
gene and a tumor contributor function for IncRNA ZNRD1-AS1 in the process of

carcinogenesis [100].

FAMI136A is a mitochondrial protein encoding gene that has been speculated
to influence CDK4/6 expression thus playing a crucial role in tumor proliferation,
particularly in lung cancer. Although the exact mechanism of action of the gene
is unclear, it is regarded as a crucial prognostic factor in lung cancer. FAM136A
is highly expressed in tumor cells [101]. FAM136A is also a target of the Myc gene
which is a positive regulator of Gl-specific CDKs. Myc gene activates CDK4/6,
resulting in cell growth and survival. It has been speculated that Myc might drive
FAM136A and Myc- FAM136A- CDK4/6 might be a new signalling pathway in
lung cancer regulation. However, it has not been demonstrated yet. Nevertheless,
its knockdown has been speculated to suppress cancer progression by inducing

apoptosis [102].

TIMM17B gene encodes for translocase protein 17B found in the inner mito-
chondrial membrane. This transmembrane protein is an integral component of a

mitochondrial protein complex. TIMM17B gene is not commonly reported in the
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context of cancer. However, recent research sheds light on its potential role in can-
cer. TIMMI17B is differentially expressed in breast cancer and its expression level
is inversely linked with survival rate in breast cancer patients [103]. Moreover, it
has been reported that the expression level of TIMMI17B is directly related to neg-
ative immune infiltration and positive drug resistance in breast cancer, suggesting
the potential oncogenic role of the gene [104]. Although the exact mechanism of
action of the gene in the context of cancer is unknown, it has been speculated that

it might affect tumor progression by influencing the cell cycle.

C190rf43 is a Telomerase RNA component interacting RNase (TRIR). Al-
though C190rf43 has not been associated with cancer directly, reports suggest a
role of TRIR in melanoma where it exhibits tumor-suppressive effects by inhibiting
angiogenesis [105]. However, contrasting perspectives also exist [106]. Likewise,
LIMS3 has not been directly linked with cancer. Conclusively, the role of these

two genes in cancer remains unknown and unclear.

Based on a comprehensive review of the existing literature and the results
obtained from our study, there is compelling evidence to suggest that Alterna-
tive Splicing- coupled with Nonsense-Mediated mRNA Decay (AS-NMD) plays a
significant role in the regulatory dynamics of cancer cells. Although contrasting
reports suggest a bipolar role of NMD in cancer, above mentioned results show
more support for tumor suppressing function of NMD. As evident from the results,
AS-NMD decreases isoform usage of tumorigenic genes or oncogenes (in the case
of TIMM17B and FAM136A) thus affecting their overall expression. Moreover,
isoform usage of TSGs like ZNRD1 is increased by AS-NMD.

However, it is crucial to highlight that our results align with the prevailing
perspective that cancer genes possess the capacity to manipulate NMD processes,
thereby contributing to tumor progression. This is evidenced by the observed

increase in the isoform usage of the protein-coding isoform of CDK20, an oncogene.

This study, in particular, sheds light on the functional outcomes of AS-NMD
in cancer. We observed that AS-NMD leads to the up-regulation of functional iso-
forms associated with Tumor Suppressor Genes (TSGs) while concurrently down-

regulating functional isoforms related to Oncogenes. This dual regulatory effect
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is noteworthy, however, our study supports the bipolar role of NMD in cancer.

Although our study broadens the understanding of the role of AS-NND in
regulating gene expression, certain factors and methodical limitations undermine
the generalisability of the results. The first and foremost limitation in the area is
heterogeneity and context dependency of cancer. Likewise, certain NMD events
are tissue-specific, and tumor-specific and might also depend upon tumor stage
and type. In addition to that, other limitations including less availability of long
isoform data, lack of complete transcript annotations, and certain methodological
constraints also hinder further exploration in the area. Nevertheless, this study
plays a crucial role in widening our understanding of the field. Studying cancer
stage-wise switching of NMD-sensitive genes in the future might be helpful in
understanding the context-dependent role of AS-NMD. The future application of
advanced sequencing technologies and the development of novel computational
models would enable further investigation into the mechanism of action of NMD

in cancer.
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In conclusion, this study explored the multifaceted role of Nonsense-Mediated
mRNA Decay (NMD) in epithelial cancers, addressing the complex and debated
nature of NMD’s contribution to cancer progression. Despite conflicting perspec-
tives in the literature, our study provides comprehensive evidence supporting a
nuanced and context-dependent role of NMD in cancer. Specifically, Alternative
Splicing coupled with NMD (AS-NMD) was found to exert a dual regulatory effect,
decreasing isoform usage of tumorigenic genes while increasing the expression of
functional isoforms associated with Tumor Suppressor Genes (TSGs). This sup-
ports the notion of NMD acting as a tumor-suppressive mechanism. However, the
study also acknowledges the adaptability of cancer genes in manipulating NMD
processes, exemplified by the observed increase in the isoform usage of the func-
tional isoform of an oncogene. This highlights the complexity of the regulatory
landscape and the need for a context-specific understanding of NMD’s role in

cancer.

Despite methodological limitations and the heterogeneity of cancer, our find-
ings contribute valuable insights into the functional outcomes of AS-NMD, em-
phasising its relevance in shaping the transcriptomic landscape of cancer cells.
Moving forward, a thorough exploration of tissue-specific and stage-dependent
NMD events, coupled with advancements in sequencing technologies, will deepen
our understanding of the nuanced role of NMD in cancer. Utilising advanced tech-
niques such as single-cell RNA sequencing and long-read sequencing will enable a
more detailed examination of isoform diversity and alternative splicing patterns
across diverse cancer types and stages. Furthermore, expanding research beyond
epithelial cancers and integrating multi-omics data in the future can provide a
comprehensive view of the impact of NMD on tumorigenesis. Moreover, advance-

ment in computational models will enhance precision in unraveling the complex
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molecular dynamics involved. In essence, this ongoing investigation holds the po-
tential to identify targeted therapeutic strategies for more effective therapeutic

targets as well as personalised cancer treatments.
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Figure A.7: Impact of power values on the scale independence and mean connectivity

of genes in co-expression modules for ESCA
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Figure A.8: Impact of power values on the scale independence and mean connectivity

of genes in co-expression modules for COAD
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Figure A.9: Impact of power values on the scale independence and mean connectivity

of genes in co-expression modules for HNSC
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Figure A.12: Sample Clustering Dendrogram for LUAD



APPENDIX A: SUPPLEMENTARY FIGURES

Sample Clustering to detect Outliers

120

100

Hegnt

60

40

0
Teoa-se-623-01

Figure A.13: Sample Clustering Dendrogram for LUSC

TeaA-4-5143-01



APPENDIX A: SUPPLEMENTARY FIGURES

Sample Clustering to detect Outliers

120

TCGA-DD-A3S-0L

100

Hegnt

TCGA-DD-AAVQ-01

Figure A.14: Sample Clustering Dendrogram for LIHC
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Figure A.15: Sample Clustering Dendrogram for KIRC
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Figure A.16: Sample Clustering Dendrogram for STAD
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Figure A.17: Sample Clustering Dendrogram for ESCA
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Figure A.18: Sample Clustering Dendrogram for COAD
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Figure A.19: Sample Clustering Dendrogram for HNSC
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Figure A.20: Sample Clustering Dendrogram for BRCA
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Figure A.21: Gene Dendrogram for BLCA
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Figure A.22: Gene Dendrogram for LUAD
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Figure A.23: Gene Dendrogram for LUSC
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Figure A.24: Gene Dendrogram for LIHC
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Figure A.25: Gene Dendrogram for KIRC
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Figure A.26: Gene Dendrogram for STAD
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Figure A.27: Gene Dendrogram for ESCA
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Figure A.28: Gene Dendrogram for COAD
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Figure A.29: Gene Dendrogram for HNSC
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Figure A.30: Gene Dendrogram for BRCA
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Figure A.36: Eigengene Network for STAD
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Figure A.39: Eigengene Network for HNSC
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