
NUST COLLEGE OF
ELECTRICAL AND MECHANICAL ENGINEERING

CENTRAL BANKING DIGITAL CURRENCY
TRANSACTION PROCESSOR

PROJECT REPORT

DE-42 (DC & SE)

Submitted by

NS FURQAN AHMAD

NS HAMZA BIN SAQIB

NS ALI NAWAB RANA

NS SANAULLAH AFZAL

BACHELORS

IN

COMPUTER ENGINEERING

YEAR

2024

PROJECT SUPERVISOR

DR. ALI HASSAN

DR. SHOAB AHMED KHAN

D
E-42

(D
C

&
SE)

Y
EA

R
2024 DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,
ISLAMABAD, PAKISTAN

Certification

This is to certify that Furqan Ahmad(352076), Hamza Bin Saqib(342765),Ali Nawab
Rana(340770) and Sanaullah Afzal(346463) have successfully completed the final project
Central Banking Digital Currency Transaction Processor, at the National University of
Science and Technology Islamabad, to fulfill the partial requirement of the degree Com-
puter Engineering.

Signature of Project Supervisor
Dr. Ali Hassan

Designation

i

Sustainable Development Goals (SDGs)

SDG No Description of SDG
SDG 9 Decent Work and Economic Growth

Sustainable Development Goals

ii

Complex Engineering Problem

Range of Complex Problem Solving
Attribute Complex Problem

1 Range of conflicting re-
quirements

Involve wide-ranging or conflicting technical, engineer-
ing and other issues.

X

2 Depth of analysis re-
quired

Have no obvious solution and require abstract thinking,
originality in analysis to formulate suitable models.

X

3 Depth of knowledge re-
quired

Requires research-based knowledge much of which is at,
or informed by, the forefront of the professional discipline
and which allows a fundamentals-based, first principles
analytical approach.

X

4 Familiarity of issues Involve infrequently encountered issues X
5 Extent of applicable

codes
Are outside problems encompassed by standards and
codes of practice for professional engineering.

6 Extent of stakeholder in-
volvement and level of
conflicting requirements

Involve diverse groups of stakeholders with widely vary-
ing needs.

X

7 Consequences Have significant consequences in a range of contexts. X
8 Interdependence Are high level problems including many component parts

or sub-problems
X

Range of Complex Problem Activities
Attribute Complex Activities

1 Range of resources Involve the use of diverse resources (and for this purpose,
resources include people, money, equipment, materials,
information and technologies).

X

2 Level of interaction Require resolution of significant problems arising from
interactions between wide ranging and conflicting techni-
cal, engineering or other issues.

X

3 Innovation Involve creative use of engineering principles and
research-based knowledge in novel ways.

X

4 Consequences to society
and the environment

Have significant consequences in a range of contexts,
characterized by difficulty of prediction and mitigation.

X

5 Familiarity Can extend beyond previous experiences by applying
principles-based approaches.

X

iii

Dedicated to

the Prophet Muhammad (SAW), the mercy for all people. May his
messages of love, justice, and dignity remain relevant in our society. It

also honors the brave and resilient people of Gaza, who inspire many with
their courage and persistence.

iv

Acknowledgment

First of all, Alhamdulillah, that our FYP is finally made and all Thanks to Allah for giving
us the strength and moral to keep pushing forward and helping us on each and every step
of the way.
Secondly, we would like to offer heartily thanks our supervisors, Dr. Ali Hassan and Dr.
Shoab Ahmed Khan, who helped us a lot, tremendously, on each and every single issue,
who’s help ad guidance became a source of strong determination for us. Thank You, sir‘s
you played a great role in our lives, one that we can never forget.
And lastly, we would like to thank our parents and friends, without whose unimaginable
support and constant motivation, we might not have been able to complete our Final year
project. They played an unparalleled role throughout our journey and we are eternally
thankful to them. Their constant support, motivated us to do more than we ever realized
and they inspired new hope in us, when we found none in ourselves.

v

Abstract

A safe, effective, and scalable transaction processing system is now essential due to the
growing number of countries implementing Central Bank Digital Currencies (CBDCs).
Even with their robustness, the current financial systems have difficulties scalability, se-
curity, and transaction speed while adjusting to the digital currency paradigm. Existing
blockchain technologies, like Hyperledger Fabric, provide decentralized, transparent, and
secure answers to these problems. However, performance and efficiency are severely con-
strained by the substantial processing overhead associated with handling transactions and
carrying out smart contracts. In order to overcome these obstacles, the final year project
develops a CBDC transaction processor that uses a ZYBO board for increased process-
ing power and integrates Hyperledger Fabric as the underlying blockchain technology.
The permissioned, modular network architecture of Hyperledger Fabric is perfect for pre-
serving the scalability, integrity, and secrecy needed for CBDC transactions. To increase
overall efficiency, compute-intensive tasks like cryptographic procedures and the execu-
tion of smart contracts are offloaded from the main blockchain network and handled by the
ZYBO board, a flexible and potent processing unit. The project’s goal is to show how the
ZYBO board and Hyperledger Fabric together can greatly increase transaction throughput
and decrease latency. According to the system architecture, the ZYBO board functions as
the Hyperledger Fabric network’s central processing unit, effectively carrying out intricate
tasks. To verify the efficacy of the system, performance measures including processing
latency and transactions per second (TPS) rates are subjected to extensive testing and anal-
ysis. Comprehensive testing is also used to assess the security and dependability of the
suggested solution against various cyberthreats and failure scenarios. This study not only
contributes to the actual deployment of digital currencies but also explores the wider pos-
sibility of integrating blockchain technology with specialized hardware accelerators by
bridging the gap between current financial systems and the future needs of CBDCs. The
results offer insightful information for future advancements in blockchain technology and
digital currency transaction platforms that will improve financial services.

vi

Contents

Acknowledgment v

Abstract vi

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Scope . 4
1.4 Aims and Objectives . 5

1.4.1 Aims . 5
1.4.2 Objectives . 6

1.5 Outcomes . 7
1.5.1 Expected Outcomes . 7
1.5.2 Potential Impact . 8

1.6 Report Organization . 8

2 Literature Review 10
2.1 Background . 10

2.1.1 Central Banking Digital Currencies (CBDCs) 10
2.2 Related Projects . 12

2.2.1 Project Hamilton . 12
2.2.2 OpenCBDC . 13

3 Methodology 17
3.1 Rationale . 17
3.2 High Level Overview . 18

3.2.1 Digital Wallets . 18
3.2.2 ZyBo . 21
3.2.3 DataFlow . 23

4 Petalinux Software Development Kit 25
4.1 Why Petalinux? . 25

vii

4.1.1 Tailored for Xilinx Zynq SoCs 26
4.1.2 Comprehensive Development Environment 26
4.1.3 Linux-Based Environment . 26
4.1.4 Balancing Control and Features 27
4.1.5 Real-Time Capabilities . 27
4.1.6 Networking and Multi-Threading 28

4.2 Setting Up Petalinux . 29
4.2.1 Prerequisites . 29
4.2.2 Installation & Working Environment 29

4.3 Project Creation . 30
4.3.1 Configuring a Hardware Platform for Linux 30

4.4 Build & Configuration . 33
4.4.1 Kernel Configuration . 35
4.4.2 Boot Configuration . 36
4.4.3 Root Filesystem Configuration 38
4.4.4 Image Build . 41

4.5 Packaging & Booting . 42
4.5.1 SD Card Partitioning . 43
4.5.2 Loading Files . 43

5 IP Generation & Integration 45
5.1 SHA-256 IP . 45

5.1.1 Creating SHA256 IP and Block Design 46
5.1.2 Writing Code in SDK and launching It 59
5.1.3 How to run the code . 64
5.1.4 OUTPUT: . 67

5.2 RSA IP . 68
5.2.1 Introduction to AXI4-Lite (Advanced Extensible Interface) 72
5.2.2 Hardware Bottlenecks . 73
5.2.3 Connections . 77
5.2.4 How They Work Together . 79
5.2.5 Summary . 80

5.3 Simulation Results . 80
5.4 Integration of IPs and Received Transaction 81

5.4.1 Steps for Integration . 82
5.5 Project Presentation on Custom IP Core and Driver Abstraction 94

5.5.1 Introduction . 94
5.5.2 Custom IP Core Implementation 94
5.5.3 Driver Functionality . 94
5.5.4 Purpose of Abstraction . 94
5.5.5 Driver Components . 95
5.5.6 Driver Development Steps . 95
5.5.7 Application Developer Perspective 95
5.5.8 Integration Steps . 95
5.5.9 Example Workflow . 95
5.5.10 Conclusion . 96

viii

6 Implementation of Hyperledger Fabric in CBDC Transaction Processing 97
6.1 Introduction . 97
6.2 Setting up Hyperledger Fabric Environment 98
6.3 Installation of Hyperledger Fabric and Fabric Samples 99

6.3.1 Cloning fabric-samples Repository 99
6.3.2 Running the Installation Script 100
6.3.3 Confirming Installation . 100

6.4 Explanation of Smart Contract . 101
6.4.1 InitLedger . 101
6.4.2 CreateAsset . 101
6.4.3 ReadAsset . 101
6.4.4 UpdateAsset . 102
6.4.5 DeleteAsset . 102
6.4.6 AssetExists . 102
6.4.7 GetAllAssets . 102
6.4.8 TransferAsset . 102

6.5 Deploying Smart Contracts to Hyperledger Fabric Network 103
6.5.1 Chaincode Deployment Process 104
6.5.2 Endorsement Policy . 105

6.6 Integration with FPGA-Based Transaction Processor 106
6.6.1 Data Transmission . 107
6.6.2 Transmission Protocol . 107
6.6.3 Data Processing . 108
6.6.4 Transaction Execution . 109
6.6.5 Performance Optimization . 110

6.7 Conclusion . 111

7 Conclusion and Future Work 113
7.1 Conclusion . 113
7.2 Future Work . 115

Bibliography 118

ix

List of Figures

1 Sustainable Development Goals . ii

2.1 Digital Currency Initiative . 12

3.1 Digital Wallets . 18
3.2 Transmitter Flowchart . 20
3.3 ZyBo Development Platform . 21
3.4 Zynq AP SoC Architecture . 22
3.5 Transaction DataFlow . 23

4.1 Sourcing Setup Script . 30
4.2 Creating New Project . 30
4.3 Zynq Block Automation . 31
4.4 Peripherals Configuration . 32
4.5 Petalinux Hardware Configuration . 33
4.6 System & Image Packaging Configuration 34
4.7 Kernel Configuration . 35
4.8 Linux/Arm 6.1.30 Kernel Configuration 36
4.9 U-Boot Configuration . 37
4.10 U-Boot 2023.01 Configuration . 37
4.11 Boot Media . 38
4.12 RootFS Configuration . 38
4.13 Filesystem Packages . 40
4.14 Password Rules . 40
4.15 Petalinux RootFS Settings . 41
4.16 Petalinux Build . 42
4.17 Petalinux Boot Package . 43

5.1 Create and Package IP . 46
5.2 Steps to create new IP . 48
5.3 Adding the IPs directories to the project 50
5.4 Adding required registers . 51
5.5 Replacing some slv_reg . 52
5.6 Adding User Logic . 53
5.7 Saving Changes made in IP . 53
5.8 Creating Block Diagram Project . 55
5.9 Adding IP repository . 56

x

5.10 Adding IP Block . 57
5.11 Adding Zynq Block . 57
5.12 Final Block Diagram . 58
5.13 Exporting Hardware . 59
5.14 Launch SDK . 60
5.15 Basic SDK Window . 61
5.16 Creation of new Application . 63
5.17 Code Snippet . 64
5.18 Tera Term Serial Setting . 65
5.19 Programming ZYBO Board . 67
5.20 OUTPUT of SHA-256 . 67
5.21 RSA Signatures Explained . 69
5.22 AXI4 Read and Write Transactions . 73
5.23 Configurable Logic Block (CLB) . 74
5.24 RSA Wrapper . 76
5.25 RSA Semulation . 80
5.26 RSA Result . 81
5.27 Adding Both IPs . 83
5.28 All Required Blocks Added . 84
5.29 Disable Scatter Engine . 84
5.30 Final Block Diagram . 85
5.31 Exporting Hardware . 88
5.32 Implementing Shared Memory . 89
5.33 Launching SDK . 90
5.34 Defining Shared Memory and DMA . 91
5.35 Initializing DMA . 92
5.36 Defining Transfer Function for DMA . 92
5.37 Initializing Buffer Variables . 92
5.38 Opening Shared Memory . 93
5.39 Preparing Data for Input . 93
5.40 Writing Data to Write Register . 93

6.1 Various Tools and Technologies . 99
6.2 Flowchart of smart Contract . 103
6.3 Smart Contract Deployment . 105
6.4 Transaction Endorsement Process . 106
6.5 Data Transmission . 107
6.6 Transmission Protocol . 108
6.7 Data Processing . 109
6.8 Transaction Execution . 110
6.9 Performance Optimization . 111

xi

List of Tables

2.1 Comparison between Project Hamilton and OpenCBDC 15

4.1 Comparison of Bare Metal and PetaLinux 28

5.1 Comparison between RSA and AES . 71

xii

Chapter 1

Introduction

1.1 Motivation

CBDCs have become an essential topic to discuss in today’s world as different states,

as well as the international community as a whole, wake up to the concept of Digital

Currencies and blockchain. While going for a cash less society with high online financial

transactions, it is obvious that effective and secure transaction processing systems plays a

crucial role.

Conventional methods of financial systems also have their several issues such as low

speed, high cost and security issues of the cards. In this regard, there is an increased

awareness of adopting approaches that utilise advanced systems to resolve emerging). In

order to counter these problems, an increased focus has been placed on finding new ways

of tackling the issues by using the new technologies.

The over-arching goal of this project is to design and implement a CBDC transaction pro-

cessor developed with FPGA to increase processing velocity, and for the creation of a

well-grounded private blockchain using Hyperledger Fabric. This is because FPGA pro-

vides unparalleled performance and versatility in handling a program, and is therefore

desirable when processing large volumes of high-frequency transactions with minimal in-

put lag. Moreover, Hyperledger Fabric has mechanism such as permissioned which helps

1

in the implementation of private blockchain that covers the issues of privacy, accuracy and

scalability.

By integrating FPGA and Hyperledger Fabric, this project seeks to achieve several objec-

tives:

1. Enhanced Transaction Throughput: With FPGA, parallel processing of transac-

tion is possible; hence, transaction throughputs and time to process the transactions

is much faster than the CPU-based system.

2. Low Latency: Thus, the real-time processing in FPGA implies very small transac-

tion time and makes transactions fast and smooth.

3. Improved Security: In Hyperledger Fabric permissioned blockchain architecture

allows only the verified entities to The computation power of FPGA is more hence

transaction throughputs and time to process the transactions recorded in FPGA-

based system are faster than that of the CPU-based system. assist in the gaining of

access as well as the validation of the transactions leading to the improvement of

the security of the system.

4. Scalability: The extensibility can also be considered a benefit due to the fact that

Hyperledger Fabric is a modular solution, which facilitates the extension of the

system that is able to handle a growing number of transactions as well as increasing

users’ count without experiencing a decline in performance rates.

5. Privacy Preservation: Hyperledger provides various capabilities or solutions on

private channels and confidential transactions to achieve the private nature of the

smart contracts and the participants’ transactional informations.

This project focuses on designing a CBDC transaction processor utilizing FPGA and the

Hyperledger Fabric architecture to enhance the knowledge regarding digital currency and

blockchain applications for practical use, thereby enhancing the current operation of the

financial system.

2

1.2 Problem Statement

Althrough CBDCs have a great prospect, there are some obstacles that should be solved

relating to CDBC. The current TP systems are characterized by some inefficiencies and

constraints that negatively impact CBDC’s deployment and effectiveness. Some of the

key challenges include:Some of the key challenges include:

1. Slow Transaction Speeds: In the context of CBDCs, CTSs are unable to support

the expected, high-frequency transactions hence causing delays and congestion in

the execution of payment settlements.

2. High Transaction Costs: Burdens which accrue from fulfilment of transactions

such as fees and infrastructure costs may be exorbitant especially for small value

transactions hence the challenge to financial inclusive and accessibility.

3. Privacy and Security Concerns: Typically, there is no issue of privacy when it

comes to public blockchains since all the transaction information is recorded in

the ledger that is publicly accessible by anybody with an internet connection, and

central bank transactions require the highest possible levels of anonymity.

4. Scalability Issues: For instance, as the number of transactions and the number of

users increases in the CBDC ecosystem, this may lead to a negative impact towards

network traffic and hence, the efficiency of the CBDC will start to deteriorate.

Meeting these needs involves designing a strong transaction processing system that en-

ables fast, cheap, reliable and elastic transaction processing for CBDCs. These challenges

are going to be addressed with this project utilizing the implementation of the FPGA tech-

nology and Hyperledger Fabric to create an optimized CBDC transaction processor.

Thus, by focusing on the specified difficulties and offering unique resolutions for every

issue, this project should offer valuable contributions to the field of digital currency and

blockchain technology that will enable the global establishment of CBDCs.

3

1.3 Scope

The ambit of this project is to design and build efficient CBDC transaction processing sys-

tem using FPGA and Hyperledger Fabric architecture. The main goal is to solve the main

problems of CBDCs such as low speed of the transaction, high price of the transactions,

the question of privacy and security, as well as the problems of the scalability.

The project will focus on the following key areas:

1. Transaction Processing System Design: CBDCs need to be supported by a strong

transaction processing system that should be constructed for this purpose exclu-

sively. Thus, this system should focus on high speed, low cost, reliability, and

scalability of transaction processing.

2. FPGA Integration: Integrate FPGA technology into the transaction processing

system to enhance its performance and efficiency. FPGA’s inherent parallel pro-

cessing capabilities will be leveraged to optimize transaction throughput and reduce

latency.

3. Hyperledger Fabric Implementation: Adopt Hyperledger Fabric for the creation

of CBDC transactional network since it is a permissioned blockchain. Hyperledger

Fabric is a suitable blockchain platform to support UL Cyclone because of its mod-

ular design and endorsement of confidential transactions.

4. Addressing Challenges: Develop tailored solutions to address the specific chal-

lenges faced by CBDCs, including:

• Overcoming slow transaction through better algorithms in transaction process-

ing and incorporating FPGAs.

• Cutting the costs of coordination by optimizing the process of fulfilling the

transactions and decreasing infrastructure expenses.

4

• The obligations include the aspects of the privacy and security based on the

means of cryptographic techniques and the means of confidential transactions.

• Enabling the management of scale with a refined transaction-processing archi-

tecture to support the future growth of the CBDC ecosystem.

5. Evaluation and Validation: Assess the efficiency, stability, and security of the

developed CBDC transaction processing system to a great extent. Carry out ample

pilot testing to confirm whether the implemented system of solution solves the main

difficulties of the undertaking.

6. Documentation and Dissemination: This paper should outline the conceptual-

ization, realization, and assessment of the CBDC transaction processing system.

Knowledge outputs have to be shared through scientific journals, technical and re-

search papers, as well as conferences as a means of providing advancements to the

field of the digital currency and the blockchain technology.

In pursuing these aspects, the project has the objective of coming up with feasible solu-

tions to the issues that have an impact on the implementation and use of CBDCs. Thus,

the optimized CBDC transaction processing system evolving from this project should be

quite beneficial in the development and uptake of CBDCs and blockchain.

1.4 Aims and Objectives

1.4.1 Aims

The goal of this project will be to develop an efficient system for processing Central

Bank Digital Currency (CBDC) transactions that will proactively overcome some of the

issues that are associated with CBDC that include slow transaction rates, high costs of

the transactions, and privacy, as well as, security issues, and scalability. Therefore, with

the use of FPGA and with the help of hyper ledger fabric, the project aims to establish a

5

strong CBDC transaction processing framework that can enable cheap, fast, reliable, and

scalable CBDC transactions.

1.4.2 Objectives

To achieve the aim outlined above, the project will pursue the following objectives:

1. Designing a Transaction Processing System: Design a TP system that is specifi-

cally built for CBDCs; one that is fast, cheap, dependable, and can process a large

number of transactions.

2. Integrating FPGA Technology: Introduce FPGA into the TPS as a solution to its

performance that could particularly benefit from parallel processing.

3. Implementing Hyperledger Fabric: Hyperledger Fabric should be applied to cre-

ate a privacy and security enhanced CBDC transaction network to mitigate privacy

and security concerns.

4. Addressing Key Challenges: Find strategies for possible challenges on the low

transaction speeds, high transaction costs, need for privacy and security and issues

of scalability that are unique in CBDCs.

5. Evaluating Performance:Performance evaluation and validation of the developed

CBDC transaction processing system must be carried out to check the level of com-

pliance to best practices and to check its proficiency to deal with the outlined chal-

lenges.

6. Documenting and Disseminating Findings: Detail the design, implementation,

evaluation and the findings of the project. Share information by producing articles,

research papers, and papers on the results obtained as well as giving presentations

to assist in the enhancement of digital currency and blockchain.

6

1.5 Outcomes

1.5.1 Expected Outcomes

The project aims to achieve the following outcomes:

1. Optimized CBDC Transaction Processing System: Develop an optimized trans-

action processing system for CBDCs that demonstrates improved transaction speeds,

reduced transaction costs, enhanced privacy and security, and scalability to meet the

demands of a growing CBDC ecosystem.

2. Integration of FPGA Technology: Successfully integrate FPGA technology into

the transaction processing system, leveraging parallel processing capabilities to en-

hance performance and efficiency.

3. Implementation of Hyperledger Fabric: Implement Hyperledger Fabric to build

a secure and privacy-enhanced CBDC transaction network, ensuring compliance

with regulatory requirements and addressing privacy concerns.

4. Addressing Key Challenges: Develop tailored solutions to address key challenges

faced by CBDCs, including slow transaction speeds, high transaction costs, privacy

and security concerns, and scalability issues.

5. Thorough Evaluation and Validation: Conduct comprehensive performance eval-

uation and validation of the developed CBDC transaction processing system to en-

sure its effectiveness, reliability, and compliance with standards.

6. Documentation and Dissemination of Findings: Document the design, imple-

mentation, evaluation process, and findings of the project. Disseminate insights

through academic publications, technical reports, and presentations to contribute to

the advancement of digital currency and blockchain technology.

7

1.5.2 Potential Impact

Hypothesis testing research outcomes of this project are expected to bring influential

change to the field of digital currency and blockchain technology. The optimized CBDC

transaction processing system developed through this project has the potential to:The op-

timized CBDC transaction processing system developed through this project has the po-

tential to:

• Enhance the ability of central banks to promote CBDCs by responding to major

obstacles that limit their implementation and success.

• Improve financial inclusion and accessibility by reducing transaction costs and en-

hancing transaction speeds, particularly for small value transactions.

• Enhance efficiency in use of financial services by lowering the cost per transaction

especially in instances where the value of the transaction is low, so as to promote

financial access.

• Create the basis for further research and development of the topic of digital cur-

rency and the application of blockchain technology that will result in technological

progress.

1.6 Report Organization

The organization of the thesis is as follows:

• Introduction: This chapter provides background information about the research

project that this thesis belongs to, including its objectives, aims, rationale, and the

identified problem. To achieve this, it defines the project’s purpose, aims and ob-

jectives for readers to grasp quickly and easily. Moreover, it defines the expected

advantages and possible consequences, and gives a short description of the organi-

zation of the report.

8

• Literature Review: This chapter for that reason gives a proper background of the

subject under discussion, namely Central Banking Digital Currencies. To situate the

current research, it identifies related works like Project Hamilton & OpenCBDC.

• Methodology: This chapter justifies the methods and approaches to be used in the

study. They provide the general picture of the project, reveal what exactly is going

to be developed and how all components named as Digital Wallets, ZyBo, DataFlow

are interconnected and making a significant impact on the whole project.

• Petalinux Software Development Kit: This chapter focuses on the rationale of

choosing Petalinux, and it considers Petalinux as a great development scaffold that

supports Xilinx Zynq SoCs. It includes the processes of setup, project creation, and

configuration that leads to build & packaging that are important aspects for system

deployment.

• IP Generation & Integration: This chapter deals with the processes of generating

and incorporating two Intellectual Property components; SHA-256 and RSA IPs. It

defines the design module, coding, and testing, comparing simulation with actual

results, as well as the procedure to incorporate the IPs into the system.

• Implementation of Hyperledger Fabric in CBDC Transaction Processing: This

chapter provides the procedure of applying Hyperledger Fabric in the project. It

describes how to deploy Hyperledger Fabric, outlines how smart contracts work

and focuses on the deployment of such contracts. The chapter is also devoted to the

introduction of the FPGA-based transaction processors and the possibilities of their

performance enhancement.

• Conclusion and Future Work: The last chapter gives the conclusions of this re-

search project and briefly describes the impact and significance of the project. It

also describes probable avenues for future research and development to indicate the

possible paths for future improvement and advancement of the area.

9

Chapter 2

Literature Review

2.1 Background

2.1.1 Central Banking Digital Currencies (CBDCs)

CBDCs can be defined as sovereign currency in a digital form and with central bank’s

backing. CBDCs are quite different from decentralized coins like Bitcoin and Ethereum

since they are issued under central authority and present a new model of digital currency.

Major key factors that have led to the development of CBDC’s include, advanced under

the headline financial inclusion, boosted through smaller scale payments, a substitute for

the declining cash based fundamental, and as a reaction to private cryptocurrencies like

stable coins [1].

CBDCs are generally categorized into two types:

• Retail CBDCs: The retail forms of CBDCs are intended for the population and act

as digital cash equivalents. They can be stored in a digital wallet implemented by

the central bank or other accredited agents. Retail CBDCs’ goal is to increase the

availability of financial services to the general public since a large number of people

do not have bank accounts or limited access to them, offering a safe and effective

10

payment method.

• Wholesale CBDCs: Wholesale CBDCs are meant to be central bank money for

payment settlement among institutions and are aimed at the wholesale sector. These

seek to enhance the speed and security together with speed of transactions in the

financial system. Thus, the use of wholesale CBDCs can contribute to faster and

more secure cross-border payments than those that can be achieved with classical

payment systems [2].

The implementation of CBDCs involves several critical considerations:

• Privacy: Balancing the need for privacy in individual transactions with regulatory

requirements for transparency and anti-money laundering (AML) measures.

• Security: Ensuring the robustness of the digital currency system against cyber

threats and fraud.

• Scalability: Developing a system capable of handling a high volume of transactions

without compromising performance.

• Interoperability: Ensuring compatibility with existing financial systems and other

CBDCs to facilitate seamless transactions.

• Legal Framework: Establishing a regulatory and legal framework to govern the

issuance, distribution, and use of CBDCs [1].

11

2.2 Related Projects

2.2.1 Project Hamilton

Project Hamilton is a joint research and development project between the System’s

Boston Fed office and MIT’s Digital Currency Initiative, which was started in the year

2020. The main goal of the project is to discuss and define the specifics of launching,

designing, and implementing a CBDC that will be effective, reliable, and efficient.

Figure 2.1: Digital Currency Initiative

Key Contributions of Project Hamilton

• Design Exploration: Research published under Project Hamilton has looked into

a number of architectures for a CBDC ranging from ledger-based to non-ledger-

based. The emphasis is made on two-level structure of CBDC itself: the central

bank directly distributes CBDCs to the intermediaries, including the commercial

banks, for further distribution to the final users. This design is proposed to allow

the existing banking facilities to still hold while the currency will be under central

control.

12

• Transaction Speed and Scalability: Project Hamilton’s major accomplishment is

the proof of concepts that show a capability of handling more than 1. A capabil-

ity statement of approximately 7 million transactions per second coupled with a

settlement finality that is less than a sub-second [3]. Such a high performance is

provided by effective data structures and consensus which are free from the limita-

tions of classical blockchain-related systems.

• Privacy and Security: Project Hamilton places a strong emphasis on transaction

privacy while ensuring regulatory oversight. The project explores advanced crypto-

graphic techniques such as zero-knowledge proofs and secure multi-party compu-

tation to achieve confidentiality and compliance [3].

• Interoperability: Project Hamilton defines standards and protocols that facilitate

the integration of the CBDC system to other infrastructures in the payment system

to complement other CBDCs across the world. Indeed, this interoperability is vital

for the realization of international payments to facilitate a global digital currency

environment [4].

• Open Source Development: Project Hamilton adopts an open-source approach to

promote transparency, collaboration, and innovation. The OpenCBDC software, re-

leased under Project Hamilton, provides a foundational platform for further research

and development in the field of digital currencies [3].

2.2.2 OpenCBDC

OpenCBDC is an open-source initiative derived from Project Hamilton’s research, aimed

at providing a comprehensive framework for the development and deployment of CB-

DCs. OpenCBDC offers tools, libraries, and documentation to assist central banks and

developers in creating secure and efficient digital currency systems.

13

Key Features of OpenCBDC

• Modular Architecture: OpenCBDC’s modular design allows central banks to cus-

tomize the system according to their specific needs and requirements. This flexibil-

ity supports the integration of various technologies and components, such as differ-

ent consensus mechanisms, privacy-preserving techniques, and user interfaces.

• High Performance: Building on Project Hamilton’s findings, OpenCBDC is de-

signed to handle high transaction volumes with low latency. This ensures that the

system can support national-scale payment infrastructures without compromising

performance [5].

• Security and Privacy: OpenCBDC incorporates advanced cryptographic meth-

ods to ensure the security and privacy of transactions. Techniques such as zero-

knowledge proofs, secure multiparty computation, and other privacy-enhancing

technologies are employed to protect user data while enabling regulatory oversight.

• Interoperability and Standards: The platform supports interoperability with other

payment systems and digital currencies. Adherence to international standards and

best practices facilitates seamless integration and cross-border functionality, pro-

moting a cohesive global financial ecosystem [5].

• Developer and User Engagement: OpenCBDC provides extensive documenta-

tion, tutorials, and support to engage both developers and end users. This community-

driven approach encourages innovation and collaboration, fostering a vibrant ecosys-

tem around CBDC development [5].

• Regulatory Compliance: The framework includes features to support regulatory

compliance, such as transaction monitoring, reporting tools, and mechanisms for

implementing monetary policy. These features ensure that the CBDC system ad-

heres to legal and regulatory requirements while providing central banks with the

necessary tools for oversight and control [5].

14

Feature Project Hamilton OpenCBDC
Initiative
Origin

Federal Reserve Bank of
Boston and MIT

MIT Digital Currency Initia-
tive

Objective Research and develop a hypo-
thetical U.S. central bank dig-
ital currency (CBDC)

Provide an open-source plat-
form for CBDC development

Primary Focus Exploring technical and de-
sign aspects of a CBDC

Offering tools and frame-
works for CBDC implemen-
tation

Core
Components

High-throughput, resilience,
and secure transaction pro-
cessing

Modular architecture sup-
porting various CBDC use
cases

Scalability Designed to handle high
transaction volumes

Scalable design to adapt to
different needs

Security Emphasis on robust security
mechanisms

Implements advanced secu-
rity protocols

Transparency Research results and code are
made publicly available

Open-source platform ensur-
ing transparency

Interoperability Aims for compatibility with
existing financial systems

Supports integration with var-
ious financial infrastructures

Privacy Investigates privacy-
preserving techniques

Includes options for config-
urable privacy features

Performance High performance with mini-
mal latency

Optimized for performance
and efficiency

Collaborations Collaboration between the
Federal Reserve and MIT

Open for contributions from
global developers and institu-
tions

Development
Stage

Ongoing research with pub-
lished findings and prototypes

Continuous development
with updates and community
input

Use Case
Flexibility

Focuses on specific U.S.
CBDC requirements

Adaptable to multiple central
bank digital currency needs
globally

Documentation Detailed research papers and
technical reports

Comprehensive documenta-
tion and developer resources

Regulatory
Considerations

Alignment with U.S. regula-
tory standards

Designed to accommodate
various regulatory frame-
works

Table 2.1: Comparison between Project Hamilton and OpenCBDC

15

Impact and Future Directions

OpenCBDC and Project Hamilton can be referred to as major milestones on the way

toward the implementation of CBDCs. These actions reveal that despite central bank dig-

ital currencies being in their experimentation phase, these ICs help global central banks

examine, discuss, and apply technical underpinnings by employing open-source proce-

dures. The future work will be around the development of privacy-preserving protocols,

the CBDC systems scalability, legal compliances and how multiple CBDC systems can

coexists.

16

Chapter 3

Methodology

3.1 Rationale

This project involves a sophisticated integration of hardware and software components

to create a Digital Currency Transaction Processor. The effectiveness of the system’s

performance is of absolute value since an implementation like this expects heavy network

traffic as transaction requests are occurring in real-time and the system needs to handle

them in parallel.

For this purpose, the hardware customization and flexibility of FPGAs come in handy, as

we can optimize the hardware, potentially achieving very high efficiency. Because FPGAs

can be configured to implement operations directly in hardware, they often exhibit lower

latency compared to GPUs. This is crucial for real-time applications, such as this Trans-

action Processor, where immediate processing is required. FPGAs are also significantly

more power efficient than GPUs, so they are a better option, specially because the system

requires continuous operation.

17

3.2 High Level Overview

3.2.1 Digital Wallets

Digital wallets are one of the modern innovations in the sphere of financial applications

and services that enable the users to store substantive funds, make transactions with those

funds and track payment information on the commonly used today devices, such as, for

instance, phones and tablets.

Clients do not interact directly with the hardware, but rather with the Digital Wallet plat-

forms provided by the state bank or an accredited party. Users make their transaction

requests in a similar manner as any other online banking applications, but the wallet trans-

mits the transaction metadata to the FPGA board for further processing.

Digital Wallets share the transaction data with Zybo using JSON Remote Procedure Calls

(RPC) which is a protocol encoded in JSON. It is commonly used in blockchain-related

applications for communication between a wallet and a system. In a JSON-RPC request

18

or response, transaction information is usually structured in a JSON format and the data

transfer can be validated with the JSON Web Tokens (JWT), an IETF standard (RFC 7519)

which describes a format of transmitting data as a JSON object with protection against

tampering. This information can be considered reliable because it is digital signed.

A normal JSON transmission is as follows:

{

"jsonrpc": "2.0",

"method": "sendTransaction",

"params": {

"from": "sender_address",

"to": "recipient_address",

"amount": 10.0,

"gas": 21000,

"nonce": 1

},

"id": 1

}

In the context of a "sendTransaction" method, the parameters typically include:

• from: The address from which the funds are being sent (sender’s address).

• to: The recipient’s address to which the funds are being sent.

• amount: The amount of cryptocurrency or tokens to be sent in the transaction (in

this case, 10.0 units).

• gas: The amount of gas units to be used for the transaction. Gas is a measure of

computational effort required to execute operations on the blockchain.

• nonce: A unique number assigned to the transaction, preventing replay attacks.

19

JSON-RPC can be used with TCP as the transport protocol. JSON-RPC itself is a protocol-

independent specification for remote procedure calls (RPC), and it can be used over vari-

ous transport layers, including HTTP, WebSocket, and TCP.

The implementation of Digital Wallets is not within the scope of this project but for system

testing, a c++ script will be responsible for emulating the behavior of a wallet that gener-

ates dummy transactions by randomizing the details between transactions. The transmit-

ter establishes communication with the system using typical properly handled TCP socket

connections, ensuring proper data transmission and reception.

Figure 3.2: Transmitter Flowchart

20

3.2.2 ZyBo

This project’s design and development is according to Digilent’s Zybo Board. The ZYBO

(ZYnq BOard) is an easy-to-use, feature-rich platform for digital circuit creation and em-

bedded software entry-level that is based on the Z-7010, the smallest Zynq-7000 family

member from Xilinx. The Xilinx All Programmable System-on-Chip (AP SoC) architec-

ture, upon which the Z-7010 is built, tightly integrates Xilinx 7-series Field Programmable

Gate Array (FPGA) logic with a dual-core ARM Cortex-A9 processor [6].

Figure 3.3: ZyBo Development Platform

In order to make the system able to communicate with external sources, Zybo offers High-

bandwidth peripheral controllers, specifically a Gigabit Ethernet for network connection.

For all intents and purposes, a Cat-6 Ethernet cable is sufficient and is supported by the

RJ45 Connector on Zybo.

21

Incoming transactions will be handled at the ARM Processor, which will administer multi-

threading to process the transactions in parallel. Every received transaction in validated

and acknowledgment is sent back to the sender before the JSON is parsed and data is

mapped onto the DDR3 shared memory. The Application Processing Unit (APU) is di-

rectly connected to the Multiport DRAM Controller while the the FPGA can access the

memory via the Advanced Microcontroller Bus Architecture (AMBA) Interconnects [7].

Figure 3.4: Zynq AP SoC Architecture

22

The High Performance Advanced eXtensible Interface (AXI) Ports are used by the IP

Cores at FPGA to interact with ARM i.e. AXI Interfacing.

3.2.3 DataFlow

The system pre-allocates memory blocks for each transaction which are known to both

the processor and the FPGA. Each thread stores the transaction data to their respective

memory blocks. The key is to use a specific memory location as a flag or status register.

The processor sets this flag after writing data, and the FPGA polls this flag to detect when

data is ready.

Each transaction is used to generate a 256-bit hash using SHA-256 and the transaction

data itself is encrypted using RSA. The Hashing and Encryption procedures are carried

out at FPGA by designated IP Peripherals. The processed data is written back at the

transaction’s corresponding memory range and the flag is set such that the thread can

retrieve the hash & encrypted data.

Figure 3.5: Transaction DataFlow

23

The motive behind the hash computation is for it to act as an identifier to it’s respective

transaction once it is added to blockchain. Every transaction being encrypted adds an

extra layer of security that makes the transaction record protected. The processor updates

the local copy of the ledger and broadcasts it to the network for verification by the peers.

Once verified, the HyperLedger Fabric ensures sync accross the entire network and the

wallet’s database is updated.

24

Chapter 4

Petalinux Software Development Kit

4.1 Why Petalinux?

Using Linux on ARM processors combines the strengths of both worlds: the efficiency of

ARM architecture together with power-saving characteristics and the stability, openness,

and versatility of the Linux OS. Combined, they are very advantageous in numerous appli-

cations including embedded systems, Internet of Things, and servers. Therefore, making

it perfect for this project as using ARM and FPGA in conjunction directs maximum effi-

ciency and flexibility.

Choosing the right operating system for an embedded system is crucial to ensure optimal

performance, efficiency, and functionality. Among various options, PetaLinux stands out

as an excellent choice for embedded systems, particularly those based on Xilinx Zynq

SoCs. PetaLinux is an embedded Linux Software Development Kit (SDK) targeting

FPGA-based system-on-a-chip (SoC) designs or FPGA designs [8].

25

4.1.1 Tailored for Xilinx Zynq SoCs

Designed for Xilinx Hardware

• Optimized Integration: PetaLinux is particularly created for effortless usability

with the Xilinx Zynq SoCs enjoying the best drivers, hardware assistance, and com-

patibility.

• Hardware Acceleration: Takes advantages of both the ARM processor and the

FPGA fabric to support hardware accelerated computation for those high computa-

tional regions.

4.1.2 Comprehensive Development Environment

Integrated Development Tools

• PetaLinux Tools: Is a single-stage tool that contains all the necessary components

for Linux Systems configuration, development, and integration onto Xilinx equip-

ment.

• Ease of Use: Enables solving many tasks in the process of development with the

help of special tools that do not require much time for learning and development.

4.1.3 Linux-Based Environment

Rich Feature Set

• Networking Support: Comes with strong networking feature that is vital in net-

working the embedded systems being developed.

• Multi-threading Support: Supports POSIX threads (pthread) and other threading

libraries which are very much important for managing the transactions that involve

multi-threading.

26

• Extensive Libraries: Availability of a large population of libraries and easily interface-

able software packages.

Community and Support

• Extensive Community Support: The large number of developers and extensive

documentation will make it easier in finding solutions and getting help.

• Wide Range of Applications: This tool of course works fine with a great number

of the applications and tools which are available in the Linux environment.

4.1.4 Balancing Control and Features

Bare-Metal vs. Full OS - 4.1

• Balance Between Control and Features: PetaLinux strikes a balance between the

control offered by bare-metal environments and the rich features provided by full-

fledged operating systems like standard Linux distributions.

• Low-Level Hardware Interaction: As an Operating System it also considers high-

level design abstractions but it also offers direct hardware access when required.

4.1.5 Real-Time Capabilities

Real-Time Performance

• PREEMPT-RT Patch: Although not first-class supported by PetaLinux, it is pos-

sible to configure it to include the PREEMPT-RT patch which gives it real-time

capabilities that are useful in applications that demand timely responses.

• Xilinx Support for Real-Time: There is very specific support from Xilinx as well

as configuration in real time for the PetaLinux applications that improve the aspect

of real time.

27

Aspect Bare Metal PetaLinux
Operating
System

None Linux-based OS

Performance High, minimal overhead Moderate, some overhead due
to OS

Latency Low, direct hardware
access

Higher, due to OS layers

Complexity High, requires managing all
hardware aspects

Lower, OS abstracts many
hardware details

Development
Tools

Basic, low-level tools Extensive, Linux toolchain
and ecosystem

Scalability Limited High, supports multitasking
and networking

Real-Time
Capabilities

Excellent, direct control Moderate, depends on real-
time Linux patches

Memory
Footprint

Small Larger due to OS presence

Flexibility Limited, fixed functionalities High, easily add new
features and services

Networking Custom implementation re-
quired

Built-in support with Linux
networking stack

Security Custom implementation re-
quired

Built-in support with Linux
security features

Use Cases Real-time systems, low-level
control

Complex systems, multitask-
ing, networked applications

Table 4.1: Comparison of Bare Metal and PetaLinux

4.1.6 Networking and Multi-Threading

Handling Transactions

• Efficient Transaction Handling: Because of the multi-thread and networking ca-

pability the PetaLinux is ideal for the applications where number of transactions

need to be handled in a most efficient way possible.

• Minimized Overhead: Through the restricted installation with only the necessary

packages, PetaLinux only includes a light load, thus ensuring high performance.

28

4.2 Setting Up Petalinux

4.2.1 Prerequisites

It is advisable to install the PetaLinux tools in a manner that does not require root ac-

cess. The standard development tools and libraries should be installed on your host Linux

workstation for PetaLinux development.

PetaLinux tools require your host system /bin/sh to be ‘bash’. If you use Ubuntu

distribution and your /bin/sh is ‘dash’, then your system administrator should help

you change your default system shell /bin/sh to ‘bash’ by using the command of sudo

dpkg-reconfigure dash.

4.2.2 Installation & Working Environment

Once Petalinux Installer is downloaded from the Xilinx Downloads [9] section, run the

installer and it should be installed into the current working directory by default. You can

install by specifiying installation path and while installing the tool, you can specify your

preferred eSDK, since we are working on Zynq platform, we will opt to install the Arm

eSDK into the PetaLinux tool.

./petalinux-v2023.2-10121855-installer.run --dir <INSTALL_-

-DIR> --platform "arm"

The rest of the setup is done by sourcing the provided settings scripts. For Bash user shell:

source <PetaLinux-Path>/settings.sh

29

Figure 4.1: Sourcing Setup Script

4.3 Project Creation

Create a new PetaLinux project named ’FYP’ using the Zynq template and set up the

project’s environment. The temporary directory specified will be used during the creation

and build processes to store temporary files. This can be useful for managing disk space

and organizing project files.

petalinux-create -t project -n FYP --template zynq --tmpdir

/home/hamza/petalinux/temp

Figure 4.2: Creating New Project

4.3.1 Configuring a Hardware Platform for Linux

To design your hardware platform, you can use the AMD Vivado tools. Whether the

hardware platform has been designed and built from scratch or has been obtained as an off-

the-shelf solution, there are only a few hardware IP and software platform configuration

parameters that are required in order to make the hardware platform Linux capable.

• First of all, launch the Vivado and create a new RTL project for the ZYNQ-7 ZC702

Evaluation Board.

30

• In the ‘Project Manager’ window, click the ‘Create Block Design’ button.

• From the Add IP window add ‘ZYNQ7 Processing System’ as the IP.

• The following is the connection of FCLK_CLK0 output pin to M_AXI_GP0_ACLK

input pin of ‘ZYNQ7 Processing System’ IP after the connection.

• To access this, go to the designer assistance and click on ‘Run Block Automation’

and it will appear as follows [10].

Figure 4.3: Zynq Block Automation

• Right click on ZYNQ PS IP and select the option Re-customize IP; then on the left

side of the newly opened window selecting Peripheral I/O Pins tab.

• After confirming the configuration, we close the window by clicking on the OK

button.

• On the block design file, right click the file as depicted in the figure below and

choose ‘Create a Wrapper’. Select “Let Vivado manage wrapper and auto-update”

31

Figure 4.4: Peripherals Configuration

and click on “Ok”.

• Create a version of the design and produce the bit stream.

• After bit stream is generated, go to file and select export, then export Hardware,

check the option of include bit stream then click on the ok button.

From the above step, hardware description file(.xsa) of the created design, will be saved

32

in the <project_name>.sdk folder in the project directory. Save this to the development

linux distribution where petalinux is set up.

4.4 Build & Configuration

Import the hardware description (exported from Vivado in the previous section) into the

PetaLinux project and use it to configure the project settings.

petalinux-config --get-hw description=/home/hamza/Documents

/petaLinux/

It pulls information on the hardware design elements like the processing system, periph-

erals, and interfaces and configures the PetaLinux project as needed.

Figure 4.5: Petalinux Hardware Configuration

33

The PetaLinux configuration menu provides a way to set various parameters for your

project including kernel settings, root file system settings, and U-Boot settings. In the Im-

age Packaging Configuration Section, uncheck the ’Copy final images to tftpboot’ option.

Figure 4.6: System & Image Packaging Configuration

34

4.4.1 Kernel Configuration

Running petalinux-config -c kernel presents the kernel configuration menu

whereby you can adjust kernel parameter related to your PetaLinux project. This has

possibilities connected with different kernel characteristic, motorists, file systems, and

other kernel accommodations.

Figure 4.7: Kernel Configuration

Here you can customize the kernel to include only the necessary features and drivers for

your specific application and hardware, resulting in a smaller and more efficient kernel.

One can also enable or disable kernel features to optimize performance for your embedded

system.

35

Figure 4.8: Linux/Arm 6.1.30 Kernel Configuration

4.4.2 Boot Configuration

Petalinux configuration command with the u-boot option is:

petalinux-config -c u-boot

This will launch the configuration menu specific to the bootloader. U-Boot largely takes

up the role of turning on the hardware and as well as Linux kernel in the process of

boiling. The command opens a menu interface, where you can navigate through various

configuration options for U-Boot.

36

Figure 4.9: U-Boot Configuration

Figure 4.10: U-Boot 2023.01 Configuration

There are a few configuration options related to boot media that need to be checked:

Boot Options –> Boot Media –> [*] Support for booting from QSPI flash

Boot Options –> Boot Media –> [*] Support for booting from SD/EMMC

Boot Options –> Boot Media –> [*] Support for booting from SD/EMMC & enable QSPI

37

Figure 4.11: Boot Media

4.4.3 Root Filesystem Configuration

By running petalinux-config -c rootfs, you will be presented with root filesys-

tem configuration options where you can modify one or many settings and/or include cer-

tain packages, libraries, and applications into the root file system of the embedded Linux

system. You can customize the root filesystem to include only the necessary components

for your application, resulting in a more efficient and smaller root filesystem as well as

add development tools and debugging utilities that might be needed for development and

troubleshooting. It is also possible to integrate custom applications and scripts into the

root filesystem which will be helpful for IP integration later on.

Figure 4.12: RootFS Configuration

38

There are a few configuration options related to Filesystem Packages, User Packages and

RootFS Settings that need to be checked:

Filesystem Packages –> admin –> sudo –> [*] sudo

Filesystem Packages –> base –> busybox –> [*] busybox

Filesystem Packages –> base –> iproute2 –> [*] iproute2

Filesystem Packages –> base –> opkg –> [*] opkg

Filesystem Packages –> base –> shell –> bash –> [*] bash

Filesystem Packages –> base –> tar –> [*] tar

Filesystem Packages –> base –> tzdata –> [*] tzdata, tzdata-asia

Filesystem Packages –> base –> util-linux –> [*] util-linux-umount, util-linux-mkfs, util-

linux-mount, util-linux-fdisk

Filesystem Packages –> base –> xz –> [*] xz

Filesystem Packages –> console –> network –> curl –> [*] curl

Filesystem Packages –> console –> network –> ethtool –> [*] ethtool

Filesystem Packages –> console –> network –> wget –> [*] wget

Filesystem Packages –> console –> tools –> parted –> [*] parted

Filesystem Packages –> console –> utils –> git –> [*] git

Filesystem Packages –> console –> utils –> grep –> [*] grep

Filesystem Packages –> console –> utils –> gzip –> [*] gzip

Filesystem Packages –> console –> utils –> sysstat –>[*] sysstat

Filesystem Packages –> console –> utils –> unzip –> [*] unzip

Filesystem Packages –> console –> utils –> gzip –> [*] gzip

Filesystem Packages –> console –> utils –> vim –> [*] vim

Filesystem Packages –> console –> utils –> zip –> [*] zip

Filesystem Packages –> devel –> make –> [*] make

Filesystem Packages –> devel –> mpfr –>[*] mpfr, mpfr-dev

Filesystem Packages –> libs –> libmpc –> [*] libmpc, libmpc-dev

Filesystem Packages –> misc –> gcc-runtime –> [*] libstdc++, libstdc++-dev

39

Filesystem Packages –> misc –> glibc –> [*] glibc, glibc-dev

Filesystem Packages –> misc –> packagegroup-core-buildessential –> [*] packagegroup-

core-buildessential, packagegroup-core-buildessential-dev

Filesystem Packages –> misc –> python3 –> [*] python3

Figure 4.13: Filesystem Packages

Petalinux usually asks for a new password every time it is booted up. To prevent this

behaviour, the passwd-expire field should be omitted [11].

PetaLinux RootFS Settings –> (root:root;petalinux:<your-passwd>[:passwd-expire];)

Figure 4.14: Password Rules

40

Figure 4.15: Petalinux RootFS Settings

4.4.4 Image Build

This step generates a device tree DTB file, a first stage boot loader (for Zynq 7000 de-

vices), U-Boot, the Linux kernel, a root file system image, and the U-Boot boot script

(boot.scr). Finally, it generates the necessary boot images.

petalinux-build

This command compiles all the configured components and generates the output files

needed to boot and run the embedded Linux system on the target hardware. This process

also includes applying any patches and integrating custom applications and drivers speci-

fied during configuration.

The full compilation log build. is saved in the build sub-folder of your PetaLinux project,

To review the log information in the build sub-folder of your PetaLinux project, you can

use any text editor. The final image, <project-root>/images/linux/image.ub,

is a FIT image.

41

Figure 4.16: Petalinux Build

The kernel image (including RootFS, initramfs, if any,) is zImage for Zynq 7000 devices.

The build images are located in the <project-root>/images/linux directory.

4.5 Packaging & Booting

Petalinux Packaging feature is invoked to create an image from the necessary boot com-

ponents belonging to a PetaLinux project.

petalinux-package --boot --fsbl ./zynq_fsbl. elf --fpga

./system.bit --u-boot

This command adds the First Stage Boot Loader FSBL, the FPGA bitstream image, and

the U-Boot bootloader to the BOOT. BIN file. The BOOT.BIN file is used to boot the

embedded system. This file is necessary to boot the embedded system, typically from an

SD card or other bootable media.

42

Figure 4.17: Petalinux Boot Package

4.5.1 SD Card Partitioning

In order to prepare an SD card for use with the target, specific commands made available

through an embedded Linux terminal, one can issue partition and format the card using

the fdisk and mkfs facilities.

Open fdisk for the SD card: sudo fdisk /dev/sdb

Create first and second primary partitions by allocating the necessary sector sizes [12].

Format the first partition (FAT32): sudo mkfs.vfat /dev/sdb1

Format the second partition (EXT4): sudo mkfs.ext4 /dev/sdb2

4.5.2 Loading Files

Mount the FAT32 partition: sudo mount /dev/sdb1 /mnt

Copy boot files to the FAT32 partition:

sudo cp BOOT.BIN image.ub boot.scr /media/SD_CARD

Unmount the FAT32 partition: sudo umount /mnt

Mount the EXT4 partition: sudo mount /dev/sdb2 /mnt

Extract the root filesystem to the EXT4 partition:

sudo tar -xzvf /home/hamza/petalinux/2023.2/FYP/images/

43

linux/rootfs.tar.gz

Unmount the EXT4 partition: sudo umount /mnt

Now the SD Card is ready to be booted into the Zybo Board.

• Remove the microSD card from your computer and then place the microSD card in

the connector J4 available on the ZYBO.

• Connect an external power supply and use JP7 to choose it.

• Insert one end of a jumper wire to the left most connector on the JP5 labeled “SD”.

• Turn the board on. The board will now proceed to load the data on the microSD

card.

44

Chapter 5

IP Generation & Integration

Introduction
The Vivado IP integrator displays a design canvas to let you quickly create complex sub-

system designs by integrating IP cores. It lets you create complex system designs by

instantiating and interconnecting IP cores from the Vivado IP catalog. You will typically

construct designs at the AXI-interface level for greater productivity. We have created the

hashing and encryption algorithm in Vivado Design Suite. For hashing and encryption,

we have taken the codes online, therefore, we will not discuss the code here. Now, we

will create a custom IP for both of the codes.

5.1 SHA-256 IP

Let’s start by looking at how we can create the Custom IP for the hashing (SHA-256) func-

tion. Let’s consider that the SHA-256 Algorithm is already implemented. By following

the below steps, we can create the IP.

45

5.1.1 Creating SHA256 IP and Block Design

After creating a SHA256 Algorithm, we want to use it for getting data from the outside

world, and we can do this by creating a Custom IP of SHA256 using the "Create and

Package IP" option. For that purpose, follow the below steps:

1. In Vivado, go to Tools and select "Create and Package new IP", as shows in Fig-

ure:5.1:

Figure 5.1: Create and Package IP

2. Hit Next ! select "create a new AXI4 peripheral" ! Give Name to your IP !

Select Interface Type & Number of Registers to be used. In our case, the type is

AXI Lite and registers = 20. And finally select "Edit IP" option and hit Finish. The

steps are shown in Figure 5.2:

46

47

Figure 5.2: Steps to create new IP

3. A new window will open. Import the sha256_algorithm module that you

created earlier by clicking on Add sources or pressing Alt+A. Select Add De-

sign Source and click Next. Click on Add Files and select the project where you

48

have written the SHA256 algorithm code. Navigate to the .srcs folder, then to

sources, then new, and select the files to be imported, as shown in Figure:5.3.

Click Finish.

49

Figure 5.3: Adding the IPs directories to the project

4. Open the myip_S00_AXI file and For outputs, add a few more registers as re-

quired by your Top Module below the "number of slave reg" at line 106. Remember

to use wire as the type for all outputs, as shown in Figure 5:4.

50

Figure 5.4: Adding required registers

5. Each register in the IP is 32 bits wide. They are denoted as slv_reg0 to slv_reg19

in the code, all pre-defined. To incorporate your custom registers, you need to add

them in the "Address decoding for reading registers" section where the case state-

ment is being used, typically at line 544 in your case. A glimse of it is shown in

Figure:5.5:

51

Figure 5.5: Replacing some slv_reg

6. Each case is called sequentially after every 4 bytes. To add input to slv_reg0,

you must increment the base address by 4 (we will discuss this in detail later).

7. Lastly call the SHA256 algorithm top module below the "Add user logic here"

section at the end of the module, as shown in Figure:5.6.

52

Figure 5.6: Adding User Logic

8. Now save the file, do synthesis and click on "Edit Package IP" in the Project man-

ager tab. A window will open up showing different things. Go to "Review and

Package" and hit "Re-Package". The working is shown in Figure 5.7:

Figure 5.7: Saving Changes made in IP

53

9. Now create a new Project without adding any design files or constraints file. We

will use it as a block diagram. Select your desired board and name for the project,

as shown in Figure:5.8.

54

Figure 5.8: Creating Block Diagram Project

10. A new project will be created. Now create a new block diagram. Then go to Settings

! IP ! Repository and add the location of your Custom IP that you created earlier,

shown in Figure:5.9.

55

Figure 5.9: Adding IP repository

56

11. After adding the IP to your IP Repository, click on the Add Icon in the block design

window and add the IP block that you have imported (e.g., myIP_sha256) and also

add the ZYNQ Processing System. This adding of blocks is shwon in Figure:5.10

and Figure:5.11

Figure 5.10: Adding IP Block Figure 5.11: Adding Zynq Block

12. Now you will see two things at the top, "Run Block Automation" & "Run Connec-

tion Automation". First click on "Run Block Automation" and then "Run Connec-

tion Automation". After that, the final block diagram will look like the one below.

The final Block Diagram is shown in Figure:5.12.

57

Figure 5.12: Final Block Diagram

13. Now go to the Source tab. Right-click on block_1.bd and create a wrapper. After

that, run synthesis, implementation, and generate bitstream. Finally, go to File !

Import ! Import Hardware, check the include bitstream box, and import, as shown

in Figure:5.13.

58

Figure 5.13: Exporting Hardware

5.1.2 Writing Code in SDK and launching It

In the field of Xilinx Vivado, an SDK (Software Development Kit) is an environment

that can help in generating, as well as in testing and deploying software solutions in the

Xilinx embedded systems. Vivado SDK is a component of the complete design tool called

Vivado Design Suite that is designed for the FPGA and SoC development. The stpes to

create a SDK Code for our project is provided below.

59

1. After we have exported the Vivado Project of SH256 Block Diagram, we will now

launch SDK. To do so, go to File ! Launch SDK. This launching is shown in

Figure:5.14.

Figure 5.14: Launch SDK

2. A new window will pop up. Wait for some time till all the required dependencies

gets imported according to our project. The window will look like Figure:5.15.

60

Figure 5.15: Basic SDK Window

3. After that, go to File ! New ! Application Project. A window about the new

project will pop up. Provide a suitable name for it.

4. In OS Platform select standalone if you are working with only vivado code and

select OS Platform as linux if you have booted linux on your FPGA and want to

provide inputs from there.

5. In Hardware Platform select the design_wrapper that you will see on the left side

of SDK Window. In Processor select the processor of your board as in my case it is

cortex9. Let everything be default and click next. After that select Hello World and

click finish. The creation of new project is shown in Figure:5.16

61

62

Figure 5.16: Creation of new Application

6. After that, open Helloworld.c and write the code according to your IP. In your

code, if you want to access your Custom IP, you should use it from XPAR_MYIP_BASEADDR.

In your case, MYIP_BASEADDR will be different. In your IP, as each register car-

ries the 32-bit size, therefore, the first register will be at offset 0. The next register

will be at offset 4, the next at offset 8, and so on.

7. To provide input to the input registers of your IP, use Xil_Out32(baseaddr +

offset, value_to_store);. To get the output from output registers of your

IP, use Xil_In32(baseaddr + offset). A glimpse of my code is provided

63

in Figure:5.17.

Figure 5.17: Code Snippet

5.1.3 How to run the code

In order to run the code, you have to install Tera Term. Open the app, connect the board to

your laptop, and select the serial option in the app. After that, go to Setup ! Serial Port

! enter the speed = 115200. Then click New Open. The Tera Term windows are shown

in Figure:5.18.

64

Figure 5.18: Tera Term Serial Setting

Now your board will get connected to your Tera Term terminal. Go back to your SDK app,

and in the navigation bar, click on "Program FPGA". After that, right-click on your cre-

ated application, select "Run As", and then choose "Launch on Hardware". Finally, your

code will start running on your Tera Term terminal. The process is shown in Figure:5.19

65

66

Figure 5.19: Programming ZYBO Board

5.1.4 OUTPUT:

Figure 5.20: OUTPUT of SHA-256

67

5.2 RSA IP

Overview

[13] The RSA algorithm involves four steps: key generation, key distribution, encryption,

and decryption. A basic principle behind RSA is the observation that it is practical to find

three very large positive integers e, d, and n, such that for all integers m (0  m < n),

both me and m have the same remainder[14] when divided by n (they are congruent

modulo[15] n):

(me)d ⌘ m (mod n)

However, when given only e and n, it is extremely difficult to find d. The integers n and

e comprise the public key, d represents the private key, and m represents the message.

The modular exponentiation[16] to e and d corresponds to encryption and decryption,

respectively.

Digital Signatures

Suppose Alice uses Bob’s public key to send him an encrypted message. In the message,

she can claim to be Alice, but Bob has no way of verifying that the message was from

Alice since anyone can use Bob’s public key to send him encrypted messages. In order to

verify the origin of a message, RSA can also be used to sign a message.

Suppose Alice wishes to send a signed message to Bob. She can use her own private key

to do so. She produces a hash value of the message, raises it to the power of d (modulo n)

(as she does when decrypting a message), and attaches it as a "signature" to the message.

When Bob receives the signed message, he uses the same hash algorithm in conjunction

with Alice’s public key. He raises the signature to the power of e (modulo n) (as he does

when encrypting a message), and compares the resulting hash value with the message’s

hash value. If the two agree, he knows that the author of the message was in possession

68

of Alice’s private key and that the message has not been tampered with since being sent.

This works because of exponentiation rules: Thus the keys may be swapped without loss

of generality, that is, a private key of a key pair may be used either to:

1. Decrypt a message only intended for the recipient, which may be encrypted by

anyone having the public key (asymmetric encrypted transport).

2. Encrypt a message which may be decrypted by anyone, but which can only be

encrypted by one person; this provides a digital signature.

Figure 5.21: RSA Signatures Explained

RSA Encryption and Decryption Example

Step-by-Step Process

1. Choose Two Distinct Prime Numbers p and q:

p = 3

q = 11

2. Compute n:

n = p⇥ q = 3⇥ 11 = 33

69

3. Compute Euler’s Totient Function �(n):

�(n) = (p� 1)⇥ (q � 1) = (3� 1)⇥ (11� 1) = 2⇥ 10 = 20

4. Choose an Integer e:

1 < e < 20 and gcd(e, 20) = 1

Let’s choose e = 3

5. Determine d:

d⇥ e ⌘ 1 (mod �(n))

This means d⇥ 3 ⌘ 1 (mod 20). Finding the modular inverse of 3 modulo 20:

3d ⌘ 1 (mod 20)

Trying values, we find d = 7 because 3⇥ 7 = 21 ⌘ 1 (mod 20)

6. Public and Private Keys:

Public key (e, n) = (3, 33)

Private key (d, n) = (7, 33)

7. Encryption: Suppose we want to encrypt the message m = 4:

c = me mod n = 43 mod 33 = 64 mod 33 = 31

So, the ciphertext c = 31

8. Decryption: To decrypt c = 31 using the private key:

m = cd mod n = 317 mod 33

70

Computing 317 mod 33 step-by-step:

312 = 961 ⌘ 4 (mod 33)

314 = 42 = 16 (mod 33)

316 = 314 ⇥ 312 ⌘ 16⇥ 4 = 64 ⌘ 31 (mod 33)

317 = 316 ⇥ 31 ⌘ 31⇥ 31 = 961 ⌘ 4 (mod 33)

Thus, the decrypted message m = 4

RSA vs. AES

Feature/Aspect RSA (Rivest-Shamir-
Adleman)

AES (Advanced Encryption
Standard)

Type Asymmetric encryption
(public-key cryptography) Symmetric encryption

Use Cases
Secure key exchange, digi-
tal signatures, encryption of
small amounts of data

Encrypting large amounts of
data, secure communication
channels, data storage en-
cryption

Strengths

- Provides secure key ex-
change
- Supports digital signatures
for authenticity and integrity

- Very fast and efficient for
large datasets
- Strong security with 128,
192, or 256-bit keys

Weaknesses

- Slower and more computa-
tionally intensive
- Not suitable for large data
encryption directly

- Key distribution challenge
as both parties need the same
secret key

Secure Communication
Used to securely exchange
a symmetric key (e.g., AES
key)

Used to encrypt the bulk of
the data once the key is se-
curely exchanged

Digital Signatures Ideal for creating and verify-
ing digital signatures

Not typically used for digital
signatures

Data Encryption Not efficient for encrypting
large files or data streams

Preferred for encrypting large
files or data streams due to
speed and efficiency

Table 5.1: Comparison between RSA and AES

71

So for our case, RSA is preferable for secure key exchange and digital signatures. [17]

5.2.1 Introduction to AXI4-Lite (Advanced Extensible Interface)

Advanced eXtensible Interface 4 (AXI4) is a family of buses defined as part of the fourth

generation of the ARM Advanced Microcontroller Bus Architecture (AMBA) standard.

AXI was first introduced with the third generation of AMBA, as AXI3, in 1996.

AXI4 Protocols

The AMBA specification defines three AXI4 protocols:

• AXI4: A high-performance memory mapped data and address interface capable of

burst access to memory mapped devices.

• AXI4-Lite: A subset of AXI, lacking burst access capability, and has a simpler

interface than the full AXI4 interface.

• AXI4-Stream: A fast unidirectional protocol for transferring data from master to

slave.

Use in Xilinx-Based Designs

Xilinx Vivado helps in the creation of custom IP with AXI4 interfaces. These can be

connected to the Zynq’s Processing System or to other devices. This document covers

the operation of the AXI4-Lite interface, which is convenient for implementing memory

mapped registers.

AXI4-Lite Interface Signals

The AXI4-Lite interface consists of five channels: Read Address, Read Data, Write Ad-

dress, Write Data, and Write Response. An AXI4 read transaction using the Read Address

and Data channels is shown in Figure 5.22a. Similarly, an AXI4 write transaction using

72

the Write Address, Data, and Response channels is shown in Figure 5.22b. Note that these

figures depict burst transfers, which AXI4-Lite is incapable of.

(a) AXI4 Read Transaction

(b) AXI4 Write Transaction

Figure 5.22: AXI4 Read and Write Transactions

[18]

[19]

5.2.2 Hardware Bottlenecks

The number of LUTs on FPGA required is less.[20]

73

FPGA Description

A basic FPGA architecture (Figure 3.4) consists of thousands of fundamental elements

called configurable logic blocks (CLBs) surrounded by a system of programmable inter-

connects, called a fabric, that routes signals between CLBs. Input/output (I/O) blocks

interface between the FPGA and external devices. An individual CLB (Figure 5.23) is

made up of several logic blocks. A lookup table (LUT) is a characteristic feature of an

FPGA. An LUT stores a predefined list of logic outputs for any combination of inputs:

LUTs with four to six input bits are widely used. Standard logic functions such as multi-

plexers (mux), full adders (FAs), and flip-flops are also common.

Figure 5.23: Configurable Logic Block (CLB)

[17][21] [22] [23] [24] [25] [26] [27] [28] [29] [28] []

Error Encountered

Implementation Messages:

[Place 30-640] Place Check: This design requires more Slice LUTs cells than are avail-

able in the target device. Explanation: Our design requires more Look-Up Tables (LUTs)

than what is available on the target FPGA. Specifically, it needs 25,617 Slice LUTs, but

74

only 17,600 are available. Our board actually has 4,400 logic slices, each with four 6-input

LUTs and 8 flip-flops.

Solutions:

1. Optimize the Design: Review and optimize your HDL code to reduce the usage of

LUTs.

2. Target a Larger Device: Select a larger FPGA device that provides more LUTs.

3. Change DRC Settings: If the design is close to the resource limit and might fit with

minor adjustments, you can change the DRC settings to a warning:

4. Set the Tcl parameter: set_param drc.disableLUTOverUtilError 1

[Place 30-99] Placer failed with error: ’Implementation Feasibility check failed’. Expla-

nation: The placer could not successfully place all instances of the design due to resource

constraints or other implementation issues.

Solutions:

1. Increase Resources: Again, consider optimizing the design or targeting a larger

FPGA with more resources.

2. Use a multiplexer to select the operands for shared units based on control signals.

3. DSP Blocks: Utilize dedicated DSP blocks for arithmetic operations like multipli-

cation and MAC (multiply-accumulate) instead of implementing them in LUTs.

Example: Most FPGAs have DSP slices optimized for such operations, freeing up LUTs

for other uses.

We opt for the first option by simplifying combinational logic expressions. We use the

smallest bit width necessary for your signals and variables, i.e., 16-bit. Smaller bit widths

reduce the number of LUTs required and the third approach is used somehow inherently

for multiplication.

75

We can go for the second option, but this adds significant complexity by breaking down

complex combinational logic into multiple stages and inserting registers to create a pipeline.

This can reduce the logic depth and the number of LUTs.

RSA Design Wrapper

Figure 5.24: RSA Wrapper

This design wrapper in Xilinx Vivado shows the interconnections between different com-

ponents in a Zynq-7000 SoC design. Let’s break down the key components and their

connections:

Components

1. Processor System Reset (rst_ps7_0_50M)

2. Processing System (processing_system7_0)

3. AXI Interconnect (ps7_0_axi_periph)

4. Custom IP Block (SanaullahRSAip_0)

76

5.2.3 Connections

Processor System Reset (rst_ps7_0_50M)

Inputs:

• slowest_sync_clk: Synchronization clock input.

• ext_reset_in: External reset input.

• aux_reset_in: Auxiliary reset input.

• mb_debug_sys_rst: Debug system reset.

• dcm_locked: Clock manager lock signal.

Outputs:

• mb_reset: MicroBlaze reset.

• bus_struct_reset: Bus structure reset.

• peripheral_reset: Peripheral reset.

• interconnect_aresetn: Interconnect reset (active low).

• peripheral_aresetn: Peripheral reset (active low).

These outputs are connected to various reset inputs of the processing system and AXI

interconnect to ensure proper initialization and reset management.

Processing System (processing_system7_0)

Connections:

• M_AXI_GP0_ACLK: AXI General Purpose 0 clock.

• DDR: DDR memory interface.

• FIXED_IO: Fixed I/O connections for peripherals like GPIO.

77

• SDIO_0: Secure Digital Input Output for SD card interfaces.

• USBIND_0: USB interface.

• M_AXI_GP0: General Purpose AXI Master interface.

The processing system (PS) is the core of the Zynq-7000 SoC, integrating an ARM

Cortex-A9 processor with various peripherals. The PS connects to the PL (Programmable

Logic) via the AXI interconnect.

AXI Interconnect (ps7_0_axi_periph)

Inputs:

• S00_AXI: Slave AXI interface.

• ACLK: AXI clock.

• ARESETN: AXI reset (active low).

Outputs:

• M00_AXI: Master AXI interface.

• M00_ACLK: Master AXI clock.

• M00_ARESETN: Master AXI reset (active low).

The AXI interconnect module facilitates the connection between the processing system

and the custom IP block. It routes AXI transactions from the PS to the custom IP and vice

versa.

Custom IP Block (SanaullahRSAip_0)

Connections:

• S00_AXI: Slave AXI interface.

• s00_axi_aclk: AXI clock.

78

• s00_axi_aresetn: AXI reset (active low).

This is a custom IP block named SanaullahRSAip_0, likely implementing some cryp-

tographic functions using the RSA algorithm. It interfaces with the AXI interconnect to

communicate with the PS.

5.2.4 How They Work Together

1. Reset and Clock Management: The rst_ps7_0_50M block manages the reset

signals for the entire design, ensuring all components are correctly initialized. The

slowest_sync_clk input and various reset inputs are used to generate synchro-

nized reset signals for different parts of the system.

2. Processing System (PS): The processing_system7_0 block integrates the

ARM Cortex-A9 processors and connects to external memory (DDR) and periph-

erals (FIXED_IO, SDIO, USB). It uses the M_AXI_GP0 interface to communicate

with the AXI interconnect in the programmable logic (PL) part of the SoC.

• AXI Interconnect: The ps7_0_axi_periph block routes AXI transac-

tions between the PS and the custom IP block. The S00_AXI interface con-

nects to the PS, while the M00_AXI interface connects to the custom IP block

(SanaullahRSAip_0). It uses the ACLK and ARESETN signals for clock-

ing and reset.

3. Custom IP Block: The SanaullahRSAip_0 block implements custom logic

(e.g., RSA encryption/decryption) and interfaces with the AXI interconnect to com-

municate with the PS. It uses the S00_AXI interface for AXI transactions, driven

by s00_axi_aclk and s00_axi_aresetn for clocking and reset.

79

5.2.5 Summary

This design wrapper illustrates a typical Zynq-7000 SoC setup where the processing sys-

tem (ARM Cortex-A9) is connected to custom logic implemented in the programmable

logic (PL) through an AXI interconnect. The rst_ps7_0_50M block ensures proper

reset sequencing, the processing_system7_0 block acts as the central processing

unit, the ps7_0_axi_periphmanages AXI transactions, and the SanaullahRSAip_0

block implements custom functionality interfaced via AXI.

5.3 Simulation Results

Figure 5.25: RSA Semulation

Bare Metal Results

80

Figure 5.26: RSA Result

Input: 12345678 abcdef01 deadbeef 87654321 fee1dead baadf00d

cafebabe abcdef12

Correct/desired output: 1317131f 226622ee df8efb88 0ece8ece

ffc29bca 33063de2 cbddffd9 226622fd

5.4 Integration of IPs and Received Transaction

As we have created the separate IPs for both encryption/decryption and hashing algo-

rithms for our Project, now we want to integrate them together so that we can take the

transaction received as an input for both of the IPs and then the IPs can process the algo-

rithms and return the desired output to the Tera Term Terminal.

In this regard, first we have to modify the block diagram. Previously we had different

block diagrams for both SHA256 and encryption modules. Then we will modify our C++

code that is used for receiving transactions and make it able to store the received transac-

81

tion to the memory address of the Zybo board. After that, we will make our SDK code

fetch the transaction data saved in memory by the C++ code and use it for hashing and

encryption.

5.4.1 Steps for Integration

Modify Block Diagram

In order to modify the block diagram so that our custom IPs get connected to the transac-

tion received using C++ code, we need to use the DMA block in our block diagram. This

DMA block will provide a shared memory to both the C++ code running on Linux and

the custom IPs code running on the SDK.

In this regard, the following steps are followed for the entire process:

1. Creating a new project. After the successful creation of the project, create a new

block diagram. Then go to settings and include the IP repositories of both the

hashing and encryption(Figure 5.27).

82

Figure 5.27: Adding Both IPs

2. After adding the IPs to the repository, we will use them to create a block diagram.

For the block diagram, we will add a Zynq processor, the hashing IP, the encryption

IP, and most importantly the AXI DMA block(Figure 5.28). The AXI DMA block

is used for memory mapping.

83

Figure 5.28: All Required Blocks Added

3. Now double-click the axi_dma block and uncheck the "Enable Scatter Engine",

as shown in Figure 5.29.

Figure 5.29: Disable Scatter Engine

4. As you can see, there are two options given by Design Assistance. First, click on

84

"Run Block Automation" and then click on "Run Connection Automation"(Figure

5.30).

Figure 5.30: Final Block Diagram

85

5. The final block diagram is now created(Figure 5.30). First, validate the design

by pressing F6, then go to the Source tab, right-click on design_1, and select

Generate Output Products. Next, create a design wrapper by right-clicking on

design_1 again. Finally, run synthesis, implementation, and generate the bit-

stream. After that, export the hardware by including the bitstream(Figure 5.31).

86

87

Figure 5.31: Exporting Hardware

Modify C++ Code

After creating the new block diagram and exporting the hardware, rebuild the Petalinux

boot image using the same techniques as in Chapter 4. This time, we will modify the C++

code that we used for receiving the transaction. Remember that the directory where the

memory addresses of the DMA are saved is "/dev/mem" on the SD card in which Linux

is booted. We will use that directory to save the received transaction data so that the SDK

can fetch the data from there to generate hash and encryption.

For this purpose, first, we will define the size of the shared memory and the memory di-

rectory. After that, open the shared memory in the code and map it to your project. This

mapping will save the transaction data to a location in shared memory. The implementa-

tion is shown in Figure 5.32

88

Figure 5.32: Implementing Shared Memory

Now your C++ code is ready to save the transaction data to shared memory.

Modify SDK Code

Now that the C++ file is ready to share the transaction with the SDK, we will implement

our SDK code.

1. Launch the SDK from our block diagram project so that it can automatically import

89

the required files for our hardware(Figure 5.33).

Figure 5.33: Launching SDK

2. Follow the same process as described in Chapter 5 to create a new application.

After creating the new application, write our SDK code in it to use the input from

the shared memory and implement hashing and encryption(Figure 5.34).

3. Define the memory addresses of AXI4-lite, shared memory base address, transmit-

ting and receiving buffer base addresses, and maximum buffer length. Also include

the xaxidma.h header file for dealing with DMA(Figure 5.34).

90

Figure 5.34: Defining Shared Memory and DMA

4. Create a DMA instance and a function that will initialize the DMA using XAxiDma_Config(Figure

5.35). After the successful initialization of DMA, create a function to transfer the

data to and from using AXI(Figure 5.36). In the main function, create two buffers,

one for transmitting and one for receiving(Figure 5.37). Open the shared memory

and map it to your project(Figure 5.38). Parse the JSON data received using the

map, and prepare the data to send to the hash and encryption function(Figure 5.39)

and Writing data is shown in Figure 5.40. The remaining code will be similar to

what we made in Chapter 5 for both hashing and encryption.

91

Figure 5.35: Initializing DMA

Figure 5.36: Defining Transfer Function for DMA

Figure 5.37: Initializing Buffer Variables

92

Figure 5.38: Opening Shared Memory

Figure 5.39: Preparing Data for Input

Figure 5.40: Writing Data to Write Register

After all these steps, our IPs are integrated with the incoming transaction and are now

ready to take the transactions as input for their modules.

93

5.5 Project Presentation on Custom IP Core and Driver

Abstraction

5.5.1 Introduction

• Objective: To provide an abstraction layer for custom IP cores through drivers.

• Purpose: Simplify the usage of IP cores by abstracting register details and provid-

ing basic access functions.

5.5.2 Custom IP Core Implementation

• IP cores are implemented using registers inside the IP core.

• The driver provides basic access to the IP core for users.

5.5.3 Driver Functionality

• Initialization: A function to initialize the IP core.

• Read Operation: A function to read from the IP core.

• Write Operation: A function to write to the IP core.

• Additional Functions: Depending on the IP core type, there may be additional

functions, e.g., for image processing.

5.5.4 Purpose of Abstraction

• Ease of Use: To simplify the programmer’s task by providing an easy-to-use inter-

face.

• Hiding Complexity: Abstracting away the details of registers, addresses, and user

manuals.

94

5.5.5 Driver Components

• Header File (.h): Contains the hardware model and declarations of all functions.

• Source File (.c): Contains the definitions of all functions.

5.5.6 Driver Development Steps

1. Create Header File: Define the hardware structure and function declarations.

2. Create Source File: Implement the function definitions.

5.5.7 Application Developer Perspective

• Simplified API: The developer only needs to know the functions for reading and

writing.

• Abstraction: All register details and base addresses are handled by the driver.

5.5.8 Integration Steps

1. Delete Previous Driver Files: Remove old .c and .h files from the project.

2. Update Driver Files: Add updated driver files to the IP repository.

3. Update XML File: Modify the .xml file to include the new driver files.

4. Relaunch IP: Reload the IP core in the design environment.

5.5.9 Example Workflow

1. Wrapper: Create the hardware wrapper.

2. Launch SDK: Open the Xilinx SDK.

3. Standalone OS: Choose a standalone OS for the project.

95

4. Create Blank C Project: Start with a blank C project.

5. Develop Driver: Write the header and source files for the driver.

6. Testing: Create a test file (e.g., test.c) to call driver functions without needing base

addresses.

5.5.10 Conclusion

• Simplification: The abstraction provided by the driver makes the IP core easier to

use.

• Modularity: Drivers encapsulate hardware details, promoting code reuse and main-

tainability.

96

Chapter 6

Implementation of Hyperledger Fabric

in CBDC Transaction Processing

6.1 Introduction

This chapter is dedicated to exploring the aspect of implementation of Hyperledger Fabric

for CBDCs in regard to the actual transactions’ processing. Since Hyperledger Fabric is

an open-source, permissioned distributed ledger technology that is designed specifically

for enterprise applications, it can be recruited to build CBDC transaction processors that

are scalable and secure enough to meet the users’ expectation. The implications that fol-

low include establishing the Hyperledger Fabric blockchain setup, loading the smart con-

tracts, and real-time interfacing of this blockchain setup with the FPGA-based transaction

processing architecture.

The setup of Hyperledger Fabric network is formed of nodes, identities, communication

channels and access control or policies. This network is the total platform for the ex-

ecution of the basic transaction for the CBDCs, besides facilitating their data integrity

and consensus among the related companies and associations. Smart contracts are self-

executing digital contracts that govern CBDC transactions and are deployed in the Hyper-

97

ledger Fabric network. These contracts incorporate the business relationships, compliance

checks and balances and the processing of the CBDC relevant transactions as well as the

record of such transactions hence enhancing the efficiency, automation, security, and ver-

ifiability of the transactions in the CBDC environment.

In this case, standing on the opportunity offered by Hyperledger Fabric’s modularity, the

network functions in unison with an FPGA-based transaction processing system. FPGAs

provide much higher numerical computing precision and efficiency as opposed to the gen-

eral purpose processors, therefore being very suitable for high traffic CBDC transactions.

Interconnection of the two systems and secure means of communication and APIs facili-

tate the immediate analysis and verification of transactions.

During the implementation of the modern model, it is critical to respect the best practices

of information protection and adhere to the requirements set out by legislation. The se-

curity of Hyperledger Fabric that stems from features like cryptographic mechanisms and

access control is precisely tailored to protect the CBDC transaction processing system

against various types of dangers and unauthorized persons.

Before the system can be distributed and used in live environment some tests are con-

ducted among which are unit tests, integration tests, performance tests, and stress tests.

This implementation process lays down the foundation for secure and swift CBDC trans-

action processing using a convergence of distributed ledger technology, smart contracts,

and High-Performance Computing that can make way for the digital currencies to be

transacted in a secure, swift and reliable manner.

6.2 Setting up Hyperledger Fabric Environment

The first procedure for entering the process of using Hyperledger Fabric for CBDC trans-

action processing is creating a development environment. This entails downloading and

installing dependent application like docker and Go language. To enhance development

98

using WSL with Visual Studio Code specifically for Hyperledger Fabric, the environment

should be set up in this way. WSL makes the essential Linux kernel interface that enables

direct application of a Linux distribution in Windows.

(a) Hyper-
ledger Fabric

(b) Visual Stu-
dio Code

(c) Windows
Subsystem for
Linux

(d) Go Lan-
guage (e) Docker

Figure 6.1: Various Tools and Technologies

6.3 Installation of Hyperledger Fabric and Fabric Sam-

ples

The setup of the development environment is followed by the installation of Hyperledger

Fabric along with fabric-samples. Fabric-samples are examples of application and net-

work usage to make the process of development and testing easier.

6.3.1 Cloning fabric-samples Repository

[30] To clone the fabric-samples repository, open your terminal and navigate to the direc-

tory where you want to store the repository. For example, if you are using WSL, navigate

to your desired directory in the WSL terminal.

cd /mnt/c/Users/your_username/Documents/

Then, clone the fabric-samples repository using the following command:

git clone https://github.com/hyperledger/fabric-samples.git

This will download the fabric-samples repository into your current directory.

99

6.3.2 Running the Installation Script

Navigate to the fabric-samples directory that you just cloned:

cd fabric-samples/

In this directory, you’ll find the installation script install-fabric.sh. This script

automates the process of installing Hyperledger Fabric, Fabric binaries, and Docker im-

ages.

Make sure the script is executable by running:

chmod +x install-fabric.sh

Then, execute the script with the desired options. For example, to install Docker images

and Fabric binaries, run:

./install-fabric.sh docker binary

This will download the latest versions of Docker images and Fabric binaries onto your

system.

6.3.3 Confirming Installation

After the script completes execution, confirm that Hyperledger Fabric and fabric-samples

are installed by checking the directories and versions.

Navigate to the bin/ directory within fabric-samples:

cd bin/

Here, you should find the binaries such as configtxgen, peer, and orderer.

Additionally, ensure that the Docker images are downloaded by running:

docker images

You should see the Hyperledger Fabric Docker images listed.

100

With Hyperledger Fabric and fabric-samples successfully installed, you are now ready to

set up a local Hyperledger Fabric network for development purposes.

6.4 Explanation of Smart Contract

Chaincodes in Hyperledger fabric define the request and response format for the CBDC

transactions and are also used to code the smart contracts for CBDC. In this section, there

is a brief description about the functions which have to be defined in the smart contract

given below.

6.4.1 InitLedger

The InitLedger function initializes the ledger by adding a base set of assets. It is

typically invoked when the smart contract is instantiated. In this function, assets with

predefined IDs, owners, and amounts are added to the ledger.

6.4.2 CreateAsset

The CreateAsset function issues a new asset to the world state with the given details.

It takes parameters such as ID, owner, and amount, and creates a new asset entry in the

ledger if an asset with the same ID does not already exist.

6.4.3 ReadAsset

The ReadAsset function extracts the information of an asset that exists in the world

state and belongs to a given ID. It accepts the ID of the asset as the parameter and brings

out the details of the said asset; the details include Asset ID, owner, and amount.

101

6.4.4 UpdateAsset

The UpdateAsset procedures update of an existing asset with the required parameters

in the world state in the given information. It receives ID, owner, and amount and records

the given parameters in the particular asset’s ledger in the ledger database.

6.4.5 DeleteAsset

The DeleteAsset This function removes a specified asset from the world state ac-

cording to its ID. This function receives the ID of the asset to be deleted and deletes the

particular asset from the ledger.

6.4.6 AssetExists

The AssetExists function checks whether an asset with the given ID exists in the

world state. It takes the ID of the asset as input and returns a boolean value indicating

whether the asset exists in the ledger.

6.4.7 GetAllAssets

The GetAllAssets function retrieves all assets stored in the world state. It returns a

list of all assets present in the ledger, including their IDs, owners, and amounts.

6.4.8 TransferAsset

function pinpoints whether there is any asset in the world state with the given ID or not. It

expects the ID of an asset and yields a boolean value as to whether the information linked

to it is present in the ledger data.

The TransferAsset updates the owner of the asset in the world state and triggers a

notification to an external system about a change of the owner. It receives parameters like

102

ID and new owner and then it moves the ownership of the asset to the new owner, and also

sends a notification to another system.The Flow diagram is shown in the Fig 6.2

Figure 6.2: Flowchart of smart Contract

6.5 Deploying Smart Contracts to Hyperledger Fabric Net-

work

Once these smart contracts have been developed, they are compiled and placed on the

Hyperledger Fabric network. This involves deploying the chaincode on the peers and

also on the endorsing organizations so as to approve transactions as per the laid down

rules. The endorsement policy also means that the transaction is checked by the required

number of participants before the transaction becomes permanent and is written to the

ledger, which will increase security and reduce the occurrence of fraudulent transactions.

103

6.5.1 Chaincode Deployment Process

The deployment of smart contracts, referred to as chaincode in Hyperledger Fabric, fol-

lows a specific process:

1. Packaging the Chaincode: This is bundled into a deployment package which com-

prises the chaincode source code, any dependencies and metadata.

2. Installing the Chaincode: The deployment package is introduced to the peer nodes

of the endorsing organizations. This step deploys the chaincode package to the

filesystem of the peers so that it can be run.

3. Approving the Chaincode: In the second phase, the endorsing organizations of

the channel review and sign off the chaincode for launching on the channel. This

approval process ensures that all the organizations are informed of the chain code

version and parameter that is to be deployed.

4. Committing the Chaincode: In this process, the required organizations run a set

of transactions to approve the chaincode, after which the chaincode is committed to

a channel. The commit process writes the chaincode in all the peers on the channel

in order to execute the requested transactions and keep the ledger status shown in

the Flow daigram 6.3.

104

Figure 6.3: Smart Contract Deployment

6.5.2 Endorsement Policy

[31] The endorsement policy that is applied in Hyperledger Fabric network is one of

the most significant policies since it determines the organizations that need to endorse a

particular transaction so that it can be written to the ledger. This one is set at the time of

chaincode definition and helps to guarantee that the transactions are endorsed by the right

participants making the system more secure.

Endorsement can be controlled and managed depending on a number of factors including

the number of organizations, role of the organizations, and the extent of trust among the

organizations. For instance, in CBDC transaction processing system, the endorsement

may be that a transaction must be first validated by the central bank and a selected set of

the commercial bank before it can be committed.

In this way, Hyperledger Fabric applies the principles of the endorsement policy to guar-

105

antee that recordation transactions be done only by the organizations that should authorize

it and thus do not include potential malicious transactions in the ledger. This mechanism

enhances the credibility of the participating organizations in order to ensure secure trans-

action of CBDCs.

(a) Transaction Proposal

(b) Transaction Approval

Figure 6.4: Transaction Endorsement Process

6.6 Integration with FPGA-Based Transaction Processor

After adjustment of the Hyperledger Fabric network and smart contracts implementation

the next action is the integration with FPGA-based TP. This integration ensures very effi-

cient and fast processing of transactions in the ecosystem of CBDC.

106

6.6.1 Data Transmission

Activities that occur in the CBDC system create the right transactional data in JSON to

represent the situation. For safe and correcting data transfer through the internet Neces-

sary, Transaction Signature Protocol (TSP) is used. For record authenticity, integrity as

well as non-repudiation TSP incorporates digital signatures to transaction data as in Fig

6.5. The digitally signed data is transmitted securely over the HTTPS.

Figure 6.5: Data Transmission

6.6.2 Transmission Protocol

The integration employs the usage of HTTPS (Hypertext Transfer Protocol Secure) for

shipment of transaction data on the internet. SSL or TLS involved in transmitting data

across the HTTP ensures the data is encrypted to enhance the aspect of confidentiality and

data integrity as shown in Fig 6.6. This means that the protocol ensures that Hyperledger

Fabric network and the FPGA based transaction processor are secure.

107

Figure 6.6: Transmission Protocol

6.6.3 Data Processing

When a transaction occurs in the Hyperledger Fabric network, the FPGA-based transac-

tion processor compares the digital signatures with the help of a public key. TSP also

cannot be altered and therefore acts as a means of checking the integrity and authenticity

of the received data. After that, the transaction processor proceeds to execute the transac-

tions in accordance with the wording of the smart contract that has been deployed by the

participants of the transaction as illustrated in Fig 6.7.

108

Figure 6.7: Data Processing

6.6.4 Transaction Execution

The proposed transaction processor employs an FPGA and can process transaction in

real-time and with high speed attributable to the parallel processing nature of an FPGA.

This ensures efficient and secure operations of transactions in CBDC to guarantee the

requisite efficiency of the transactions involving the CBDC in the ecosystem as shown

in Fig 6.8. However, one significant weakness of the implementation is that the server

handles TSP for data authentication and HTTPS for transmission; thus, it provides sound

security throughout transactions and high-performance transaction processing.

109

Figure 6.8: Transaction Execution

6.6.5 Performance Optimization

The main strategies of the architecture of the transaction processor which uses the FPGA

and is aimed at the enhancement of the performance include the pipelining, parallel con-

ducting and employment of dedicated processing channels as shown in the Fig 6.9. All

these techniques help to increase the many transactions per second through put, decrease

the time taken to perform the transaction and improve the overall system performance.

Furthermore, there is other implemented hardware in FPGA including SHA-256 and RSA

employed for cryptographic computation. Adding to it, to speed up and instill higher secu-

rity in the processing of CBDC transactions these are the advanced hardware-accelerated

cryptographic operations.

110

Figure 6.9: Performance Optimization

6.7 Conclusion

This chapter has discussed how Hyperledger fabric can be integrated with an FPGA-

based transaction processor for the execution of CBDC transactions. Distribution included

establishment of secure communication between the Hyperledger Fabric network and the

FPGA-based processor, therefore the HTTP and the Transaction Signatory Protocol for

data authentication, privacy and accuracy in transit.

We talked about the fact that, within the CBDC ecosystem, transactions are created in

JSON, and transmitted with the help of HTTPS on the Internet. While the above-mentioned

transactions are initiated, the other component of our architecture, the FPGA-based trans-

action processor, checks the digital signatures of the received transactions using public

key cryptography and processes each of the transactions based on the rules defined in the

smart contracts implemented in the said architecture.

Moreover, we explained assessing the performance optimization factors upon the FPGA-

based transaction processor with the help of hardware acceleration techniques such as

111

pipelining, parallel processing, dedicated-processing units. Also, to support cryptographic

computations required for CBDC operations, there is optimized hardware on the FPGA

layer, including on SHA-256, as well as RSA for additional performance and security.

In general, combining Hyperledger Fabric with an FPGA-based transaction processor

would provide the best solution for reliable and fast CBDC handling. Therefore, by the

integration features like using secure transmission protocols and hard-wired acceleration,

the integration enables more transaction throughput, decrease in the processing time of

transactions as well as making the entire CBDC ecosystem operate seamlessly.

112

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The concept and creation of CBDCs are a positive step towards the evolution of the cur-

rent world’s financial systems and improving the effectiveness, safety, and inclusion of

digital payments. This project has therefore provided solutions to major challenges that

have been seen with the implementation of CBDCs including slow transaction speeds,

high costs, privacy and security concerns and scalability problems through use of FPGA

technology and Hyperledger Fabric.

Design and development of a CBDC transaction processor using FPGA can offer a high

transaction rate and low latency owing to the parallelism of FPGA. Hyperledger Fabric is

a permissioned blockchain that provides better privacy, security and scalability than other

types of blockchain to meet the needs of CBDCs.

Several goals were set, namely, to design a reliable transaction processing system, in-

corporate FPGA, use Hyperledger Fabric, and address specific issues. Thus, the overall

assessment and validation of the performance of the system developed ensured its effi-

ciency and accuracy. The deliverables of the project involve; efficient CBDC transaction

processing systems, integration of FPGA technology and solutions to challenges affecting

113

CBDCs. Spreading the results about digital currency and blockchain technologies through

academic papers and conferences helps the improvement of these systems.

The approach that was used in this project utilized the different features of the FPGAs and

ARM processors in the Zynq-7000 SoC by designing the system in a way that it could

efficiently manage a large number of transactions in a real time and low power mode. In

the light of the presented architecture, digital wallets acted as a user interface, processing

the transactions in JSON-RPC format and authenticated by JSON Web Tokens (JWT).

The FPGA employed in this experiment was responsible for the important cryptographic

operations including hashing using the SHA-256 algorithm as well as encryption using

the RSA algorithm to improve the security of the transactions.

SHA-256 and RSA algorithms were used in this study with the aid of Vivado Design

Suite in order to design the custom IP cores for SHA-256 and RSA algorithms on FPGA

and the efficient and secure data processing was observed. These IPs were connected to

the transaction reception system through AXI DMA which was of great benefit in the

management of the memory access and processing.

Considering the Hyperledger Fabric, the integration of the FPGA-based transaction pro-

cessor ensured secure and efficient handling of the CBDC transactions. This combined

system employed secure transmission protocols and hardware acceleration to increase the

number of transaction per second, reduce the time take to complete a transaction and

hence making it suitable for the CBDC environment.

Thus, this project has suggested solutions and recommendations to the issues that affect

the implementation of the CBDC and has positively influenced the advancement of the

digital currency framework and future prospects. Based on the proposed model of incor-

porating FPGA into the Hyperledger Fabric in digital currency systems, the following can

be predicted to be the benefits of the model.

114

7.2 Future Work

Based on the findings of this project, several recommendations for future research are

presented to strengthen the CBDCs’ implementation and effectiveness:

1. Advanced Cryptographic Techniques: Research and include better cryptographic

algorithms and techniques to improve on security and efficiency. This entails the

integration of post-quantum cryptography to prevent the system from being vulner-

able to quantum computational threats.

2. Optimization of FPGA Resource Utilization: Propose techniques for minimizing

the use of the FPGA resources especially the Look-Up Tables (LUTs) and increase

the efficiency of the hardware implementation. This may include optimizing the

HDL code and review the utilization of larger or more complex FPGA devices.

3. Scalability Enhancements: Propose and evaluate mechanisms for improving the

system’s capacity to handle more transactions and users. This could involve some

of the following in Hyperledger Fabric and the interaction between FPGA modules

and the blockchain network.

4. Interoperability with Other Blockchain Platforms:Examine possibilities of con-

necting the CBDC system with other blockchain-based systems to further enhance

its usage and compatibility with the other financial systems. This may entail de-

signing methods for inter and intra blockchain communication and also checking

for compatibility with other block chain technologies.

5. User Interface Improvements:Improve the design of the digital wallets to make it

easier to use and identify by consumers. This entails creating applications that are

both for mobile and web platform with features such as easy and secure transaction

processing, real time notifications and complete history of all transactions.

6. Regulatory Compliance and Legal Framework:Cooperate with other financial

115

regulators to make sure that the CBDC system is in line with current legislation and

to support the further elaboration of legal frameworks for digital currencies. This

may include the incorporation of compliance features and the submission of reports

to the processing system of the transactions.

7. Performance Benchmarking and Stress Testing:Perform detailed performance

analysis and stress testing under various conditions in order to determine the areas

of the application that are most likely to cause performance problems. This entails

checking how the system behaves when faced with a large number of transactions,

slow network, and hardware breakdowns.

8. Real-World Pilot Programs:Pilot the implementation of the system with central

banks and financial institutions in order to assess the real world effectiveness of the

system. These pilots are useful in gathering information on the usage of the system,

identifying the resilience of a system and the issues that may be encountered in an

actual operation.

9. Artificial Intelligence and Machine Learning Integration:Explore how the cur-

rent AI and ML technologies can be included in the practices of transaction moni-

toring, fraud detection, and the proactive analytics. These technologies can add on

other features which can enhance the authentication process.

stability and effectiveness, thus guaranteeing the soundness and stability of the

CBDC system.

10. Energy Efficiency Improvements:Emphasize the energy efficiency improvement

of the FPGA-based transaction processor and the entire CBDC system. This in-

volves improving the hardware design and evaluating the use of low-power FPGA

to develop a better design.

11. Enhanced Privacy Mechanisms: Research and implement advanced privacy-preserving

techniques such as zero-knowledge proofs and secure multi-party computation to

116

ensure user data and transaction details remain confidential.

12. User Education and Training Programs: Develop comprehensive educational re-

sources and training programs to help users, financial institutions, and developers

understand and effectively utilize the CBDC system. This includes creating tutori-

als, documentation, and support channels.

By addressing these future work areas, the project can continue to evolve and adapt to the

changing needs of the digital economy, ensuring the successful deployment and adoption

of CBDCs on a global scale.

117

Bibliography

[1] Bank for International Settlements, “Central bank digital currencies: foundational

principles and core features.” https://www.bis.org/publ/othp33.htm.

[2] R. Auer and R. Böhme, “The technology of retail central bank digital currency,” BIS

Quarterly Review, March 2020.

[3] N. Narula, L. Swartz, J. Frizzo-Barker, S. Frank, and C. Calabia, “Expanding finan-

cial inclusion or deepening the divide.” https://dci.mit.edu/cbdc-fi-1.

[4] Federal Reserve Bank of Boston, “Project hamilton phase 1: A high-performance

payment processing system designed for central bank digital currencies.”

https://www.bostonfed.org/publications/one-time-pubs/

project-hamilton-phase-1-executive-summary.aspx.

[5] MIT Digital Currency Initiative, “Opencbdc project overview.” https://dci.

mit.edu/opencbdc.

[6] Digilent, “Zybo reference manual.” https://digilent.com/reference/

programmable-logic/zybo/reference-manual.

[7] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, “The zynq book.”

http://www.zynqbook.com/, 2014.

[8] AMD, “Petalinux tools documentation.” https://docs.amd.com/r/

en-US/ug1144-petalinux-tools-reference-guide, 2023.

118

https://www.bis.org/publ/othp33.htm
https://dci.mit.edu/cbdc-fi-1
https://www.bostonfed.org/publications/one-time-pubs/project-hamilton-phase-1-executive-summary.aspx
https://www.bostonfed.org/publications/one-time-pubs/project-hamilton-phase-1-executive-summary.aspx
https://dci.mit.edu/opencbdc
https://dci.mit.edu/opencbdc
https://digilent.com/reference/programmable-logic/zybo/reference-manual
https://digilent.com/reference/programmable-logic/zybo/reference-manual
http://www.zynqbook.com/
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide

[9] Xilinx, “Petalinux downloads.” https://www.xilinx.com/support/

download/index.html/content/xilinx/en/downloadNav/

embedded-design-tools/2023-2.html.

[10] C. Rajapaksha, “Installing ubuntu on xilinx zynq-

7000 ap soc using petalinux.” https://medium.com/

developments-and-implementations-on-zynq-7000-ap/

install-ubuntu-16-04-lts-on-zynq-zc702-using-petalinux-2016-4-e1da902eaff7.

[11] edmund, “Why petalinux always ask to set new pass-

word on every power reset.” https://support.

xilinx.com/s/question/0D54U00006xEYL0SAO/

why-petalinux-always-ask-to-set-new-password-on-every-power-reset?

language=en_US.

[12] AMD, “Partitioning and formatting an sd card.” https://docs.amd.

com/r/en-US/ug1144-petalinux-tools-reference-guide/

Partitioning-and-Formatting-an-SD-Card.

[13] W. contributors, “Rsa (cryptosystem),” 2024. [Online; accessed 30-May-2024].

[14] W. contributors, “Euclidean division,” 2024. [Online; accessed 30-May-2024].

[15] W. contributors, “Modular arithmetic,” 2024. [Online; accessed 30-May-2024].

[16] W. contributors, “Modular exponentiation,” 2024. [Online; accessed 30-May-2024].

[17] R. Digital, “A comprehensive guide to digital design,” 2024. [Online; accessed 30-

May-2024].

[18] A. Developer, “Axi protocol overview,” 2024. [Online; accessed 30-May-2024].

[19] R. Education, “Understanding axi protocol - lecture series,” 2024. [Online; accessed

30-May-2024].

119

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2023-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2023-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2023-2.html
https://medium.com/developments-and-implementations-on-zynq-7000-ap/install-ubuntu-16-04-lts-on-zynq-zc702-using-petalinux-2016-4-e1da902eaff7
https://medium.com/developments-and-implementations-on-zynq-7000-ap/install-ubuntu-16-04-lts-on-zynq-zc702-using-petalinux-2016-4-e1da902eaff7
https://medium.com/developments-and-implementations-on-zynq-7000-ap/install-ubuntu-16-04-lts-on-zynq-zc702-using-petalinux-2016-4-e1da902eaff7
https://support.xilinx.com/s/question/0D54U00006xEYL0SAO/why-petalinux-always-ask-to-set-new-password-on-every-power-reset?language=en_US
https://support.xilinx.com/s/question/0D54U00006xEYL0SAO/why-petalinux-always-ask-to-set-new-password-on-every-power-reset?language=en_US
https://support.xilinx.com/s/question/0D54U00006xEYL0SAO/why-petalinux-always-ask-to-set-new-password-on-every-power-reset?language=en_US
https://support.xilinx.com/s/question/0D54U00006xEYL0SAO/why-petalinux-always-ask-to-set-new-password-on-every-power-reset?language=en_US
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide/Partitioning-and-Formatting-an-SD-Card
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide/Partitioning-and-Formatting-an-SD-Card
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide/Partitioning-and-Formatting-an-SD-Card

[20] A. Electronics, “Fpga basics: Architecture, applications, and uses,” 2024. [Online;

accessed 30-May-2024].

[21] “Multiplexer.” https://en.wikipedia.org/wiki/Multiplexer. Ac-

cessed: 2024-05-29.

[22] “Asic.” https://en.wikipedia.org/wiki/ASIC. Accessed: 2024-05-29.

[23] “D latch.” https://en.wikipedia.org/wiki/D_latch. Accessed: 2024-

05-29.

[24] “Rom.” https://en.wikipedia.org/wiki/ROM. Accessed: 2024-05-29.

[25] “Eprom.” https://en.wikipedia.org/wiki/EPROM. Accessed: 2024-05-

29.

[26] “Eeprom.” https://en.wikipedia.org/wiki/EEPROM. Accessed: 2024-

05-29.

[27] “Random-access memory.” https://en.wikipedia.org/wiki/

Random-access_memory. Accessed: 2024-05-29.

[28] “Boolean function.” https://en.wikipedia.org/wiki/Boolean_

function. Accessed: 2024-05-29.

[29] “Truth table.” https://en.wikipedia.org/wiki/Truth_table. Ac-

cessed: 2024-05-29.

[30] The Hyperledger Fabric Contributors, “Hyperledger fabric documentation.”

https://hyperledger-fabric.readthedocs.io/, Accessed: 2024.

Accessed on May 28, 2024.

[31] The Linux Foundation, “Hyperledger fabric.” https://

hyperledger-fabric.readthedocs.io/.

120

https://en.wikipedia.org/wiki/Multiplexer
https://en.wikipedia.org/wiki/ASIC
https://en.wikipedia.org/wiki/D_latch
https://en.wikipedia.org/wiki/ROM
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/EEPROM
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Truth_table
https://hyperledger-fabric.readthedocs.io/
https://hyperledger-fabric.readthedocs.io/
https://hyperledger-fabric.readthedocs.io/

	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Scope
	Aims and Objectives
	Aims
	Objectives

	Outcomes
	Expected Outcomes
	Potential Impact

	Report Organization

	Literature Review
	Background
	Central Banking Digital Currencies (CBDCs)

	Related Projects
	Project Hamilton
	OpenCBDC

	Methodology
	Rationale
	High Level Overview
	Digital Wallets
	ZyBo
	DataFlow

	Petalinux Software Development Kit
	Why Petalinux?
	Tailored for Xilinx Zynq SoCs
	Comprehensive Development Environment
	Linux-Based Environment
	Balancing Control and Features
	Real-Time Capabilities
	Networking and Multi-Threading

	Setting Up Petalinux
	Prerequisites
	Installation & Working Environment

	Project Creation
	Configuring a Hardware Platform for Linux

	Build & Configuration
	Kernel Configuration
	Boot Configuration
	Root Filesystem Configuration
	Image Build

	Packaging & Booting
	SD Card Partitioning
	Loading Files

	IP Generation & Integration
	SHA-256 IP
	Creating SHA256 IP and Block Design
	Writing Code in SDK and launching It
	How to run the code
	OUTPUT:

	RSA IP
	Introduction to AXI4-Lite (Advanced Extensible Interface)
	Hardware Bottlenecks
	Connections
	How They Work Together
	Summary

	Simulation Results
	Integration of IPs and Received Transaction
	Steps for Integration

	Project Presentation on Custom IP Core and Driver Abstraction
	Introduction
	Custom IP Core Implementation
	Driver Functionality
	Purpose of Abstraction
	Driver Components
	Driver Development Steps
	Application Developer Perspective
	Integration Steps
	Example Workflow
	Conclusion

	Implementation of Hyperledger Fabric in CBDC Transaction Processing
	Introduction
	Setting up Hyperledger Fabric Environment
	Installation of Hyperledger Fabric and Fabric Samples
	Cloning fabric-samples Repository
	Running the Installation Script
	Confirming Installation

	Explanation of Smart Contract
	InitLedger
	CreateAsset
	ReadAsset
	UpdateAsset
	DeleteAsset
	AssetExists
	GetAllAssets
	TransferAsset

	Deploying Smart Contracts to Hyperledger Fabric Network
	Chaincode Deployment Process
	Endorsement Policy

	Integration with FPGA-Based Transaction Processor
	Data Transmission
	Transmission Protocol
	Data Processing
	Transaction Execution
	Performance Optimization

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

