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Sustainable Development Goals (SDGs)

SDG No Description of SDG SDG No Description of SDG
SDG 1 No Poverty SDG 9 Industry, Innovation, and

Infrastructure
SDG 2 Zero Hunger SDG 10 Reduced Inequalities
SDG 3 Good Health and Well Being SDG 11 Sustainable Cities and Com-

munities
SDG 4 Quality Education SDG 12 Responsible Consumption

and Production
SDG 5 Gender Equality SDG 13 Climate Change
SDG 6 Clean Water and Sanitation SDG 14 Life Below Water
SDG 7 Affordable and Clean Energy SDG 15 Life on Land
SDG 8 Decent Work and Economic

Growth
SDG 16 Peace, Justice and Strong In-

stitutions
SDG 17 Partnerships for the Goals

Sustainable Development Goals
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Complex Engineering Problem

Range of Complex Problem Solving
Attribute Complex Problem

1 Range of conflicting re-
quirements

Involve wide-ranging or conflicting technical, engineer-
ing and other issues.

2 Depth of analysis re-
quired

Have no obvious solution and require abstract thinking,
originality in analysis to formulate suitable models.

3 Depth of knowledge re-
quired

Requires research-based knowledge much of which is at,
or informed by, the forefront of the professional discipline
and which allows a fundamentals-based, first principles
analytical approach.

×

4 Familiarity of issues Involve infrequently encountered issues ×
5 Extent of applicable

codes
Are outside problems encompassed by standards and
codes of practice for professional engineering.

6 Extent of stakeholder in-
volvement and level of
conflicting requirements

Involve diverse groups of stakeholders with widely vary-
ing needs.

7 Consequences Have significant consequences in a range of contexts. ×
8 Interdependence Are high level problems including many component parts

or sub-problems
Range of Complex Problem Activities

Attribute Complex Activities
1 Range of resources Involve the use of diverse resources (and for this purpose,

resources include people, money, equipment, materials,
information and technologies).

×

2 Level of interaction Require resolution of significant problems arising from
interactions between wide ranging and conflicting techni-
cal, engineering or other issues.

×

3 Innovation Involve creative use of engineering principles and
research-based knowledge in novel ways.

4 Consequences to society
and the environment

Have significant consequences in a range of contexts,
characterized by difficulty of prediction and mitigation.

5 Familiarity Can extend beyond previous experiences by applying
principles-based approaches.
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Abstract

The open-source RISC-V instruction set architecture (ISA) is thoroughly examined in this
thesis, emphasizing the ISA’s special position as a result of its transparent development
process. We investigate the unique security issues that RISC-V has because it is open-
source and the several solutions that have been put in place to keep RISC-V secure. ISA
extensions and Physical Memory Protection (PMP) are examples of hardware security
measures. Cryptographic modifications are also made to ISA to protect RISC-V proces-
sors from potential vulnerabilities.

The paper highlights the security risks associated with the growing trend of bespoke chip
designs that leverage the RISC-V ISA. It also looks at this trend in more detail. It should
be noted that to improve security, commercial versions of RISC-V frequently include
PMP and hardware security extensions.

The dissertation assesses the incorporation of a cryptographic core into the Picorv32 CPU,
a design decision that increases security but consumes a large amount of space. A novel
method is also investigated, namely the Custom Co-Processor (CCoP) equipped with a
customized interface for the Picorv32. By shifting workloads to the co-processor, this
technique uses ISA changes to facilitate CCoP operations, thereby lowering code com-
plexity and improving performance significantly—particularly for activities like encryp-
tion and decryption. The incorporation of these customized instructions not only improves
the design’s latency but also boosts core performance, providing a potential remedy for
the efficiency and security issues that come with RISC-V based systems.

This thesis serves as a vital resource for professionals and researchers in the field, provid-
ing insights into the security of the RISC-V CPU landscape. It establishes the framework
for next research and advancements in protecting RISC-V based systems, guaranteeing
their adaptability to changing security risks in the digital era.

Key words: custom ISA, loosely coupled, RISC-V, FPGA, security.
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Chapter 1

Introduction

1.1 Introduction

Looking back more than ten years, the University of California, Berkeley launched the

open-core processor initiative to provide academics and developers access to design mod-

ifications [2]. The goal of the RISC-V (Reduced Instruction Set Computing Five) open-

core processor project is to create an extendable and open-source instruction set for busi-

ness and academic uses [3].

In recent times, the industry has embraced the RISC-V processor[4] and its instruction

set architecture (ISA) specifications[5], which have roots in both academia and indus-

try [6]. Numerous open-source and proprietary RISC-V implementations have surfaced,

challenging the dominance of industry giants such as Advanced RISC Machine (ARM),

Intel, and AMD.

The RISC-V Architecture offers an open-source implementation to rival these industry

titans. Conventional processors often lack design flexibility and are proprietary, necessi-

tating licensing or authorization costs. These limitations increase the price of developing

new processors and add to the challenge of gaining a substantial market share [7].

This is where open-source RISC-V processors come into play. These implementations

enable the reusability of projects, where project-specific requirements are typically satis-

1



fied by unique architectural modifications and extensions. Due to this feature, RISC-V is

an ideal choice for various niche applications specific to different sectors. For example,

RISC-V is used in low-power Internet-of-Things (IoT) applications [8, 9] and compu-

tationally expensive healthcare applications [10], as well as in geographical areas with

strict dependability requirements [11, 12]. RISC-V finds applications in image process-

ing, machine learning (ML), and artificial intelligence (AI) [13, 14, 15], high-performance

computing (HPC) [16], and many more.

Table 1.1: RISC-V boards available in market and their features, applications and support
of operating system

Platforms SoC & Processor ARM
Peer

Target
App

Operating System
Support

ICE EVB XuanTie C910; 64 -
bit Dual cores 1.2GHz

Cortex-
A55

5G , AI,
Mobile

Linux , Android

HiFive Un-
matched

SiFive U740; 64 - bit
Quad cores 1.4GHz

Cortex-
A55

Generic
PC

Linux

HiFive Un-
leashed

SiFive U54; 64 - bit
Quad cores 667MHz

Cortex -
A53

AI, IoT Linux, VxWorks

BeagleV SiFive U74; 64 - bit
Dual cores 1.0GHz

Cortex -
A55

AI Linux , Zephyr

PolarFire
Icicle

SiFive U54; 64 - bit
Quad cores 667MHz

Cortex -
A53

AI, IoT Linux, seL4

Kendryte
KD233

Kendryte K210; 64 -
bit Dual cores
400MHz

Cortex -
M7

AI, IoT FreeRTOS

HiFive 1
RevB

SiFive E310; 32 - bit
core 320MHz

Cortex-
M4

IoT Bare-metal, embOS,
FreeRTOS, Mynewt,
RT - Thread, Zephyr

Gigadevice
RV-STAR

GD32VF103; 32 - bit
core 108MHz

Cortex-
M3

Low
Power

Bare-metal

The RISC-V ecosystem, by creating software compilers, system-on-a-chip (SoC) periph-

erals, and other related components, aids in simplifying FPGA or ASIC-based CPUs.

Consequently, numerous low-scale Internet of Things chips, such as the HiFive and Hi-

Five1 Rev B SoCs from SiFive [17], have been taped out for desktop and IoT applications

[18]. Examples of other tapouts include the Alibaba-produced Xuantie-910 cloud and

edge computing tapout [19], the Microchip PolarFire SoC FPGA Icicle Kit, and the Black-
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parrot multi-core accelerator [20]. These implementations effectively portray RISC-V as

a product rather than just an idea. Table 1.1 shows an overview of the platforms.

1.2 Emergence of RISC-V and Open-Source Software En-

vironment

With the emergence of RISC-V and the creation of an open-source software environment

that anybody may join, it is predicted that the true paradigm will change. The main

goal is to enable various implementations, giving companies, educational institutions, or

research centers the flexibility to develop their hardware solutions with the knowledge

that this software layer is accessible and may be utilized without restrictions. If RISC-V

proves to be effective, it could eventually be found in processors across several platforms,

including computers, smartphones, and other kinds of microcontrollers [7].

1.3 Motivation

Teachers have been debating what and how to teach computer architecture and organization[21]

for decades. One of the first things these courses ask, for instance, is what architecture

to use as the model system. Various textbooks make use of ARM[22], PIC[23], and

x86[24], among others, and these are only a small sample of different architectures (e.g.,

LC-2, MIPS, and Hack).

After selecting an architecture, the next step is to determine how to analyze the system.

Some options include using simulators[25]-[26] for assembly programming, FPGA pro-

cessor implementations, or processor function experiments. Following these choices, stu-

dents can complete coursework in various ways, including lectures, assignments, tests,

and other undertakings. As universities look to student-centered approaches to learn-

ing, project-based learning and experiential learning have recently seen a resurgence, and

computer architecture is no exception to these trends.

3



The ISA implementation establishes the power and weakness of a CPU. ISA-based pro-

cessor selection considers application-driven constraints such as power consumption, per-

formance, ease of design, etc. In this sense, there are many implementations of RISC-V

with distinct trade-offs. Research projects often present comparative outcomes based on

certain ASIC technology tapout or FPGA, and these outcomes are significantly influenced

by design parameters that differ among research groups (e.g., cache size).

Students and academics can investigate several design concepts for enhancing CPU effi-

ciency with RISC-V. This is due to several important factors, such as the design flexibility

of RISC-V, which can be tailored to a wide range of devices and applications thanks to

its highly modular and customizable architecture; the openness of its source codes, which

allow anyone to use it without having to pay licensing fees or obtain permission from

a proprietary vendor; and the architecture’s base performance, attributed to RISC-V’s

highly efficient instruction set and streamlined design. RISC-V provides designers with

an open-source, shared ISA, freeing them up to concentrate on developing cutting-edge

new hardware and software, as opposed to investing time and energy in circumventing

proprietary limitations.

1.4 Problem Statement

The growing volume and complexity of data in today’s computer tasks—particularly in

domains like artificial intelligence, data analytics, and scientific computing—makes vec-

tor processors essential. Large data sets can be processed concurrently by vector pro-

cessors, which take advantage of parallelism to greatly speed up calculations. In scien-

tific research, data analysis, and machine learning, tasks like matrix operations, signal

processing, and simulations are common and require this capability to be handled well.

Furthermore, by maximizing the use of computing resources, vector processors enhance

energy efficiency and are therefore perfect for tasks running in low-power contexts like

embedded systems and mobile devices.

4



Furthermore, vector processors’ performance and scalability make them essential for ful-

filling the demands of high-performance computing activities in a variety of disciplines,

spurring innovation and improvements in computational capabilities. In general, the de-

mand for vector processors arises from their capacity to effectively handle vast amounts of

data and carry out intricate calculations, facilitating advancements in science, technology,

and computational capacities in various domains.

1.5 Objectives

The objective of our final year project are as follows:

• To understanding and simulation of VPU

• To design and Implementation of FPGA supported VPU

• Integration of VPU with RISC-V

• Execution on FPGA and analysis of the final core

1.6 Organization of Report

This thesis report is divided into the following chapters. The remaining of this document

is organized as follows:

• Chapter 2 covers the RISC-V ISA, existing extensions, and analysis/comparison of

RISC-V cores.

• Chapter 3 discusses design of our proposed vector processing unit and its imple-

mentation aspects.

• Chapter 4 outlines the integration process which eenabled RISC-V PICORV32 core

to utilize the proposed VPU.

• Chapter 5 discusses the cross-compilation toolchain which is required for analysis

5



in terms of latency and line of code.

• Finally, Chapter 6 concludes the project report while higlighting future directions

from this work.

6



Chapter 2

Background and Related Work

The RISC-V ISA specification is analyzed at the beginning of this chapter, with a focus

on the base integer instruction set, current extensions, and their corresponding operational

mechanisms. Afterward, a number of previously developed RISC-V cores will be exam-

ined and contrasted. To identify what is missing from the solutions that are now in use and

what needs to be added to a new one, it is crucial to understand the capabilities and limita-

tions of each core. The main areas of emphasis for this evaluation will be FPGA support,

the caliber of the documentation, and how simple it is to adapt and modify the cores [27].

Since proprietary ISAs are the intellectual property of the companies that possess them,

users’ ability to modify hardware is limited [28]. First of all, utilizing proprietary ISAs

may require purchasing a license, which might cost several million dollars [28]. Sec-

ondly, it is often prohibited under these agreements for licensees to alter the circuitry and

hardware [28, 29]. Hardware manufacturers and builders may find it difficult to employ

proprietary ISAs due to these features [27]. The Intel x86 architecture, which rules the

desktop PC market, and the ARM architecture, which is used in embedded mobile de-

vices, are contrasted with the RISC-V architecture, which offers the strong advantages of

simplicity, flexibility, customizability, high energy efficiency, and is free and open-source.

7



2.1 RISC-V

As the name implies, RISC-V is a base-integer ISA that is based on a reduced instruc-

tion set computer (RISC) [30]. The load-store design of RISC-V [31] allows for a clear

division between instructions that perform calculations only in memory and those that ad-

ditionally reduce the number of instructions per program by lowering the number of cycles

per instruction. This contrasts with CISC (complex instruction set computer) designs, in

which the hardware may further subdivide one instruction into several sub-instructions.

Figure 2.1 provides a summary of the RISC-V ecosystem and its associated utilities.

Figure 2.1: Summary of the RISC-V ecosystem and its associated utilities.

2.1.1 RISC-V Instruction Set Architecture (ISA)

The RISC-V architecture requires a fundamental integer instruction set (ISA) for all im-

plementations, with optional additions that make up the ISA. Like early RISC processors,

the basic integer ISA has variable-length instruction encoding[32] options but no branch

delay slots. A basic set of instructions is carefully selected to create an ISA and soft-

8



Table 2.1: Summary of naming convention used in the RISC-V ecosystem

Nomenclature Details

*RV (RISC-V)
*32I (32-bit integer)
*32E (32-bit integer -embedded,16registers)
*64I (64-bit integer)

*128I (128-bit integer)

ware toolchain "skeleton" that provides a strong foundation for software development.

Compilers, assemblers, linkers, and operating systems can all aim to support this skele-

ton, which also includes additional supervisor-level functions. RISC-V supports four ISA

variations, identified by the number and breadth of integer registers they support, as well

as optional extensions that provide additional features such as division, multiplication,

and floating-point operations. Because of its modular architecture, implementations may

devote resources only to the functionality that is really needed, allowing for maximum

energy economy and customization for particular applications. The version and exten-

sions of a RISC-V ISA implementation are denoted by naming conventions. For exam-

ple, "RV32I" is the designation given to a 32-bit basic integer ISA implementation with

32 registers; extra letters are attached to denote any extensions utilized. Some of the

well-known nomenclatures and naming conventions are mentioned in Table 2.1.

Specific performance needs may be met with flexibility when building implementations

because of RISC-V’s ability to keep standard extensions, additional extensions, and the

underlying integer ISA separate [33]. Because new extensions may be developed to ac-

commodate evolving application demands without compromising backward compatibil-

ity, this technique also facilitates easy scaling. Additionally, by combining several func-

tions into a single instruction set architecture, this modularity lowers the possibility of

mistakes and streamlines the design process.
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2.1.1.1 Base Integer Instruction Set

With no branch delay slot, RISC-V basic integer ISA can be used as a general-purpose

plus/or optional extension to the base ISA. It also supports variable length instructions

that encode 32-, 64-, and 128-bit variations of the base ISA [33]. RISC-V’s basic inte-

ger instruction set is designated as RV32I for 32-bit address spaces and RV64I for 64-bit

address spaces, respectively. The majority of typical operations performed in general-

purpose computing are covered by its 47 instructions. An instruction set that is suitable

for implementing operating systems, higher-level programming languages, and other soft-

ware applications is offered by the RV32I and RV64I. Optional instruction extensions can

be added to the underlying ISA to enable significant customisation and specialisation [33].

To further improve the capabilities of the CPU, further instruction set extensions, such as

the vector (V), floating-point (F), and multiplication and division (M) extensions, can be

introduced as needed.

The six formats for instructions that are 32 bits long are R, I, S, B, U, and J. The order of

the immediate word inside the instruction is the sole difference between the S and B forms.

This also applies to the U and J forms. R-type, I-type, S-type, and U-type instructions are

the four general types of instructions that RISC-V ISA provides. These are given below:

Every kind of instruction has a unique operand set and opcode that designate the operation

to be carried out.

• R-type instructions use two registers to carry out logical and arithmetic operations.

For instance, ADD rd, rs1, rs2.

• Arithmetic and logical operations are carried out instantly via I-type instructions.

For instance, ADDI rd, rs1, imm.

• S-type instructions use memory to save data from a register. For instance, SW

rs2, imm(rs1).

• Immediate values are loaded into a register via U-type instructions. For instance,
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LUI rd, 10 imm.

The RISC-V architecture’s base instruction format is seen in Figure 2.2. The registers are

in the same place for all formats. There are several methods to encode it, depending on

the format [16].

Figure 2.2: RISC-V base instruction formats [2]

Instructions for the following load and store operations are part of the RISC-V basic

integer instruction set:

• LW, SW, LH, SH, LB, SB, LBU, LHU

Arithmetic and logic operations include:

• ADD, SUB, AND, OR, XOR, SLL, SRL, SRA, SLT, SLTU

Immediate operations include:

• ADDI, ANDI, ORI, XORI, SLLI, SRLI, SRAI, SLTI, SLTIU

Control flow procedures include:

• BEQ, BNE, BLT, BGE, BLTU, BGEU, JAL, JALR, BEQ

Other operations include:

• NOP, AUIPC, LUI

Designed to be easy to use, effective, and expandable, the RISC-V base integer ISA of-

fers a standard framework for program development on RISC-V processors. Compilers,
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assemblers, and other software tools for the RISC-V architecture are simple to create and

optimize because of its clear set of instructions, which can be effectively implemented in

both hardware and software. The basic integer ISA makes guarantee that software created

for one RISC-V processor may be readily transferred to another by offering a uniform

foundation for RISC-V processor software implementation. This speeds up innovation

and makes software development simpler. Furthermore, the base integer ISA is purpose-

fully intended to be expandable, allowing for the inclusion of new features and instruc-

tions as needed. As a result, the design may be modified to accommodate new computer

environments and developing applications. To summarize, the base integer of RISC-V

Because of its ease of use, effectiveness, and expandability, ISA is a great place to start

when developing RISC-V processors and software applications. Its versatility allows for

adaptation to evolving computing demands, and its succinct set of instructions offers a

strong basis for creating operating systems, other software applications, and higher-level

programming languages.

2.1.1.2 Extensions

The open-source RISC-V Foundation is always creating new extensions to increase the

functionality of its instruction set design. A complete list of all the extensions that are

presently being developed, including those that have been authorized and those that are

still in the draft stage, may be seen in Table 2.2. Integer multiplication and division,

Control and Status Register instructions, and single, double, and quad floating-point are

among the authorized additions. It is anticipated that updates and revisions will be made

soon because a number of these extensions are still in the draft stage and under devel-

opment. These additions are being developed with an eye on boosting security, cutting

power consumption, and meeting the changing demands of the computer industry. A few

of the additions that are presently in the draft stage are hardware virtualization and vec-

tor processing. These enhancements could completely change the way computers handle

data, increasing processing speed and efficiency while protecting the security and integrity
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of sensitive data. Summary of the extensions is given in Table 2.2.

Table 2.2: Extensions available for RISC-V ISA [1]

Extension Description Version Status

Zifencei Instruction - Fetch Fence 2.0 Ratified
Zicsr Control and Status Register ( CSR ) Instructions 2.0 Ratified
M Standard Extension for Integer Multiplication and

Division
2.0 Ratified

A Standard Extension for Atomic Instructions 2.0 Frozen
F Standard Extension for Single - Precision Floating

- Point
2.2 Ratified

D Standard Extension for Double - Precision Float-
ing - Point

2.2 Ratified

Q Standard Extension for Quad - Precision Floating
- Point

2.2 Ratified

C Standard Extension for Compressed Instructions 2.0 Ratified
Ztso Standard Extension for Total Store Ordering 0.1 Frozen
Counters Performance Counters and Timers 2.0 Draft
L Standard Extension for Decimal Floating - Point 0.0 Draft
B Standard Extension for Bit Manipulation 0.0 Draft
J Standard Extension for Dynamically Translated

Languages
0.0 Draft

T Standard Extension for Transactional Memory 0.0 Draft
P Standard Extension for Packed - SIMD Instruc-

tions
0.2 Draft

V Standard Extension for Vector Operations 0.7 Draft
N Standard Extension for User - Level Interrupts 1.1 Draft
Zam Standard Extension for Misaligned Atomics 0.1 Draft

A few of the enhancements, like as the scalar cryptography instructions, are aimed at im-

proving RISC-V’s security [34]. The RISC-V Foundation has set very high requirements,

and all additions have been rigorously tested and confirmed to fulfil those criteria.

To sum up, the RISC-V Foundation is dedicated to developing and growing its instruction

set architecture throughout time, with an emphasis on cooperation and creativity. The

extensions that are being created present fascinating prospects for computing’s future,

and in the upcoming years, even more developments should be anticipated. A summary

of some of the main benefits that the community receives from RISC-V is given in Table

2.3.
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Table 2.3: Summary of some of the key features of the RISC-V instruction set architecture

Feature Description

Open standard RISC-V is an open, royalty-free ISA developed by the RISC-V
Foundation.

Modular design RISC-V is designed with a modular structure, with optional
extension modules.

Fixed instruction length RISC-V instructions are of fixed length, making decoding sim-
ple.

Reduced instruction set RISC-V has a reduced instruction set, with a focus on simple,
orthogonal instructions.

User-level ISA RISC-V has a user-level ISA for general-purpose computing.
Privileged ISA RISC-V has a privileged ISA for system-level operations.
32/64-bit support RISC-V supports both 32-bit and 64-bit architectures.
Scalable vector exten-
sion

RISC-V has a scalable vector extension for efficient vector pro-
cessing.

Multiple implementa-
tions

RISC-V has multiple implementations from various vendors,
providing flexibility and choice.

2.2 RISC-V Cores

Many companies have created numerous RISC-V basic ISA cores that may be utilized

as co-processor design, advanced SoCs, microcontrollers, and even more sophisticated

implementations and integrations of customized accelerators. A number of them were

chosen and contrasted for examination in this part on the basis of their characteristics,

highest frequency of operation, support for FPGA, resource consumption, and documen-

tation accessibility. The RISC-V cores listed below are examined and contrasted:

• PULPino

• VexRISC-V

• PicoRV32

• Rocket Chip

• ORCA

• SweRV
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2.2.1 PicoRV32

The goal of the PicoRV32 is to act as an auxiliary CPU for FPGA and ASIC designs

by reducing size and increasing achievable clock rates. It is an in-order, non-pipelined

processor based on the RISC-V instruction set architecture [4].

An easy-to-use memory interface is provided by this 32-bit RISC-V core [36], which

is written in Verilog and supports the following ISAs: integer reduced (RV32E), in-

teger (RV32I), integer compressed (RV32IC), and integer multiplication and division

(RV32IM).

The Pico Co-processor Interface (PCPI), an optional add-on for the PicoRV32 processor,

functions as a closely connected 17-coupled accelerator to support the RISC-V ISA’s

multiplication and division operations [4].

Three versions of the PicoRV32 core are available: Advanced 10 extensible Interface

(AXI) Lite, basic memory interface, and hybrid. PicoRV32 WB and the master interface

for connecting peripherals. It employs about 760, 920, and 2020 Look-up Tables (LUTs)

on Xilinx 7-Series FPGAs concurrently and offers a Wishbone master interface based on

small, regular, and large configurations. According to the timing evaluation, the Xilinx

Virtex UltraScale+ board with the xcvu3p-ffvc1517-3-e FPGA may reach a maximum

frequency of 714 MHz. Its fundamental design is not described, despite the abundance of

technical data on its features and assessment reports that are available [16].

An optional Pico Co-processor Interface (PCPI) on this processor acts as a tightly cou-

pled accelerator for the multiplication and division instructions of the RISC-V ISA. This

interface is required in order to enable the RISC-V ”M” extension, which allows integer

multiplication and division [4].
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Figure 2.3: Block level representation of PICORV32, interfaces, and standard intercon-
nects.

2.3 RISC-V Toolset

In addition to the recommended design, a set of software tools are required to facilitate

programme creation and communication between the host device (a personal computer)

and the core (on the FPGA). This section explains which instruments must be installed

on the computer in order to allow data and binary transfer, PCIe bus access, and software

development. Additionally, depending on the user’s preference, the processor’s mem-

ory was expanded to include a Board Support Package, a makefile, libraries to interface

with the processor’s peripherals, scripts to transfer the binaries, read or clear the regis-

ters, and other utilities. We go over the resources and design decisions utilized to build

FPGA-based RISC-V processors. This contains the design decisions taken to make the

architecture tractable, the tools used to generate the processor on the FPGA, and the tools

used to simulate the RISC-V programmes. A cross-compiler is needed in order to execute

cross-compilation for RISC-V. A compiler that can produce code for a target platform

other than the one it is now operating on is known as a cross-compiler. When it comes

16



to RISC-V, a cross-compiler creates executable code for RISC-V on a host computer that

is usually built on a different architecture. In RISC-V, cross-compilation is accomplished

by a series of stages. Using the cross-compiler, the source code is first compiled to pro-

duce RISC-V executable code. After that, the code is linked to the RISC-V libraries and

any prerequisites, including device drivers or system calls. Eventually, a RISC-V plat-

form can use the generated executable file for operation. In RISC-V, cross-compilation

is especially crucial when creating software for embedded systems and other platforms

with constrained hardware resources. Developers may still target the RISC-V platform

while taking use of advantages like faster CPUs and more memory by using a more po-

tent development machine to cross-compile the code. There are several cross-compilation

toolsets available for RISC-V development, including:

• The most popular toolkit for RISC-V development is the RISC-V GNU Compiler

Toolchain. It may be used to create software for RISC-V processors and comes with

a GCC compiler, binutils, GDB debugger, and other libraries.

• LLVM: This well-known open-source compiler infrastructure supports the RISC-V

instruction set. A debugger, linker, compiler, and other tools are part of the LLVM

toolkit.

• Spike: Without actual hardware, RISC-V applications may be tested using Spike, a

RISC-V ISA emulator. Both a standalone download and the RISC-V GNU Com-

piler Toolchain contain it. Here is a summary of some of Spikes’s primary attributes:

– – Multiple ISAs: RV32IMAFDQCV extensions

– – Multiple memory models: Weak Memory Ordering (WMO) and Total Store

Ordering (TSO)

– – Privileged Spec: Machine, Supervisor, User modes (v1.11)

– – Debug Spec

– – Single-step debugging with support for viewing memory/register contents
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– – Multiple CPU support

– – JTAG support

– – Highly extensible (add and test new instructions)

• QEMU: To imitate RISC-V hardware, utilize QEMU, a virtual machine emulator.

It may be used to execute RISC-V applications on many operating systems and has

support for a variety of RISC-V processors.

• OpenOCD: For RISC-V processors, OpenOCD is an open-source on-chip debug-

ging tool. It offers a means of interacting with the JTAG interface of the CPU and

may be applied to code flashing and debugging.

• GDB: A well-known open-source debugger for RISC-V processors is called GNU

Debugger (GDB). It may be used to debug RISC-V software that is executing in a

simulator or on real hardware.

• Buildroot: For building embedded Linux systems, Buildroot is an easy-to-use and

effective program. Software for cross-compiling RISC-V architectures is supported.

These are a few of the most popular toolkits for developing with RISC-V. Various tool

sets and development environments can be accessed based on the particular requirements

of the project.

2.3.1 Testing

To test a RISC-V program, you can follow these general steps:

• Either use assembly language or a higher-level language that translates to RISC-V

instructions to write your RISC-V program. As an illustration, Code Segment 1

adds two numbers and records the outcome in a register.

• Your program should be assembled into machine code using a RISC-V assembler,

such as GNU Assembler (GAS). For instance.
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Figure 2.4: Listing 1: Example of Assembly Program adding 2 numbers in RISC-V

riscv64-unknown-elf-as -o add.o add.s

This would produce a machine code file named add.o after assembling add.s assem-

bly code.

• Load the machine code into memory on a RISC-V processor, either on a real RISC-

V hardware platform or in a RISC-V simulator. E.g. if you were using the Spike

simulator, you could load the program using the following command:

spike pk add.o

• Execute the program on the RISC-V processor, either by running it on real hardware

or by running it in a simulator.

You can select the RISC-V development board or simulator that best suits your require-

ments from the wide variety that is available. Going into the details of testing a program,

there are typically four ways:

2.3.2 Behavioral simulation:

Use the RISC-V ISA simulator (Spike) to run the program. Programs that do not access

I/O devices or user mode programs that operate within RISC-V Linux can be executed on

Spike.
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2.3.3 RTL simulation:

simulate the program in Verilator. No I/O devices are available in RTL simulation.

2.3.4 FPGA simulation:

simulate the program using Xilinx ISim. Behavioral modules for I/O devices are provided

by Xilinx IPs; however, host-end modules (UART terminal and SD card) are not available.

2.3.5 FPGA run:

Actually, run the program on an FPGA board. Full I/O support (UART and SD). Programs

can be compiled and run in three different modes:

• Bare metal mode: Supervisor programs are devoid of input/output access. RTL

simulation and behavioral simulation. This mode of operation prevents peripheral

support for programs. Only ISA and cache regression tests utilize this mode. An

ISA test case’s outcome is indicated by a program’s return value. Zero indicates

a successful outcome, but none-zero indicates a failed situation. Programs built in

this way would operate on FPGA simulations or on real FPGAs quietly.

• Newlib mode: supervisor programmes that have I/O device access. FPGA run and

FPGA simulation. Programmes executed in this mode are single-threaded but have

complete control (supervisor priority) over peripherals, which are restricted in sim-

ulation. In this mode, bootloaders are executed.

• Bare metal mode:

– Behavioural simulation: RISC-V-gnu-toolchain(newlib); RISC-V-isa-sim; RISC-

V-fesvr.

– RTL simulation: RISC-V-gnu-toolchain(newlib); verilator (built-in)

• Newlib (supervisor) mode:
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– FPGA simulation: RISC-V-gnu-toolchain(newlib); vivado.

– FPGA run: RISC-V-gnu-toolchain(newlib); vivado.

• Linux (user) mode:

– Behavioural simulation: RISC-V-gnu-toolchain(newlib+linux); RISC-V-isa-

sim; RISC-V-fesvr; RISC V-pk; vmlinux; root.bin.

– FPGA run: RISC-V-gnu-toolchain(newlib+linux); vivado; vmlinux; root.bin.

2.3.6 Summary

The instruction set and a few of the current implementations were given special attention

as this chapter reviewed the state-of-the-art RISC-V ISA. It started by describing how

RISC-V evolved while accounting for their ISA [16]. Many of the currently in use RISC-

V core implementations were examined and contrasted. Ultimately, PICO-RV32 has been

chosen as the simulation’s core, and modifications to it are suggested.
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Chapter 3

VPU Design and Implementation

In this chapter, we will be focusing on the implementation of our Vector Processing Unit

(VPU) based on the RISC-V architecture. The vector processing unit is designed to en-

hance computational efficiency by enabling parallel operations on vector elements, mak-

ing it suitable for applications that involve mathematical computations such as convolu-

tion and matrix operations.

Our VPU supports SIMD (Single Instruction, Multiple Data) architecture, which allows it

to process multiple data elements with a single instruction. this capability makes it faster

and reduces instruction size.

The VPU can load a maximum of 32 elements of a vector from memory into a register

file, perform addition operations on two vectors, and store the resulting vector back into

memory. This mechanism, enabled by SIMD architecture, accelerates vector operations

and enhances overall computational throughput.

Additionally, the VPU includes features for effective memory management and parallel

data handling, ensuring that data transfer between memory and the register file is opti-

mized. These capabilities are crucial for high-performance computing tasks that require

large data manipulation and parallel processing.
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3.1 Motivation

With the increasing demand for high-performance computing (HPC) in fields such as ma-

chine learning, artificial intelligence,there is a growing need for processors that can handle

large volumes of data efficiently. scalar processors, which process one data element at a

time, are often very slow for these requirements. On the other hand, vector processors,

which operate on entire vectors of data simultaneously using SIMD architecture, offer a

significant performance advantage.

3.2 Design and architecture

Figure 3.1: Top level representation of the proposed VPU

The design and architecture of our Vector Processing Unit (VPU) are carefully designed to

efficiently handle vector operations. The core components of the VPU include an instruc-

tion decoder, shuffle logic, and four parallel lanes, each playing a crucial role in ensuring

high-speed data processing and efficient memory management. Below is a detailed de-

scription of each component and its function. Figure 3.1 shows the complete diagram of
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VPU.

3.2.1 Decode Unit

The decode unit processes instructions to extract the source1 and source2 addresses, the

destination address, and the vector length. For vector instructions, the opcode bits [6:0]

are always 0110011, and funct7 is 0000001. The specific operation is determined by the

funct3 bits [14:12] of the instruction. If funct3 is 000, the instruction is an add operation.

The source1 address is specified by instr[19:15], the source2 address by instr[24:20], and

the destination address by instr[11:7]. For subtraction operations, funct3 is 001. For load

operations, funct3 is 010, instr[21:20] specifies the vector length, instr[19:15] specifies

source1 and instr[11:7] specifies destination address. For store operations, funct3 is 011.

Figure 3.2 shows the custom instruction of our designed vector processor.

Figure 3.2: VPU custom instruction formats

Figure 3.3 shows the simulation result of VPU Top.

3.2.2 Data Shuffle Logic

The shuffle logic is a crucial component of our VPU as it determines the location within

the register file from which vector elements are loaded or stored. It takes the vector length

as input and outputs the lane number and bank number.The first element of the vector is
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Figure 3.3: VPU Top simulation

placed in the first bank of lane 1, the second element in the first bank of lane 2, the third

in the first bank of lane 3, and the fourth in the first bank of lane 4. After every fourth

element, the bank number is incremented. The lane number is calculated by taking the

modulus of the vector index with four. Figure 3.4 shows how the data is placed in four

parallel lanes.

Figure 3.4: Data placement in lanes
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Figure 3.5 shows the simulation results of shuffle logic (i.e, how data is write and placed

in four parallel lanes and the Alu result.

Figure 3.5: Shuffle logic simulation

3.2.3 Processing Lanes

Figure 3.6: Block level representation of Single lane architecture
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Lanes are the primary components of the VPU that enable enhanced parallel processing.

We have four lanes operating in parallel, each equipped with eight banks and one ALU.

It takes an 8-bit address each for source1, source2, and destination addresses. The first 5

bits of the address determine the location number, while the last 3 bits determine the bank

number. Additionally, it takes a 2-bit input for ALU operations and a 32-bit data input,

which is stored in the appropriate bank based on the address. Figure 3.6 shows the custom

instruction of our designed vector processor.

3.2.3.1 Banks

Each lane contains 8 memory banks. Based on the first 5 bits of the addresses, data is

taken from each bank. Two 8-to-1 multiplexers are used, with their select lines being

the first 3 bits of the address (i.e., the bank number). This way, data is picked from the

banks for operation purposes and sent to the ALU and subsequently written back to the

destination address. Figure 3.7 shows the memory banks of single lane and how the data

is picked and write to these banks.

Figure 3.7: Memory Banks of single lane

3.2.3.2 Single Bank

Each bank has 32 locations, each 32 bits wide. The first 5 bits of the address are used to

select a location for reading or writing data on each rising clock edge. Each bank has its

own write enable signal and is dual-port, allowing for two data outputs. Figure 3.8 shows

27



the memory banks of single banks and how the data is picked and write to these banks.

Figure 3.8: Single memory bank

3.3 Summary

The vector processing unit (VPU) is designed to enhance computational efficiency by en-

abling parallel operations on vector elements, making it highly suitable for applications

involving complex mathematical computations such as convolution and matrix operations.

Based on the RISC-V architecture, our VPU supports the SIMD architecture to process

vector elements with a single instruction, increasing processing speed and reducing in-

struction size.

Key features of the VPU include the ability to load up to 32 vector elements from memory

into a register file, perform addition operations on two vectors, and store the resulting

vector back into memory. This parallel processing capability significantly accelerates

vector operations and improves overall computational throughput.

Overall, the VPU design and implementation provide a powerful and efficient solution for

applications involving convalution or vector operation.
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Chapter 4

Integration of VPU with RISC-V Core

4.1 Introduction

In this chapter, we will focus on the integration of the designed Vector Processing Unit

(VPU) with the scalar RISC-V core. After researching different scalar RISC-V cores, we

have selected the PicoRV32, which provides the Pico Co-Processor Interface (PCPI) to

integrate co-processors. These co-processors can include AI accelerators, DSP accelera-

tors, cryptographic co-processors, or any other type for faster processing. PicoRV32 also

has built-in multiplication and division cores, that can be enabled if needed.

We integrate our VPU with the PicoRV32 using the Pico Co-Processor Interface (PCPI).

PCPI has various data and control signals for communication between the PicoRV32 and

our designed VPU.

4.2 Design and architecture

The VPU-integrated RISC-V processor operates such that the scalar processor executes

scalar instructions according to the core’s defined mechanism, while the Vector Processing

Unit (VPU) handles vector instructions.
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4.2.1 Overview of PCPI Interface

ENABLE-PCPI is set to 1 to facilitate communication between the PicoRV32 and the

VPU. The Pico Co-Processor Interface provides the following signals for communication:

pcpi-valid, pcpi-insn, pcpi-rs1, and pcpi-rs2 are output signals from the PCPI, while pcpi-

wait, pcpi-ready, pcpi-rd, and pcpi-wr are input signals to the PCPI. Figure 4.1 shows the

Integration of RISC-V core with our designed VPU. In Figure 4.1 red lines shows the

control signals while green lines denotes data signals.

Figure 4.1: Integration of VPU with RISC-V Processor

When an unsupported instruction comes, pcpi-valid is asserted. The instruction is trans-

ferred to the co-processor if pcpi-ready is asserted. pcpi-valid and pcpi-ready are the

handshaking signals between the core processor and the co-processor. The instruction is

transferred to the co-processor using pcpi-insn, and the source registers rs1 and rs2 are

decoded, with their values sent to pcpi-rs1 and pcpi-rs2, respectively. pcpi-wait is set to 1

and pcpi-ready is set to 0 until the execution is completed.

When the co-processor completes execution, the result is written to pcpi-rd and pcpi-wr

is asserted, indicating that the co-processor wants to write something.

The PCPI waits for 16 clock cycles. If no PCPI core acknowledges the instruction within

this time, an illegal instruction exception is raised. Every instruction of the PicoRV32,

whether it is a memory instruction or an ALU instruction, takes 4 clock cycles to execute.

If a PCPI instruction takes more than four cycles, pcpi-wait is set to 1 until the instruction
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is executed. This signal prevents the PicoRV32 core from raising an illegal instruction

exception. The main processor remains in an idle state when the co-processor is running.

4.2.2 PicoRV32 and Memory Intergration

PicoRV32 doesn’t have the internal data and instruction memory. We have made the

top-level wrapper of PicoRV32 named Final-Top and make a memory following Von-

Neumman architecture, combined data and instruction memory. The size of memory is

1KB, every location is 32 bit wide and memory depth is 256.

To efficiently handle the transfer of data and instruction between memory and main pro-

cessor, PicoRV32 provides different data and control signals for this purpose. These sig-

nals are asserted and de-asserted according to requirements.

These are the signals between memory and PicoRV32. Mem-valid, mem-instr, mem-addr,

mem-wstrb, mem-wdata are the output signals from PicoRv32 and input for the memory,

whereas mem-ready and mem-rdata are output signals from the memory and input to the

PicoRV32. Figure 4.2 shows the interface of memory with PicoRV32.

Figure 4.2: PicoRV32 and memory interface

Mem-valid and mem-ready act as handshaking signals between the memory and the main

core. When mem-valid is high, the mem-ready signal is set to 1, and the instruction is

loaded from the instruction memory at the address mem-addr and placed in mem-rdata.
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For store instructions, data is written to the memory at the address mem-addr from mem-

wdata, with mem-wstrb set to all 1s.

4.2.3 VPU and Memory Integration

The VPU does not have its own memory; it uses the PicoRV32 memory to load data and

instructions and to store data back into memory after performing ALU operations. The

VPU can access the memory for load and store purposes. However, the main processor

and the co-processor cannot access memory at the same time. To prevent simultaneous ac-

cess, we have implemented a 2-to-1 multiplexer controlled by the vpu-wait signal. When

vpu-wait is high, the VPU accesses the memory; when it is low, the main core accesses

the memory. This ensures that only one processor accesses the memory at any given time.

Figure 4.3 integration of memory and VPU.

Figure 4.3: VPU and memory integration

The VPU-wait operates based on the done signal from the co-processor, remaining high

until the co-processor finishes working and asserts the done signal. So, the memory is

controlled using the vpu-wait control signal.
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4.2.4 VPU Top-Wrapper FSM

We have made a Finite Set Machine (FSM) to generate the control signals for different

vector instructions. VPU signals are asserted and de-asserted depending on the operation.

Figure 4.4 shows the FSM.

Figure 4.4: VPU and memory integration

The FSM we have created consists of 5 states: idle, load, store, store2, and alu. Each state

has its own set of control signals. In the idle state, the VPU does nothing; the other states

are explained one by one

4.2.4.1 S1: Load State

When an instruction with opcode 2 is received, the current state changes to ’load’. In the

’load’ state, Shuf-En is set to 1 to place data in the memory banks at addresses generated

by the shuffle logic. The Address Generator (AG) block is enabled to generate the source

addresses for memory. The AG increments the address by 1 after each cycle, sending it

through pcpi-rd. AGU is set to 1 based on the vector load elements’ length, which ranges
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from 4 to 32. ’Done’ is controlled by AGU; when the address generator reaches the vector

length, ’done’ is asserted, and the current state is set back to ’idle.

4.2.4.2 S2: Store State and S3: Store2 State

The operation of the store instruction differs from that of the load and ALU instructions.

When an instruction with opcode 3 is received, the current state alternates between the

’store’ and ’store2’ states. As shown in Figure 4.1, there is only one 32-bit bus as input

to the Pico Co-Processor Interface (PCPI). Completing a store operation for one vector

element requires two cycles: in the first cycle, the write address is sent to the main pro-

cessor’s memory, and in the second cycle, the write data is sent and written to the address

provided by the VPU in the previous cycle. Thus, the current state is ’store’ for one cy-

cle and ’store2’ for the next. AGU and Shuf-En are enabled and disabled between these

states. The Address Generator (AG) increments the address by 1 after each cycle, sending

it through pcpi-rd. AGU is set to 1 based on the vector store elements’ length, which

ranges from 4 to 32. ’Done’ is controlled by AGU; when the address generator reaches

the vector length, ’done’ is asserted, and the current state is set back to ’idle’.

4.2.4.3 S4: ALU State

Our vector ALU performs only the addition operation. When an instruction with opcode

0 is received, the current state is set to ’alu,’ which is the final state of the FSM. Since we

have four lanes working in parallel, the addition operation is completed in 8 cycles. The

number of cycles for the addition operation is fixed, regardless of the vector length. In the

case of an addition instruction, AGU and St-en are de-asserted, and only Shuf-en is set to

1 to retrieve sr1 and sr2 and store the result in rd.

4.2.5 Working VPU Integrated RISC-V Processor

In this section, we discuss the operational flow of memory and ALU instructions. Our

integrated RISC-V processor can handle both scalar and vector instructions seamlessly.
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If the instruction is scalar, it executes normally on the main processor. To clarify how

the main processor identifies a vector instruction, the PicoRV32 uses fixed opcode and

func7 bits of the R-type instruction in the RISC-V ISA. The fixed bits for the opcode

are "0110011", and for func7 are "0000001". When an instruction with this format is

fetched, pcpi-valid is asserted, indicating to the system that a vector instruction is ready

to be processed. This assertion triggers the vector processor to begin execution. While

the vector processing unit is working, the main processor remains idle.

We have repurposed the RISC-V instruction format for our Vector Processing Unit (VPU)

as in the Figure 3.2

4.2.5.1 Instruction Fetch

PicoRV32 fetches an instruction from memory every four cycles and executes each scalar

instruction in four cycles. In the case of a vector instruction, the execution time depends

on the vector length.

4.2.5.2 Working of Load Instruction

If the instruction is a scalar load, the main core loads the data and keeps it in the register

file before processing. In the case of a vector load instruction, it is sent to the co-processor

through pcpi-insn. The co-processor sends the load address to the main processor via

pcpi-rs1, incrementing by one each cycle. For vector load operations, a maximum of

32 elements can be loaded with a single instruction, with the length varying based on

the vlen field in the repurposed RISC-V instruction. If the vlen bits are "00", it loads 4

elements; for "01", it loads 8 elements; and for "10", it loads 32 elements. The loaded

vector elements are kept in the memory banks of the vector processor. Figure 4.6 shows

the working of the vector load instruction.
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4.2.5.3 Working of ALU Instruction

Scalar ALU instructions are executed by the main processor. In the case of a vector

instruction, it is sent to the VPU through the Pico Co-Processor Interface (PCPI) on pcpi-

insn. Since we have four lanes in the VPU working in parallel, it adds four corresponding

vector elements per cycle. Therefore, for the addition of 32 elements, the VPU takes 8

cycles to complete the operation. The processed data is then placed in the memory banks.

Figure 4.5 shows the working of vadd instruction.

Figure 4.5: Working of vadd instruction

4.2.5.4 Working of Store Instruction

Store instructions are executed differently from load and ALU operations. Scalar store

instructions are processed by the main processor, while vector store instructions are sent

by the main processor to the VPU through pcpi-insn, initiating the store operation. Since

store instructions also require a store address, the store operation is completed in two

cycles for each element. To store 32 elements in memory after processing, it will take 64

cycles to complete the operation.

Since we are using the same bus pcpi-rd for writing addresses and write data. In the

first cycle write address is sent to memory through pcpi-rd and in next cycle write data

is sent to memory through pcpi-rd. How memory get to know which is the write address
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and which is the write data? For this purpose we have used the PCPI pcpi-wr signal to

differentiate the between write address and write data. If the pcpi-wr is 0, pcpi-rd has

write address, if it is 1 then pcpi-wr is set to 1.

We have variable-length store elements, specified in the repurposed instruction format as

in Figure 3.2 using bits [8:7] for store element length. If the value of vlen is "00," it stores

4 elements in memory from the banks; if vlen is "01," it stores 8 elements; if vlen is "10,"

it stores 16 elements; and if vlen is "11," it stores 32 elements. This procedure is followed

for every vector store operation. Figure 4.6 shows the working of store instruction.

Figure 4.6: Working of vstore instruction

4.2.5.5 Final Waveform

We have verified the operation of the VPU-integrated RISC-V processor through simula-

tion. Figure 4.7 shows the simulated results of our VPU-integrated RISC-V processor.
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Figure 4.7: Simulation results of VPU integrated RISC-V processor

4.3 Summary

In this chapter, we analyze the integration of our designed Vector Processing Unit (VPU)

with the scalar RISC-V core, specifically using the PicoRV32 core. The integration ad-

vantages the Pico Co-Processor Interface (PCPI) to execute both scalar and vector in-

structions. The PCPI interface, with its different control and data signals, ensures that

unsupported instructions are efficiently sent to the co-processor for execution.

We explained the design and architecture of the VPU-integrated RISC-V processor, show-

ing how scalar instructions are executed by the main processor while vector instructions

are managed by the VPU. The integration process also involved creating a top-level wrap-

per for the PicoRV32 to include a combined data and instruction memory, following the

Von Neumann architecture. This setup ensures efficient data transfer between memory

and the main processor.

The chapter also covered the detailed working of load, ALU, and store instructions. Scalar

instructions are handled directly by the main processor, while vector instructions are pro-

cessed by the VPU. The VPU’s capability to process multiple vector elements in parallel
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significantly increases performance, especially for operations involving large data sets.

Additionally, we implemented a control mechanism using the vpu-wait signal to prevent

simultaneous memory access by the main processor and the VPU. This ensures smooth

and conflict-free operation when accessing shared memory resources.

Overall, the successful integration of the VPU with the PicoRV32 core show the feasi-

bility and efficiency of combining scalar and vector processing within a scalar RISC-V

processor architecture. This integration not only enhances processing capabilities but also

opens up possibilities for implementing various co-processors to handle specialized tasks,

thereby improving overall system performance.
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Chapter 5

Cross-Compilation Toolchain and

Analysis

5.1 Introduction

In this chapter, we will discuss the cross-compilation toolchain, which is essentially a C

compiler for RISC-V. Since our target machine is RISC-V, we need a compiler that can

convert our C code into RISC-V assembly code. This is achieved by configuring GCC

with the RISC-V ISA, which allows it to generate a disassembly file. This file can then

be simulated and debugged using a simulator called Spike and the proxy kernel (pk).

Through this process, we can examine the instruction size and measure the compilation

time.

5.2 Motivation

The cross-compilation toolchain will help us in benchmarking our VPU-integrated core

against a scalar RISC-V core. As we focus on SIMD architecture, the toolchain will allow

us to evaluate how much the instruction size is reduced by comparing the number of lines
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in the disassembly file of the RISC-V scalar core with that of our VPU-integrated RISC-V

core.

5.3 Toolchain Setup

The cross-compilation toolchain setup on Linux is accomplished using the official reposi-

tory of the RISC-V cross-compiler toolchain[35]. This setup involves the following steps:

• Clone the toolchain directory into the local machine from the official repository of

RISC-V.

• Configure environment variables to ensure proper functioning of the toolchain.

• Build and install the RISC-V toolchain to compile code for the target architecture.

• Install and configure Spike and PK using the repository to enable simulation and

debugging capabilities.

Figure 5.1 shows the successful installation and version detail of cross compiler toolchain.

Figure 5.1: Cross compiler toolchian

5.4 Components

The toolchain consists of the following components:

• RISC-V GNU Compiler: Converts C code into RISC-V assembly code.

• Spike Simulator: Simulates and debug the disassembly file.

• Proxy Kernel (pk): Provides a runtime environment for the simulation.

The detailed explanation of the tools is given in the subsequent sections.
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5.4.1 RISC-V GNU Compiler

The RISC-V GNU Compiler consists of the following key components:

• GCC Compiler: Configured with the RISC-V ISA, this compiler translates C code

into RISC-V assembly code.

• Binutils: A collection of binary tools including the linker and assembler, which are

generating executable files from the compiled code.

• Necessary Libraries: These libraries provide additional functionality required dur-

ing the compilation and linking process.

Together, these components enable the conversion of C code into RISC-V assembly code.Figure

5.2 shows the compilation of C code using GNU toolchain.

Figure 5.2: Compilation of C code

5.4.2 Spike

Spike is essentially a simulator for RISC-V. With the help of Spike, we can simulate

and debug our disassembly file. It allows us to check register values and observe how

they change at any point during execution. Additionally, we can check the output of our

program using Spike, making it an invaluable tool for debugging, performance analysis,

and verification.

With the help of spike and proxy kernel (pk) we can we view the output of the C or C++

on the terminal. Figure 5.3 shows the simulation using Spike.
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Figure 5.3: Simulation using Spike

5.4.3 Proxy kernel(PK)

The Proxy Kernel (pk) serves as a runtime environment for the simulation. It acts as a

software bridge for RISC-V, managing memory and basic input-output operations. Pk

act as an operating system for RISC-V, providing services to facilitate program execution

within the simulation environment. Figure 5.4 shows the inputs and outputs operation

using spike and pk.

Figure 5.4: Inputs and outputs operation using spike and PK

5.5 Analysis of the final core

As mentioned earlier, the toolchain will assist us in benchmarking. To begin with bench-

marking, we first run a simple program containing only a main function, where an array is

declared along with the necessary libraries. We then check how many lines of disassembly

are generated. This program produces 2108 lines of disassembly. Figure 5.5 shows the C

code in which we are declaring and initialize only first element of an array and Figure 5.6

shows the corresponding disassembly lines of code.

Now, when we load one element of the array, we observe that the number of instructions
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Figure 5.5: C code for an initialize an array element

Figure 5.6: Corresponding disassembly lines

increases by 2. Similarly, when we load two elements, the instructions increase by 4,

going from 2108 to 2112. This indicates that loading an element of an array requires

2 instructions. Consequently, if we load 32 elements of an array, the instructions will

increase by 64. Figure 5.7 shows the C code in which we are loading two elements of an

array and Figure 5.8 shows the corresponding disassembly lines of code for two loads.

Figure 5.7: C code to load two elements of an array

Our VPU-integrated core can load an entire vector with just one instruction. Typically,

loading a single element of a vector requires 2 instructions, so loading a vector consisting

of 32 elements would take 64 instructions. However, our VPU-integrated core reduces

this to only one instruction. The instruction for loading a complete vector is: vload rd,
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Figure 5.8: Corresponding disassembly lines for two loads

mem[rs1[0]].

Similarly, for the add operation, without performing any add operations and only declar-

ing our variables in main, the disassembly lines of code total 2103. Figure 5.9 shows

the C code in which we are declaring three variables only and Figure 5.10 shows the

corresponding disassembly lines of code.

Figure 5.9: C code for declaring variables

Figure 5.10: Corresponding disassembly lines for declaring variables

Now, when we perform one add operation, the disassembly lines increase by 2, going

from 2103 to 2105. When performing two add operations, it becomes 2107, and with

three add operations, it becomes 2109. This indicates that each add operation requires
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two instructions. The figure 5.11 shows the C code to perform three add operations and

the Figure 5.12 shows corresponding disassembly lines of code.

Figure 5.11: C code for three add operation

Figure 5.12: Corresponding disassembly lines for three add operations

On the other hand, our VPU-integrated core adds corresponding elements of two vectors

using a single add instruction. In contrast, if we want to add two vectors, each containing

32 elements, the scalar core would require 64 instructions for addition. However, our

VPU-integrated core accomplishes the addition of two vectors with just one instruction.

The instruction for adding corresponding elements of two vectors is: vadd rd, rs1, rs2

Similarly, when we store one element of an array, the disassembly lines increase by one.

This indicates that every element of an array requires one instruction for storage.

Figure 5.13: C code for just declaring an array
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Figure 5.14: Corresponding disassembly lines

The Figure 5.13 shows the C code without any store operation 5.14 shows corresponding

disassembly lines of code.

The Figure 5.15 shows the disassembly lines of code to store three array elements.

Figure 5.15: Disassembly to store two array elements

On the other hand, our VPU-integrated core can store all elements of an array with just

a single instruction. This means that if a vector consists of 32 elements, the scalar core

would require 32 instructions to store the complete vector, whereas our VPU-integrated

core needs only one instruction.

5.6 Summary

Our benchmarking analysis reveals significant efficiency improvements with our VPU-

integrated core compared to the scalar core. When loading elements, the scalar core re-

quires 2 instructions per element, resulting in 64 instructions to load a vector with 32 ele-

ments. In contrast, our VPU-integrated core achieves this with a single instruction. Simi-

larly, for add operations, the scalar core needs 2 instructions per add operation, totaling 64

instructions for adding two vectors with 32 elements each. However, our VPU-integrated
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core performs this operation with just one instruction. Furthermore, storing elements fol-

lows the same pattern; the scalar core requires 1 instruction per element, leading to 32 in-

structions for storing a complete vector, whereas our VPU-integrated core accomplishes

this with a single instruction. This substantial reduction in the number of instructions

demonstrates the enhanced computational performance and reduce the instruction size by

a large number. Summary of the results in shown in Table 5.1.

Table 5.1: Comparative results for Base processor vs VPU enabled processor

Features Base RISC-V Core Vector RISC-V Core

Add Load Store

Latency 32 8 32 64
Lines of Code 32 1 1 1
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we began by researching the RISC-V architecture and its various cores. Af-

ter evaluating several options, we selected the PicoRV32 core for integrating our VPU. We

then detailed the design and implementation of the VPU, which enhances computational

efficiency through SIMD (Single Instruction, Multiple Data) architecture, enabling paral-

lel operations on vector elements. This approach is particularly beneficial for applications

involving vector operations, such as convolution and matrix computations.

Our benchmarking analysis highlights the advantages of the VPU-integrated core over a

traditional scalar core. The ability to load, add, and store entire vectors with single in-

structions significantly reduces the number of required instructions. For instance, while a

scalar core requires 64 instructions to load a vector with 32 elements, our VPU-integrated

core completes this task with a single instruction. Similarly, vector addition and stor-

age operations also see substantial reductions in instruction count, resulting in improved

computational throughput and efficiency.

The cross-compilation toolchain, essential for the development and testing of our VPU,

was set up using the official RISC-V repository. This toolchain, which includes the RISC-
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V GNU compiler, the Spike simulator, and the Proxy Kernel (PK), allowed us to bench-

mark our VPU-integrated core effectively. We demonstrated how the toolchain facilitates

the comparison of instruction sizes and compilation times between the scalar core and our

VPU-integrated core, underscoring the benefits of our approach.

We have four lanes operating in parallel, processing 4 elements of a vector at a time. For

example, if we add two vectors, the scalar core will complete the addition in 32 cycles,

whereas the VPU-integrated PicoRV32 will complete it in just 8 cycles. The number of

cycles required for load and store operations remains the same.

In summary, the integration of the VPU with the RISC-V core provides a powerful en-

hancement to parallel processing capabilities, significantly reducing instruction counts

and improving overall performance for vector operations. This work lays a strong founda-

tion for future research and development in the field of vector processing, offering promis-

ing avenues for optimizing computational efficiency in various applications.

6.2 Future Work

In our future work, we plan to enhance the capabilities of our VPU by adding vector mul-

tiplication operations. Additionally, we aim to implement UVM (Universal Verification

Methodology) based verification for the VPU. This will ensure thorough testing and val-

idation of the VPU’s functionality and performance, helping to identify and rectify any

potential issues. These enhancements will further improve the computational efficiency

and reliability of our VPU-integrated PicoRV32 core, making it even more suitable for

complex vector-based computations.

Moreover, the Floating Point Unit (FPU) can be added to perform arithmetic operations

on decimal numbers. Our VPU follows a 32-bit architecture but can also be extended to

64-bit architecture depending on the requirements
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