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ABSTRACT 

The failure mode and effect analysis (FMEA) is a method to identify and 

mitigate different problems in many manufacturing processes, its effectiveness is 

questionable unless it is more closely linked to solve difficult problems. In addition, the 

disruptions experienced in the production process are interrelated and cannot be 

considered independently of each other. Instead, they are intertwined, and without 

adequate attention to this relationship, research will reflect the accuracy of its 

conclusions. It is therefore important to determine not only the significance of the faults, 

but also the nature of the faults. This course includes the use of cloud modeling theory 

and the evaluation of decision-making experiments and test models to meet the needs 

of the business and overcome the limitations of traditional practices. Three 

contributions of this approach are: First, using Cloud Model Theory to solve the 

problem of random and uncertain decisions. Second, decision-making and trial 

evaluation laboratory (DEMATEL) has been extended to consider cloud model 

configuration to detect critical errors. Third, a case study is presented to demonstrate 

the advantages and effectiveness of the approach. The integration of Cloud Model 

Theory and DEMATEL reveals the novelty of this work by extending the failure model 

and related analysis, realizing its applicability in the system production process. This 

approach ensures that managers are aware of the biggest risk areas and take precautions 

in advance. As a result, losses resulting from negative effects are minimized and 

production processes become efficient and effective.  

Keywords: Failure Mode and Effect Analysis (FMEA), Decision Making and Trial 

Evaluation Laboratory (DEMATEL), Cloud model theory 
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CHAPTER 1. INTRODUCTION 

The following topics are covered in this chapter: research background and purpose of 

this study, industry setting, research rationale and objective of the research. It also 

encompasses research problems and problem statements. Thesis structure has also been 

provided at the end of this section.  

1.1 BACKGROUND 

Due to the rapid expansion of manufacturing industries, ensuring quality and 

defect-free output has become increasingly critical. With intense market competition, 

attracting new customers and retaining existing ones demands substantial effort. In this 

context, the production of competitive, high-quality, and defect-free products takes 

precedence. Businesses must identify faults in production lines that compromise 

product quality, allowing them to rectify these issues, address challenges, and improve 

overall production processes. An effective method for achieving this is through the 

early detection of defects (Ostadi & Masouleh, 2019). As competition intensifies, 

manufacturing companies are compelled to adopt a range of quality control tools and 

strategies to maintain their competitive edge (Vinodh & Santhosh, 2012).  

Reliability assessment methods can be categorized into three main types: 

qualitative, quantitative, or hybrid. Ultimately, employing quantitative methods 

provides a more thorough comprehension of the system in contrast to qualitative 

methods based on analytical approximation. This is because quantitative methods 

demand additional resources and expertise. Hybrid approaches, which either integrate 

qualitative and quantitative research methods or incorporate other indicators, hold 

significant appeal as they combine the strengths of both research methodologies.      

(Tazi et al., 2017). 

Integrating a criticality analysis into a qualitative Failure Mode and Effects 

Analysis (FMEA) facilitates the evolution of FMEA into a quantitative Failure Mode, 

Effects, and Criticality Analysis (FMECA), offering a more thorough examination. 

Failure Mode Effects Analysis (FMEA) and Fault Tree Analysis (FTA) are frequently 

employed methods for evaluating failures. FMEA, employing a bottom-up approach, 

demands more detailed user information compared to Fault Tree Analysis. The Food 

and Drug Administration (FDA) developed the FTA method (Peeters et al., 2018). 
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During the design and manufacturing phases of a system, the Failure Mode and Effect 

Criticality Analysis approach is frequently used to analyze probable failure modes in 

the system's components and overall system reliability. This approach aims to identify 

weak links and propose effective solutions to enhance overall dependability (Y. Chen 

et al., 2012). 

The FMEA methodology is grounded in reliability theory. It uses a bottom-up 

methodology for failure risk assessment, starting with the smallest parts of the system 

and working its way up to analyze how a failure might affect the system as a whole. 

The subsequent stage of the component's failure analysis starts with each degree of 

failure. Furthermore, there is potential for collaboration between Failure Mode and 

Effects Analysis (FMEA) and Failure Trend Analysis (FTA) to uncover additional 

failure scenarios and root causes (Sulaman et al., 2019). FMEA, as a preventative 

methodology for problem identification and resolution, involves a systematic 

progression through five key stages. Firstly, it entails the critical decision of which 

process to subject to analysis. Subsequently, an interdisciplinary group of experts is 

formed in the second stage, ensuring a diverse range of perspectives. The third stage 

involves the meticulous gathering of data pertaining to the selected process. Following 

this, in the fourth stage, a comprehensive risk assessment is conducted, evaluating 

potential vulnerabilities and failure modes. Finally, the fifth stage revolves around the 

implementation of plans derived from the assessment, with a parallel focus on 

monitoring and evaluating the effectiveness of these implemented strategies. This 

structured approach empowers organizations to proactively manage and enhance the 

reliability of their processes (Chiozza & Ponzetti, 2009). 

During the FMEA process, Risk Priority Numbers (RPNs) are calculated by 

multiplying the scores assigned to incidence, severity, and detection, each ranked on a 

scale from 1 to 10. As the RPN values increase for each identified failure mode, so does 

the perceived risk to the system. Corrective actions are then implemented to safeguard 

the system based on the determined RPN values. However, the RPN technique has 

limitations in its applicability. Firstly, the evaluation of failure modes using three risk 

variables may not fully represent the intricacies of the actual process or system in use. 

Secondly, accurately rating the three risk factors—occurrence, severity, and 

detection—can be challenging. Moreover, the RPN analysis does not account for the 

relative weights of occurrence, severity, and detection. Additionally, there is ongoing 
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debate about the computation formula for RPN, as different combinations of values for 

occurrence, severity, and detection can yield the same RPN value, introducing 

ambiguity into the analysis. Despite these limitations, FMEA remains a crucial 

preemptive activity in risk management (Liu et al., 2019) 

The RPN technique is challenged by three notable drawbacks. Firstly, there is a 

high likelihood of duplicating RPN values, introducing ambiguity into the assessment. 

Secondly, the method lacks the capability to take into account the severity, incidence, 

and detection weights in order, which could result in an oversimplified depiction of risk 

variables. Thirdly, the RPN technique proves inefficient in accurately calculating the 

reciprocal interaction between faults, limiting its ability to provide a nuanced 

understanding of how different failure modes may interact. These limitations 

underscore the need for caution and supplementary analyses when relying on RPN 

values for a comprehensive risk assessment (Chang et al., 2014). Furthermore, the 

inherent fuzziness and ambiguity within the assessment process can contribute to 

imprecision in the precise values used to express Risk Priority Numbers (RPNs) in a 

standard FMEA. This introduces the potential for errors or inadequacies in the 

representation of risk, emphasizing the importance of considering uncertainties and the 

limitations of the assessment methodology (Zhang & Chu, 2011). Likewise, in its more 

traditional form, FMEA concentrates solely on examining how a system responds to 

the consequences of individual failures. Analyzing numerous failure modes with all 

possible combinations and permutations in a complex system becomes unrealistic due 

to the multitude of potential failure scenarios. The complexity of such systems 

introduces challenges in comprehensively addressing every conceivable failure mode, 

underscoring the need for a focused and practical approach within the constraints of the 

analysis (Xiao et al., 2011).  

FMEA techniques that are based on Multi-Criteria Decision Making (MCDM) 

have proven useful in achieving a comprehensive analysis of potential failures and 

hazards. For the industrial sector to ensure continual development, it is imperative to 

efficiently identify severe failures related to components or processes. However, it's 

worth noting that rankings of failure modes can vary depending on the specific MCDM 

method employed in their generation. The emphasis on MCDM in FMEA reflects a 

commitment to enhancing the precision and effectiveness of failure analysis within the 

industrial context (Lo et al., 2020). According to a different explanation, selecting a 
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Multiple Attribute Decision Making (MADM) method for an issue that calls for strong 

decision-making is a difficult and time-consuming process. The challenge is 

compounded when dealing with MADM situations that involve a variety of suitable 

MADM algorithms, making the decision-making process even more intricate. The 

selection of the most appropriate MADM approach becomes a critical aspect of 

navigating the complexities inherent in decision-making under these circumstances 

(Chakraborty, 2022). Conversely, the Decision-Making Trial and Evaluation 

Laboratory (DEMATEL) approach shows promise as a practical and innovative 

replacement for traditional multi-criteria decision-making (MCDM) methods. Its 

emphasis on identifying causal relationships between variables is its unique strength. 

Moreover, DEMATEL utilizes pre-existing information to scrutinize relationships 

among various failure types, delving into the relative significance of each component. 

The method employs cause-and-effect diagrams to visually represent deduced 

relationships derived from the available evidence, enhancing the interpretability and 

depth of the analysis (Y.-T. Chen, 2016a).  

 1.2 INDUSTRY SETTING 

It is evident that the textile industry contributes significantly to the economies 

of countries globally, despite the certain environmental concerns associated with textile 

production, such as waste generation, the industry remains a vital contributor to 

economic growth. Beyond economic contributions, the industry also generates 

employment opportunities, serving as a potential income source for many individuals 

and contributing to the gross national product of governments worldwide. Moreover, 

the manufacturing processes within the textile industry bear similarities to production 

lines in other sectors. Consequently, like any other industry, the textile sector may 

address challenges within its production line, including issues like intermingling 

defects, through the implementation of efficient approaches that offer preventive 

measures. 

1.3 RESEARCH RATIONALE 

This study aims to discover the interactions among the faults which are 

identified in the production processes of the manufacturing industry. to classify these 

errors into the appropriate cause-and-effect categories and determine the degree of their 

mutual influence. The main goal of this study is to improve understanding of the 
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complex interactions between known defects in the manufacturing industry. By delving 

into the relationships and impact levels of these faults, the study aims to furnish the 

industry with valuable insights. Specifically, it aims to offer a set of preventative 

measures that can be employed to avert issues in the manufacturing process. The 

ultimate goal is to enhance the industry's competence and efficiency by proactively 

addressing potential challenges in its production processes. 

1.4 RESEARCH OBJECTIVES 

Following are the research objectives of this study. 

• To systematically identify and list faults occurring in the production line of the 

manufacturing process. 

• To explore and establish the inter-relationships among the identified faults, 

understanding how they may be interconnected. 

• To categorize the identified faults into distinct cause-and-effect groups, 

providing clarity on their relationships within the production process. 

• To quantify and determine the level of influence each identified fault has on 

others, gauging the impact within the manufacturing system. 

• To formulate a comprehensive set of preventive measures aimed at proactively 

mitigating potential disruptions in the manufacturing process. 

1.5 RESEARCH PROBLEM 

Companies often incur substantial losses when they overlook the implications 

of numerous risk variables in manufacturing processes, where a multitude of errors is 

prevalent. These losses encompass reductions in manufacturing volume, as well as 

inefficiencies in time and energy utilization. Moreover, they adversely impact the 

overall productivity of organizations, tarnish their reputations, and undermine efforts 

to retain customers. The challenge for companies lies in accurately assessing the 

severity of each issue and understanding the intricate interconnections between these 

faults. It's observed that these flaws are often interconnected, making it difficult to 

discern the causes from the consequences. Complicating matters further, a specific 

defect may trigger a cascade of effects, activating multiple other faults and serving as 

the root cause for additional issues. Faults tend to set off a chain reaction, making it 

impractical to solely consider individual characteristics and rank them by severity. 

Consequently, this research aims to delve into the interrelationship among these faults, 
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identifying areas most prone to failure. The goal is to assist industries in eliminating 

these faults through preventive measures, thereby reducing susceptibility to the 

complex repercussions arising from the interconnected nature of these issues. 

1.5.1 Problem Statement 

The problem statement for this study is to clearly identify the types of the faults, 

to understand the nature of the faults and their mutual dependency on each other, and 

to categorize those faults into cause-and-effect groups. 

1.6 THESIS STRUCTURE 

The first chapter of the study serves as an introduction to the research topic, 

outlining key aspects such as the background of the study, its objectives, and the 

rationale behind the research goals. It also underscores the significance of the research 

problem. Additionally, the first chapter places a deliberate emphasis on providing 

context to the industry under investigation and highlights the anticipated contribution 

that the study aims to make within this specific industry context. 

The second chapter of the study will centre on a comprehensive review of 

relevant previous work. This will encompass the theoretical framework, existing studies 

conducted by researchers on the same topic, and an assessment of the applicability and 

relevance of this research to the industry. The scope of this chapter aims to build a 

foundation of understanding by drawing upon the existing body of knowledge related 

to the research topic. 

The third chapter of the study will delve into the methodology and mathematical 

models employed. This discussion will primarily cover the research paradigm, research 

setting, and research design, providing a detailed insight into the chosen methodology. 

The chapter will articulate the rationale behind the selection of this particular 

methodology and shed light on any constraints imposed on the research design. This 

section aims to offer transparency and clarity regarding the approach taken in the study 

and the underlying mathematical models. 

In the fourth chapter of this study, thorough coverage will be provided for the 

results obtained from the study. This section will encompass a detailed analysis of the 

results, along with interpretations and arguments derived from these findings. The 

chapter aims to present a comprehensive and insightful exploration of the data, 
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shedding light on the implications and significance of the results in the context of the 

research objectives and overarching study goals. 

The fifth and final chapter of this study encompasses the conclusion, offering a 

succinct summary of the inquiry undertaken throughout the study. It will articulate the 

theoretical underpinnings and practical contributions of the research, providing insight 

into the broader implications of the findings. Additionally, the conclusion will address 

the limitations of the research, acknowledging any constraints or potential areas for 

improvement. Moreover, it will illuminate the future direction that subsequent 

researchers could explore, offering guidance on potential avenues for further 

investigation within the scope of the study. 

The concluding section of this study will focus on presenting the references used 

in the study, along with any appendices and collected questionnaires. This section 

serves as a comprehensive reference point for readers, allowing them to explore the 

sources and supplementary materials that contributed to the research and its findings. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 GENERAL 

This chapter deals with the critical evaluation of the existing body of knowledge 

related to the study's topic. It involves a thorough examination of the literature and aims 

to identify any gaps that exist in current research. Additionally, the chapter discusses 

the theoretical framework that the study draws upon for guidance. It outlines the 

specific questions that this study aims to address, highlighting the research objectives 

and providing a clear roadmap for the subsequent investigation. This section sets the 

stage for the study by framing it within the context of existing scholarship and outlining 

the unique contributions it seeks to make. 

2.2 EVOLUTION OF EXITSTING KNOWLEDGE 

2.2.1 Applications and Evolution of FMEA 

The FMEA tool is used in manufacturing processes to find any flaws in the final 

product, the workflow, and the system as a whole. Its application is instrumental in 

minimizing the risk of failure throughout the design and production phases of 

innovative products. By systematically pinpointing and evaluating probable failure 

modes, FMEA enables a proactive strategy for risk reduction, contributing to the 

creation of more reliable and successful products (Moreira et al., 2021). FMEA 

generally comprises five stages: preparation, identification, ranking, risk reduction, and 

reassessment. The calculation of the Risk Priority Number (RPN) involves multiplying 

Severity, Occurrence, and Detection scores, offering a quantitative measure to evaluate 

the risks associated with different failure modes. In the context of FMEA, a higher RPN 

value indicates an increased risk level, signalling a greater probability of failure for a 

particular failure mode (Kumar & Parameshwaran, 2020). In the traditional Risk 

Priority Number (RPN) approach, severity, occurrence, and detection are assigned 

equal importance. This equal weighting of risk factors can be a limitation, leading to 

scenarios where different risk combinations result in the same RPN values. This 

limitation can lead to overly optimistic outcomes in practical settings. Additionally, the 

subjective nature of FMEA analysis, influenced by potential gaps in knowledge and 

experience, as well as language barriers, can introduce subjectivity into the assessment. 

To address these shortcomings, various risk assessment approaches, such as RPN 
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modification tools, can be employed. These tools aim to enhance the robustness of 

FMEA by providing mechanisms to better capture and evaluate the nuanced aspects of 

risk, offering a more comprehensive and accurate analysis (Fabis-Domagala et al., 

2021). 

Indeed, there has been a suggestion to replace the Risk Priority Number (RPN) 

approach with alternative models to increase the effectiveness of FMEA. The idea is to 

explore and adopt alternative models that may offer advantages over the traditional 

RPN method. These alternative models could provide a more nuanced and accurate 

representation of risk by addressing the limitations associated with equal weighting of 

severity, occurrence, and detection in the RPN approach. Such a shift aims to improve 

the overall risk assessment process in FMEA, leading to more robust and reliable 

outcomes (Liu et al., 2013). Challenges in FMEA, such as ordering of failure mode 

severity and variable risk ratings by FMEA teams, have prompted the development of 

solutions. To address these issues, a resilient and flexible decision-making framework 

has been proposed. This framework integrates a cloud model to handle fuzziness and 

incorporates the Preference Ranking Organization Method for Enrichment Evaluation 

(PROMETHEE) technique. By leveraging these methodologies, the aim is to enhance 

the precision and adaptability of the decision-making process in FMEA, providing a 

more comprehensive and effective approach to addressing challenges related to failure 

mode severity and variable risk ratings (Liu et al., 2017). A considerable number of 

aircraft disasters stem from malfunctioning parts. While the FMEA proves to be a 

valuable method to evaluate possible results and create strategies for minimizing risks., 

the use of crisp Risk Priority Number (RPN) values can introduce complications. To 

address this limitation, research has delved into fuzzy group decision-making, aiming 

to boost the efficiency of FMEA. The fuzzy FMEA allows for a more nuanced and 

flexible assessment, acknowledging and addressing uncertainties inherent in the 

evaluation of potential failure modes in complex systems like aircraft (Yazdi et al., 

2017). 

Despite its inherent limitations, FMEA is subject to continual revision to 

accommodate emerging developments in the industries where it is applied. Since its 

inception, FMEA has undergone multiple iterations, reflecting a commitment to 

refinement and modification. Investigating the initial creation of FMEA and its 

subsequent evolutionary phases is essential for comprehending the trajectory of this 
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methodology. The ongoing improvements aim to achieve several key objectives; 

Firstly, FMEA seeks to find solutions to challenging problems encountered in various 

industrial processes. This reflects the methodology's dynamic nature and its 

responsiveness to the evolving landscape of challenges within industries. Secondly, 

there is a persistent effort to enhance the applicability of FMEA. By adapting to 

changing contexts and industry requirements, FMEA aims to remain a versatile and 

valuable tool for risk management and process improvement. Thirdly, FMEA aims to 

effectively represent causes and effects within complex systems. This involves refining 

the methodology to capture the intricacies of relationships between different elements 

and variables. Lastly, the continuous development of FMEA is driven by the goal of 

analysing risks comprehensively. By incorporating new insights and addressing 

limitations, The goal of FMEA is to offer a strong framework for locating, evaluating, 

and reducing risks in various industrial environments. These objectives underscore the 

proactive and adaptive nature of FMEA, positioning it as a valuable methodology in 

the ongoing pursuit of excellence and risk mitigation within industries (Spreafico et al., 

2017).  

In addition to its standalone application, Failure Mode, Effects, and Criticality 

Analysis (FMECA) is frequently integrated with various multi-criteria decision-making 

(MCDM) approaches. This integration serves to enhance the utility and broaden the 

application scope of FMECA in tackling the multifaceted aspects of engineering 

challenges. The purpose is to augment FMECA's effectiveness in responding to these 

challenges and make it more versatile and applicable across diverse contexts. By 

combining FMECA with MCDM methodologies, a synergistic approach is employed, 

leveraging the strengths of both techniques to provide more comprehensive and 

nuanced solutions to complex engineering difficulties. This integration reflects a 

strategic effort to maximize the analytical capabilities and relevance of FMECA in a 

variety of applications (Abu Dabous et al., 2021). 

To effectively prioritize hazards within the context of Health, Safety, and 

Environment Management, an innovative approach combines FMEA and Robust Data 

Envelopment Analysis (RDEA). This strategy considers inputs such as severity, 

occurrence, and detection, while evaluating outputs including cost and treatment time. 

Additionally, the approach takes into account both the attractiveness of the parameter 

and its associated uncertainty. When applied by an auto parts maker, the results were 
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compared with those obtained from traditional DEA models and Risk Priority Number 

(RPN) assessments. This extended methodology enhances the credibility and 

persuasiveness of risk prioritization in comparison to basic FMEA, providing a more 

robust foundation for decision-making in health, safety, and environmental 

management (Yousefi et al., 2018). MCDM, when coupled with the grey theory of 

FMEA, introduces a supplementary method for determining the sequence of risk 

priority in product development. This fusion facilitates the retention of ranked failure 

modes via probability-based interval analysis. By harnessing Multi-Criteria Decision 

Making (MCDM) alongside grey theory within the FMEA framework, this 

methodology enriches the accuracy and dependability of risk prioritization throughout 

the product development phase. The utilization of probability-based interval analysis 

further contributes to a nuanced understanding of potential failure modes, providing a 

comprehensive and probabilistic assessment to inform decision-making in product 

development (Lo & Liou, 2018).  

In traditional FMEA, the failure modes are often not distinctly differentiated. 

To address this limitation, it is suggested to employ a fuzzy hybrid FMEA model for 

evaluating enhanced failure modes. By introducing fuzziness and a hybrid approach, 

this model aims to provide a more nuanced and accurate assessment of failure modes, 

incorporating a fuzzy logic framework for risk prioritization in a manner that accounts 

for uncertainties and complexities inherent in real-world scenarios (Fattahi & 

Khalilzadeh, 2018). An enhancement to the conventional FMEA method is achieved 

through an extended FMEA framework. In this approach, FMEA is utilized to identify 

potential failure modes and attribute corresponding values to Risk Priority Numbers 

(RPNs). Simultaneously, the Fuzzy Best-Worst Method (FBWM) is employed to 

ascertain factor weights, contributing a fuzzy logic element to the process. Furthermore, 

the Z-MOORA method is utilized to rank the failures. This extended framework 

combines traditional FMEA with fuzzy and multi-criteria decision-making techniques, 

aiming to refine the assessment of failure modes and their prioritization, thereby 

contributing to a more comprehensive and nuanced risk analysis (Ghoushchi et al., 

2019). The hybrid framework of FMEA facilitates a comprehensive understanding of 

the complexities involved in risk assessment. It employs the TODIM methodology for 

decision-making, particularly in situations involving uncertainty and multiple criteria. 

Furthermore, the Choquet integral method is utilized to capture the mutually beneficial 
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relationships between various elements. The representation of uncertainty in risk 

assessment is handled through generalized trapezoidal fuzzy numbers, contributing to 

a more nuanced and realistic modelling of the psychological and uncertain dimensions 

inherent in FMEA processes (W. Wang et al., 2019). 

Identification of faults in a warehouse setting can be effectively carried out 

through the integration of Design FMEA and Fuzzy Analytic Hierarchy Process (fuzzy-

AHP) analysis. Design FMEA specifically targets failure modes that contribute to 

inefficiencies in the warehouse design, providing a systematic approach to recognizing 

potential issues. On the other hand, fuzzy-AHP comes into play to mitigate subjectivity 

in weighting criteria. This methodology introduces a fuzzy logic-based approach to the 

Analytic Hierarchy Process, enhancing the precision and reliability of the criteria 

weighting process. By combining the strengths of both Design FMEA and fuzzy-AHP, 

this approach offers a comprehensive strategy for identifying and addressing faults in 

the warehouse, ensuring a more robust and objective analysis (A. Hassan et al., 2019). 

Addressing the limitations in the Risk Priority Number (RPN) calculation within 

FMEA, prospect theory emerges as a potential solution. By integrating prospect theory 

into the methodology, this enables the improvement of precision and efficiency in risk 

assessment. Simultaneously, the utilization of Fuzzy Analytic Hierarchy Process 

(Fuzzy AHP) is deployed to ascertain weights for occurrence and detection. 

Additionally, Fuzzy TODIM is utilized to organize failure modes based on their RPN 

scores. This integrated approach leverages prospect theory and fuzzy logic to overcome 

shortcomings in traditional RPN calculations, providing a more nuanced and 

comprehensive evaluation of failure modes within the FMEA framework (Sagnak et 

al., 2020). To enhance the accuracy of FMEA risk estimates, an integrated MCDM 

approach is proposed. This approach combines the Fuzzy Analytical Hierarchy Process 

(FAHP) with a modified version of Fuzzy Multi-Attribute Ideal Real Comparative 

Analysis (FMAIRCA). By integrating these methodologies, the approach provides a 

framework to effectively handle fuzziness and improve risk ranking within the FMEA 

process. The integration of FAHP and modified FMAIRCA is designed to yield more 

realistic and nuanced results, contributing to a more comprehensive understanding and 

assessment of risks associated with failure modes (Boral et al., 2020). To evaluate flaws 

in the plastic manufacturing process, a combination of the Fuzzy Bayesian Network 

(FBN) and the Fuzzy Best-Worst Method (FBWM) is employed. This integrated 
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approach aims to refine the computations involved in the traditional FMEA risk priority 

number (RPN). By incorporating FBN and FBWM, this methodology introduces a 

fuzzy logic framework to improve the precision and reliability of the risk assessment 

procedure. This comprehensive approach allows for a more nuanced evaluation of 

potential flaws in the plastic manufacturing process, ensuring that the identified risks 

are prioritized in a manner that better reflects the complexities and uncertainties 

involved (Gul et al., 2020). 

The improved FMARCOS (Fuzzy Measurement of Alternatives and Ranking 

according to Compromise Solution) approach incorporates the risk factors' relative 

relevance ascertained through the use of the Analytic Hierarchy Process (AHP). This 

combined methodology is employed to rank failure modes, aiming to overcome a 

limitation inherent in the conventional FMEA approach. By incorporating AHP for 

factor significance determination and integrating it into the modified FMARCOS 

method, this approach seeks to provide a more comprehensive and nuanced ranking of 

failure modes, addressing shortcomings associated with traditional FMEA 

methodologies (Boral et al., 2020). The traditional Risk Priority Number (RPN) 

technique employed in standard FMEA tends to overlook the intricate 

interdependencies among failure modes within complex systems, such as construction 

projects. Additionally, it lacks consideration for the inherent fuzziness associated with 

certain aspects of risk assessment. Contrastingly, a hybrid framework incorporating 

fuzzy FMEA, fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATHEL), 

and the Analytical Network Process (ANP) offers a more comprehensive solution. This 

integrated approach not only determines RPN values but also identifies 

interrelationships among failure modes and prioritizes them. By embracing fuzziness 

and leveraging advanced methodologies, this hybrid framework enhances the accuracy 

and applicability of risk assessment in complex systems like construction projects 

(Karamoozian & Wu, 2020). The combination of the Evidential Reasoning (ER) 

method and Interval Type-2 Fuzzy Sets (IT2FSs) offers a promising solution to address 

some of the limitations present in the conventional FMEA approach. This integrated 

approach is particularly effective in handling uncertainty associated with risk 

assessment. By incorporating the ER method and IT2FSs, the methodology gains the 

ability to capture and manage uncertainties in a more robust manner. This advancement 

allows for a more nuanced and realistic evaluation of failure modes, addressing certain 
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inherent limitations of conventional FMEA and thereby fostering enhanced decision-

making in complex and uncertain environments (Qin et al., 2020).  

Coal-to-methanol plants, facing inherent uncertainty, necessitate thorough risk 

analysis. The FMEA-CM technique plays a crucial role in this evaluation by mitigating 

various types of uncertainty, including unpredictability and fuzziness. By employing 

the FMEA-CM (FMEA for Coal-to-Methanol) technique, the risk analysis process 

becomes more robust and effective, addressing uncertainties associated with the 

complex nature of coal-to-methanol production. This method aids in systematically 

identifying potential failure modes, assessing their impacts, and implementing 

strategies to enhance the overall reliability and safety of coal-to-methanol plants (L. 

Wang et al., 2021). The risks linked to the landfill in Tehran are assessed through a 

combination of FMEA and Analytic Hierarchy Process (AHP). In this approach, AHP 

utilizes pairwise comparison as the method to rate risks based on the severity of their 

consequences. This integrated methodology allows for a comprehensive evaluation of 

potential failure modes and their respective impacts on the landfill in Tehran. By 

leveraging both FMEA and AHP, this approach provides a structured and systematic 

way to pinpoint, prioritize, and tackle risks linked to the landfill., contributing to 

enhanced risk management and decision-making processes (Sadeghi et al., 2021). In 

the context of building projects, several methods are proposed for risk identification 

and assessment in a fuzzy environment, addressing limitations associated with 

traditional FMEA. These methods include FMEA itself, Stepwise Weight Assessment 

Ratio Analysis (SWARA), and Weighted Aggregated Sum Product Assessment 

(WASPAS). By introducing a fuzzy environment, these methodologies aim to enhance 

the precision and flexibility of risk assessment. SWARA and WASPAS, in particular, 

provide alternative approaches to rectify the deficiencies of traditional FMEA. in 

handling uncertainties and complexities associated with building projects. The 

integration of these fuzzy techniques contributes to a more comprehensive and nuanced 

risk management process in construction projects (Alvand et al., 2023). 

An AHP-FMEA analysis is used to get around the FMEA's restrictions while 

looking into floating offshore wind turbine failures. With this method, the Analytic 

Hierarchy Process (AHP) methodology and a recommended normalization procedure 

are used to calculate a Failure Risk Index (RPN). The RPN is calculated using two sets 

of data: the relative significance of severity, occurrence, and detection (determined 
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through the proposed normalization algorithm), and their respective weights 

(established through the AHP methodology). By integrating AHP with FMEA, this 

analysis provides a more comprehensive and refined evaluation of failure modes in 

floating offshore wind turbines, contributing to a more effective risk assessment process 

(H. Li et al., 2021). A multidimensional approach to risk assessment is introduced by 

the FMEA framework's integration of Grey Relations Theory (GRT) and Fuzzy Rule 

Base (FRB). By leveraging FRB and the GRT, the modified FMEA framework 

becomes more comprehensive, allowing for a more nuanced and adaptable evaluation 

of failure modes. This integrated methodology facilitates a holistic understanding of 

risks, taking into account the uncertainties and complexities inherent in various 

assessment factors (S. Hassan et al., 2022). 

2.2.2 Applications of Cloud Model Theory 

In the process of when assessing the environmental performance of alternative 

suppliers, decision-makers may often employ linguistic descriptors, leading to potential 

ambiguity in their conclusions. This ambiguity arises from a lack of knowledge and the 

inherently vague nature of the expertise provided by specialists. A framework 

appropriate for an MCDM model is produced by combining cloud model theory (CMT) 

with Qualitative Flexible Multiple Criteria (QUALIFLEX). This innovative method 

enables the assessment of the capabilities of different suppliers, providing a more 

structured and nuanced evaluation that addresses the challenges associated with 

linguistic descriptors and helps make better-informed decisions when choosing 

suppliers based on their environmental performance (K.-Q. Wang et al., 2017).  

A novel integrated FMEA model has been developed by incorporating cloud 

model theory (CMT) and the hierarchical Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS). This model serves the purpose of analysing and 

ranking various failure possibilities. Leveraging the advantages offered by cloud model 

theory, this approach addresses the challenge of inherent unpredictability in language 

evaluations. The use of cloud computing contributes to a more robust and structured 

analysis of failure modes, enhancing the reliability of the FMEA model. This integrated 

strategy provides a solution to the uncertainties associated with language-based 

evaluations, offering a more informed and effective approach to ranking potential 

failures (Liu et al., 2019a).  
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(Gong et al., 2021) utilized CMT to describe asset liquidity and profitability 

trends in a multi-objective portfolio selection model. This approach was chosen due to 

its effectiveness in handling uncertainty. (Xie et al., 2021) created a novel quantitative 

risk assessment technique to determine the risk of fire and explosion incidents in oil 

depots using the Bow-tie (BT) model and CMT. This method was chosen because it 

can deal with uncertainty and information lacking. 

2.2.3 Applications of DEMATEL 

The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method is 

used to identify the relationship between processes and control the interaction between 

certain processes. This is particularly useful for quality analysis and details in urban 

waste management. Due to the uncertainty of this measurement, experts often have 

difficulty expressing their preferences using numerical values (Tseng & Lin, 2009). 

DEMATEL is a detailed method for investigating causal linkages. It requires only a 

small number of samples and enables the assessment of the degree of correlation 

between elements (Zhou & Chen, 2018).  

The DEMATEL method is utilized to identify interdependencies among criteria. 

However, Multi-Criteria Decision Making (MCDM) analysis becomes complex due to 

the inherent fuzziness in human life and subjectivity. To quantify this fuzziness in 

subjective notions, a theory is needed. Hence, fuzzy logic is employed to address bias 

in evaluation criteria (Büyüközkan & Çifçi, 2012).(Si et al., 2018) The DEMATEL 

method is highly regarded for its ability to dissect complex systems and identify their 

causes and effects. There have been numerous publications discussing the practical 

applications and different versions of DEMATEL. In a study spanning from 2006 to 

2016, which analyzed 346 international journal papers, DEMATEL was classified into 

five domains based on the methodologies used: Classical DEMATEL, fuzzy 

DEMATEL, grey DEMATEL, Analytical Network Process-based (ANP-based) 

DEMATEL, and other variations (Si et al., 2018).  

(Han & Deng, 2018) expanded the fuzzy DEMATEL method to identify Critical 

Success Factors (CSFs) by incorporating the Dempster-Shafer evidence theory. They 

applied the Dempster-Shafer theory in combination with DEMATEL. Intuitionistic 

Fuzzy Numbers (IFNs) were used by experts to examine direct factor relationships. Use 

the Dempster Combination Rule to combine the IFNs after converting them to Basic 
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Probability Assignments (BPA). The DEMATEL process can now categorize 

modifications according to relationships. (Dinçer & Yüksel, 2018) proposed a hybrid 

decision-making process combining DEMATEL and TOPSIS methods to evaluate G20 

economies using inputs from financial markets. In this approach, TOPSIS is used to 

evaluate G20 economies according to their performance, while DEMATEL is used to 

give weight to the basic model and thus improve the evaluation process as a whole. 

Despite the advances in DEMATEL technology, they still maintain their status. 

To solve this limitation, a method was developed using the Dempster-Shafer theory of 

evidence to improve DEMATEL by integrating information and objectives, thereby 

increasing the overall reliability and validity of the analysis (Du & Zhou, 2019). 

DEMATEL is widely used in many areas. For example, it is used for understanding of 

the complex interrelationships in library services, provides good insights and offers 

suggestions for improvement in the field (Y.-T. Chen, 2016b). (Pandey et al., 2019) 

categorized key mobility issues (CMI) according to relationships by using the Fuzzy-

DEMATEL approach. According to their research, the most effective technique for 

analyzing different issues that arise when developing mobile applications is Fuzzy-

DEMATEL as compared to other techniques such as E-DEMATEL and G-DEMATEL. 

DEMATEL combined with TOPSIS is used to assess risks associated with hydrogen 

production units. TOPSIS is used to identify defects and provide risk values, while in 

case of doubt, DEMATEL determines the severity and investigates the interaction of 

various factors that contribute to the overall chance of risk assessment process (J. Li et 

al., 2020). 

(Yazdi et al., 2020) developed a decision-making framework for effective 

security management using a combination of the DEMATEL method, worst-case 

method (BWM) and Bayesian network (BN). This integration involves the integration 

of risk factors and information and increases the efficiency and reliability of safety 

management decisions. (J. Li et al., 2020) emphasized the importance of analyzing the 

interaction between key performance factors to identify key drivers and improve 

business growth quality and competitive strategy. In their research, they used the fuzzy 

DEMATEL method to identify the most important features of traffic lights after the 

strategies were developed. This approach helps businesses prioritize actions and make 

informed decisions to develop competitive advantage and achieve sustainable growth. 
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The integration of AHP, TOPSIS and DEMATEL methods provides a good way 

to improve the quality assessment of e-services in the banking sector. AHP helps to 

identify and monitor the importance of key quality factors. TOPSIS helps compare 

banks based on these factors, and DEMATEL provides a better understanding of 

strategies that improve quality by creating relationships between factors (Agrawal et 

al., 2022). (J. Li et al., 2020) showed that the use of non-standard techniques 

DEMATEL and TOPSIS to assess hazards in hydrogen power plants can detect 

interactions and cause risks. Good luck with your decision. While the TOPSIS model 

calculates risk values by prioritizing threats, DEMATEL evaluates social risks and 

determines their importance within the scope of the established hydrogen risk 

assessment. 

The AHP-DEMATEL method is used to select delivery locations and provides 

a cost-effective analysis for potential local logistics service providers and logistics 

subcontractors. This approach helps to improve the services by allowing decision-

makers to consider the important patterns and understand the relationship between 

various factors affecting logistics operations (Ly et al., 2021). (Garg, 2021) used a 

method combining DEMATEL and Gray's theory to examine the relationship between 

different e-material processes. The Gray-DEMATEL method was used to identify the 

best interventions in e-waste management and evaluate their relative importance. This 

collaboration provides insight into the importance of effective strategies to manage e-

waste. 

Skeleton diagrams are used in warehouse operations with the DEMATEL 

method. While the fishbone diagram separates the causes and effects of a problem, 

DEMATEL examines the relationship between these factors. This comprehensive guide 

will help understand the principles of problems and their complex interactions, 

supporting better problem solving and decision making in product management (Po-

Heng Tsou & Hsin-Yao Hsu, 2022). The use of fuzzy DEMATEL is useful to improve 

the supplier selection process by analyzing the correlation between various parameters. 

This approach helps evaluate how these processes interact and influence each other, 

providing a better understanding of supplier evaluation and decision making (Mirmousa 

& Dehnavi, 2016).  
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In a nutshell, DEMATEL is perfect for analyzing multicausal systems. It helps 

identify key elements and their relationships, providing insight for risk assessment and 

prioritization when making decisions. It uses a visual model to evaluate the connections 

between identified processes and identify the most important patterns for decision-

making purposes (Nguyen & Chu, 2023). 

2.3 RESEARCH GAP 

In the light of the traditional FMEA method, In order to evaluate and rank failure 

modes in goods, a novel integrated FMEA model has surfaced that combines cloud 

model theory with the hierarchical TOPSIS technique. (Liu et al., 2019b). The cloud 

model functions as an uncertainty model that makes it easier to comprehend the shift 

from qualitative to quantitative elements, especially when it comes to natural language 

expressions. This transition involves shifting between conceptual and quantitative 

representations, facilitated by uncertainty and randomness within the cloud model 

framework (Shi et al., 2008). The cloud model serves as a cognitive paradigm that 

facilitates bidirectional transmission between qualitative notions and quantitative data 

by utilizing fuzzy set theory and probability statistics. The cloud model framework's 

Expectation (Ex), Entropy (En), and Hyper Entropy (He) components help to 

communicate the essence of thoughts (G. Wang et al., 2014).  

The integration of Cloud Model Theory (CMT) with the Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS) has proven to be a promising 

approach for addressing uncertainty, particularly in the context of risk and failure 

determination in the cigarette manufacturing industry (Ahsan et al., 2023). This method 

demonstrates superiority in classifying failures throughout the manufacturing process. 

TOPSIS is a type of Multi-Criteria Decision Making (MCDM) that is used to choose 

the best options from a small number of available options. Traditionally, TOPSIS is 

recognized as a rational and effective instrument; however, it has been critiqued for its 

inability to account for interdependencies between criteria (Xu et al., 2015). 

Faults within a production process not only disrupt the process itself but also 

impact the produced items. It's crucial to acknowledge and prioritize these faults to 

enhance process efficiency. However, isolating faults is inadequate since they often 

intertwine, causing overlapping effects. Furthermore, not all mistakes are equal; some 

may be causes while others are impacts. Hence, understanding the mutual relationship 
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and nature of interactions among errors is essential for comprehensive analysis and 

mitigating their effects. 

Hence, there's a recognized research gap emphasizing the importance of 

studying the interrelationship among faults within a production process and 

categorizing them based on their types, rather than solely focusing on ranking them. 

However, if studies fail to establish how these flaws interact and their underlying 

causes, there's a risk of rendering the entire procedure insufficient and ineffectual. 

2.4 THEORETICAL FRAMEWORK 

The traditional FMEA method is limited in its ability to rank the importance of 

individual influence factors, making it inefficient for systems with multiple concurrent 

or interacting failure modes. This limitation renders conventional FMEA unsuitable for 

such systems, as it fails to accurately identify mutual influences between system 

components. In such cases, DEMATEL proves valuable by identifying the chain of 

events leading to problems and assigning priority to these events, enabling prompt and 

effective resolution of critical issues, thus enhancing system performance (Tsai et al., 

2017). Moreover, a novel FMEA evaluation approach, integrating fuzzy logic and 

DEMATEL theory, has been developed to enhance system resilience by establishing 

inter-relationships between failures. This strategy aims to improve the system's ability 

to recover from failures. After defuzzification of Risk Priority Numbers (RPNs), they 

serve as inputs for DEMATEL analysis to explore causal levels of failure and associated 

factors (Liu et al., 2019b). 

The United States Army pioneered the conceptualization of FMEA as a risk 

reduction tool in 1949. Subsequently, it was adopted for the same purpose in the Apollo 

space mission, which initially developed it. Businesses widely employ FMEA for 

various purposes, including engineering design encompasses various manufacturing 

processes, product development, and product maintenance throughout its lifecycle (S. 

Parsana & T. Patel, 2014). DEMATEL originated in the 1970s at the Battelle Research 

Centre with the aim of understanding causality issues prevalent in industry applications 

at the time. It operates on the premise that not only these criteria have connections, but 

they also interact with each other to achieve its established goals (Dinçer & Yüksel, 

2018). 
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Therefore, this study utilizes the following framework: first, the Cloud Model 

Theory (CMT) is employed to convert qualitative linguistic terms into quantitative data; 

second, the DEMATEL method is utilized to determine the interrelationships between 

identified faults and rank them accordingly. 

2.6 RESEARCH QUESTIONS 

This study aim to uncover the answers to the following questions,  

• What specific types of faults are commonly occurred in the textile 

manufacturing industry, affecting the overall quality of produced textiles? 

• How are the critical faults ranked in the textile manufacturing industry, and what 

criteria or metrics are commonly used for this ranking process? 

• How do different types of faults in textile manufacturing interact with each other 

that lead to more severe defects in the final textile products? 

 

 

 

 

 

 

 

CHAPTER 3. METHODOLOGY AND MATHEMATICAL 

MODELS 

3.1 GENERAL 

Methodology, mathematical models, sampling technique, techniques used in the 

investigation, and the overall research design of the study are all covered in this chapter.  

3.2 RESEARCH PARADIGM 

Specialists provided evaluations in the form of linguistic variables, which were 

then transformed into cloud form as part of a mixed hybrid strategy for data 
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manipulation. The study utilized both primary and secondary sources of information. 

Primary data were collected from industry professionals using an Excel-based opinion 

form, while secondary data were sourced from the organization's production database 

and manufacturing process manuals. Experts rated the influence of failure modes on 

each other using a 9-point linguistic scale, chosen for its ability to capture nuanced 

judgments from knowledgeable specialists. This scale allowed for diverse viewpoints, 

enhanced data analysis, improved reliability, and reduced measurement errors. The 

opinion form was developed through expert consultation and literature review. 

Participants included supervisors, technicians, and servicing coordinators, totaling six 

individuals selected for their specialized expertise in textile production. The choice of 

six participants was based on FMEA’s requirement for specialized knowledge and the 

scope of the problem being studied. The figure below provides an overview of the 

research procedures. 

3.3 RESEARCH SETTING 

This study focuses on the textile manufacturing industry in Pakistan as its target 

population. Professionals from the textile sector were approached to provide feedback 

using linguistic terms via an opinion form. Participants were purposefully selected 

based on their level of expertise and information, employing purposive sampling. 

Additionally, weights were assigned to participants to demonstrate the credibility of 

their evaluations, rendering the study non-probabilistic. When determining the weight 

of each respondent's opinion, factors such as professional titles and years of experience 

were taken into consideration. 

3.4 RESEARCH METHOD 

Using the secondary data, a total of twenty faults were found, all of which 

contributed to different failures in the production process. In order to give primary data 

that is based on these flaws, an opinion form that is built using Excel and seeks 

assistance from the available literature has been designed. Data manipulation is 

accomplished with the help of Microsoft Excel. In addition to this, the bidirectional 

cognitive transfer between qualitative linguistic judgment and quantitative data is 

altered by the application of the cloud model theory. The DEMATEL approach is 

utilized in order to rate the defects and establish an understanding of the 

interrelationships between the problems.  
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3.5 MATHEMATICAL MODELS 

3.5.1 Conversion of Linguistic Values into Cloud Setting 

Linguistic concepts are converted into cloud representations using the Golden 

Segmentation approach. (Liu et al., 2019). This method states that a universal set with 

a domain𝑈 = [𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛] and 𝐿 to be a linguistic set represented by 𝐺 =

{𝑔0, 𝑔1, … , 𝑔𝑖}, it is possible to obtain 𝑖 + 1 clouds using the following procedure: 

𝑦̃0 = (𝐸𝑥0, 𝐸𝑛0, 𝐻𝑒0), 𝑦̃1 = (𝐸𝑥1, 𝐸𝑛1, 𝐻𝑒1), … . , 𝑦̃𝑖 = (𝐸𝑥𝑖 , 𝐸𝑛𝑖 , 𝐻𝑒𝑖) (1) 

For a 9-point linguistic scale, the representation of 𝐺𝑘 for 𝑘 = 9 is as follows, 

𝐺 = {𝑔0 = 𝑁𝑜 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 (𝑁𝐼), 𝑔1 = 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 (𝑉𝐿), 𝑔2 = 𝐿𝑜𝑤 (𝐿), 𝑔3 =

𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤 (𝑀𝐿), 𝑔4 = 𝑀𝑒𝑑𝑖𝑢𝑚 (𝑀), 𝑔5 = 𝑀𝑒𝑑𝑖𝑢𝑚 𝐻𝑖𝑔ℎ (𝑀𝐻), 𝑔6 =

𝐻𝑖𝑔ℎ(𝐻), 𝑔7 = 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐻𝑖𝑔ℎ(𝐸𝐻), 𝑔8 = 𝑃𝑟𝑜𝑓𝑜𝑢𝑛𝑑 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 (𝑃𝐼)}  

Numeric Values of Clouds are calculated as follows; 

𝑦̃0 = (𝐸𝑥0, 𝐸𝑛0, 𝐻𝑒0) = (𝑋𝑚𝑖𝑛 + 3𝐸𝑛0,
𝐸𝑛1

0.618
,

𝐻𝑒1

0.618
) (2) 

𝑦̃1 = (𝐸𝑥1, 𝐸𝑛1, 𝐻𝑒1) = (𝐸𝑥2 − 0.382 ∗ (𝐸𝑥2 − 𝐸𝑥0),
𝐸𝑛2

0.618
,

𝐻𝑒2

0.618
) (3) 

𝑦̃2 = (𝐸𝑥2, 𝐸𝑛2, 𝐻𝑒2) = (𝐸𝑥3 − 0.382 ∗ (𝐸𝑥3 − 𝐸𝑥0),
𝐸𝑛3

0.618
,

𝐻𝑒3

0.618
) (4) 

𝑦̃3 = (𝐸𝑥3, 𝐸𝑛3, 𝐻𝑒3) = (𝐸𝑥4 − 0.382 ∗ (𝐸𝑥4 − 𝐸𝑥0),
𝐸𝑛4

0.618
,

𝐻𝑒4

0.618
) (5) 

𝑦̃4 = (𝐸𝑥4, 𝐸𝑛4, 𝐻𝑒4) = ( 
(𝑋𝑚𝑖𝑛  +  𝑋𝑚𝑧𝑥)

2
, 0.382 ∗ (

𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛

3(𝑔 + 2)
) , 𝐻𝑒4) (6) 

𝑦̃5 = (𝐸𝑥5, 𝐸𝑛5, 𝐻𝑒5) = (𝐸𝑥4 + 0.382 ∗ (𝐸𝑥8 − 𝐸𝑥4),
𝐸𝑛5

0.618
,

𝐻𝑒5

0.618
) (7) 

𝑦̃6 = (𝐸𝑥6, 𝐸𝑛6, 𝐻𝑒6) = (𝐸𝑥5 + 0.382 ∗ (𝐸𝑥8 − 𝐸𝑥5),
𝐸𝑛5

0.618
,

𝐻𝑒5

0.618
) (8) 

𝑦̃7 = (𝐸𝑥7, 𝐸𝑛7, 𝐻𝑒7) = (𝐸𝑥6 + 0.382 ∗ (𝐸𝑥8 − 𝐸𝑥6),
𝐸𝑛6

0.618
,

𝐻𝑒6

0.618
) (9) 
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𝑦̃8 = (𝐸𝑥8, 𝐸𝑛8, 𝐻𝑒8) = (𝑋𝑚𝑎𝑥 − 3𝐸𝑛8,  
𝐸𝑛7

0.618
,   

𝐻𝑒7

0.618
) (10) 

The domain 𝑈 = [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] and 𝐻𝑒4
 are set prior to the clouds' numerical quantities 

being calculated. 𝐻𝑒4
 has value lower than 1 3⁄ . 

3.5.2 Assigning Weights to the Decision Makers 

Decision makers are weighted according to their knowledge, skills and seniority. These 

weights are determined according to subjective or objective criteria. This study uses a 

weighted distribution strategy to consider various factors that impact decision makers. 

Out of these factors, the difference in the knowledge and skills of decision makers plays 

an important role. Furthermore, this methodology enhances the dependability of data 

and addresses the issue of insufficient objective data. The productivity matrix, which is 

based on two crucial variables—seniority level and industry experience—forms the 

weight distribution table. While experience-based scoring is based on the number of 

years of industry experience of decision makers, seniority-based scoring is based on 

their professional titles. Next, using the given equation, the decision makers' overall 

score is determined. 

ωk =
Hk

∑ Hk
n
k=1

, 𝑘 = 1,2,3, … , 𝑛 (33) 

In above equation, ω𝒌 represents the decision-makers' weights, where k stands 

for each individual decision-maker and n for the overall number of decision-makers, 

which is six in this instance (n=6). These team members are the most knowledgeable 

subject matter experts in the procedure under investigation. Hence, the weights can be 

denoted as 𝑤𝑘 = 𝑤1, 𝑤2, 𝑤3, … 𝑤𝑛. The cumulative score of all decision makers, 

denoted as 𝐻𝑘, is determined by assigning scores according to seniority and experience 

levels. The scores from the competency matrix, which is based on professional titles 

and years of industry experience, are added to provide this total score. Table 4-1 can be 

used to determine the weights for each decision maker based on this score.  

Following step are involved in the application of DEMATEL (Si et al., 2018) 
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3.5.3 Determine the Collective Direct Relation Matrix 

The following equation is used to convert the cloud matrices—which are used to 

calculate the decision-makers' weight allocation—into a collective direct-relation 

matrix, or 𝑍̃ = [𝑧̃]𝑛×𝑛 , 

𝑧̃𝑖𝑗 = ∑ 𝑤𝑘𝑧̃𝑖𝑗
𝑘 = ∑ 𝑤𝑘(𝐸𝑥𝑖𝑗

𝑘 , 𝐸𝑛𝑖𝑗
𝑘 , 𝐻𝑒𝑖𝑗

𝑘 )

𝑚

𝑘=1

𝑚

𝑘=1

= (∑ 𝑤𝑘𝐸𝑥𝑖𝑗
𝑘  , √∑ 𝑤𝑘(𝐸𝑛𝑖𝑗

𝑘 )
2

𝑚

𝑘=1

𝑚

𝑘=1

, √∑ 𝑤𝑘

𝑚

𝑘=1

(𝐻𝑒𝑖𝑗
𝑘 )

2
) (11) 

Here numbers, 𝑖 and 𝑗  stand for the rows and columns of the opinion forms that are 

used to get the experts' data. The opinion forms that are used to gather data are based 

on a 20 × 20 square matrix. 𝑍̃ = [𝑧̃]20×20 is the result. In this case, 𝑘 = 1, 2,3, … , 6 

represents the number of decision-makers. Furthermore, m=n=6. 

The opinion forms that were initially based on language phrases are next converted into 

numerical values of (𝐸𝑥), entropy (𝐸𝑛) and hyper-entropy (𝐻𝑒) following the conversion 

of linguistic terms into numerical values of clouds in the preceding stage. Here, 𝑖𝑗 shows 

where a specific value is located in the matrix, ranging from 𝑖𝑗 = 1 × 1, 1 × 2, 1 ×

3, … , 20 × 20. Following the conversion, the decision-makers' weights are now 

multiplied by each expectation, entropy, and hyper-entropy value in accordance with 

the equation. The weighted values of expectation, entropy, and hyper-entropy are then 

added from the six opinion forms to produce a single collective direct-relation matrix. 

The following is the depiction of the collective direct-relation matrix that was produced: 

𝑍̃ = ∑(𝑤𝑘𝑍̃𝑘)

𝑚

𝑘=1

=  [
𝐸𝑥11, 𝐸𝑛11, 𝐻𝑒11 ⋯ 𝐸𝑥1𝑛, 𝐸𝑛1𝑛, 𝐻𝑒1𝑛

⋮ ⋱ ⋮
𝐸𝑥𝑛1, 𝐸𝑛𝑛1, 𝐻𝑒𝑛1 ⋯ 𝐸𝑥𝑛𝑛, 𝐸𝑛𝑛𝑛, 𝐻𝑒𝑛𝑛

] 

3.5.4 Determine the Normalized Collective Direct Relation Matrix 

After obtaining the collective direct-relation matrix 𝑍̃ = [𝑧̃]𝑛×𝑛, the subsequent step 

involves calculating the normalized collective direct-relation matrix 𝑋 = [𝑥𝑖𝑗]
𝑛×𝑛

 

through the following procedure: 

𝑋 = [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑛

] 
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Using  

𝑥𝑖𝑗 = (𝐸𝑥𝑖𝑗
𝑁 , 𝐸𝑛𝑖𝑗

𝑁 , 𝐻𝑒𝑖𝑗
𝑁) = (

𝐸𝑥𝑖𝑗

𝛼
,
𝐸𝑛𝑖𝑗

𝛽
,
𝐻𝑒𝑖𝑗

𝛾
) (12) 

 𝛼 = (𝑚𝑎𝑥 {𝑚𝑎𝑥1≤𝑖≤𝑛 ∑ 𝐸𝑥𝑖𝑗

𝑛

𝑗=1

, 𝑚𝑎𝑥1≤𝑗≤𝑛 ∑ 𝐸𝑥𝑖𝑗

𝑛

𝑖=1

}) (13) 

 𝛽 = (𝑚𝑎𝑥 {𝑚𝑎𝑥1≤𝑖≤𝑛 ∑ 𝐸𝑛𝑖𝑗

𝑛

𝑗=1

, 𝑚𝑎𝑥1≤𝑗≤𝑛 ∑ 𝐸𝑛𝑖𝑗

𝑛

𝑖=1

}) (14) 

 𝛾 = (𝑚𝑎𝑥 {𝑚𝑎𝑥1≤𝑖≤𝑛 ∑ 𝐻𝑒𝑖𝑗

𝑛

𝑗=1

, 𝑚𝑎𝑥1≤𝑗≤𝑛 ∑ 𝐻𝑒𝑖𝑗

𝑛

𝑖=1

}) (15) 

Here 0 ≤ 𝐸𝑥𝑖𝑗
𝑁 , 𝐸𝑛𝑖𝑗

𝑁 , 𝐻𝑒𝑖𝑗
𝑁 ≤ 1  

The variables 𝛼, 𝛽 and 𝛾 reflect the highest values found in the matrices' rows and 

columns of 𝐸𝑥, 𝐸𝑛 and 𝐻𝑒 respectively. 

3.5.5 Determine the Over Relation Matrix 

Compute the overall-relation matrix 𝑇 = [𝑡𝑖𝑗]
𝑛×𝑛

 following the computation of the 

normalized collective direct-relation matrix 𝑋 = [𝑥𝑖𝑗]
𝑛×𝑛

. In order to obtain crisp 

numbers, the normalized collective direct-relation matrix is partitioned into three 

matrices. The reason for this divide is that the normalized collective direct-relation 

matrix has the shape of clouds, and it is not possible to compute its inverse directly. 

The three new matrices obtained are displayed as,  

𝐴 = [𝐸𝑥𝑖𝑗
𝑁]

𝑛×𝑛
(16) 

𝐵 = [𝐸𝑛𝑖𝑗
𝑁]

𝑛×𝑛
(17)  

𝐶 = [𝐻𝑒𝑖𝑗
𝑁]

𝑛×𝑛
(18) 

Consequently, the following is how the overall-relation matrix can be obtained:  
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𝑇𝐴 = 𝐴 + 𝐴2 + 𝐴3 + ⋯ = ∑ 𝐴𝑖

∞

𝑖=1

= 𝐴(𝐼 − 𝐴)−1 = [𝐸𝑥𝑖𝑗
𝑇 ]

𝑛×𝑛
(19) 

𝑇𝐵 = 𝐵 + 𝐵2 + 𝐵3 + ⋯ = ∑ 𝐵𝑖

∞

𝑖=1

= 𝐵(𝐼 − 𝐵)−1 = [𝐸𝑛𝑖𝑗
𝑇 ]

𝑛×𝑛
(20) 

𝑇𝐶 = 𝐶 + 𝐶2 + 𝐶3 + ⋯ = ∑ 𝐶𝑖

∞

𝑖=1

= 𝐶(𝐼 − 𝐶)−1 = [𝐻𝑒𝑖𝑗
𝑇 ]

𝑛×𝑛
(21) 

Here 𝐼 symbolizes a matrix of identities. Consequently, the resulting overall-relation 

matrix is displayed as,  

𝑇 = [𝑡𝑖𝑗]
𝑛×𝑛

= [

𝑡11 ⋯ 𝑡1𝑛

⋮ ⋱ ⋮
𝑡𝑛1 ⋯ 𝑡𝑛𝑛

] 

3.5.6 Calculate the influence degree and degree of being influenced 

The next step is to use the following equations to calculate the influence degree 𝑃𝑖  and 

the degree of being influenced 𝑅𝑗  after the overall-relation matrix has been calculated,  

𝑃𝑖 = ∑ 𝑡𝑖𝑗

𝑛

𝑗=1

= ∑(𝐸𝑥𝑖𝑗
𝑇 , 𝐸𝑛𝑖𝑗

𝑇 , 𝐻𝑒𝑖𝑗
𝑇 ) = (∑ 𝐸𝑥𝑖𝑗

𝑇

𝑛

𝑗=1

, √∑(𝐸𝑛𝑖𝑗
𝑇 )

2
𝑛

𝑗=1

, √∑(𝐻𝑒𝑖𝑗
𝑇 )

2
𝑛

𝑗=1

) , 𝑖 = 1,2, 3, … , 𝑛

𝑛

𝑗=1

(22) 

𝑅𝑗 = ∑ 𝑡𝑖𝑗

𝑛

𝑖=1

= ∑(𝐸𝑥𝑖𝑗
𝑇 , 𝐸𝑛𝑖𝑗

𝑇 , 𝐻𝑒𝑖𝑗
𝑇 ) = (∑ 𝐸𝑥𝑖𝑗

𝑇

𝑛

𝑖=1

, √∑(𝐸𝑛𝑖𝑗
𝑇 )

2
𝑛

𝑖=1

, √∑(𝐻𝑒𝑖𝑗
𝑇 )

2
𝑛

𝑖=1

) , 𝑗 = 1,2, 3, … , 𝑛

𝑛

𝑖=1

(23) 

3.5.7 Calculate the Prominence and Relation 

Following the computation of the degree of influence and the degree of being 

influenced, the subsequent stage involves calculating the prominence 𝑝𝑖 and relation 𝑟𝑖 

by using the equations below, 

𝑝𝑖 = 𝑃𝑖 + 𝑅𝑗 (24) 
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𝑝𝑖 = (∑ 𝐸𝑥𝑖𝑗
𝑇

𝑛

𝑗=1

+ ∑ 𝐸𝑥𝑖𝑗
𝑇

𝑛

𝑖=1

, √∑(𝐸𝑛𝑖𝑗
𝑇 )

2
+ ∑(𝐸𝑛𝑖𝑗

𝑇 )
2

𝑛

𝑖=1

𝑛

𝑗=1

, √∑(𝐻𝑒𝑖𝑗
𝑇 )

2
+ ∑(𝐻𝑒𝑖𝑗

𝑇 )
2

𝑛

𝑖=1

𝑛

𝑗=1

, 𝑖 = 1,2, … , 𝑛, ) (25) 

 And  

𝑟𝑖 = 𝑃𝑖 − 𝑅𝑗 (26) 

𝑟𝑖 = (∑ 𝐸𝑥𝑖𝑗
𝑇

𝑛

𝑗=1

− ∑ 𝐸𝑥𝑖𝑗
𝑇

𝑛

𝑖=1

, √∑(𝐸𝑛𝑖𝑗
𝑇 )

2
+ ∑(𝐸𝑛𝑖𝑗

𝑇 )
2

𝑛

𝑖=1

𝑛

𝑗=1

, √∑(𝐻𝑒𝑖𝑗
𝑇 )

2
+ ∑(𝐻𝑒𝑖𝑗

𝑇 )
2

𝑛

𝑖=1

𝑛

𝑗=1

, 𝑖 = 1,2, … , 𝑛. ) (27) 

3.5.8 Find the Cause and Effect Relationship 

The next step is to utilize these values to calculate the prominence and relation, and 

then use them to calculate the cause-and-effect relationship. The relationship between 

the flaws and prominence is determined using the expectations values. The prominence 

values in the DEMATEL context show how important a fault is. Thus, a fault is more 

critical the greater its prominence value. Additionally, the connection  𝑟𝑖 aids in 

classifying errors into groups that are either causes or effects. A fault is classified as a 

cause if its relation  𝑟𝑖 value is more than zero. On the other hand, a fault is regarded as 

an effect if the value of relation  𝑟𝑖 is less than zero.  

3.5.9 Sketch Causal Diagram 

The causal diagram is created based on the values of the expectation of prominence 𝑝𝑖 

and relation 𝑟𝑖. This diagram aids in illustrating the significance of the faults and 

ranking them into cause-and-effect groups. The vertical axis in the diagram represents  

𝑟𝑖, which represents the fault kind, and the horizontal axis 𝑝𝑖, which represents the fault 

importance. To be more precise, the y-axis denotes the type of defect (cause or effect), 

while the x-axis illustrates the significance of faults. A better grasp of the fault linkages 

and the effects they have on the system is made possible by this visualization. 

3.5.10 Draw Relationship Map 

To visually depict the relationships between faults and highlight the most significant 

relationships among the faults that have been found, a relationship map is made. Based 

on sharp values obtained from the overall-relation matrix's expectation, this map is 
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created. It can be depicted as follows; 𝑇∗ = [𝑡𝑖𝑗
∗ ]

𝑛×𝑛
where 𝑡𝑖𝑗

∗ = 𝐸𝑥𝑖𝑗
𝑇 . The matrix 

obtained can be shown as,  

𝑇∗ = [𝑡𝑖𝑗
∗ ]

𝑛×𝑛
(28) 

𝑇∗ = [
𝑡11

∗ ⋯ 𝑡1𝑛
∗

⋮ ⋱ ⋮
𝑡𝑛1

∗ ⋯ 𝑡𝑛𝑛
∗

] 

Drawing a connection map that incorporates every relationship may result in a 

complicated and esoteric map. A threshold value is established in order to simplify the 

relationship map and eliminate extraneous complexity. This threshold value aids in 

reducing the number of relationships that are deemed insignificant. It's crucial to 

remember that if the threshold value is set too high, numerous errors may be regarded 

as independent. On the other hand, if the threshold value is set too low, it may cause 

issues with data display. The following formula is used to determine the value of 

threshold:

𝛿 = 𝑡𝑖̅𝑗 + 𝜑 (𝑖, 𝑗 = 1,2, … , 𝑛) (29) 

Here, 𝛿 represents the value of threshold, whereas 𝑡𝑖̅𝑗 and 𝜑 represent the matrix's mean 

and standard deviation 𝑇∗ (Gao et al., 2021a) 
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CHAPTER 4. RESULTS AND DISCUSSIONS 

4.1 GENERAL  

In this chapter the application of proposed approach in industry is illustrated. 

The detailed execution of the approach as well as the results obtained from the 

application of the theory are jotted down in this section.  

4.2 APPLICATION OF THE STUDY IN INDUSTRY 

This study showcases the integration of cloud model theory and DEMATEL 

into practical applications. Through examining the connections between identified 

flaws related to textile manufacturing procedures, effective execution can result in 

enhancements to traditional FMEA techniques. 

The aim of this research is to examine the relationship between the faults that 

reduce the production process's efficiency. The study will be put into practice in the 

textile production industry. The objective of this study is to evaluate how useful and 

practical the technique is. During the study, both technological and human-made 

mistakes will be taken into consideration and examined.  

The figure given below provides additional clarity regarding the stages. 

 

Figure 4-1 Stages of the Study 

Visual representation the results

Grouping of faults into cause and effects and finding their interrelationship

Prioritization of faults based on their severity

Transformation of linguistic assessments into quantitative data

Weights assigned to each expert based on their professional title and experience 

Linguistic Assessment of faults by experts through Opinion Forms  

Opinion Form design based on identified faults

Faults Identification
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4.3 EXECUTION OF THE METHOD 

The following stages shows how the method is applied in the industry 

 

Figure 4-2 Steps of the Method 

 

 

Figure 4-3 Research Process 
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4.3.1 Step 1 Identification of the Faults 

To effectively evaluate system failures and the contributing faults, a 

comprehensive understanding of the system's functioning is essential. The 

transformation process from raw material to finished product can be complex and may 

require more effort and control than anticipated. Numerous inputs, controlled variable 

contributions, and uncontrolled variable data lines all influence assembly yields. Hence, 

the organization's standards and literature are utilized to identify corresponding risk 

factors within their hierarchy and evaluate each failure mode accordingly. 

After the production process was examined, the 20 potential failure scenarios 

are displayed in the table  4-1,  

Table 4-1 Identified faults in Production Line 

Assigned Names Identified Faults 

F1 Needle Breakage 

F2 Thread Breakage 

F3 Bobin Thread Breakage 

F4 Machine Jamming due to Thread 

Tension Issues 

F5 Misalignment of Design 

F6 Machine Skipping Stitches 

F7 Machine Vibration 

F8 Shittle Timing 

F9 Motor Issues 

F10 Fabric Rule 

F11 Sensor Malfunction 

F12 Lubrication Problems 

F13 Uneven Stitching 

F14 Puckering of Fabrics 

F15 Bobin Tension Issues 
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F16 Head Not Working 

F17 Thread Tangling 

F18 Strange Noises 

F19 Stitch Not Feeding 

F20 Machine Runs but Needle does not 

Move 

 

4.3.2 Step 2 Construction of the Opinion Form 

In order to build an opinion form in response to the problems that were 

discovered, assistance from the relevant literature was sought. The DEMATEL 

technique required that the opinion form be designed in such a way that it could satisfy 

the standards that were laid forth for it. The feedback form took the form of a matrix 

created in Microsoft Excel, with discovered flaws listed along its horizontal and vertical 

rows and columns, respectively. The participants were given a list of linguistic phrases, 

and they were required to fill out a cell that corresponded to each cell in the survey. 

4.3.3 Step 3 Selection of Respondents 

The questionnaire was given in the shape of an excel-based opinion form to six 

different responders to complete up. This is due to the fact that both the FMEA and 

DEMATEL methods rely on the judgement of experts; hence, these two methods 

involve fewer but more expert respondents. These professionals have an extensive 

knowledge base in their field. They range widely in terms of their professional titles 

and levels of expertise. Within the opinion form, they were required to include 

information about their professional title and experience level in the opinion form. They 

were provided with concise description, along with the requirements of the opinion 

form, and instructions on how to fill out the opinion form. They are industry specialists; 

thus, it was not difficult for them to comprehend the nature of the dimension being 

asked for in the opinion form. In addition to this, students were given eleven linguistic 

terms to choose from so that they could keep the flexibility of their judgements. 
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4.3.4 Step 4 Calculation of the Weights of the Respondents 

Respondents are assigned with weights. It is necessary to determine these 

weights utilizing either the subjective or objective weightage system. This phase 

involves two steps: first, construct a weight allocation table, second, allocation of 

overall weight to the respondents. The weight allocation system is based on an approach 

that is subject to interpretation, and it has two components: the seniority level and the 

experience level. The level of seniority is further subdivided into five classes, 

commencing with the subordinate level and working its way up to the senior level. In a 

similar manner, the experience level has an additional four classifications, ranging from 

a respondent with experience of less than five years to a respondent with more than 

twenty years of expertise. The formula for determining the communal weights is just 

the addition of these two scores. 

Table 4-2 Weight Allocation Table 

Aspect  Classes/Levels Score 

Level of Seniority Senior level 5 

Sub-senior level 4 

Intermediate level 3 

Associate level 2 

Inferior level 1 

Experience in industry More than 20 years 4 

Between ten and nineteen 

years 

3 

Between five and nine 

years 

2 

Below five years 1 
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The weights are assigned to different respondents based on their understanding 

of a subject, their professional competencies, and their number of years of experience. 

Based on weights allocation table, the corresponding weights of the decision members 

are shown in table 4-3. 

Table 4-3 Weight of the Decision Makers 

Sr. No. of 

decision 

makers 

Experience-

based scoring 

Professional 

title-based 

scoring 

Cumulative 

scoring 

Final 

weightage of 

decision 

makers (𝝎𝒌) 

1 3 5 8 0.19047619 

2 3 4 7 0.166666667 

3 3 3 6 0.142857143 

4 4 4 8 0.19047619 

5 3 3 6 0.142857143 

6 4 3 7 0.166666667 

Overall weights of the respondents are calculated using the formula given 

below. 

ωk =
Hk

∑ Hk
n
k=1

, 𝑘 = 1,2,3, … , 𝑛  

Where k represents respondents, while n indicates the total number of 

respondents.  

4.3.5 Conversion of Linguistic Values into Cloud Setting 

The decision-makers employed a system of 9-point linguistic terms to denote the degree 

and existence of interdependencies among the discovered defects. The following are 

the terms used in CMT: 
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𝐿 = {𝑙0 = 𝑁𝑜 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 (𝑁𝐼), 𝑙1 = 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 (𝑉𝐿), 𝑙2 = 𝐿𝑜𝑤 (𝐿), 𝑙3 =

𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤 (𝑀𝐿), 𝑙4 = 𝑀𝑒𝑑𝑖𝑢𝑚 (𝑀), 𝑙5 = 𝑀𝑒𝑑𝑖𝑢𝑚 𝐻𝑖𝑔ℎ (𝑀𝐻), 𝑙6 =

𝐻𝑖𝑔ℎ(𝐻), 𝑙7 = 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐻𝑖𝑔ℎ(𝐸𝐻), 𝑙8 = 𝑃𝑟𝑜𝑓𝑜𝑢𝑛𝑑 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 (𝑃𝐼)}  

Equations from 2-1 to 2-10 are employed to obtain the Numerical Clouds.   

Below are the normal clouds that matched each of the nine linguistic points on the scale. 

𝑦̃0 = (2.61804, 0.87268, 0.20564)  

𝑦̃1 = (3.1802669, 0.53932, 0.12709)   

𝑦̃2 = (3.5277669, 0.3333, 0.07854)   

𝑦̃3 = (4.09009, 0.20598, 0.04854)   

𝑦̃4 = (5, 0.1723, 0.03)   

𝑦̃5 = (5.9099, 0.20598, 0.0485)   

𝑦̃6 = (6.47223, 0.3333, 0.07854)   

𝑦̃7 = (6.819747, 0.53932, 0.12709)   

𝑦̃8 = (7.38196, 0.87268, 0.20564)   

Where the range is 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 = 0, 10, and 𝐻𝑒4 = 0.03 

Expectation (Ex), Entropy (En), and Hyper-entropy form the collection of 

parameters that the cloud model theory uses to articulate conclusions.. In this theory, 

"expectation" denotes the central value within a cloud representation, reflecting the 

most likely or anticipated value within that cloud. It represents the predominant 

tendency of the data distribution within the cloud. Entropy, within the theory of cloud 

models, quantifies the degree of disorder or uncertainty present in a cloud. Higher 

entropy indicates greater uncertainty, while lower entropy suggests a more concentrated 

and predictable distribution of values. Hyper-entropy extends the concept of entropy 

and is used to characterize uncertainty in cloud spaces with multiple dimensions. It 

provides a quantitative analysis of the overall randomness and unpredictability within 

a cloud model when dealing with various qualities or variables. In essence, hyper-
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entropy determines the degree of uncertainty beyond entropy. Table 4-4 illustrates the 

corresponding values of Expectation, Entropy, and Hyper-entropy for all linguistic 

terms. 

Table 4-4 Conversion of Linguistic Value into Cloud 

Linguistic Terms Numerical Values (Ex, En, He) 

No Influence (NI) (2.61804, 0.87268, 0.20564) 

Very Low Influence (VL) (3.1802669, 0.53932, 0.12709) 

Low Influence (L) (3.5277669, 0.3333, 0.07854) 

Medium Low Influence (ML) (4.09009, 0.20598, 0.04854) 

Medium Influence (M) (5, 0.1723, 0.03) 

Medium High Influence (MH) (5.9099, 0.20598, 0.0485) 

High Influence (H) (6.47223, 0.3333, 0.07854) 

Extremely High Influence (EH) (6.819747, 0.53932, 0.12709) 

Profound Influence (PI) (7.38196, 0.87268, 0.20564) 

A subjective weighing scheme was used to determine the decision makers' 

respective weights. Equation 33 is utilized to ascertain the decision makers' respective 

weights. 

4.3.6 Collective Direct Relation Matrix 

 Equation 11 is used to convert the cloud matrices into a collective direct-

relation matrix [𝑧̃]20×20 once the decision makers have been assigned weights.  

Table 4-5 Calculation of Direct Relation Matrix 

  Effect of 

F10 on 

F11 

Effect 

of F10 

on F11 

Collective direct Relation Matrix 

Respondent

s 

Weights 

(wk) 

Linguisti

c terms  

Cloud 

Values 
(∑ 𝑤𝑘𝐸𝑥𝑖𝑗

𝑘  , √∑ 𝑤𝑘(𝐸𝑛𝑖𝑗
𝑘 )

2
𝑚

𝑘=1

𝑚

𝑘=1

, √∑ 𝑤𝑘

𝑚

𝑘=1

(𝐻𝑒𝑖𝑗
𝑘 )

2
) 
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(Ex, 

En, He) 
 

 

 

 

 

7.020537357, 0.67747675163, 

0.15964376906 

 

k shows decision makers, m=6, ij 

represents rows and columns, 

respectively.  

1 0.190476

1 

PI (1.406, 

0.1451, 

0.008) 

2 0.166666

7 

PI (1.23, 

0.127, 

0.007) 

3 0.142857

1 

EH (0.974, 

0.042, 

0.002) 

4 0.190476

1 

EH (1.298, 

0.0554, 

0.0031

) 

5 0.142857

1 

EH (0.974, 

0.042, 

0.0023

) 

6 0.166666

6 

EH (1.137, 

0.048, 

0.0027

) 

 

4.3.7 Step 7 Normalized Collective Direct Relation Matrix 

The Equation 12-15 is used to convert the collective direct-relation matrix into 

the normalized collective direct-relation matrix [𝑥𝑖𝑗]
20×20

. Adding up each value in the 

row is the first step in calculating the normalized collective direct relation matrix. In 
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the same manner, each value from the column is added to the total. The next step is to 

select the maximum value from each row and the maximum value from each column. 

After that, the value with the greatest difference between these two maximum values is 

the one that is used for dividing the data for expectation, entropy, and hyper-entropy. 

Table 4-6 Calculation of Normalized Direct Relation Matrix 

  𝐸𝑥𝑖𝑗

𝛼
,
𝐸𝑛𝑖𝑗

𝛽
,
𝐻𝑒𝑖𝑗

𝛾
 

𝛼 = (𝑚𝑎𝑥 {𝑚𝑎𝑥1≤𝑖≤𝑛 ∑ 𝐸𝑥𝑖𝑗

𝑛

𝑗=1

, 𝑚𝑎𝑥1≤𝑗≤𝑛 ∑ 𝐸𝑥𝑖𝑗

𝑛

𝑖=1

}) 
127.77  

For Effect of F10 on F11 

 

0.00549466, 0.0455998, 0.04559947 

𝛽 = (𝑚𝑎𝑥 {𝑚𝑎𝑥1≤𝑖≤𝑛 ∑ 𝐸𝑛𝑖𝑗

𝑛

𝑗=1

, 𝑚𝑎𝑥1≤𝑗≤𝑛 ∑ 𝐸𝑛𝑖𝑗

𝑛

𝑖=1

}) 
14.857 

𝛾 = (𝑚𝑎𝑥 {𝑚𝑎𝑥1≤𝑖≤𝑛 ∑ 𝐻𝑒𝑖𝑗

𝑛

𝑗=1

, 𝑚𝑎𝑥1≤𝑗≤𝑛 ∑ 𝐻𝑒𝑖𝑗

𝑛

𝑖=1

}) 
3.501 

Next, an overall-relation matrix is created using the normalized collective 

direct-relation matrix 𝑇 = [𝑡𝑖𝑗]
𝑛×𝑛

is constructed using equations 16-21.  

Table 4-7 Calculation of Overall Relation Matrix 

 Calculation of 

overall relation 

matrix for Ex 

Calculation of 

overall relation 

matrix for En 

Calculation of 

overall relation 

matrix for He 

 𝐴(𝐼 − 𝐴)−1 𝐵(𝐼 − 𝐵)−1 𝐶(𝐼 − 𝐶)−1 

Effect of F10 on 

F11 

0.14261 0.19949 

  

0.199543 

  

 

The overall relation matrix is computed by taking the inverse of the normalized 

collective direct relation matrix. This process is carried out separately for the values of 

Expectation (Ex), Entropy (En), and Hyper-entropy (He). 
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4.3.8 Step 8 Influence degree and degree of being influenced 

Consequently, the degree of influence 𝑃𝑖  and the degree of being influenced 𝑅𝑗  

are computed using equations 22 and 23.  

4.3.9 Step 9 Calculate prominence and relation 

Afterwards, equations 24-27 are employed in the computation of the relation 𝑟𝑖 

and the prominence  𝑝𝑖.  

4.3.10 Step 10 Prominence  

If a fault is a cause, prominence denotes its vulnerability; if it is a cause, 

prominence denotes its severity. Put otherwise, a criterion's significance increases with 

its magnitude. 

Table 4-8 Calculation of Prominence 

Assigned Names Actual Names Prominence 

values 

Rank  

F4 Machine Jamming  6.136984223, 

5.204771621, 

5.204610242, 

Higher 

F7 Machine vibration 3.190092888, 

4.887519419, 

4.8873567565,  

Lower 

 

Similarly, prominence values for rest of the faults are calculated and show in the table 

below.  

Table 4-9 Ranking based on Prominence Values in Descending Order 

Identified Faults Assigned 

Names 

Prominence 

(Pi) Value 

RANK 

Machine jamming due to thread 
tension issues F4 6.136984223 1 

Sensor malfunction F11 6.057223928 2 

Shittle timing F8 4.739867427 3 

Bobin tension issues F15 4.711355491 4 
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Needle breakage F1 4.307370241 5 

Stitch not feeding F19 4.267689749 6 

Bobin Thread Breakage F3 4.243928372 7 

Machine skipping stitches F6 4.207805065 8 

Head not working F16 4.149458832 9 

Misalignment of design F5 4.135433688 10 

Thread breakage F2 4.126550247 11 

Uneven stitching F13 4.0827826 12 

Motor issues F9 3.993354506 13 

Puckering of fabrics F14 3.950910898 14 

Thread tangling F17 3.819750676 15 

Lubrication problems F12 3.795806083 16 

Fabric rule F10 3.644626713 17 

Machine runs but needle does not 
move F20 3.586759852 18 

Strange noises F18 3.43256847 19 

Machine vibration F7 3.190092888 20 

           The relation values assign faults to either a cause group or an impact group 

depending on their nature. It is determined to be a cause of a fault if the size of the 

relation 𝑟𝑖 is bigger than zero for the fault in question. It is determined to be an effect 

rather than a fault if the size of the relation 𝑟𝑖 is negative and greater than zero.  

 All faults are ranked into cause-and-effect groups on the basis of relation values 

and relationship map will further display their mutual relationships in the following 

tables. 
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Table 4-10 Cause Group and ranking of the faults 

Assigned Names  Identified Faults ri Values Group 

Name 

Rank  

F7 Machine vibration 0.259174062 Cause 1 

F12 Lubrication problems 0.213577867 Cause 2 

F1 Needle breakage 0.197158401 Cause 3 

F2 Thread breakage 0.196699535 Cause 4 

F16 Head not working 0.156883578 Cause 5 

F5 Misalignment of design 0.1553033 Cause 6 

F20 Machine runs but 
needle does not move 

0.13147322 
Cause 7 

F4 Machine jamming due 
to thread tension issues 

0.035930815 
Cause 8 

 

Table 4-11 Effect Group and Ranking of the Faults 

Assigned Name  Identified Faults Relation (ri) 

Values  

Group 

Name 

Rank 

F9 Motor issues -0.024294929 Effect 1 

F14 Puckering of fabrics -0.051452143 Effect 2 

F10 Fabric rule -0.056357822 Effect 3 

F6 Machine skipping 
stitches 

-0.057170832 
Effect 4 

F8 Shittle timing -0.090949007 Effect 5 

F11 Sensor malfunction -0.111050296 Effect 6 

F3 Bobin thread 
breakage -0.115420989 

Effect 7 

F18 Strange noises -0.155126381 Effect 8 

F17 Thread tangling -0.164377416 Effect 9 
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F15 Bobin tension issues -0.24168501 Effect 10 

F19 Stitch not feeding -0.272595943 Effect 11 

 

Table 4-12 Neutral Fault 

Assigned Name Identified Fault ri Value Group 

Name 

pi Value 

F13 Uneven Stitching zero Neutral  4.0827826 
 

4.3.11 Construct Causal Diagram 

The predicted prominence and relation values are then used to create a causal 

diagram, as seen in figures 4-4 and 4-5. The x- and y-axes, with their corresponding 

positive and negative values, make up the causal diagram. The horizontal axis in the 

causal diagram represents the prominence values, which indicate the importance of 

errors. On the other hand, the relation is represented by the vertical axis, which shows 

the kinds of errors. The kind of defects is shown by the link between the two axes. 

 

Figure 4-4 Causal Diagram with Values 
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Figure 4-5 Causal Diagram with Fault Names 

 

4.3.12 Step 12 Construct a Relationship Map 

To calculate the relationship map, the first step is to compute the Effect matrix. 

The Effect matrix is derived by removing values from cells that are less than the 

threshold value, which in this case is 1.03007919780384. Upon examining the Effect 

matrix, it becomes evident that the effect of fault F20 is on fault F9 is 0.3, surpassing 

the threshold value. This indicates that F20 (cause) influences F9 (effect). Such 

relationships can be visualized in the relationship map provided below. This method 

allows us to ascertain the interrelationships among the remaining faults. 
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Figure 4-6 Relationship Map 

 

4.4 DISCUSSION ON RESULTS 

Table 4-1 shows the ranking of the identified problems based on the importance levels. 

The prominence values in DEMATEL show that defects are ranked higher for larger 

values of prominence and lower for lesser values of prominence. Looking at table 4-9, 

it's evident that machine jamming due to thread tension issues tops the list with the 

highest prominence value, securing the first position. This highlights it as the most 

significant fault. Following closely are sensor malfunction and shuttle timing. 

Conversely, strange noises and machine vibration, with their lower prominence values, 

find themselves at the bottom of the ranking in table 4-9, showing that they are very 

least significant among all the faults that are identified. 

As shown in tables 4-10, 4-11, and 4-12, the relation values also aid in the grading and 

classification of discovered defects into cause-and-effect groupings. In DEMATEL, if 
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a fault's relation value is less than zero, it is considered an effect. Conversely, if the 

value of relation is greater than zero, it serves as a cause. Following the DEMATEL 

theory, tables 4-10, 4-11 and 4-12 delineate these cause-and-effect groups. Faults 

categorized as effects exhibit negative relation values, while those categorized as causes 

display positive relation values. However, faults with a relation value of zero are 

allocated to a separate group termed the neutral group, as depicted in table 4-12. This 

classification arises from their lack of positive or negative relation values. 

The following insights are produced by aggregating the results of the prominence and 

relation values in tables 4-10, 4-11, and 4-12. Firstly, machine jamming due to thread 

tension issues exhibits a negative relation value and the highest prominence value, 

positioning it as the most critical fault. Likewise, within the effect group, stitch not 

feeding occupies the bottom rank, indicating it as the least affected effect. This is 

attributed to its negative relation value and minimal prominence compared to other 

effects. Similar assessments can be made for the cause group.  

The causal diagrams, which are shown in figures 4-4 and 4-5, provide a visual depiction 

of errors according to their importance and relationship values. The prominence value 

is represented by the x-axis, while the relationship value is shown by the y-axis. Faults 

with negative correlations below the x-axis zero line are classified as consequences, 

while those above the x-axis (representing positive correlation) are considered causes. 

The fault's distance from zero on the x-axis indicates its importance. For example, a 

cause-effect analysis would indicate that fault F9 is below the x-axis zero line, 

indicating its status as Effect. Additionally, the position farthest from zero shows the 

importance of the effect. Likewise, the F7 fault is located above the zero line of the x-

axis and has the largest distance to the zero line in its group, not only showing its role 

as a result, but also showing a very significant impact. Furthermore, the x-axis 

malfunction (F13, for instance) is not associated with either the cause or the effect 

group. Its limited relevance among defects is further indicated by its prominence value 

and placements on the x-axis. 

Furthermore, figure 4-6 illustrates the relationship map, offering insights into the 

interconnectedness between causes and effects. This map highlights the most 

significant problems and offers useful information on their dependencies. It helps to 

visualize the main flaws as well as how they relate to one another. Only values 
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surpassing the predetermined threshold value, set at 0.134672174861413, are included 

in the relationship map, obtained from the crisp form of the overall relation matrix. The 

mean value of matrix 𝑇∗ stands at 0.105725399934155, with a standard deviation of 

0.0289467749272581. Faults depicted within blue circles represent causes, while those 

within red circles signify effects. At the bottom of the relationship map are faults that 

show no inclination toward either cause or effect. The quantity of lines that emerge 

from or merge onto a fault indicates how prominent it is. Therefore, faults with a greater 

number of lines demonstrate heightened severity. In the relationship map, the tail of 

arrows denotes causes, while the head represents effects. Analysis of the map reveals 

that the highest number of arrows originates from F7, indicating its status as the most 

significant cause. Similarly, F9 demonstrates the maximum number of incoming 

arrows, suggesting it as the most impacted effect. However, faults such as F4 (Machine 

Jamming) and F18 (Strange Noises), despite falling into the cause and effect groups, 

respectively, lack interdependence due to their values in the overall relation matrix 

falling below the threshold. Therefore, despite their categorization, they are disregarded 

in the relationship map due to their insignificant prominence. This approach allows for 

a clear observation of the relationships among the remaining causes and effects. 

The method utilized in this study holds significant potential for applications in diverse 

fields such as energy and development sectors, safety systems, analysis of the 

environments, and business intelligence, among others. By adapting and employing this 

established method in our research, we have effectively bridged disciplinary barriers 

and demonstrated its efficacy in revealing previously unexplored facets of processes 

within the manufacturing industry. The study represents an innovative contribution to 

the manufacturing sector, highlighting the versatility of the methodology beyond its 

traditional domains. Embracing a cross-disciplinary approach has led to the emergence 

of fresh perspectives and enhanced understanding of the manufacturing industry, thus 

underscoring the adaptability of this methodology. While not the pioneering application 

of this method, our study stands out as a notable instance of successful integration into 

the manufacturing and production domain. It is an invaluable resource for upcoming 

studies aiming at enhancing its potential in this field. 
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CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 

5.1 GENERAL 

This chapter encompasses a summary of the study, outlining both its theoretical 

and practical contributions, as well as limitations encountered during the research 

process. Solutions to address these limitations are offered, alongside future 

recommendations for researchers in the field. 

5.2 SUMMARY OF THE STUDY 

The negative consequences of the defects within a production process extend 

beyond mere operational disruptions, affecting the quality of resulting items. Beyond 

mere identification and prioritization, it's crucial to deeply analyse the 

interconnectedness among these flaws. These interconnections create a complex web 

where their effects intertwine and mutually influence one another. This study 

endeavours to provide a comprehensive analysis to effectively mitigate the 

consequences stemming from these errors. The primary objective of this study is to 

explore the interconnections among various defects impacting production processes in 

the manufacturing industry, establishing a hierarchical ranking of these faults. To 

achieve this goal, two techniques are employed. The cloud model theory is utilized to 

address the challenge of managing uncertainty in decision-making processes arising 

from differences in decision makers' cognitive capacities and background knowledge. 

Additionally, the DEMATEL approach is extended to integrate the cloud model 

framework, enabling the identification of critical flaws and analysis of their 

interdependencies. The proposed model categorizes discovered problems into distinct 

groups based on their causes and effects and reveals the interdependence among these 

flaws. Furthermore, it determines a comprehensive rating of the faults, irrespective of 

their grouping. These results are visually represented through diagrams and maps. This 

research underscores the innovation of integrating cloud model theory with DEMATEL 

to enhance traditional FMEA and broaden its applicability in manufacturing operations. 

The implementation of this study has notably increased production efficiency within 

the industry, attributed to a significant reduction in losses resulting from interconnected 

defects. In the nutshell, this study employs an integrated methodology to identify and 

analyze flaws and their linkages, thereby improving the efficiency of production 
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processes in the textile manufacturing sector. It does this by combining cloud model 

theory with the DEMATEL method. 

5.2 CONTRIBUTION 

5.2.1 Practical Contribution of the study 

The successful application of this methodology is to pinpoint areas within a 

system or process that require increased focus and examination. Identified as trouble 

spots, these areas are prone to disruptions or negative outcomes. Once these critical 

areas are identified, they can undergo comprehensive corrective actions and treatments 

aimed at mitigating potential consequences. By embracing the insights and 

recommendations derived from this study, the sector stands to achieve substantial 

improvements in the overall quality of its output. These enhancements extend beyond 

product quality, encompassing significant strides in increasing production quantity. 

This objective is achieved by strategically minimizing downtime resulting from 

machine component failures or malfunctions during the production process. The 

effective implementation of this methodology not only serves as a proactive strategy to 

anticipate and prevent prospective problems but also acts as a catalyst for enhancing 

both the quality and quantity of production. The study functions as a potent instrument 

for augmenting operational efficiency, thereby contributing significantly to the 

industry's competitive advantage and long-term viability. 

5.2.2 Theoretical Contribution of the study 

This study introduces advancements in Failure Modes and Effects Analysis 

(FMEA) methodology across several critical domains. These advancements encompass 

key areas, each contributing significantly to the improvement of FMEA practices. 

Firstly, a major contribution lies in the reduction of FMEA result duplication. By 

employing novel evaluation and examination methods, redundant or overlapping results 

are minimized. This reduction in duplicative efforts enhances FMEA workflow 

efficiency and optimizes resource allocation. Moreover, traditional FMEA struggles 

with managing real-world uncertainty and ambiguity. To address this limitation, this 

study expands the theoretical basis of FMEA. The framework becomes adaptable and 

resilient to dynamic and unexpected circumstances through the inclusion of uncertainty 

and ambiguity management strategies. This enhancement enhances the utility of FMEA 

across various industry domains. Additionally, this study delves into understanding the 
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complex network of reciprocal linkages between failure modes, which is another 

theoretical contribution. While traditional FMEA focuses on specific failure modes and 

TOPSIS treats faults as independent entities, this study identifies and analyses 

interdependencies and feedback loops among failure modes. This holistic perspective 

provides insights into how failure modes interact and cascade, thereby improving 

decision-making and risk management in the industry. In conclusion, this study's 

theoretical contributions significantly expand FMEA capabilities by addressing crucial 

challenges such as result duplication, adaptation in uncertain environments, and 

reciprocal failure mode linkages. These contributions enhance FMEA's effectiveness, 

efficiency, relevance, and applicability in navigating a rapidly changing and complex 

industrial landscape, positioning it as a valuable tool for proactive risk assessment and 

management across various industry domains. 

5.3 LIMITATIONS OF THE STUDY 

This approach has limits, despite the fact that it greatly aids business managers 

in identifying and analysing important defects and their interconnections. First off, 

because of their restricted cognitive capacity, decision makers could find it difficult to 

offer all evaluation data. As a result, certain sections of the assessment matrix may 

remain unfilled, prompting the need for additional research on generating appropriate 

instructions for completing the matrix. Moreover, decision makers come from diverse 

backgrounds and possess varying cognitive skill sets. Therefore, a tool designed for 

displaying judgments at a more general level may not suffice. Improvements to the 

weighting mechanism could enhance the efficiency of this method. Additionally, one 

drawback of DEMATEL is that respondents require more information as the number of 

components increases, leading to potential validity and accuracy issues if respondents 

become disinterested or bored with lengthy questionnaires. Therefore, in order to 

guarantee the validity and accuracy of the data, efforts should be made to alleviate 

respondent weariness brought on by long questionnaires. 

5.4 FUTURE DIRECTIONS 

Incorporating the Analytical Network Process theory into this study offers the chance 

to assess the strength or robustness of relationships between identified causes and 

effects. Combining the Grey hypothesis with DEMATEL could be a useful way to 

address problems like survey fatigue and declining respondent engagement. 
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Additionally, offering respondents multiple options to fill the form is advisable, 

considering their diverse backgrounds and cognitive capacities. Options such as 

HFLTS, PLTS, LHFS, and ILIFTS could be provided. Respondents might articulate 

significant preferences for specific options or attributes in a highly ambiguous manner 

using HFLTS, indicating a strong affiliation with their chosen selections. It is 

recommended that when asked about their preferences, respondents give more complex 

answers that permit partial membership to a number of traits or possibilities. This 

suggests that people have varied degrees of inclination to favor different solutions. In 

these situations, respondents are likely to express their preferences using a range of 

fuzzy sets, showing varying degrees of liking across different options or traits, from 

low level to high level. Respondents can express a range of fuzzy preferences with 

ILIFTS by using intervals rather than a single point, which allows for greater flexibility 

in their selections. 
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Appendix – I Cloud Conversion 

Sr. NO. y  Linguistic 

Value 

EX EN HE 

1 y0 NI 2.61804 0.87268 0.20564 

2 y1 VL 3.1802 0.5393 0.12709 

3 y2 L 3.527767 0.33333 0.07854 

4 y3 ML 4.09009 0.20598 0.04854 

5 y4 M 5.0000 0.1723 0.03 

6 y5 MH 5.9099 0.20598 0.0485 

7 y6 H 6.47223 0.3333 0.07854 

8 y7 EH 6.819747 0.53932 0.12709 

9 y8 PI 7.38196 0.87268 0.20564 

 

Appendix – II Weight Allocation Table 

Professional Title Scores 

by PT 

Work 

Experience 

in industry 

Score 

by WE 

 
 

 

 

Senior Technician 5 12 Years 3 8 0.19047619 

Machine Master 4 19 Years 3 7 0.166666667 

Junior Supervisor 3 15 Years 3 6 0.142857143 

Senior Supervisor 4 21 Years 4 8 0.19047619 

Electrical Engineer 3 10 Years 3 6 0.142857143 

Manager in 

Department 3 25 Years 

 

4 

 

7 0.166666667 

    42 1 
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Appendix – III Weighted Matrices 

 

Weighted Expectation Matrix 

 

Weighted Entropy Matrix 

 



 

 

 

Weighted Hyper-entropy Matrix 


