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ABSTRACT 

The liquefaction of microalgae yields bio-oil, that is a potential alternative fuel. However, 

it is a complicated and challenging process to use the method of experimentation to 

investigate the relationship between liquefaction conditions of, ultimate, and proximal 

analysis with bio-oil production. so, an efficient and well-organized model must be created 

to reliably predict the effect of input parameters on the bio-oil yield. This study utilizes a 

novel PSO-based and genetic algorithm-based approach for feature selection and 

hyperparameter optimization. Four different machine learning models were constructed 

and compared using these optimization methods. It was found that Ensembled Tree model 

performed better and R2=0.6801, RMSE=1.7226 for GA and the values of R2 (Coefficient 

of determination) = 0.983 and RMSE (Root mean Square Error) = 1.4548 while using PSO 

performed better and highly recommend based features selection. The result of SVM was 

the worst one R2 = 0.7483, RMSE =10.0063 for PSO and R2 = 0.6068, RMSE = 35.3462 

for GA. For the PSO-based study, the R2 values for DT and GPR were 0.8125 and 0.9309, 

respectively, while the R2 values for the GA-based methods were 0.8757 and 0.9270. 

 

Keywords: Oak Tree, Liquefaction, ML, Genetic Algorithm, Particle Swarm Optimization 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Energy viewpoint - all have advantages and disadvantages, and they did not create 

the massive energy storage required to dispatch the intermittent energy provided by wind 

and solar photovoltaic.[1] 

Energy is essential to the economic prosperity of a country and its society. It is 

currently the focus of great interest in the political, economic, military, and other areas 

across the world. [2]  

A mismatch between global energy supply and demand has emerged in recent 

years as the global economy has grown and modernised. Climate and resource limits have 

also worsened, posing severe challenges to global energy supplies. To achieve carbon 

neutrality, the global energy system has become more diverse, and the amount of 

renewable energy will continue to rise as electrification develops.[3] 

Developing nations tend to attract highly polluting corporations due to the 

opportunities given by their growth objectives, rendering them particularly vulnerable to 

air pollution. Such a scenario is mostly caused by inadequate environmental regulations 

and affordable or plentiful labour forces in emerging nations compared to wealthy nations. 

As a result of established nations' strict environmental rules, emerging countries become 

pollution hotspots. Furthermore, poor air quality increases the global burden of respiratory 

ailments, putting additional financial demand on governments and citizens alike to care 

for their health. Improved air quality will alleviate suffering while saving money on both 

public and private health care.[4] 

The use of biomass as a fuel for energy production has raised controversy about 

the associated greenhouse gas emissions. Proponents of the fuel believe that these 

emissions are neutral in terms of CO2 release, however opponents note that CO2 

emissions are emissions regardless of source, and that utilising biomass for energy 

production may result in misuse of forest resources.[5] 
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The carbon neutrality of burning biomass for energy does not imply that there is 

no CO2 emissions into the atmosphere. This carbon neutrality is closely tied to the carbon 

cycle itself. In other words, it implies that the carbon released into the atmosphere is 

precisely the same as what was taken by the plant species over its lifespan, and that it 

always corresponds to a lifetime in which the atmosphere matches the present.[6] 

On the contrary, the use of fossil fuels encourages the emission of carbon that was 

collected and stored by plant species, but during a time in the planet's geological history 

when the atmosphere also contained CO2 concentrations that were far greater than those 

now.[7] 

While using biomass as fuel may be a viable backup plan, several limits must be 

considered in order to make the greatest use of this resource feasible. The purpose of this 

study is to look at the possibility of using biomass as an energy source, with a specific 

emphasis on the use of residual woody biomass from agriculture and forestry management 

activities like pruning. Thus, the research is conducted in two steps: First, a PEST analysis 

is conducted to see if energy can be recovered from woody wastes in agroforestry. Second, 

based on the findings, any negative or weaker characteristics that were detected are 

explored using a SWOT analysis to offer a model of resource exploitation, 

By 2050, the global population is expected to reach 9.9 billion, resulting in 

increased urbanisation and economic levels, as well as a demand for cattle products. The 

need for animal feed will nearly double globally.[9] 

Removing the usage of animal products from the feed production process can have 

detrimental effects on the environment, the economy, and society. Some of these effects 

include pollution of the natural ecosystem, waste of resources from slaughterhouses, and 

increased feed production costs as a result of the demand for higher value-added 

components.[10] Hydrothermal liquefaction (HTL) is one of these methods that can 

effectively turn wet biomass into energy-density biocrude and its byproducts (aqueous 

phase, gas phase, and hydro-char) without the need for a pre-drying procedure.[11]  

It is also acknowledged that a number of sophisticated HTL pathways have been created 

to valorise manure wastes, and in recent years, the reactors that correspond to these 
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pathways have also been studied. Fast-HTL is a revolutionary HTL technology that can 

save energy and increase biocrude production by rapidly heating materials at temperatures 

above 400 °C. [12] 

HTL is seen as a promising technology for creating bio-crude, which may then be 

processed into advanced biofuels and value-added products, from biomass and organic 

wastes, particularly wet organic wastes. The thermochemical process known as HTL 

requires high temperatures (250-375 °C), pressures larger than water's saturation pressure, 

and a rapid reaction time. Given the difficult working conditions, HTL has been shown as 

a micropollutant decomposition technique.[13] 

Most research focused on the conversion of specific food waste kinds, such as fruits, 

cheese, and meats. This study investigates a real food waste combination as an HTL 

feedstock. Nowadays, several facilities co-digest FW and SS to generate biogas. This 

study also investigates the co-HTL of FW with main and secondary sludge in the WWTP-

handled FW scenario. FOG, food waste, primary and secondary sludges, and digestate all 

have distinct biochemical makeup. Thus, this research intends to achieve numerous 

objectives in order to completely comprehend the potential of the hydrothermal 

liquefaction (HTL) process in wastewater treatment plants (WWTPs). These include 

determining if synergies exist in different sludge mixtures, as shown in other feedstocks, 

providing an overview of the bio-crude potential of various sludge kinds and WWTPs, 

and building simpler models to help with bio-crude production forecast. Furthermore, this 

study seeks to investigate the inorganic composition of hydrochar for possible nutrient 

recovery, as well as the impacts of various sludge types and WWTP on the HTL aqueous 

phase.[14] 

Calculating H2 yield output and its connection to input parameters (proximate, 

final composition, and gasification conditions) using traditional methods requires a 

significant amount of work, expense, and time. To effectively study the combined effects 

of supercritical water gasification parameters on H2, artificial intelligence techniques such 

as deep learning (DL), machine learning (ML), and data mining must be used to 

investigate their behaviour while taking SS composition into account. Machine learning-
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based models give a feasible solution by using process data to generate a model for 

automation, monitoring, and optimisation.[15] 

Machine learning techniques assess patterns in observations of the same 

classification and identify features that differentiate the observations of different groups.  

ML techniques have proven to be reliable alternatives to the traditional modelling 

techniques for studying and comprehending complex conversion processes. They can 

model complex problems by leveraging a series of interconnections between the input and 

output parameters. Recently, the application of ML approaches to model thermochemical 

biofuel conversion processes have increased significantly.  

The applications include predicting product production and composition, as well as kinetic 

parameters and caloric values. The ML models created were also utilised to estimate the 

best circumstances for intended production. The preprocessing or normalisation of input 

variables with various magnitudes is a hyperparameter that helps to improve the 

performance of machine learning models. However, several did not mention the strategies 

employed to prevent overfitting, which is a critical hurdle against any model improvement 

at all..[16,17] 

1.2 Animal and Plant Biomasses 

China's livestock business is rapidly expanding, leading to the yearly slaughter of 

7 × 108 pigs. Animal fatalities, whether intentional or inadvertent, will undoubtedly occur, 

resulting in a large number of corpses that may be damaging to both human health and the 

environment. The amount of dead pigs generated annually is staggering. Before being 

marketable in 2017, over 60 million pigs died due to illness, natural causes, or other 

reasons.[18] 
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Algal biomass is divided into two main classes. (1) There are two types of algae: 

(1) microalgae, which are invisible to the human eye, and (2) macroalgae, which are 

visible. Algae can supplement lignocellulosic biomass as a feedstock for biofuels. Lipid 

production by algae has long been the subject of research. On the other hand, high lipid 

algae require careful cultivation as they grow over time. The processing of algal biomass 

according to its lipid content is depicted in Figure 1. Algal blooms, which happen 

frequently in many bodies of water, can provide algal biomass. Algal blooms usually have 

negative effects on the local economy and ecology. Estimates indicate that eutrophication 

of river systems and marine algal blooms cause yearly.  

 

 

Figure 1.1: Processing of Oak Tree biomass into bio-oil [18] 

economic losses in the US of close to $2.2 billion and $100 million, respectively.[18] 
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Figure 1.2: Different type of Algae [18] 

According to the pigments that give them colour, Figure 2 displays pictures of 

various microalgae species. While being mostly employed in culinary products, 

macroalgae are a wonderful source of biomedical and pharmacological elements such as 

fucoidan, fucoxanthin, laminarin, mannitol, and Phyto colloids. Conversely, microalgae 

are single-celled microorganisms. It has 2000 species in the world that includes 

cyanobacteria, Chlorophyceae, Xanthophyte, Charophyceae, and Bacillariophyceae and 

many others. Because of their antibacterial, anti-inflammatory, and biotechnological 

potential, microalgae have so far been extensively used in the production of products 

including fertilizers, pharmaceutical medicine, chemicals, food products, and biofuels. 

The yearly creation of microalgae continuously expanded from 500 to 20,000 tons 

between 1984 and 2016, indicating that microalgae are consistently used as feedstock, raw 

materials, or products. Unlike macroalgae, the produced microalgal feedstock from 

harvesting and cultivation is typically disseminated in suspension, necessitating surface 

dewatering and harvesting based on its size, density, cell charge, and desired yield. Figure 

3 shows the powdered form of microalgae. 



 7 

Figure 1.3: Powdered Microalgae [18] 
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CHAPTER 2: LITERATURE REVIEW 

The demand for a sufficient standard of living is driven by the expanding human 

population and developing economies, which in turn causes the depletion of fossil fuels 

deposits, increased emissions of green house gas and other undesirable gases, and rising 

energy costs. Renewable energies sources can thus replace fossil fuels and are also clean 

energy sources because fossil fuel reserves are essentially endless and have been steady 

since the beginning of time [21]. Geothermal, wind, and hydroelectric energy are examples 

of renewable energy sources. Other than that, biomass is an important source of clean 

energy [22]. Algal biomass, agricultural residue, non-woody and woody plants, municipal 

solid waste, and forest residue are examples of biomass resources. Additional categories 

for solid waste from municipalities include plastics, woods, papers, cloth, rubbers, ashes, 

metal, diaper, and more materials [23]. 

Algal biomasses can be divided into two main branches: macroalgae, which are 

somewhat larger than farmers, and microalgae, which are invisible to the human eye [24]. 

A further classification of microalgae yields 3000 recognised species. Less than a hundred 

of them have been thoroughly examined and identified. Spirulina, Chlorella, 

Nanochloropsis, Dunaliella, and a few more species are examples of microalgal species 

[25]. Being photosynthetic organisms, they may grow and reproduce in a variety of settings 

and don't require fertile soil or clean water to be farmed [26]. Their composition allows for 

a wide range of uses in the production of high-value goods, such as chemicals, cosmetics, 

and human nutrition. In addition, microalgae can be utilised for biofuel [27]. Microalgae 

are used because of their high lipid content, which makes them a viable option for the 

manufacture of bio-oil [28]. Bio-oil can be produced from microalgae using a variety of 

thermochemical conversion processes, including gasification, pyrolysis, liquefaction, 

combustion, and torrefaction [20]. The list of thermochemical methods for treating algae 

is displayed in Figure 4.  

Pyrolysis is the process of using heat to break down biomass at a high temperature 

in an inert atmosphere. The main outcomes of pyrolysis’s are biochar, bio-oil, and syngas.  
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Power generation, mechanical activities, and other chemical industries can use 

pyrolysis bio-oil [29]. Pyrolysis can be categorised as quick or slow based on many 

operational criteria such as heating rate, residence time, and others [30]. Various 

researchers have studied the effects of variables employed in microalgae pyrolysis on 

laboratory-produced bio-oil. Yang et al. [31] discuss the impact of feed type and pyrolysis 

temperature on the volume of bio-oil generated during the pyrolysis of several microalgae 

biomasses. In their investigation of the effects of pyrolysis duration and temperature (T) 

on bio-oil yield, Kim et al. [32] studied the pyrolysis of Daniella microalgae at various 

temperatures and residence times. In their discussion of the effects of temperature and N2 

flow rate on the pyrolysis of microalgae, Muradov et al. [33] discovered that the maximum 

yield (40.6%) was achieved at a pyrolysis temperature of 500oC and a N2 flowrate of 80 

ml/min. Many researchers have worked on applying artificial intelligence in the field of 

biomass on different thermochemical conversion techniques. The number of articles on 

machine learning in the fields of gasification and pyrolysis is displayed in Figure 5. 

Machine learning and optimisation were used by Zahid et al. [35] to forecast the production 

of biofuel from the pyrolysis of biomass. For feature selection and hyperparameter 

optimisation, they employed genetic algorithms. For additional prediction, four distinct 

machine learning models—Random Forest, Decision Tree, Support Vector Machine, and 

MLR—were used. It was discovered that the random forest's coefficient of determination 

was 0.96. 

 

 

 

 

 

Figure 2.1: Use of machine learning in modelling applications for liquefaction [36] 
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Figure 2.2: Machine Learning Models development [36] 

Similarly, Shafizadeh et al. [36] investigated hydrothermal liquification of biomass 

using Machine Learning. They used four distinct ML models: neural network regression, 

Gaussian process regression, support vector regression, and generalised additive model. 

The hyperparameters of the machine learning models used were adjusted using a novel 

approach known as particle swarm optimisation. The optimal response parameters and 

biomass composition were discovered by combining multi-objective particle swarm 

optimisation (MOPSO), a multi-objective evolutionary technique, with the top-performing 

machine learning model's goal function. Finally, without requiring any machine learning 
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knowledge, a simple script was developed based on the chosen machine learning model, 

allowing for the avoidance of unnecessary expensive and time-consuming testing. The 

flowchart for the development of machine learning in this study is displayed in Figure 6. 

To forecast the hydrogen levels and bio-oil from biomass, Tang et al. [37] used an ML 

model. They employed Multiple Linear Regression and Random Forest, two distinct 

machine learning models. Compared to MLR, the RF method's prediction performance 

showed a higher potential for generalisation. Furthermore, the partial dependency and 

feature importance investigated with the RF technique have revealed the fundamental 

elements as well as the modes that influence the properties of oil. Additionally, Zhang et 

al. [38] employed machine learning models designed to forecast the properties of biofuels 

derived from biomass pyrolysis. The pyrolytic biofuel was evaluated in detail, with 

forecasts for its calorific value, viscosity, components, and amount (yield).  

Meanwhile, it was established that machine learning could forecast the viscosity, 

H/C, and calorific value of biofuel. Using machine learning methods, the yield, calorific 

value, viscosity, O/C, and H/C of bio-oil were predicted in accordance with the feedstock 

compositions and pyrolysis factors, while a parallel study was conducted. This survey 

provides practical suggestions for forecasting biomass-produced biofuel properties and 

composition under different pyrolysis circumstances. In addition, Zhang et al. [39] created 

machine learning for the manufacture of biofuels using hydrothermal liquification utilising 

algae as a feedstock. To estimating Yield oil, O_oil, and N_oil, single and multiple targets 

are used. Models called GBR and 

Additionally, two optimization policies (forward and reverse optimizations) were 

applied for presenting the perfect feedstock constituents and respective HTL condition, as 

well as adapting HTL states for certain alga (e-g Chlorella in this study), to help with the 

desired bio-oil production. Figure 7 shows the results of the Features importance between 

the operating conditions and Algae composition in this study. 
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Figure 2.3: Features Importance of Input Parameters [39] 

Yang et al. [27] [37] used machine learning to predict the oxygen content and 

biofuel yield of biomass based on pyrolysis parameters and composition. This study 

investigates the effects of biomass feedstocks and pyrolysis parameters on the pyrolysis 

process. The datasets from published articles included a significant number of biomass 

pyrolysis test results. Six RF algorithm-based models were created and trained after the 

characteristics were decreased to determine their forecast accuracy for biofuel production 

and oxygen concentration. 

Additionally, the trained prediction model performed an significant evaluation of 

the key features, and the partial dependence analysis (PDA) was utilized to assess the 

influence of the input features on the target variables. Figure 8 illustrates the methodology 

followed within this research. Based on the regression coefficient (R2) for the testing data, 

training predictive performances are evaluated According to the findings, the Proximate-

Yield model (R2 1/4 0.925) performs best at forecasting yield of biofuel, while the 

Ultimate-O model (R2 1/4 0.895) performs best at predicting the oxygen content of bio-

oil. The interior data of the biomass is very significant than the pyrolysis factors for 

predicting the content of oxygen of biofuel, while the heating rate dominates the most 

importance for predicting biofuel output, according to the analysis of feature importance. 
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Figure 2.4: Methodology [37] 

Nonetheless, the customary methods entail costly, costly, and lengthy extensive 

experimental work to figure out the amount of bio-oil and its connection to the microalgae's 

composition and pyrolysis circumstances. Consequently, in order to accurately estimate 

the combined influence on the bio-oil output. 

Machine learning should be used to analyse microalgae pyrolysis, taking into 

account the combined effects of pyrolysis settings and feedstock composition [35]. As 

artificial intelligence progressed, many unique and cutting-edge strategies that handle both 

linear and non-linear issues were included into traditional processes [40]. Machine learning 

techniques such as SVM, DT, MLR, ANN, and RF have previously been effectively used 

to biomass pyrolysis and gasification due to their higher prediction potential than 

traditional approaches. [41–42]. 

2.1 Objectives 

The important objectives of this study are given: 

➢ Data collection from relevant literature. 
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➢ Development of Machine Learning models 

➢ GA &PSO for features selection. 

➢ PSO and GA for the optimization ML models hyperparameters. 

➢ Finding the optimum values of input parameters 

2.2 Research Justification and Relevance to National 

Potential energy policy and climate change are important motivators for expanded 

biomass consumption worldwide, particularly in developing nations such as Pakistan. One 

of the main reasons for Pakistan's energy issue is the rising cost of fossil fuels, which are 

used by local energy firms and household consumers to generate power and heat using 

boiler fuel and natural gas. Bioenergy has the capacity to produce more energy in addition 

to taking the place of petroleum-based products with renewable ones. Because fossil fuels 

are running out and there are environmental issues involved, biofuel made from carbon-

neutral biomass feedstocks can be a good substitute. 

Various experimental studies have been conducted on the area of biomass pyrolysis 

produced from Algal feedstock. However, the use of emerging techniques such as Machine 

Learning can not only save time and resources but can also meet with the requirements of 

industrial revolution 4.0. 

2.3 Thesis Outline 

This thesis is structure as follows, in chapter 1 the discussion of introduction of the 

research study, followed by the literature review. In chapter 3, Overview of Machine 

learning models along with Optimization algorithms is presented, which is followed by 

results of the study in chapter 4. Chapter 5 concluded the thesis. 
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CHAPTER 3: OVERVIEW OF MACHINE LEARNING MODELS 

& OPTIMIZATION ALGORITHMS 

3.1 Machine Learning models 

This study generated five different machine learning models. This study used artificial 

neural networks, decision trees, ensembled learning trees, support vector machines, and 

Gaussian process regression to develop a model for forecasting the production of bio-oil 

from biomass by liquefaction. Using MATLAB software and machine learning models. 

3.2 Decision Tree (DT) 

DT is one of the most used and reliable machine learning models. It depicts 

solutions and their corresponding results as a tree. Decision trees have several nodes, with 

the root node being the highest or first. Internal nodes, which contain just one child, are 

used to represent attribute testing. Based on test findings, the classification algorithms 

branch and test until they reach the leaf node.[43].  

Decision trees have several advantages, including ease of use and interpretation, 

the ability to determine the optimal value to fill in data gaps, suitability for both regression 

and classification problems, and high efficiency due to the tree traversal method's 

performance. Furthermore, over-fitting concerns based on the ensemble technique may 

develop, and Random Forest is the solution. The key disadvantages of DT include its 

volatility, difficulties maintaining tree size, and inclination to develop locally optimum 

rather than globally optimal solutions.[44]. 

3.3 Basic Concepts 

Figure 9 displays a pure DT model with a single binary target variable Y (0 or 1) 

and two successive variables (x1, x2) that range from 0 to 1. The primary components of a 

decision tree model are branches and nodes, and the most important phases in model 

development are halting, splitting, and pruning.[45]. 
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Figure 3.1: Structure of Decision Tree [45] 

3.4 Nodes 

Three categories are used to organise nodes. (1) A choice that will influence the 

division of a data set into two or more jointly restricted groups is represented by the root 

node, also known as the decision node. Internal nodes, which are also called chance nodes, 

represent one of the available alternatives at that particular place in the tree assembly.  

The topmost edge of an internal node is connected to its corresponding parent node, 

while the bottommost edge of an internal node is connected to leaf nodes. (3) Leaf nodes, 

sometimes referred to as end nodes, characterise the outcome of a sequence of decisions or 

events. 

3.5 Branches 

Branches are random events or occurrences that occur from root and internal node. 

A decision tree model is erected using a branch pyramid. All tracks from the root to the 

leaf do not symbolize a law of decision classification. These DT routes are often known as 

'if- then' rules. 
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3.6 Advantages 

Decision tree has the following advantages when used in research findings. 

➢ Divides original input variables into substantial subgroups to simplify complex 

interactions between target variables and input variables. 

➢ Simple to comprehend and interpret. 

➢ A non-parametric strategy that creates no statements about the distribution. 

➢ It is simple to manage incomplete data without resorting to imputation. 

The decision tree approach, like any analytical tools, has limits that user should be 

aware of. The key downside is that it is susceptible to overfitting and underfitting, 

especially when used with a limited data set. This issue has the potential to impair the 

generalizability and resilience of the resulting models. Another potential issue is that 

substantial correlation between potential input factors may result in the selection of 

variables that increase statistics of the model but are not necessarily related to the desired 

outcome. As a result, while evaluating DT models and using the outcomes of these models 

to establish causal hypotheses, one must use caution. 

3.7 Support Vector Machine (SVM) 

SVM is a well-liked machine learning model that may be applied to a variety of 

problems, including regression and classification. In an infinite or high-dimensional space, 

SVM generates a single hyperplane or a collection of them. Given that the classifier's error 

diminishes with increasing margin, the hyper-plane farthest from the training data points 

has a high separation [46]. The length difference between classes is known as the margin. 

SVM performs incredibly well when used to linear or non-linear dataset problems. The 

support vector machine technique uses kernel types such polynomials, linear radial base 

functions, and sigmoid for a model prediction. The Kernel function is used to calculate the 

degree of similarity between two data points. This means that the kernel type 

hyperparameter needs to be changed. SVM performs poorly when data have noises, like 

overlapping target classes [47]. The application of an SVM to a categorization problem is 
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divided into two stages: training and forecasting. In training, the SVM is fed a dataset with 

every single sample being a static-length vector. Additionally, each sample must be 

accompanied by a binary label. '+1' denotes the positive class and '-1' indicates negative 

class. If every single vector holds m values, then the data is in m-dimensional universe 

which is known as the input space. The training algorithm of SVM checks the input space 

for a plane (or, when m > 3, a hyper - plane) that divides the positive and negative samples. 

Figure 10 shows the structure of SVM with hyperplane shown by the red line and support 

vectors by dots. According to learning theory, when there are several such hyperplanes, an 

optimal approach chooses the farthest hyperplane from every training set. This hyperplane 

is referred to as the largest margin hyperplane. The problem of picking the hyperplane of 

maximum margin for a given dataset can be defined and addressed quickly using quadratic 

programming. The training phase of SVM begins with this optimization [48]. 

 

Figure 3.2: Structure of SVM [48] 

This explanation of the SVM method is lacking in detail, but it should enough for 

our upcoming discussion. Particularly, it has not been demonstrated how does the SVM 

operates if there is no separating hyperplane. In a nutshell, this dilemma is addressed in 

two directions. The first approach includes incorporating a ‘soft margin,' which permits a 

portion of training set to lie on the 'wrong' edge of the plane; for example, few samples 
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labelled '-1' may sit on top of the '+1' area and vice versa. The second method consists of 

adding a kernel function which is elaborated below. 

3.7 Kernel Methods 

The general kernel function explains why two items are similar. A large value 

indicates a similarity between x and y, whereas a small value indicates a distinctness. When 

using kernel approaches in machine learning, the kernel function needs to be symmetrical 

and positive semidefinite. The fundamental idea behind a kernel method is simple yet 

nuanced. Let us consider that we have a set of n vectors with m length. An m x n matrix 

can be used to convey this data. Using a kernel function K (), we may determine the 

proximity between every set of vectors in the database. The values of these kernels can 

alternatively be represented as a kernel matrix, which is a n x n matrix. to be a kernel 

method, an algorithm must be able to demonstrate that the kernels matrix is a suitable 

interpretation of the data. In other words, it should be able to remove the original matrix of 

the data while still running the algorithm with just the kernel matrix. 

Kernel function is a dot product (Scaler product). 𝐾 𝑥, 𝑦 = ∑ 𝑖 𝑥𝑖𝑦𝑖. A kernel 

procedure is thus a system that may be created down so that all data vectors fit inside a dot 

product process. Easily replace the dot product operation with the K in order to make the 

algorithm ‘kernelize'. The kernel function can be substituted for the dot product operation 

since it is mathematically equal to the projection of the database into a different dimension. 

Let us suppose there are m dimensions in the input space, However, we employ a quadratic 

kernel function which is specified as 𝐾 (𝑥, 𝑦) = (∑𝑖 𝑥𝑖𝑦𝑖)2. A kernelized form of the SVM 

determines the hyperplane of extreme space in the feature space by resolving the basic 

optimization problem with a new kernel function [49].  

3.8 Ensemble Tree (ET) 

By assembling a group of base learners and combining their output findings to make 

a final judgement, ensemble learning model is a subfield of machine learning that can help 

enhance the efficiency and precision of generic machine learning classifiers. Use the 

complimentary information from those various classifiers to improve the performance and 
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judgement accuracy of EL classifiers [50]. Ensemble approaches are divided into two 

categories. The first is boosting, which is frequently employed to enhance how well 

machine learning models perform. The first type of ensemble learners of this kind to be 

imposed is AdaBoost. The second is bagging, which is mainly used in analysis related to 

regression and classification.  

3.9 Bagging 

Bagging, often known as bootstrap aggregation, was one of the early ensemble 

techniques. During a portion of the training phase, each ensemble core classifier (decision 

tree or other classifier) is trained. To pick a training set for each base classifier, bootstrap 

sampling is utilised, which involves randomly selecting and replacing a part of the dataset. 

The simple majority voting method is used to categorise new instances. Each classifier 

classifies the instance, and the final classification is established by summing the classifier 

votes. Figure 11: Bagging ET Process Diagram. While bagging is one of the simplest and 

most rudimentary ensemble classifiers, it should be mentioned that it did really well in a 

few experiments.[45]. 

 

Figure 3.3: Process of Bagging ET [45] 

Random forests are a bagging algorithm version in which the base classifiers are 

decision trees. Random forests, like bagging, employs bootstrap sampling and un - 

weighted committee aggregation for final classification. However, random forest method 

differs in the way decision trees are built. Typically, m features are chosen at random from 
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a set of M characteristics, and the ideal value of m is typically the square root of M. 

Furthermore, every tree in RF has not been pruned and is fully grown. Random forests 

perform exceptionally well, particularly for datasets with many features. 

3.10 Boosting 

Each base classifier is not entirely generated by the boosting approach by itself. 

Rather, the classifiers are created one after the other, with each base classifier that comes 

after giving the errors of the previous classifier more weights. Adaptive boosting is one of 

the most used boosting methods. AdaBoost uses weighted voting, data sampling, and an 

arbitrary number of base learners. First, the system builds a base classifier that is trained 

on the dataset using equal weights. Later classifiers are constructed by giving bigger 

weights to instances that the previous classifier misclassified, whereas examples 

Figure 3.4: Process of Boosting ET [51] 

successfully classified are given the same weights. After that, the weights including all 

instances in the entire dataset are normalized and applied for selection for the following 

classifier. Weighted base classifiers are used in the final classification. Figure 12 shows the 

boosting ET process [51]. 
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3.11 Gaussian Process Regression Model (GPR) 

 GPR is a nonlinear, nonparametric regression model with a random attitude. This 

approach may measure forecast uncertainty in addition to generating predictions by 

reporting the coefficient of determination for each prediction point [52]. To compute the 

probability of an input vector, utilise the Gaussian distribution's variance and mean. Rather 

of creating a variance and scaler mean, the GPR technique generates a mean and correlation 

vector. Using GPR, the smoothness proposal (represented by the interpolation zone) may 

be chosen quickly and quantitatively [53]. Figure 13 illustrates the basic workings of GPR. 

. 

 

 

 

 

 

 

Figure 3.5: Observations (3) Basic functions (3) Estimations [54] 

Let f represents a function (unknown) that converts inputs to outputs. 𝑌: 𝑓: 𝑥 — 𝑦. 

We indicate mathematically describing the relationship among input and output when we 

say we're modelling a function f. An accurate f model allows us to anticipate the output for 

a wide range of input values. This involves gathering observations of input and output and 

creating precise forecasts for freshly detected points based on these observations. For 

example, we will use GPR to simulate mouse trajectories in categorization research. 

Furthermore, we will use compositional GPR to deconstruct temporal dependencies in 

people's reaction times into intriguing patterns. To truly depict a function, one must actively 

choose the input points from which to examine the results. This process is known as 
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function exploration. The primary objective of basic exploration problems is to ascertain 

the underlying function as quickly and accurately as feasible by conducting a thorough 

investigation. Since this arrangement involves adaptively selecting the source locations 

based on prior knowledge about the variable and where information might be enhanced, it 

is closely related to optimal experimental design scenarios.  

The goal is to locate inputs that yield maximum output in order to optimize reward 

acquired within a specific time frame. Exploration merely serves the objective of most 

effectively doing so. The purpose of this setup is to find the highest of the function as 

effectively as feasible, which is strongly related to design problems. It is known as 

exploration-exploitation because situations in which the yield of the underlying function 

must be optimized demand us to extract both ambiguous zones just to gain more 

information about exploration and input points that are likely to produce higher output 

given based on current knowledge of the exploitation.[54] 

3.12 Overview of Optimization Algorithms 

The selection of features and tuning of hyperparameters were done using two separate 

optimisation techniques, which were then compared. Particle Swarm Optimisation is the 

second, and Genetic Algorithm is the first. 

3.13 Genetic Algorithm Technique (GAs) 

General Analytic (GA) is a problem-solving technique inspired by natural 

selection. GA aims to assist a population in adjusting to shifting environmental 

circumstances. Because each person is different, good habits need to be refined while bad 

and unnecessary traits need to be lost. GA is an evolutionary algorithm that utilises 

programming and evolutionary techniques. The procedure was started with a population 

that was created at random [59]. The operators, which are explained below, are what make 

up the GA. 

Many researchers have used GAs to evaluate the solution of complex issues 

involving decision variables that lack consistency, uniqueness, and other features. During 

searches, GA aggregates potential solutions into data structures resembling chromosomes 
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and keeps a community of these genes. It necessitates the employment of a fitness function 

that awards each solution a scalar reward (or incentive). If GA has created a good plan and 

evaluation function, they can expect honest responses. It then generates an initial solution 

of a predefined set of threads or chromosomes, known as that of the population size. The 

very next step is to analyze every option in the native population using a payout function. 

The rewards for superior responses are larger, while the rewards for the remaining options 

are lesser. The following generation is formed using GA operators including crossover and 

mutation. This practice is repeated till an ideal solution (or solutions) is found, the number 

of iterations or populations is reached, or the discrepancy among solutions is less than a 

predefined limit is attained. Figure 16 shows the schematics of GA. [60,61] The aspects of 

GA are described briefly below: 

3.14 Representation 

 

 

 

 

 

 

 

 

 

Figure 3.6: Workflow of GA 

The genetic algorithm requires solutions or individuals in a population to be 

depicted by chromosomes. The representation scheme utilized determines the structure of 
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an issue and the sort of genetic operators which will be used. Specific alphabets are 

employed to create a gene sequence that makes up the chromosome. These alphabets can 

be made up of binary numbers (0 and 1) and value numbers. It has been demonstrated that 

chromosomes encoded with real value values yield more effective GAs and better solutions 

[62]. 

3.15 Selection Function 

In GA, thousands of generations are created by selecting people from a preceding 

generation. Classification is founded on the idea that each and every entity has a chance or 

likelihood of being chosen once more than once for reproducing in the following 

generation, based on their fitness value. Some of the selection procedures include roulette 

wheel selection, scale techniques, competitions, elitist systems, and rating scales. A 

common stage in these approaches is assigning individuals a chance of selection. This task 

can be completed using a roulette wheel, logarithmic ranking, or geometrical priority. 

3.16 Genetic Operators 

GA operators alter the population over generations to achieve the desired or optimal 

result. The adaptive qualities from previous generations need to be maintained by the 

population. The operator in charge of selection searches for parents whose kids exhibit high 

levels of fitness. Chromosomes with better fitness values are chosen for reproduction. 

Chromosome selection and fitness value are closely associated in reproduction. Another 

GA operator called crossover causes parent traits to be integrated during reproduction, 

producing offspring with characteristics derived from both parents. Mutation operators are 

used to stop advanced individuals from entering populations and to stop important 

information from vanishing from the string. t randomly modifies one or even more 

individuals in a group to guarantee genetic diversity. Additionally, binary coded gene is 

generated by reversing the gene sequence from 0 to 1. 

3.17 Initialization 

GA requires an initial population to begin the process of determining the optimum 

solution. The population can be generated by producing random responses inside the 
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variables' upper and lower bounds. Another approach is to increase the starting population 

with well-established best approaches to improve on the existing ones. The rest of the 

population could be generated at random. Once a specific termination meets the criteria of 

termination then the GA operations are terminated. The requirement can be any or a mix 

of the following: (1) The number of generations approaches a predefined maximum value. 

(2) The population adapts on a unique solution. (3) The difference between solutions 

becomes less than a specified criterion. (4) The ideal solution does not grow over a certain 

no. of generations. (5) The evaluation values meet an acceptable level. [63] 

When the goal function was not reached, GA was refreshed to create a new batch 

of population. First, a population was produced at random. A fitness function was then 

used to assess the features. GA operators were used to generate the population. Table 1 

displays the GA parameters that were utilised to produce the optimised ML models in this 

work. 

This method is repeated until the best fitting function is achieved. Table 1 reveals 

the parameters of GA used in this research. 

Table 3.1: Parameters of Genetic Algorithm 

 

3.18 Particle Swarm Optimization Technique (PSO) 

Fish schools and bird flocks are two examples of animals whose collective 

behaviours first had an impact on PSO. PSO solutions are displayed in the search box as 

"birds," also known as "particles." A cluster of these particles’ combs over the search space 

in quest of the best location. In a multidimensional N space, the particle carries the location 

vector and the velocity vector. The multidimensional space's dimension is represented by 

′j′, while the vector's location is denoted by ′𝑖′. The velocity vector in this instance is defined 

as follows: 𝑉𝑖𝑗 = (𝑣𝑖1, 𝑥𝑖2, …, 𝑥𝑖𝑁), where 𝑁 denotes the number of unknown variables 
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or the space's dimension. In this instance, VL represents the VL location vector and is 

defined as VL = (VL1, VL2,, VL).  

The two equations given below are used for updating the velocity and position of 

the particles, where 𝑘 is iteration number used for updating both vectors. 

𝑉𝑖𝑗𝑘= 𝑤𝑉𝑖𝑗𝑘  +𝐶𝑝  ᴦ𝑝(𝑋𝑝𝑏𝑒𝑠𝑡𝑖𝑗𝑘 − 𝑋𝑖𝑗𝑘) +𝐶𝑔   ᴦ𝑔(𝑋𝑔𝑏𝑒𝑠𝑡𝑖𝑗𝑘 − 𝑋𝑖𝑗𝑘) 

𝑋𝑖𝑗𝑘+1=𝑋𝑖𝑗𝑘+𝑉𝑖𝑗𝑘+1…………………………………………………..(1) 

When 𝐶𝑝, 𝑎𝑛𝑑, and 𝐶𝑔 are positive reals, the optimal or best position of the swarm 

thus far is represented by ′𝑋𝑔𝑏𝑒𝑏𝑖𝑗′, and the general 𝑖𝑡ℎ personal best position of the 

particle is represented by ′𝑋𝑝𝑏𝑗𝑗′. The inertia weight, denoted by ′𝑤′, represents the impact 

of the preceding velocity vector on the subsequent one, while 𝑝 𝑎𝑛𝑑 𝑔 are random values 

generated with a uniform distribution on a unit interval. In every dimension, the velocity 

has an upper bound 𝑉𝑚𝑎𝑥. 

In this research the values of PSO parameters were [36]: 

𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 = 1, 𝑠𝑜𝑐𝑖𝑎𝑙 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 = 1.49, 𝑠𝑒𝑙𝑓 − 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 = 1.49, 𝑚𝑖𝑛. 𝑎𝑑𝑜𝑝𝑡𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 0.25 
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CHAPTER 4: METHODOLOGY  

4.1 Summary of Methodology 

In this research, data for the liquefaction of animal and plant biomasses was taken 

and different ML models were developed integrated with optimization algorithms (1) PSO 

and (2) GA. The operational parameters include Ultimate, Proximate analysis, and 

liquefaction conditions. 

Data was imported from an excel sheet in MATLAB R2021. ML models were 

combined with optimisation techniques, such as GA and PSO, to pick features and forecast 

the yield of bio-oil. In addition, the data set that forecasted the yield of ethanol from 

biomasses under fictitious conditions was used to train an AI system. 

In this study, a GPR-PSO based model was developed to predict the bio-oil yield 

from the liquefaction of animal and plant biomass waste using Proximate and ultimate 

analysis and liquefaction parameters. The workflow of this research is sn in figure 17. 

Figure 4.1: Research Workflow 
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4.2 Data collection 

Data from the manufacture of bio-oil from the liquefaction of animal carcasses, 

barley straw, and pine wood are gathered for this study. To locate pertinent researching 

articles or articles in the databases of Google Scholars, Science Direct, and Web of Science, 

a variety of keywords were utilized, including pine wood, barley straw, animal carcass 

biomass, bio-oil, liquefaction, plant biomass, and machine learning. Division and feature 

data extraction were completed in order to assess and construct machine learning models 

following the collecting of data from pertinent articles. The procedure for gathering the 

data is explained in more depth below. 

• A total of 312 bio-oil yield data sets were gathered from research papers. 

• Samples for liquefaction data were gathered by considering various biomasses 

of animal carcass ultimate and proximate composition, pine wood, and barley 

straw, as well as liquefaction factors. 

• Tables, supplemental data, and figures from the literature provided the 

information for the data sets. 

• Information on various biomasses of pine wood, barley straw, and animal 

carcass ultimate and proximate composition—which includes moisture content, 

ash, fixed carbon, and volatile matter—was acquired from the literature. 

Carbon, oxygen, nitrogen, and hydrogen make up the ultimate composition. 

• In the liquefaction of pine wood, barley straw, and animal carcass, input 

features such as liquefaction temperature (C), residence duration (min), and 

ultimate and proximal compositions were employed. 

• MATLAB was used for the datasheet preprocessing, and various filling 

techniques (previous, nearest, next, linear, spline, pchip, and makima) were 

applied to fill in the missing data. The filing techniques that produced the fewest 

errors were employed. Various techniques for eliminating outliers were also 

applied. 

• Bio-oil yield was the output of the liquefaction of pine wood, barley straw, 

Animal Carcass biomasses. 
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• Tables 1, 2, and 3 display the entire data distribution. 

• Using the ultimate, proximate analysis of animal and plant biomasses and the 

conditions of liquefaction, a software with a graphical user interface was 

developed to forecast the generation of bio-oil. To develop the GUI, the 

MATLAB R2023 toolbox was utilised in future. 
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CHAPTER 5: RESULTS AND DISCUSSION 

Following up on the previous line of the literature review, this study looked at five 

different machine learning techniques for predicting the yield of bio-oil based models: 

SVM, GPR, Ensembled Tree, DT, and ANN. Figure 18 illustrates how ML models use the 

composition of plant and animal biomass as well as the conditions for liquefaction as input 

parameters of liquefaction process. The biomass composition consists of Ultimate analysis 

which includes the percent concentration of Carbon (C), Hydrogen (H), Nitrogen (N), and 

Oxygen (O) and proximate composition, which is the percent concentration of Ash, Fixed 

Carbon (FC), Volatile Contents, and Moisture Content. The Liquefaction parameters 

include, Liquefaction Temperature (T), and residence time (t). The product of liquefaction 

is bio-oil. 

This study used liquefaction characteristics (temperature, time, and bio-oil yield) 

along with proximal and ultimate analyses (biomasses composition) to develop machine 

learning (ML) models, including SVM, ANN, DT, GPR, and ET, to forecast the bio-oil 

output from biomasses liquefaction. This research is novel in that, instead of using time-

consuming and potentially overfitting filter and wrapper approaches, two different 

optimisation methods—PSO and GA-based algorithms—were used for features selection 

and ML model hyperparameter optimisation and compared. While the PSO-based features 

selection applied in this study is an advanced and novel method of optimization that uses 

natural ways to solve problems. It takes less time and optimizes results depending on cross-

validation performance.  

PSO and GA are both evolutionary search techniques, which means that they shift 

from one set of points to another inside an iteration with evident improvement over the 

prior values via deterministic and probabilistic principles. After features selection five 

different machine learning models were trained and established to compare their prediction 

performance of bio-oil yield (Figure 18). Additionally, a study of partial dependence, 

which shows how input features affect target variables, and the significance of input 
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variable features were carried out. Apart from that correlation plot for the relation between 

any two variables was constructed. 

Finally, an extremely simple software tool for calculating bio-oil yield was built 

based on the suggested GPR model. The complete understanding of microalgae pyrolysis 

as well as practical recommendations were given by the anticipated accuracy of machine 

learning models and fresh perspectives that accompanied them. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Building of Machine Learning Model 
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5.1 Box Plot Representation of Oak Tree and Animal Carcass Composition and 

liquefaction Conditions 

The box plot, also known as the box-and-whisker plot, depicts the descriptive 

statistic and the first data division. Thus, the box plot allows you to visualise the peak, 

upper quartile, average, lower quartile, and bottom of any data set. As shown in Figures 

19, 20, and 21, the parameters of the ultimate and proximate compositions, as well as the 

liquefaction conditions, were plotted against their distribution in the box plot.  

The proximal analysis, which included FC, Ash, MC, and VM, yielded 4.1%-

24.80%, 0.20%-59.93%, 0.17%-2.24%, and 47.20%-95.06%, respectively. However, the 

final study considers the following: 2.75-77.2%, 8.6-65.20, 3.01-13.88%, 0.1%-12.80%, 

and 0.05%-2.24% for carbon, oxygen, hydrogen, nitrogen, and sulphur, respectively. In 

addition, the liquefaction reaction parameters T, time, and bio-oil yield are 110%-400%, 

0%-12%, and 7.8%-81%, respectively. Figure 20 displays box plots as depicted. 

 

 

 

 

 

 

Figure 5.2: Box Plot of Ultimate Analysis 
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Figure 5.3: Box plot of Proximate Analysis of Biomasses 

 

 

 

 

 

 

 

Figure 5.4: Box Plot of Bio-oil yield Conditions 
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Table 5.1: Data Distribution of Ultimate Analysis 

 

 

 

 

Table 5.2: Data Distribution of Proximate Analysis 

 

 

 

 

Table 5.3: Data Distribution of Liquefaction Conditions 
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5.2 Features Selection 

Using an optimisation approach, features selection is the process of selecting the 

process's best features with the largest impact [1]. This study used two unique optimisation 

strategies to choose the characteristics. PSO is first, while GA is second. All machine 

learning techniques relied on these two optimisation methodologies. We picked features 

that had a major impact on biofuel yield. Using feature selection improved the R2 and 

RMSE values. The main principle behind feature selection is to improve the prediction 

ability of machine learning models. 

Table 2 shows the features selected for ANN, GPR, SVM, DT, and ET through 

genetic algorithm and particle swarm optimization of the optimization techniques. 

Table 5.4: Features Selected for GA and PSO 

 

. 

 

 

 

 

5.3 Performance Evaluation Criteria 

GPR, ET, ANN, DT, and SVM were pre-processed from the MATLAB toolbox 

using default hyperparameters. Based on R2 and RMSE, the pre-processing techniques 

were assessed. Two categories were created out of the datasets: training (80%) and testing 

(20%). To reduce data waste and overfitting, 5-fold cross validation was used. After noting 
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𝑖 

the hyperparameter values from the regression model toolbox, PSO and GA were used to 

optimise the models, and the results were compared. These hyperparameters were then 

employed in the development and testing of models. The evaluation of machine learning 

models was conducted using two key performance metrics, namely root-mean-square error 

(RMSE) and coefficient of determination (R2). The R2 and RMSE formulas are given 

below. 

 

 

 

where 𝑌𝑖 is predicted data, 𝑌𝑒𝑥𝑝 is experimental value, n denotes number of tests 

samples. 

5.4 Optimization of ML Methods 

The regression model's toolbox contained the tuning parameters for each machine 

learning model, which were chosen using 5-fold cross-validation and standardised data. 

For GPR, SVM, ET, and decision trees, they were trained and optimised with the aid of 

PSO and GA. The kernel function "gaussian," kernel scale 2.8339, box constraint 

765.5795, and epsilon 11.2812 were the optimised settings of the SVM hyperparameters 

in the instance of GA. In contrast, the values of the hyperparameters for PSO were Epsilon 

6.2225, Box Constraint 198.0083, Kernel Scale 1.6970, and Kernel Function "gaussian." 

Comparably, in the ET scenario, the parameters derived by the GA optimisation were 

Method "Bag," Number of learning cycles (10), and Learning Rate (1). In contrast, the 

number of learning cycles for the PSO method "LSBoost" is 0. 7580.. For DT surrogate 

was selected ‘on’ for GA and ‘on’ for PSO and the minimum leaf size was equal to 1 for 

both. For GPR, in case of GA the value of Sigma was 7.2841, and for PSO Sigma was 

0.9957. 



38 

5.5 Prediction Performance 

Oak tree bio-oi output was predicted using machine learning models, namely SVM, 

GPR, DT, and ET. Each ML model predicted the bio-oil yield accurately based on selection 

of GA and PSO variables. Tables 3 and 4, respectively, present a comparison of all four 

models for feature selection based on PSO and GA. The GPR's R2 and RMSE values prior 

to feature selection were, respectively, 0.9309 and 0.1119. The GPR model's R2 value 

climbed to 0.5187 and the RMSE value dropped to 0.3852 after employing PSO for feature 

selection and optimised hyperparameters. In contrast, the GA-based features selection 

method yielded a higher R2 value (0.9270) and a lower RMSE value of 0. 1077.The 

performance of ET, DT, and GPR was acceptable for both GA and PSO as compared to 

SVM for bio-oil yield prediction as can be seen in figure 22 and figure 23 respectively.  

Similarly For GA based study, the training and testing values of R2 for ANN, GPR, 

ET, SVM, and Dt were 0.9326, 0.9943, 0.9493, 0.5568, 0.62 and 0.9037, 0.8655, 0.9715, 

0.9192 respectively as can be seen in figure. The root mean square error (RMSE) and 

coefficient of performance (R2) values were used to compare the performance of each 

machine learning model. When it came to PSO and GA-based feature selection, the SVM 

model performed poorly, whereas the GPR model performed well in all scenarios. When 

it came to PSO, the testing and training performance trend for every ML model was 

GPR>ANN>DT> ET >SVM. In contrast, every ML model in the GA-based study 

performed in the following order: GPR>ET>ANN>DT>SVM. Table 5 presents a 

comparison between the yield predicted by GPR and experimental data. The performance 

all the ML models were compared on the bases of the values of root mean square error 

(RMSE) and the coefficient of performance (R2). The performance of SVM was poor in 

case of both PSO and GA based feature selection while that of GPR model was best for 

both PSO and GA. In case of PSO, the performance trend for testing and training for all 

the ML model was GPR>ANN>DT> ET >SVM. While in case of GA based study the 

performance of all the ML model was in the order of GPR>ET>ANN>DT>SVM. The 

comparison of the yield predicted by GPR and experimental can be seen in Table 5. 
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Figure 5.5: Comparison of various ML models with bio-oil production (AB) DT, (CD) 

GPR, (EF) SVM, and (GH) ET, using PSO-based algorithm. 
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Figure 5.6: Comparing different machine learning models with the generation of biofuel (AB) 

DT, (CD) GPR, (EF) SVM, and (GH) ET, using GA-based algorithms. 

 

 

 

 

Table 5.5: Comparison of ML methods using PSO. 



42 

 

Table 5.6: Comparison of ML methods using GA 

 

5.6 Features Importance 

The Shapley technique was used to determine the relevance of each characteristic. The 

GPR-PSO model accurately predicts the relationship between microalgal composition, 

pyrolysis conditions, and bio-oil production. The GPR-PSO model was used to assess the 

relative impacts of temperature, heating rate, time, volatile matter, carbon, nitrogen, 

oxygen, and moisture content. Figure 24 shows that while N2, O2, and C concentrations 

had a little effect on bio-oil production, temperature, time, and moisture content had a 

considerable influence. Furthermore, neither volatile matter nor heating rate had a 

substantial effect on yield. 
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Trends followed is study is T>time>MC>O>N>C>HR>VM. 

Figure 5.7: Feature importance to produce bio-oil yield from the liquefaction of Oak Tree. 

5.7 Partial Dependence Plots (PDP) for Liquefaction Parameters 

Plots of partial dependence were created for the feature chosen for particle swarm 

optimisation based on the liquefaction circumstances. Figure 25(A, B, C, D, E, F, G, H, I, 

J) displays PDPs for the proximate, ultimate analysis, and liquefaction conditions for the 

prediction of bio-oil produced. The relationship between carbon and hydrogen with bio-oil 

is depicted in Figures 25(A) and (B), respectively. According to [50], it is evident that 

adding more carbon and oxygen will boost the production of biofuel. Figure 25(C) 

illustrates how the nitrogen composition affects the yield of bio-oil. The most crucial factor 

in the liquefaction of oak tree yield is temperature, which also has a big impact on the 

quality of the bio-oil. They found that raising the temperature of the biofuel will result in a 

higher production of biofuel. As the temperature rises, more light ends are generated 

through thermal oil degradation, which causes the output of bio-oil to steadily fall. They 

explained the 400 °C increase in bio-oil yield by the synthesis of the main oil components 

at that temperature range. At higher temperatures, bio-oil with a higher carbon and 

hydrogen content was created, but the amount of bio-oil produced was less. Reactor 
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residence time is the second crucial factor in determining the yield of bio-oil. Less time 

spent in residence will be needed when the heating rate is increased. 

  

Figure 5.8: Partial dependence plot for bio-oil Yield using Proximate and Ultimate 

analysis and Liquefaction conditions. 
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A sample produces more liquid products and volatiles when heated quickly to an 

intermediate temperature, while prolonged heating produces more char at the same 

temperature. 

Figure 26 displays three-dimensional plots that depict temperature and bio-oil 

production along with other significant features (time, FC, S, and C). 

 

Figure 5.9: The Partial Dependence Plot of Bio-oil produced on Temperature with (A) Time, (B) Fixed 

Carbon, (C) Carbon, and (D) Sulphur 
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5.8 Correlation Plot 

 Figure 27 shows a graph of the Pearson correlation coefficient for any two 

parameters. The majority of the characteristics have non-linear interactions with one 

another, therefore they may be utilised to create models. O2, on the other hand, has a very 

unfavourable association since the oxygen content is calculated using O = 100-C-H-N in 

the bulk of study. Similarly, FC, which is derived from the difference (FC = 100-Ash-VM), 

has a negative connection with VM, FC, and Ash. Furthermore, a significant positive linear 

correlation between C and H is seen, which is compatible with the number of C-H bonds 

in biomass feedstock. As a result, the inputs for hydrogen content (H) and FC must be 

eliminated from the following construction models. 

 

Figure 5.10: Pearson Correlation Coefficient graph for any two variables 
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5.9 Graphical User Interface (GUI) 

Users can interact with electronic devices through the use of graphical icons, user-

friendly applications, and symbols in a Graphical User Interface. Researchers were able to 

enter data about the liquefaction conditions, final composition, and proximate composition 

of microalgae using the GUI that was developed for this study. ET-PSO is the model 

prediction function that GUI employed in this work to forecast the yield of bio-oil. The 

GUI was developed using MATLAB 2021b. The GUI for oak tree composition and 

liquefaction parameters is shown in Figure 28. It includes the following: liquefaction 

conditions (Temp(C) = 160, Time(min) = 10); proximate analysis (FC=24.8%, MC=8.9% 

and Ash=1.14%); and ultimate analysis (C=28.3%, H=7.35%, N=0.7%, O=42.3%, 

S=0.05%). 

 

Figure 5.11: GUI for Oak tree feed and its respective bio-oil yield 
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CHAPTER 6:  CONCLUSION AND FUTURE 

RECOMMENDATIONS 

6.1 Conclusions 

This study employed four distinct types of machine learning models to anticipate the bio-

oil output from the liquefaction of an oak tree. Using PSO for feature selection and ML 

model parameter optimisation, the ET model beat the other models in predicting bio-oil 

(R2 = 0.9835) when compared to DT (R2 = 0.8125), GPR (R2 = 0.9309), SVM (R2 = 

0.7483), and SVM (R2 = 0.43). The ET performed better while utilising GA for feature 

selection and hyperparameter optimisation. Furthermore, the partial dependency plot 

analysis demonstrated that the optimal parameters selected using the PSO-based technique 

had a substantial influence on the percentage of bio-oil in the output. 

6.2 Future Recommendations 

• A novel hybrid of GA and PSO can be applied in biomass liquefaction in future 

which will eliminate the cons of both the algorithms.  

• The application of Deep learning can be useful in this field of Oak tree biomass 

liquefaction because it has never been done before. 
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