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Abstract

Warm inflation describes a scenario in the early universe where inflation occurs with
significant thermal interactions, leading to a sustained thermal bath that affects infla-
tion dynamics and subsequent reheating processes. Although we use different models
in warm inflation, the hybrid model stands out as fascinating because it incorporates
different frameworks of high-energy physics such as SUSY, super-gravity, and GUT.
Therefore it is instructive to explore warm inflation in the hybrid model. For this,
we present a comprehensive study of warm inflation within the framework of hybrid
inflation in a non-supersymmetric model with chaotic potential λpϕ

p, incorporating
one-loop radiative corrections Aϕ4 ln

(
ϕ/ϕc

)
where A < 0. We incorporate quantum

smearing effects to investigate the consistency of resulting cosmological observables
with Planck and future experiments.

VII



Chapter 1

Introduction and Motivation

The Big Bang model serves as a framework for describing the universe’s expansion.
According to this model, the expansion of the universe states that it was hotter and
denser in earlier times which depicts that the universe was radiation-dominated.
Among the most noteworthy accomplishments of this model is the identification of Cos-
mic Microwave Background (CMB). Multiple space missions such as COBE, WMAP,
and the Planck satellite have supported and confirmed this groundbreaking discov-
ery. The obtained measurements disclose an exceptionally close-to-perfect blackbody
spectrum, characterized by a temperature of T0 = 2.725K. This result is in excellent
agreement with the indications made by this model [1].
Extensive testing has been conducted on the concept that at the beginning of the uni-
verse, it existed in a more compact and hotter state particularly focusing on the process
of Big Bang nucleosynthesis (BBN) which elucidates the synthesis of light elements,
comprising hydrogen and its isotopes, helium, and lithium. The abundances of ele-
ments have been calculated and compared with observations. These calculations are in
excellent agreement with the recorded proportions of these elements in the cosmos. For
example, helium constitutes approximately 25% of the matter in the universe which
aligns with the projections of the Hot Big Bang framework[5]. Similarly, the observed
abundance ratio of deuterium to hydrogen, which is around 1/50,000 aligns with the
expectations of the model.
The conventional Big Bang model, broadly embraced in modern cosmology, provides a
sound and well-established framework for analyzing the complex and fascinating evolu-
tion of the universe over time. This extensively tested model provides a comprehensive
explanation of the universe’s history, expansion, and CMB radiation. It precisely de-
tails the process behind the production of light elements through nucleosynthesis.
While successful in many aspects, this model does possess inherent limitations. The
model falls short of providing a complete explanation for certain observed phenomena,
notably the high degrees of spatial flatness, homogeneity, and isotropy evident in the
universe at a large scale. Nevertheless, the existence of these "problems" does not
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imply an inherent disparity within the model. Rather than indicating a fundamental
contradiction in the model, these "problems" suggest potential incompleteness, leaving
room for the exploration of hidden dynamical mechanisms responsible for these dis-
tinctive features.
The most well-elaborated explanation for these phenomena at a large scale in our uni-
verse is the theory of inflation. It provides a procedure that helps with the formation of
large-scale structures. Inflationary dynamics revolve around the development of infla-
tion, a scalar field, whose potential propels a swift evolution of the cosmos around 10−34

seconds following the Big Bang [11]. The theory of inflation is significantly supported
by the latest observations of CMB by the Planck satellite [1]. These measurements,
which achieved unprecedented accuracy, detected small perturbations in the density
at the beginning of the universe. Amplified by gravitational clustering, these density
fluctuations eventually start the creation of the observed macroscopic formations in
the universe.
This theory encompasses two different types of inflation models. One is cold infla-
tion and the other is warm inflation. The inflaton is considered a distinct system
in the framework of cold inflation. The consideration of the relation of the inflaton
with other fields occurs exclusively in the computation of radiative corrections to the
potential of that scalar field. In this scenario, any additional initial energy density
component undergoes red-shifting, resulting in a super-cooled state of the universe.
Reheating becomes necessary after inflation ends to transition the cosmos into a phase
of radiation-dominated expansion.
Within the cold inflation paradigm, the inflaton field is pivotal in steering the exponen-
tial evolution of the universe. Other fields and their interactions have a minor role amid
the inflationary phase. While the inflaton field gradually descends along its potential,
the universe undergoes rapid expansion, resolving various cosmological problems. Once
inflation concludes, the universe remains super-cooled, devoid of thermal equilibrium.
Following the conclusion of cold inflation, a reheating phase becomes significant to con-
vert the inflaton field energy into radiation. Reheating marks the transition from the
inflationary epoch to a period dominated by radiation. During reheating, the inflaton
field decays and produces energetic particles, filling the universe with radiation which
ultimately triggers the hot Big Bang phase.
Conversely, warm inflation considers a scenario where the inflaton field is not com-
pletely decoupled from other fields during the inflationary period. The relation of the
inflaton with the additional fields leads to energy transfer and dissipation, resulting
in a non-negligible radiation component during inflation. Warm inflation can alleviate
some of the issues associated with cold inflation, such as the formation of primordial
density perturbations.
Warm inflation[6, 8] is a realization of inflation in which the relation between inflaton
field and other scalar fields plays a crucial role. Besides radiative corrections, these
interactions also give rise to the dissipation of energy from the inflaton into various
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additional dynamic degrees of freedom. The dissipation takes place resulting in the
instability of fields connected to the inflaton, causing it to undergo decay into lighter
degrees of freedom. Consequently, these decay processes facilitate the energy transfer
from the inflaton to the lighter sector. This process simultaneously dampens the mo-
tion of the inflaton field and facilitates particle production, resulting in the creation
of a thermal radiation bath. The dissipation of inflaton energy in warm inflation has
two significant effects. Firstly, it dampens the movement of the inflaton field, induc-
ing a deceleration. This damping arises from the transfer of energy to the degrees of
freedom in the light sector. Secondly, this dissipation process leads to the production
of particles in the light sector. These particles can emerge from the decay of the fields
that are linked to the inflaton. The production of particles adds to the thermalization
of the universe and contributes to the development of a thermal radiation bath.
This thesis centers around the development of the hybrid model that describes inflation
in the warm regime. This model aims to incorporate the interactions and dissipation of
inflaton energy in a consistent framework. By studying this aspect of warm inflation,
researchers can acquire an understanding of the dynamics and phenomenology of the
early universe.
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Chapter 2

Cosmology and The Big Bang Model

One of the pivotal revelations in our comprehension of the universe is the observation
that, with the exception of a few nearby galaxies, the majority are receding from us.
The rate at which these galaxies move away, indicated by their redshift, intensifies as
the distance between us and the galaxies increases. Based on these fundamental obser-
vations, we deduce that the universe is a dynamic system in evolution that continuously
expands as clusters of galaxies progressively move apart. This chapter provides a com-
prehensive summary of the foundational principles of the standard cosmology model,
establishing a framework for comprehending how the cosmos has evolved. The widely
accepted standard Big Bang theory has been extensively reviewed, and interested read-
ers are encouraged to explore these references[4, 13].

2.1 The Principle of Cosmology

At the heart of modern cosmology lies the fundamental principle of cosmic evolution.
In the framework of this principle, no observer can claim a fixed position within the
universe. It postulates the universe’s dual characteristics of homogeneity and isotropy.
The Friedmann-Robertson-Walker (FRW) metric serves as the mathematical formula-
tion capturing the universe’s homogeneity and isotropic nature on large scales:

ds2 = −dt2 +
a2(t)dr2

1− kr2
+ a2(t)r2dθ2 + a2(t)r2 sin2(θ)dϕ2 (2.1)

Here, t is the cosmic time and the spatial dimensions are parameterized by spherical-
polar coordinates (r, θ, ϕ). The scale a(t), a function of cosmic time, encodes the
dynamic nature of the universe i.e. the expansion and contraction. Where k is the
curvature parameter that signifies the types of hypersurfaces:

• k = +1 for hypersurfaces characterized by positive curvature,
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• k = 0 for flat hypersurfaces, and

• k = −1 for hypersurfaces characterized by negative curvature.

The FRW (Friedmann-Robertson-Walker) metric elucidates spatial separations regard-
ing comoving coordinates, providing a framework to comprehend spatial dimensions
within the context of the expanding or contracting universe. The expansion rate is a
crucial parameter that characterizes the FRW spacetime:

H(t) =
1

a(t)

da

dt
(2.2)

H(t) represents the Hubble parameter which has dimensions of inverse time. Its value
can be positive and negative for expansion and contraction of the universe, respectively.

2.2 The Einstein Field Equations

The dynamic nature of our universe can be comprehended by employing Einstein’s
theory proposed in General Relativity, where a connection is developed between matter
and geometry of the universe:

Gµν + gµνΛ = Rµν − gµν

(
1

2
R− Λ

)
=

8πG

c4
Tµν (2.3)

Here Gµν is the Einstein tensor, gµν is the metric tensor, Λ is the cosmological constant,
Rµν is the Ricci curvature tensor, R is the scalar curvature, G is the gravitational
constant, and Tµν is the stress-energy tensor representing the distribution of matter
and energy. Gµν is elaborated by Ricci Tensor and Ricci scalar:

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα (2.4)

R = gµνRµν (2.5)

The Ricci tensor Rµν , which characterizes the curvature in the space-time fabric, is
developed by combining derivatives of gµν expressed as the Christoffel symbols:

Γα
µν =

1

2
gαβ

(
∂gβµ
∂xν

+
∂gβν
∂xµ

− ∂gµν
∂xβ

)
(2.6)

It’s crucial to emphasize that the Einstein equations can be conceptualized as a system
of equations that establish relationships among tensors. In this particular case, the
tensors are 4 × 4 matrices, resulting in a total of 16 distinct equations.
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2.3 The Friedman Equations

Two fundamental quantities characterize the matter present in the universe at the
beginning. These quantities are known as energy density (ρ) and pressure (p). The
Einstein field equations, which can be represented by the Eq. (2.3), explain how gravity
works in our universe. The equations propose that gravity is caused by the presence
of matter, which deforms the spatial configuration of the cosmos. This deformation is
articulated using the metric tensor (gµν), while the energy and momentum of matter are
represented by the energy-momentum tensor (Tµν). Considering a group of observers
whose worldlines align with the timelike 4-velocity, uµ is:

uµ =
dxµ

dτ
(2.7)

Considering the observers following proper time (τ), the equation gµνu
µuν = −1 holds.

The universe’s expansion can be approximated by perfect fluids that are homogeneous,
isotropic, and exhibit no heat conduction or viscosity. The characterization of these
fluids involves specifying their energy density (ρ) and pressure (p). In the rest frame,
the perfect fluids are "isotropic," resulting in a diagonal form for Tµν with no net
momentum flux in any orthogonal direction. The expression for Tµν of a perfect fluid
involves specifying the values of ρ and p:

T µ
ν = gµαTαν = (p+ ρ)uµuν − pδµν (2.8)

In a reference frame comoving with the fluid, the 4-velocity can be characterized as
uµ = (1, 0, 0, 0). This choice of 4-velocity leads to the stress-energy tensor as:

T µ
ν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 (2.9)

This tensor in Eq. (2.9) allows for the simplification of the Einstein field equations into
a system of two interconnected differential equations, often referred to as the Friedmann
equations:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
(2.10)

The acceleration equation which is also stated as the Raychaudhuri equation:

H2 + Ḣ =
ä

a
= −4πG

3
(3p+ ρ) (2.11)
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In an expanding universe containing ordinary matter, where the dots represent deriva-
tives w.r.t time, it is observed that ȧ > 0 (indicating an increasing scale factor) and
ρ+3p ≥ 0. This implies ä < 0, indicating a decelerating expansion. It can be deduced
from the observation of the universe’s expansion that the scale factor was very small
at earlier times whereas it rises over time. Assuming that general relativity and the
Friedmann equations hold at very high energy scales, this implies the existence of a
fundamental singularity at a specific point in the past when a(t) = 0 while t ≡ 0. The
continuity equation can be derived by using Eq. (2.10):

dρ

dt
+ 3H(p+ ρ) = 0 (2.12)

Introducing the equation for state parameter as w ≡ p
ρ
, the continuity equation can be

further simplified, resulting in:

ρ ∝ a−3(1+w) (2.13)
By combining this expression with Eq. (2.10), the scale factor (a(t)) evolution to time
can be derived:

a(t) ∝

{
t
2(1+w)

3 , if w ̸= −1

eHt, if w = −1
(2.14)

In a flat universe (with k = 0), the scale factor a(t) evolution can take three distinct
forms based on the matter and radiation content:

1. For a universe primarily composed of non-relativistic matter (w = 0), the scale
factor changes over time as a(t) ∝ t2/3.

2. For a universe dominated by radiations (w = 1
3
), the scale factor changes as

a(t) ∝ t1/2.
3. For a cosmological constant scenario (w = −1), the scale factor changes expo-

nentially as a(t) ∝ eHt.
In a universe composed of diverse matter types like baryons, photons, dark matter,
and neutrinos, the characterization of ρ and pressure p involves summing the individ-
ual contributions. This allows us to express them as:

ρ =
∑
i

ρi, p =
∑
i

pi, wi =
pi
ρi

(2.15)

The present energy density ratio is described as the quotient of the current energy
density to the critical energy density.

Ωi ≡
ρi
ρc

(2.16)
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Matter Component Equation of State a(t)

Matter Dominated w = 0 a(t) ∝ t
2
3

Radiation Dominated w = 1
3

a(t) ∝ t
1
2

Cosmological Constant w = −1 a(t) ∝ eHt

Table 2.1. Potential scenarios for the evolution of a flat universe (k = 0)

In this expression, ρi represents the energy density of the matter species ’i’, and ρc is the
critical energy density given by ρc = 3H2

0/8πG. Where subscript ’0’ in H0 denotes the
quantity at present, normalizing the scale factor to the present time (a0 = a(t0) ≡ 1)
can reformulate Eq. (2.10) as follows:(

H

H0

)2

=
Ωk

a2
+
∑
i

Ωi

a3(1+wi)
(2.17)

The curvature parameter Ωk is defined as Ωk ≡ −k/a20H
2
0 , where k is the curvature

constant, a0 is the current value of the scale factor, and H0 is the value of the Hubble
parameter at present. At present, we derived the formula:∑

i

Ωi + Ωk = 1 (2.18)

Assessing the Eq. (2.11) at the current epoch results in:

1

a0H2
0

d2a0
dt2

= −1

2

∑
i

Ωi(1 + 3wi) (2.19)

This equation summarizes the dynamics of the universe’s expansion, linking the accel-
eration of the scale factor to the contributions from various components of the universe,
each characterized by its density parameter and equation of state.

2.4 Limitations of standard Big Bang Model

As discussed in Chapter 1, the Big Bang model does possess limitations. The model
falls short of providing a complete explanation for certain observed phenomena i.e.
spatial flatness, homogeneity, and isotropy evident in the universe at a large scale. We
will discuss these problems in detail here.
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2.4.1 The Horizon Problem

Within this model, the position and velocity of every particle in the universe are defined
on a spatial slice (3-surface) with time taken as constant. This spatial slice is denoted
as Σ. The system is then dynamically evolved by utilizing the laws of physics.

Figure 2.1: This explains the horizon problem. At the time of reheating, τ = 0,
the regions of spacetime are causally disconnected which raises the horizon problem.
Inflation provides a solution to this problem as we can see that these regions are causally
connected during the inflationary phase.

The density (ρ) and pressure (p) characterize the spatial distribution of matter.
Gravitationally, inhomogeneities in the distribution are inherently unstable, result-
ing in their gradual enlargement. This suggests that much more compact small-scale
anomalies might have existed in the past in comparison to the current cosmos.
The question arises as to how the initial smoothness or homogeneity of the universe can
be understood. In the initial phases of the Big Bang model, various regions of space
were causally disconnected within the universe. However, during our observation of
these regions in the present time, they appeared to exhibit remarkably similar physical
properties. This made us think about how these causally disconnected regions evolved
to exhibit such similarity. The issue of this initial homogeneity is considered as the
horizon problem which can be addressed by considering the propagation of photons in
the FRW spacetime.

9



Conformal Time, Geodesics and Horizons

Following null geodesics (ds2 = 0), the formulation of the FRW spacetime structure
involves the propagation of light, where massless photons play a crucial role. To further
analyze spacetime, it is convenient to use the concept of conformal time.

τ =

∫
1

a(t)
dt (2.20)

thus the FRW metric can be modified as follows:

ds2 = −a(τ)2dτ 2 +
a(τ)2dχ2

1− kχ2
+ a(τ)2Φk(χ)

2dθ2 + a(τ)2Φk(χ)
2 sin2(θ)dϕ2 (2.21)

where,

r2 = Φk(χ
2) ≡


sin2(χ) for k = 1

χ2 for k = 0

sinh2(χ) for k = −1

(2.22)

Given the isotropy of the universe, the formulation for the FRW metric can be made
simpler by assuming radial light propagation through the two-dimensional line element:

ds2 = −a(τ)2dτ 2 + a(τ)2dχ2 (2.23)

This form of FRW metric can deduce that the radial null-geodesics of light will entertain

χ(τ) = ±τ + constant (2.24)

in conformal time. This means that light will follow a straight line path at an angle
of 45o, in the τ − χ plane. The comoving particle horizon, representing the maximal
distance a particle travels from an initial time ti to a later time tf , is denoted as:

χ(τ) = τ − τi =

∫ tf

ti

1

a(t)
dt (2.25)

Here, τi represents the initial conformal time. If ti is representing the time when the
first singularity occurred, denoted as ti = 0 with a = 0, a relationship can be established
between the comoving and the physical particle horizon using the scale factor.

10



Figure 2.2: Light cone explaining the causality: when the FRW metric is zero, ds2 = 0,
the photon travels along the world line with zero proper time. This is known as the
null geodesics. For FRW metric greater than zero, ds2 > 0, the particle travels with
the proper time known as timeline geodesics. Lastly, for ds2 < 0, the particles are in a
causally disconnected spacetime region known as the spacelike interval.

de(t) = a(t) · χevent horizon (2.26)

The greatest distance that light may travel from the beginning time ti = 0 to the final
time tf = t is represented by the comoving particle horizon. It is provided by:

τ ≡
∫ t

0

(a(t′))−1dt′ =

∫ a

0

(Ha2)−1da =

∫ a

0

(aH)−1d ln a (2.27)

In the scenario where the universe appears to be predominantly influenced by a fluid
characterized by a state equation ω, the comoving Hubble radius, (aH)−1, can be
expressed as:

(aH)−1 =
1

H0

a
1+3w

2 (2.28)

The trajectory of the comoving Hubble radius is determined by the sign of ω, whether it
is positive or negative. Specifically, in cases where either radiation or matter dominates
the cosmos. In this case, τ is relative to:

11



τ =

∫ a

0

da

Ha2
∝

{
a, for RD,

a1/2, for MD.
(2.29)

The development of the comoving horizon with time is monotonous, taking into account
the comoving scales currently entering the horizon, it’s important to note that the
decoupling period was when these scales were first outside the horizon. Despite this,
the uniformity seen in the CMB suggests a cosmos that was extraordinarily uniform
when the last scattering occurred, extending across large expanses of space that were
causally unconnected.

Dominant Component w ρ(a) a(t) a(τ ) τi

Radiation-Dominated (RD) 1
3

a−4 t1/2 τ 0

Matter-Dominated (MD) 0 a−3 t2/3 τ 2 0

Cosmological Constant (Λ) −1 a0 eHt −τ−1 −∞

Table 2.2. Evolutionary scenarios for a flattened universe (k = 0)

2.4.2 The Flatness Problem

This cosmological problem becomes apparent when the current energy density of the
universe closely approaches its critical value, represented as ρc. For the universe to
evolve in the direction of higher levels of homogeneity over time, the initial velocity
of the cosmic fluid must have precise values. If the initial velocity is too high, the
expansion occurs too fast which might end with the universe being nearly empty. On
the other hand, if the initial velocity is too low, the universe collapses. Taking into
account the horizon problem as well, this implies that the initial fluid velocity needs
to be calibrated over causally disconnected regions. This initial velocity calibration
is commonly known as the flatness problem. Remarkably, the universe is nearly a
flat Euclidean space, given that the matter within it influences the dynamic nature of
spacetime as described by the Einstein field equations. Consider the ratio of densities
to be:

Ω(a) ≡ ρ(a)/ρc(a) (2.30)

Where critical density can be expressed as follows:

12



ρc(a) ≡
3H(a)2

8πG
(2.31)

We can modify the Eq. (2.10) as:

1− Ω(a) =
−k

(aH)2
(2.32)

In relation to the conventional Big Bang theory, the density parameter Ω(a) is time-
dependent, and the Hubble radius (aH)−1 increases as time passes. As a consequence,
the absolute value of Ω − 1 diverges w.r.t time, and the critical value Ω = 1 becomes
an unstable fixed point. Hence, the current value |Ω(a0)| ≈ 1 needs a highly fine-tuned
initial value at the beginning of the universe. Furthermore, variations from flatness
throughout major epochs including the Planck scale, the Grand Unified Theory period,
and BBN have been shown to need upholding certain requirements [4]:

|Ω(aPlanck)− 1| ≤ O(10−61)

|Ω(aGUT)− 1| ≤ O(10−55)

|Ω(aBBN)− 1| ≤ O(10−16)

By utilizing the continuity equation after differentiating the Friedmann equation, we
obtain the following expression:

1

Ω(Ω− 1)

dΩ

d ln a
= (1 + 3w) (2.33)

From the derived inequality, 1 + 3w > 0, it can be concluded that Ω = 1 is an
unstable fixed point. This implies that any fluctuation in the density parameter Ω
from singularity will lead to a divergence from Ω = 1 instead of convergence towards
it.

d|Ω− 1|
d ln a

> 0 ⇒ 1 + 3w > 0 (2.34)

The existence of these problems within the standard cosmological model does not
indicate an inherent inconsistency in the model itself but rather suggests that the
model may be incomplete and lack a fundamental dynamical mechanism to account
for these particular attributes. The anticipation of the universe’s homogeneity and
flatness cannot be inherently derived from this model alone. Instead, these features
must also be regarded as fundamental conditions, underscoring a limitation in the
predictive capacity of the model. Inflation has become the forefront candidate for
explaining the dynamic origins of these fundamental conditions in the cosmos [4].
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Chapter 3

The Inflation Theory

The cosmological problems discussed in the previous chapter are due to the increasing
comoving Hubble radius (aH)−1. However, inflation serves as a solution to these chal-
lenges which is thoroughly examined and widely acknowledged in [4, 8, 13], and stands
as well a well-established theory for various aspects of the visible universe, encompass-
ing both homogeneities at large-scale and spatial flatness. Additionally, this theory
also ensures that the comoving Hubble radius decreases at the very early universe
(10−36 − 10−34s) [11], i.e.

d(aH)−1

dt
< 0 (3.1)

In the light of Eq.(2.11), it is straightforward to find

d2a

dt2
> 0 (3.2)

provided that
ρ+ 3p < 0 (3.3)

Consequently, space will undergo an accelerated expansion that leads to homogeneity
at a large scale and spatially flat universe. From Eq.(2.11), one can easily deduced

ä

a
= H2(1− ϵ) (3.4)

where ϵ is a slow-roll parameter and is defined as:

ϵ ≡ −H

Ḣ
(3.5)

One can deduce that an epoch of accelerated evolution is possible whenever this ϵ
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satisfies this condition: ϵ < 1. We can also write ϵ in terms of the number of e-folds
(Ne):

ϵ ≡ − Ḣ

H2
= −d lnH

dNe

< 1 (3.6)

Number of e-folds

The logarithmic expansion factor of a(t) during accelerated expansion is expressed as
the number of e-folds (Ne).

Ne = log

(
ae
ai

)
(3.7)

where ai and ae represent the scale factors at the start and end of the inflationary
period. This parameter provides a measure of the total expansion that happened in
this period of inflation. One can calculate this parameter through Eq. (3.7):

Ne(ϕ) =

∫ t

tend

Hdt =

∫ ϕ

ϕend

H(ϕ̇)−1dϕ ≈
∫ ϕend

ϕ

V (V,ϕ)
−1dϕ (3.8)

This expression can be adjusted in the context of slow-roll parameters as:

Ne(ϕ) =

∫ ϕend

ϕ

(2ϵ)−
1
2dϕ (3.9)

To address the cosmological problems, a sufficient amount of inflation is required,
typically around 50-60 e-folds. Mathematically, this can be expressed as:

eNe =
aend

astart
≈ 50− 60 (3.10)

This condition ensures that the universe undergoes an enough long phase of acceler-
ated expansion, allowing for the settlement of these cosmological problems. For the
accelerated expansion, Eq. (2.10) can also be used to extract the conditions on energy
density and pressure of the universe:

d(aH)−1

dt
< 0 ⇒ ä > 0 ⇒ 3p+ ρ < 0 (3.11)

This implies that the energy density and pressure of the universe must satisfy the
following condition for an accelerated expansion:
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p < −1

3
ρ (3.12)

Based on this condition, it can be asserted that any duration of expansion during
the inflation will feature a contracting Hubble sphere, distinguished by a decreasing
comoving Hubble radius. This leads to accelerated expansion, where the scale factor of
the universe rises rapidly. Additionally, inflation is associated with a negative pressure,
which contributes to the exponential expansion.
In the context of inflation, the integration of the comoving Hubble radius can give the
expression for the conformal time:

τ =

∫ a

0

(a′H(a′))−1d ln a′ (3.13)

In case the (aH)−1 is considerably smaller than the τ , it implies that particles outside
the current Hubble radius were causally connected at a specific moment at the begin-
ning of the universe. This can only be true if the comoving horizon receives significant
contributions from the time of the universe when the Hubble radius was larger. In-
flationary expansion can facilitate this scenario as it involves a phase where Hubble’s
radius decreases. During inflation, the scale factor a shows an exponential growth but
the Hubble parameter H stays approximately constant.

3.1 Solutions Proposed by Inflation

3.1.1 For the Horizon Problem

The decrease in the value of the comoving Hubble radius deduces that large-scale struc-
tures were causally connected before the inflation. This would enable causal physics to
contribute in the development of the universe’s homogeneity. A flat FRW spacetime
metric is represented as follows::

ds2 = −a(τ)2dτ 2 + a(τ)2dx2 (3.14)

This metric describes the spatial and temporal structure of the universe. The metric
component dx2 represents the spatial dimensions.
A null geodesic has ds2 = 0, and in conformal coordinates, we can express it as dτ =
±
√
dx2. For matter and radiation domination, the scale factor changes in the following

ways:

a(τ) ∝

{
τ 2 MD
τ RD

(3.15)
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This indicates that the scale factor increases with conformal time, leading to an ex-
panding universe. The specific power-law dependence of a(τ) on τ depends on the
dominant energy component during that epoch.
The horizon problem arises when we consider the causal history of different spacetime
points in the universe. The figure (2.1) illustrates that points are causally connected
and exhibit intersecting light cones at the initial singularity i.e. τi = 0. However, at
around 3.8 × 105 years of age, the decoupling of photons from electrons enables them
to move freely with minimal interaction. At this time, known as the last scattering
(τCMB), the universe comprised several causally disconnected regions that were not in
thermal equilibrium. By introducing accelerated expansion, inflation provides a solu-
tion to this problem. This nearly exponential expansion during inflation allows causally
disconnected regions to connect causally and establish equilibrium thermally.
The Hubble parameter H is approximately the same throughout inflation. This implies
that the scale factor (a) approaches 0 in the infinite past, as τi → −∞. Similarly, the
scale factor a becomes infinite when τ = 0, indicating that inflation continues into
the never-ending future. However, it should be noted that the expression for the scale
factor breaks down after inflation ends.
As a result, the initial singularity returns to an unbounded conformal time, τ ≪ 0,
and the point τ = 0 now indicates the conclusion of the inflation. Although points in
the universe may look causally disconnected, they are causally connected in reality due
to the possibility of light cone enlargement during the conformal time from τ = 0 to
τ = −∞.

3.1.2 For the Flatness Problem

Inflation also helps us to solve the Flatness problem can also be solved the inflation.
Since the density parameter is related to comoving Hubble radius as:

Ω(a) = 1 +
1

(aH)2
(3.16)

The solution Ω = 1 is only feasible for the (aH)−2 ≪ 0. The inflation explains this
decrease in the value of aH. Eventually, the curvature of the universe will move towards
spatial flatness.

3.2 Kinematics of the Inflation Theory

Inflation fundamentally relies on achieving an equation of state characterized by nega-
tive pressure. This phenomenon can be naturally explained by quantum fields present
in the early universe. A crucial insight from quantum field theory is that these fields
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can produce an energy density similar to that of a cosmological constant. Here, we will
focus on a scalar field, denoted as ϕ, which is generally complex but often exemplified
using a single real field for simplicity. This emphasis on scalar fields is not merely
for simplicity; it is also due to the relatively unexplored nature of the scalar sector in
particle physics. While vector fields like electromagnetism are well understood, many
unification theories predict the existence of additional scalar fields, such as the Higgs
field. We will now explore the implications of these fields for cosmology.
We propose the implementation of inflation using a single canonical scalar field ϕ,
known as the inflaton, governed by a potential V (ϕ). During inflation, this scalar field
slowly rolls towards its minimum, a process described by the slow-roll condition, which
has shown great success. Let us now examine in detail how the inflationary phase
unfolds.
The vacuum energy density which drives the inflation, has to be a dynamic quantity
that evolves with time. This dynamic evolution can be modeled using the inflaton field
with the action:

S =

∫
d4x

[
√
−g

1

2
R +

√
−g

(
1

2
gµν∂µϕ∂νϕ− V (ϕ)

)]
= SEH + Sϕ (3.17)

Where SEH represents the Einstein-Hilbert action and Sϕ represents the canonical ki-
netic term of the scalar field action. Considering that the scalar field is in a homogenous
state, ϕ(t, x) = ϕ(t), the energy-momentum tensor can be formulated as:

T ϕ
µν ≡ − 2√

−g

δSϕ

δgµν
= ∂µϕ∂νϕ− gµν

2
∂αϕ∂αϕ+ gµνV (ϕ) (3.18)

By taking the expression of gµν from Eq. (2.1) and using it in Eq. (3.18), we can have
the following relations for energy density and pressure:

ρϕ =
ϕ̇2

2
+ V (ϕ) (3.19)

pϕ =
ϕ̇2

2
− V (ϕ) (3.20)

The state parameter equation, wϕ, can be established as the quotient of pressure to
energy density:

wϕ =
pϕ
ρϕ

=
1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

(3.21)
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For a scalar field, negative pressure (wϕ < 0) and accelerated expansion (wϕ ≈ −1/3)
can be generated whenever the potential term V (ϕ) is dominating over the kinetic term
1
2
ϕ̇2. This implies that the scalar field needs to be "slowly rolling" during inflation.

3.3 Dual Manifestations of Inflationary Dynamics

The pursuit of a viable framework that can drive inflation with slow-roll conditions
has resulted in two diverse dynamical implementations of inflation. The first is known
as cold inflation with interactions between the inflaton and any other field taken into
account only for radiative corrections to the scalar potential. The second implemen-
tation, known as warm inflation, was initially described in [4, 13]. Warm inflation
allows for the simultaneous generation of particles during the inflationary expansion
by dissipating inflaton energy through interactions among the inflaton field and other
fields. Numerous warm inflation models have been developed since then, spanning a
wide range of theoretical proposals [14].

3.3.1 Cold Inflation

Cold inflation, the conventional inflationary scenario, depicts a time in the universe’s
early history when exponential growth was occurring rapidly. The driving force behind
the universe’s expansion lies in the potential energy of a scalar field called the inflaton.
This phenomenon addresses key cosmological problems and offers a comprehensive
solution.

Mechanism of Cold Inflation

Cold inflation relies on the inflaton, characterized by a potential energy landscape that
influences the early universe’s energy density. Undergoing a slow roll along its po-
tential, the inflaton field facilitates a sustained phase of exponential expansion. The
conditions for this phase are encapsulated in the slow-roll parameters, which must be
short for effective inflation.
The end of inflation occurs as the inflaton reaches the bottom of its potential energy
and reheat. Reheating is the process by which the inflaton decays into standard parti-
cles as a result of the field’s subsequent oscillations around this minimum. This is the
point at which the hot Big Bang phase begins[13].
For cold inflation, the equation of motion governing the inflaton field (ϕ) can be for-
mulated as:

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 (3.22)
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Recalling the equation for the reduced Planck mass:

mp = (8πG)−
1
2 (3.23)

The pressure (p), energy density (ρ), and Hubble parameter (H) of the scalar field
controlled by the Friedmann equations are related in the following way:

H2 =
1

6m2
p

(
ϕ̇2 + 2V (ϕ)

)
(3.24)

Assuming the homogeneity of a scalar field dominates the universe, the acceleration
equation takes on the form:

ä

a
= −4πG

3
(ρϕ + 3pϕ) = H2(1− ϵ) (3.25)

Sustaining a phase of accelerated evolution is dependent on the condition ϵ < 1. The
de Sitter condition (pϕ → −ρϕ) provides a means to fulfill the requirement where ϵ → 0
and the potential energy remains dominant over the kinetic energy (ϕ̇2 ≪ V (ϕ)). To
ensure successful inflationary cosmology, the second differential of the inflaton field ϕ
must be at a minimum during the inflationary epoch. Close monitoring of the inflaton
field behavior is crucial to meet this condition and achieve the desired expansion, given
by:

|ϕ̈| ≪ |3Hϕ̇|, |V,ϕ| (3.26)

Introducing a second slow-roll parameter as a consequence of this condition:

η = − ϕ̈

Hϕ̇
= ϵ− 1

2ϵ

dϵ

dNe

< 1 (3.27)

Ensuring the dominance of the potential over kinetic energy and maintaining a modest
acceleration of the inflaton field about the Hubble parameter is achieved through these
conditions. Therefore, Eq. (3.22) turns to be

ϕ̇ ≈ −V,ϕ
3H

(3.28)

and Eq. (3.24) reads as:

H2 ≈ 1

3

V (ϕ)

m2
≈ constant (3.29)
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The fulfillment of these conditions results in the spacetime approximating a de Sitter
space, characterized by the scale factor which can be expressed as:

a(t) ∼ eHt (3.30)

These equations illustrate the nearly constant value of the Hubble parameter, the
inflaton field evolves slowly, and the universe experiences an exponential expansion
during inflation.
Expressing the potential-dependent slow-roll parameters in terms of the Hubble slow-
roll parameters is also a viable approach: ϵ = ϵϕ and η = ηϕ − ϵϕ, inflation ends when
the slow-roll requirements are not followed, ϵ = ϵϕ ≡ 1.
The inflaton field leads to a rapid redshift of other initial components of energy density
during this expansion period. Consequently, the universe enters into a supercooled
state. After the end of the inflation, a different state, known as reheating, becomes
necessary that carry the cosmos into a radiation-dominated period of expansion [6]. It
can be attained if the inflaton field undergoes coherent oscillations occurring around the
minimal potential, effectively behaving as pressureless matter, when the inflationary
era ends. Mathematically, this phenomenon is articulated by the equation:

˙̄
ϕρ+ 3Hρ̄ϕ = 0 (3.31)

where ρ̄ϕ represents the average energy density of the inflaton field. Other degrees of
freedom must interact with the inflaton field as it decays.

Predictions and Observations

Cold inflation naturally explains the observed homogeneity and flatness of the universe,
as the exponential expansion dilutes any initial curvature and homogenizes the observ-
able universe. The theory predicts an almost scale-invariant spectrum of primordial
density variations, closely matching CMB observations and the distribution of galaxies.
The universe remains in a super-cooled state during inflation, only reheating after the
inflaton decays, transforming potential energy into particles and radiation.

3.3.2 Warm Inflation

Warm inflation in cosmology offers a different approach from the cold inflation model.
It addresses the same cosmological problems by introducing a mechanism where the
universe remains warm due to the continuous development of radiation during inflation.
In this approach, the inflaton field engages in interactions with other fields, dissipating
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its energy into a thermal bath. This process maintains the temperature of the universe,
contrasting with the supercooling that occurs in cold inflation.

Key Features of Warm Inflation

The inflaton dissipates energy as it rolls down its potential, sustaining the universe’s
temperature despite the exponential expansion. Particle production occurs through-
out the inflationary period, eliminating the need for a distinct reheating phase post-
inflation. It generates primordial density fluctuations from both thermal and quantum
fluctuations, differing from cold inflation’s predominantly quantum origin.
In the most straightforward warm inflation scenario, the particles generated undergo
rapid thermalization, surpassing the Hubble expansion rate. This leads to a quasi-
adiabatic along with nearly stable evolution, where the main difference occurs in the
inflaton field motion equation by the addition of the dissipation coefficient, Γ, which
plays the role of friction during inflation. Suppose the generated particles are both
light in comparison to the surrounding temperature and exhibit relativistic behavior.
In that case, the inflaton field’s energy is effectively dissipated into an almost-thermal
radiation bath [8]. The background equations for the inflaton field and radiation energy
density can be represented as:

ϕ̈+ ϕ̇(Γ + 3H) + V,ϕ = 0 (3.32)

ρ̇R − Γϕ̇2 + 4HρR = 0 (3.33)

The radiation energy density is to be described as:

ρR =
π2g∗T

4

30
(3.34)

While g∗ represents the light degrees of freedom. The warm inflation model takes the
dissipative ratio into account, denoted by Q and defined as:

Q =
Γ

3H
(3.35)

Taking the system into account within the slow-roll regime and ϕ̈ ≪ 1, Eq. (3.32) and
Eq. (3.33) can be estimated as:

(1 +Q)ϕ̇ ≈ −V,ϕ

3H
(3.36)

4HρR ≈ Γϕ̇2 (3.37)
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By introducing the dissipative ratio, the slow-roll conditions will be modified as:

ϵ =
1

16πG(1 +Q)

(
V,ϕ

V (ϕ)

)2

< 1 (3.38)

|η| = 1

8πG(1 +Q)

∣∣∣∣ V,ϕϕ

V (ϕ)

∣∣∣∣ < 1 (3.39)

whereas V,ϕ and V,ϕϕ are the first and second derivatives of the potential w.r.t the
inflaton field.
In the warm regime, slow-roll inflation can be sustained for seeing the situations η, ϵ <
(1+Q) permit. When there is a powerful dissipative regime like Q is greater than unity
(Q ≥ 1), these conditions can hold without any variation in the potential. The following
relationship expresses how radiation energy density is subdominant over potential:

ρR
ρϕ

≈ ϵ

2Q(1 +Q)
≤ 1 (3.40)

When the value of Q becomes large, the system enters a strong dissipative regime. As
slow-roll inflation ends at ϵ ≈ 1+Q, radiation may now contribute a significant amount
to the universe’s overall energy density. This is due to an increase in radiation energy
density in relation to the scalar potential. In the event that inflation ends within the
strong dissipative regime such as Q is significantly greater than unity (Q ≫ 1), the
energy density of the universe sees a rapid transition [8].

Implications and Predictions

The primordial fluctuation spectrum in warm inflation might present unique features
due to the influence of thermal fluctuations. These characteristics could be identi-
fied through measurements of the CMB and the universe’s large-scale structure. The
absence of a separate reheating phase provides a smoother shift of inflation to the
conventional hot Big Bang model. Warm inflation’s success relies on matching its pre-
dictions with accurate measurements of the CMB, large-scale structures, and possibly
gravitational waves. Developing a fully consistent model that aligns with all observa-
tional data remains a challenge and an active area of research.

3.4 Inflation Observables

For a physical theory to be considered successful, it must be in agreement with observa-
tions. Observations are pivotal in the field of cosmology, shaping our comprehension of
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the universe. As opposed to particle physics, which studies high-energy events through
collider experiments, cosmology relies on observations of the universe at large scales.
Inflationary cosmology has emerged as a compelling framework that explains several
key observations. It naturally accounts for the observed high degree of uniformity and
spatial flatness as the cosmos exists right now. The shrinking Hubble radius during
inflation also allows for the creation of quantum fluctuations. These fluctuations serve
as the first seeds from which the universe’s large-scale structures grow. They arise from
inhomogeneities in the inflaton field and result in the development of gravitationally
unstable density perturbations.
The study of inflationary perturbations has been the subject of extensive research and
review, as it provides insights into the origin of cosmic structure and the formation
of galaxies and clusters. Notable reviews have delved into the theoretical aspects and
observational consequences of inflationary perturbations [10]. These studies bridge the
gap between theoretical models and experimental data, helping us develop a more com-
prehensive understanding of the beginning of the universe.
Since the inflaton is a quantum field, there are variations in its behavior. Heisenberg’s
uncertainty principle states, it is impossible to measure the field’s value and associated
momentum with absolute certainty. This leads to the expectation that the inflaton
field will manifest slight quantum fluctuations surrounding its constant value.

ϕ(x, t) = ϕ̃(t) + δϕ(x, t) (3.41)

whereas ϕ̃(t) complies with the equations of motion of classical systems which are dis-
cussed previously and δϕ is much smaller compared to ϕ̃(x, t).
Throughout the inflationary epoch, H remains almost constant, whereas the scale fac-
tor a(t) experiences swift exponential growth, typically increasing by one e-fold within
a time frame roughly equivalent to H−1. On the other side, microphysical processes
face constraints in affecting length scales larger than O(H−1).
Before inflation, for causally connected scales in our universe, we require k/aH < 1.
As inflation proceeds, the Hubble radius reduces, and at a certain stage called "hori-
zon crossing," we have k/aH ≈ 1. After this stage, when k/aH > 1, microphysical
processes are no longer effective, and the perturbations freeze in their evolution. These
frozen perturbations behave as classical cosmological perturbations, causing gravita-
tional instabilities that lead to the creation of high-scale structures upon re-entering
the horizon at a time when we have k/aH > 1 again. The equation describing the
variations in the inflaton field is as follows:

δϕ̈+ 2aHδϕ̇+
k2

a2
δϕ = 0 (3.42)
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whereas δϕ represents the inflaton field fluctuation’s amplitude and k is the comoving
wavenumber. The expression for this amplitude is as follows:

Pϕ(k) =
H2

2k3
∝ k−3 (3.43)

Inflation gives rise to quantum fluctuations in the inflaton field, inducing minor inhomo-
geneities in the underlying spacetime. In the inflationary phase, the energy-momentum
tensor experiences similar perturbations when there are changes in the inflaton field.
As a result, these perturbations influence the metric of the expanding spacetime, es-
pecially at the time when the inflaton field predominantly governs the energy density.
These perturbations get expanded and magnified to macroscopic scales as they are
frozen over the horizon.
These perturbations also need a more complicated evaluation as compared to fluctua-
tions of an isolated field such as the inflaton. The common approach for investigating
metric perturbations involves breaking them down into tensor, vector, and scalar com-
ponents [12]:

ds2 = gµνdx
µdxν = −(1+2Φ)dt2+2aBidx

idt+a2(1−2Ψ)δijdx
idxj+a2Eijdx

idxj (3.44)

whereas Eij represents the tensor quantity, Bi is defined as a vector quantity, and Φ
and Ψ represent the scalar potentials. However, there are not many significant vector
perturbations during inflation and decay away, allowing us to neglect them and focus
only on the tensor and scalar perturbations.
It is possible to identify the production of scalar perturbations by considering various
regions of the universe where the inflaton field may exhibit slightly different values.
While these regions undergo the same slow-roll evolution during inflation, the conclu-
sion of inflation will occur at marginally distinct times in each region. Due to this,
various regions will undergo a slightly distinct level of expansion.
Following the conclusion of inflation, the energy density becomes distributed, giving
rise to fluctuations in the scale factor. This generates curvature and density pertur-
bations. The comoving curvature perturbation that is generated during inflation and
remains invariant to gauge is stated as:

R = Ψ− H

ρ+ p
δq ≈ Ψ+

H
˙̄ϕ
δϕ (3.45)

Here, δq represents the scalar 3-momentum density T 0
i = ∂i(δq).

The comoving curvature perturbation’s power spectrum provides information on the
link between the curvature of space-time and the division of energy in the cosmos.
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The power spectrum describes the fluctuations in density at the beginning of our uni-
verse, which is essential in the subsequent formation of galaxies and other large-scale
structures, can be represented as:

PR(k) =

(
H
˙̄ϕ

)2

Pϕ (3.46)

A widely accepted practice is to introduce the dimensionless power spectrum ∆2
R that

allows for accurate interpretation and understanding of the power spectrum:

∆2
R ≡ k

2π2
PR(k) =

(
H
˙̄ϕ

)2(
H

2π

)2

(3.47)

It can also be modified as follows:

∆2
R =

1

24π2

V

m4
p

1

ϵϕ
(3.48)

The scalar spectral index, represented as ns − 1, quantifies the deviation of primordial
density fluctuations from scale invariance and can be expressed as:

ns = 1 +
d ln∆2

R
d ln k

(3.49)

Under the slow-roll approximation, the scalar spectral index can be roughly calculated
as:

ns ≈ 1−
m2

pV,ϕ

V (ϕ)

1

∆2
R

d∆2
R

dϕ
(3.50)

Alternatively, it may be expressed in relation to the slow-roll parameters as follows:

ns ≈ 1 + 2ηϕ − 6ϵϕ (3.51)

During inflation, tensor perturbations of the metric are created and give rise to primor-
dial gravitational waves. Likewise, there is a connection between scalar perturbations
and curvature perturbations. Tensor perturbation power spectrum is expressed as:

∆2
t =

2H2

π2m2
p

(3.52)
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Another important observational parameter in the context of inflation is the ratio of
tensor to scalar perturbations, denoted as r. By defining the tensor index as nt = −2ϵϕ,
we can obtain this ratio:

r = 8|nt| (3.53)

Such observations suggest the occurrence of slow-roll inflation within the conventional
supercooled domain. However, in the case of warm inflation, the estimations undergo
alterations due to the dynamics of fluctuation-dissipation, a subject that will be delved
into in the next chapter.

3.4.1 Planck Constraints

The early irregularities in the density of the universe, known as primordial density
perturbations, are the seeds from which the universe’s large-scale structure ultimately
emerges. These perturbations also cause the fluctuations observed in the CMB temper-
ature. The data obtained from the Planck satellite observations have been instrumental
in constraining inflationary theory.

Spectral Index (ns)

Planck data has measured the spectral index of CMB fluctuations that is consistent
with predictions of simple inflationary models:

ns < 1 (3.54)

Constraints on Inflation Models

The data from the Planck satellite contributes to narrowing down the set of inflation
models that have a closely scale-invariant spectrum of primordial variations.

The upper bound for r

The inflation energy scale has been limited by the upper limits that Planck observations
have imposed on r:

r < 0.058 (3.55)

This significantly narrows the parameter space for inflationary theories.
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Non-Gaussianity

Planck has searched for non-Gaussian features in the CMB, with results consistent with
Gaussian fluctuations predicted by simple inflationary models, placing tight constraints
on any deviations from Gaussianity.

Implications for Cosmology

The Planck constraints have far-reaching implications for cosmology, including deter-
minations of the universe’s age, confirmation of dark matter and dark energy, and
refinements in the values of the Hubble constant and other cosmological parameters.
The Planck mission’s results have significantly constrained the range of parameters
viable for inflationary models. The most recent results by Planck satellites are [1]:

∆2
R = 2.2× 10−9 (3.56)

and the constraint on ns value has to be:

ns = 0.9665± 0.0038 (3.57)
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Chapter 4

Dynamic Equations in Warm Inflation

The dynamics of warm inflation have undergone extensive review in the literature.
The equations of motion along with the observable predictions for warm inflation can
be obtained by using the dissipation coefficient Γ(ϕ, T ) in its functional form. For a
detailed derivation, please refer to Appendix A.
The relation that connects the radiation energy density (4ρR), the dissipative ratio
(Q), and the inflaton field(ϕ), can be written as 4ρR = 3Qϕ̇2 considering the slow-roll
conditions to be satisfied. Combining these expressions, we obtain a relationship of Q
with ϕ [3]:

Q1/3(1 +Q)2 = 2ϵ

(
C

3

)1/3(
C

4CR

)(
H

ϕ

)8/3(
mp

H

)2

(4.1)

where CR = ρR
T 4 = π2g∗

30
. This enables us to obtain motion equations for ϕ, Q, and T/H

which represent the ratio of the temperature with H concerning Ne. Appendix B gives
the detailed derivation of these expressions.

dϕ

dNe

= − ϕ

mp

σϕ

1 +Q
(4.2)

dQ

dNe

=
Q

1 + 7Q
(10ϵϕ − 6ηϕ + 8σϕ) (4.3)

d ln( T
H
)

dNe

=
2

(1 + q)(1 + 7Q)

(
(2 + 4Q)ϵϕ − (1 +Q)ηϕ + (1−Q)σϕ

)
(4.4)

A new slow-roll parameter is introduced here:

σ =
m2

pV,ϕ

ϕV
(4.5)
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4.1 Warm Inflation Observables

Considering warm inflation, the density perturbation spectrum undergoes modifica-
tions due to fluctuation-dissipation effects [4, 7, 8, 13]. This involves the coupling of
perturbations in both the radiation fluid and the inflaton, mediated by the Γ that de-
pends on temperature. The perturbations in the inflaton are generated by a Gaussian
white noise term ζk.

δ̈ϕk + 3H ˙δϕk + 3HQ ˙δϕk +
k2

a2
δϕk ≈

√
2γT

a3
ζk (4.6)

where the inflaton’s thermal fluctuations are represented by ζk. It can be estimated by
a Gaussian distribution that is localized and has a correlation function [2]:

⟨ζ(t,x)ζ(t′,x′)⟩ = δ(t− t′)δ(3)(x− x′) (4.7)

Furthermore, the following decay chain can cause the fields in the strong χ domain to
decay into inflaton particles:

χ → yyϕ (4.8)

During the period of inflation, this process allows for the establishment of a significant
inflaton particle distribution, provided that the relation of the inflaton with the light
degrees of freedom, y, in the thermal bath occurs rapidly enough. When observable
CMB scales depart the horizon, the phase-space distribution n∗ of the inflaton field
determines the power spectrum [7, 13]:

∆2
R =

(
H∗

ϕ̇∗

)2(
H∗

2π

)2
(
1 + 2n∗ +

2
√
3πQ∗√

3 + 4πQ∗

T∗

H∗

)
(4.9)

Here, the symbol * denotes a quantity that is estimated at the time of the high-
est presently observable scales leaving the horizon. Additionally, n∗ = nBE(a∗H∗, T∗)
represents the Bose-Einstein distribution for nBE(k, T ) = 1

ek/aT−1
at equilibrium. As

n∗, Q∗, T∗ approaches zero, the dimensionless power spectrum expression in cold infla-
tion is regained. The power spectrum, for Q∗ ≪ 1, is given by:

∆2
R ≈

(
H∗

ϕ̇∗

)2(
H∗

2π

)2(
1 + 2n∗ + 2πQ∗

T∗

H∗

)
(4.10)

The term n∗ precisely accounts for the impact of significant inflaton occupation num-
bers, while the dominant effect of fluctuation-dissipation dynamics is due to the term

30



(
1 + 2n∗ + 2πQ∗

T∗
H∗

)
that appeared in Eq. (4.10). The spectrum of primordial grav-

ity waves remains unaffected by fluctuation-dissipation dynamics because of their low
interaction with matter [5]. Therefore, the tensor spectrum maintains its form, as
specified in Eq. (3.52). As a consequence, the value of r is decreasing which ultimately
alters its connection to nt = −2ϵ∗ from Eq. (3.53) as:

r ≈ 8|nt|
1 + 2n∗ + 2Q∗T∗/H∗

(4.11)

The investigation of dissipative effects during inflation demands a rigorous analysis of
the scenario in which the generation of inflaton particles is not achieved rapidly enough.
This scenario leads to a rapid redshift of any initial non-trivial occupation numbers
by the inflationary expansion. The impact of n∗ = 0 can be neglected in our analysis
even if the thermal bath of photons stays in equilibrium. The power spectrum ∆2

R, for
Q∗ ≪ 1, is described by the following expression [5]:

∆2
R =

V (ϕ∗)

24πϵ∗

(
1 +

2πQ∗T∗

H∗

)
(4.12)

The scalar spectral index is obtained by using Eq. (4.12):

ns ≈ 1+
d ln∆2

R
d ln k

≈ 1−m2
p

V,ϕ

V

1

∆2
R

d∆2
R

dϕ
≈ 1+2η∗−6ϵ∗+

2κ∗

1 + κ∗
(7ϵ∗ − 4η∗ + 5σ∗) (4.13)

whereas κ∗ = 2πQ T
H

and tensor to scalar ratio would be given by:

r ≈ 16ϵ∗

1 + 2πQ∗
T∗
H∗

(4.14)
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Chapter 5

The Principles of Hybrid Inflation

The universe’s uniformity and isotropic behavior can be well explained by the inflation
theory which demands a definite inflation model. Incorporating inflation with QFT
helps to explain the precise aspects of the universe’s post-inflation transition into the
normal hot Big Bang era. This method also provides important new insights into the
nature of temperature anisotropies in CMB radiation and small-density fluctuations
that are the basis of the observable LSS in the cosmos. Note that the precise tem-
perature anisotropy calculations might potentially distinguish between various particle
physics models of inflation. The hybrid inflation model is considered among the most
well-detailed cosmic inflationary models [4]. This model stands out due to its versatil-
ity in being consistently incorporated into different frameworks of high-energy physics
such as SUSY, super-gravity, and GUT. It involves the coupling of one scalar field
(inflaton) to another scalar field (the Higgs field).
This study aims to examine the chaotic potential, denoted as λpϕ

p, in the context of
hybrid inflation. Specifically, tree-level predictions for different values of p, namely
p = 1 and 2, are analyzed. These values correspond to well-motivated models of in-
flation [1]. It is notable that, generally, the inflaton can interact with both fermions
and bosons. Previous studies [15] have examined how the inflaton’s coupling to bosons
affects the Higgs potential. However, the bosonic interaction leads to less favorable
tree-level results [17]. In light of these developments, there is a compelling interest in
investigating the prospects of Aϕ4ln(ϕ) fermionic radiative corrections for A < 0.
The potential for tree-level hybrid inflation (TLHI) can be represented as a combi-
nation of the Higgs and the inflaton potential along with an interaction term g2χ2ϕ2

as:

V (χ, ϕ) = κ2

(
M2 − χ2

4

)2

+
g2χ2ϕ2

4
+ δV (ϕ) (5.1)

where κ is a coupling constant, V (χ) is the Higgs potential, and δV (ϕ) is the inflaton
potential. The inflaton potential is assumed to follow a chaotic polynomial-like form,
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δV (ϕ) = λpϕ
p with p > 0. The interaction term (g2χ2ϕ2) in Eq. (5.1) serves the

purpose of inducing an effective mass,

m2
χ = −κ2M2 +

g2ϕ2

2
=

g2

2

(
ϕ2 − ϕ2

c

)
(5.2)

where ϕc ≡
√
2κM/g. For the χ field in the χ = 0 direction which represents a local

minimum for ϕ > ϕc =
√
2κM
g

and is applicable for the inflation. Thus the effective
single-field potential is provided by the following expression:

V (ϕ) = (κM2)2 + δV (ϕ) = V0 + λpϕ
p (5.3)

where V0 = κ2M4. In this scenario, the chaotic potential plays a crucial role by
providing the slope for the slowly rolling inflation within an otherwise flat valley. By
establishing the appropriate initial conditions, one can ensure that inflation exclusively
occurs within the χ = 0 valley until reaching ϕ = ϕc.
To delve into the predictions of the model, it’s necessary to address the precise number
of distinct factors. In addition to the λp factor associated with the potential in its
chaotic form, κ, M , and g are the primary potential factors in Eq. (5.1). One can
reduce these factors to ϕc and V0 in order to have an effective potential as given in Eq.
(5.3). As the effective distinct factors, we use V0 and κc ≡ g2/κ along with:

ϕc =

√
2V

1/2
0

κc

(5.4)

This selection allows us to establish a straightforward correspondence with supersym-
metric hybrid inflation, where κc = g = κ.
We now focus on the previously described model that has been radiatively adjusted.
As stated earlier in this chapter, these corrections stem from potential interactions of
the inflaton with different fields. Such interactions contribute to the restoration of the
hot Big Bang phase beginning conditions during the reheating process. Fermionic and
bosonic radiative corrections are the terms used to describe adjustments resulting from
the inflaton’s relations to fermions or bosons, respectively. We utilize the following
simplified equation for the 1-loop Coleman-Weinberg potential in order to account for
the effects of these modifications [9],

V1-loop = Aϕ4 ln

(
ϕ

ϕc

)
(5.5)

where A < 0(A > 0) illustrates the radiative corrections for fermionic (bosonic) sys-
tems. Although the chaotic inflation scenarios are characterized by quadratic and
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quartic potentials, whereas fermionic radiative corrections are important too[16]. In
general, fermionic radiative corrections tend to decrease both r and ns in chaotic infla-
tion scenarios. Consequently, we discuss the impact of fermionic radiative corrections
on TL predictions in the next parts of the thesis and compare them with the most
recent r and ns constraints obtained from the Planck experiment.
The potential for radiatively corrected hybrid inflation at one-loop level (RCHI) can
be expressed as [17],

V = V0 + λpϕ
p − |A|ϕ4 ln

(
ϕ

ϕc

)
(5.6)

5.1 Quantitative Analysis

In this section, we did a comprehensive quantitative analysis of the hybrid model. The
typical slow-roll parameters are used to derive estimations for the different inflationary
factors.

ϵ =
1

2(1 +Q)

(
mP

M

)2(
V,ϕ

V

)2

(5.7)

η =
1

2(1 +Q)

(
mP

M

)2(
V,ϕϕ

V

)
(5.8)

σ2 =
1

4(1 +Q)2

(
mP

M

)4(
V,ϕV,ϕϕϕ

V 2

)
(5.9)

Moreover, under the slow-roll approximation, the equations for ns and r are expressed
by Eq.(4.13) and (4.14). From the perspective of the ΛCDM model, ns is reported as
0.9665 ± 0.0038 [1]. One can find out the scalar power spectrum amplitude (As) by
using the following expression:

As =
1

24π2ϵ(ϕ0)

(
V (ϕ0)

m4
P

)

where k0 = 0.05Mpc−1 is the pivot scale. A measurement provided by Planck [1], the
amplitude is specified as As(k0) = 2.137× 10−9 at the pivot scale (k0).
We take into account five separate important factors in our numerical evaluation: κ,
M , λ, ϕ0, and ϕe. There are two primary limitations on these factors:

• The scalar power spectrum amplitude (As(k0)) is fixed i.e. 2.137× 10−9.

• The variable ns with a constant value of 0.9665 [1].
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When incorporating these constraints, we arrive at two distinct parameters, namely ns

and N , which can be manipulated independently. By fixing one of these parameters, we
can systematically investigate the fluctuations in the other. In our analysis, we fixed
N at 65. Since the relationship between ns and r is crucial for testing inflationary
models against observations, such as those from CMB radiation. The presence of the
dissipation function and its effect on these plots suggests that these models include
considerations of non-trivial dynamics during inflation, such as interactions between
fields or with the thermal bath, which can alter the predictions of ns and r.

Figure 5.1: ns vs r for linear and quadratic potential with color-coded Log(Q). While
in the two graphs, N is also taken as fixed i.e. N = 65.

We presented our numerical calculations in Figure 5.1, demonstrating the variations
of parameters across the r−ns plane. It depicts ns−r plots, with the top two for linear
and the bottom ones for quadratic potentials. The two left plots are with fixed ns with
one percent accuracy. The plots on the right number of efolds N are fixed while ns vary
with Q. In the first and third graphs, for linear and quadratic potential respectively,
the data points are scattered across a range of ns and r values, with the color indicating
the strength of the dissipation function. Most of the values of r lie within the range
0.0016−0.0018 for the value of ns to be within the range 0.96595−0.96605. The spread
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of the points suggests different outcomes for ns and r based on the varying dissipation
rates within the linear potential model of hybrid inflation. The second graph is more
specific, showing ns versus r for a fixed value of N . We observed that the value of r
varies from 0.0013− 0.0018 across a single value of ns i.e. 0.9665 when the value of N
is fixed at 65. This could mean that all these points correspond to models that predict
the same amount of inflation but differ in other parameters.

Figure 5.2: Q dependence on V0, A, and m with fixed N = 65 and color-coded ns

ranging from 0.90− 0.97 for linear potential.

Figure 5.2 illustrates the variation in dissipative ratio Q against effective potential
V0, radiative corrections A, and effective mass m, keeping N fixed at 65.

1. V0 vs Q with Fixed N for linear potential: Here, effective potential, V0,
is plotted against the dissipative ratio (Q). The graph indicates a decrease in
V0 with the value of Q varying from 10−10 − 10−4, while ns also vary across the
spectrum from 0.90 to 0.97. This graph shows that the increase in the dissipa-
tive ratio causes a decrease in the effective potential which ultimately drives the
inflation period towards the reheating.

2. A vs Q with Fixed N for linear potential: This graph shows the variation of
A with the dissipative ratio (Q). The value of the amplitude is initially constant
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for Q = 10−10. After this, the amplitude increases rapidly from 1.6 × 10−14 to
2.0 × 10−14 with Q merely changing from 10−7 to 10−8. Afterward, the value of
A fluctuates between 1.9× 10−14 and 2.0× 10−14 for Q going from 10−4 to 10−7.
The color gradient indicates the value of ns, with A increasing with Q and ns

exhibiting a corresponding change.

3. m vs Q with Fixed N for linear potential: The graph plots the effective
mass, m, of the inflaton, against Q ranging from 10−10 to 10−4. Initially, the
mass of inflation remains nearly 1.2 × 10−12 for Q varying from 10−10 to 10−7.
Afterward, it increases rapidly as we approach the end of inflation where Q =
10−4 follows a fluctuation at Q = 10−7. The non-monotonic behavior of m
as Q changes, alongside the variation in ns, suggests a strong influence of the
dissipation function on the inflationary dynamics.

The role of Q in hybrid inflation is critical. It adjusts how ϕ interacts with other
fields or the thermal bath, affecting inflation dynamics and the spectrum of primordial
fluctuations. The results demonstrate the interplay between dissipation during inflation
and observable cosmological parameters, providing testable predictions against CMB
observations.

Figure 5.3: Q dependence on V0, A, and m with fixed ns and color-coded N for linear
potential.
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Figure 5.3 illustrates the variation in dissipative ratio Q against effective potential
V0, radiative corrections A, and effective mass m, keeping ns fixed.

1. V0 vs Q with Fixed ns for linear potential: The plot displays V0 against Q
at ns = 0.9665 for linear potential. With increasing Q from 10−10 to 10−6, the
value of V0 decreases to a minimum and then sharply increases. This shows the
effective potential of the inflaton field as we approach the end of inflation. The
color gradient suggests that this V0 minimum corresponds to a value of N from
55− 60, the dissipation’s impact on inflationary dynamics is most significant at
this range.

2. A vs Q with Fixed ns for linear potential: This graph shows the variation
of A with the change in the dissipative ratio Q. Initially A is constant with
increasing Q from 10−10 − 10−8, entering into a rapid increase with Q increasing
up to 10−6. Afterward, the value of A is constant with slight fluctuations.

3. m vs Q with Fixed ns for linear potential: Here m is plotted against Q for
a fixed value of ns. There is a non-linear relationship where m decreases with an
increase in Q to a minimum value before rising again. The mass of the inflaton
field fluctuates within a small range from 1.1500 to 1.1675 with an increase in the
value of Q along with N . The color bar reveals that the minimum m corresponds
to mid-range values of N i.e. from 60 to 75.

The graphs underscore the importance of Q in the dynamics of inflation, especially in
scenarios where ns is constant. They provide valuable insights into how dissipation af-
fects the inflationary epoch’s duration and, consequently, the observable characteristics
of the cosmic microwave background radiation.
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Figure 5.4: Q dependence on V0, A, and m with fixed N = 65 and color-coded ns

ranging from 0.90− 0.97 for quadratic potential.

Figure 5.4 illustrates the variation in dissipative ratio Q against effective potential
V0, radiative corrections A, and effective mass m, keeping N fixed at 65.

1. V0 vs Q with Fixed N for quadratic potential: The plot depicts V0 and
how it varies with Q with N = 65 for quadratic potential. The variation in
the effective potential V0 is similar to the case of linear potential. V0 is initially
constant and then decreases gradually with an increase in the value of Q as we
approach the end of inflation.

2. A vs Q with Fixed N for quadratic potential: The graph displays A in re-
lation to Q for quadratic potential. This graph also depicts different outcomes as
of the linear potential. In case of quadratic potential, the value of A is increasing
slowly rather than a rapid increase. It reaches the value of 1.835 × 10−13 as the
universe approaches the end of inflation.

3. m vs Q with Fixed N for quadratic potential: This graph plots m against
Q for quadratic potential. The value of m is less as compared to the value for
linear potential but the trend in the variation of m against Q is the same as the
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linear potential. Initially, its value is constant, and then at a certain range Q,
10−8 to 10−7, the inflaton mass (or a related parameter) reaches its minimum,
constrained by a fixed N . Afterwards, it takes a sudden flight until the end of
inflation approaches.

The trends in these graphs underscore the impact of dissipation mechanisms on the
inflationary outcomes of a quadratic potential model. They demonstrate the influence
of various dissipation strengths on the amplitude of primordial fluctuations, the infla-
ton’s properties, and the initial potential energy, all within the framework of a fixed
inflation duration. Understanding these relationships is vital for probing the physics
of the early universe and comparing theoretical predictions with cosmic microwave
background observations.

Figure 5.5: Q dependence on V0, A, and m with fixed ns and color-coded N for
quadratic potential.

Figure 5.5 illustrates the variation in dissipative ratio Q against effective potential
V0, radiative corrections A, and effective mass m, keeping ns fixed.

1. V0 vs Q with Fixed ns for quadratic potential: The graph of V0 against
Q for quadratic potential. It shows a similar behavior as shown by the linear
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potential. It demonstrates the value V0 fluctuates around 5.5× 10−11 for a wide
range of Q, from 10−10 to 10−6. It then takes a rapid inclination in its value
as it approaches the end of inflation. The color shifts demonstrate that these
variations in V0 occur alongside alterations in N while maintaining ns constant.

2. A vs Q with Fixed ns for quadratic potential: This graph presents A against
the dissipative ratio Q for quadratic potential. The value of A exhibits a sharp
increase as Q grows from 10−10 to 10−6, suggesting a potential regime shift in
inflation. The color gradient indicates that this increase in A correlates with a
rise in the value of N .

3. m vs Q with Fixed ns for quadratic potential: The parameter m, repre-
senting the mass of the inflaton, shows a non-monotonic relationship with Q.
As Q increases, m also increases, reaching a constant value before decreasing
again, indicating complex behavior within the inflationary potential influenced
by the dissipation rate. The color changes across the gradient suggest that these
dynamics are associated with different durations of inflation.

These graphical representations elucidate the influence of dissipation, as quantified by
Q, on crucial inflationary parameters in a quadratic potential scenario. Comprehending
these interrelations is vital for the prediction of primordial fluctuation characteristics,
which inform the LSS of the cosmos. To shed light on the mechanics of the early cosmos,
these theoretical models are empirically verified against observational evidence, such
as observations from the CMB.

Figure 5.6: ns vs Q for Linear and Quadratic potential with color-coded V0 and fixed
N .

The graphs in Figure 5.6 depict ns as a function of Q for two different inflationary
potentials: linear and quadratic. The color bar represents the value of V0, which could
be the initial value of the inflationary potential or a scale associated with the potential.
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1. Linear Potential Graph ns vs Q for fixed N : The ns value is fairly constant,
0.9665, over a range of Q values, 10−10 − 10−7, and then sharply decreases as Q
increases. A decrease in V0 is observed with the decrease in ns which indicates the
universe to be approaching the radiation bath. For a linear potential in hybrid
inflation, ns is less sensitive to Q at lower values, indicating a threshold beyond
which the potential’s slope significantly affects the inflation dynamics.

2. Quadratic Potential Graph ns vs Q for fixed N : This graph shows the same
behavior as the linear potential graph. The ns initially increases with Q and then
decreases sharply. A similar decrease in V0 with the decrease in ns is observed.
The quadratic potential’s curvature influences the inflationary dynamics, leading
to a distinct relationship between ns and Q.

In both cases, as Q increases, ns decreases, reflecting the increased significance of
quantum fluctuations or modifications to the inflation dynamics brought forth by the
properties of the potential. The parameter Q might represent a ratio of field values, a
coupling constant, or another characteristic of the inflationary model.
The variation of ns with Q and V0 indicates that initial conditions and the potential
significantly impact the predicted observational signatures of inflation. These predic-
tions can be compared with observational data from the CMB to test the viability of
different inflationary models.
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Chapter 6

Conclusion

This dissertation has been dedicated to focusing primarily on warm inflation within the
hybrid model formalism. The model investigated how dissipative and thermal factors
impact the hybrid model of inflation’s mechanics and empirical assumptions, which are
influenced by radiative corrections. It is feasible to incorporate warm inflation into
hybrid models, as the inflaton’s interaction with the Higgs field affects the entire effec-
tive action controlling the inflaton field in addition to changing the effective potential.
Consequently, the effective potential acquires a logarithmic gradient, coupled with the
integration of a dissipation coefficient serving as a damping force in the motion equa-
tion for the inflaton. It leads to a decelerated progression of the inflaton field during
the inflation, enabling a duration of 50 to 65 e-folds. Such a duration is compatible
with a primordial spectrum that aligns with the findings from the Planck satellite at
the Confidence Level of 95% [1]. We used fixed values of ns and N that are given by
the Planck Mission.
In the framework of the hybrid model, our primary focus was to examine the behav-
ior of mass (m), radiative corrections (A), and effective potential (V0) for linear and
quadratic cases that are directly coupled to the inflation field ϕ. We demonstrated that
incorporating these parameters significantly boosts the dissipation coefficient, particu-
larly during the transition phase. Additionally, in our study, we distinctively accounted
for dissipative effects for fixed ns and N . In ns − r plots, r is within the range of ns

which depicts the invariance of r w.r.t ns for dissipative ratio ranging from 10−6 to
10−4 for linear and quadratic potential. For linear potential, the major contribution of
V0, A, and m can be seen within the range of dissipative ratio (Q) i.e. 10−7 − 10−4 by
fixing the value of ns and N one by one. In the case of quadratic potential, the major
contribution of these parameters can also be seen within the range of dissipative ratio
(Q) i.e. 10−7 − 10−4 by fixing the value of ns and N one by one.
Finally, the variation in the ns w.r.t Q is observed with V0 also varying and fixed value
of N . This is performed for both linear and quadratic potential. We can see that ns

is showing similar behavior for both types of potentials but at slightly different values
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of V0. The ns value is the same for a range of the values of Q then it took a boost
which ended soon and the value of ns started decreasing gradually. This behavior of
the spectral index is the same for linear and quadratic potentials.
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Appendix A

Dynamics of the Warm Inflation

The dynamic behavior of the inflaton field, denoted by ϕ(t), in the context of
standard supercooled inflation, is governed by a second-order differential equation:

ϕ̈(t) + 3Hϕ̇(t) + V,ϕ = 0, (A.1)

The expression for H, which quantifies the expansion rate in the cosmos, is represented
as:

H2 =
1

3m2
p

(
ϕ̇2

2
+ V (ϕ)

)
, (A.2)

assuming that the kinetic term ϕ̇2/2 is significantly lower than the potential term
V (ϕ), i.e., ϕ̇2 ≪ V (ϕ), the approximations 3H2m2

p ≈ V (ϕ) and ϕ̈(t) ≪ Hϕ̇(t) leads to
a simplified equation of motion commonly referred to as the slow-roll approximation:

3Hϕ̇+ V,ϕ = 0. (A.3)

The slow-roll parameter ϵ is subsequently determined subject to the condition ϕ̇2/2 <
V (ϕ) and using the approximations 3H2m2

p ≈ V (ϕ) and ϕ̈(t) ≪ Hϕ̇(t), yielding:

ϵ =
m2

p

2(1 +Q)

(
V,ϕ

V (ϕ)

)2

< 1. (A.4)

This formulation elucidates the conditions under which inflation occurs, emphasizing
the dominance of the potential energy and the slow-roll behavior of the inflaton field.
The parameter η is derived by differentiating the expression for ϵ, which provides insight
into the inflationary dynamics. The η parameter is expressed by:
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η =
m2

p

1 +Q

(
V,ϕϕ

V (ϕ)

)
< 1, (A.5)

In the realm of warm inflation, the typical equation of motion governing the behavior
of the inflaton field is adjusted to include a dissipation coefficient, which functions as
an additional frictional factor. This modification yields:

ϕ̈(t) + (3H + Γ)ϕ̇(t) + V,ϕ = 0, (A.6)

The energy dissipated by the inflaton is transferred to another fluid component, with
its evolution described by:

ρ̇+ 3H(ρ+ p) = Γ(ϕ̇2), (A.7)

This implies that energy is being transferred from the inflaton to this fluid component.
If the dissipated inflaton energy quickly thermalizes into radiation, we denote ρ = ρR
and p = pR. The expression of ρR evolves according to:

ρ̇R + 4HρR = Γϕ̇2. (A.8)

In the slow-roll regime, the mathematical equations of motion for ρR and ϕ are simpli-
fied by introducing the dissipative ratio Q = Γ/3H.

3H(1 +Q)ϕ̇ ≈ −V,ϕ, (A.9)

4ρR ≈ 3Qϕ̇2, (A.10)

These equations encapsulate the dynamics of the inflaton and radiation energy densi-
ties, incorporating dissipation and energy exchange in the context of warm inflation.
In the context of warm inflation, the presence of the dissipative ratio Q leads to a
modification of the slow-roll conditions, yielding:

ϵ, |η| < (1 +Q). (A.11)

This adaptation reflects the influence of dissipation on the inflationary dynamics. In
the large field limit scenario, the low-momentum off-shell modes of mediator fields are
the main source of the dissipation coefficient, as stated:
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Γ =
CϕT

3

ϕ2
. (A.12)

From this, Q can be expressed as:

Q =
Cϕ

3

(
T

H

)3(
H

ϕ

)2

. (A.13)

Utilizing the relation ρR = CRT
4, where CR = π2g∗

30
, leads to the kinetic term of the

inflaton:

ϕ̇2 = 4CR

(
T

H

)
H4

(
1

Cϕ

)(
ϕ

H

)2

. (A.14)

Upon integrating this aspect into the adjusted equation for the inflaton during the
slow-roll phase, we obtain:

Q1/3(1 +Q)2 =
1

(3H)2

(
Cϕ

3

)1/3(
Cϕ

4CR

)(
H

ϕ

)8/3
V ′2

H4
, (A.15)

which simplifies to:

Q1/3(1 +Q)2 = 2ϵ

(
Cϕ

3

)1/3(
Cϕ

4CR

)(
H

ϕ

)8/3(
mp

H

)2

. (A.16)

These equations illustrate the intricate relationship between the dissipative effects,
characterized by Q, and the inflationary dynamics in the warm inflationary framework.

47



Appendix B

Equations of Motion for Warm
Inflation

The initial expression describing the motion of ϕ to the Ne is expressed as:

d

dNe

(
ϕ

mp

)
=

1

H

d

dt

(
ϕ

mp

)
. (B.1)

Utilizing the relationship ϕ̇ = − V,ϕ

3H(1+Q)
, the expression transforms into:

d

dNe

(
ϕ

mp

)
= − ϕ

mp

σϕ

(1 +Q)
, (B.2)

whereas the slow-roll parameter σ is introduced as:

σ = m2
p

V,ϕ

ϕV
(B.3)

The equation governing the evolution of the dissipative ratio, incorporating various
derivatives, can be detailed as follows:

d

dNe

ϵ =
ϵ

1 +Q
(4ϵ− 2η), (B.4)

d

dNe

(
mp

H

)2

=
2ϵ

1 +Q

(
mp

H

)2

, (B.5)

d

dNe

(
H

ϕ

) 8
3

=

(
8

3
σ − 8

3
ϵ

)
1

1 +Q

(
H

ϕ

) 8
3

. (B.6)
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The differential of Q to the Ne is expressed as:

dQ

dNe

=
Q

1 + 7Q
(10ϵ− 6η + 8σ). (B.7)

The Hubble parameter (H) and temperature (T ) equation of motion, through the
relationship, can be expressed as:(

T

H

)4

=
3

2CR

Q

(1 +Q)2
ϵ

(
mp

H

)2

. (B.8)

Finally, the equation of motion for T/H to Ne, using the expressions for d(ϕ/mp)/dNe

and dQ/dNe, is derived as:

d

dNe

ln

(
T

H

)
=

2

1 + 7Q

(
2 + 4Q

1 +Q
ϵ− η +

1−Q

1 +Q

)
. (B.9)
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