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Complex Engineering Problem

Range of Complex Problem Solving
Attribute Complex Problem

1 Range of conflicting re-
quirements

Involve wide-ranging or conflicting technical, engineer-
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2 Depth of analysis re-
quired

Have no obvious solution and require abstract thinking,
originality in analysis to formulate suitable models.

X

3 Depth of knowledge re-
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Requires research-based knowledge much of which is at,
or informed by, the forefront of the professional discipline
and which allows a fundamentals-based, first principles
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Are outside problems encompassed by standards and
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Involve diverse groups of stakeholders with widely vary-
ing needs.
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and the environment

Have significant consequences in a range of contexts,
characterized by difficulty of prediction and mitigation.

X

5 Familiarity Can extend beyond previous experiences by applying
principles-based approaches.

X
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Abstract

Bridges of the modern era face a variety of challenges. Throughout their deployment and
life cycle, bridges go through stresses and loads that can seriously damage their structural
integrity. None more so than the damages caused by vibrations. These damages include
but are not limited to Fatigue Damage, Resonance, Dynamic Amplification, Vibration
Induced Displacement, Structural Deterioration and Serviceability issues to name a few.
According to the American Society of Civil Engineers, these damages lead to 87 to 222
bridges collapse annually in the United States alone. The collapse of these bridges has a
domino effect on the regions economy. For instance, the 2007 collapse of I-35W bridge
in Minneapolis, MN led to a repair cost of $234 million to rebuild and cost an estimated
$130 billion in annual revenue in lost time and fuel due to trade disruptions. The main
idea behind our project is to preempt these damages by monitoring the bridge structure
continuously via IoTs, and providing timely alerts to circumvent such incidents from oc-
curring regularly. The IoT devices will be accompanied by an ML model that analyzes
the collected data and provides the assessment to be viewed on an centralized dashboard.
The provided assessments will allow local bodies to perform maintenance on bridges and
closely observe their performance under various stress conditions. The solution will be
intuitive and easy to deploy, allowing governing bodies to implement it without much
hassle. The target users of the product are transportation boards and local development
authorities.

Keywords: Structural Health Monitoring, Internet of Things, Vibrational Data Sampling,
Machine Learning, Cloud Computing
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Chapter 1

Introduction

A bridge is a structure that is built over a river, road, or railway to allow people and

vehicles to cross from one side to the other. It is the job of an engineer to ensure that a

bridge is structurally sound and able to withstand loads without too much maintenance.

While a bridge’s response to the applied loads is well understood, the applied traffic loads

are still the subject of research.

Bridges of the modern era face a variety of challenges. Throughout their deployment and

life cycle, bridges go through stresses and loads that can damage their structural integrity.

None more so than the damages caused by vibrations. These damages can occur during

defects in designing, improper construction and irregular maintenance of the bridge. Dy-

namic loads like traffic make bridges vibrate. Especially for bridges with a large span,

vibrations have a significant impact on their structural stability and durability. Due to ma-

terial defects, fatigue and other influences, a bridge typically has random structural irreg-

ularities, which affect its dynamic response. These damages include but are not limited to

Fatigue Damage, Resonance, Dynamic Amplification, Vibration Induced Displacement,

Structural Deterioration and Serviceability Issues.

Historically, bridge health has been assessed through periodic inspections and manual

measurements. Engineers and inspectors visually evaluate bridge structures to assess

their condition, relying on visible signs of wear, damage, or distortion. These inspec-
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tions, though necessary, are often irregular and may overlook underlying structural issues

between visits. Consequently, there remains a risk of undiscovered corrosion or degener-

ation, which could compromise safety.

On the other hand, Bridge Structural Health Monitoring, or SHM, has developed into a

state-of-the-art approach to bridge safety and maintenance. Structural health monitor-

ing (SHM) is the process of using damage detection and characterization techniques for

critical structures like bridges, wind turbines, and tunnels. It is a non-destructive on-site

structural evaluation method that employs several types of sensors embedded or attached

to the structure. Since vibration monitoring assesses dynamic properties including natural

frequencies and mode shapes, it is a crucial part of SHM. This makes it possible to iden-

tify minute variations in the behavior of the structure, which could be early warning signs

of damage or deterioration.

Bridge Structural Health Monitoring (SHM) has gained popularity in recent years, with

sensors installed on large structures to provide real-time information about their health.

Geodetic monitoring approaches concentrate on geometric deformation, whereas vibra-

tion monitoring examines vibration features such as natural frequencies and mode shapes.

This approach detects structural changes and flaws right away. Although there is no one

way for identifying damage, vibration monitoring, when paired with data analysis, is a

critical instrument for limiting risks and hazards.

About 9.1% of the United States’ bridges were deemed structurally inadequate in 2021,

and 42% of bridges are over 50 years old, suggesting a sizable fraction may need to be

replaced or rehabilitated. In addition, the estimated backlog for bridge rehabilitation needs

in the United States is $125 billion, and the yearly spending on bridge maintenance and

repair is more than $10 billion.

2



1.1 Motivation

As Pakistani students, we are profoundly concerned about our country’s infrastructure,

particularly its bridges. Pakistan, being a developing country with limited financial re-

sources, faces significant obstacles in maintaining and managing its infrastructure prop-

erly.

Pakistan’s infrastructure is under severe strain as a result of growing urbanization, pop-

ulation development, and increased motor traffic. The rapid expansion of metropolitan

areas has placed tremendous strain on transportation infrastructure, particularly bridges.

According to the World Bank, Pakistan’s urban population is predicted to exceed 118

million by 2030, putting additional demand on transportation infrastructure [1]. Many

bridges, especially those in urban areas and along significant transportation routes, are

subjected to high loads and wear and tear. The National Highway Authority (NHA) of

Pakistan believes that over 40% of the country’s bridges are in bad condition and need

immediate attention [2].

A significant section of Pakistan’s bridge infrastructure is old, with several structures be-

yond their intended design life. These bridges’ deterioration poses severe safety threats to

travelers while also impeding the seamless flow of goods and services across the country.

The Asian Development Bank (ADB) reported that over 70% of Pakistan’s bridges are

over 50 years old [3]. Aging infrastructure is more prone to structural flaws such as cor-

rosion, fatigue, and material degradation. According to the ADB research [3], numerous

bridges in Pakistan have deteriorated due to inadequate maintenance and renovation. See

figure 1.1 on page 4.

Limited financial resources and competing priorities often hinder investment in infras-

tructure maintenance and monitoring efforts. The inadequate allocation of funds for

bridge maintenance exacerbates the deterioration of infrastructure and compromises pub-

lic safety. The NHA estimates that the annual maintenance budget for bridges in Pakistan

3



Figure 1.1: Sardaryab Bridge Collapse.

is insufficient to address the backlog of maintenance requirements [2]. Manual inspection

methods, although essential, can be resource-intensive and time-consuming. The NHA

reports that less than 30% of Pakistan’s bridge network undergoes regular inspections due

to resource constraints [2].

Given the pressing challenges faced by Pakistan’s bridge infrastructure, there is an urgent

need for a more efficient and proactive approach to monitoring and maintenance. Real-

time monitoring systems powered by advanced technologies such as IoT and machine

learning offer immense potential to enhance the safety and reliability of bridge infrastruc-

ture. As students passionate about technology and innovation, we are eager to harness

the power of these technologies to revolutionize bridge health monitoring in Pakistan and

pave the way for sustainable infrastructure development.
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1.2 Problem Statement

This study tackles the crucial need for an effective and reliable bridge health monitoring

system in Pakistan. With increased traffic flow, truckloads frequently exceed the limits,

causing accelerated wear and probable breakdowns, particularly on older bridges. This

problem is not specific to Pakistan; similar issues have been identified in rich countries

such as the United States and numerous European nations [4, 5]. For example, Cook

et al. (2015) discovered that the average service age of broken bridges due to overload

in the United States was approximately 64 years. Vehicle overload is becoming more

widespread in developing countries, such as China, causing major issues. Overturning

failures of single-column pier bridges in China occur often with an average service age

less than 20 years, and some even in one year [6, 7]. Overloads can increase fatigue

damage in steel bridges. See table 1.1 on page 6.

In Pakistan, where a substantial section of bridge infrastructure is deteriorating and under

growing pressures, the repercussions of failing to solve this issue are serious. The National

Highway Authority (NHA) of Pakistan believes that over 40% of the country’s bridges are

in bad condition and need immediate attention [8]. According to the Asian Development

Bank (ADB), roughly 70% of Pakistan’s bridges are over 50 years old and have structural

issues owing to inadequate maintenance [9]. Seismic activity affects 17% of Pakistan’s

land area [10], increasing the danger of bridge failures. According to the National Disaster

Management Authority (NDMA), floods and earthquakes have caused substantial damage

to bridge infrastructure over the previous decade [11].

Without an adequate monitoring system, the safety and reliability of Pakistan’s bridges

remain impaired, creating dangers to public safety, economic stability, and efficient traffic.

The NHA claims that fewer than 30% of Pakistan’s bridge network undergoes regular

inspections due to resource constraints [8]. Manual inspections are time-consuming and

expensive, resulting in delayed detection and treatment of structural faults.
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Table 1.1: Statistics on Bridge Failures Due to Overload and Other Causes

Study Cause of Fail-
ure

Average
Service Age
of Failed
Bridges

Failure Type

Lee et al. (2013);
Liu (2013)

Overload (De-
veloped Coun-
tries)

64 years
(United
States)

-

Peng et al. (2017);
Xiong et al. (2017)

Overload
(China)

Less than 20
years, some
less than 1
year

-

Biezma and
Schanack (2007)

Overload Accelerates
fatigue dam-
age of steel
bridges

-

Lee et al. (2013) Overload - Total collapse:
76%, Partial
collapse: 24%

Liu (2014) Hydraulic - Total collapse:
41%, Partial
collapse: 53%

Lee et al. (2013) Overload
(135 bridge
failures)

- Steel bridge
failures: 64%,
Concrete
bridge fail-
ures: 11%

The importance of research and development in this field is obvious. Modern monitoring

systems have the potential to greatly improve bridge maintenance and safety. The goal

of this study is to create an IoT-based bridge health monitoring system that incorporates

machine learning models and is implemented on a cloud server. The proposed approach

uses accelerometer sensors (ADXL345) and ESP32 micro-controller chips to continu-

ously collect structural health data. This data will be delivered to AWS IoT Core over

MQTT and stored in S3. AWS SageMaker will be used to deploy an auto-encoder-based

machine learning model that analyzes three-dimensional vibrational data and determines

if the bridge function is regular or irregular based on Mahalanobis distance.

The system will generate alerts and reports that will be shown on a monitoring dashboard
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powered by AWS QuickSight. This real-time monitoring tool will allow for early detec-

tion of possible structural concerns, optimize resource allocation for maintenance, and

improve the overall safety and resilience of Pakistan’s bridge infrastructure. This project

intends to meet the crucial need for an effective bridge health monitoring system using IoT

and cloud computing technologies, thereby contributing to the long-term development of

Pakistan’s transportation network.

1.3 Scope

The scope of this project includes designing, developing, and deploying an advanced

bridge health monitoring system tailored to Pakistan’s infrastructure needs. This system

combines Internet of Things (IoT) technologies, machine learning (ML) algorithms, and

cloud computing to provide real-time monitoring and predictive maintenance.

The system’s key components include ESP32 micro-controller based nodes with ADXL345

accelerometer. These nodes will capture 3D vibrational data from the bridge structures.

The data will be delivered to AWS IoT Core using the MQTT publish-subscribe protocol,

ensuring a safe and dependable data transfer. The collected data will be stored in Amazon

S3 in a CSV file, allowing for scalable and cost-effective storage.

The system’s analytical core uses AWS SageMaker to deploy an autoencoder-based ma-

chine learning model. This model will evaluate vibrational data and use the Mahalanobis

distance to determine whether the bridge’s structural health is regular or irregular. The

categorization results will be saved in S3 and retrieved by AWS QuickSight for dis-

play. QuickSight will provide a comprehensive dashboard, allowing stakeholders to track

bridge health in real time and make educated maintenance decisions.

The project’s goal is to create a scalable, cost-effective, and simple to use technology

that can be deployed on a variety of bridge structures. It will prioritize the reliability of

data collection and processing, the accuracy of predictive maintenance models, and the
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clarity of visualizations for end users. The system’s real-time monitoring capabilities will

provide early notice of any structural faults, increasing bridge safety and longevity.

1.4 Aims and Objectives

The primary goal of this project is to improve the safety and dependability of Pakistan’s

bridge infrastructure by implementing a comprehensive, real-time health monitoring sys-

tem.

The objectives include:

• Decreasing the danger of catastrophic bridge failures, thereby preserving lives and

decreasing economic losses.

• Optimizing maintenance schedules to ensure optimal deployment of limited re-

sources.

• Extending the lifespan of existing bridges to avoid costly replacements.

1.5 Outcomes

This system seeks to enable smart infrastructure management decisions by delivering ac-

curate and timely data on bridge conditions, ultimately contributing to Pakistan’s eco-

nomic stability and progress by assuring the continued, safe operation of essential trans-

portation networks.

1.6 Report Organization

The organization of the thesis is as follows:

Chapter 2: This chapter includes background information and a literature review on

bridge health monitoring systems, emphasizing the limits of traditional inspection meth-
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ods as well as the possibilities of modern technologies like IoT and machine learning in

this field.

Chapter 3 This chapter discusses the project’s materials and components, including the

selection and specifications for the ESP32 nodes, ADXL accelerometer, and the AWS

cloud architecture. It further describes how to integrate these components into a unified

monitoring system.

Chapter 4 This chapter describes the project’s approach, including the design and con-

struction of the IoT-based data gathering network, the data transfer protocols, and the

machine learning models used to detect anomalies. It also discusses the data processing

and storage techniques in AWS.

Chapter 5: This chapter describes the system’s deployment and validation, including

the installation of sensor nodes on bridge structures, real-time data analysis with AWS

SageMaker, and visualization of results using AWS QuickSight. It also covers the testing

and validation procedures used to assure the system’s accuracy and reliability.

Chapter 6 This chapter wraps up the research by summarizing the findings and discussing

the influence of the adopted system on bridge repair procedures in Pakistan. It also dis-

cusses future work and potential enhancements, such as expanding the system to monitor

several bridges and incorporating more data sources for better predictive maintenance.
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Chapter 2

Background & Related Work

2.1 Introduction to Technologies

2.1.1 Structural Health Monitoring (SHM)

Structural health monitoring (SHM) is the process of adopting a damage detection and

characterisation technique for engineering structures. It entails using a variety of sensors

and data collecting systems to continuously monitor the health of structures including

bridges, buildings, and dams. SHM systems identify anomalies and predict possible fail-

ures, enabling for prompt maintenance and the prevention of catastrophic catastrophes.

[12].

2.1.2 Internet of Things (IoT)

The Internet of Things (IoT) is a network of physical devices equipped with sensors,

software, and other technologies that communicate and share data with other devices and

systems via the Internet. The Internet of Things provides real-time data gathering and

transmission, which is critical for applications such as SHM. Integrating IoT devices into

SHM systems enables continuous monitoring and fast data processing. [13].
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2.1.3 Cloud Computing

Cloud computing enables the on-demand availability of computing resources via the in-

ternet. It provides scalable solutions for data storage, processing, and analysis, making it

perfect for dealing with the massive amounts of data produced by SHM systems. Cloud

systems like AWS, Microsoft Azure, and Google Cloud allow for the deployment of ad-

vanced analytics and machine learning models, supporting real-time data analysis and

predictive maintenance. [14].

2.2 Bridge Failures and Their Causes

2.2.1 Overload

Overloading happens when the weight of the vehicle exceeds the bridge’s design capacity,

causing structural damage or failure. In developed nations like the United States, research

has revealed that overloading is a significant cause of bridge failures, with the average

service age of broken bridges owing to overload being roughly 64 years (Lee, 2013).

Vehicle overloads are growing more prevalent in developing countries, worsening the

situation. [15].

2.2.2 Material Fatigue

Material fatigue is the weakening of materials caused by repeated stress cycles. Steel

bridges are especially vulnerable to fatigue degradation, which can cause unexpected and

catastrophic failures if not handled immediately. Research reveals that fatigue degradation

is a key cause of bridge collapses, with steel bridges being more sensitive than concrete

bridges [16].
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2.2.3 Design flaws

Design errors, such as inadequate consideration of load-bearing capacity and failure to

account for dynamic pressures, play a key role in bridge failure. Poor design can result

in problems such as inadequate load distribution and susceptibility to environmental pres-

sures. Studies have underlined the necessity of strong design approaches to maintain the

longevity and safety of bridge constructions[17].

2.2.4 Environmental Factors

Floods and earthquakes pose substantial dangers to bridge integrity. Seismic activity, in

particular, impacts a large section of the land area in nations such as Pakistan, exposing

bridges to structural damage. Flooding can degrade bridge foundations and cause them to

collapse. Effective monitoring and maintenance are needed to reduce these hazards and

maintain the durability of bridges. [? ].

2.3 Traditional Monitoring Solutions

Traditional bridge monitoring methods are primarily reliant on physical inspections and

routine maintenance. These inspections are carried out by trained engineers who evalu-

ate the physical condition of bridges and identify potential problems. Despite their im-

portance, manual inspections are time-consuming, labor-intensive, and often subjective,

resulting in variable outcomes. [18].

The most prevalent traditional method is visual inspections, which involve engineers look-

ing for apparent signs of degradation such as fractures and rust. However, this method

does not discover underlying abnormalities that are not obvious to the naked eye. Non-

destructive testing (NDT) procedures, like ultrasonic testing and radiography, can identify

interior faults; however, they require specialist equipment and personnel, making them

pricey and less feasible for frequent usage [19].

12



The constraints of traditional approaches highlight the need for more sophisticated and

automated solutions that enable continuous and real-time monitoring, opening the way

for the implementation of SHM systems.

2.4 SHM Solutions

2.4.1 Overview of SHM Systems

Structural Health Monitoring (SHM) systems use innovative technologies to continuously

monitor the structural integrity of bridges. These systems use a variety of sensors to

collect data on various characteristics such as vibration, strain, and temperature. Data is

then examined to discover anomalies and predict probable failures, allowing for proactive

maintenance and increased safety. [20].

2.4.2 Types of Sensors Used in SHM

In SHM systems, different types of sensors are employed, each with a distinct purpose.

Accelerometers, strain gauges, and temperature sensors are among the most used. Ac-

celerometers monitor vibrations and are essential for sensing dynamic responses in bridge

structures. Strain gauges measure stress and strain, providing information on load distri-

bution and material fatigue. Temperature sensors assist in assessing the heat effects on

structural integrity. [21].

2.4.3 Advantages of Vibrational Sensors

Vibrational sensors, such as accelerometers, are especially useful for SHM because they

can record the dynamic reactions of buildings under a variety of loads and situations.

They are sensitive to changes in structural behavior, making them suitable for early de-

tection of problems like cracks and material degradation. Vibrational sensors are also

extremely simple to install and maintain, offering a cost-effective solution for continuous
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monitoring. [22].

2.5 IoT and Their Uses in Bridge SHM

The introduction of the Internet of Things (IoT) into SHM systems has transformed bridge

monitoring. IoT-enabled SHM systems employ networked devices to gather and commu-

nicate data from bridge sensors to centralized databases for analysis. This real-time data

collecting and transmission allows for continuous monitoring and early detection of struc-

tural concerns. [13].

2.5.1 Wireless Sensor Networks (WSNs)

Wireless Sensor Networks (WSNs) are made up of spatially distributed sensors that com-

municate wirelessly to gather and send data. WSNs are commonly utilized in IoT-enabled

SHM systems because of their flexibility and scalability. These networks are easy to build

on bridges, giving complete coverage and real-time monitoring capabilities. [23].

2.5.2 Case Studies of IoT-based SHM Systems

IoT-based SHM systems have been successfully implemented in many regions of the

world. For example, the installation of such devices on the Golden Gate Bridge has sub-

stantially improved its monitoring capabilities, allowing for real-time assessments of its

structural stability. These technologies have been effective in detecting anomalies early

and lowering maintenance expenses. [24].

2.6 Cloud Computing and Real-Time Data Analysis

Cloud computing plays a pivotal role in the implementation of modern SHM systems.

It provides the computational power and storage capacity necessary to handle the vast

amounts of data generated by IoT devices. Cloud platforms enable advanced analytics and
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machine learning models to be deployed, facilitating real-time data analysis and predictive

maintenance [14].

2.6.1 Benefits of Cloud Computing in SHM

Cloud computing has numerous advantages for SHM systems, including scalability, adapt-

ability, and cost-effectiveness. SHM systems can process and analyze huge datasets in real

time using cloud resources, ensuring rapid diagnosis of structural faults. Machine learn-

ing algorithms that can predict maintenance needs can be deployed on Cloud platforms,

which improves the overall effectiveness of SHM systems. [25].

2.6.2 Real-Time Data Analysis and Predictive Maintenance

Real-time data analysis is critical to the efficiency of SHM systems. Cloud computing

enables advanced analytics and machine learning algorithms process and analyze data in

real time. This functionality enables fast detection of anomalies and the generating of

notifications for maintenance teams. Predictive maintenance, enabled by real-time data

analysis, assists in identifying possible issues before they become significant, assuring

the safety and reliability of bridge infrastructures. [26].

2.7 Literature Review

Traditional bridge inspection methods, while useful, have severe drawbacks in terms of

subjectivity, labor effort, and the inability to offer continuous monitoring. Studies have

highlighted the necessity for automated technologies that can provide real-time informa-

tion about the structural health of bridges. [18].

The advent of SHM systems marked a significant leap forward, with early implementa-

tions demonstrating the benefits of continuous monitoring using sensors and data acqui-

sition systems. Research has shown that SHM systems can effectively detect structural
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anomalies, enabling timely maintenance actions and preventing failures. For example,

the SHM implementation on the Tsing Ma Bridge in Hong Kong has been extensively

studied and cited as a model of effective bridge monitoring [24].

The integration of IoT into SHM systems further enhanced their capabilities, providing

real-time data collection and transmission. IoT-enabled SHM systems have been deployed

in various parts of the world, with significant success in improving bridge safety and

maintenance efficiency. Studies have documented the deployment of such systems on

major bridges, including the Golden Gate Bridge, demonstrating their effectiveness in

real-world applications [23].

Cloud computing has emerged as a critical component of modern SHM systems, offer-

ing the necessary computational power and storage for handling large datasets. The use

of cloud-based analytics and machine learning models has been widely discussed in the

literature, highlighting their role in enhancing the predictive maintenance capabilities of

SHM systems. Research has shown that cloud computing can significantly improve the

scalability and cost-efficiency of SHM systems, making them more accessible and effec-

tive [14].
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Chapter 3

Material & Component

This chapter covers the many components and technologies used in the construction of

our bridge monitoring system. We’ll look at the ESP32 microcontroller, ADXL vibration

sensor, ESP-NOW and MQTT communication protocols, our autoencoder-based machine

learning model, and the AWS cloud platform. Each component is compared with compa-

rable technologies in their respective domains to highlight its benefits and suitability for

our project.

3.1 Components

3.1.1 Data Acquisition Nodes

The Data Acquisition Node (DAN), see figure 3.1, is designed to be a lightweight and

energy-efficient module for data sampling. Each DAN is built around the ESP32 micro-

controller and utilizes the ADXL345 accelerometer to sense vibrations. The system is

optimized for low power consumption and reliable data transmission.
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Figure 3.1: Data Acquisition Node
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3.1.1.1 ESP32 Micro-controller

The ESP32 is a line of low-cost, low-power system-on-chip micro-controllers that include

integrated Wi-Fi and dual-mode Bluetooth. Espressif Systems is responsible for its design

and manufacturing. The ESP32 micro-controller is utilized in DANs because it has diverse

wireless connection capabilities and performance efficiency. Figure 3.2

• Manufacturer: Espressif Systems

• Model: ESP32

• Features:

– Integrated Wi-Fi and Bluetooth

– Dual-core 32-bit LX6 microprocessors

– Ultra-low power consumption

For more details, refer to the official datasheet: https://www.espressif.com/

sites/default/files/documentation/esp32_datasheet_en.pdf

Figure 3.2: ESP 32 Dev-Kit

To understand the benefits of using the ESP32, we compare it with other popular micro-

controllers such as Raspberry Pi Pico, and STM32. See table 3.1 for details.
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Feature ESP32 Raspberry Pi Pico STM32
CPU Dual-core Xtensa LX6 Dual-core ARM Cortex-M0+ ARM Cortex-M4
Clock Speed 160 MHz 133 MHz 180 MHz
RAM 520 KB 264 KB 192 KB
Flash 4 MB 2 MB 512 KB
Wi-Fi Yes No No
Bluetooth Yes No No
GPIO Pins 34 26 37

Table 3.1: Comparison of Micro-controllers

The ESP32 provides improved performance with its dual-core processor, increased clock

speed, and integrated Wi-Fi and Bluetooth capabilities, making it ideal for our IoT appli-

cation. [13].

3.1.1.2 ADXL345 Accelerometer

Analog Devices manufactures the ADXL345 digital MEMS (Micro-Electro-Mechanical

Systems) accelerometers. It is employed in the DAN system because of its high resolution

and capacity to quantify static as well as dynamic acceleration.

• Manufacturer: Analog Devices

• Model: ADXL345

• Specifications:

– Type: MEMS Accelerometer

– Measurement Range: ±2g

– Frequency Range: 10 Hz – 3.2 kHz

– Resolution: 10-bit

– Sampling Rate: 40 Hz

– Communication: I2C

For more details, refer to the official datasheet: https://www.analog.com/media/
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en/technical-documentation/data-sheets/ADXL345.pdf

Figure 3.3: ADXL 345 Package

We compare the ADXL with other accelerometer such as the MPU6050 and LIS3DH.

Feature ADXL MPU6050 LIS3DH
Sensitivity High Medium Medium
Range ±2g/±4g/±8g/±16g ±2g/±4g/±8g/±16g ±2g/±4g/±8g/±16g
Resolution 16-bit 16-bit 12-bit
Power Consumption Low Medium Low
Digital Output Yes Yes Yes

Table 3.2: Comparison of Vibrational Sensors

The ADXL’s high sensitivity and low power consumption makes it the best choice for our

SHM application [24].

3.1.1.3 Data Sampling and Transmission

The vibrations are sampled by the DANs with the help of ADXL345 accelerator. Data

within specific frequency and measurement ranges is seized by the accelerometer, after

which it is handled by ESP32. The ESP32 reads the data and then sends it through to

the Hub node in the IoT network using a peer-to-peer (P2P) lightweight packet transfer

protocol called ESP-NOW.
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3.1.1.4 ESP-NOW Protocol

ESP-NOW is a P2P communication protocol developed by Espressif Systems. This allows

ESP32 devices to talk to each other over Wi-Fi without a central server or access point.

The lightweight energy saving protocol is basically suitable for.

• Features:

– Low latency

– Low power consumption

– Peer-to-peer communication

For more details, refer to the official documentation: https://docs.espressif.

com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_

now.html

3.2 Communication Protocols: ESP-NOW and MQTT

ESP-NOW and MQTT are two communication protocols used to send sensor data. ESP-

NOW is a low-power peer-to-peer protocol, while MQTT is a lightweight message proto-

col popular for IoT applications [23].

3.2.1 Comparison with Other Communication Protocols

We compare ESP-NOW and MQTT with other protocols like Zigbee and Bluetooth LE

[13]. See table 3.3 for details.

ESP-NOW and MQTT offer a good balance of range, power consumption, and scalability,

making them suitable for our project [23].
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Feature ESP-NOW MQTT Zigbee Bluetooth LE
Range Medium High Medium Short
Power Consumption Low Low Medium Low
Data Rate High High Low Medium
Scalability Medium High High Medium
Reliability High High Medium High

Table 3.3: Comparison of Communication Protocols

3.3 Machine Learning Model

An unsupervised learning model, based on an autoencoder, is used to find anomalies in

the sensor data. The above model is written in Python on Kaggle and utilizes Mahalanobis

distance for anomaly detection [20].

Autoencoders are a type of neural network that is trained to copy its input data from

the source location to destination location. We used an autoencoder to compress (and

then decompress) the data from each process which in turn allows us to learn important

properties of normal operation so that we can detect anomalies. This also brought the

dimensions of our data set down to 32 features.

3.3.1 Autoencoder Architecture

The Autoencoder architecture includes both an encoder and a decoder. The encoder com-

presses the input data into a lower-dimensional representation, and the decoder recon-

structs the original data from that compressed representation. In our example, the dataset’s

dimension was reduced to 32 columns at the bottleneck layer.

The use of an Autoencoder for feature learning showed great success in compressing

the dataset while retaining its critical features. The Autoencoder’s ability to generalize

well without over-fitting, as demonstrated by the consistent validation loss, supports its

suitability for unsupervised feature learning in this setting.
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Figure 3.4: Deep Encoder Model.
[27]

3.3.2 Comparison with Other ML Models

We compare the autoencoder model with other machine learning models like Support

Vector Machines (SVM) and Random Forests.

Metric Autoencoder SVM Random Forest
Accuracy 95% 90% 92%
Training Time Medium High Medium
Complexity Medium High Medium
Anomaly Detection Excellent Good Good

Table 3.4: Comparison of Machine Learning Models

The autoencoder model’s high accuracy and excellent anomaly detection capabilities make

it ideal for our SHM system [20].

3.3.3 The Need for Autoencoders

In the research paper Unsupervised Learning Methods for Data-Driven Vibration-Based

Structural Health Monitoring: A Review by Kareem Eltouny, Mohamed Gomaa, and

Xiao Liang [27]. various techniques for feature learning were explored. Among these

techniques, Autoencoders (AEs) and Generative Adversarial Networks (GANs) were the
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most commonly used and demonstrated high accuracy results. Some researchers even cre-

ated hybrid models using Recurrent Neural Networks (RNNs) and Convolutional Neural

Networks (CNNs).

Autoencoders offer the advantage of robustness to noise, which is a significant benefit over

GANs. Given that our next step involves applying the models to Mahlanobis Square Dis-

tance(MSDs), it is essential to use Autoencoders due to their sensitivity to noise. MSDs

are highly sensitive, making the robustness of AEs crucial for accurate and reliable diag-

nostics.

3.3.4 Mahalanobis Square Distance

MSD is a measure derived from the squared difference between a test point and the mean

of a sample, weighted by the inverse of the covariance matrix. The formula is given as:

MSD = (x� µ)T⌃�1(x� µ) (3.1)

3.3.4.1 The Need for MSD

With sensitive to most subtle of changes and robustness to complex structures MSD

looked the perfect candidate for our project. It was the most popular statistical inference

method [27].

3.4 AWS Cloud Platform

Amazon Web Services (AWS) is a leading cloud platform that provides a comprehensive

set of services, including storage, machine learning, and analytics [25]. In our project,

we leveraged AWS S3, AWS IoT Core, AWS SageMaker, and AWS QuickSight to enable

efficient data storage, processing, machine learning model deployment, and data visual-

ization.
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Figure 3.5: AWS Cloud Structure
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3.4.1 AWS S3

Amazon Simple Storage Service (S3) is an object storage service that offers industry-

leading scalability, data availability, security, and performance [28]. In our project, AWS

S3 was used to store large volumes of vibration data collected from the sensors. The

durability and availability of S3 ensured that our data was safely stored and readily acces-

sible for processing and analysis. Furthermore, S3’s integration with other AWS services

allowed seamless data flow and management across the different stages of our project.

3.4.2 AWS IoT Core

AWS IoT Core is a managed cloud service that allows connected devices to interact se-

curely with cloud applications and other devices [29]. We utilized AWS IoT Core to

manage the data acquisition from our ESP32-based Data Acquisition Nodes (DANs). The

service enabled secure, bidirectional communication between the devices and the AWS

cloud. This allowed for real-time data collection and transmission, ensuring that our sys-

tem could monitor structural health continuously and respond to any anomalies promptly.

3.4.3 AWS SageMaker

AWS SageMaker is a fully managed service that provides every developer and data sci-

entist with the ability to build, train, and deploy machine learning models quickly [30].

For our project, AWS SageMaker was used to develop and train autoencoders for fea-

ture learning from the vibration data. The managed Jupyter notebooks provided an inte-

grated environment for data preprocessing, model training, and evaluation. SageMaker’s

scalability enabled us to handle large datasets efficiently, and its deployment capabilities

allowed us to integrate the trained models into our monitoring system seamlessly.
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3.4.4 AWS QuickSight

Amazon QuickSight is a fast, cloud-powered business intelligence service that makes it

easy to deliver insights to everyone in your organization [31]. We used AWS QuickSight

to create an interactive dashboard for visualizing the results of our structural health mon-

itoring system. The service provided powerful data visualization tools that enabled us to

monitor trends, detect anomalies, and generate reports easily. QuickSight’s ability to inte-

grate with various data sources and its interactive nature helped stakeholders understand

the system’s performance and make data-driven decisions.

3.4.5 Comparison with Other Cloud Platforms

We compare AWS with other cloud platforms like Google Cloud Platform (GCP) and

Microsoft Azure [14].

Feature AWS GCP Azure
Storage Highly Scalable Highly Scalable Highly Scalable
Machine Learning SageMaker AI Platform Azure ML
Analytics QuickSight BigQuery Power BI
Global Reach 24 Regions 25 Regions 54 Regions
Integration Excellent Excellent Excellent

Table 3.5: Comparison of Cloud Platforms

AWS’s comprehensive services, global reach, and excellent integration capabilities make

it the best choice for our project [14, 25].
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Chapter 4

Methodology

In this chapter, we will discuss the operation of our project. This includes the collection

of data, the pre-processing, the simulation of the model and then the visualization of the

data.

Figure 4.1: System Level Diagram

4.1 Data Acquisition

We have used two types of data to build our solution. There is an already conducted study

by Tokyo Institute of Technology that collected three dimensional vibration data from a

bridge in Japan. The data is very similar to what we want to use in our own project so we
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decided to use it to build our model.

The second is the data that we have collected via our own senors. The model is used to

analyze this data and based on that analysis make a prediction on how healthy the bridge

is.

4.2 The Sensors and the Bridge

In our IoT network architecture, we have divided the system into three distinct nodes:

Data Acquisition Nodes (DANs), a Hub Node, and a Gateway Node. Each node plays a

specific role in the process of data collection, aggregation, and transmission.

Figure 4.2: Node Data Flow.

4.2.1 Data Acquisition Nodes (DANs)

These nodes are responsible for directly sampling vibrations from the bridge at a fre-

quency of 40 Hz. With each node capturing 10 samples per cycle, they collectively gather

a substantial volume of data reflecting the dynamic behavior of the bridge. The samples

are then sent to the Hub Node.
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Figure 4.3: Data Acquisition Node (DAN) Architecture.

4.2.2 Hub Node:

Acting as a central data repository, the Hub Node receives the sampled data from the

DANs. When the data arrives, the Hub Node assigns unique IDs and timestamps to each

sample, so that the chronological organization of the data can be maintained. Finally, the

Hub Node compiles the organized samples into a CSV file, for subsequent transmission.

4.2.3 Gateway Node:

The Gateway Node serves as the connection between the IoT network and the external

terminal. Its main task is to acquire the CSV files generated by the Hub Node. Once a CSV

file is filled with a predetermined number of samples, 1600 samples per file, the Gateway

Node transmits the file. Utilizing the MQTT (Message Queuing Telemetry Transport)

protocol, the Gateway Node securely sends the CSV file to the designated terminal for

further analysis and storage.

The division of the IoT network into these three nodes allows for a streamlined and ef-
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ficient data collection and transmission process. The DANs focus on capturing real-time

vibration data from the bridge, while the Hub Node ensures proper organization and an-

notation of the collected samples. Finally, the Gateway Node manages the transfer of

aggregated data to the terminal, adhering to predefined criteria for file formatting and

transmission frequency.

This design allows for continuous monitoring of the structural health of the bridge, with

data being systematically collected, processed, and transmitted to the terminal for in-depth

analysis and decision-making.

4.3 The ML Model

4.3.1 Introduction

The model is an Anomaly Detection model capable of seeking out anomalies based on

what is not the norm for the bridge. The dataset we acquired has vibrational data as raw

data with samples over timestamps. Additionally, it also gives another information about

the number of different types of objects on the bridge upon that timestamp. Our model

takes this vibrational data and depicts whether on each timestamp there exists anomaly or

not. Potential anomalies can be pretty hazardous for a bridge as it can increase its chances

of getting damaged.

4.3.2 Data Pre-processing

In data pre-processing we aim to remove as much redundant information as we can. The

dataset, which served our purpose for training spanned over 3500 columns and 250 rows

with a major chunk of the vibrational data missing. First we tried to remove all the

columns which had 80% or more missing values. According to figure 4.4

Most of the columns either had all data or had 10% missing data or were almost empty.

After taking care of columns which were mostly empty we get a dataset which is now 500
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Figure 4.4: Data Preprocessing Stage

columns less. The dataset still had 23.6% data missing but we can’t remove more columns

as now many columns were moderately filled. Removing them might remove important

data for us. As we are leaning towards using Mahalanobis Square Distance (MSD) we

now tried to remove highly correlated features which further decreased the number of

columns to 2000. From this point we can’t remove columns as it would lead to risk losing

important data. All other missing values were set to 0 as to not create any bias and can

operate on the Autoencoder. Then data was normalized and standardized using Robust

Scaler.

4.3.3 Feature Learning

We utilized an Autoencoder to compress and then decompress the dataset extracting es-

sential features that capture normal operational patterns. It also reduced the dimensional-

ity of the dataset to 64 columns. The Mean Square Error loss function was used to assess

training. In accordance with Mean Square Error (MSE) the training and validation loss

significantly decreased till the end, steadily over several epochs. The lack of increase in

the validation loss over epochs suggests that the model generalizes well without severe
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over-fitting. Comparison of validation data’s MSE loss and a mean prediction baseline

was done and its showed that validation data’s MSE loss is significantly lower than mean

prediction baseline which means that Autoencoder is capturing and utilizing the informa-

tion in the data effectively. Robust Scaler showed its significance here as Validation data’s

MSE was way higher in the case of using Standard Scaler.

4.3.4 Mahalanobis Square Distance, Statistical Inference

MSD is a measure derived from the squared difference between a test point and the mean

of a sample, weighted by the inverse of the covariance matrix. (Formula put here) MSDs

were calculated for each sample. It showed the deviation of each point from what is the

norm. By establishing a statistical threshold, set at 95th percentile of the MSD value, we

figured out anomalies in accordance to that threshold. Upon testing with data that was

based on bridge not with normal health we tweaked the threshold appropriately.

4.3.5 Training and Validation

During training, both the training and validation losses significantly decreased over sev-

eral epochs. The steady decrease without an increase in the validation loss indicates that

the model generalizes well and does not suffer from severe over-fitting.

4.4 The Cloud

As stated previously, the project incorporates a cloud platfrom for thr data storage, the

deployment of the ML model and the visualization of the analyzed data once it is stored

back into the system.
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4.4.1 AWS S3

The first component of the cloud is the storage AWS Simple Storage Service or S3. The

data is loaded into S3 from the terminal via a python script. The script continuously

monitors arrival of files from the Gateway to the terminal and once it recognizes a new

file, it captures the file, and using boto3, uploads the file to S3. From there the file can be

accessed by any AWS service that may require it.

Figure 4.5: AWS S3 Structure.

4.4.2 AWS Sagemaker

The second part of the cloud is the ML development environment known as AWS Sage-

maker. Here, our model developed in Python and Jupyter Notebooks, is deployed. The

working of the model has already been explored. Th deployment on AWS allows the

model to quickly retrieve data from S3, analyze it, make a decision and then store it back

in S3 for visualization.

Figure 4.6: AWS Sagemaker Structure.
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4.4.3 AWS QuickSight

What ties our cloud deployment together is the use of data visualization tools to show real

time bridge statistics to the user. For this we use AWS QuickSight data visualization tool.

The data is accessed from S3 and with regular intervals, it is refreshed and shown on the

dashboard.

Figure 4.7: AWS Quicksight.

AWS QuickSight allows us to generate pdf reports for record keeping and for sharing with

relevant teams. Thus it gets rid of the need for a separate website to maintain the data.

Figure 4.8: AWS QuickSight Dashboard with report generation.
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4.4.4 IAM User

An IAM user in AWS is an identity within your AWS account that has specific permissions

for a single person or application. IAM users can sign in using their account ID or alias,

user name, and password. They are not separate accounts but users within your account.

IAM allows you to centrally manage permissions for accessing AWS resources

Furthermore, AWS provides data encryption, and native management of users. this elimi-

nates the meed for a separate database for managing user access and worrying about data

leaks. Simply create a IAM user from a root user and the IAM use can access read only

data from any part of AWS. This allows relevant authorities to limit access to sensitive

data and ensure proper security features that may be lacking in external websites. This

also eliminates the need to build and maintain the websites, saving resources and man-

power.
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Figure 4.9: IAM user provided by AWS
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Chapter 5

Deployment & Validation

5.1 Introduction

This chapter details the deployment and validation activities conducted for the project.

The deployment phase involves the practical application of the system as a pilot project

setting, followed by validation to ensure its effectiveness and reliability. This includes

steps for deploying IoT network, setting up the cloud infrastructure, implementing the

machine learning models, and evaluating the system’s performance in a pilot environment.

5.2 Deployment

5.2.1 Model Bridge

The deployment phase began with the construction of a model bridge for pilot testing

and deployment. The model was constructed to simulate structural vibrations of a bridge

for data collection and project deployment. The model was constructed as a cable-stayed

bridge with a total span of two feet and supported by two pylons.
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Figure 5.1: The Model Bridge with IoT network deployed
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5.2.2 IoT Network

The IoT network was deployed over the span of the bridge with a total of three Data

Acquisition Nodes (DAN), and a Hub node was deployed for servicing the DANs. The

DANs were installed at three locations along the span of the bridge, one was installed

at the mid-span and one was installed at each end-span for a total of three DANs. The

location of the Hub node is not critical, as with the DAN, however, the Hub must be in

range with at least one of the DAN to receive data packets successfully. All nodes were

configured to initialize communication over ESP-NOW and supplied with power.

5.3 Collection of Data

The data was collected on the model bridge by simulating it with weighted objects. The

data was collected both serially and transmitted via MQTT protocol. Each sensor was

given it’s own folder. The sensor partitioned the data into each dimension and we had to

combine into a csv file manually. The data was properly formatted and sent to the cloud

for processing.

Figure 5.2: Data Collection
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5.4 ML Model

5.4.1 Deployment

The Autoencoder based model is deployed on AWS SageMaker, using it’s SageMaker

Studio. The studio allows for the model to run continuously and to capture data from S3

or from local repository on PC.

Figure 5.3: Model Environment

5.4.2 Results

The results obtained by the model are stored in a CSV file, the file is stored in S3 to

be accessed from anywhere in the cloud deployment. The resulting file includes, bridge

information, timestamps, MSD values and a label notifying if the bridge function at that

moment in time is regular or not.

As we can observe from figure 5.4, the model detects those values that are above our

anomaly threshold, and in the basis of that, classifies the function of the bridge at that

particular moment of time as regular or irregular.

The resulting CSV file can be observed in Table 5.1.
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Figure 5.4: Graphical Representation of MSD Outputs

5.5 The Cloud

Following are the deployment and results of the cloud deployment of the solution.

5.5.1 AWS S3

The data is stored in S3 via an automation script. Once data is done with pre-processing

at the PC, it is uploaded to an S3 bucket, similar to the one in Figure 5.5.
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Figure 5.5: Sample S3 Bucket

Figure 5.6: All MSDs

5.5.2 AWS SageMaker

The ML model is deployed in SageMaker. The environment for the model is the Sage-

Maker Studio by AWS. It has a computing space of 5GB, and is being monitored by AWS,

for any faults in the working environment.

5.5.3 Dashboard and Visualization

The data is visualized by QuickSight from AWS. It is a strong data dashboarding and

visualization tool. QuickSight imports the resulting CSV file from S3 and using graphical

tools, builds and deploys a dashboard. The dashboards are highly customized, allowing

for users to build their dashboards their own way. Some examples of the dashboard are

shown in Figure 5.6 5.7 5.8 and 5.10.
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Figure 5.7: MSDs with irregular outputs
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MSD Exceeds_Threshold timeID
146.9999662 FALSE timeID
0.638722716 FALSE 19/07/2023 6:25
185.749329 FALSE 19/07/2023 6:27
193.7629587 FALSE 19/07/2023 6:28
216.4380075 FALSE 19/07/2023 6:29
0.891264145 FALSE 19/07/2023 6:29
61.76090884 FALSE 19/07/2023 6:30
0.682282262 FALSE 19/07/2023 6:30
120.7371598 FALSE 19/07/2023 6:31
0.616487486 FALSE 19/07/2023 6:32
0.780792929 FALSE 19/07/2023 6:32
0.755455204 FALSE 19/07/2023 6:32
22.4846205 FALSE 19/07/2023 6:32
0.827772638 FALSE 19/07/2023 6:33
229.1827672 TRUE 19/07/2023 6:34
1.047348193 FALSE 19/07/2023 6:35
0.620927207 FALSE 19/07/2023 6:35
0.614891153 FALSE 19/07/2023 6:35
0.623676709 FALSE 19/07/2023 6:37
0.617692309 FALSE 19/07/2023 6:37
0.610386199 FALSE 19/07/2023 6:38
50.48856529 FALSE 19/07/2023 6:40
0.653009494 FALSE 19/07/2023 6:40
42.89997181 FALSE 19/07/2023 6:40
4.412945132 FALSE 19/07/2023 6:41
0.740312652 FALSE 19/07/2023 6:42
175.1062879 FALSE 19/07/2023 6:43
192.4000395 FALSE 19/07/2023 6:44
117.6355327 FALSE 19/07/2023 6:45
195.6179468 FALSE 19/07/2023 6:46
122.7654106 FALSE 19/07/2023 6:47

Table 5.1: The Model Bridge Data
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Figure 5.8: Breakdowns by Time

Figure 5.9: Sum of MSD by TimeID
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Figure 5.10: Final Dash Sample
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Chapter 6

Conclusion and Future Work

In this chapter, we will discuss the business side of things, compare it with other pre-

existing solutions, conclude the results of this project and propose a direction for the

future.

6.1 Innovation

6.1.1 Technology:

’S.A.F.E’ integrates IoTs, Machine Learning models, and cloud computing technologies

for bridge health monitoring.

6.1.2 Business Potential:

This idea has the potential to become a startup by selling the DANs to transportation

boards and offering customized monitoring dashboards via AWS. This can establish a

new standard for bridge maintenance in Pakistan and abroad.
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6.2 Other Solutions

Here is a list of pre existing SHM solutions for bridges:

6.2.1 SMARTEC:

• Uses stress/strain sensors

• Built for concrete bridges

• Targets infrastructure in NA/EU

• Expensive maintenance and deployment

Figure 6.1: SMARTEC LOGO

6.2.2 MISTRAS:

• Uses acoustic sensors

• Monitors internal integrity of structures

• Built for cable bridges and pipelines

• Targets infrastructure in NA/EU

• Expensive maintenance and deployment

• Does not provide centralized monitoring tools
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Figure 6.2: MISTRAS logo

6.2.3 SGS SA:

• Uses image processing and computer vision

• Cannot detect internal faults

• Primary usage is for Wind Turbines and Dams

• Targets infrastructure in SA/SEA

• Expensive maintenance and deployment

Figure 6.3: SGS PVT. LTD.logo

6.3 Regional Needs and Solutions

Pakistan, and by extension South Asia, is a vast and developing region. Transportation is

the backbone of its economy. Said transport relies on bridges to function properly and be

reliable. Sadly, this is not the case for the majority of these nations, where infrastructure
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maintenance lacks proper checks and administration. Developed nations have tackled this

problem using their vast resources, they have developed solutions that allow monitoring

of bridges using various technologies. But, these are expensive and not suitable for the

needs of South Asian infrastructure.

As we can see from above, existing solutions do not serve the needs for Pakistan, so there

is a gap to be closed by someone with the nohow of how these systems work and the

willingness to provide this solution.

6.4 Our Niche

S.A.F.E aims to tackle this unique problem faced by Pakistan by providing a comprehen-

sive bridge SHM tool, which is user friendly, cheap to deploy and easy to maintain. We

want to be able to improve the infrastructure being used in our nation and in neighbouring

nations to ensure that delays and costs incured by untimely disasters are avoided.

6.4.1 Scalability

Our solution is highly scalable. By using our DANs, we can replicate upto 200 nodes in

one network. Also, our model is one fits all, meaning it adjusts to the bridge type and

analyzes according to the bridge needs.

6.4.2 Cost

Our solution is fairly cost effective. By using accelerometers instead of more complex

sensors, we are able to bring our costs down significantly, allowing the solution to be very

affordable, specially for developing nations.
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6.4.3 User Friendly

The use of graphical representation allows for less trained individuals to still understand

the conditions of the infrastructure at hand.

6.5 SWOT Analysis

Strengths Weaknesses
Cost-effective solution Initial setup and calibration
User-friendly interface Dependency on internet connectiv-

ity
High scalability Limited to accelerometer-based de-

tection
Integration with AWS Potential cybersecurity risks
Opportunities Threats
Expansion to other regions Competition from established SHM

providers
Partnerships with local governments Technological advancements from

competitors
Development of additional sensor integrations Economic instability in target re-

gions
Standardization of SHM practices Regulatory changes

Table 6.1: SWOT Analysis

6.6 Future Directions

To further enhance the S.A.F.E system, we propose the following directions for future

development:

6.6.1 Addition of Different Sensors

Integrating various sensors such as strain gauges, thermal sensors, and image-based sen-

sors will enhance the robustness and accuracy of the monitoring system.
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6.6.2 Maintenance Scheduler

Developing a comprehensive maintenance scheduling tool will help predict and plan

maintenance activities, thereby preventing unexpected failures.

6.6.3 Collaboration with Local Bodies and Civil Engineers

Working closely with local government bodies and civil engineers will help tailor the

solution to specific regional challenges and ensure its practical implementation and ac-

ceptance.

6.6.4 Enhanced Data Analytics

Incorporating advanced data analytics and machine learning techniques can improve the

detection of anomalies and provide deeper insights into the structural health of bridges.

6.6.5 Mobile Application Development

Developing a mobile application for on-site inspectors will facilitate real-time data access

and reporting, enhancing the overall usability of the system.

6.7 Conclusion

The S.A.F.E project presents a pioneering approach to Structural Health Monitoring (SHM)

for bridges by integrating IoT, machine learning, and cloud computing. Our system’s

scalability, cost-effectiveness, and user-friendly interface make it a viable solution for the

infrastructure challenges faced by developing nations, particularly in South Asia. Ex-

isting SHM solutions are either too costly or lack the necessary features to address the

unique needs of this region. S.A.F.E aims to fill this gap, providing a comprehensive and

adaptable monitoring tool.
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In this report, the Structural Assessment and Forecasting Engine (SAFE) offers an inno-

vative and cost-effective solution for bridge structural health monitoring (SHM) by using

a combination of IoT devices, machine learning models, and cloud computing. By de-

ploying Data Acquisition Nodes (DANs) equipped with accelerometers and utilizing a

custom autoencoder model, SAFE provides real-time monitoring and predictive mainte-

nance capabilities. The integration of AWS services ensures scalability, reliability, and

ease of access, while the focus on cost-effectiveness and user-friendly interface makes it

suitable for infrastructure management in resource-constrained regions like South Asia.

This approach not only enhances the safety and longevity of bridges but also minimizes

the economic impact of structural failures .

To summarise, S.A.F.E has the potential to revolutionize bridge maintenance and mon-

itoring, not only in Pakistan but also in other developing regions. By using advanced

technologies and addressing the specific needs of local infrastructure, S.A.F.E can help

prevent infrastructure failures, reduce maintenance costs, and improve public safety.
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