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Abstract 

Floods require good monitoring and preventive measures; they pose risk factors to humankind, 

property, and infrastructure. This thesis proposes a new approach to enhancing the integration of 

Internet of Things (IoT) infrastructure through utilizing Machine Learning (ML) methods for 

improved flood management and prevention. The system comprises three stations, namely: the 

water station, repeater station, and siren station. The water station is implanted with a radar 

sensor to monitor the water level continuously. Repeater stations actuate smooth communication 

and data flow by transmitting data between the stations. The siren station is anchored with a suite 

of environmental sensors that includes wind speed, wind direction, humidity, air pressure, 

atmospheric temperature, and rain gauges to present an overall view conducive to flood events. 

It is the data from this gathered sensor that becomes the basis for machine learning data set 

development. Then, one scenario is tested to determine how predictive the suggested method 

would be. Rainfall is the output variable in the scenario, which holds wind speed, wind direction, 

humidity, atmospheric pressure, atmospheric temperature, humidity, and water level as input 

features. In this dataset, preprocessing techniques are applied to remove the outliers, noise level, 

and missing values, assured with analysis at every step of the accuracy and reliability of the input 

data for further research on the study. 

The collected sensor data is utilized to predict flood episodes with the help of machine learning 

models, including 1D Convolutional Neural Networks (CNN) and Multivariate Long Short-Term 

Memory (LSTM) networks. The 1D-CNN models include the spatial relationships among the 

input characteristics in the case of the Multivariate LSTM models; it makes use of its capacity to 

capture the temporal dependencies in multivariate time series data. The models were evaluated 

through standard measures, such as Mean Square Error (MSE), and informed about their 

generalization and prediction accuracy. 

 

 

 



 
 

iv 
 

The implications are further important for flood monitoring and prevention efforts. The 

combination of IoT technology and machine learning methodologies will enable the authorities 

to preempt better and prevent the incidence of floods. The combined approach of environmental 

and radar sensors offers the most comprehensive approach to flood monitoring, designed to 

consider both meteorological and hydrological parameters. Future lines of research can include 

the development of flood management and catastrophe response decision support systems, the 

investigation of highly advanced machine learning algorithms, and the incorporation of increased 

sensor data. 

Key Words: IoT, Machine Learning, Flood, LSTM Model, CNN Model 
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Chapter 1:   Introduction 

1.1 Motivations 
Natural disasters often lead to long-term disturbances engendered by different components of the 

socio-economic system. For instance, a single large-scale catastrophic event, such as a flood, can 

cause tremendous damage to complex infrastructural networks, leading to long-term failures and 

profound socio-economic effects that undermine development in general. Flash floods or rapid 

increases in river water levels are tremendous hazards, especially to human lives in mountain 

regions, where they cause considerable deaths. Mountainous flash floods are different from a 

regular flood in that they strike suddenly, and very limited early warnings are offered. Such 

events continue to increase due to the ranges of the combined effect of climatic change, Glacier 

Bursting, and human activities, with mountainous flash floods proving more destruction than 

their urban counterparts. Intense rainfall and Glacier Bursting are often associated with 

thunderstorms or the passage of a typhoon and have the potential to increase river flow and stage 

in mountainous regions dramatically. This makes for their rapid response to high rainfall rates, 

with the unique characteristics of mountainous watersheds being steep slopes and quasicircular 

morphologies. In addition, they are particularly prone to extreme rain in either the total volume 

or intensity. This means that under mountainous terrains, peak flow and water levels in rivers 

may reach their maximum within hours, making it unpredictable; hence, very little or no warning 

for effective prevention of damage from flooding is granted. 

It was estimated that by the end of 2020, the Internet of Things (IoT) technology would connect 

approximately 50 billion devices [5]. The effect of IoT is varied and widespread: industry, 

agriculture, health, automobiles, etc. This technology automated not just one's home but many 

other things, too. The various applications allowed by IoT have considerably sped up the transfer 

of data and information [6]. IoT is critical in bringing together various intelligent applications 

and devices in real-life scenarios. Examples include the innovative IoT flood monitoring system, 

which plays an essential role and serves as assistance in the proper management of flood 

situations by governments and societies. At last, this reduces disasters' impacts on victims[7][8]. 
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Floods are recognized as one of the most damaging natural disasters, creating massive 

destruction in cities, agriculture, and infrastructure globally. With increasing climate change, 

which intensifies occurrences and vulnerabilities of extreme weather conditions, monitoring and 

control systems would now require more intelligence. Traditional flood monitoring systems have 

a delay both in flood detection and response time because they often involve manually collected 

data and smaller sensor networks. New technologies such as machine learning and the Internet of 

Things offer plausible means to improve flood monitoring and forecast capacities[9]. 

The ML algorithms, combined with the currently available IoT sensors, have created a 

significant opportunity for flood monitoring and prevention capacities. Machine learning 

approaches include predictive modeling and data analytics, which help in the examination of 

considerable datasets to detect patterns and trends of occurrences of floods [7]. ML algorithms 

can enhance the prediction of crises such as floods by utilizing historical information about 

floods, meteorological forecasts, and sensor readings produced by IoT devices to achieve 

accurate forecasting. Internet-of-things devices, such as water level monitors, rainfall gauges, 

and weather stations, provide continuous surveillance of environmental variables to enable early 

detection of potential flood hazards [11]. Combining the two technologies of Machine Learning 

and the Internet of Things provides decision-makers with practical information to take required 

steps beforehand and reduce adversity from flooding effects on communities and structures. 

Floods are also considered an essential problem, further exacerbated by rapidly increasing 

urbanization and demographic growth. The denser communities' setup in flood-prone areas 

makes the region increasingly vulnerable to flood-related disasters. Rapid urbanization leads to 

encroachments over floodplains in most cases; this circumstance, together with natural drainage 

deterioration in the areas, enhances vulnerability to floods. In the case of dense urban areas, the 

impacts of flooding go beyond mere property losses and include transport, public amenities, as 

well as disruptions to health services. As a result, there is an urgent need for innovative ways to 

apply advanced technologies, such as machine learning and the Internet of Things, to build 

resilient cities against floods altogether while focusing on disaster preparedness. Embedded into 

the planning and building process for cities, such technologies enable urban planners to 

implement measures that lower the probability of such floods and protect the welfare of the 

people living in them [12]. 
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1.2 Objectives 
One of the major concerns of this study is to develop an integrated infrastructure of IoT for 

monitoring and preventing flooding as efficiently as possible. First, to avoid irregular flooding 

through smooth data collection and communication, a robust Internet of Things network with 

water stations, repeater stations, and siren stations is currently being constructed. In addition to 

the use of radar sensors in water stations to monitor river and other water body levels 

continuously, there will be early warning of possible occurrence of floods. Incorporation of 

environmental sensors, including humidity, air pressure, temperature, wind direction, wind 

speed, and rain gauges in siren stations, will collect information on meteorological parameters 

that are prone to flood disasters. The main goal is to construct machine models, for instance, 1D 

Convolutional Neural Networks and Multivariate Long Short-Term Memory Networks, used to 

evaluate sensor data in making accurate predictions on flooding occurrences. 

This will be done by testing the models for performance and generalization capability with such 

metrics as Mean Square Error (MSE). Further study on optimizing the data pretreatment methods 

will also be carried out to ensure that the integrity and reliability of the dataset are safeguarded 

during machine learning. A comparison and contrast of various machine learning methodologies 

based on their effectiveness in predicting flood disasters, considering the contextual elements, 

will be highlighted. Finally, this research will look into how IoT integration impacts flood 

monitoring, considering flood management decision support systems and identifying future 

research avenues based on holistic solutions for flood management. This research aims at 

studying the socio-technical aspects of a flood monitoring approach for flood mitigation, over 

and above the development of machine learning models and an integrated IOT infrastructure. 

Community participation, stakeholder collaboration, and public awareness campaigns play an 

important role in contributing toward the effectiveness of strategies in controlling floods. This 

research will look into the perceptions, attitudes, and behaviors toward flood-monitoring 

technologies based on the Internet of Things by different stakeholders: government agencies, 

emergency responders, and grassroots citizens. The study will apply social science research to 

develop effective strategies through which the acceptance and implementation of IoT technology 

in the context of flooding areas can be encouraged. The ultimate goal is to enhance resilience and 

readiness in communities facing disasters. 
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1.3 Scope and Organization 
One of the chief objectives is to design a well-integrated IoT infrastructure to enable effective 

flood monitoring and prevention. An elaborate Internet of Things network level, consisting of 

water stations, repeater stations, and siren stations, will be created for smooth data gathering and 

communication. Due to the radar sensors attached to the infrastructure at the water stations, 

constant monitoring of the levels of rivers and other bodies of water shall be realized, so early 

warnings on possible occurrences of flood can be reported. Environmental sensors such as 

humidity, air pressure, temperature, wind direction, wind speed, and rain gauges shall also be 

installed at siren stations to gather meteorological parameters that favor flood disasters. The main 

goal is to create machine learning models, like 1D Convolutional Neural Networks (CNN) This 

research aims at developing and executing an integrated flood monitoring and prevention system 

by using machine learning and Internet of Things technologies. 

Most importantly, it facilitates data collection and communication by developing and installing 

end-to-end Internet of Things, including water stations, repeater stations, and siren stations. The 

water stations are installed with radar sensors to monitor water levels in rivers and other water 

sources. In contrast, the siren stations have environmental sensors to gather data on weather 

conditions that may lead to flooding. The study shall build and test machine learning models for 

flood forecasts based on sensor data, 1D-CNN, and Multivariate Long Short-Term Memory 

networks. The optimization techniques will ensure dependability and accuracy for machine 

learning of the dataset. This study will take a structured format with chapters, including 

methodology, results and analysis, discussion, and conclusion. The framework to be followed is 

systematic. Each chapter would contribute toward attaining the research objectives mentioned 

above and yield a holistic understanding of ways to improve monitoring and preventive 

strategies for floods using machine learning and IoT. 

1.4 Significance of Research 

This discovery has the potential to revolutionize flood monitoring and prevention procedures, 

which may significantly reduce the adverse effects of floods on infrastructure, people, and the 

environment [13]. Therefore, the objective of the current study is to apply machine learning and 

IoT technology to existing flood monitoring systems for improved accuracy, timeliness, and 

effectiveness of flood prediction and early warning systems. This would permit officials to 
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preplan, predict, and directly mitigate the effects of flood calamities, along with strongly 

affecting disaster preparedness and response activities. Moreover, the new approach proposed in 

this study could also be adequately extrapolated and tailored to different geographical localities 

and climatic conditions, thus being versatile and very flexible in addressing the universal 

problem of flood management. Ultimately, the findings from this work can be put to use in 

safeguarding vital infrastructure, saving human lives, and protecting the sustainability of 

livelihoods. The implications for these results are dynamic, with dramatic improvements for 

communities worldwide. 

1.5 Summary 

This is an imperative piece of research since it introduces new ways to monitor and also manages 

floods using both machine learning and IoT technology. Such works have a significant potential 

impact on lessening the effects of floods on the structures, people, and the environment. It would 

be possible to better the accuracy and efficiency of flood forecasting and early warning systems. 

The study proposes innovative ways to enhance the prediction, planning, and prevention of flood 

events. With these concepts put in place, authorities can predict, prepare, and reduce the 

consequences of a flood event better. In addition, the scalability of the capability of the proposed 

solutions makes them suitable for application in other environmental situations and geographic 

locales, enhancing their reach into global flood control interventions. 
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Chapter 2:   Related Work 
This section briefly looks at some of the critical scholarly research studies that are directly 

related to our project. D'Addabo et al. used Bayesian network methodology for flood detection 

by developing a model with historical datasets rather than real-time measurements. LiDAR 

technology was used in data collection in their research. Wu and Wang carried out research on 

the development of network sensors for implementing a portable luminescence flood detection 

system. Sensors monitored roads to send alerts to drivers in case of detected flooding [15]. Other 

sensor and machine learning works include using ML techniques for flood detection. In this 

study, a sensor network was employed to establish water levels and give alerts via SMS in 

incidences of flooding. The authors randomly selected ML algorithms for showing the 

applicability of the use of architectural time series in ML algorithms [16]. 

Numerous techniques can be used for flood risk assessment and management. In order to 

estimate flood risk, any method must first identify and assess potential risks and vulnerabilities 

[13]. This entails assessing any potential weak points or vulnerabilities in the neighborhood or 

community as well as estimating the likelihood that a specific area will experience flooding and 

estimating the likely intensity of a flood event [38]. The next step is to assess every potential 

consequence of a flood, including potential property damage, impacts on important 

infrastructure, like roads and bridges, and potential fatalities [14]. After assessing the risks, 

vulnerabilities, and potential outcomes, the next step is to create a risk management plan[15].  

To lessen the risk of flooding, this may entail constructing levees or flood walls, moving vital 

infrastructure out of flood-prone areas[16] or creating early warning systems[17]. In the event of 

flooding, the risk management plan should address recovery and emergency response measures. 

Evacuating impacted areas, providing emergency shelter and supplies, and initiating a recovery 

effort to restore infrastructure and essential services are examples of possible actions. Finally, the 

risk analysis methodology should incorporate provisions for ongoing monitoring and evaluation 

in order to ensure that the risk management plan is up to date and functional [18]. 

Hydrologic modeling is an essential part of managing and assessing the risk of flooding. 

Hydrologic modeling is a computational and mathematical process that analyzes the water flow 

in a river or stream system [19].Gathering data is required for topographical features such as land 

usage and elevation, as well as features like soil moisture, evaporation, and precipitation. The 
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data is then used to model the water flow rate, volume, and timing at various points across the 

river or stream system[20].Hydrologic modeling provides data for hydraulic modeling, which 

simulates the behavior of water during a flood event [21].  

This involves evaluating the flow of water through a system of rivers or streams as well as the 

landscape around them, considering parameters such as channel geometry, roughness, and water 

velocity. Hydraulic modeling can provide more information into the depth and scope of flooding 

in each area, as well as the location and timing of peak flows[22]. 

 

2.1 Real-Time Early Warning System Design 

Hydrologic Modeling is necessary for both comprehending flood risk and developing effective 

mitigation strategies[23].It is possible to identify areas that are very vulnerable to flooding as 

well as the potential consequences of flooding, such as damage to infrastructure and buildings 

and fatalities, by monitoring the flow of water during a flood event[24].  

Strategies for reducing flood risk, both structural and non-structural, are created using this data, 

and emergency response planning is also influenced[25].It is important to remember that the 

quality and accessibility of the data, together with the assumptions and limitations of the models 

used, all have an impact on how accurate hydrologic modeling is[26]. 
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Computerized simulations of flood behavior that utilize computational methods and 

mathematical skills are known as numerical flood models[33].These models often employ 

numerical methods to solve mathematical equations describing the flow of water in a river or 

stream while taking into account variables like precipitation, runoff, channel geometry, and 

roughness of the riverbank. Numerical flood models can be used to simulate the effects of 

various flood scenarios and assess the efficacy of recommended flood mitigation strategies [34]. 

Additionally, they are employed to simulate how flooded areas will behave in response to 

modifications in the climate, land use, and other factors. 

However, deep learning-based models such as Long Short-term Memory have been optimized 

using graphical processing units and high optimization techniques compared to artificial neural 

networks with computational constraints on both the processing units and a number of layers. 

LSTM can capture time series and memorize long-term association with the inclusions of the 

forget gate, making it useful for sophisticated, longtime lag applications. The LSTM model has 

been used by Kratzert et al. in predicting daily stream flow and by Hu et al. for predicting hourly 

stream flow. Widiasari et al. have applied an LSTM model for river water level forecasts in the 

Semarang region. Mousavi et al. have proposed an IoT-based flood early detection system, and 

various ML and DL algorithms are used for monitoring. 

 

2.2 Early warning of impending flash food based on AIoT 
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To predict water tables in agricultural zones, Zhang et al. [21] adopted LSTM; meanwhile, a 

model for the hourly stream flow prediction approach was presented by Xiang et al. [22] based 

on LSTM with the seq2seq structure since Damavandi et al. [23] proposed an approach to stream 

flow forecasting using supplemental information from digital elevation models that has been 

appended to historical observed data with LSTM layers. Dong et al. [24] introduce a dynamic 

sliding window mechanism with LSTM for urban flooding forecasting. Won et al. [25] Introduce 

an urban flooding forecasting model by employing ANN, LSTM, biLSTM, and StackLSTM, 

where biLSTM displayed superiority in forecasting high water-level locations. 

Other researchers developed a model to predict floods in the Red River of the North using 

various ML and DL models in the water level forecasting model. Kunverji et al. developed 

models with high accuracy for flood prediction by developing ML algorithms, including 

Decision Trees, Random Forests, and Gradient Boosts [26]. 

  

2.3 An Intelligent Early Flood Forecasting and Prediction 

The model for urban flood prediction was developed by Chen et al. [27] based on LSTM and a 

numerical model, presenting good predictive accuracy and rapid detection for a daily flood event 

with a fast response time. Over the years, combining machine learning (ML) and deep learning 

(DL) techniques has primarily revolutionized the earlier detection and prediction systems, 

providing greater accuracy and efficiency. 

One such model that proves successful in capturing temporal dependencies and long-run patterns 

in time series data is the Long Short-term Memory (LSTM) model, belonging to the group of 
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Recurrent Neural Networks. Kratzert et al. and Hu et al. for this critical reason, different 

implemented LSTM models have been used in various studies related to hydrological 

forecasting. Estimation of the level of water in rivers is also carried out within the area of 

Semarang by Widiasari et al. [30] using an LSTM-based procedure. The methodology proved 

validated in showing high reliability through forecasting floods. These studies will further build 

the accuracy and timeliness of flood prediction to make early warning systems stronger. 

Moreover, Internet of Things (IoT) technology has dramatically improved systems for 

monitoring and early detection of flooding using deep learning models. 

 

2.4 A Multi-Modal Wireless Sensor System for River Monitoring 

 

Mousavi et al. put forth an early warning system for floods that is based on IoT-enabled sensors 

to deploy various ML and DL methods applied for the continuous monitoring of locations prone 

to flooding. Therefore, this system, based on Internet of Things (IoT) gadgets that include 

sensors, collects real-time information regarding the water level, rainfall, and environmental 

conditions. For instance, this supports the early detection of floods, where timely warnings are 

issued to relevant stakeholders. Zhang et al.[21] has developed LSTM models for water table 

forecasting in agricultural areas, hence continuing to show the potential of using Deep Learning 

techniques with IoT sensor data in fine agriculture and water resource management. Xiang et 

al.[15] developed an LSTM and seq2seq-based model to forecast hourly stream flow. They 
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focused on the potential of IoT-enabled DL models in improving the accuracy of flood 

forecasting at highly short time scales. 

 

2.5 An Intelligent Early Flood Forecasting and Prediction Leveraging Machine and Deep 

Learning Algorithms 

Similarly, researchers have also worked on integrating machine learning algorithms with 

numerical models for better accuracy and speed in predicting urban flooding. Wang et al. [31] 

proposed a new urban flooding prediction model that combined LSTM with a numerical model, 

showing accurate predictions in significantly reduced times, where daily floods can be rapidly 

discovered with rapid response. By integrating machine learning approaches with numerical 

simulations, these models can better understand complex urban hydrologic processes and 

actionable insights for flood prevention and disaster response. These studies highlight the 

necessity of interdisciplinary approaches in research on flood prediction through the 

capitalization of experience from hydrology, meteorology, and computer science to develop 

robust and reliable flood forecasting systems. 

Moreover, the use of ensemble learning approaches has been prevalent among flood prediction 

studies, which are aimed at providing more enhanced predictive accuracy and resilience. The 

technique combines weak learners, such as decision trees, neural networks, and support vector 

machines, to bring up a much stronger predictive model. Won et al. [27] developed an urban 

flood forecasting model using an ensemble learning technique composed of an Artificial Neural 

Network (ANN), a Long Short Term Memory (LSTM), biLSTM, and StackLSTM. Here, the 

high water levels characteristic of the urban flood event are well represented, implying that the 
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complex dynamics involved were well captured by the performance of the ensemble approach 

model in surpassing the individual models. Similarly, [26] developed machine learning 

algorithms that included Decision Trees, Random Forests, and Gradient Boosts in forecasting 

floods. They achieved high classification accuracy by using a variety of different learners. This 

provides a feasible way to develop better ways in which the system of flood prediction can be 

enhanced since ensemble learning techniques combine the capabilities of several models to 

overcome the constraints of individual algorithms and improve the performance of the collective 

forecast. 

Several studies have been carried out on the utilization of GIS data with remote sensing 

techniques in the field of flood prediction and monitoring using classical ML and DL methods. 

Damavandi et al. [23] proposed a method to predict stream flow by adding digital terrain model 

(DTM) data to past observed data. Spatial information can be included in this model to enhance 

the level of prediction accordingly. GIS-equipped DL models will effectively delineate spatial 

diversity of environmental elements and terrain features that would further help improve the 

prediction accuracy in complex environments. Dong et al.[32] applied a dynamic sliding window 

method using LSTM to predict urban floods. This methodology further uses satellite imagery and 

GIS data to capture the spatiotemporal patterns of flood occurrences. Geographic Information 

System (GIS) combined with remote sensing data may use machine and deep learning techniques 

to have better flood forecasting skills potentially. Integration like this allows for more precision 

in early warnings, which would reduce the adverse effects on populations and infrastructure. 
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Chapter 3:  Material and Methods 

3.1 Description of Study Area 
The study was conducted in Arkari Chitral, part of the Chitral District in the Khyber 

Pakhtunkhwa province, Pakistan. It lies in the northwestern part of Pakistan and is surrounded by 

the magnificent Hindu Kush mountain range. The area is characterized by rugged topography, 

steep hills, and tremendous scenic beauty [33]. 

The Arkari Glacier, located near Arkari Chitral, supplies the Chitral River. The temperatures are 

getting warmer and warmer, a factor that is quickening the process of glacial melting, known as 

glacier bursting; this is a massive threat in the area. Huge masses of water, ice, and debris might 

break off from the glacier suddenly, and within no time, the flow is upon the valley floor as 

concentrated debris flows and flash floods downstream [34].This region is characterized by high 

susceptibility to flash floods and glacier breaches, with narrow valleys choked by dense forests 

and alpine meadows. The meandering Chitral River across the landscape originates from the 

glaciers of the Hindu Kush Mountains, defining all the hydrological characteristics. 

The sites for data collection were randomly selected throughout the Arkari Chitral to represent an 

array of environmental conditions and flood-prone areas. The basis of site selection was 

accessibility, elevation above sea level, proximity to water bodies, historical flood data, and the 

possibility of glacier breakage events. The research area shows apparent variations seasonally. 

Summers are hot, with on-and-off rains attributed to the monsoon, while the winters are cold, 

further marked by snowfall [36]. Therefore, effectiveness in monitoring and managing floods in 

Arkari Chitral lies in an understanding of the complex linkages between many other factors 

within the environment, such as glacier dynamics, patterns of precipitation, and changes in land 

structures. For example, this research will improve the already developed techniques to mitigate 

the impacts of floods and glacier outbursts on the local population and infrastructure in Arkari 

Chitral. This is because the study involves an analysis of the hydrological and climatic 

parameters that act as precursors for the events. 
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It is essential to mention some primary socio-economic conditions and livelihoods adopted by 

the indigenous people inhabiting Arkari Chitral. The region has several small settlements and 

villages whose single sustenance is basically from agricultural and animal activities. This further 

poses a significant threat to the lives and livelihoods of these communities. Hence glacier busting 

and flash flooding resulting in the economic activities of the communities living in the area. 

Additionally, the area's infrastructure is highly inadequate, and its terrain is very rugged for 

emergency response and people evacuation. The people in the region are greatly affected by the 

floods since they deter access to health services and education, thus increasing vulnerability. 

Arkari Chitral is also unique in its own cultural and ecological nature. The mountains are home 

to a wide variety of diversified plant and animal species, adapted to thrive in the tough alpine 

conditions. 

The Chitral River system and its tributaries represent significant habitats for a great variety of 

fish and wildlife, which underpin the overall ecological diversity of the region. Furthermore, 

Arkari Chitral holds great cultural significance to the local population living in the area since 

antiquity. These people have many heritage and ritual sites attached to their culture. Preservation 

of the cultural and ecological integrity of Arkari Chitral can, therefore, only be achieved through 

sustainable development and improvements in the well-being of the present and future 

generations. Consequently, flood monitoring and prevention strategies have to be undertaken in 

the region, bearing in mind and incorporating socio-cultural and ecological values of the local 

dwellers. This would ensure they are actively involved and take ownership of programs designed 

to develop resilience. 

3.2 Data Collection Methods 
A wide-ranging data collection process was initiated at Arkari Chitral, on the river masses of 

Arkari River, to estimate flood risk and environmental dynamics. A strategically situated sensor 

for measuring the water level was present at the most critical locations along the river to know 

about the variations in water levels and the velocity of water flow. The data collected by the 

sensors were able to detect the dynamics in rivers continuously, hence assessing if there was a 

flood event that was about to take place. This would greatly assist the response agencies to 

prepare and prevent the damage caused by the flood. Another critical segment was an 

environmental monitoring system that was integrated, bringing in several sensors that measured 
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different environmental variables; In addition to the sensors above for monitoring soil moisture, 

land cover, and topographic features, the weather stations recorded temperature, humidity, wind 

speed, and wind direction. 

The integration of environmental monitoring system sensors and water level measurement 

sensors generated broad information on the hydrological and meteorological factors that cause 

flood events in Arkari Chitral. Such information has been of paramount importance in designing 

flood management systems, forecasting models, and assessment of risks occurring from floods in 

the area. The strategic location of sensors to measure environmental parameters and water level 

was critical in helping us understand the dynamics of the environment and flooding risk factors 

in Arkari Chitral. Changes in river flow could be seen if considered indicators of potential 

impending flood events by monitoring the level of water throughout the day. 

The environmental monitoring system has also generated data on climatic conditions, soil 

moisture content, and changes in land cover that could affect flood susceptibility. High-

resolution information about the collection of climate, topography, and hydrology gives a 

detailed understanding of complex interactions in the study area. 

3.3 Instrumentation and Sensors 

3.3.1 Water Level Measurement Sensor 

The Rikka Company employed a measuring radar sensor. This sensor, with a measuring range of 

up to 10 meters, is highly accurate in monitoring water levels together with the Arkari River and 

its tributaries. 

The measurement sensor of the water level sensor can ideally detect the changes in water levels 

and flow rates, thus helping determine floods before they take place. 

Manufacturer and Model: Rikka Company RKL-02 10m Measuring Radar Sensor. 

Deployment Sites: The river stage measuring sensor was installed at selected sites on the Arkari 

River and its tributaries to track variations of river flow dynamics. 
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Figure 3.1 Radar Sensor 

3.3.2 Wind Speed Sensor 

The anemometer by Rikka Company was used to measure the wind speed. The sensor is helpful 

in making important decisions regarding the evaluated parameters related to flood dynamics. 

The wind speed sensor measures the speed of wind effectively, providing key information 

towards determining wind patterns and their impact on flood hazard. 

The wind speed sensor is of Rikka Company; its make and model is: RKL-100-02. 

Deployment sites: For the purpose of recording proper measurements and fluctuations in wind 

speed and direction, the wind speed sensor was definitely placed at various strategic points 

around the study area. 
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Figure 3.2 Wind Speed Sensor 

3.3.3 Wind Direction Sensor 

In the measurement of the wind direction in the region under research, a wind direction sensor 

from Rikka Company was used. This sensor has the capability of detecting the flow direction of 

the wind with great precision, hence improving the data super numerated by the wind speed 

sensor. 

The wind direction sensor provides precise measurements regarding the direction of wind, which 

comes to evaluate meteorological variables that significantly influence flood events. 

The wind direction sensor refers to the model number RKL-100-01, manufactured by Rikka 

Company. 

Deployment sites: The anemometer was deployed with the wind speed sensor at many places 

around the project area. 
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Figure 3.3 Wind Direction Sensor 

3.3.4 Rain Gauge 

The study area made use of the rain gauge to measure the intensity of rainfall through the 

quantity of water accumulated over a unit of time; hence providing precious data for forecast and 

flood analysis. 

The rain gauge is able; therefore, to realize the intensity of rainfall accurately and be able to 

quantify rain events with quite a good preciseness level that affects flood dynamics. 

Manufacturer and model: Rikka Company's RK400-01 Precipitation Gauge. 

Locations for deployment: A good number of rain gauges were placed at different locations, 

which could help record the spatial variations of rainfall intensity over the study area. 

 

Figure 3.4 Rain Gauge Sensor 
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3.3.5 Atmospheric Temperature and Humidity Sensor 

In the research area, Rikka Company sensors were installed to detect atmospheric pressure and 

humidity. The sensors are designed to collect relevant data regarding the atmospheric 

environment. Thus, they assist in predicting the weather conditions, including those that cause 

the occurrence of floods. 

The sensors for pressure in the atmosphere and relative humidity give exact measurements of the 

atmospheric pressure and the humidity level, thus adding value to the understanding of climatic 

features that predispose to occurrences of floods. 

Manufacturer and Model: Rikka Company RKL-330-01 Atmospheric Pressure and Humidity 

Sensors. 

The atmospheric pressure and humidity sensors were deliberately distributed around the test site 

so that spatial variations in the atmospheric conditions could be captured. 

 

Figure 3.5 Atmospheric Temperature and Humidity Sensor 

 

3.3.6 Barometric Pressure Sensor 

The measurement of air pressure differences was done using a barometric pressure sensor 

provided by Rikka Company in the study location. This forms essential information regarding 

changes in atmospheric pressure, which could be expected to affect changes in climate and, 

therefore, flooding patterns. This barometric pressure sensor can determine atmospheric pressure 

variation sensitively, hence enabling the understanding of the climatic parameters that affect 

flooding. 



 
 

20 
 

Manufacturer and Model: Rikka Company RKL-330-01 Barometric Pressure Sensor. 

To capture spatial variations in barometric pressure, the barometric pressure sensor was 

intentionally collocated with other sensors at several sites across the study area. 

 

Figure 3.6 Barometric Pressure Sensor 

3.4 Methods 
This research aims to assess the performance of machine learning algorithms in conjunction with 

flood prediction, as presented in this work, showing an alternative to classical forecasting 

methods. For this, the following set of algorithms will be employed: 1D-CNN and M-V-LSTM. 

One commonly used neural network architecture that is applied in processing and interpreting 

sequential data, such as time series, audio signals, and text, is a 1D Convolutional Neural 

Network (1D CNN). Although 1D CNNs are designed for 1D sequence, standard CNNs are built 

primarily to learn from image data with 2D structures. The 1D CNN model is constructed for 

Rainfall Level Prediction using the Tensor Flow and Keras libraries to predict the amount of 

rainfall levels by taking environmental parameters obtained from the Arkari region. This 

implementation adheres to industry standards in developing and fine-tuning a 1D CNN model for 

a regression task. 
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3.4.1 Data Preparation 

The target variable(y) and features (X) are separated of the dataset. A second division into 

training and test sets is done using the sci-kit-learn train_test_split 

function.'Arkari_Water_Level','Arkari_AirTC','Arkari_Humidity','Arkari_BP_mbar','Arkari_Win

d_Speed', and’Arkari_Wind_Direction' are among the features. The target variable (y) and 

features (X) are separated out of the dataset. It is implemented through standardization by the use 

of StandardScaler. 

3.4.2 Model's Architecture 

3.4.2 1D CNN Model 

Convolutional Layer: Uses the ReLU activation function in extracting features from the input 

sequences, to which a convolutional layer with 64 filters, each of size 3, is applied. 

It is through a pool size of 2 that the feature maps are down-sampled. 

Flattening Layer: In some sense, it flattens the 3D volumes into a 1D vector. 

Dense Layers: Two dense layers in which the output features and target predictions are 

calculated using ReLU activation functions with 50 and 1 neurons, respectively. 

 

Figure 3.7 1D CNN Model Architecture 

3.4.2.1 Collection and Training of Models 

The model is compiled, using Adam as the optimizer and mean squared error as the loss 

function. Model fitting is achieved by effectively training the function with training data 

(X_train_reshaped, y_train) over a given batch size and number of epochs. In the training 

process, data for validation (X_test_reshaped, y_test) is used for monitoring model performance. 

3.4.2.2 Prediction 

The model predicts the feature test data's rainfall levels following training (X_test). 
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3.4.2.3 Evaluation 

The measurement of error and generalization performance with the training is done through 

metrics such as mean squared error, mean absolute error and R-squared score. 

3.4.3 Multivariate LSTM 

LSTM provided an essential innovative addition to RNN[34, 35] and fixed some shortcomings of 

earlier versions. Hoch Reiter and Schmidhuber invented the LSTM in the year 1997. In LSTM, 

more units were added that helped it in learning very long-term dependencies and remembering 

it for a more extended period. The sequential shape of the model was retained, but its recurrent 

unit was significantly changed. As observed, LSTM differs from the usual RNNs, which are 

unrolled and composed of four network layers connected through a specific communication 

method. It has three gate modules: input, which holds the information happening right now; 

output, which provides the information; and forgets, which decides to keep or discard the 

information [18]. This current study uses multivariate LSTM model to model temporal 

dependencies in the multivariate time series data collected from various sensors installed across 

the Arkari region. The section below describes the methodology to predict future environmental 

parameters, including model training and development and clearly describing how the data was 

prepared [38]. 

 

Figure 3.8 Multi-LSTM Model Architecture 
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3.4.3.1 Data Preparation 

A multivariate time series dataset is restructured into input-output pairs to easily make the LSTM 

model learn past observations and future predictions. Input refers to a previous observation with 

fixed-length windows, and output refers to a future observation. 

The dataset is further divided into separate subsets into which testing and training will be done to 

look for how well the model performs on untried data. 

3.4.3.2 Model Architecture 

The architecture of the LSTM model is designed with great attention to detail, ensuring that it 

manages complex information associated with multivariate time series forecasting. 

Here, we use stacked Long Short-Term Memory Layers (LSTM) to capture the intricate temporal 

relationships present in the input sequences. Generally, an increase in memory units that can be 

added per layer allows the user to give more ability to the LSTM layer to remember data over 

long time intervals [39]. 

The LSTM layers are supercharged using a dense (fully connected) layer to take the features 

learned by the LSTM and output a prediction in the desired output space. This layer should have 

the same number of neurons as the number of output time steps. 

Non-linearity and regression suitability are explicitly introduced at the output and LSTM layers 

[40], through specific activation functions. 

3.4.3.3 Model Training 

The optimization method, with a well-formulated loss function, plays an essential role in 

updating the parameters of a model in a way that minimizes the difference between its expected 

and observed values during the training process. 

The model parameters are optimized based on the loss of mean squared error (MSE) and the 

famous Adam optimizer, acclaimed for its flexible learning rate capability [42]. 

The training procedure involves feeding data into the model iteratively in batches so that it is 

exposed to the model in a way that allows the extraction of very complex interactions and 

patterns embedded in the data. 
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Validation data is inserted purposely during training to prevent over fitting and enable 

monitoring of model performance. 
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Chapter 4: Dataset 

4.1 Dataset Description 

This dataset had 40,030 observations with eight characteristics, of which 7 were the input 

parameters and the other one was the target parameter, representing each row as a unique 

observation from their fieldwork dataset in Arkari Chitral. It has detailed information about flood 

dynamics in the study area, including various environmental and meteorological variables that 

might influence them. 

 

Figure 4.1 Dataset 

4.2 Input Features 

Timestamp: Date and time stamp of each observation documented while in the field. 

Water Level: obtained from the sensor of the Rikka Company installed in the study area. 

Wind velocity: This is determined in the study area. The sensor used for the wind speed 

measurement is from Rikka Company. 

Wind Direction: Directional wind data registered in the flow from the wind direction sensor 

made by Rikka Company. 
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Rainfall intensity: Data of precipitation taken with the aid of a rain gauge used in ascertaining the 

precipitation's event intensity. 

Atmospheric Pressure: Atmospheric pressure readings were measured using the Rikka Company 

atmospheric pressure sensors already installed across the study area. 

Humidity: Humidity level recorded on the Rikka Company sensors to give an idea of 

atmospheric content moisture. 

Barometric Pressure: A type of atmospheric pressure variation recorded at Rikka Company using 

a barometric pressure sensor. 

Target Attribute - Scenario 1 (Maximum Intensity of Rainfall): 

Rainfall Intensity: The data extracted from the rain gauge portrays continuous measurements of 

rainfall intensity, which forms the target variable in this first scenario. In this first scenario, the 

task is to forecast rainfall intensity based on meteorological and environmental variables. 

Target Feature - Scenario 2 (Water Level): 

Water Level: Measurements related to water levels in the Arkari River and its network are done 

using a 10 m measuring radar sensor of Rikka Company. This becomes the target variable for the 

second scenario, where we aim to predict water levels based on meteorological and 

environmental variables. 

4.3 Data Preparation 

The data preparation procedure for this study comprised the following steps in the series: 

4.3.1 Handling Missing Data 

Fig below shows that there is no missing sample in 08 variables/features. 
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Figure 4.2 Data Samples 

4.3.2 Categorical Variables to Numeric 

The shared snippet below shows only one feature, that is Timestamp as Non-Numeric Value. 

 

Figure 4.3 Categorical Variables to Numeric 

Below Snippet shows Conversion of Timestamp Column to Date time Column. 

 

Figure 4.4 Date time Column 
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4.3.3 Correlation Analysis 

Descriptive analysis on Variables after the data preprocessing had been conducted, the next thing was to 

look into the variables descriptively to get a feel of the data that was going to be analyzed. In particular, 

an assessment was made of the degree of correlation between the variable "Arkari_Rain_mm_Tot" and 

the rest of the variables. Below, the correlations are ordered by their absolute values in descending order. 

 

Figure 4.5 Correlation Analysis 
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Chapter 5: Proposed Prototype 
The proposed IoT-enabled system comprises three units: a Water Station, a Repeater Station, and 

a Siren Station, which are all part of the monitoring and alert system. 

5.1 Water Station 

The Water Station harbors a Water Level Sensor: Radar-Based, a Micro-Controller, a Solar 

Charge Controller, and a Lora Wireless Module into the IoT Ecosystem. This water level sensor 

can monitor the Height of Water. The data is sent to the microcontroller, which processes the 

signal picked up by the sensor; it then communicates using LoRa technology. It regulates the 

power coming from the solar panel, which makes the station functional continuously.  

 

Figure 5.1 Installed Radar Sensor 

 

Figure 5.2 Water Station operating Equipment’s 
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5.2 Repeater Station 

The Repeater Station is already a complete IoT gateway, with a solar charge controller and Lora 

module. The solar charge controller assures the availability of power from its solar panel, while 

the Lora module supports the relay of data between the Water Station and Siren Station within 

this larger IOT framework. Data from these stations are transmitted and controlled by a Thing-

speak server. 

 

Figure 5.3 Repeater Station Operating Equipment’s 

5.3 Siren Station 

For the design of the Siren Station, the following components are used: micro-controller, solar 

charge controller, GSM module, and siren sound system. The microcontroller is supplied with 

data from the Repeater Station, processes it to generate an alarm message, and then triggers the 

GSM module into dialing and sending an alert message. The siren sound system is 

simultaneously triggered to give an alarm. This is enhanced with a solar charge controller that 
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will ensure continuous power from the solar panel. 

 

Figure 5.4 Siren Station Operating Environment 

 

Figure 5.5 Solar System and Enclosure 

5.4 Data Transmission 

The Water Station sends the information about the water level and water content data from time 

to time to the Repeater Station with the help of the Lora module. Having an infrastructure based 

on the Internet of Things, the Repeater Station forwards the information to the Siren Station 

through the Lora network. The entire data is sent and stored in the Think Speak server for higher-

level analysis within the broader frame of the Internet of Things. 
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This integration with Thing Speak enhances the capability of the system by offering a centralized 

platform for the storage and analysis of data. 

 

Figure 5.6 Graphical Visualization of Radar Sensor Data 

Thing-speak utilize the MQTT (Message Queuing Telemetry Transport) protocol as a solid 

method to transport data from the attached devices to its server. MQTT, famous for its lightness 

and low bandwidth, supports seamless communication between IoT things and the Thing-speak 

platform [44]. It is very critical to ensure reliable information exchange; for instance, the Water 

Station, Repeater Station, and Siren Station in the proposed monitoring system send information 

regarding water level, content in the water, and alarm triggers, respectively, to the Thing-speak 

server. By using MQTT, responsiveness and reliability in data transfer are improved and hence 

contribute accordingly to the realization of the IoT ecosystem that is put in place within this 

water monitoring solution [45]. 
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Chapter 6: Results and Discussion 
The results chapter presents the work carried out for improved flood monitoring and prevention 

through machine learning and IoT integration. This chapter summarizes the results obtained from 

the analysis with sensory data and performance assessment of the models developed. 

Key performance assessment metrics that were used to evaluate the machine learning models, 

especially 1D Convolutional Neural Networks (CNN) and Multivariate Long Short-Term 

Memory (LSTM) networks, are mean squared error (MSE). In this respect, the water level was 

the target variable for both the multivariate LSTM model and CNN. Moreover, for both the 1D 

CNN and the Multivariate LSTM models, the variable rain_mm_total was used as an added 

target variable. 

6.1 1D Convolutional Neural Network (CNN) Model 

6.1.1 Water Level as Goal 

Performance evaluation for the 1D CNN model was done using a mean squared error loss curve. 

The dataset contained environmental features of the Arkari River and the goal variable, Arkari 

Water Level, trained over 50 epochs with a batch size of 32. 

The model kept improving its predictions with the training process, thereby reflecting the 

respective decrease in validation and training MSE loss values in the following epochs. In epoch 

1, for example, the value of validation MSE was 0.0247; however, the training loss was first 

observed at 0.1743. The same pattern continued upon variations in the following epochs, 

showing how the model adapted to the training set. 

The MSE of the validation was stabilized at 0.0226 after the 50th epoch, while the final training 

MSE converged to 0.1722. The values of the training set and validation set MSE are close to 

each other, which indicates no over fitting to the training data and, hence, generalization well on 

new data. Also, low values of MSE add to the evidence that the model can capture the 

complicated correlations between features and the Arkari water level. In general, from the MSE 

loss curve, a 1D CNN structure model could be applied further in future water level prediction of 
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the Arkari River together with environmental inputs; this would open insights into model 

training dynamics and performance. 

 

Figure 6.1 MSE Loss Curve for CNN1 Model 

6.1.2 Rain_mm_total as Goal 

The MSE loss curve was used to know how well the model performed for the 1D CNN. The 

training was done with the dataset having features regarding the environmental characteristics of 

Arkari River and a goal variable, Arkari Rain_mm_total, for 50 epochs and a batch size of 32. 

The model improved its predictive power during training, showing a decreasing trend for the 

MSE loss values between validation and training in the subsequent epochs. At epoch 1, for 

example, the validation MSE was 0.0042, while the training MSE first showed 17.2178. This 

trend was maintained in the subsequent epochs, and the fluctuations indicate how the model 

adapts to the training set. 

Here, the validation MSE becomes stable at 0.0166 after 50 epochs, and the final value of the 

training MSE converges at 5.5035. The obtained MSE values are relatively low, showing the 
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model's ability to capture the subtle correlations among the input features and with the target 

variable, Arkari Rain_mm_total. 

In short, the MSE loss curve indicates that the model of the 1D CNN is appropriate to predict 

Rain_mm_total in Arkari River based on environmental inputs and gives an insight into the 

training dynamics and performance of the model. 

 

Figure 6.2 MSE Loss Curve for CNN Model 

  



 
 

36 
 

6.2 Multivariate LSTM Model 

6.2.1 Water Level as Goal 

These scores were evaluated using the mean-squared error (MSE) loss curve to the multivariate 

LSTM model. The Arkari River environmental characteristic-related feature dataset and the goal 

variable, which is predicting the Arkari water level, were used to train the model over 60 epochs 

with a batch size of 32. 

For instance, it was indicated by the model improving its predictive abilities with a drop in the 

validation and training MSE loss values through successive or subsequent epochs in the training 

process. For instance, at epoch 1, the validation MSE was 6.7080e-04. In contrast, the training 

MSE was first observed to be 1.9338e-04, after which other epochs followed suit through these 

changes in variations to show how the model updated the one-pass training play. 

After 60 epochs, it attained stability at 1.1029e-04 in validation MSE and reached a final 

convergence of 9.0664e-06 for training MSE. This further asserts the fact that due to shallow 

MSE values obtained, signifying that this model can capture the intricate correlations between 

the input features and the target variable—Arkari Rain_mm_total. 

In general, the MSE loss curve shows that the multivariate LSTM model is good at making time-

series predictions of Rain_mm_total in Arkari River based on environmental inputs and gives 

insight into the training dynamics and performance of this model. 
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Figure 6.3 MSE Loss Curve for Multi-LSTM 

6.2.2 Rain_mm_total as Goal 

The MSE loss curve was taken as an evaluation strategy for the Multivariate LSTM model. The 

dataset to train the model contained the environmental characteristics related to the Arkari River 

and the goal variable, which was the Arkari Rain_mm_total due to 60 epochs and a batch size 

32. 

The model developed its training toward an improvement in the predictive process: i.e., a trend 

of decreasing validation values and training MSE loss with increasing epoch. For instance, at 

epoch 1, the validation MSE presented 6.7080e-04, while the training MSE was first observed to 

be 0.0142. The following epochs maintained this pattern; the variations showed the behavior 

adapting to the set. 

For validation, the model reached an MSE of 1.1029e-04 for the final 60 epochs, with training 

MSE finishing at 9.0664e-06. These shallow values of MSE prove that the model can capture the 

intricate correlations between features and target variables of the Arkari Rain_mm_total input 

features. 
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Figure 6.4 MSE Loss Curve for Multi-LSTM with Rain mm as Target 
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6.3 Comparative Analysis 
Table 1: Comparative Analysis of Proposed Study with Existing Study 

Aspect Proposed Study Existing Studies Key Differences 

 

Predictive Accuracy 1D CNN and 

Multivariate LSTM, 

Used 

Kratzert et al. (2018) 

used LSTM[46] 

 Xiang et al. (2018) 

used LSTM only[22] 

Combination of CNN and 

LSTM 

Improved spatial and 

temporal feature extraction 

Data Integration Environmental 

sensors (wind, 

humidity, etc.) 

Water level radar 

sensors 

Mousavi et al. 

(2020) used diverse 

environmental 

data[47] 

Damavandi et al. 

(2018) focused on 

limited data 

sources[48] 

Comprehensive data 

integration 

Real-time water level data 

included 

Real-time 

Monitoring 

IoT infrastructure 

with water, 

repeater, and siren 

stations 

Real-time data 

transmission 

Nguyen et al. (2019) 

explored IoT for 

real-time monitoring 

Robust communication 

network 

Timely alerts and 

predictive analytics 

Decision Support Actionable insights 

for decision-makers 

Predictive analytics 

Silva et al. (2021) 

focused on early 

warning systems[49] 

Singh et al. (2018) 

provided basic 

decision support[50] 

Detailed and actionable 

decision support 

 Enhanced early warning 

systems 

Implications for 

Flood Management 

Improved early 

warning 

Informed decision-

making 

Scalable and 

adaptable 

Similar findings in 

enhanced early 

warning (Silva et al., 

2021) 

More reliable and accurate 

systems 

Comprehensive decision 

support 

Future Research 

Directions 

Explore advanced 

ML models (e.g., 

Transformers) 

Integration with 

other disaster 

management 

systems 

Focus on cost-

effective IoT 

solutions 

Kaur et al. (2020) 

suggested integration 

with other 

systems[51] 

New avenues for model 

enhancement 

Comprehensive disaster 

management integration 
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6.4 Discussion 

6.4.1 Overview of Main Discoveries 

This thesis offers a new way of monitoring floods and how the ML technique will be used in 

mitigation with IoT technology. The key findings, as based on the study, are given below: 

Using 1D Convolutional Neural Networks (CNN) and Multivariate Long Short-Term Memory 

(LSTM) networks is very accurate in predicting disaster floods. Both models demonstrated their 

effectiveness with reliable predictions using the Mean Square Error (MSE) metric, although the 

performance of the second model was superlative since it captures temporal dependencies. 

Comprehensive Data Integration: All the data parameters are fully integrated with the 

combination of environmental sensors—wind speed, wind direction, humidity, air pressure, 

temperature, and rainfall—with water-level radar sensors. The aggregation of many sensors 

allows the prediction of floods to be more accurate and timely. 

The use of a resilient framework for the Internet of Things, including water stations, repeater 

stations, and siren stations for instant data sending and communicating, ensures a continuous 

process of surveillance with instant notifications, therefore protecting and providing flood 

control. 

The Decision Support System (DSS) provides enormous information to decision-makers by 

enhancing their ability to forecast, plan for, and mitigate the impacts of flooding disasters—most 

notably those that occur suddenly and at high intensity. 

6.4.2 Comparative Analysis of Previous Studies 

The findings are consistent with and expand important domains not only from previous studies: 

Machine Learning for Flood Prediction: It was already found in one of the past studies that ML 

techniques, for example, LSTM and ANN, work well in the forecasting of flood events (Kratzert 

et al., 2019; Xiang et al., 2018). Our research supports these results and emphasizes the 

advantage heaped by the CNN features that capture spatial correlations within the data. 

The application of IoT in environmental sensing has been extensively studied (Mousavi et al. 

2020). Our work adds to this literature by showing an applied example of IoT in the context of 
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flood sensing, in which a dense network of sensors and rapid communication of sensed 

information are essential. 

The use of machine learning, the Internet of Things, and hydrological knowledge in a combined 

manner is a recommended conduct of flood prediction, as shown by Damavandi et al., 2018 and 

Dong et al., 2019; this has also proven to be reliable yet effective in this research. This study re-

confirms the effectiveness of an interdisciplinary approach toward enhancing the accuracy and 

hence specializes in predicting floods. 

6.4.3 Implications for Flood Management 

The significance of this study is that the developed approach shall enhance better early warning 

systems by giving accurate and timely predictions of floods, hence reducing loss of life and 

property. 

Building Community Resilience: Predictive insights can guide authorities on predictive decisions 

regarding evacuation notices, resource allocations, and infrastructure protections. All these build 

the community ability to withstand and recover from adverse events. 

The system that was developed showed scalability and adaptability, allowing it to work 

efficiently in different geographical and climatic conditions, hence making it a perfect solution to 

solve global flood-management challenges. 

Community Engagement: It is essential that human elements, such as community acceptance and 

stakeholder participation, be understood and addressed. This study identifies public awareness 

creation and stakeholder participation as critical factors during the setup of flood monitoring 

systems based on the Internet of Things. 

6.4.4 Constraints and Prospects for Further Investigation 

Notwithstanding its encouraging outcomes, this study is subject to many constraints: 

Data Limitations: Forecasts' precision is grossly affected by the quality and quantity of data 

collected. Future research should prioritize increasing the data set by including more of the 

environmental variables and expanding the periods. 
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Provide Model Enhancements: Although the results provided by both the CNN and LSTM 

models are already effective, a further search for more advanced ML algorithms, such as 

Transformer models, may help improve predicting accuracy. 

Integration into Other Systems: Future endeavors should be conducted to verify whether this 

system will be integrated with other systems developed for disaster management, such as 

earthquake monitoring and wildfire alerts, to constitute a complete disaster response system. 

Expense and Maintenance: The development of IoT infrastructure requires enormous investment 

and maintenance work. Thus, low-maintenance sensor systems are often sought after. 

  



 
 

43 
 

Chapter 7 Conclusion and Future Directions 
In conclusion, the proposed system deals with the vital need for an effective way of flood 

prediction and monitoring using a combined approach of Internet of Things technologies and 

machine learning algorithms. This study brought out the increased occurrences of flash flooding 

in mountainous areas, which poses more challenges since they can strike at any place at any 

time, with short warning lead times. Integrating these systems with IoT-based flood monitoring 

systems and machine learning algorithms brings an excellent promise for reducing the adverse 

impact of these disasters. 

The study made use of several machine learning algorithms up to Convolutional Neural 

Networks and Long Short-Term Memory. The dataset used in the implementation was obtained 

from Kaggle. 

The data pre-processing steps have been very carefully carried out: from treating missing data 

and changing the variable nature from categorical to numeric to reducing the number of 

variables, normalization, and detecting outliers. Correlation analysis provides the relationship 

between different kinds of variables that help in selecting important features for flood prediction. 

The used evaluation matrices like Mean Square Error (MSE) are very important in studying the 

machine learning model performance. The research article displayed a comparative analysis of 

different algorithms, which mentioned their power and limitation in flood prediction scenarios. 

The proposed IoT-enabled prototype introduced three key stations: a Water Station, a Repeater 

Station, and a Siren Station. Each was important in monitoring and alerting to create a robust and 

interconnected system. The technology of water level monitoring using IoT proved its 

practicability based on data transmission and alarm triggering. 

In the end, this study has demonstrated that the application of new technologies, such as the 

Internet of Things and machine learning, has a potential contribution to flood prediction and 

monitoring. The system also serves as a foundation for future advancements in disaster 

management and specifically points out that proactive measures can be taken to prevent the 

socioeconomic consequences of natural disasters 
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