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Abstract

Hilbert gave the idea of associating free resolution with finitely generated module to describe the

structure of a module. Since then, there has been a lot of progress on the structure and properties

of finite free resolutions. The two algebraic invariants namely Castelnuovo-Mumford regularity

(or regularity) and projective dimension are associated with minimal graded free resolution of a

finitely generated graded module. Regularity measures the complexity of module and projective

dimension measures how far a module is from being projective. Projective dimension has a

relation with the depth of a module by Auslander–Buchsbaum formula. The depth of a module

has been the subject of several studies during the last decades. Let A be a finitely generated

multigraded module. In 1982, Stanley conjectured that depth of A is a lower bound for the

Stanley depth of A. This conjecture was later disproved by Dual et al. in 2015. However,

there still looks to be profound and attractive relationship between the two invariants, which

is yet to be understood. Squarefree monomial ideals has been a fascinating area of study in

commutative algebra and has a strong connection to combinatorics, which continues to inspire

much of current research. The goal of this thesis is to study some algebraic invariants of quotient

rings of some squarefree monomial ideals. These algebraic invariants include depth, Stanley

depth, regularity, projective dimension, and Krull dimension. We find the precise values of

aforementioned invariants of residue class rings of edge ideals of perfect semiregular trees. We

find depth, projective dimension and lower bounds for Stanley depth of the quotient rings of

edge ideals associated with all cubic circulant graphs. We discuss the said invariants for the

quotient rings of the edge ideals associated with some classes of four and five regular circulant

graphs.

vii



CHAPTER 0

Introduction

The last three decade has seen a number of exciting developments at the intersection of commu-

tative algebra with combinatorics. Melvin Hochster’s [3] study provides the first indication of a

connection between combinatorial properties of simplicial complexes and commutative algebra.

The face ring of a simplicial complex initially appeared in Gerald Reisner’s doctoral thesis (pub-

lished version in [6]), under the supervision of Hochster, and in two separate articles written by

Stanley [4, 5]. Richard Stanley [5] provided a positive answer to the upper bound conjecture for

spheres in 1975. By using concepts and techniques from commutative algebra in an orderly way,

Stanley was the first to study simplicial complexes by taking into account the Hilbert function

of Stanley Reisner rings. Since that time, squarefree monomial ideals have been a fascinating

area of study in commutative algebra see [11]. Partitionable complexes and Cohen-Macaulay

complexes are two basic types of simplicial complexes in combinatorics. Stanley proposed a

conjecture connecting these two concepts: Are all Cohen–Macaulay simplicial complexes parti-

tionable? In the year 1982, Stanley [8] introduced an invariant for finitely generated Zn-graded

modules over the graded commutative ring, known as Stanley depth. According to Stanley’s

conjecture geometric invariant of a module known as the Stanley depth is an upper bound of an

algebraic invariant of the module known as the depth(Stanley’s inequality). It is proved in [32]

that this conjecture implies his conjecture about partitionable Cohen–Macaulay simplicial com-

plexes. Later on it was proved by Duval et al. [59] in year 2016 that both of these conjectures

are generally false. For some recent results regarding Stanley’s inequality, see [40, 43, 51, 80].

The primary objective is to investigate the algebraic invariants of squarefree monomial ideals

by means of combinatorial structures and graph invariants.

Stanley decompositions have applications in the normal form theory for systems of differ-
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CHAPTER 0: INTRODUCTION

ential equations see [15, 27, 28]. Herzog et al. [33] provided a method for finding Stanley depth

of modules I1/I2, where I2 ⊂ I1 are the monomial ideals of polynomial ring S. After that, Ichim

et al. [62] introduced an algorithm for finding Stanley depth of any finitely generated Zn-graded

S-module. However, it is still a challenging task to compute the Stanley depth even with these

algorithms. The study of Stanley depth and depth for modules is a hard problem. Therefore, it

is still important to give bounds and values for depth and Stanley depth of a module. For some

interesting findings regarding to depth and Stanley depth see [11, 52, 63, 66]. In addition, Krull

dimension measures the size of a ring or module. A module or a ring is Cohen-Macaulay if its

Krull dimension is equal to its depth. Characterization and construction of Cohen–Macaulay

graphs is one of the fundamental problems with rich literature; see for instance [54, 56, 69].

A minimal graded free resolution of a module is a homological tool for studying a module.

The minimal free resolution encodes much of the information about the structure of module

as well as containing several important numerical invariants of a module. In two well-known

articles published in 1890 [1] and 1893 [2], Hilbert proposed the idea of associating a free res-

olution to a finitely generated module. He proved Hilbert’s syzygy theorem, which asserts that

there is a finite minimal free resolution for every finitely generated graded module over a poly-

nomial ring. Since then, there has been a lot of progress on properties of finite free resolutions.

Free resolutions has many applications in Algebraic Geometry, Computational Algebra and In-

variant Theory. For more literature related to resolutions we refer the readers to [14, 21, 34,

61]. There are two important invariants in commutative algebra that measure the size of reso-

lution, regularity and projective dimension. Regularity measures the width of a free resolution

whereas the projective dimension measures the length of free resolution. Regularity plays a

significant role as one of the keys indicators of a module’s complexity and projective dimension

measures how far a module is from being projective. Bounds and values for the regularity and

projective dimension of edge ideals have been the subject of numerous studies by researchers;

see for instance [34, 61, 70, 71, 74]. Moreover, the interplay of algebraic properties of I(G)

and graph-theoretic properties of G is also of great interest; see for instance [36, 45, 57, 68].

This research focuses on the aforementioned algebraic invariants of quotient rings of edge ideals

associated with some classes of graphs. Our outcomes further demonstrates that the Stanley’s

inequality holds for the quotient ring of edge ideals associated to the classes of graphs that are

being studied.

This thesis comprises five chapters. The first chapter covers some fundamental concepts

of ring theory. It also encompasses some basics of module theory includes exact sequences

2



CHAPTER 0: INTRODUCTION

of modules, Krull dimension, grading of a ring and a module. In addition, it includes a brief

introduction of graph theory. Further, we discuss depth, Stanley decomposition, Stanley depth

of modules and its method of computation. Well known Stanley’s conjecture and some results

associated to depth and Stanley depth are also stated. This chapter also contains a detailed

introduction to graded minimal free resolution of edge ideal and its construction. Moreover,

some results related to regularity and projective dimension are also presented here.

In the second chapter, we find the precise formulas for the values of the algebraic invari-

ants depth, projective dimension, Stanley depth, regularity and Krull dimension of edge ideal

associated with perfect semiregular tree. The content of this chapter is published in our paper

[80].

The third chapter contains values of depth, projective dimension, and lower bounds for

Stanley depth of the quotient rings of the edge ideals of all cubic circulant graphs. The work in

this chapter is inspired by a recent work of Uribe-Paczka et al. [73], where the authors studied

regularity of the edge ideals of cubic circulant graphs. The content of this chapter is available

in [81].

Unlike cubic circulant graphs [12], there is no simple characterization or formula to uniquely

represent all four and five regular circulant graphs. The classification of all four and five reg-

ular circulant graphs is a topic of ongoing research, and many mathematicians and computer

scientists are working to gain deeper insights into the properties of these graphs [44, 67]. In

practice, researchers often focus on specific subclasses of circulant graphs to make progress in

their study. In chapter four, we give the exact values of depth, projective dimension, and bounds

for the Stanley depth of edge ideal associated with four regular circulant graphs C2n(1,n− 1).

We also provide a value for the regularity of the edge ideal associated with C2n(1,n−1) when

n ≡ 0,1(mod3), and sharp bounds when n ≡ 2(mod3). We also give the exact values of the

regularity of the edge ideal associated with four regular circulant graphs C2n(1,2) when n is

even and tight bounds when n is odd. Moreover, we provide the exact value for the regularity of

edge ideal associated with five regular circulant graphs C2n(1,n−1,n). This work is published

in [82]. In the last chapter, we summarize whole research work and give some future directions.

We gratefully acknowledge the use of CoCoA [20], Macaulay2 [13] and MATLAB ®.
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CHAPTER 1

Preliminaries

In this chapter we state some fundamental concepts of ring theory, module theory and graph

theory. Some results related to algebraic invariants including depth, Stanley depth, regularity,

projective dimension, and Krull dimension are also presented here. Throughout this thesis, all

considered rings are commutative with unity.

1.1 Some elements of ring theory and module theory

Here we recall some definitions and results from [18, 41].

Definition 1.1.1. Let Z be a ring. Under usual addition and multiplication of polynomials, the

collection of all polynomials in variable x whose coefficients are in Z forms a ring, this ring is

represented as Z[x]. The polynomial ring in the variables x1,x2, . . . ,xn whose coefficients in Z,

denoted by Z[x1, . . . ,xn], is defined inductively by

Z[x1, . . . ,xn] = Z[x1, . . . ,xn−1][xn].

Definition 1.1.2. A proper ideal Γ of ring Z is said to be a prime ideal if for any z1,z2 ∈ Z such

that z1z2 ∈ Γ implies z1 ∈ Γ or z2 ∈ Γ.

Definition 1.1.3. Let Γ be a prime ideal of a ring Z. The height of Γ is the supremum of all

integers ni such that a chain of distinct prime ideals of the form

Γ0 ⊊ Γ1 ⊊ Γ2 ⊊ · · ·⊊ Γni = Γ

exists. The height of Γ is represented by h(Γ).

4



CHAPTER 1: PRELIMINARIES

Definition 1.1.4. Let Z represent a ring. The Krull dimension of Z is defined as the supremum

of heights of all prime ideals of Z. That is,

dimZ = sup{h(Γ) : Γ is prime in Z}.

Definition 1.1.5. An ideal N of Z (N ̸= Z) is called maximal if there exist no other proper ideal

containing N.

Definition 1.1.6. A ring is said to be local if it contains a unique maximal ideal.

Definition 1.1.7. A ring Z is called Noetherian if it fulfills the ascending chain condition on its

ideals that is given any chain:

Y1 ⊂ Y2 ⊂ ·· · ⊂ Yk ⊂ Yk+1 ⊂ . . .

a positive integer n exists such that

Yn = Yn+1 = . . .

Monomial ideal and primary decomposition

Consider a polynomial ring S = K[x1, . . . ,xn] over a field K, monomials forms the natural K-

basis for S. Throughout this work, S represents a polynomial ring over a field K in finite number

of variables. Let b = (b1, . . . ,bn) ∈ Zn
+, where Z+ represents the set of non-negative integers. A

monomial is any product of the form xb1
1 . . .xbn

n . If w = xb1
1 . . .xbn

n is a monomial, then we write

w = xb with b = (b1, . . . ,bn) ∈ Zn
+, and

xb1xb2 = xb1+b2 .

If the components of b are 0 and 1, then a monomial xb is called squarefree. Mon(S) denotes

the set of all monomials in S and it forms a K-basis of S.

Definition 1.1.8. For any polynomial f ∈ S and for bw ∈ K

f = ∑
w∈Mon(S)

bww,

where support of f is defined as

supp( f ) = {w ∈ Mon(S) : bw ̸= 0}.

Definition 1.1.9. If an ideal of a polynomial ring is generated by monomials, it is referred to as

a monomial ideal.

5



CHAPTER 1: PRELIMINARIES

Definition 1.1.10. If an ideal is generated by a squarefree monomials then it is called squarefree

monomial ideal.

Examples 1.1.11. Consider ring S = K[x1,x2, ...,x6] over the field K.

1. The ideals Y1 = (x2
1x4

2,x
3
1x3

2,x
5
1x2) and Y2 = (x4

1x5
2,x

6
1x2

2) are monomial ideals of S.

2. The ideals of the form Y3 = (x1), Y4 = (x1x4,x2x5) and Y5 = (x1,x2, ...,x6) are the square-

free monomial ideals in S.

Definition 1.1.12. Let Z be a ring and Y be its ideal. The radical of Y represented by
√

Y is

defined as
√

Y = {z ∈ Z : zn ∈ Y,n > 0}.

If
√

Y = Y , then Y is called a radical ideal. All the squarefree ideals are radical ideals.

Definition 1.1.13. Let Y and Y
′

be the two ideals of a ring Z. Then the quotient ideal (also

named as colon ideal) is defined as (Y : Y
′
) = {z ∈ Z : zY

′ ⊆ Y}.

Definition 1.1.14. An ideal (0 : Y ) is called the annihilator of Y represented as Ann(Y ) defined

as Ann(Y ) = {z ∈ Z : zY = 0}.

The unique minimal set of monomial generators of monomial ideal L is represented as G(L)

[41].

Proposition 1.1.15. The colon ideal B1 : B2 of two monomial ideals B1 and B2 of S is a mono-

mial ideal, and

B1 : B2 =
⋂

g∈G(B2)

(B1 : g).

Furthermore, {w/gcd(w,g) : w ∈G(B1)} is the set of generators of (B1 : g) and gcd(w,g) rep-

resents the greatest common divisor of w and g.

Example 1.1.16. If S = K[x1,x2,x3,x4], B1 = {x2x2
3,x1x2

2,x
2
1,x3x2

4} and B2 = {x2x3
1,x2x3,x3x4},

then

B1B2 = {x2
1x3x4,x2

1x2x3,x2
3x3

4,x1x2
2x3x4,x2x2

3x4,x2x2
3x4,x1x3

2x3,x2
2x3

3,x
5
1x2,x4

1x3
2},

B1 +B2 = {x2x3,x3x4,x2
1,x1x2

2},

B1 ∩B2 = {x2x2
3,x3x2

4,x
3
1x2,x2

1x2x3,x2
1x3x4,x2x3x2

4},

B1 : B2 = {x2x3,x2
1,x

2
4,x1x2x4,x1x2

2,x3x4}.

6



CHAPTER 1: PRELIMINARIES

Definition 1.1.17. A proper ideal Y of a ring Z is called a primary ideal if z1z2 ∈ Y , for some

z1,z2 ∈ Z, then either z1 ∈ Y or zn
2 ∈ Y for some n ≥ 1.

Definition 1.1.18. A prime ideal Γ ⊂ S is known as associated prime ideal of S/L, if there exist

a non-zero element s ∈ S/L such that Γ = Ann(s).

The set of associated prime ideals of S/L is denoted by Ass(S/L). We often write Ass(L) in

place of Ass(S/L). For an ideal L, primary decomposition is a way of representing L as an

intersection L = ∩m
j=1K j, where each K j is a primary ideal containing L. Let {Γ j}= Ass(K j) if

neither of the K j can be excluded in this intersection and Γr ̸= Γs for all r ̸= s, then it is called

an irredundant primary decomposition.

Examples 1.1.19. Let L1 = (x4
2 , x4

3 , x3
2x3

4 , x2x3x3
4 , x3

3x3
4 ) be an ideal of S = K[x1,x2,x3,x4], then

L1 = (x4
2 , x4

3 , x3
2 , x2x3x3

4 , x3
3x3

4 ) ∩ (x4
2 , x4

3 , x3
4 , x2x3x3

4 , x3
3x3

4 )

= (x3
2 , x4

3 , x2x3x3
4 , x3

3x3
4 ) ∩ (x4

2 , x4
3 , x3

4 )

= (x3
2 , x4

3 , x2 , x3
3x3

4 ) ∩ (x3
2 , x4

3 , x3x3
4 , x3

3x3
4 ) ∩ (x4

2 , x4
3 , x3

4 )

= (x2 , x4
3 , x3

3x3
4 ) ∩ (x3

2 , x4
3 , x3x3

4 ) ∩ (x4
2 , x3

3 , x3
4 )

= (x2 , x4
3 , x3

3 ) ∩ (x2 , x4
3 , x3

4 ) ∩ (x3
2 , x4

3 , x3 ) ∩ (x3
2 , x4

3 , x3
4 ) ∩ (x4

2 , x3
3 , x3

4 )

= (x2 , x3
3 ) ∩ (x2 , x4

3 , x3
4 ) ∩ (x3

2 , x3 ) ∩ (x4
2 , x4

3 , x3
4 )

= (x2 , x3
3 ) ∩ (x3

2 , x3 ) ∩ (x4
2 , x4

3 , x3
4 ).

It is a primary decomposition of L1 but not irredundant. Here, Ass((x2 , x3
3)) = Ass((x3

2 , x3)) =

{(x2 , x3 )}. Now for irredundant primary decomposition, take an intersection of (x2 , x3
3 ) and

(x3
2 , x3 ), that is (x2 , x3

3 )∩ (x3
2 , x3 ) = (x3

2 , x2x3 , x3
3 ). Hence L1 = (x4

2 , x4
3 , x3

4 ) ∩ (x3
2 , x2x3 , x3

3 ).

Similarly, if L2 = (x3
2 , x1x2x2

3 , x3
1 , x2

2x2
3 , x2

1x2
3 )⊂ S = K[x1,x2,x3], then

L2 = (x3
2 , x1 , x3

1 , x2
2x2

3 , x2
1x2

3 ) ∩ (x3
2 , x2 , x3

1 , x2
2x2

3 , x2
1x2

3 )∩ (x3
2 , x2

3 , x3
1 , x2

2x2
3, x2

1x2
3 )

= (x3
2 , x1 , x2

2x2
3 ) ∩ (x2 , x3

1 , x2
1x2

3 )∩ (x3
2 , x2

3 , x3
1 )

= (x3
2 , x1 , x2

2 ) ∩ (x3
2 , x1 , x2

3 ) ∩ (x2 , x3
1 , x2

1 ) ∩ (x2 , x3
1 , x2

3 ) ∩ (x2
3 , x3

1 , x3
2 )

= (x1 , x2
2 ) ∩ (x3

2 , x1 , x2
3 ) ∩ (x2 , x2

1 ) ∩ (x2 , x3
1 , x2

3 ) ∩ (x2
3 , x3

1 , x3
2 )

= (x1 , x2
2 ) ∩ (x3

1 , x3
2 , x2

3 ) ∩ (x2 , x2
1 ).

We have Ass((x1 , x2
2)) = Ass((x2 , x2

1)) = {(x1 , x2 )}. By taking intersection of intersection of

(x1 , x2
2) and (x2 , x2

1), we get (x1,x2)-primary ideal(x2
1,x

2
2,x1x2) and thus the irredundant primary

decomposition. Hence L2 = (x2
1 , x2

2 , x1x2 ) ∩ (x3
1 , x3

2 , x2
3 ).

7
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Definition 1.1.20. Let A be a finitely generated module A over a Noetherian ring Z. For a Z-

module A, Ann(A) = ∩a∈AAnn(a), where Ann(a) = {z ∈ Z : za = 0}. The Krull dimension of

module A is determined as

dim(A) = dim(Z/Ann(A)).

For the modules of the type S/L,

dim(S/L) = max{dim(S/Γi) : Γi ∈ Ass(S/L)},

is always finite.

Definition 1.1.21. A sequence of Z-homomorphisms and Z-modules

· · · −→ Ai−1
ξi−−→ Ai

ξi+1−−→ Ai+1
ξi+2−−→ . . .

is exact at Ai if Im(ξi) = Ker(ξi+1). We call the sequence is an exact sequence if it is exact at

each Ai.

Proposition 1.1.22. The sequence

0 −→ A′ ξ−→ A
ϕ−−→ A′′ −→ 0

is said to be an exact if and only if ξ is injective, ϕ is surjective and Im(ξ ) = Ker(ϕ). This

sequence is known as a short exact sequence.

Example 1.1.23. If B and C are Z-modules, then the sequence of the form

0 −→ B
ξ−→ B⊕C

ϕ−−→C −→ 0,

is a short exact sequence.

Definition 1.1.24. A Z-module A is called Noetherian if each ascending chain of Z-submodules

of A is stationary. A ring Z is Noetherian if Z is Noetherian as a Z-module.

Definition 1.1.25. Let (Ω,+) be an abelian semigroup. An Ω-graded ring is a ring Z together

with the following decomposition

Z =
⊕
α∈Ω

Zα (as a group)

such that ZαZβ ⊂ Zα+β for all α,β ∈ Ω. Then for z ∈ Z, we can write a unique expression

z = ∑
α∈Ω

zα

where za ∈ Za and almost all zα = 0. The element zα is said to be αth homogeneous component

and if z = zα , then z is homogeneous of degree α .

8
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Examples 1.1.26. R[x] and R[x,y] are Z-graded rings because

• R[x] = R⊕Rx⊕Rx2 ⊕Rx3 ⊕Rx4 ⊕Rx5 ⊕· · ·

• R[x,y] = R⊕ (Rx+Ry)⊕ (Rx2 +Rxy+Ry2)⊕ (Rx3 +Rx2y+Rxy2 +Ry3)⊕· · ·

Definition 1.1.27. If Z is an Ω-graded ring and A is a Z-module with a decomposition

A =
⊕
α∈Ω

Aα (as a group)

such that ZαAβ ⊂ Aα+β for all α,β ∈ Ω, we say that A is an Ω-graded module.

Example 1.1.28. Let α = (a1,a2, . . . ,an) ∈ Zn and xα = xa1
1 xa2

2 . . .xan
n (a monomial) then f ∈

S := K[x1, . . . ,xn] is known as homogeneous element of degree α if f is of the form cxα with

c ∈ K. The ring of polynomial S is obviously Zn-graded that is S =
⊕

α∈Zn Sα , where

Sα =

 Kxα , if α ∈ Zn
+;

0, otherwise.

An S-module A is said to be Zn-graded if A =
⊕

α∈Zn Aα and SαAβ ⊂ Aα+β for all α,β ∈ Zn.

Remark 1.1.29 ([37]). Let A is an Ω-graded module. A non zero element of Aβ is called a

homogeneous element of degree β . We frequently use the notation A(γ), to represent the Ω-

graded shift of S-module A that satisfies

A(γ)β = Aγ+β (1.1.1)

for all γ,β ∈ Ω.

Definition 1.1.30 ([37]). Let A, B be Ω-graded modules over S with β ∈ Ω. An Ω-graded

homomorphism of degree β is a homomorphism ξ : A −→ B such that for all homogeneous

a ∈ A

deg(ξ (a)) = deg(a)+β .

If β = 0, then ξ is referred to as degree-preserving.

Example 1.1.31. Consider the Z-graded ring S = K[x0,x1,x2], then

ξ1 : S ·x1−−→ S

is a homomorphism of degree 1 but not degree preserving. However a homomorphism,

ξ2 : S(−1) ·x1−−→ S

is a degree-preserving.

9
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1.2 Finite simple graphs

A graph G consists of a non-empty set of vertices VG, an edge set EG and is represented as,

G = (VG,EG). The size and order of the graph is denoted as | EG | and | VG |, respectively.

Now, we recall some definitions gathered from [29, 47]. The graph G is finite if it has finite

number of vertices and edges, otherwise infinite. If there are two or more edges between two

vertices then the edges are known as multiple (parallel) edges. Similarly, if an edge has the

same starting and end vertex it is said to be a loop. A simple graph is a graph with no multiple

edges and loops. The vertices x1,x2 ∈ VG are called adjacent in G if there is an edge between

them, which is denoted by x1x2 (or x2x1). The two edges e1,e2 ∈ EG are adjacent if e1 and e2

have a common vertex. The degree of a vertex xi ∈ V (G) is the number of adjacent vertices to

xi in graph G and is represented by degG(xi). For n ≥ 1, a path Pn is a graph on n vertices such

that E(Pn) = {{x j,x j+1} : 1 ≤ j ≤ n−1}. If a path exists between any two vertices in a graph,

then the graph is said to be a connected. A graph Nn is said to be a null graph on n vertices if

V (Nn) = {x1, . . . ,xn} and E(Nn) = /0. Moreover, if n = 1 then N1 is also called a trivial graph. A

simple and connected graph Tn on n vertices is called a tree if a unique path exists between any

two vertices of Tn. A vertex of degree one of a graph is called a pendant vertex (or leaf ). A tree

is called semiregular when all of its non-pendant vertices have the same degree. A rooted tree

is a tree in which one vertex has been designated the root. The distance between two vertices x j

and xk in a graph is the shortest path between x j and xk. Any vertex that is not a leaf is called an

internal vertex. For n ≥ 1, a n-star is a tree having n leaves and a single vertex with degree n.

We denote a n-star by Sn. For a graph G, a subset D of V (G) is known as an independent set if

no two vertices in D are adjacent. The independence number of G is the carnality of the largest

independent set of G.

Lemma 1.2.1 ([75, Lemma 1]). Let I(G) be an edge ideal associated with graph G, then

dim(S/I(G)) = max{|D| : D is an independent set of G}.

A subgraph W of G, written as W ⊆ G, is a graph such that V (W )⊆V (G) and E(W )⊆ E(G).

If W is a subgraph of G, then G is called a supergraph of W. For a subset W ⊆ V (G), an

induced subgraph of G is a graph G′ := (W,E(G′)), such that E(G′) = {{xi,x j} ∈ E(G) :

{xi,x j} ⊆ W}. A subset N of E(G) that contains no two adjacent edges is called a matching

in a graph G. An induced matching in G is a matching that forms an induced subgraph of G. An

10
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induced matching number of G is represented as indmat(G) and defined as

indmat(G) = max{|N| : N is an induced matching of G}.

For a graph given in Figure 1.1,

v1

v2
v3

v4
v5v6

v2v7

v8 v9

e1

e2

e3 e4e5

e6e7

e8 e9

Figure 1.1: Simple graph H

We have indmat(H) = 2. The neighborhood NG(xk) of a vertex xk is the set of all neighbors of

xl, that is, NG(xk) := {xl ∈V (G) | {xk,xl} ∈ E(G)}. If each vertex in graph G has degree q, then

graph G is q-regular.

Definition 1.2.2 ([41]). Assume G is a graph with edge set E(G) and V (G) = {x1, . . . ,xn}. Any

ideal I ⊂ S := K[V (G)] generated by squarefree quadratic monomials can be viewed as the so-

called edge ideal I(G) of the G whose edges are the sets formed by two variables xk, xl such that

xkxl is a generator of I.

Example 1.2.3. Consider a graph G as given in Figure 1.2 with V (G) = {x1,x2,x3,x4,x5,x6}.

Then edge ideal associated with G is

I(G) = (x1x3,x1x6,x2x4,x2x5,x3x4,x3x5,x4x6). (1.2.1)

x1 x2

x4 x3

x5x6

Figure 1.2: Simple Graph G

11
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Definition 1.2.4 ([80]). We call a semiregular rooted tree a perfect semiregular tree if its all

pendent vertices are at the same distance from the root. Let n ≥ 2 and k ≥ 1. We denote a

perfect semiregular tree by Tn,k, where k and n represent the distance of the pendent vertices

from the root and degree of the non-pendent vertices, respectively.

Definition 1.2.5 ([42]). For n ≥ 2 and k ≥ 1, a perfect n-ary tree is a rooted tree whose root

is of degree n, and all other internal vertices (if exist) are of degree n+ 1 and all leaves are at

distance k from the root (if k = 1, then a perfect n-ary tree is just Sn). A perfect (n−1)-ary tree

is an induced subtree of Tn,k, we denote a perfect (n−1)-ary tree by T ′
n,k.

Examples 1.2.6. See Figure 1.3 as examples of T ′
n,k and Tn,k.

Figure 1.3: From left to right perfect 2-ary tree T ′
3,4 and perfect semiregular tree T4,3.

For n ≥ 3, a cycle Cn on n vertices is a graph such that E(Cn) = {{x j,x j+1} : 1 ≤ j ≤ n−1}∪

{x1,xn}. If there is no induced cycle of length strictly greater than three in a graph, then the

graph is considered as chordal.

Figure 1.4: Chordal graph

Let n ≥ 1, a graph is said to be complete graph Kn on n vertices if each pair of vertices is

connected by an edge. A graph is called bipartite graph if its vertex set is splitted into two

12



CHAPTER 1: PRELIMINARIES

distinct sets, or partite sets, such that no two vertices of the graph within the same partite set are

adjacent. A bipartite graph is called a complete bipartite graph if every vertex of one partite set

is connected to each vertex of the other partite set. Let Ku,v denotes the complete bipartite graph

with partite sets Ku = {x1, . . . ,xu} and Kv = {xu+1, . . . ,xu+v}.

Definition 1.2.7 ([65]). Let n ≥ 2 and S be a subset of {1, . . . ,⌊n
2⌋}. A circulant graph Cn(S) is

defined as a graph with V (G) = {x1, . . . ,xn} such that {xi,x j} ∈ E(Cn(S)) if and only if |i− j|

or n−|i− j| ∈ S.

Examples 1.2.8. See Figure 1.5 for examples of circulant graphs.

x1
x2

x3

x4

x5
x6

x7

x1

x2

x3

x4

x5
x6

x7

x8

Figure 1.5: From left to right C7(1,3) and C8(2,4).

Since Cn =Cn(1) therefore circulant graphs are sometimes considered as generalized cycles. For

convenience the graph Cn({a1, . . . ,al}) is simply denoted by Cn(a1, . . . ,al). A circulant graph

Cn(a1, . . . ,al) is 2l-regular, except if 2al = n, in that case, it is (2l−1)-regular. As a consequence

3-regular circulant graphs have the form C2n(a,n) with 1 ≤ a ≤ n. A 3-regular circulant graph

is also named as a cubic circulant graph. Circulant graphs were introduced in 1846, and they

have a number of applications in computer network design, telecommunication networks, data

connection networks, group theory, and others [7, 10, 17, 44]. Several papers have been written

on the aforementioned algebraic invariants of edge ideals associated with circulant graphs; see

[56, 67, 72].

1.3 Depth and Stanley depth

Definition 1.3.1 ([18]). Let Z be a ring and A be a Z-module. We call a non-zero element z ∈ Z

a zero divisor of a module A if za = 0 for some a ̸= 0 in A.

Definition 1.3.2 ([41]). Let A be an Z-module. A non-zero element z of the ring Z is called

A-regular if for any a ∈ A, za = 0 implies a = 0.

13
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Definition 1.3.3 ([41]). A sequence z1, . . . ,zn of elements in Z is known as A-regular sequence

or, an A-sequence, if it fulfills below conditions:

• zi is A/(z1, . . . ,zi−1)A regular for any i,

• A ̸= (z1, . . . ,zn)A.

Definition 1.3.4 ([41]). Let Z be a local Noetherian ring and N be its unique maximal ideal.

Let A be a finitely generated Z-module. The common length of all maximal A-sequences in N

is known as depth of A and is represented by depth(A).

Remark 1.3.5 ([11]). Graph G is said to be Cohen-Macaulay if S/I(G) is Cohen-Macaulay.

Stanley Depth and Stanley Decomposition

Definition 1.3.6 ([8]). Let S=K[x1, . . . ,xn] and A be a finitely generated Zn-graded S-module.

Let w ∈ A be a homogeneous element and V ⊆ {x1, . . . ,xn}. wK[V ] represents the K-subspace of

A generated by {wv : v ∈ K[V ]}. Then K-subspace wK[V ] is called a Stanley space of dimension

|V | if it is a free K[V ]-module. A Stanley decomposition of A is a finite direct sum of Stanley

spaces

D : A =
s⊕

j=1

w jK[Vj]. (1.3.1)

The Stanley depth of a decomposition D is

sdepthD = min{|Vj| : j = 1, . . . ,s}.

The Stanley depth of A is

sdepthS(A) = max{sdepthD : D is a Stanley decomposition of A}.

Method of computing Stanley depth for squarefree monomial ideals

In 2009, Herzog et al. [33] provided a method of computing the lower bound for sdepth of

squarefree monomial ideals in finite number of steps by using posets. Assume L be a squarefree

monomial ideal and let G(L) = {u1, . . . ,um} is the minimal generating set of L. The character-

istic poset of L with respect to g = (1, . . . ,1), written as P
(1,...,1)
L is defined as

P
(1,...,1)
L = {γ ⊂ [n] | γ contains supp(u j) for some j},

14
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where supp(u j) = {i : xi|u j} ⊆ [n] := {1, . . . ,n}. For each α,β ∈ P
(1,...,1)
L where α ⊆ β , and

[α , β ] = {γ ∈ P
(1,...,1)
L : α ⊆ γ ⊆ β}.

Let P : P
(1,...,1)
L = ∪k

j=1[γ j , η j] be a partition of P
(1,...,1)
L , and for every j, suppose s( j) ∈

{0,1}n is the tuple with supp(xs( j)) = γ j, then the Stanley decomposition D(P) of L is given

by

D(P) : L =
r⊕

j=1

xs( j)K[{xk |k ∈ η j}].

Clearly, sdepthD(P) = min{|η1|, . . . , |ηr|} and

sdepth(L) = max{sdepthD(P) | P is a partition of P
(1,...,1)
L }.

Example 1.3.7. Let L=(x1x2,x1x3,x1x4,x2x4)⊂K[x1,x2,x3,x4] be a squarefree monomial ideal

and J = 0. Set α1 = (1,1,0,0), α2 = (1,0,1,0), α3 = (1,0,0,1) and α4 = (0,1,0,1). Thus L is

generated by xα1 ,xα2 ,xα3 ,xα4 and choose g = (1,1,1,1). The poset Q = Pg
L/J is as follows:

Q = {(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,0,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),

(0,1,1,1),(1,1,1,1)}

Partitions of Q are given by:

P1 : [(1,1,0,0),(1,1,0,0)]
⋃

[(1,0,1,0),(1,0,1,0)]
⋃

[(0,1,0,1),(0,1,0,1)]
⋃

[(1,0,0,1),(1,0,0,1)]
⋃

[(1,1,1,0),(1,1,1,0)]
⋃

[(1,1,0,1),(1,1,0,1)]
⋃

[(1,0,1,1),(1,0,1,1)]
⋃

[(0,1,1,1),(0,1,1,1)]
⋃

[(1,1,1,1),(1,1,1,1)]

P2 : [(1,1,0,0),(1,1,1,0)]
⋃

[(1,0,0,1),(1,1,0,1)]
⋃

[(1,0,1,0),(1,0,1,1)]
⋃

[(0,1,0,1),(0,1,1,1)]
⋃

[(1,1,1,1),(1,1,1,1)]

and the corresponding Stanley decomposition is

D(P1) := x1x2K[x1,x2]⊕ x1x3K[x1,x3]⊕ x1x4K[x1,x4]⊕ x2x4K[x2,x4]⊕

x1x2x3K[x1,x2,x3]⊕ x1x2x4K[x1,x2,x4]⊕ x1x3x4K[x1x3x4]⊕

x2x3x4K[x2,x3,x4]⊕ x1x2x3x4K[x1,x2,x3,x4]

D(P2) := x1x2K[x1,x2,x3]⊕ x1x4K[x1,x2,x4]⊕ x1x3K[x1,x3,x4]⊕ x2x4K[x2,x3,x4]⊕

x1x2x3x4K[x1,x2,x3,x4]
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Then

sdepth(L) ≥ max{sdepth(D(P1)) , sdepth(D(P1))}

= max{2,3}

= 3

Since L is not principal, so sdepth(L) = 3.

Stanley’s conjecture

In 1982, Stanley [8] gave a conjecture about an upper bound for the depth of a Zn-graded S-

modules.

depth(A)≤ sdepth(A).

It has been immensely significant as it gave a comparison of two very different invariants of

modules. Consider L ⊂ S be a monomial ideal, then for n ≤ 3, n = 4 and n = 5 the conjecture

for S/L is proved by Apel [16], Anwar [25] and Popescu [38], respectively. But in 2016, Duval

et al. [59] proved that Stanley’s conjecture is generally false, by giving a counter example of the

module of the type S/L. We will now discuss some fundamental results on depth and Stanley

depth.

For monomial ideal L ⊂ S,

depth(L) = depth(S/L)+1,

whereas this result is not true for Stanley depth. There exists various examples where sdepth(L)>

sdepth(S/L) but untill now, no such example where sdepth(L) < sdepth(S/L) is known. For

monomial ideal L ⊂ S, Asia posed a question:

Question 1.3.8 ([40] ). Does the following inequality holds

sdepth(L)≥ sdepth(S/L)+1?

Herzog provides the following conjecture for a weaker form of above inequality:

Conjecture 1.3.9 ([51, Conjecture 60]). Let L be an ideal generated by monomials then

sdepth(L)≥ sdepth(S/L).

For some special cases, the above conjecture is proved by Popescu and Qureshi in [39] and Asia

[40]. Moreover, for any squarefree monimial ideal of S = K[x1, . . . ,x7] this conjecture is proved

by Keller and Young in [64].
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Lemma 1.3.10 ([11, 40]). If 0 → P → Q → R → 0 is a short exact sequence of Zn-graded

S-modules, then

depth(Q)≥ min{depth(R),depth(P)},

sdepth(Q)≥ min{sdepth(P),sdepth(Q)}.

Let 1 ≤ r < n. If L ⊂ S1 = K[x1, . . . ,xr] and J ⊂ S2 = K[xr+1, . . . ,xn] are monomial ideals, then

by [68, Proposition 2.2.20] we have S/(L + J) ∼= S1/L ⊗K S2/J. Thus we get depth(S/(L +

J)) = depth(S1/L⊗K S2/J) and sdepth(S/(L+J)) = sdepth(S1/L⊗K S2/J). Now applying [68,

Proposition 2.2.21] for depth, and Lemma [40, Theorem 3.1] for Stanley depth, we have the

following useful lemma.

Lemma 1.3.11. depthS(S1/L⊗K S2/J) = depthS(S/(L+ J)) = depthS1
(S1/L)+ depthS2

(S2/J)

and sdepthS(S1/L⊗K S2/J)≥ sdepthS1
(S1/L)+ sdepthS2

(S2/J).

In the following lemma, we combine two similar results for depth and Stanley depth. For depth

the result is proved by Rauf [40, Corollary 1.3], whereas for Stanley depth it is proved by

Cimpoeas [43, Proposition 2.7].

Lemma 1.3.12. Consider a monomial ideal L ⊂ S and a monomial w in S such that w /∈ L. Then

depth(S/(L : w))≥ depth(S/L) and sdepth(S/(L : w))≥ sdepth(S/L).

Lemma 1.3.13 ([70, Theorem 4.3]). Let f be an arbitrary monomial in S and L ⊂ S be a

monomial ideal. Then

depth(S/L) = depth(S/(L : f )) if depth(S/(L, f ))≥ depth(S/(L : f )).

In the next lemma, we obtain an analogous result for Stanley depth.

Lemma 1.3.14 ([77]). Let f be a monomial in S and L ⊂ S is a monomial ideal such that f /∈ L.

Then

sdepth(S/L) = sdepth(S/(L : f )) if sdepth(S/(L, f ))≥ sdepth(S/(L : f )).

Proof. Consider the short exact sequence

0 −→ S/(L : f )
. f−→ S/L −→ S/(L, f )−→ 0.

By using Lemma 1.3.10, sdepth(S/L) ≥ min{sdepth(S/(L : f )),sdepth(S/(L, f ))}. If we have

sdepth(S/(L, f ))≥ sdepth(S/(L : f )), then sdepth(S/L)≥ sdepth(S/(L : f )). By Lemma 1.3.12,

sdepth(S/L)≤ sdepth(S/(L : f )). Thus the desired result follows.
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Lemma 1.3.15 ([30, Theorem 1.4]). Let A be a Zn-graded S-module. If sdepth(A) = 0 then

depth(A) = 0. Conversely, if depth(A) = 0 and dimK(Aα)≤ 1 for any α ∈ Zn, then sdepth(A) =

0.

Lemma 1.3.16 ([60, Theorems 2.6 and 2.7]). If n ≥ 2, then

depth(K[V (Sn−1)]/I(Sn−1)) = sdepth(K[V (Sn−1)]/I(Sn−1)) = 1.

We recall the following result proved in [41, Corollary 10.3.7] for depth and for Stanley depth

in [48, Theorem 1.1].

Lemma 1.3.17. Let n ≥ 2. Then depth(K[V (Kn)]/I(Kn)) = sdepth(K[V (Kn)]/I(Kn)) = 1.

Lemma 1.3.18 ([53, Proposition 1.3, Proposition 1.8 and Theorems 1.9]). If n ≥ 3, then

(a) depth(K[V (Cn)]/I(Cn)) =
⌈n−1

3

⌉
,

(b) sdepth(K[V (Cn)]/I(Cn)) =
⌈n−1

3

⌉
, for n ≡ 0,2(mod3) and⌈

n−1
3

⌉
≤ sdepth(K[V (Cn)]/I(Cn))≤

⌈n
3

⌉
, for n ≡ 1(mod3).

Lemma 1.3.19 ([38, Theorems 1.4]). If u,v ≥ 1, then

depth(K[V (Ku,v)]/I(Ku,v)) = 1 ≤ sdepth(K[V (Ku,v)]/I(Ku,v)).

1.4 Invariants associated with minimal graded free resolution

Recall the following definitions taken from [37].

Definition 1.4.1. Let A be a finitely generated S-module. Free resolution of A is an exact se-

quence, that is Im(ξi) = Ker(ξi−1) of S-modules

0 −→ Fi
ξi−→ Fi−1

ξi−1−−→ . . .
ξ2−→ F1

ξ1−→ F0
ξ0−→ A −→ 0,

where all Fi are finitely generated free S-modules.

Definition 1.4.2. A graded free resolution for a finitely generated graded module A is a free

resolution of A of the type:

0 −→
⊕
j∈H

S(− j)βr, j(A) ξr−→
⊕
j∈H

S(− j)βr−1, j(A) −→ ·· · −→
⊕
j∈H

S(− j)β0, j(A) ξ0−→ A −→ 0,

in which each map ξi is degree preserving. Where r ≤ n, we write Fi =
⊕

j∈H S(− j)βi, j(A)

are finitely generated free S-modules and βi, j(A) is the (i, j)th graded Betti number of A; this

number equals the number of minimal generators of degree j in the ith syzygy module of A.
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Construction

Let A = A0 be a finitely generated graded S-module and {a1,a2 . . .ar} be a set of generators of

A. Then a surjective homomorphism of S-modules exists

ξ0 : F0 =
r⊕

i=1

Sei −→ A,

with

ei −→ ai.

If deg(ai) = γi for i = 1,2, . . .r, then we assign to each ei the degree γi and the map

ξ0 : F0 =
r⊕

i=1

S(−γi)−→ A,

becomes a homogeneous homomorphism. Therefore its kernel is a graded submodule of F0. Let

A1 = Ker(
⊕

j∈H S(− j)β0, j(A) −→ A), where β0, j is the number of generators of A of degree j.

Thus, we obtain the exact sequence:

0 −→ A1 −→
⊕
j∈H

S(− j)β0, j(A) −→ A −→ 0,

Since A1 is finitely generated by Hilbert’s basis theorem for modules, and hence we again find

a surjective S-module homomorphism and by the same method as above
⊕

j∈H S(− j)β1, j(A) −→

A1. Composing this surjective homomorphism with the inclusion map A1 −→
⊕

j∈H S(− j)β0, j(A)),

we get the exact sequence

⊕
j∈H

S(− j)β1, j(A) −→
⊕
j∈H

S(− j)β0, j(A) −→ A −→ 0,

of graded S-modules. Continuing in this manner and composing the homomorphism and the

inclusion map, we obtain a long exact sequence:

0 −→
⊕
j∈H

S(− j)βr, j(A) −→ ·· · −→
⊕
j∈H

S(− j)β0, j(A) −→ A −→ 0,

where r ≤ n.

Example 1.4.3. Let L = (x1x2
2,x2x2

3,x
3
2,x

3
1)⊂ K[x1,x2,x3]. We begin our graded free resolution

of L with

Fo
do−→ L d−→ 0.

The map d is surjective, therefore the generators of L, all of which have degree 3, generate

Ker(d). Since Ker(d) = Im(d0), the generators of L also generate Im(d0). We therefore set
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F0 = S(−3)⊕S(−3)⊕S(−3)⊕S(−3). Denote f1, f2, f3, f4 to be the homogeneous generators

of the S-modules F0. Note that, for all i, deg( fi) = 3. We now define d0 by

f1 7→ x1x2
2, f2 7→ x2x2

3, f3 7→ x3
2, f4 7→ x3

1.

Our resolution therefore begins

F1
d1−→ S4(−3)

(x1x2
2,x2x2

3,x
3
2,x

3
1)−−−−−−−−−→ L −→ 0.

Since Ker(d0) = Im(d1) , we can determine the generating set of Im(d1) by determining the

generating set of Ker(d0). Let α1 f1 +α2 f2 +α3 f3 +α4 f4 ∈ Ker(d0) where, for all i, αi ∈ S. To

determine the generators of Ker(d0), we must solve the equation

α1x1x2
2 +α2x2x2

3 +α3x3
2 +α4x3

1 = 0,

for (α1,α2,α3,α4). The generating solutions to the above equation are σ1 =(−x2,0,x1,0), σ2 =

(x2
1,0,0,−x2

2), σ3 =(0,x2
1,0,−x2

3), σ4 =(−x2
3,x

2
2,0,0). Thus −x2 f1+x1 f3, x2

1 f1−x2
2 f4, x2

1 f1−

x2
3 f4, −x2

3 f1 + x2
2 f2, generate Ker(d0). Their degrees are 4,5,5,5 respectively. We therefore set

F1 = S(−4)⊕S(−5)⊕S(−5)⊕S(−5). Denote g1,g2,g3,g4 to be the homogeneous generators

of the S-modules F1, respectively. Note that deg(g1) = 4 and deg(gi) = 5 for 2 ≤ i ≤ 4. We

define d1 by

g1 7→ −x2 f1 + x1 f3,g2 7→ x2
1 f1 − x2

2 f4,g3 7→ x2
1 f1 − x2

3 f4,g4 7→ −x2
3 f1 + x2

2 f2

with the resulting next step of our resolutions

F2
d2−→ S(−4)⊕S3(−5)



−x2 x2
1 0 −x2

3

0 0 x2
1 x2

2

x1 0 0 0

0 −x2
2 −x2

3 0


−−−−−−−−−−−−−−−−−−−→ S4(−3)

(x1x2
2,x2x2

3,x
3
2,x

3
1)−−−−−−−−−→ L −→ 0.

Recall Ker(d1) = Im(d2). Let β1g1 +β2g2 +β3g3 +β4g4 ∈ Ker(d1) where, for all i, βi ∈ S. To

determine the generators of Ker(d1), we must solve the equation

β1(−x2 f1 + x1 f3)+β2(x2
1 f1 − x2

2 f4)+β3(x2
1 f1 − x2

3 f4)+β4(−x2
3 f1 + x2

2 f2) = 0,

for (β1,β2,β3,β4). The generating solution to the above equation is

η1 = (0,−x2
3,−x2

2,x
2
1).
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Thus −x2
3g2 − x2

2g3 + x2
1g4 generates Ker(d1). The degree of the generator of Ker(d1) is 7. We

therefore set F2 = S(−7). Denote h1 to be the homogeneous generator of S(−7). Note that

deg(h1) = 7. We now define d2 by

h1 7→ −x2
3g2 − x2

2g3 + x2
1g4

with the resulting next step of our resolutions

F3
d3−→ S(−7)



0

−x2
3

−x2
2

x2
1


−−−−−→ S(−4)⊕S3(−5)



−x2 x2
1 0 −x2

3

0 0 x2
1 x2

2

x1 0 0 0

0 −x2
2 −x2

3 0


−−−−−−−−−−−−−−−−−−−→

S4(−3)
(x1x2

2,x2x2
3,x

3
2,x

3
1)−−−−−−−−−→ L −→ 0.

Recall Ker(d2) = Im(d3). Let γ1h1 ∈ Ker(d2), where γ1 ∈ S. To determine the generators of

Ker(d2), we must solve the equation

γ1(−x2
3g2 − x2

2g3 + x2
1g4) = 0.

The generating solution to the above equation is γ1 = 0. Thus 0 generates Ker(d2) and Im(d3).

We conclude by setting F3 = 0. We now obtain our complete graded free resolution of L

0 −→ S(−7)



0

−x2
3

−x2
2

x2
1


−−−−−→ S(−4)⊕S3(−5)



−x2 x2
1 0 −x2

3

0 0 x2
1 x2

2

x1 0 0 0

0 −x2
2 −x2

3 0


−−−−−−−−−−−−−−−−−−−→

S4(−3)
(x1x2

2,x2x2
3,x

3
2,x

3
1)−−−−−−−−−→ L −→ 0.

By construction our resolution is graded and free.

Example 1.4.4. Consider L = (x0x1,x0x2,x0x3)⊂ S = K[x0,x1,x2,x3]. We begin our graded free

resolution of S/L with

Fo
do−→ S/L d−→ 0.
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The map d is surjective and module S/L is a cyclic module, therefore the generator of S/L have

degree 0, generate Ker(d). Since Ker(d) = Im(d0), the generators of module S/L also generate

Im(d0). We therefore set F0 = S. We define d0 a natural projection map. Our resolution therefore

becomes

F1
d1−→ S −→ S/L −→ 0.

Since Ker(d0) = Im(d1), the generators of L also generate Im(d1). Therefore, we set F1 =

S(−2)⊕S(−2)⊕S(−2). Denote f1, f2, f3 to be the homogeneous generators of the S-modules

F1. Note that, for all i, deg( fi) = 2. We now define d1 by

f1 7→ x0x1, f2 7→ x0x2, f3 7→ x0x3.

Our resolution therefore become

F2
d2−→ S3(−2)

(x0x1,x0x2,x0x3)−−−−−−−−−→ S −→ S/L −→ 0.

Since Ker(d1) = Im(d2) , we can determine the generating set of Im(d2) by determining the gen-

erating set of Ker(d1). Let α1 f1 +α2 f2 +α3 f3 ∈ Ker(d1) where, for all i, αi ∈ S. To determine

the generators of Ker(d1), we must solve the equation

α1x0x1 +α2x0x2 +α3x0x3 = 0,

for (α1,α2,α3). The generating solutions to the above equation are σ1 = (−x2,x1,0), σ2 =

(−x3,0,x1), σ3 =(0,−x3,x2). Thus −x2 f1+x1 f2, −x3 f1+x1 f3, −x3 f2+x2 f3, generate Ker(d1).

Their degrees are 3,3,3 respectively. We therefore set F1 = S(−3)⊕ S(−3)⊕ S(−3). De-

note g1,g2,g3 to be the homogeneous generators of the S-modules F2, respectively. Note that

deg(gi) = 3 for 1 ≤ i ≤ 3. We define d2 by

g1 7→ −x2 f1 + x1 f2,g2 7→ −x3 f1 + x1 f3,g3 7→ −x3 f2 + x2 f3

with the resulting next step of our resolutions

F3
d3−→ S3(−3)


−x2 −x3 0

x1 0 −x3

0 x1 x2


−−−−−−−−−−−−−−→ S3(−2)

(x0x1,x0x2,x0x3)−−−−−−−−−→ S −→ S/L −→ 0

Recall Ker(d2)= Im(d3). Let β1g1+β2g2+β3g3 ∈Ker(d2) where, for all i, βi ∈ S. To determine

the generators of Ker(d2), we must solve the equation

β1(−x2 f1 + x1 f2)+β2(−x3 f1 + x1 f3)+β3(−x3 f2 + x2 f3) = 0,

22



CHAPTER 1: PRELIMINARIES

for (β1,β2,β3). The generating solution to the above equation is

η1 = (x3,−x2,x1).

Thus −x3g1 − x2g2 + x1g3 generates Ker(d2). The degree of the generator of Ker(d2) is 4. We

therefore set F3 = S(−4). Denote h1 to be the homogeneous generator of S(−4). Note that

deg(h1) = 4. We now define d3 by

h1 7→ x3g1 − x2g2 + x1g3

with the resulting next step of our resolutions

F4
d4−→ S(−4)


x3

−x2

x1


−−−−−→ S3(−3)


−x2 −x3 0

x1 0 −x3

0 x1 x2


−−−−−−−−−−−−−−→ S3(−2)

(x0x1,x0x2,x0x3)−−−−−−−−−→ S −→ S/L −→ 0

Recall Ker(d3) = Im(d4). Let γ1h1 ∈ Ker(d3), where γ1 ∈ S. To determine the generators of

Ker(d3), we must solve the equation

γ1(x3g1 − x2g2 + x1g3) = 0.

The generating solution to the above equation is γ1 = 0. Thus 0 generates Ker(d3) and Im(d4).

We conclude by setting F4 = 0. We now obtain our complete Z-graded free resolution for S/L

0−→ S(−4)


x3

−x2

x1


−−−−−→ S3(−3)


−x2 −x3 0

x1 0 −x3

0 x1 x2


−−−−−−−−−−−−−−→ S3(−2)

[
x0x1 x0x2 x0x3

]
−−−−−−−−−−−−−−→ S−→ S/L−→ 0.

It is noteworthy that free resolutions of modules, including graded ones, are not unique in gen-

eral, as the case below illustrates.

Example 1.4.5. Let S = K[x1,x2] and let A = S/(x1x2). We have

0 −→ S(−2) x1x2−−→ S −→ A −→ 0,

with

s −→ (x1x2)s
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is a Z-graded free resolution of A, and

0 −→ S(−2)
⊕

S −→ S2 −→ A −→ 0,

with

(s,u)−→ ((x1x2)s,u)

are two Z-graded free resolutions of A.

Restricting to a minimal graded free resolution is necessary for uniqueness (up to isomorphism).

Definition 1.4.6 ([37]). We call graded free resolution of a finitely generated graded S-module

A is minimal if

ξi+1(Fi+1)⊂ (x1,x2, . . .xn)Fi for all i ≥ 0.

The word “minimal” refers to the following two properties:

1. A free resolution is minimal if and only if at each step we make an optimal choice, that

is, we select a minimal system of generators of the kernel in order to construct the next

differential [37, Theorem 3.4].

2. A minimal free resolution of the module is smallest in the sense that it lies (as a direct

summand) inside any other free resolution [37, Theorem 3.5].

The first free resolution in Example 1.4.5, is minimal while the second free resolution of A is

not minimal. The properties of the resolution are closely linked to the properties of module

A. A core area in Commutative Algebra is devoted to describing the properties of minimal

free resolutions and relating them to the structure of the resolved modules. This area has many

relations with and applications in other mathematical fields, especially Algebraic Geometry.

Theorem 1.1 ([37]). (Hilbert’s Syzygy Theorem) Every finitely generated module over a poly-

nomial ring S = K[x1,x2, ...,xn] has a finite minimal free resolution.

There are certain invariants associated with a minimal graded free resolution of finitely gener-

ated module A. The regularity of an module A is given by

reg(A) = max{ j− i|βi, j(A) ̸= 0}.

The projective dimension of module A is

pdim(A) = max{i|βi, j(A) ̸= 0}.
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Both these two invariants measures the size of resolution. The numbers βi, j are named as the

graded Betti numbers of A, denoted by βi, j(A) and is the number of copies of S(− j) occurring

in the free S-module Fi . For a module A generated in degrees ≥ 0 has Betti table of the form

given in Figure 1.6.

0 1 2 . . .

0 β0,0 β1,1 β2,2 . . .

1 β0,1 β1,2 β2,3 . . .

2 β0,2 β1,3 β2,4 . . .

3 β0,3 β1,4 β2,5 . . .
...

...
...

...
...

Figure 1.6: Betti table

Two basic invariants measuring the shape of a Betti table are the regularity and the projective

dimension. The projective dimension pdim(A) is the index of the last non-zero column of the

Betti table, and thus it measures the length of the table. The width of the table is measured by

the index of the last non-zero row of the Betti table, and it is another well-studied numerical

invariant the regularity of A.

Remark 1.4.7 ([73]). Let L be a homogeneous ideal of S, then

reg(S/L) = reg(L)−1,

pdim(S/L) = pdim(L)+1.

Example 1.4.8. Let S = K[x1,x2,x3] and the edge ideal I(P2) = (x1x2,x2x3) associated to the

graph P2. The Z-graded minimal free resolution of I(P2) is as follows

0 −→ S(−3)

.

 x3

−x1


−−−−−−→ S2(−2)

.

(
x1x2 x2x3

)
−−−−−−−−−−→ I(P2)−→ 0.

Then reg(I(P2)) = max{2− 0,3− 1} = 2, and pdim(I(P2)) = max{0,1} = 1. The Betti table

has the form given in Figure 1.7. So, we have β0,2(I(P2)) = 2 and β1,3(I(P2)) = 1.

Now we recall some well known results related to regularity. Moreover, we will also state certain

results of depth and Stanley depth here that relates with the results of regularity.
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0 1

0 − −

1 − −

2 2 1

Figure 1.7: Betti table of I(P2)

For finite simple graph G, Katzman proved in [24, Lemma 2.2] that indmat(G) is a lower bound

for the regularity of S/I(G) and then Hà et al. proved in [31, Corollary 6.9] that regularity of

S/I(G) is equal to indmat(G) if G is a chordal graph. We combine these results as follows:

Lemma 1.4.9. For a finite simple graph G, we have reg(S/I(G)) ≥ indmat(G). Moreover, if

graph G is a chordal, then reg(S/I(G)) = indmat(G).

An interesting property of depth, Stanley depth and regularity is that when we add new variables

to the ring then depth and Stanley depth will also increase [33, Lemma 3.6], while regularity will

remain the same [45, Lemma 3.5]. The following lemma provides a summary of these findings.

Lemma 1.4.10. Let L ⊂ S be a monomial ideal and S̄ = S⊗K K[xn+1,xn+2, . . . ,xn+m] be a poly-

nomial ring in n+m variable. Then depth(S̄/L)= depth(S/L)+m,sdepth(S̄/L)= sdepth(S/L)+

m and reg(S̄/L) = reg(S/L).

It is obvious and well known that depth(S) = sdepth(S) = n and reg(S) = 0.

Lemma 1.4.11 ([11, Theorems 1.3.3]). (Auslander–Buchsbaum formula) If Z is a commuta-

tive Noetherian local ring and A is a non-zero finitely generated Z-module of finite projective

dimension, then

pdim(A)+depth(A) = depth(Z).

Now, the form in which we state the first lemma is as stated in [70, Theorem 4.7]. Part (a) and

(c) of this lemma are immediate consequences of [50, Corollary 20.19 and Proposition 20.20],

whereas part (b) is a consequence of [49, Lemma 2.10].

Lemma 1.4.12. Let L ⊂ S be a monomial ideal and x be a variable of S. Then

(a) reg(S/L) = reg(S/(L : x))+1, if reg(S/(L : x))> reg(S/(L,x)),

(b) reg(S/L) ∈ {reg(S/(L,x))+1, reg(S/(L,x))}, if reg(S/(L : x)) = reg(S/(L,x)),
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(c) reg(S/L) = reg(S/(L,x)) if reg(S/(L : x))< reg(S/(L,x)).

The next result is proved by Kalai et al. [23, Theorem 1.4] for squarefree monomial ideals which

was then generalized by Herzog in [26, Corollary 3.2] for arbitrary monomial ideals.

Lemma 1.4.13. If L and J are monomial ideals of S, then reg(S/(L+ J))≤ reg(S/L)+reg(S/J).

Moreover, if L1 and L2 are two edge ideals minimally generated by disjoint sets of variables

then Woodroofe proved the following lemma.

Lemma 1.4.14 ([35, Lemma 3.2]). Let S1 = K[x1, . . . ,xr] and S2 = K[xr+1, . . . ,xn] be rings of

polynomials and L1 and L2 be edge ideals of S1 and S2, respectively. Then

reg(S/(L1S+L2S)) = reg(S1/L1)+ reg(S2/L2).

Now we recall the results that were proved in [36, Lemma 2.8], [55, Lemma 4], and [34,

Lemma 3.1.1] for depth, Stanley depth and regularity, respectively.

Lemma 1.4.15. Let n ≥ 2. Then

(a) depth(K[V (Pn)]/I(Pn)) = sdepth(K[V (Pn)]/I(Pn)) =
⌈n

3

⌉
,

(b) reg(K[V (Pn)]/I(Pn)) =
⌈n−1

3

⌉
.

The value of regularity of cycle can be derived from the work of Jacques [19, Theorem 7.6.28]

and the required following form is given in [58, Theorem 5.2].

Lemma 1.4.16. If n ≥ 3, then

reg(K[V (Cn)]/I(Cn)) =


⌊n

3

⌋
, if n ≡ 0,1(mod 3);⌊n

3

⌋
+1, if n ≡ 2(mod 3).
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Algebraic invariants of edge ideals of

perfect semiregular trees

We start this chapter by discussing a few terms that will be helpful throughout the subsequent

sections. First section consists of values of the algebraic invariants depth, projective dimension

and Stanley depth of K[V (Tn,k)]/I(Tn,k). In the second section, regularity and Krull dimension

of cyclic module K[V (Tn,k)]/I(Tn,k) are computed. The computations of the said invariants for

K[V (Tn,k)]/I(Tn,k), the module K[V (T ′
n,k)]/I(T ′

n,k) has a significant importance. At the end, we

will discuss the conclusion of our findings.

Let k ≥ 0 and L0,L1, . . . ,Lk, be subsets of V (Tn,k), and for a ∈ {0,1, . . . ,k}, La consists of all

those vertices whose distance from the root vertex of Tn,k is a. Thus |L0| = 1 and for a ∈

{1,2, . . . ,k}, we have |La|= n(n−1)a−1. It is easy to see that L0,L1,L2, . . . ,Lk partition V (Tn,k),

therefore, |V (Tn,k)| = ∑
k
a=0 |La| = n(n−1)k−2

(n−2) . We label the root vertex of Tn,k by x(0)1 , that is,

L0 = {x(0)1 } and for a ≥ 1 the vertices of La are labeled as La = {x(a)i : 1 ≤ i ≤ n(n−1)a−1}, see

Figure 2.1. Using this labeling Tn,0 = ({x(0)1 }, /0) and for k ≥ 1, V (Tn,k) = {x(0)1 }
k
∪

a=1
{x(a)i : 1 ≤

i ≤ n(n−1)a−1}, E(Tn,1) =
n⋃

l=1
{{x(0)1 ,x(1)l }}, and for k ≥ 2, we have

E(Tn,k) =
n⋃

l=1

{{x(0)1 ,x(1)l }}
k−1⋃
a=1

n(n−1)a−1⋃
i=1

(n−1)i⋃
j=(n−1)i−(n−2)

{{x(a)i ,x(a+1)
j }}.

Let A := {x(0)1 }
k
∪

a=1
{x(a)i : 1 ≤ i ≤ (n−1)a} be a subset of V (Tn,k) and H be an induced subgraph

of Tn,k on A. It is easy to see that H = T ′
n,k. Let L′

0,L
′
1,L

′
2, . . . ,L

′
k, be subsets of V (T ′

n,k), such

that for a ∈ {0,1,2, . . . ,k}, L′
a consists of all those vertices whose distance from the root vertex

of T ′
n,k is a. Thus |L′

0| = 1 and for a ∈ {1,2, . . . ,k} we have |L′
a| = (n− 1)a. Since L′

a ⊂ La,
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therefore, L′
0,L

′
1,L

′
2, . . . ,L

′
k partition V (T ′

n,k) and |V (T ′
n,k)|= ∑

k
a=0 |L′

a|=
(n−1)k+1−1

(n−2) . Clearly, x(0)1

is the root vertex of T ′
n,k, that is, L′

0 = {x(0)1 } and for a ≥ 1, L′
a = {x(a)i : 1 ≤ i ≤ (n− 1)a} as

illustrated in Figure 2.1. Thus V (T ′
n,k) =

k
∪

a=0
{x(a)i : 1 ≤ i ≤ (n−1)a}, E(T ′

n,0) = /0 and for k ≥ 1,

E(T ′
n,k) =

k−1⋃
a=0

(n−1)a⋃
i=1

(n−1)i⋃
j=(n−1)i−(n−2)

{{x(a)i ,x(a+1)
j }}.

x(0)1

x(1)1 x(1)2

x(2)1

x(2)2 x(2)3

x(2)4

x(3)1

x(3)2

x(3)3 x(3)4 x(3)5

x(3)6

x(3)7

x(3)8

x(0)1 x(1)1

x(1)2

x(1)3 x(2)1

x(2)2

x(2)3

x(2)4

x(2)5

x(2)6
x(3)1

x(3)2

x(3)3

x(3)4
x(3)5x(3)6

x(3)7

x(3)8

x(3)9

x(3)10

x(3)11

x(3)12

x(4)1

x(4)3

x(4)5

x(4)7

x(4)9

x(4)11

x(4)13

x(4)15

x(4)17

x(4)19

x(4)21 x(4)23

x(4)2

x(4)4

x(4)6

x(4)8

x(4)10x(4)12

x(4)14

x(4)16

x(4)18

x(4)20

x(4)22
x(4)24

Figure 2.1: From left to right perfect 2-ary tree T ′
3,3 and perfect semiregular tree T3,4.

Let Mn,k := K[V (T ′
n,k)]/I(T ′

n,k), and Mm
n,k be a K-algebra which is the tensor product of m copies

of Mn,k over K, that is, Mm
n,k :=

m
⊗K
j=1

Mn,k. In the following remark we address some special cases

of Mm
n,k that will be encountered in the proofs of our main theorems.

Remark 2.0.1 ([80]). We define M0
n,k := K. If we define I(T ′

n,0) = (0), then Mn,0 ∼= K[x(0)1 ] and

Mm
n,0

∼=
m
⊗K
j=1

K[x(0)1 ]. Thus depth(Mm
n,0) = sdepth(Mm

n,0) = m.

Lemma 2.0.2 ([80]). Let n ≥ 3 and k ≥ 1. Then depth(M0
n,k) = sdepth(M0

n,k) = 0, and for

m ≥ 1,

depth(Mm
n,k) = m ·depth(Mn,k),

sdepth(Mm
n,k)≥ m · sdepth(Mn,k)

and

reg(Mm
n,k) = m · reg(Mn,k).

Proof. The proof follows by using Lemma 1.3.11 and Lemma 1.4.14.

29



CHAPTER 2: ALGEBRAIC INVARIANTS OF EDGE IDEALS OF PERFECT SEMIREGULAR

TREES

For a monomial ideal I, supp(I) := {x j : x j|w for some w ∈G(I)}.

Remark 2.0.3 ([80]). Let I ⊂ S be a squarefree monomial ideal minimally generated by mono-

mials of degree at most 2. We associate a graph GI to the ideal I such that V (GI) = supp(I) and

E(GI) = {{xi,x j} : xix j ∈G(I)}. Let xt ∈ S be a variable such that xt /∈ I. Then (I : xt) and (I,xt)

are the monomial ideals of S such that G(I:xt) and G(I,xt) are subgraphs of GI. See for instance

Figure 2.2 and 2.3 as an examples of G
(I:x(0)1 )

, G
(I,x(0)1 )

and G
(I:x(3)1 x(3)2 x(3)3 x(3)4 x(3)5 x(3)6 x(3)7 x(3)8 x(3)9 x(3)10 x(3)11 x(3)12 )

.

It is evident form the Figures 2.2 and 2.3 that we have the following isomorphisms:

K[V (T ′
3,3)]/(I(T

′
3,3) : x(0)1 )∼=M4

3,1 ⊗K K[x(0)1 ],

K[V (T ′
3,3)]/(I(T

′
3,3),x

(0)
1 )∼=M2

3,2,

and

K[V (T3,4)]/
(
I(T3,4) : x(3)1 x(3)2 x(3)3 x(3)4 x(3)5 x(3)6 x(3)7 x(3)8 x(3)9 x(3)10 x(3)11 x(3)12

)∼=K[V (T3,1)]/I(T3,1)⊗K K[L3].

x(1)1 x(1)2

x(2)1

x(2)2 x(2)3

x(2)4

x(3)1

x(3)2

x(3)3 x(3)4 x(3)5

x(3)6

x(3)7

x(3)8

x(0)1

x(1)1 x(1)2

x(2)1

x(2)2 x(2)3

x(2)4

x(3)1

x(3)2

x(3)3 x(3)4 x(3)5

x(3)6

x(3)7

x(3)8

Figure 2.2: From left to right G
(I(T ′

3,3):x
(0)
1 )

and G
(I(T ′

3,3),x
(0)
1 )

.
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x(0)1 x(1)1

x(1)2

x(1)3 x(2)1

x(2)2

x(2)3

x(2)4

x(2)5

x(2)6

x(4)1

x(4)3

x(4)5

x(4)7

x(4)9

x(4)11

x(4)13

x(4)15

x(4)17

x(4)19

x(4)21 x(4)23

x(4)2

x(4)4

x(4)6

x(4)8

x(4)10x(4)12

x(4)14

x(4)16

x(4)18

x(4)20

x(4)22
x(4)24

Figure 2.3: G
(I(T3,4) :x(3)1 x(3)2 x(3)3 x(3)4 x(3)5 x(3)6 x(3)7 x(3)8 x(3)9 x(3)10 x(3)11 x(3)12 )

.

2.1 Depth, Stanley depth and projective dimension

In this section, we find the depth, projective dimension and Stanley depth of the cyclic mod-

ule Mn,k and using these results we obtain values for the said invariants of the cyclic module

K[V (Tn,k)]/I(Tn,k).

Lemma 2.1.1 ([80]). Let n ≥ 3 and k ≥ 2. If k = 2, then depth(Mn,2),sdepth(Mn,2) ≤ n− 1,

and for k ≥ 3,

depth(Mn,k)≤ (n−1)k−1 +depth(Mn,k−3),

and

sdepth(Mn,k)≤ (n−1)k−1 + sdepth(Mn,k−3).

Proof. Let S = K[V (T ′
n,k)] and u =: x(k−1)

1 x(k−1)
2 · · ·x(k−1)

(n−1)k−1 /∈ I(T ′
n,k). We have the subsequent

K-algebra isomorphisms, S/(I(T ′
n,2) : u)∼= K[L′

1], and for k ≥ 3,

S/(I(T ′
n,k) : u)∼= K[L′

k−1]⊗KMn,k−3. (2.1.1)

We first present the depth result. By Lemma 1.3.12, we have depth(Mn,k) ≤ depth(S/(I(T ′
n,k) :

u)). Here depth(S/(I(T ′
n,2) : u)) = depth(K[L′

1]) = |L′
1| = n− 1 and if k ≥ 3 then by Lemma

1.4.10 and Eq. 2.1.1, depth(S/(I(T ′
n,k) : u))= |L′

k−1|+depth(Mn,k−3)= (n−1)k−1+depth(Mn,k−3).

Thus we get the required result for depth. For Stanley depth, by Lemma 1.3.12, sdepth(Mn,k)≤
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sdepth(S/(I(T ′
n,k) : u)). By using the isomorphisms, sdepth(S/(I(T ′

n,2) : u)) = sdepth(K[L′
1]) =

|L′
1| = n− 1 and if k ≥ 3, by applying Lemma 1.4.10 on Eq. 2.1.1, we get sdepth(S/(I(T ′

n,k) :

u)) = |L′
k−1|+ sdepth(Mn,k−3) = (n−1)k−1 + sdepth(Mn,k−3). This completes the proof.

Proposition 2.1.2 ([80]). Let n ≥ 3 and k ≥ 1. Then

depth(Mn,k) = sdepth(Mn,k) =



(n−1)2((n−1)k−1)
(n−1)3−1 +1, i f k ≡ 0(mod 3);

(n−1)k+2−1
(n−1)3−1 , i f k ≡ 1(mod 3);

(n−1)k+2−n+1
(n−1)3−1 , i f k ≡ 2(mod 3).

Proof. Firstly, we show the result for depth. If k = 1, then Mn,1 ∼= K[V (Sn)]/I(Sn), by Lemma

1.3.16 we have depth(Mn,1) = 1, as required. Let k ≥ 2 and S = K[V (T ′
n,k)]. We have the fol-

lowing short exact sequence

0 −→ S/(I(T ′
n,k) : x(0)1 )

.x(0)1−−→Mn,k −→ S/(I(T ′
n,k),x

(0)
1 )−→ 0,

It is simple to observe that S/(I(T ′
n,k) : x(0)1 )∼=M(n−1)2

n,k−2 ⊗K K[x(0)1 ] and S/(I(T ′
n,k),x

(0)
1 )∼=Mn−1

n,k−1.

By Lemma 1.3.11 and Lemma 2.0.2, we have

depth(S/(I(T ′
n,k) : x(0)1 )) = (n−1)2 depth(Mn,k−2)+1,

depth(S/(I(T ′
n,k),x

(0)
1 )) = (n−1)depth(Mn,k−1).

Thus by Lemma 1.3.10,

depth(Mn,k)≥ min{(n−1)2 depth(Mn,k−2)+1, (n−1)depth(Mn,k−1)}. (2.1.2)

If k = 2, then by Eq. 2.1.2

depth(Mn,2)≥ min{(n−1)2 depth(Mn,0)+1, (n−1)depth(Mn,1)}

= min{(n−1)2 +1,(n−1)}

= n−1,

and by Lemma 2.1.1, depth(Mn,2)≤ n−1. Thus depth(Mn,2) = n−1. This prove the result for

k = 2.

Let k ≥ 3. For 1≤ i≤ n−1, let Ai := (x(1)1 ,x(1)2 , . . . ,x(1)i ) and A0 := (0) be prime ideals. Consider

the family of following short exact sequences:

0 −→ S/((I(T ′
n,k),Ai−1) : x(1)i )

.x(1)i−−→ S/(I(T ′
n,k),Ai−1)−→ S/(I(T ′

n,k),Ai)−→ 0,
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applying Lemma 1.3.10 on this family of short exact sequences we have the following inequality

depth(Mn,k) = depth(S/(I(T ′
n,k),A0))≥

min
{

min{depth(S/((I(T ′
n,k),Ai−1) : x(1)i )) : i = 1,2, . . . ,n−1},depth(S/(I(T ′

n,k),An−1))
}
.

(2.1.3)

The K-algebras isomorphism:

S/((I(T ′
n,k),Ai−1) : x(1)i )∼=M(i−1)(n−1)

n,k−2 ⊗KMn−1−i
n,k−1 ⊗KM

(n−1)2

n,k−3 ⊗KK[x(1)i ],

S/(I(T ′
n,k),An−1)∼=M(n−1)2

n,k−2 ⊗K K[x(0)1 ].

By applying Lemma 1.3.11

depth(S/((I(T ′
n,k),Ai−1) : x(1)i ))

= depth(M(i−1)(n−1)
n,k−2 )+depth(Mn−1−i

n,k−1 )+depth(M(n−1)2

n,k−3 )+depth(K[x(1)i ])

and

depth(S/(I(T ′
n,k),An−1)) = depth

(
M(n−1)2

n,k−2

)
+depth(K[x(0)1 ]).

By Lemma 2.0.2

depth(S/((I(T ′
n,k),Ai−1) : x(1)i )) = (i−1)(n−1)depth(Mn,k−2)+(n−1− i)depth(Mn,k−1)

+(n−1)2 depth(Mn,k−3)+1

and

depth(S/(I(T ′
n,k),An−1)) = (n−1)2 depth(Mn,k−2)+1.

Now by Eq. 2.1.3 we get

depth(Mn,k)≥ min
{ n−1

min
i=1

{
(i−1)(n−1)depth(Mn,k−2)+(n−1− i)depth(Mn,k−1)

+(n−1)2 depth(Mn,k−3)+1
}
,(n−1)2 depth(Mn,k−2)+1

}
.

(2.1.4)

If k = 3, then

depth(Mn,3)≥ min
{ n−1

min
i=1

{
(i−1)(n−1)depth(Mn,1)+(n−1− i)depth(Mn,2)

+(n−1)2 depth(Mn,0)+1
}
,(n−1)2 depth(Mn,1)+1

}
= min

{ n−1
min
i=1

{
(i−1)(n−1)+(n−1− i)(n−1)+(n−1)2 +1

}
,(n−1)2 +1

}
.

(2.1.5)
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Since

(i−1)(n−1)+(n−1− i)(n−1)+(n−1)2 +1 = (n−1)(2n−3)+1

= (n−1)2 +1+
(
(n−1)2 − (n−1)

)
,

for all i ∈ {1,2, . . . ,n−1}. Thus by Eq. 2.1.5 depth(Mn,k)≥ (n−1)2 +1. By Lemma 2.1.1 we

have depth(Mn,k)≤ (n−1)2+1, we get depth(Mn,k) = (n−1)2+1, as required. Now let k ≥ 4,

we will use mathematical induction on k to get the required result. We consider following cases:

Case 1 Let k ≡ 1(mod3). Recall Eq. 2.1.2

depth(Mn,k)≥ min{(n−1)2 depth(Mn,k−2)+1, (n−1)depth(Mn,k−1)}.

Since k ≡ 1(mod3) so k− 1 ≡ 0(mod 3) and k− 2 ≡ 2(mod 3) thus by induction on k,

we get

(n−1)2 depth(Mn,k−2)+1 = (n−1)2
(
(n−1)(k−2)+2 −n+1

(n−1)3 −1

)
+1

=
(n−1)k+2 −1
(n−1)3 −1

,

and

(n−1)depth(Mn,k−1) = (n−1)
(
(n−1)2((n−1)k−1 −1)

(n−1)3 −1
+1

)
=

(n−1)k+2 +n4 −5n3 +9n2 −8n+3
(n−1)3 −1

=
(n−1)k+2 −1
(n−1)3 −1

+
n4 −5n3 +9n2 −8n+4

(n−1)3 −1
.

Note that n4−5n3+9n2−8n+4
(n−1)3−1 > 0 for all n ≥ 3 by using MATLAB ®. Thus depth(Mn,k) ≥

(n−1)k+2−1
(n−1)3−1 . By Lemma 2.1.1, depth(Mn,k) ≤ (n− 1)k−1 + depth(Mn,k−3), since k− 3 ≡

1(mod3), thus by induction on k, we have depth(Mn,k) ≤ (n−1)k−1−1
(n−1)3−1 + (n − 1)k−1 =

(n−1)k+2−1
(n−1)3−1 . Hence depth(Mn,k) =

(n−1)k+2−1
(n−1)3−1 , as required.

Case 2 Let k ≡ 2(mod3). In this case k−1≡ 1(mod 3) and k−2≡ 0(mod 3) thus by induction

on k, we have

(n−1)2 depth(Mn,k−2)+1 = (n−1)2
(
(n−1)2((n−1)k−2 −1)

(n−1)3 −1
+1

)
+1

=
(n−1)k+2 +n5 −6n4 +15n3 −20n2 +14n−5

(n−1)3 −1

=
(n−1)k+2 −n+1

(n−1)3 −1
+

n5 −6n4 +15n3 −20n2 +15n−6
(n−1)3 −1

,
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and

(n−1)depth(Mn,k−1) = (n−1)
(
(n−1)(k−1)+2 −1

(n−1)3 −1

)
=

(n−1)k+2 −n+1
(n−1)3 −1

.

Note that n5−6n4+15n3−20n2+15n−6
(n−1)3−1 > 0 for all n ≥ 3 by using MATLAB ®. Thus by using

Eq. 2.1.2, we have depth(Mn,k) ≥ (n−1)k+2−n+1
(n−1)3−1 . For the other inequality we use again

Lemma 2.1.1 depth(Mn,k) ≤ (n−1)k−1 +depth(Mn,k−3). Since k−3 ≡ 2(mod3), so by

using induction on k, depth(Mn,k) ≤ (n−1)k−1 + (n−1)(k−3)+2−n+1
(n−1)3−1 = (n−1)k+2−n+1

(n−1)3−1 . Hence

depth(Mn,k) =
(n−1)k+2−n+1

(n−1)3−1 .

Case 3 Let k ≡ 0(mod3). Recall Eq. 2.1.4

depth(Mn,k)≥ min
{ n−1

min
i=1

{
(i−1)(n−1)depth(Mn,k−2)+(n−1− i)depth(Mn,k−1)

+(n−1)2 depth(Mn,k−3)+1
}
,(n−1)2 depth(Mn,k−2)+1

}
.

Since k−3 ≡ 0(mod 3), k−2 ≡ 1(mod 3) and k−1 ≡ 2(mod 3) and i ∈ {1,2, . . . ,n−1}.

by induction on k, we have

(i−1)(n−1)depth(Mn,k−2)+(n−1− i)depth(Mn,k−1)+(n−1)2 depth(Mn,k−3)+1

= (i−1)(n−1)
(
(n−1)(k−2)+2 −1

(n−1)3 −1

)
+(n−1− i)

(
(n−1)(k−1)+2 −n+1

(n−1)3 −1

)
+(n−1)2

(
(n−1)2((n−1)k−3 −1)

(n−1)3 −1
+1

)
+1

=
(n−1)k+2 +n5 −6n4 +15n3 −21n2 +17n−7

(n−1)3 −1

=
(n−1)2((n−1)k −1)

(n−1)3 −1
+1+

n5 −6n4 +14n3 −17n2 +12n−4
(n−1)3 −1

and

(n−1)2 depth(Mn,k−2)+1 = (n−1)2
(
(n−1)(k−2)+2 −1

(n−1)3 −1

)
+1

=
(n−1)2((n−1)k −1)

(n−1)3 −1
+1.

Note that n5−6n4+14n3−17n2+12n−4
(n−1)3−1 > 0, for all n ≥ 3 by using MATLAB ®. Thus by Eq.

2.1.4 we have depth(Mn,k)≥ (n−1)2((n−1)k−1)
(n−1)3−1 +1. Again by Lemma 2.1.1, depth(Mn,k)≤

(n−1)k−1 +Mn,k−3 = (n−1)k−1 + (n−1)2((n−1)k−3−1)
(n−1)3−1 +1 = (n−1)2((n−1)k−1)

(n−1)3−1 +1.

This ends the proof. Proof for Stanley depth is similar.
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Corollary 2.1.3 ([80]). Let n ≥ 3 and k ≥ 1. Then

pdim(Mn,k) =



(n−1)k+1−1
n−2 − (n−1)2((n−1)k−1)

(n−1)3−1 −1, i f k ≡ 0(mod 3);

(n−1)k+1−1
n−2 − (n−1)k+2−1

(n−1)3−1 , i f k ≡ 1(mod 3);

(n−1)k+1−1
n−2 − (n−1)k+2−n+1

(n−1)3−1 , i f k ≡ 2(mod 3).

Proof. The result obtain by using Auslander–Buchsbaum formula [11, Theorems 1.3.3] and

Proposition 2.1.2.

Example 2.1.4. For k ≥ 1, let T ′
3,k be the graph as given in Figure 2.4.

Figure 2.4: T ′
3,k

Then,

(a) depth(M3,k) = sdepth(M3,k) =



2k+2+3
7 , i f k ≡ 0(mod 3);

2k+2−1
7 , i f k ≡ 1(mod 3);

2k+2−2
7 , i f k ≡ 2(mod 3).

(b) pdim(M3,k) =



10(2k−1)
7 , i f k ≡ 0(mod 3);

2(5·2k−3)
7 , i f k ≡ 1(mod 3);

5(2k+1−1)
7 , i f k ≡ 2(mod 3).
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Example 2.1.5. For k ≥ 1, let T ′
4,k be the graph as given in Figure 2.5.

Figure 2.5: T ′
4,k

Then,

(a) depth(M4,k) = sdepth(M4,k) =



3k+2+17
26 , i f k ≡ 0(mod 3);

3k+2−1
26 , i f k ≡ 1(mod 3);

3k+2−3
26 , i f k ≡ 2(mod 3).

(b) pdim(M4,k) =



15(3k−1)
13 , i f k ≡ 0(mod 3);

3(5·3k−2)
13 , i f k ≡ 1(mod 3);

5(3k+1−1)
13 , i f k ≡ 2(mod 3).

Remark 2.1.6 ([80]). Let n ≥ 3, we define I(Tn,0) = (0), thus K[V (Tn,0)]/I(Tn,0)∼= K[x(0)1 ]. We

have depth(K[V (Tn,0)]/I(Tn,0)) = sdepth(K[V (Tn,0)]/I(Tn,0)) = 1.

Lemma 2.1.7 ([80]). Let n ≥ 3, k ≥ 2 and R = K[V (Tn,k)]. If k = 2, then

depth(R/I(Tn,2)),sdepth(R/I(Tn,2))≤ n.

If k ≥ 3, then

depth(R/I(Tn,k))≤ n(n−1)k−2 +depth(K[V (Tn,k−3)]/I(Tn,k−3)),

and

sdepth(R/I(Tn,k))≤ n(n−1)k−2 + sdepth(K[V (Tn,k−3)]/I(Tn,k−3)).
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Proof. For u := x(k−1)
1 x(k−1)

2 · · ·x(k−1)
n(n−1)k−2 /∈ I(Tn,k), we have K-algebra isomorphisms, R/(I(Tn,2) :

u)∼= K[L1], and for k ≥ 3,

R/(I(Tn,k) : u)∼= K[Lk−1]⊗KK[V (Tn,k−3)]/I(Tn,k−3). (2.1.6)

To prove the result for depth, we use Lemma 1.3.12, that is depth(R/I(Tn,k))≤ depth(R/(I(Tn,k) :

u)). Here we have depth(R/(I(Tn,2) : u)) = depth(K[L1]) = |L1|= n and if k ≥ 3, then by Lemma

1.4.10 and Eq. 2.1.6, depth(R/(I(Tn,k) : u)) = |Lk−1|+ depth(K[V (Tn,k−3)]/I(Tn,k−3)) = n(n−

1)k−2 + depth(K[V (Tn,k−3)]/I(Tn,k−3)). Now for Stanley depth, we have sdepth(R/(I(Tn,2) :

u)) = sdepth(K[L1]) = |L1| = n and if k ≥ 3, then by applying Lemma 1.4.10 on Eq. 2.1.6,

we get

sdepth(R/(I(Tn,k) : u)) = |Lk−1|+ sdepth(K[V (Tn,k−3)]/I(Tn,k−3))

= n(n−1)k−2 + sdepth(K[V (Tn,k−3)]/I(Tn,k−3)).

This ends the proof.

Theorem 2.1.8 ([80]). Let n ≥ 3 and k ≥ 1. If R = K[V (Tn,k)], then

depth(R/I(Tn,k)) = sdepth(R/I(Tn,k)) =



n(n−1)k+1+n3−4n2+4n−2
(n−1)3−1 , i f k ≡ 0(mod 3);

n(n−1)k+1−n2+2n−2
(n−1)3−1 , i f k ≡ 1(mod 3);

n(n−1)k+1−n
(n−1)3−1 , i f k ≡ 2(mod 3).

Proof. First we provide the result for the computation of depth. If k = 1, then Tn,1 is (n+1)-star

and by Lemma 1.3.16 we have depth(R/I(Tn,1)) = 1 . Let k ≥ 2. We have short exact sequence

of the form:

0 −→ R/(I(Tn,k) : x(0)1 )
.x(0)1−−→ R/I(Tn,k)−→ R/(I(Tn,k),x

(0)
1 )−→ 0.

Since

R/(I(Tn,k) : x(0)1 )∼=Mn(n−1)
n,k−2 ⊗KK[x(0)1 ], (2.1.7)

and

R/(I(Tn,k),x
(0)
1 )∼=Mn

n,k−1. (2.1.8)

By Lemmas 1.3.11 and 2.0.2,

depth(R/(I(Tn,k) : x(0)1 )) = n(n−1)depth(Mn,k−2)+1,
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and

depth(R/(I(Tn,k),x
(0)
1 )) = ndepth(Mn,k−1).

Therefore by Lemma 1.3.10,

depth(R/I(Tn,k))≥ min{n(n−1)depth(Mn,k−2)+1,ndepth(Mn,k−1)}. (2.1.9)

If k = 2 then by using Eq. 2.1.9 and Proposition 2.1.2

depth(R/I(Tn,2))≥ min{n(n−1)depth(Mn,0)+1,ndepth(Mn,1)}= min{n(n−1)+1,n}= n,

and by Lemma 2.1.7, depth(R/I(Tn,2)) ≤ n. Thus depth(R/I(Tn,2)) = n. This proves the result

for k = 2. Let k ≥ 3. Consider the short exact sequence

0 −→ R/(I(Tn,k) : x(1)1 )
.x(1)1−−→ R/I(Tn,k)−→ R/(I(Tn,k),x

(1)
1 )−→ 0.

We have

R/(I(Tn,k) : x(1)1 )∼=M(n−1)2

n,k−3 ⊗KM
(n−1)
n,k−1⊗KK[x(1)1 ],

R/(I(Tn,k),x
(1)
1 )∼=Mn,k⊗KM

(n−1)
n,k−2.

By using Lemmas 1.3.11 and 2.0.2,

depth(R/(I(Tn,k) : x(1)1 )) = (n−1)2 depth(Mn,k−3)+(n−1)depth(Mn,k−1)+1,

and

depth(R/(I(Tn,k),x
(1)
1 )) = depth(Mn,k)+(n−1)depth(Mn,k−2).

Thus by Lemma 1.3.10,

depth(R/I(Tn,k))≥ min
{
(n−1)2 depth(Mn,k−3)+(n−1)depth(Mn,k−1)+1,

depth(Mn,k)+(n−1)depth(Mn,k−2)
}
.

(2.1.10)

If k = 3 then by Eq. 2.1.10 and Proposition 2.1.2

depth(R/I(Tn,k))≥ min
{
(n−1)2 depth(Mn,0)+(n−1)depth(Mn,2)+1,

depth(Mn,3)+(n−1)depth(Mn,1)
}

= min{(n−1)2 +(n−1)2 +1,(n−1)2 +1+n−1}

= min{(n−1)2 +n+(n−1)2 −n+1,(n−1)2 +n}

= (n−1)2 +n.

and by using Lemma 2.1.7 we have depth(R/I(Tn,k)) ≤ n(n − 1) + 1 = (n − 1)2 + n. Thus

depth(R/I(Tn,k)) = (n−1)2 +n, as required. Now let k ≥ 4. We consider the following cases:
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Case 1 Let k ≡ 1(mod 3). Recall Eq. 2.1.9

depth(R/I(Tn,k))≥ min{n(n−1)depth(Mn,k−2)+1,ndepth(Mn,k−1)}.

Since k ≡ 1(mod 3) so k−1≡ 0(mod 3) and k−2≡ 2(mod 3), thus by using Proposition

2.1.2, we have

n(n−1)depth(Mn,k−2)+1 = n(n−1)
(
(n−1)(k−2)+2 −n+1

(n−1)3 −1

)
+1

=
n(n−1)k+1 −n2 +2n−2

(n−1)3 −1
,

and

ndepth(Mn,k−1) = n
(
(n−1)2((n−1)k−1 −1)

(n−1)3 −1
+1

)
=

n(n−1)k+1 +n4 −4n3 +5n2 −3n
(n−1)3 −1

=
n(n−1)k+1 −n2 +2n−2

(n−1)3 −1
+

n4 −4n3 +6n2 −5n+2
(n−1)3 −1

.

Note that n4−4n3+6n2−5n+2
(n−1)3−1 > 0, for all n≥ 3 by using MATLAB ®. Thus depth(R/I(Tn,k))≥

n(n−1)k+1−n2+2n−2
(n−1)3−1 . By using Lemma 2.1.7, we have depth(R/I(Tn,k)) ≤ n(n − 1)k−2 +

depth(K[V (Tn,k−3)]/I(Tn,k−3)), since k−3 ≡ 1(mod 3), thus by induction on k, we have

depth(R/I(Tn,k))≤ n(n−1)k−2+
n(n−1)(k−3)+1 −n2 +2n−2

(n−1)3 −1
=

n(n−1)k+1 −n2 +2n−2
(n−1)3 −1

.

Hence we get depth(R/I(Tn,k)) =
n(n−1)k+1−n2+2n−2

(n−1)3−1 , as required.

Case 2 Let k ≡ 2(mod 3). In this case k−2 ≡ 0(mod 3), k−1 ≡ 1(mod 3), by using Proposi-

tion 2.1.2, we have

n(n−1)depth(Mn,k−2)+1 = n(n−1)
(
(n−1)2((n−1)k−2 −1)

(n−1)3 −1
+1

)
+1

=
n(n−1)k+1 +n5 −5n4 +10n3 −11n2 +6n−2

(n−1)3 −1

=
n(n−1)k+1 −n
(n−1)3 −1

+
n5 −5n4 +10n3 −11n2 +7n−2

(n−1)3 −1
,

and

ndepth(Mn,k−1) = n
(
(n−1)(k−1)+2 −1

(n−1)3 −1

)
=

n(n−1)k+1 −n
(n−1)3 −1

.

Note that n5−5n4+10n3−11n2+7n−2
(n−1)3−1 > 0, for all n ≥ 3 by using MATLAB ®. By Eq. 2.1.9,

depth(R/I(Tn,k)) ≥ n(n−1)k+1−n
(n−1)3−1 . For the other inequality, we again use Lemma 2.1.7,

that is depth(R/I(Tn,k)) ≤ n(n − 1)k−2 + depth(K[V (Tn,k−3)]/I(Tn,k−3)), since k − 3 ≡

2(mod 3), thus by induction on k, we have depth(R/I(Tn,k)) ≤ n(n−1)(k−3)+1−n
(n−1)3−1 + n(n −

1)k−2 = n(n−1)k+1−n
(n−1)3−1 . Hence depth(R/I(Tn,k)) =

n(n−1)k+1−n
(n−1)3−1 .
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Case 3 Let k ≡ 0(mod 3). Recall Eq. 2.1.10

depth(R/I(Tn,k))≥ min
{
(n−1)2 depth(Mn,k−3)+(n−1)depth(Mn,k−1)+1,

depth(Mn,k)+(n−1)depth(Mn,k−2)
}
.

Since k ≡ 0(mod 3) so k− 3 ≡ 0(mod 3), k− 1 ≡ 2(mod 3) and k− 2 ≡ 1(mod 3). By

using Proposition 2.1.2, we get

(n−1)2 depth(Mn,k−3)+(n−1)depth(Mn,k−1)+1

= (n−1)2
(
(n−1)2((n−1)k−3 −1)

(n−1)3 −1
+1

)
+(n−1)

(
(n−1)(k−1)+2 −n+1

(n−1)3 −1

)
+1

=
n(n−1)k+1 +n5 −6n4 +15n3 −21n2 +16n−6

(n−1)3 −1

=
n(n−1)k+1 +n3 −4n2 +4n−2

(n−1)3 −1
+

n5 −6n4 +14n3 −17n2 +12n−4
(n−1)3 −1

and

depth(Mn,k)+(n−1)depth(Mn,k−2) =
(n−1)2((n−1)k −1)

(n−1)3 −1
+1

+(n−1)
(
(n−1)(k−2)+2 −1

(n−1)3 −1

)
=

n(n−1)k+1 +n3 −4n2 +4n−2
(n−1)3 −1

.

Note that n5−6n4+14n3−17n2+12n−4
(n−1)3−1 > 0, for all n ≥ 3 by using MATLAB ®. By Eq. 2.1.10,

depth(R/I(Tn,k)) ≥ n(n−1)k+1+n3−4n2+4n−2
(n−1)3−1 . Again by Lemma 2.1.7 and induction on k,

depth(R/I(Tn,k))≤ n(n−1)k−2+depth(K[V (Tn,k−3)]/I(Tn,k−3))=
n(n−1)(k−3)+1+n3−4n2+4n−2

(n−1)3−1 +

n(n−1)k−2 = n(n−1)k+1+n3−4n2+4n−2
(n−1)3−1 . This completes the proof for depth. Proof for Stan-

ley depth is similar.

Corollary 2.1.9 ([80]). Let n ≥ 3 and k ≥ 1. If R := K[V (Tn,k)], then

pdim(R/I(Tn,k)) =



n(n−1)k−2
n−2 − n(n−1)k+1+n3−4n2+4n−2

(n−1)3−1 , i f k ≡ 0(mod 3);

n(n−1)k−2
n−2 − n(n−1)k+1−n2+2n−2

(n−1)3−1 , i f k ≡ 1(mod 3);

n(n−1)k−2
n−2 − n(n−1)k+1−n

(n−1)3−1 , i f k ≡ 2(mod 3).

Proof. By Auslander–Buchsbaum formula [11, Theorems 1.3.3] and Theorem 2.1.8, the re-

quired result follows.
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Example 2.1.10. Let k ≥ 1, and T3,k be a graph as given in Figure 2.6. If R = K[V (T3,k)], then

Figure 2.6: T3,k

(a) depth(R/I(T3,k)) = sdepth(R/I(T3,k)) =



3·2k+1−1
7 , i f k ≡ 0(mod 3);

3·2k+1−5
7 , i f k ≡ 1(mod 3);

3·2k+1−3
7 , i f k ≡ 2(mod 3).

(b) pdim(R/I(T3,k)) =



15·2k−13
7 , i f k ≡ 0(mod 3);

3(5.2k−3)
7 , i f k ≡ 1(mod 3);

15.2k−11
7 , i f k ≡ 2(mod 3).

Example 2.1.11. Let k ≥ 1, and T4,k be a graph as given in Figure 2.7. If R = K[V (T4,k)], then
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Figure 2.7: T4,k

(a) depth(R/I(T4,k)) = sdepth(R/I(T4,k)) =



2.3k+1+7
13 , i f k ≡ 0(mod 3);

2.3k+1−5
13 , i f k ≡ 1(mod 3);

2.3k+1−2
13 , i f k ≡ 2(mod 3).

(b) pdim(R/I(T4,k)) =



20(3k−1)
13 , i f k ≡ 0(mod 3);

4(5.3k−2)
13 , i f k ≡ 1(mod 3);

20.3k−11
13 , i f k ≡ 2(mod 3).

2.2 Regularity and krull dimension

In this section, we first compute regularity for cyclic module Mn,k, after that we find out the regu-

larity of K[V (Tn,k)]/I(Tn,k). At the end, we compute the Krull dimension for K[V (Tn,k)]/I(Tn,k).

Proposition 2.2.1 ([80]). Let n ≥ 3 and k ≥ 1. Then
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reg(Mn,k) =



(n−1)k+2−(n−1)2

(n−1)3−1 , i f k ≡ 0(mod 3);

(n−1)k+2−1
(n−1)3−1 , i f k ≡ 1(mod 3);

(n−1)k+2−n+1
(n−1)3−1 , i f k ≡ 2(mod 3).

Proof. We will provide this result by induction on k. If k = 1, then clearly indmat(T ′
n,1) =

1, therefore by Lemma 1.4.9, we get reg(Mn,1) = 1. Let k ≥ 2 and S = K[V (T ′
n,k)]. As we

have noticed in Proposition 2.1.2, S/(I(T ′
n,k) : x(0)1 )∼=M(n−1)2

n,k−2 ⊗K K[x(0)1 ] and S/(I(T ′
n,k),x

(0)
1 )∼=

Mn−1
n,k−1. By Lemmas 1.4.10 and 2.0.2 , we have

reg(S/(I(T ′
n,k) : x(0)1 )) = reg(M(n−1)2

n,k−2 ⊗K K[x(0)1 ]) = reg(M(n−1)2

n,k−2 ) = (n−1)2 reg(Mn,k−2),

(2.2.1)

reg(S/(I(T ′
n,k),x

(0)
1 )) = reg(Mn−1

n,k−1) = (n−1) reg(Mn,k−1). (2.2.2)

If k = 2, reg(S/(I(T ′
n,2) : x(0)1 )) = reg(K[x(0)1 ,x(2)1 , . . . ,x(2)

(n−1)2 ]) = 0 and reg(S/(I(T ′
n,2),x

(0)
1 )) =

(n− 1) reg(Mn,1) = n− 1. Hence by Lemma 1.4.12(c), we have reg(Mn,2) = n− 1. For k = 3,

we have reg(S/(I(T ′
n,3) : x(0)1 )) = (n−1)2 reg(Mn,1) = (n−1)2 and reg(S/(I(T ′

n,3),x
(0)
1 )) = (n−

1) reg(Mn,2) = (n−1)(n−1) = (n−1)2. Therefore, by Lemma 1.4.12(b), we have reg(Mn,3) ∈

{(n−1)2 +1,(n−1)2}. Let us consider the following subsets of E(T ′
n,3).

F1 =
n−1⋃
j=1

{{x(2)1 ,x(3)j }},

F2 =

2(n−1)⋃
j=(n−1)+1

{{x(2)2 ,x(3)j }},

...

F(n−1)2 =

(n−1)3⋃
j=(n−2)(n−1)2+(n−2)(n−1)+1

{{x(2)
(n−1)2 ,x

(3)
j }}.

Clearly, |Fi|= n−1, for all i. Also each edge of Fi for all i has one vertex in L′
2 and other vertex

in L′
3. Let F ′ := {e1,e2, . . . ,e(n−1)2 : ei ∈ Fi}, it is easy to see that F ′ is an induced matching and

|F ′| = (n− 1)2. If F ′′ is any induced matching such that it contains an edge between vertices

of L′
1 and L′

2 or an edge between vertices of L′
0 and L′

1, then F ′′ cannot take any edge from

F1, . . . ,Fn−1. Since, |L′
3| = (n− 1)3, |L′

2| = (n− 1)2 and |L′
1| = n− 1, thus we get |F ′′| < |F ′|.
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Hence F ′ is a maximal induced matching and by Lemma 1.4.9, we have reg(Mn,3) = (n−1)2.

Thus result follows for k = 3. Let k ≥ 4. We consider three cases:

Case 1 Let k ≡ 1(mod 3). In this case k− 2 ≡ 2(mod 3) and k− 1 ≡ 0(mod 3), by induction

on k and using Eqs. 2.2.1 and 2.2.2 we get

reg(S/(I(T ′
n,k) : x(0)1 )) = (n−1)2

(
(n−1)(k−2)+2 −n+1

(n−1)3 −1

)
=

(n−1)k+2 − (n−1)3

(n−1)3 −1
,

reg(S/(I(T ′
n,k),x

(0)
1 )) = (n−1)

(
(n−1)(k−1)+2 − (n−1)2

(n−1)3 −1

)
=

(n−1)k+2 − (n−1)3

(n−1)3 −1
.

Since reg(S/(I(T ′
n,k) : x(0)1 ))= reg(S/(I(T ′

n,k),x
(0)
1 )), by Lemma 1.4.12(b), we get reg(Mn,k)≤

reg(S/(I(T ′
n,k),x

(0)
1 ))+1 = (n−1)k+2−1

(n−1)3−1 . For the other inequality, let us define

F(k−1,k) =

(n−1)k−1⋃
i=1

{{x(k−1)
i ,x(k)(n−1)i}}, (2.2.3)

and we have |F(k−1,k)| = (n− 1)k−1. Consider F = F(k−1,k)∪F(k−4,k−3)∪ ·· · ∪F(0,1). It is

easy to see that F is an induced matching. Therefore, indmat(T ′
n,k) ≥ |F |, where |F | =

(n−1)k−1+(n−1)k−4+ · · ·+(n−1)3+(n−1)0 = (n−1)k+2−1
(n−1)3−1 . By Lemma 1.4.9, we have

reg(Mn,k)≥ (n−1)k+2−1
(n−1)3−1 . Therefore, we get the required result.

Case 2 Let k ≡ 2(mod 3). In this case k−2 ≡ 0(mod 3) and k−1 ≡ 1(mod 3). By Eqs. 2.2.1

and 2.2.2 and induction on k we get

reg(S/(I(T ′
n,k) : x(0)1 )) = (n−1)2

(
(n−1)(k−2)+2 − (n−1)2

(n−1)3 −1

)
=

(n−1)k+2 − (n−1)4

(n−1)3 −1
,

and

reg(S/(I(T ′
n,k),x

(0)
1 )) = (n−1)

(
(n−1)(k−1)+2 −1

(n−1)3 −1

)
=

(n−1)k+2 −n+1
(n−1)3 −1

=
(n−1)k+2 − (n−1)4

(n−1)3 −1
+(n−1).

Hence by Lemma 1.4.12(c) we have reg(Mn,k) =
(n−1)k+2−n+1

(n−1)3−1 , as required.
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Case 3 Let k ≡ 0(mod 3). If T ′
n,k = T ′

n,3∪
(n−1)3⋃

Bi
i=1

, where Bi ∼= T ′
n,k−3, T ′

n,3∩Bi ̸= /0 and Bi∩B j = /0,

for all i ̸= j. By Lemmas 1.4.13 and 2.0.2, we have

reg(Mn,k)≤ reg(Mn,3)+ reg(M(n−1)3

n,k−3 ) = reg(Mn,3)+(n−1)3 reg(Mn,k−3).

In this case k−3 ≡ 0(mod 3) and by induction on k, we have

reg(Mn,k)≤ (n−1)2 +(n−1)3
(
(n−1)(k−3)+2 − (n−1)2

(n−1)3 −1

)
=

(n−1)k+2 − (n−1)2

(n−1)3 −1
.

For the other inequality, we use Eq. 2.2.3 and define an induced matching F = F(k−1,k)∪

F(k−4,k−3) ∪ ·· · ∪F(2,3). As, indmat(T ′
n,k) ≥ |F |, where |F | = (n− 1)k−1 + (n− 1)k−4 +

· · ·+(n−1)5 +(n−1)2 = (n−1)k+2−(n−1)2

(n−1)3−1 . By Proposition 1.4.9(a), we have reg(Mn,k)≥
(n−1)k+2−(n−1)2

(n−1)3−1 . Hence we get the required result.

Theorem 2.2.2 ([80]). Let n ≥ 3 and k ≥ 1. If R := K[V (Tn,k)], then

reg(R/I(Tn,k)) =



n(n−1)k+1−n(n−1)
(n−1)3−1 , i f k ≡ 0(mod 3);

n(n−1)k+1−(n−1)2−1
(n−1)3−1 , i f k ≡ 1(mod 3);

n(n−1)k+1−n
(n−1)3−1 , i f k ≡ 2(mod 3).

Proof. We will show the result by using Proposition 2.2.1. If k = 1, then clearly indmat(Tn,1) =

1, therefore by Lemma 1.4.9, we have reg(R/I(Tn,1)) = 1. Let k ≥ 2, by using Eqs. 2.1.7 and

2.1.8 we get reg(R/(I(Tn,2) : x(0)1 )) = reg(K[x(0)1 ,x(2)1 , . . . ,x(2)n(n−1)]) = 0 and by using Lemma

1.4.14, we have reg(R/(I(Tn,2),x
(0)
1 )) = n reg(Mn,1) = n. Hence by Lemma 1.4.12(c), we have

reg(R/I(Tn,2)) = n. For k = 3, by using Lemma 1.4.14 on Eqs. 2.1.7 and 2.1.8, we have

reg(R/(I(Tn,3) : x(0)1 )) = n(n−1) reg(Mn,1) = n(n−1)

and

reg(R/(I(Tn,3),x
(0)
1 )) = n reg(Mn,2) = n(n−1).

Thus, by Lemma 1.4.12(b), we get reg(R/I(Tn,3)) ∈ {n(n− 1)+ 1,n(n− 1)}. Let us consider

the following subsets of E(Tn,3)

G1 =
n−1⋃
j=1

{{x(2)1 ,x(3)j }},
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G2 =

2(n−1)⋃
j=(n−1)+1

{{x(2)2 ,x(3)j }},

...

Gn(n−1) =

n(n−1)2⋃
j=(n−1)2+(n−2)n(n−1)+1

{{x(2)n(n−1),x
(3)
j }}.

Clearly, |Gi| = n− 1, for all i. Also each edge of Gi for all i has one vertex in L2 and other

vertex in L3. Let G′ := {e1,e2, . . . ,en(n−1) : ei ∈ Gi}, it is easy to observe that G′ is an induced

matching and |G′| = n(n − 1). If G′′ is any induced matching such that it contains an edge

between vertices of L1 and L2 or an edge between vertices of L0 and L1, then G′′ cannot take any

edge from G1, . . . ,Gn−1. Since, |L3|= n(n−1)2, |L2|= n(n−1) and |L1|= n, thus we get |G′′|<

|G′|. Hence G′ is a maximal induced matching and by Lemma 1.4.9, we have reg(S/I(Tn,3)) =

n(n − 1). Thus we get the required result for k = 3. Let k ≥ 4. Since R/(I(Tn,k) : x(0)1 ) ∼=

Mn(n−1)
n,k−2 ⊗K K[x(0)1 ] and R/(I(Tn,k),x

(0)
1 )∼=Mn

n,k−1. By Lemma 1.4.14 and 2.0.2, we have

reg(R/(I(Tn,k) : x(0)1 )) = n(n−1) reg(Mn,k−2), (2.2.4)

reg(R/(I(Tn,k),x
(0)
1 )) = n reg(Mn,k−1). (2.2.5)

We consider the following cases:

Case 1 Let k ≡ 1(mod 3). In this case k−1 ≡ 0(mod 3), k−2 ≡ 2(mod 3), by Eqs. 2.2.4 and

2.2.5 and using Proposition 2.2.1, we get

reg(R/(I(Tn,k) : x(0)1 )) = n(n−1)
(
(n−1)(k−2)+2 −n+1

(n−1)3 −1

)
=

n(n−1)k+1 −n(n−1)2

(n−1)3 −1
,

reg(R/(I(Tn,k),x
(0)
1 )) = n

(
(n−1)(k−1)+2 − (n−1)2

(n−1)3 −1

)
=

n(n−1)k+1 −n(n−1)2

(n−1)3 −1
.

Since reg(R/(I(Tn,k) : x(0)1 ))= reg(R/(I(Tn,k),x
(0)
1 )), by Lemma 1.4.12(b), reg(R/I(Tn,k))≤

reg(R/(I(Tn,k) : x(0)1 ))+1 = n(n−1)k+1−n(n−1)2+(n−1)3−1
(n−1)3−1 = n(n−1)k+1−(n−1)2−1

(n−1)3−1 . For the other

inequality, let us define

F(k−1,k) =

n(n−1)k−2⋃
i=1

{{x(k−1)
i ,x(k)(n−1)i}}, (2.2.6)
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where |F | = n(n− 1)k−2. Consider F = F(k−1,k) ∪F(k−4,k−3) ∪ ·· · ∪F(0,1) be an induced

matching. Therefore, indmat(Tn,k) ≥ |F |, where |F | = n(n−1)k−2 +n(n−1)k−5 + · · ·+

n(n−1)2+1 = n(n−1)k+1−(n−1)2−1
(n−1)3−1 . By Lemma 1.4.9, reg(R/I(Tn,k))≥ n(n−1)k+1−(n−1)2−1

(n−1)3−1 .

Thus reg(R/I(Tn,k)) =
n(n−1)k+1−(n−1)2−1

(n−1)3−1 , as required.

Case 2 Let k ≡ 2(mod 3). In this case k−1 ≡ 1(mod 3), k−2 ≡ 0(mod 3), by using Proposi-

tion 2.2.1 and Eqs. 2.2.4 and 2.2.5 we get

reg(R/(I(Tn,k) : x(0)1 )) = n(n−1)
(
(n−1)(k−2)+2 − (n−1)2

(n−1)3 −1

)
=

n(n−1)k+1 −n(n−1)3

(n−1)3 −1
,

and

reg(R/(I(Tn,k),x
(0)
1 )) = n

(
(n−1)(k−1)+2 −1

(n−1)3 −1

)
=

n(n−1)k+1 −n(n−1)3

(n−1)3 −1
+n.

Thus by Lemma 1.4.12(c), reg(R/I(Tn,k)) =
n(n−1)k+1−n
(n−1)3−1 , as required.

Case 3 Let k ≡ 0(mod 3). Here Tn,k = Tn,3

n(n−1)2⋃
Bi

i=1
, where Bi ∼= T ′

n,k−3, Bi∩B j = /0 and Tn,3∩Bi ̸=

/0 for all i ̸= j. By Lemmas 1.4.13 and 2.0.2, we have

reg(R/I(Tn,k))≤ reg(K[V (Tn,3)]/I(Tn,3))+ reg(Mn(n−1)2

n,k−3 )

= reg(K[V (Tn,3)]/I(Tn,3))+n(n−1)2 reg(Mn,k−3).

In this case k−3 ≡ 0(mod 3). As reg(R/I(Tn,3)) = n(n−1), by Proposition 2.2.1 we get

reg(R/I(Tn,k))≤ n(n−1)+n(n−1)2
(
(n−1)(k−3)+2 − (n−1)2

(n−1)3 −1

)
=

n(n−1)k+1 −n(n−1)
(n−1)3 −1

.

For the other inequality, we use Eq. 2.2.6 and define F = F(k−1,k)∪F(k−4,k−3)∪·· ·∪F(2,3).

It is easy to see that F is an induced matching. Therefore, indmat(Tn,k) ≥ |F |, where

|F |= n(n−1)k−2+n(n−1)k−5+ · · ·+n(n−1)4+n(n−1) = n(n−1)k+1−n(n−1)
(n−1)3−1 . By Lemma

1.4.9, we have reg(R/I(Tn,k))≥ n(n−1)k+1−n(n−1)
(n−1)3−1 . This completes the proof.

Example 2.2.3. Let k ≥ 1.
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(a)

reg(M3,k) =



2k+2−4
7 , i f k ≡ 0(mod 3);

2k+2−1
7 i f k ≡ 1(mod 3);

2k+2−2
7 i f k ≡ 2(mod 3).

(b) If R := K[V (T3,k)], then

reg(R/I(T3,k)) =



3.2k+1−6
7 i f k ≡ 0(mod 3);

3.2k+1−5
7 i f k ≡ 1(mod 3);

3.2k+1−3
7 i f k ≡ 2(mod 3).

Example 2.2.4. Let k ≥ 1.

(a)

reg(M4,k) =



9(3k−1)
26 , i f k ≡ 0(mod 3);

3k+2−1
26 , i f k ≡ 1(mod 3);

3(3k+1−1)
26 , i f k ≡ 2(mod 3).

(b) If R := K[V (T4,k)], then

reg(R/I(T4,k)) =



6(3k−1)
13 , i f k ≡ 0(mod 3);

2·3k+1−5
13 , i f k ≡ 1(mod 3);

2(3k+1−1)
13 , i f k ≡ 2(mod 3).

Lemma 2.2.5 ([80]). Let n ≥ 3 and k ≥ 1. If W ⊂ V (Tn,k) be an independent set, then W is

maximal iff W ⊇ Lq, for all q with k ≡ q(mod2).

Proof. By definition of Tn,k, E(Tn,k)∩{{u,v} : u ∈ Lq,v ∈ Lq−1} ̸= /0 for all 1 ≤ q ≤ k. Also,

|L0|= 1, |L1|= n and for q ≥ 2, |Lq|= (n−1)|Lq−1|. Thus W ⊂V (Tn,k) is a maximal indepen-

dent set, if and only if W = Lk ∪Lk−2 ∪ . . . ,∪Lk−2⌈ k−1
2 ⌉, that is, if and only if W ⊇ Lq, for all q

with k ≡ q(mod2).
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Theorem 2.2.6 ([80]). Let n≥ 3 and k ≥ 1. If R=K[V (Tn,k)], then dim(R/I(Tn,k)) =
(n−1)k+1−1

n−2 .

Proof. By Lemma 1.2.1, we know that dim(R/I(Tn,k)) = |W |, where W is a maximal indepen-

dent set. Now by Lemma 2.2.5, if W is a maximal independent set then

W =

Lk ∪Lk−2 ∪·· ·∪L0, i f k is even;

Lk ∪Lk−2 ∪·· ·∪L1, i f k is odd.

Thus

|W |=

 n(n−1)k−1 +n(n−1)k−3 + · · ·+n(n−1)+1, i f k is even;

n(n−1)k−1 +n(n−1)k−3 + · · ·+n(n−1)2 +n, i f k is odd.

If k is odd, then

n+n(n−1)2 + · · ·+n(n−1)k−5 +n(n−1)k−3 +n(n−1)k−1 =
(n−1)k+1 −1

n−2
,

and if k is even, then

1+n(n−1)+ · · ·+n(n−1)k−5 +n(n−1)k−3 +n(n−1)k−1 =
(n−1)k+1 −1

n−2
.

Example 2.2.7. Let k ≥ 1. Then

dim(K[V (T3,k)]/I(T3,k)) = 2k+1 −1,

and

dim(K[V (T4,k)]/I(T4,k)) =
3k+1 −1

2
.

2.3 Conclusion

This chapter aims to find the precise formulas for the values of the algebraic invariants depth,

Stanley depth, regularity, projective dimension and Krull dimension of K[V (Tn,k)]/I(Tn,k). It is

worth mentioning that for computations of the said invariants for K[V (Tn,k)]/I(Tn,k) the module

K[V (T ′
n,k)]/I(T ′

n,k) plays a vital role. It is easy to see that T2,k = P2k+1 and Tn,1 = Sn, thus our

results [80] also complement the previous work on depth, regularity, projective dimension and

Stanley depth of K[V (Pn)]/I(Pn) and K[V (Sn−1)]/I(Sn−1); see [34, 36, 55, 60]. One can use our

results to compute algebraic invariants for other classes of graphs; see for instance [79] as an

application of our work.
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CHAPTER 3

Invariants of edge ideals of cubic

circulant graphs

There are two sections in this chapter. In the first part, the precise values of depth, projective

dimension, and Stanley depth of the edge ideals associated with certain supergraphs of ladder

graph are given; see for instance Lemma 3.1.5, 3.1.14 and 3.1.17. In the second section, we give

values for depth and projective dimension, and lower bounds for Stanley depth of the quotient

rings of the edge ideals of all cubic circulant graphs, see Theorem 3.2.11, Corollary 3.2.12 and

Theorem 3.2.13. We also give a result in Lemma 3.1.1 that plays a vital role in the computation

of depth and a lower bound for Stanley depth in our main findings.

3.1 Invariants of cyclic modules associated to some supergraphs of

ladder graph

For n ≥ 2, the graph An as shown in Figure 3.1 is called ladder graph on 2n vertices. We

introduce some supergraphs of ladder graph namely Bn,Qn and Dn that play a significant role

in our main results. It will be convenient to label the vertices of the aforementioned graphs as

shown in Figure 3.1 and Figure 3.2. The vertex sets and edge sets of these graphs are:

• V (An) =
n
∪

i=1
{xi,yi}, E(An) =

n−1
∪

i=1
{{xi,yi},{xi,xi+1},{yi,yi+1}}∪{xn,yn},

• V (Bn) =V (An)∪{yn+1}, E(Bn) = E(An)∪{yn,yn+1},

• V (Qn) =V (An)∪
{

yn+1,yn+2
}
, E(Qn) = E(An)∪

{
{yn,yn+1},{y1,yn+2}

}
,
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• V (Dn) =V (An)∪
{

xn+1,yn+1
}
, E(Dn) = E(An)∪

{
{yn,yn+1},{x1,xn+1}

}
.

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn yn+1

Figure 3.1: From left to right An and Bn

x1 x2 x3 x4 xn−2 xn−1 xn

yn+2 y1 y2 y3 y4 yn−2 yn−1 yn yn+1

xn+1 x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn yn+1

Figure 3.2: From left to right Qn and Dn

In this section, we compute the values of depth, projective dimension and Stanley depth of the

cyclic modules K[V (Bn)]/I(Bn), K[V (Qn)]/I(Qn) and K[V (Dn)]/I(Dn). These values play a

vital role in our main results in last section. For cyclic module K[V (An)]/I(An), we give exact

value of Stanley depth when n ≡ 1(mod2) and find sharp bounds when n ≡ 0(mod2). First,

we prove the following lemma that will help in computing depth and lower bound for Stanley

depth, throughout the work. This lemma is inspired by result of Cimpoeas in [53, Proposition

1.3].

Lemma 3.1.1 ([81]). Let G be a connected graph with V (G) = {x1, . . . ,xn}, where n ≥ 2. If

NG(xi) = {xi1 , . . . ,xil}, then

(I(G) : xi)/I(G)∼=
l⊕

t=1

St/Jt [xit ],

where S1 = K[V (G)\NG(xi1)] for t ≥ 2, St = K[V (G)\
(
NG(xit )∪ {xi1 ,xi2 , . . . ,xit−1}

)
] and for

t ≥ 1, Jt = (St ∩ I(G)).

Proof. If u ∈ (I(G) : xi) is a monomial such that u /∈ I(G), then it follows that u is divisible

by at least one variable from NG(xi) = {xi1 , . . . ,xil}. Indeed, if u is not divisible by any of the

variables from the set of NG(xi) then u ∈ I(G), a contradiction. Without loss of generality

we may assume that xi1 |u then u = xα1
i1 v1 with α1 ≥ 1. Since u /∈ I(G), it follows that v1 ∈

S1 = K[V (G)\NG(xi1)] and v1 /∈ J1 = (S1 ∩ I(G)). Thus u ∈ xi1(S1/J1)[xi1 ]. Now, if xi2 |u and

xi1 ∤ u, then u = xα2
i2 v2 with α2 ≥ 1. It follows that v2 ∈ S2 = K[V (G)\(NG(xi2)∪ {xi1})] and
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v2 /∈ J2 = (S2 ∩ I(G)). Thus u ∈ xi2(S2/J2)[xi2 ]. In a similar manner, for 3 ≤ t ≤ l, if xit |u and

xi1 ∤ u,xi2 ∤ u, . . . , xit−1 ∤ u then u = xαt
it vt with αt ≥ 1. Since u /∈ I(G), it follows that vt ∈ St =

K[V (G)\
(
NG(xit )∪{xi1 ,xi2 , . . . ,xit−1}

)
] and vt /∈ Jt = (St ∩ I(G)). Thus u ∈ xit (St/Jt)[xit ] and we

have the following S-module isomorphism

(I(G) : xi)/I(G)∼=
l⊕

t=1

xit (St/Jt)[xit ].

It is easy to see that xit is regular on St/Jt [xit ], therefore we have xit (St/Jt)[xit ]
∼= (St/Jt)[xit ].

This completes the proof.

Remark 3.1.2 ([81]). If n ≤ 1, then we define the quotient rings associated to An, Bn, Qn and

Dn appearing in the proofs of this section as follows:

• K[V (B0)]/I(B0) = K[x] and depth(K[x]) = sdepth(K[x]) = 1.

• K[V (A1)]/I(A1) =K[V (P2)]/I(P2) and by using Lemma 1.4.15, depth(K[V (P2)]/I(P2)) =

sdepth(K[V (P2)]/I(P2)) = 1.

• K[V (B1)]/I(B1) = K[V (P3)]/I(P3), by using Lemma 1.4.15, depth(K[V (P3)]/I(P3)) =

sdepth(K[V (P3)]/I(P3)) = 1.

• K[V (Q1)]/I(Q1)=K[V (S4)]/I(S4) and by using Lemma 1.3.16, depth(K[V (S4)]/I(S4))=

sdepth(K[V (S4)]/I(S4)) = 1.

• K[V (D1)]/I(D1)=K[V (P4)]/I(P4) and by using Lemma 1.4.15, depth(K[V (P4)]/I(P4))=

sdepth(K[V (P4)]/I(P4)) = 2.

Remark 3.1.3 ([81]). Let xt ,xl ∈ S such that xt ,xl /∈ I. Then (I : xt), (I,xt), ((I,xt),xl) and

((I,xt) : xl) are the monomial ideals of S such that G(I:xt), G(I,xt), G((I,xt),xl) and G((I,xt):xl) are

subgraphs of GI. By using the labeling of Figure 3.2, see for instance; Figure 3.3 and 3.4 as

examples of G(I(Q7):x7),G(I(Q7),x7),G((I(Q7),x7),y8) and G((I(Q7),x7):y8). From Figures 3.3 and 3.4,

after suitable renumbering of variables we have the following isomorphisms:

K[V (Q7)]/(I(Q7) : x7)∼= K[V (Q5)]/I(Q5)⊗K K[x7,y8],

K[V (Q7)]/(I(Q7),x7)∼= K[V (Q6)]/(I(Q6),y7y8),

K[V (Q7)]/((I(Q7),x7),y8)∼= K[V (Q6)]/I(Q6),

K[V (Q7)]/((I(Q7),x7) : y8)∼= K[V (B6)]/I(B6)⊗K K[y8].
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x1 x2 x3 x4 x5 x6

y9 y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

y9 y1 y2 y3 y4 y5 y6 y7 y8

Figure 3.3: From left to right G(I(Q7):x7) and G(I(Q7),x7).

x1 x2 x3 x4 x5 x6 x7

y9 y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7

y9 y1 y2 y3 y4 y5 y6 y7

Figure 3.4: From left to right G((I(Q7),x7),y8) and G((I(Q7),x7):y8).

Lemma 3.1.4 (Depth Lemma). ([11, Proposition 1.2.9]) If 0 → P → Q → R → 0 is a short

exact sequence of modules over a local ring S, then

(a) depth(Q)≥ min{depth(R),depth(P)}.

(b) depth(P)≥ min{depth(Q),depth(R)+1}.

(c) depth(R)≥ min{depth(P)−1,depth(Q)}.

Lemma 3.1.5 ([81]). Let n ≥ 2 and S := K[V (Bn)]. Then depth(S/I(Bn)) = sdepth(S/I(Bn)) =

⌈n+1
2 ⌉.

Proof. Firstly, we will first provide the result for depth. Consider the short exact sequence

0 −→ S/(I(Bn) : yn)
·yn−→ S/I(Bn)−→ S/(I(Bn),yn)−→ 0.

After a suitable numbering of variables we have the subsequent isomorphisms

S/(I(Bn) : yn)∼= K[V (Bn−2)]/(I(Bn−2))⊗K K[yn], (3.1.1)

S/(I(Bn),yn)∼= K[V (Bn−1)]/(I(Bn−1))⊗K K[yn+1]. (3.1.2)

If n = 2, then by using Lemma 1.4.10 and Remark 3.1.2, we get depth(S/(I(B2) : y2)) =

depth(K[V (B0)]/I(B0))+1 = depth(K[x1])+1 = 2 and

depth(S/(I(B2),y2)) = depth(K[V (B1)]/I(B1))+1 = depth(K[V (P3)]/I(P3))+1 = 2.
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By Lemma 1.3.13, depth(K[V (B2)]/I(B2))= 2. Similarly, the desired result follows when n= 3.

Let n ≥ 4. By induction on n and applying Lemma 1.4.10 on Eqs. (3.1.1) and (3.1.2), it follows

that

depth(S/(I(Bn) : yn)) = depth(K[V (Bn−2)]/I(Bn−2))+1 = ⌈n−2+1
2

⌉+1 = ⌈n+1
2

⌉,

depth(S/(I(Bn),yn)) = depth(K[V (Bn−1)]/I(Bn−1))+1 = ⌈n−1+1
2

⌉+1 = ⌈n
2
⌉+1.

Clearly, depth(S/(I(Bn),yn)) ≥ depth(S/(I(Bn) : yn)), therefore by Lemma 1.3.13, we get the

required result. For Stanley depth, the proof is similar to depth with the use of Lemma 1.3.14 in

place of Lemma 1.3.13.

Corollary 3.1.6 ([81]). Let n ≥ 2 and S := K[V (Bn)]. Then pdim(S/I(Bn)) = 2n−⌈n+1
2 ⌉+1.

Proof. The proof follows by Lemma 1.4.11 and Lemma 3.1.5.

Example 3.1.7. For n = 50, we have

(a) depth(K[V (B50)]/I(B50)) = sdepth(K[V (B50)]/I(B50)) = ⌈50+1
2 ⌉= 26.

(b) pdim(K[V (B50)]/I(B50)) = 100−⌈50+1
2 ⌉+1 = 73.

The projective dimension of K[V (An)]/I(An) has been computed in [78].

Theorem 3.1.8 ([78, Theorem 5.5]). If n ≥ 2, then pdim(K[V (An)]/I(An)) = ⌊3n
2 ⌋.

Consequently, one can compute its depth by using Auslander–Buchsbaum formula.

Corollary 3.1.9 ([81]). If n ≥ 2, then depth(K[V (An)]/I(An)) = 2n−⌊3n
2 ⌋= ⌈n

2⌉.

Proof. By using Lemma 1.4.11 and Theorem 3.1.8, one can get the required result.

Here we give an alternative proof for depth by using Lemma 3.1.1 we include this proof because

proof for Stanley depth is analogous. In Remark 3.1.10 we explain a situations that arises in

special cases in upcoming proofs.

Remark 3.1.10 ([81]). Let i ∈ Z+, if k < i then we consider ∪k
i {xiyi,xixi+1,yiyi+1} = /0. Also

we take xayb = 0, whenever a or b is not positive.

Theorem 3.1.11 ([81]). If n ≥ 2 and S = K[V (An)], then sdepth(S/I(An))≥ depth(S/I(An)) =

⌈n
2⌉.
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Proof. Firstly, we provide the proof for depth. If n = 2, then by the usage of Lemma 1.3.18,

depth(K[V (A2)]/I(A2)) = 1. Let n ≥ 3. Consider the short exact sequence

0 −→ (I(An) : yn)/I(An)
·yn−→ S/I(An)−→ S/(I(An) : yn)−→ 0. (3.1.3)

We have the below S-module isomorphism

S/(I(An) : yn)∼= K[V (Bn−2)]/I(Bn−2)⊗K K[yn]. (3.1.4)

Here NAn(yn) = {yn−1,xn}, S1 = K[V (An)\NAn(yn−1)], S2 = K[V (An)\(NAn(xn)∪{yn−1})], J1 =

(S1 ∩ I(An)), J2 = (S2 ∩ I(An)), then by using Lemma 3.1.1, we have

(I(An) : yn)/I(An)∼= S1/J1[yn−1]⊕S2/J2[xn]

∼=
K[x1, . . . ,xn−2,xn,y1, . . . ,yn−3](

∪n−4
i=1 {xiyi,xixi+1,yiyi+1}∪{xn−3yn−3,xn−3xn−2}

) [yn−1]

⊕ K[x1, . . . ,xn−2,y1, . . . ,yn−2](
∪n−3

i=1 {xiyi,xixi+1,yiyi+1}∪{xn−2yn−2}
) [xn]

∼= K[V (Bn−3)]/I(Bn−3)⊗K K[xn,yn−1]⊕K[V (An−2)]/I(An−2)⊗K K[xn].

(3.1.5)

If n = 3, then we have

K[V (A3)]/(I(A3) : y3)∼=
K[x1,x2,y1]

(y1x1,x1x2)
[y3]∼= K[V (B1)]/I(B1)⊗K K[y3], (3.1.6)

(I(A3) : y3)/I(A3)∼=
K[x1,x3]

(0)
[y2]⊕

K[x1,y1]

(x1y1)
[x3]

∼= K[x1,x3,y2]⊕K[V (A1)]/I(A1)⊗K K[x3].

(3.1.7)

By applying Lemma 1.4.10 on Eqs. (3.1.6) and (3.1.7) and using Remark 3.1.2 we have

depth(K[V (A3)]/(I(A3) : y3)) = depth(K[V (B1)]/I(B1))+1 = depth(K[V (P3)]/I(P3))+1 = 2

and

depth((I(A3) : y3)/I(A3)) = min{depth(K[x1,x3,y2]),depth(K[V (A1)]/I(A1))+1)}

= min{3,depth(K[V (P2)]/I(P2))+1)}

= min{3,2}= 2.

Thus by applying Depth Lemma on Eq. (3.1.3), we get depth(K[V (A3)]/I(A3)) = 2. If n = 4,

as stated in Remark 3.1.10, we have ∪n−4
i=1 {xiyi,xixi+1,yiyi+1}= /0 and using the similar strategy
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and induction on n, one can get the required result. Let n ≥ 5. By applying Lemma 1.4.10 and

Lemma 3.1.5 on Eq. (3.1.4), we get

depth(S/(I(An) : yn)) = depth(K[V (Bn−2)]/I(Bn−2))+1 = ⌈n−2+1
2

⌉+1 = ⌈n+1
2

⌉.

By using Eq. (3.1.5) and applying Lemma 1.4.10, Lemma 3.1.5 and induction on n, we have

depth((I(An) : yn)/I(An)) = min
{

depth(K[V (Bn−3)]/I(Bn−3))+depth(K[xn,yn−1]),

depth(K[V (An−2)]/I(An−2))+depth(K[xn])
}

= min
{
⌈n−3+1

2
⌉+2,⌈n−2

2
⌉+1

}
= ⌈n

2
⌉.

We get the desired result by using Depth Lemma on Eq. (3.1.3). Now we provide the proof for

Stanley depth. If n = 2, then by Lemma 1.3.18, we have sdepth(K[V (A2)]/I(A2))≥ 1. If n = 3,

then by using Lemma 1.4.10 and Remark 3.1.2 on Eqs. (3.1.6) and (3.1.7)

sdepth(K[V (A3)]/(I(A3) : y3))= sdepth(K[V (B1)]/I(B1))+1= sdepth(K[V (P3)]/I(P3))+1= 2

and

sdepth((I(A3) : y3)/I(A3))≥ min{sdepth(K[x1,x2,y2]),sdepth(K[V (A1)]/I(A1))+1)}

≥ min{3,sdepth(K[V (P2)]/I(P2))+1)}

≥ min{3,1+1}= 2.

Thus by applying Lemma 1.3.10 on Eq. (3.1.3), we get sdepth(K[V (A3)]/I(A3))≥ 2. For n ≥ 4,

we get the required lower bound for Stanley depth by using the similar arguments just by using

Lemma 1.3.10 in place of Depth Lemma on the exact sequence (3.1.3).

Corollary 3.1.12 ([81]). Let n ≥ 2 and S = K[V (An)]. If n ≡ 0(mod2), then sdepth(S/I(An)) ∈

{⌈n
2⌉,⌈

n+1
2 ⌉}, otherwise we have sdepth(S/I(An)) = ⌈n

2⌉.

Proof. If n = 2, then one can easily see that the result follows by Theorem 3.1.11 and Lemma

1.3.18. If n ≥ 3, then by Theorem 3.1.11, we only need to show that sdepth(S/I(An))≤ ⌈n+1
2 ⌉.

For yn /∈ I(An), and by using Lemma 1.3.12, we have sdepth(S/I(An))≤ sdepth(S/(I(An) : yn)).

By applying Lemma 1.4.10 and Lemma 3.1.5 on Eq. (3.1.4), sdepth(S/(I(An) : yn) = ⌈n−2+1
2 ⌉+

1 = ⌈n+1
2 ⌉ and the desired result follows.

Example 3.1.13. If n = 101, then

sdepth(K[V (A101)]/I(A101)) = depth(K[V (A101)]/I(A101)) = 50.

If n = 102, then depth(K[V (A102)]/I(A102)) = 51 and 51 ≤ sdepth(K[V (A102)]/I(A102))≤ 52.
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Lemma 3.1.14 ([81]). Let n ≥ 2 and S = K[V (Qn)]. Then

depth(S/I(Qn)) = sdepth(S/I(Qn)) =


⌈n

2⌉+1, if n ≡ 0,3(mod 4);

⌈n+1
2 ⌉, if n ≡ 1(mod 4);

⌈n+1
2 ⌉+1, if n ≡ 2(mod 4).

Proof. First, we provide the proof for depth. If n = 2, then consider the short exact sequence

0 −→ S/(I(Q2) : y2)
·y2−→ S/I(Q2)−→ S/(I(Q2),y2)−→ 0. (3.1.8)

Here we have S/(I(Q2) : y2) ∼= K[x1,y2,y4] and S/(I(Q2),y2) ∼= K[y3]⊗K K[V (P4)]/I(P4). By

Lemma 1.4.10 and Lemma 1.4.15, we have depth(S/(I(Q2) : y2)) = depth(K[x1,y2,y4]) = 3 and

depth(S/(I(Q2),y2)) = depth(K[y3])+depth(K[V (P4)]/I(P4)) = 3. By applying Lemma 1.3.13

on Eq. (3.1.8), depth(S/(I(Q2)) = 3 = ⌈2+1
2 ⌉+1. Let n ≥ 3 and consider the subsequent short

exact sequences

0 −→ S/(I(Qn) : xn)
·xn−→ S/I(Qn)−→ S/(I(Qn),xn)−→ 0,

0 −→ S/
(
(I(Qn),xn) : yn+1

) ·yn+1−−−→ S/(I(Qn),xn)−→ S/
(
(I(Qn),xn),yn+1

)
−→ 0,

and by Depth Lemma

depth(S/I(Qn)≥ min
{

depth
(
S/(I(Qn) : xn)

)
,depth

(
S/(I(Qn),xn)

)}
, (3.1.9)

depth(S/(I(Qn),xn))≥ min
{

depth
(
S/((I(Qn),xn) : yn+1)

)
,depth

(
S/((I(Qn),xn),yn+1)

)}
.

(3.1.10)

After a suitable numbering of variables, we have the following K-algebra isomorphisms:

S/(I(Qn) : xn)∼= K[V (Qn−2)]/I(Qn−2)⊗K K[xn,yn+1]. (3.1.11)

S/
(
(I(Qn),xn),yn+1

)∼= K[V (Qn−1)]/I(Qn−1), (3.1.12)

S/
(
(I(Qn),xn) : yn+1

)∼= K[V (Bn−1)]/I(Bn−1)⊗K K[yn+1]. (3.1.13)

If n = 3, we have by Eq. (3.1.11),

S/(I(Q3) : x3)∼= K[V (Q1)]/I(Q1)⊗K K[x3,y4]. (3.1.14)

By Lemma 1.4.10 and Remark 3.1.2, we have depth(S/(I(Q3) : x3))= depth(K[V (Q1)]/I(Q1))+

2 = depth(K[V (S4)]/I(S4))+2 = 3. By using Eqs. (3.1.12) and (3.1.13), S/
(
(I(Q3),x3),y4

)∼=
K[V (Q2)]/I(Q2) and S/

(
(I(Q3),x3) : y4

) ∼= K[V (B2)]/I(B2)⊗K K[y4]. With the use of induc-

tion on n, depth
(
S/((I(Q3),x3),y4)

)
= depth(K[V (Q2)]/I(Q2)) = 3 and by Lemma 1.4.10 and
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Lemma 3.1.5, we get depth
(
S/((I(Q3),x3) : y4)

)
= depth(K[V (B2)]/I(B2)) + 1 = 3. By Eq.

(3.1.10), depth(S/(I(Q3),x3)) ≥ 3 and by Eq. (3.1.9), depth(S/(I(Q3)) ≥ 3. For the upper

bound, we use Lemma 1.3.12 and Eq. (3.1.14), depth(S/(I(Q3))≤ depth
(
S/(I(Q3) : x3)

)
= 3.

Thus we get depth(S/(I(Q3)) = ⌈3
2⌉+1 = 3. If n = 4, by using similar strategy as we did when

n = 3, we get the required lower bound that is depth(S/I(Q4)) ≥ ⌈4
2⌉+ 1 = 3. For the upper

bound, since x3y4 /∈ I(Q4), we have

S/(I(Q4) : x3y4)∼= K[V (S4)]/I(S4)⊗K K[x3,y4],

and by Lemma 1.4.10 and Lemma 1.3.16, depth(S/(I(Q4) : x3y4)) = depth(K[V (S4)]/I(S4))+

2 = 3. Therefore, by Lemma 1.3.12, depth(S/I(Q4))≤ depth(S/(I(Q4) : x3y4)) = 3. Let n ≥ 5.

We consider the subsequent cases:

Case 1 Let n ≡ 1(mod4). We consider the short exact sequence

0 −→ S/(I(Qn) : yn+1)
·yn+1−−−→ S/I(Qn)−→ S/(I(Qn),yn+1)−→ 0, (3.1.15)

Here S/(I(Qn),yn+1) ∼= K[V (Bn)]/I(Bn). By Lemma 3.1.5, depth(S/(I(Qn),yn+1)) =

⌈n+1
2 ⌉. Consider another short exact sequence

0 −→ S/
(
(I(Qn) : yn+1) : xn

) ·xn−→S/(I(Qn) : yn+1)−→

S/
(
(I(Qn) : yn+1),xn

)
−→ 0.

(3.1.16)

Here S/
(
(I(Qn) : yn+1),xn

) ∼= K[V (Bn−1)]/I(Bn−1)⊗K K[yn+1]. By Lemma 1.4.10 and

Lemma 3.1.5, it implies depth
(
S/((I(Qn) : yn+1),xn)

)
= ⌈n−1+1

2 ⌉+ 1 = ⌈n
2⌉+ 1. Also

we have S/
(
(I(Qn) : yn+1) : xn

) ∼= K[V (Qn−2)]/I(Qn−2)⊗K K[yn+1,xn]. Since n− 2 ≡

3(mod4), by induction on n and Lemma 1.4.10, depth(S/((I(Qn) : yn+1) : xn)) = ⌈n−2
2 ⌉+

1+2 = ⌈n
2⌉+2. By applying Depth Lemma on Eqs. (3.1.15) and (3.1.16)

depth(S/(I(Qn))≥ min
{

depth(S/(I(Qn) : yn+1)),depth(S/(I(Qn),yn+1))
}
, (3.1.17)

depth(S/(I(Qn) : yn+1))≥min
{

depth
(
S/((I(Qn) : yn+1) : xn)

)
,

depth
(
S/((I(Qn) : yn+1),xn)

)}
,

(3.1.18)

By using Eq. (3.1.18), depth(S/(I(Qn) : yn+1))≥⌈n
2⌉+1. Since, depth(S/(I(Qn) : yn+1))>

depth(S/(I(Qn),yn+1)), by Eq. (3.1.17) we obtain the depth(S/(I(Qn))≥ ⌈n+1
2 ⌉. For the

other inequality, we have xn−2yn /∈ I(Qn), and the following K-algebra isomorphism:

S/(I(Qn) : xn−2yn)∼= K[V (Qn−4)]/I(Qn−4)⊗K K[xn−2,yn].

Since n− 4 ≡ 1(mod4), by Remark 3.1.2, Lemma 1.3.12, Lemma 1.4.10 and induction

on n, depth(S/I(Qn))≤ depth(S/(I(Qn) : xn−2yn)) = ⌈n−4+1
2 ⌉+2 = ⌈n+1

2 ⌉, as required.
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Case 2 Let n ≡ 2(mod4). Consider the following short exact sequences:

0 −→ S/(I(Qn) : xn−1)
·xn−1−−−→ S/I(Qn)−→ S/(I(Qn),xn−1)−→ 0,

0 −→ S/
(
(I(Qn),xn−1) : yn−1

) ·yn−1−−−→ S/(I(Qn),xn−1)

−→ S/
(
(I(Qn),xn−1),yn−1

)
−→ 0,

0 −→ S/
(
((I(Qn),xn−1) : yn−1) : xn−2

) ·xn−2−−−→ S/
(
(I(Qn),xn−1) : yn−1

)
−→ S/

(
((I(Qn),xn−1) : yn−1),xn−2

)
−→ 0.

We have the subsequent K-algebra isomorphisms:

S/(I(Qn) : xn−1)∼= K[V (Qn−3)]/I(Qn−3)⊗K K[xn−1]⊗K K[V (P2)]/I(P2),

S/
(
(I(Qn),xn−1),yn−1

)∼= K[V (Bn−2)]/I(Bn−2)⊗K K[V (P3)]/I(P3),

S/
(
((I(Qn),xn−1) : yn−1) : xn−2

)∼= K[V (Qn−4)]/I(Qn−4)⊗K K[xn−2,yn−1,xn,yn+1],

S/
(
((I(Qn),xn−1) : yn−1),xn−2

)∼= K[V (Bn−3)]/I(Bn−3)⊗K K[yn−1,xn,yn+1].

Since n−3 ≡ 3(mod4), by using induction on n, Lemma 1.3.11 and Lemma 1.4.15, we

have depth(S/I(Qn) : xn−1) = depth(K[V (Qn−3)]/I(Qn−3)) + depth(K[V (P2)]/I(P2)) +

1 = ⌈n−3
2 ⌉+ 3 = ⌈n+1

2 ⌉+ 1. By using Lemma 1.4.15, Lemma 3.1.5 and Lemma 1.3.11,

depth(S/((I(Qn),xn−1),yn−1))= depth(K[V (Bn−2)]/I(Bn−2))+depth(K[V (P3)]/I(P3))=

⌈n−2+1
2 ⌉+2 = ⌈n+1

2 ⌉+1. Since n−4 ≡ 2(mod4) and n−3 ≡ 3(mod4). By induction on

n and Lemma 1.3.12, we have

depth
(
S/

(
((I(Qn),xn−1) : yn−1) : xn−2

))
= depth(K[V (Qn−4)]/I(Qn−4))+4

= ⌈n−4+1
2

⌉+1+4 = ⌈n+3
2

⌉+2,

and by Lemma 3.1.5,

depth
(
S/

(
((I(Qn),xn−1) : yn−1),xn−2

))
= depth(K[V (Bn−3)]/I(Bn−3))+3

= ⌈n−3+1
2

⌉+3 = ⌈n+1
2

⌉+1.

By Depth Lemma on short exact sequences

depth(S/I(Qn)≥ min
{

depth(S/(I(Qn) : xn−1)),depth(S/(I(Qn),xn−1))
}
. (3.1.19)

depth(S/(I(Qn),xn−1))≥ min
{

depth
(
S/((I(Qn),xn−1) : yn−1)

)
,

depth
(
S/((I(Qn),xn−1),yn−1)

)}
.

(3.1.20)
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depth
(
S/((I(Qn),xn−1) : yn−1)

)
≥ min

{
depth

(
S/(((I(Qn),xn−1) : yn−1) : xn−2)

)
,

depth
(
S/(((I(Qn),xn−1) : yn−1),xn−2)

)}
.

(3.1.21)

Clearly ⌈n+1
2 ⌉+1 < ⌈n+3

2 ⌉+2, by Eq. (3.1.21) we get depth(S/((I(Qn),xn−1) : yn−1))≥

⌈n+1
2 ⌉+ 1. By Eq. (3.1.20), we have depth(S/(I(Qn),xn−1)) ≥ ⌈ n+1

2 ⌉+ 1 and by Eq.

(3.1.19), we get depth(S/I(Qn)≥ ⌈n+1
2 ⌉+1. For the other inequality, we have xn /∈ I(Qn).

Since n− 2 ≡ 0(mod4), by using induction on n, Lemma 1.3.12 and Lemma 1.4.10 on

Eq. (3.1.11), we get depth(S/I(Qn))≤ depth(S/(I(Qn) : xn)) = ⌈n−2
2 ⌉+1+2= ⌈n

2⌉+2=

⌈n+1
2 ⌉+1.

Case 3 If n ≡ 3(mod4). Since n−2 ≡ 1(mod4) and n−1 ≡ 2(mod4), by induction on n and

Lemma 1.4.10 on Eq. (3.1.11), we get

depth(S/(I(Qn) : xn)) = depth(K[V (Qn−2)]/I(Qn−2))+2

= ⌈n−2+1
2

⌉+2 = ⌈n+1
2

⌉+1 = ⌈n
2
⌉+1.

(3.1.22)

By Eq. (3.1.12), we get depth
(
S/((I(Qn),xn),yn+1)

)
= depth(K[V (Qn−1)]/I(Qn−1)) =

⌈n−1+1
2 ⌉+ 1 = ⌈n

2⌉+ 1 and by Lemma 1.4.10 and Lemma 3.1.5 on Eq. (3.1.13), we

get depth
(
S/((I(Qn),xn) : yn+1)

)
= depth(K[V (Bn−1)]/I(Bn−1)) + 1 = ⌈n

2⌉+ 1. Since

we have depth
(
S/((I(Qn),xn),yn+1)

)
= depth

(
S/((I(Qn),xn) : yn+1)

)
, therefore by Eq.

(3.1.10), depth(S/(I(Qn),xn)) ≥ ⌈ n
2⌉+ 1. Also depth(S/(I(Qn),xn)) = depth(S/(I(Qn) :

xn)), by Eq. (3.1.9) we get depth(S/(I(Qn)) ≥ ⌈n
2⌉+ 1. For the upper bound, we use

Lemma 1.3.12 and Eq. (3.1.22), that is depth(S/(I(Qn)) ≤ depth(S/(I(Qn) : xn)) =

⌈n
2⌉+1, the required result.

Case 4 Let n ≡ 0(mod4). In this case n−2 ≡ 2(mod4), by induction on n and Lemma 1.4.10

on Eq. (3.1.11), we get

depth(S/(I(Qn) : xn)) = depth(K[V (Qn−2)]/I(Qn−2))+2 = ⌈n−2+1
2

⌉+3 = ⌈n+5
2

⌉.

As n−1 ≡ 3(mod4), by induction on n and applying Lemma 1.4.10 on Eq. (3.1.12),

depth
(
S/((I(Qn),xn),yn+1)

)
= depth(K[V (Qn−1)]/I(Qn−1)) = ⌈n−1

2
⌉+1 = ⌈n

2
⌉+1.

By Lemma 1.4.10 and Lemma 3.1.5 on Eq. (3.1.13), we have

depth
(
S/((I(Qn),xn) : yn+1)

)
= depth(K[V (Bn−1)]/I(Bn−1))+1

= ⌈n−1+1
2

⌉+1 = ⌈n
2
⌉+1.
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By using Eq. (3.1.10), we get depth(S/(I(Qn),xn)) ≥ depth(S/(I(Qn),xn) = ⌈n
2⌉+ 1.

Here we have depth(S/(I(Qn),xn)) ≥ depth(S/(I(Qn) : xn)), thus by Eq. (3.1.9), we get

depth(S/(I(Qn))≥ ⌈ n
2⌉+1. For the other inequality, xn−1yn /∈ I(Qn) and consider

S/(I(Qn) : xn−1yn)∼= K[V (Qn−3)]/I(Qn−3)⊗K K[xn−1,yn]. (3.1.23)

Since n−3≡ 1(mod4), by using induction on n, Lemma 1.3.12 and Lemma 1.4.10 on Eq.

(3.1.23), depth(S/I(Qn)) ≤ depth(S/(I(Qn) : xn−1yn)) = depth(K[V (Qn−3)]/I(Qn−3))+

2 = ⌈n−3+1
2 ⌉+2 = ⌈n

2⌉+1.

This ends the proof for depth. Proof for Stanley depth is also similar to depth just by replacing

Depth Lemma by Lemma 1.3.10. Also by using Lemma 1.3.14 in place of Lemma 1.3.13.

Corollary 3.1.15 ([81]). Let n ≥ 2 and S = K[V (Qn)]. Then

pdim(S/I(Qn)) =


2n−⌈n

2⌉+1, if n ≡ 0,3(mod 4);

2n−⌈n+1
2 ⌉+2, if n ≡ 1(mod 4);

2n−⌈n+1
2 ⌉+1, if n ≡ 2(mod 4).

Proof. By using Lemma 1.4.11 and Lemma 3.1.14, the result follows.

Example 3.1.16. For n = 103, we have

(a) depth(K[V (Q103)])/I(Q103) = ⌈103
2 ⌉+1 = 53.

(b) pdim(K[V (Q103)])/I(Q103) = 206−⌈103
2 ⌉+1 = 155.

Lemma 3.1.17 ([81]). Let n ≥ 2 and S = K[V (Dn)]. Then

depth(S/I(Dn)) = sdepth(S/I(Dn)) =

⌈n+1
2 ⌉+1, if n ≡ 0,1(mod 4);

⌈n+1
2 ⌉, if n ≡ 2,3(mod 4).

Proof. The following cases are considered:

Case 1 Let n ≡ 2(mod4). Consider the short exact sequence

0 −→ S/(I(Dn) : xn+1)
·xn+1−−−→ S/I(Dn)−→ S/(I(Dn),xn+1)−→ 0. (3.1.24)

We have

S/(I(Dn) : xn+1)∼= K[V (Qn−1)]/I(Qn−1)⊗K K[xn+1], (3.1.25)
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S/(I(Dn),xn+1)∼= K[V (Bn)]/I(Bn), (3.1.26)

Since n−1 ≡ 1(mod4). By using Lemma 1.4.10, Lemma 3.1.14 and Remark 3.1.2

depth(S/(I(Dn) : xn+1)) = depth(K[V (Qn−1)]/I(Qn−1))+1 = ⌈n+2
2

⌉,

and by Lemma 3.1.5 and Lemma 1.3.11

depth(S/(I(Dn),xn+1)) = depth(K[V (Bn)]/I(Bn)) = ⌈n+1
2

⌉. (3.1.27)

Here ⌈n+1
2 ⌉ = ⌈n+2

2 ⌉, therefore by Lemma 1.3.13, we get the required result. The proof

for Stanley depth is the same just by using Lemma 1.3.14 in place of Lemma 1.3.13.

Case 2 Let n ≡ 3(mod4). If we consider Eq. (3.1.24), then by Depth Lemma

depth(S/I(Dn))≥ min{depth(S/(I(Dn) : xn+1)),depth(S/(I(Dn),xn+1)}.

In this case n−1 ≡ 2(mod4), thus by using Eq. (3.1.25) and applying Lemma 1.4.10 and

Lemma 3.1.14, we get

depth(S/(I(Dn) : xn+1)) = depth(K[V (Qn−1)]/I(Qn−1))+1 = ⌈n
2
⌉+2 = ⌈n+2

2
⌉+1.

Thus by using Eq. (3.1.27) and Depth Lemma, we obtain the depth(S/I(Dn)) ≥ ⌈n+1
2 ⌉.

For the other inequality, since yn /∈ I(Dn), after suitable numbering of the variables, we

have the K- algebra isomorphism:

S/(I(Dn) : yn)∼= K[V (Qn−2)]/I(Qn−2)⊗K K[yn]. (3.1.28)

Since n− 2 ≡ 1(mod4), by applying Lemma 1.3.12, Lemma 1.4.10, Lemma 3.1.14 and

Remark 3.1.2 on Eq. (3.1.28), we have that depth(S/I(Dn)) ≤ depth(S/(I(Dn) : yn)) =

depth(K[V (Qn−2)]/I(Qn−2))+depth(K[yn]) = ⌈n−2+1
2 ⌉+1 = ⌈n+1

2 ⌉. For Stanley depth,

by using a similar strategy for depth, the required result is obtained.

Case 3 Let n ≡ 0(mod4). We consider the short exact sequence

0 −→ S/(I(Dn) : yn)
·yn−→ S/I(Dn)−→ S/(I(Dn),yn)−→ 0,

After renumbering the variables, we have

S/(I(Dn),yn)∼= K[V (Qn−1)]/I(Qn−1)⊗K K[yn+1]. (3.1.29)
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Since n− 1 ≡ 3(mod4) and n− 2 ≡ 2(mod4). By using Lemma 1.4.10, Lemma 3.1.14

on Eqs. (3.1.28) and (3.1.29), we get

depth(S/(I(Dn) : yn)) = depth(K[V (Qn−2)]/I(Qn−2))+depth(K[yn]) = ⌈n+1
2

⌉+1,

and

depth(S/(I(Dn),yn)) = depth(K[V (Qn−1)]/I(Qn−1))+depth(K[yn+1]) = ⌈n+1
2

⌉+1.

We have depth(S/(I(Dn),yn)) = depth(S/(I(Dn) : yn)), thus by using Lemma 1.3.13,

depth(S/I(Dn)) = ⌈n+1
2 ⌉+ 1. The proof for Stanley depth is same as depth just by us-

ing Lemma 1.3.14 in place of Lemma 1.3.13.

Case 4 Let n ≡ 1(mod4). In this case n− 1 ≡ 0(mod4) and n− 2 ≡ 3(mod4). The proof is

similar to Case 3.

This completes the proof.

Corollary 3.1.18 ([81]). Let n ≥ 2 and S = K[V (Dn)]. Then

pdim(S/I(Dn)) =

2n−⌈n+1
2 ⌉+1, if n ≡ 0,1(mod 4);

2n−⌈n+1
2 ⌉+2, if n ≡ 2,3(mod 4).

Proof. One can get the required result by using Lemma 1.4.11 and Lemma 3.1.17.

Example 3.1.19. For n = 104, we have

(a) depth(K[V (D104)])/I(D104) = ⌈104+1
2 ⌉+1 = 53.

(b) pdim(K[V (D104)])/I(D104) = 208−⌈104+1
2 ⌉+1 = 156.

3.2 Invariants of cyclic modules associated to cubic circulant graphs

All the cubic circulant graphs has the form C2n(a,n) with integers 1 ≤ a ≤ n. Davis and Domke

proved the following result:

Theorem 3.2.1 ([12]). Let 1 ≤ a < n and t = gcd(2n,a).

(a) If 2n
t is even, then C2n(a,n) is isomorphic to t copies of C 2n

t
(1, n

t ).
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(b) If 2n
t is odd, then C2n(a,n) is isomorphic to t

2 copies of C 4n
t
(2, 2n

t ).

Therefore, the only connected cubic circulant graphs are those circulant graphs that are isomor-

phic to either C2n(1,n) for n ≥ 2 or to C2n(2,n) with n is odd and n ≥ 3 (for the second circulant

graph, if n is not odd, then Theorem 3.2.1 implies that this circulant is not connected). See

Figure 3.5 for C2n(1,n) and C2n(2,n).

xn
xn−1

xn−2
xn−3

xi
x3

x2

x1

yn

yn−1

yn−2

yn−3

yi

y3

y2

y1

xn
xn−1

xn−2
xn−3

xi
x3

x2

x1

yn

yn−1

yn−2

yn−3

yi

y3

y2

y1

Figure 3.5: From left to right C2n(1,n) and C2n(2,n).

By using Lemma 1.3.11 and Theorem 3.2.1, it suffices to find the depth, projective dimension

and lower bound for Stanley depth of the quotient rings of the edge ideals of C2n(1,n) and

C2n(2,n) with n odd. Therefore, in this section, we first find the values of depth and projective

dimension of cyclic modules K[V (C2n(1,n)]/I(C2n(1,n)) and K[V (C2n(2,n))/I(C2n(2,n)). We

give values and bounds for Stanley depth of such modules. At the end, we compute the values

of depth, projective dimension and lower bounds for Stanley depth of all cubic circulant graphs.

The following example will be helpful in understanding the proofs of this section. Using Figure

3.6, it is easy to see that we have the following isomorphism:

K[V (C16(1,8))]/(I(C16(1,8)) : x8)∼= K[V (D5)]/I(D5)⊗K K[x8].
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Figure 3.6: From left to right G(I(C16(1,8))) and G(I(C16(1,8)):x8).

Proposition 3.2.2 ([81]). For n ≥ 2, let G =C2n(1,n) and S = K[V (G)]. Then

depth(S/I(G)) =

 ⌈n
2⌉, if n ≡ 1(mod4);

⌈n−1
2 ⌉, otherwise.

Proof. If n = 2, we have C4(1,2) ∼= K4, then by Lemma 1.3.17 the required result follows. If

n = 3, one can see that the required result holds by using Macaulay2 [13]. If n = 4, we consider

the following short exact sequence

0 −→ (I(G) : y1)/I(G)
·y1−→ S/I(G)−→ S/(I(G) : y1)−→ 0. (3.2.1)

Here

K[V (G)]/(I(G) : y1)∼=
K[x2,x3,y3,y4]

(x2x3,x3y3,y3y4)
[y1]∼= K[V (P4)]/I(P4)⊗K K[y1], (3.2.2)

and if we have NG(y1) = {x4,x1,y2}, S1 = K[V (G)\NG(x4)], S2 = K[V (G)\(NG(x1)∪{x4})],

S3 = K[V (G)\(NG(y2)∪{x4,x1})], J1 = (S1∩ I(G)), J2 = (S2∩ I(G)), J3 = (S3∩ I(G)), then by

using Lemma 3.1.1, we get

(I(G) : y1)/I(G)∼= S1/J1[x4]⊕S2/J2[x1]⊕S3/J3[y2]

∼=
K[x1,x2,y2,y3]

(x1x2,x2y2,y2y3)
[x4]⊕

K[x3,y2,y3]

(x3y3,y3y2)
[x1]⊕

K[x3,y4]

(0)
[y2]

∼= K[V (P4)]/I(P4)⊗K K[x4]⊕
(
K[V (P3)]/I(P3)⊗K K[x1]

)
⊕K[x3,y4,y2].

(3.2.3)

By applying Lemma 1.4.10 and Lemma 1.4.15 on Eqs. (3.2.2) and (3.2.3), depth(K[V (G)]/(I(G) :

y1)) = depth(K[V (P4)]/I(P4))+depth(K[y1]) = 3 and

depth((I(G) : y1)/I(G)) = min{depth(K[V (P4)]/I(P4))+1,depth(K[V (P3)]/I(P3))+1,

depth(K[x3,y4,y2])}= 2.
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By Depth Lemma on Eq. (3.2.1), we have depth(S/I(G)) = 2. Let n ≥ 5. We have the following

K-algebra isomorphisms:

S/(I(G) : y1)∼= K[V (Dn−3)]/I(Dn−3)⊗K K[y1], (3.2.4)

and if we have NG(y1) = {xn,x1,y2}, S1 = K[V (G)\NG(xn)], S2 = K[V (G)\(NG(x1)∪{xn})],

S3 = K[V (G)\(NG(y2)∪{xn,x1})], J1 = (S1∩ I(G)), J2 = (S2∩ I(G)), J3 = (S3∩ I(G)), then by

using Lemma 3.1.1, we get

(I(G) : y1)/I(G)∼= S1/J1[xn]⊕S2/J2[x1]⊕S3/J3[y2]

∼=
K[x1, . . . ,xn−2,y2, . . . ,yn−1](

∪n−3
i=2 {xiyi,xixi+1,yiyi+1}∪{xn−2yn−2,x1x2,yn−2yn−1}

) [xn]

⊕ K[x3, . . . ,xn−1,y2, . . . ,yn−1](
∪n−2

i=3 {xiyi,xixi+1,yiyi+1}∪{xn−1yn−1,y2y3}
) [x1]

⊕ K[x3, . . . ,xn−1,y4, . . . ,yn](
∪n−2

i=4 {xiyi,xixi+1,yiyi+1}∪{xn−1yn−1,x3x4,yn−1yn}
) [y2]

∼= K[V (Dn−3)]/I(Dn−3)⊗K K[xn]⊕K[V (Bn−3)]/I(Bn−3)⊗K K[x1]

⊕K[V (Dn−4)]/I(Dn−4)⊗K K[y2].

(3.2.5)

By using Eqs. (3.2.4), (3.2.5) and Lemma 1.4.10, we have

depth(S/(I(G) : y1)) = depthK[V (Dn−3)]/I(Dn−3)+depthK[y1], (3.2.6)

depth
(
(I(G) : y1)/I(G)

)
= min

{
depthK[V (Dn−3)]/I(Dn−3)+1,depthK[V (Bn−3)]/I(Bn−3)+1,

depthK[V (Dn−4)]/I(Dn−4)+1
}
.

(3.2.7)

Now, if n ≡ 1(mod4), then n− 3 ≡ 2(mod4) and n− 4 ≡ 1(mod4). By using Lemma 3.1.17

in Eq. (3.2.6), we get

depth(S/(I(G) : y1)) = depthK[V (Dn−3)]/I(Dn−3)+1 = ⌈n−3+1
2

⌉+1 = ⌈n
2
⌉.

By applying Lemma 3.1.5, Lemma 3.1.17 and Remark 3.1.2 on Eq. (3.2.7), we get

depth
(
(I(G) : y1)/I(G)

)
= min

{
⌈n−3+1

2
⌉+1,⌈n−3+1

2
⌉+1,⌈n−4+1

2
⌉+1+1

}
= min

{
⌈n

2
⌉,⌈n

2
⌉,⌈n+1

2
⌉
}

= ⌈n
2
⌉.

As depth(S/(I(G) : y1)) = depth
(
(I(G) : y1)/I(G)

)
= ⌈n

2⌉, therefore by applying Depth Lemma

on Eq. (3.2.1), we get depth(S/I(G) = ⌈n
2⌉. If n ≡ 2(mod4), then n−3 ≡ 3(mod4) and n−4 ≡
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2(mod4). To prove the result, we use similar strategy of the previous case and get the desired

result that is depth(S/I(G)) = ⌈n−1
2 ⌉. If n ≡ 0,3(mod4), the proof is similar.

Corollary 3.2.3 ([81]). For n ≥ 2, let G =C2n(1,n) and S = K[V (G)]. Then

pdim(S/I(G)) =

 2n−⌈n
2⌉, if n ≡ 1(mod4);

2n−⌈n−1
2 ⌉, otherwise.

Proof. The required result is the direct consequence by using Lemma 1.4.11 and Proposition

3.2.2.

Proposition 3.2.4 ([81]). For n ≥ 2, let G =C2n(1,n) and S = K[V (G)]. Then

sdepth(S/I(G)) =

 ⌈n
2⌉, if n ≡ 1(mod4);

⌈n−1
2 ⌉, if n ≡ 2(mod4).

If n ≡ 0,3(mod4), then

⌈n−1
2

⌉ ≤ sdepth(S/I(G))≤ ⌈n
2
⌉+1.

Proof. If n= 2, we have C4(1,2)∼=K4, then we get the result by Lemma 1.3.17, sdepth(S/I(G))≥

1. If n= 3, we find the required lower bound by using Lemma 1.3.15. For the upper bound, since

y1 /∈ I(G), by Lemma 1.3.12, sdepth(S/I(G))≤ sdepth(S/(I(G) : y1). Here

K[V (G)]/(I(G) : y1)∼=
K[x2,y3]

(0)
[y1],

and by Lemma 1.4.10, sdepth(S/I(G)) ≤ sdepth(K[x1,x3,y2]) = 3. If n = 4, one can find a

lower bound for Stanley depth in a similar way as depth in Proposition 3.2.2 just by using

Lemma 1.3.10 in place of Depth Lemma, that is sdepth(S/I(G)) ≥ 2. For the upper bound, by

using Eq. (3.2.2), Lemma 1.3.12 and Lemma 1.4.10, sdepth(S/I(G))≤ sdepth(S/(I(G) : y1) =

sdepth(K[V (P4)]/I(P4))+1= 3. Let n≥ 5. By using a similar strategy of depth as in Proposition

3.2.2 and applying Lemma 1.3.10 in place of Depth Lemma on Eq. (3.2.1), we get the required

lower bound for Stanley depth. For other inequality, by using Lemma 1.3.12, Lemma 1.4.10

and Lemma 3.1.17 on Eq. (3.2.4), we get the required result. This completes the proof.

Example 3.2.5. Let n = 11. If G =C2n(1,n) =C22(1,11), then

(a) depth(K[V (C22(1,11))]/I(C22(1,11))) = 5.

(b) pdim(K[V (C22(1,11))]/I(C22(1,11))) = 17.
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(c) 5 ≤ sdepth(K[V (C22(1,11))]/I(C22(1,11)))≤ 7.

Proposition 3.2.6 ([81]). For n ≥ 3, let G =C2n(2,n) and S = K[V (G)]. Then

depth(S/I(G)) =

⌈n−1
2 ⌉, if n ≡ 1(mod4);

⌈n
2⌉, otherwise.

Proof. If n= 3, one can easily see that the result holds by Macaulay2 [13]. If n= 4, we consider

the short exact sequence

0 −→ (I(G) : y4)/I(G)
·y4−→ S/I(G)−→ S/(I(G) : y4)−→ 0. (3.2.8)

We have

K[V (G)]/(I(G) : y4)∼=
K[x1,x2,x3,y2]

(x1x2,x2x3,x2y2)
[y4]∼= K[V (S4)]/I(S4)⊗K K[y4], (3.2.9)

and if we have NG(y4) = {y3,x4,y1}, S1 = K[V (G)\NG(y3)], S2 = K[V (G)\(NG(x4)∪{y3})],

S3 = K[V (G)\(NG(y1)∪{y3,x4})], J1 = (S1∩ I(G)), J2 = (S2∩ I(G)), J3 = (S3∩ I(G)), then by

using Lemma 3.1.1, we get

(I(G) : y4)/I(G)∼= S1/J1[y3]⊕S2/J2[x4]⊕S3/J3[y1]

∼=
K[x1,x2,x4,y1]

(x1x2,x1x4,x1y1)
[y3]⊕

K[x2,y1,y2]

(y1y2,y2x2)
[x4]⊕

K[x2,x3]

(x2x3)
[y1]

∼= K[V (S4)]/I(S4)⊗K K[y3]⊕
(
K[V (P3)]/I(P3)⊗K K[x4]

)
⊕K[V (P2)]/I(P2)⊗K K[y1].

(3.2.10)

We apply Lemma 1.4.10, Lemma 1.4.15 and Lemma 1.3.16 on Eq. (3.2.9), depth(K[V (G)]/(I(G) :

y4)) = depth(K[V (S4)]/I(S4))+1 = 2 and by Eq.(3.2.10)

depth((I(G) : y4)/I(G)) = min{depth(K[V (S4)]/I(S4))+1,depth(K[V (P3)]/I(P3))+1,

depth(K[V (P2)]/I(P2))+1}

= 2.

By using Depth Lemma on Eq. (3.2.8), depth(S/I(G)) = 2. Let n ≥ 5. Consider the following

short exact sequence

0 −→ (I(G) : yn)/I(G)
·yn−→ S/I(G)−→ S/(I(G) : yn)−→ 0. (3.2.11)

Here

S/(I(G) : yn)∼= K[V (Qn−3)]/I(Qn−3)⊗K K[yn], (3.2.12)
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and if we have NG(yn)= {yn−1,xn,y1}, S1 =K[V (G)\NG(yn−1)], S2 =K[V (G)\(NG(xn)∪{yn−1})],

S3 = K[V (G)\(NG(y1)∪{yn−1,xn})], J1 = (S1 ∩ I(G)), J2 = (S2 ∩ I(G)), J3 = (S3 ∩ I(G)), then

by using Lemma 3.1.1, we have

(I(G) : yn)/I(G)∼= S1/J1[yn−1]⊕S2/J2[xn]⊕S3/J3[y1]

∼=
K[x1, . . . ,xn−2,xn,y1, . . . ,yn−3](

∪n−4
i=1 {xiyi,xixi+1,yiyi+1}∪{xn−3yn−3,x1xn,xn−3xn−2}

) [yn−1]

⊕ K[x2, . . . ,xn−2,y1, . . . ,yn−2](
∪n−3

i=2 {xiyi,xixi+1,yiyi+1}∪{xn−2yn−2,y1y2}
) [xn]

⊕ K[x2, . . . ,xn−1,y3, . . . ,yn−2](
∪n−3

i=2 {xiyi,xixi+1,yiyi+1}∪{xn−2yn−2,xn−2xn−1,x2x3}
) [y1]

∼= K[V (Qn−3)]/I(Qn−3)⊗K K[yn−1]⊕K[V (Bn−3)]/I(Bn−3)⊗K K[xn]

⊕K[V (Qn−4)]/I(Qn−4)⊗K K[y1]

(3.2.13)

By Eqs. (3.2.13), (3.2.12) and Lemma 1.4.10, we get

depth(S/(I(G) : yn)) = depthK[V (Qn−3)]/I(Qn−3)+depthK[yn], (3.2.14)

and

depth
(
(I(G) : yn)/I(G)

)
= min

{
depthK[V (Qn−3)]/I(Qn−3)+1,depthK[V (Bn−3)]/I(Bn−3)+1,

depthK[V (Qn−4)]/I(Qn−4)+1
}
.

(3.2.15)

If n ≡ 1(mod4), then n− 3 ≡ 2(mod4) and n− 4 ≡ 1(mod4). By applying Lemma 3.1.14,

Lemma 1.4.10 on Eq. (3.2.14), we get

depth(S/(I(G) : yn)) = ⌈n−3+1
2

⌉+1+1 = ⌈n
2
⌉+1. (3.2.16)

By applying Lemma 3.1.5, Lemma 3.1.14 and Remark 3.1.2 on Eq. (3.2.15), we get

depth
(
(I(G) : yn)/I(G)

)
= min

{
⌈n−3+1

2
⌉+1+1,⌈n−3+1

2
⌉+1,⌈n−4+1

2
⌉+1

}
= min

{
⌈n

2
⌉+1,⌈n

2
⌉,⌈n−1

2
⌉
}

= ⌈n−1
2

⌉.

(3.2.17)
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Since, depth
(
(I(G) : yn)/I(G)

)
< depth(S/(I(G) : yn)), thus the desired result follows by ap-

plying Depth Lemma on Eq. (3.2.11). Similarly, if n ≡ 2(mod4), then n− 3 ≡ 3(mod4) and

n−4 ≡ 2(mod4), then the required results follows by similar strategy that is depth(S/I(G)) =

⌈n
2⌉. If n ≡ 0,3(mod4), the proof follows in a similar way.

Corollary 3.2.7 ([81]). For n ≥ 3, let G =C2n(2,n) and S = K[V (G)]. Then

pdim(S/I(G)) =

2n−⌈n−1
2 ⌉, if n ≡ 1(mod4);

2n−⌈n
2⌉, otherwise.

Proof. The proof follows by Lemma 1.4.11 and Proposition 3.2.6.

Proposition 3.2.8 ([81]). For n ≥ 3, let G = C2n(2,n) and S = K[V (G)]. If n ≡ 0,3(mod4),

then

sdepth(S/I(G)) = ⌈n
2
⌉.

If n ≡ 1(mod4), then

⌈n−1
2

⌉ ≤ sdepth(S/I(G))≤ ⌈n
2
⌉+1,

and if n ≡ 2(mod4), we have

⌈n−1
2

⌉ ≤ sdepth(S/I(G))≤ ⌈n−1
2

⌉+1.

Proof. If n = 3, one can get lower bound by using CoCoA [20] that is sdepth(S/I(G))≥ 2. For

the upper bound, by Lemma 1.3.12, sdepth(S/I(G))≤ sdepth(S/(I(G) : y3). Here

K[V (G)]/(I(G) : y3)∼=
K[x1,x2]

(x1x2)
[y3], (3.2.18)

by Lemma 1.4.10 and Lemma 1.4.15, we get sdepth(S/I(G)) ≤ 2. Let n = 4. For the upper

bound, since y4 /∈ I(G), by Lemma 1.3.12, we have sdepth(S/I(G)) ≤ sdepth(S/(I(G) : y4).

Here

K[V (G)]/(I(G) : y4)∼=
K[x1,x2,x3,y2]

(x1x2,x2y2,x2x3)
[y4]∼= K[V (S4)]/I(S4)⊗K K[y4],

and by Lemma 1.4.10 and Lemma 1.3.16, sdepth(S/I(G)) ≤ sdepth(K[V (S4)]/I(S4))+ 1 = 2.

For other inequality, one can find Stanley depth in a similar way as depth in Proposition 3.2.6

just by using Lemma 1.3.10 in place of Depth Lemma, that is sdepth(S/I(G)) ≥ 2. Let n ≥ 5.

We get the desired lower bound for Stanley depth by using a similar strategy of depth as in

Proposition 3.2.6 and applying Lemma 1.3.10 in-place of Depth Lemma on Eq. (3.2.11). For

other inequality, by using Lemma 1.3.12, Lemma 1.4.10 and Lemma 3.1.14 on Eq. (3.2.12), the

required result follows.
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Example 3.2.9. For n = 13, we have

(a) depth(K[V (C26(2,13))]/I(C26(2,13))) = 6.

(b) pdim(K[V (C26(2,13))]/I(C26(2,13))) = 20.

(c) 6 ≤ sdepth(K[V (C26(2,13))]/I(C26(2,13)))≤ 8.

Before proving Theorem 3.2.11, we make the following remark.

Remark 3.2.10 ([81]). Let n ≥ 2, t = gcd(2n,a) and 1 ≤ a < n. Note that by Theorem 3.2.1(b),

C2n(a,n) is isomorphic to t
2 copies of C 4n

t
(2, 2n

t ). For C 4n
t
(2, 2n

t ), we only need to consider the

case when 2n
t is odd. If 2n

t is even, then by Theorem 3.2.1(a), we have t disjoint copies of

C 2n
t
(1, n

t ).

Theorem 3.2.11 ([81]). Let n ≥ 2, t = gcd(2n,a) and 1 ≤ a < n.

(a) If 2n
t is even, then

depth(K[V (C2n(a,n))]/I(C2n(a,n))) =


⌈ n

2t ⌉ · t, if n
t ≡ 1(mod4);

⌈n−t
2t ⌉ · t, otherwise.

(b) If 2n
t is odd, then

depth(K[V (C2n(a,n))]/I(C2n(a,n))) =


⌈2n−t

2t ⌉ · t
2 , if 2n

t ≡ 1(mod4);

⌈n
t ⌉ ·

t
2 , if 2n

t ≡ 3(mod4).

Proof. Let 2n
t is even. Since t = gcd(2n,a), therefore n

t ≥ 2 and a positive integer. Now by

using Proposition 3.2.2, we have

depth
(
K[V (C 2n

t
(1,

n
t
))]/I(C 2n

t
(1,

n
t
))
)
=


⌈ n

t
2

⌉
, if n

t ≡ 1(mod4);

⌈ n
t −1

2

⌉
, otherwise.

By Theorem 3.2.1, C2n(a,n) is isomorphic to t copies of C 2n
t
(1, n

t ). Therefore, by Lemma 1.3.11,
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depth(K[V (C2n(a,n))]/I(C2n(a,n))) =


⌈ n

2t

⌉
· t, if n

t ≡ 1(mod4);

⌈ n
t −1

2

⌉
· t, otherwise.

Now, if 2n
t is odd, then 2n

t > 2 and a positive integer. By using a similar strategy, use Proposition

3.2.6 in place of Proposition 3.2.2 and by Theorem 3.2.1, C2n(a,n) is isomorphic to t
2 copies of

C 4n
t
(2, 2n

t ). By Remark 3.2.10, it is enough to consider the cases when 2n
t is odd, therefore by

Lemma 1.3.11, the required result follows

depth(K[V (C2n(a,n))]/I(C2n(a,n))) =


⌈

2n
t −1

2 ⌉ · t
2 , if 2n

t ≡ 1(mod4);

⌈
2n
t
2 ⌉ · t

2 , if 2n
t ≡ 3(mod4).

Corollary 3.2.12 ([81]). Let n ≥ 2, t = gcd(2n,a) and 1 ≤ a < n.

(a) If 2n
t is even, then

pdim(K[V (C2n(a,n))]/I(C2n(a,n))) =


2n−⌈ n

2t ⌉ · t, if n
t ≡ 1(mod4);

2n−⌈n−t
2t ⌉ · t, otherwise.

(b) If 2n
t is odd, then

pdim(K[V (C2n(a,n))]/I(C2n(a,n))) =


2n−⌈2n−t

2t ⌉ · t
2 , if 2n

t ≡ 1(mod4);

2n−⌈n
t ⌉ ·

t
2 , if 2n

t ≡ 3(mod4).

Proof. The proof follows by Lemma 1.4.11 and Theorem 3.2.11.

Theorem 3.2.13 ([81]). Let n ≥ 2, t = gcd(2n,a) and 1 ≤ a < n.

(a) If 2n
t is even, then

sdepth(K[V (C2n(a,n))]/I(C2n(a,n)))≥


⌈ n

2t ⌉ · t, if n
t ≡ 1(mod4);

⌈n−t
2t ⌉ · t, otherwise.
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(b) If 2n
t is odd, then

sdepth(K[V (C2n(a,n))]/I(C2n(a,n)))≥


⌈2n−t

2t ⌉ · t
2 , if 2n

t ≡ 1(mod4);

⌈n
t ⌉ ·

t
2 , if 2n

t ≡ 3(mod4).

Proof. Since t = gcd(2n,a), therefore if 2n
t is even, then n

t is a positive integer greater than or

equals to 2. By Proposition 3.2.4, we have

sdepth(K[V (C 2n
t
(1,

n
t
))]/I(C 2n

t
(1,

n
t
)))≥


⌈

n
t
2 ⌉, if n

t ≡ 1(mod4);

⌈
n
t −1

2 ⌉, otherwise.

By using Theorem 3.2.1, C2n(a,n) is isomorphic to t copies of C 2n
t
(1, n

t ), therefore by Lemma

1.3.11,

sdepth(K[V (C2n(a,n))]/I(C2n(a,n)))≥


⌈

n
t
2 ⌉ · t, if n

t ≡ 1(mod4);

⌈
n
t −1

2 ⌉ · t, otherwise.

Similarly, if 2n
t is odd then 2n

t is a positive integer strictly greater than 2. We get the required

result just by replacing Proposition 3.2.4 with Proposition 3.2.8 and by Theorem 3.2.1, C2n(a,n)

is isomorphic to t
2 copies of C 4n

t
(2, 2n

t ). By using Remark 3.2.10, it is enough to cater the cases

when 2n
t is odd, therefore by Lemma 1.3.11, we get

sdepth(K[V (C2n(a,n))]/I(C2n(a,n)))≥


⌈

2n
t −1

2 ⌉ · t
2 , if 2n

t ≡ 1(mod4);

⌈
2n
t
2 ⌉ · t

2 , if 2n
t ≡ 3(mod4).

Example 3.2.14. Let n = 5 and a = 2. We have t = gcd(10,2) = 2 and 2n
t = 10

2 = 5 is odd, then

(a) depth(K[V (C10(2,5))]/I(C10(2,5))) = 2.

(b) pdim(K[V (C10(2,5))]/I(C10(2,5))) = 8.

(c) sdepth(K[V (C10(2,5))]/I(C10(2,5)))≥ 2.

Example 3.2.15. Let n = 8 and a = 4. We have t = gcd(16,4) = 4 and 2n
t = 16

4 = 4 is even,

then
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(a) depth(K[V (C16(4,8))]/I(C16(4,8))) = 4.

(b) pdim(K[V (C16(4,8))]/I(C16(4,8))) = 12.

(c) sdepth(K[V (C16(4,8))]/I(C16(4,8)))≥ 4.

Remark 3.2.16 ([81]). Let n ≥ 2, t = gcd(2n,a) and 1 ≤ a < n. Then Stanley’s inequality holds

for K[V (C2n(a,n))]/I(C2n(a,n)).

3.3 Conclusion

In this chapter, values of depth, projective dimension, and lower bounds for Stanley depth of

the quotient rings of the edge ideals of all cubic circulant graphs are computed. It is worth

mentioning that for providing these results, the precise values of the said invariants of the edge

ideals associated with certain supergraphs of ladder graph played an important role. For the

computation of depth and a lower bound for Stanley depth, Lemma 3.1.1 is very significant

in general. This work can be extended for finding the said algebraic invariants of edge ideals

associated with other families of circulant graphs, as we did for certain classes of circulant

graphs provided in the next chapter.
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CHAPTER 4

Algebraic invariants and some

circulant graphs

In this chapter, we study some invariants of the edge ideals associated with some families of

four and five regular circulant graphs, which include C2n(1,n − 1),C2n(1,2), and C2n(1,n −

1,n), where n ≥ 3. These graphs are depicted in Figures 4.1 and 4.2. In the first section of

present chapter, we find the algebraic invariants depth, regularity, Stanley depth and projective

dimension of cyclic modules associated with certain subgraphs of C2n(1,n− 1),C2n(1,2) and

C2n(1,n−1,n) ; see for instance Lemmas 4.1.4 and 4.1.6–4.1.10.

x1
x2

x3

x4

xi
xn−2

xn−1

xn

xn+1

xn+2

xn+3

xn+4

xn+i

x2n−2

x2n−1

x2n

x1
x3

x5

x7

xi
x2n−5

x2n−3

x2n−1

x2

x4

x6

x8

xi+1

x2n−4

x2n−2

x2n

Figure 4.1: From left to right C2n(1,n−1) and C2n(1,2).
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x1
x2

x3

x4

xi
xn−2

xn−1

xn

xn+1

xn+2

xn+3

xn+4

xn+i

x2n−2

x2n−1

x2n

Figure 4.2: C2n(1,n−1,n).

In the next section, we give the exact values of depth, projective dimension, and bounds for the

Stanley depth of K [V (C2n(1,n−1))]/I(C2n(1,n−1)), see Theorem 4.2.1, Corollary 4.2.2, and

Theorem 4.2.3. In Theorem 4.2.5, we give a formula for the regularity of the edge ideal associ-

ated with C2n(1,n−1) when n ≡ 0,1(mod3), and sharp bounds when n ≡ 2(mod3). Moreover,

we provide the exact values of the regularity of the edge ideal associated with C2n(1,2) when n

is even and tight bounds when n is odd, see Theorem 4.2.7. Our result in Theorem 4.2.9 gives

the exact value for the regularity of edge ideal associated with C2n(1,n−1,n).

4.1 Invariants of cyclic modules associated with certain subgraphs

of C2n(1,n−1),C2n(1,2) and C2n(1,n−1,n)

For n≥ 2, we introduce some families of subgraphs, namely En,Fn and Gn of C2n(1,n−1),C2n(1,2)

and C2n(1,n− 1,n), respectively as given in Figures 4.3 and 4.4. The vertex sets of these sub-

graphs are V (En) =V (Fn) =V (Gn) =
n⋃

i=1
{xi,yi} and the edge sets are as follows:

• E(En) =
n−1⋃
i=1

{
{xi,xi+1} ,{yi,yi+1},{xi,yi+1},{xi+1,yi}

}
,

• E(Fn) =
n−1⋃
i=1

{
{xi,yi},{xi,xi+1},{yi,yi+1},{xi,yi+1}

}⋃
{xn,yn},

• E(Gn) =
n−1⋃
i=1

{
{xi,yi},{xi,xi+1},{yi,yi+1},{xi,yi+1},{xi+1,yi}

}⋃
{xn,yn}.
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x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 4.3: From left to right En and Fn.

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 4.4: Gn.

Here, we give exact values of depth, projective dimension, and regularity of cyclic module

K[V (En)]/I(En). We also give bounds for the Stanley depth of such a module. Moreover, we

compute the exact values of regularity of cyclic modules K[V (Fn)]/I(Fn) and K[V (Gn)]/I(Gn).

It is worth mentioning that these findings are helpful in the subsequent section for proving our

main results.

Remark 4.1.1 ([82]). To cater some special cases in the proofs of subsequent results, the quo-

tient rings associated with En,Gn and Fn for n ≤ 1, are described as follows:

• K[V (E−1)]/I(E−1)∼= K[V (E0)]/I(E0)∼= K[V (F0)]/I(F0)∼= K[V (G0)]/I(G0)∼= K and

depth(K) = sdepth(K) = reg(K) = 0;

• K[V (E1)]/I(E1)∼=K[x,y], we have depth(K[x,y]) = sdepth(K[x,y]) = 2 and reg(K[x,y]) =

0;

• K[V (F1)]/I(F1)∼= K[V (G1)]/I(G1)∼= K[V (P2)]/I(P2), then by Lemma 1.4.15, we get

depth(K[V (P2)]/I(P2)) = sdepth(K[V (P2)]/I(P2)) = reg(K[V (P2)]/I(P2)) = 1.

Remark 4.1.2 ([82]). Let i ∈Z+, if k < i then we consider ∪k
i {xiyi+1,xixi+1,yiyi+1,xi+1yi}= /0.

Also we take xayb = 0, whenever a or b is not positive.

Remark 4.1.3 ([82]). Let xt ,xr ∈ S such that xt ,xr /∈ I. Then (I : xt) , (I,xt), ((I,xt),xr) and

((I,xt) : xr) are the monomial ideals of S such that G(I:xt), G(I,xt), G((I,xt),xr) and G((I,xt):xr) are

subgraphs of GI.
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By using Remark 4.1.3, see Figures 4.5 and 4.6 as examples of G(I(E7):y6),G(I(E7),y6),G((I(E7),y6),x6),

and G((I(E7),y6):x6). From Figures 4.5 and 4.6, we have the following isomorphisms:

K[V (E7)]/(I(E7) : y6)∼= K[V (E4)]/I(E4)⊗K K[y6,x6],

K[V (E7)]/(I(E7),y6)∼= K[V (E5)]/(I(E5),x5x6,x6y5,x6y7,x6x7),

K[V (E7)]/((I(E7),y6),x6)∼= K[V (E5)]/I(E5)⊗K K[y7,x7],

K[V (E7)]/((I(E7),y6) : x6)∼= K[V (E4)]/I(E4)⊗K K[x6].

x1 x2 x3 x4 x5 x7

y1 y2 y3 y4 y5 y7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 4.5: From left to right G(I(E7):y6) and G(I(E7),y6).

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5 x7

y1 y2 y3 y4 y5 y6 y7

Figure 4.6: From left to right G((I(E7),y6),x6) and G((I(E7),y6):x6).

First, we find the exact value of depth and lower bound of Stanley depth for K[V (En)/I(En)).

Lemma 4.1.4 ([82]). Let n ≥ 2. If S = K[V (En)], then

sdepth(S/I(En))≥ depth(S/I(En)) =


⌈n+4

3

⌉
, if n ≡ 1(mod 3);

⌈n
3

⌉
, otherwise.

Proof. We first show the proof for depth. If n = 2, then E2 ∼= C4. It is clear that the result

holds by using Lemma 1.3.18. If n = 3, we have E3 ∼= K4,2, then from Lemma 1.3.19, we have

depth(S/I(En)) = 1. Let n ≥ 4. We consider the subsequent cases:

Case 1. Let n ≡ 1(mod3). Consider the following short exact sequences

0 −→ S/(I(En) : yn−1)
·yn−1−−−→ S/I(En)−→ S/(I(En),yn−1)−→ 0,
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0 −→ S/((I(En),yn−1) : xn−1)
·xn−1−−−→ S/(I(En),yn−1)−→ S/((I(En),yn−1),xn−1)−→ 0.

By Lemma 3.1.4,

depth
(

S/(I(En)
)
≥ min

{
depth

(
S/(I(En) : yn−1)

)
,depth

(
S/(I(En),yn−1)

)}
,

(4.1.1)

depth
(

S/(I(En),yn−1)
)

≥ min
{

depth
(

S/((I(En),yn−1) : xn−1)
)
,depth

(
S/((I(En),yn−1),xn−1)

)}
.

(4.1.2)

We have

S/(I(En) : yn−1)∼= K[V (En−3)]/I(En−3)⊗K K[yn−1,xn−1], (4.1.3)

S/((I(En),yn−1),xn−1)∼= K[V (En−2)]/I(En−2)⊗K K[yn,xn], (4.1.4)

S/((I(En),yn−1) : xn−1)∼= K[V (En−3)]/I(En−3)⊗K K[xn−1]. (4.1.5)

As n− 3 ≡ 1(mod3), by applying Lemma 1.4.10 and Remark 4.1.1 on Eq (4.1.3) and

using induction on n, we get

depth
(

S/(I(En) : yn−1)
)
=

⌈
n−3+4

3

⌉
+2 =

⌈
n+4

3

⌉
+1.

Since n− 2 ≡ 2(mod3), by using Lemma 1.4.10 on Eq (4.1.4) and induction on n, it

follows

depth
(

S/((I(En),yn−1),xn−1)
)
=

⌈
n−2

3

⌉
+2 =

⌈
n+4

2

⌉
.

Now, by Eq (4.1.5) and applying induction on n, Lemma 1.4.10 and Remark 4.1.1, we get

depth
(

S/((I(En),yn−1) : xn−1)
)
=

⌈
n−3+4

3

⌉
+1 =

⌈
n+4

3

⌉
.

Here

depth
(

S/((I(En),yn−1),xn−1)
)
= depth

(
S/((I(En),yn−1) : xn−1)

)
,

by using Eq (4.1.2),

depth
(

S/(I(En),yn−1)
)
≥
⌈

n+4
3

⌉
.

By Eq (4.1.1), we get

depth(S/(I(En))≥
⌈

n+4
3

⌉
. (4.1.6)

For the other inequality, if yn /∈ I(En), then

S/(I(En) : yn)∼= K[V (En−2)]/I(En−2)⊗K K[yn,xn].
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Since n−2 ≡ 2(mod3), by Lemmas 1.3.12, 1.4.10 and induction on n,

depth(S/I(En))≤ depth(S/(I(En) : yn)) =

⌈
n−2

3

⌉
+2 =

⌈
n+4

3

⌉
. (4.1.7)

We get the required result by combining Eqs (4.1.6) and (4.1.7).

Case 2. Let n ≡ 2(mod3). Consider the short exact sequence

0 −→ (I(En) : yn−1)/I(En)
·yn−1−−−→ S/I(En)−→ S/(I(En) : yn−1)−→ 0. (4.1.8)

Note that here we have

NEn(yn−1) = {yn−2,xn−2,yn,xn} ,

S1 = K[V (En)\NEn(yn−2)],

S2 = K
[
V (En)\(NEn(xn−2)∪{yn−2})

]
,

S3 = K
[
V (En)\(NEn(yn)∪{yn−2,xn−2})

]
,

S4 = K
[
V (En)\(NEn(xn)∪{yn−2,xn−2,yn})

]
,

J1 = (S1 ∩ I(En)) , J2 = (S2 ∩ I(En)) ,

J3 = (S3 ∩ I(En)) , J4 = (S4 ∩ I(En)) ,

then by using Lemma 3.1.1, we get

(I(En) : yn−1)/I(En)∼= S1/J1[yn−2]⊕S2/J2[xn−2]⊕S3/J3[yn]⊕S4/J4[xn]

∼=
K[x1, . . . ,xn−4,xn−2,xn,y1, . . . ,yn−4,yn](

∪n−5
i=1 {xiyi+1,xixi+1,yiyi+1,xi+1yi}

) [yn−2]

⊕ K[x1, . . . ,xn−4,xn,y1, . . . ,yn−4,yn](
∪n−5

i=1 {xiyi+1,xixi+1,yiyi+1,xi+1yi}
) [xn−2]

⊕ K[x1, . . . ,xn−3,xn,y1, . . . ,yn−3](
∪n−4

i=1 {xiyi+1,xixi+1,yiyi+1,xi+1yi}
) [yn]

⊕ K[x1, . . . ,xn−3,y1, . . . ,yn−3](
∪n−4

i=1 {xiyi+1,xixi+1,yiyi+1,xi+1yi}
) [xn]

∼=
(

K[V (En−4)]/I(En−4)⊗K K[xn−2,xn,yn,yn−2]
)

⊕
(

K[V (En−4)]/I(En−4)⊗K K[xn,yn,xn−2]
)

⊕
(

K[V (En−3)]/I(En−3)⊗K K[xn,yn]
)

⊕
(

K[V (En−3)]/I(En−3)⊗K K[xn]
)
.

By Lemma 1.4.10 on Eq (4.1.3),

depth(S/(I(En) : yn−1)) = depthK[V (En−3)]/I(En−3)+depthK[yn−1,xn−1]. (4.1.9)
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Also,

depth
(
(I(En) : yn−1)/I(En)

)
= min

{
depth(K[V (En−4)]/I(En−4))+4,depth(K[V (En−4)]/I(En−4))+3,

depth(K[V (En−3)]/I(En−3))+2,depth(K[V (En−3)]/I(En−3))+1
}
.

(4.1.10)

Here n−4 ≡ 1(mod3) and n−3 ≡ 2(mod3). We apply induction on Eq (4.1.9) and get

depth(S/(I(En) : yn−1)) =

⌈
n−3

3

⌉
+2 =

⌈n
3

⌉
+1. (4.1.11)

Using induction on n and Remark 4.1.1 on Eq (4.1.10),

depth
(
(I(En) : yn−1)/I(En)

)
= min

{⌈
n−4+4

3

⌉
+4,

⌈
n−4+4

3

⌉
+3,

⌈
n−3

3

⌉
+2,

⌈
n−3

3

⌉
+1

}
=
⌈n

3

⌉
.

(4.1.12)

We get the required result by applying Lemma 3.1.4 on Eq (4.1.8).

Case 3. If n ≡ 0(mod3), then n−4 ≡ 2(mod3) and n−3 ≡ 0(mod3). By applying induction

on Eq (4.1.9),

depth(S/(I(En) : yn−1)) =

⌈
n−3

3

⌉
+2 =

⌈n
3

⌉
+1. (4.1.13)

By using Eq (4.1.10) and applying induction on n, we get

depth
(
(I(En) : yn−1)/I(En)

)
= min

{⌈
n−4

3

⌉
+4,

⌈
n−4

3

⌉
+3,

⌈
n−3

3

⌉
+2,

⌈
n−3

3

⌉
+1

}
=
⌈n

3

⌉
.

(4.1.14)

The desired result is obtained by applying Lemma 3.1.4 on Eq (4.1.8).

This ends the proof for depth. Next, we provide the result for the lower bound of Stanley depth.

If n = 2, then E2 ∼= C4 and the result holds by Lemma 1.3.18. If n = 3, we get the required

result from Lemma 1.3.19. Let n ≥ 4. We get the lower bound for Stanley depth in a similar

way to the depth just by replacing Lemmas 3.1.4 and 1.3.12 with Lemmas 1.3.10 and 1.3.12,

respectively.

By using the Auslander Buchsbaum formula, we have the following result.
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Corollary 4.1.5 ([82]). Let n ≥ 2 and S = K[V (En)]. Then

pdim(S/I(En)) =


2n−

⌈n+4
3

⌉
, if n ≡ 1(mod 3);

2n−
⌈n

3

⌉
, otherwise.

Proof. The required result follows from Lemmas 1.4.11 and 4.1.4.

Now we will find the upper bound for Stanley depth of K[V (En)/I(En)].

Lemma 4.1.6 ([82]). Let n ≥ 2 and S = K[V (En)]. Then

sdepth(S/I(En))≤



2n
3 , if n ≡ 0(mod 3);

2n+2
3 , if n ≡ 2(mod 3);

2n+4
3 , if n ≡ 1(mod 3).

Proof. If n = 2, then E2 ∼=C4 and we get the required result by Lemma 1.3.18. If n = 3, since

y2 /∈ I(E3) then S/(I(E3) : y2)∼= K[x2,y2]/(0), we have by Lemma 1.3.12,

sdepth(S/I(E3))≤ sdepth(S/(I(E3) : y2)) = sdepth(K[x2,y2]) = 2.

Let n ≥ 4. If n ≡ 0(mod3), then n−3 ≡ 0(mod3). Since xn−1yn−1 /∈ I(En), we have

S/
(
I(En) : xn−1yn−1

)∼= K[V (En−3)]/I(En−3)⊗K K[xn−1,yn−1].

By using Lemma 1.4.10 and applying induction on n,

sdepth
(
S/

(
I(En) : xn−1yn−1

))
= sdepth(K[V (En−3)]/I(En−3))+2 ≤ 2(n−3)

3
+2 =

2n
3
.

Therefore, by applying Lemma 1.3.12, we get

sdepth(S/I(En))≤ sdepth
(
S/

(
I(En) : xn−1yn−1

))
≤ 2n

3
.

Let n ≡ 2(mod3). Since yn /∈ I(En),

S/(I(En) : yn)∼= K[V (En−2)]/I(En−2)⊗K K[yn,xn].

Since n−2 ≡ 0(mod3), by using Lemmas 1.3.12, 1.4.10 and induction on n, we get

sdepth(S/I(En))≤ sdepth(S/(I(En) : yn)) = sdepth(K[V (En−2)]/I(En−2))+2

≤ 2(n−2)
3

+2 =
2n+2

3
.
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If n ≡ 1(mod3), then n−2 ≡ 2(mod3). The proof follows a similar strategy and we get

sdepth((S/I(En)))≤ sdepth(S/(I(En) : yn)) = sdepth(K[V (En−2)]/I(En−2))+2

≤ 2(n−2)+2
3

+2 =
2n+4

3
.

This ends the proof.

Example 4.1.7. For n = 226, we have

(a) depth(K[V (E226)])/I(E226) = ⌈226+4
3 ⌉= 77.

(b) 77 ≤ sdepth(K[V (E226)])/I(E226)≤ 452+4
3 = 152.

(c) pdim(K[V (E226)])/I(E226) = 452−⌈226+4
3 ⌉= 375.

In the following lemmas we will find the exact values of the cyclic modules K[V (En)]/I(En),

K[V (Fn)]/I(Fn) and K[V (Gn)]/I(Gn) for regularity.

Lemma 4.1.8 ([82]). Let n ≥ 2 and S = K[V (En)]. Then reg(S/I(En)) =
⌈n−1

3

⌉
.

Proof. Let S=K[V (En)]. If n= 2 then by using Lemma 1.4.16, we have reg(K[V (E2)]/I(E2))=

reg(K[V (C4)]/I(C4)) = 1. Let n ≥ 3, we have the following K-algebra isomorphisms:

S/(I(En) : xn−2)∼= K[V (En−4)]/I(En−4)⊗K K[xn−2,yn−2,xn,yn], (4.1.15)

S/
(
(I(En),xn−2),yn−2

)∼= K[V (En−3)]/I(En−3)⊗K K[V (E2)]/I(E2), (4.1.16)

S/
(
(I(En),xn−2) : yn−2

)∼= K[V (En−4)]/I(En−4)⊗K K[yn−2,xn,yn]. (4.1.17)

If n = 3, by using Eq (4.1.15) we get S/(I(E3) : x1) ∼= K[V (E−1)]/I(E−1)⊗K K[x1,y1,x3,y3].

Moreover, by Eq (4.1.16), we have S/((I(E3),x1),y1) ∼= K[V (E0)]/I(E0)⊗K K[V (E2)]/I(E2),

and by Eq (4.1.17), S/((I(E3),x1) : y1)∼= K[V (E−1)]/I(E−1)⊗K K[y1,x3,y3]. By Remark 4.1.1

and Lemma 1.4.10, we get

reg
(

S/(I(E3) : x1)
)
= reg

(
K[V (E−1)]/I(E−1)

)
= reg(K) = 0,

reg
(

S/((I(E3),x1) : y1)
)
= reg

(
K[V (E−1)]/I(E−1)

)
= reg(K) = 0,

and

reg
(

S/((I(E3),x1),y1)
)
= reg

(
K[V (E0)]/I(E0)

)
+ reg

(
K[V (E2)]/I(E2)

)
= 0+1 = 1.
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Since reg
(

S/((I(E3),x1) : y1)
)
< reg

(
S/((I(E3),x1),y1)

)
, by using Lemma 1.4.12(c), we get

reg(S/(I(E3),x1))= 1. Also, reg(S/(I(E3) : x1))< reg(S/(I(E3),x1), again by Lemma 1.4.12(c),

reg(S/I(E3)) = 1. If n = 4, by using a similar strategy one can get reg(S/I(E4)) = 1. Let n ≥ 5.

By using induction on n, Remark 4.1.1, Lemma 1.4.10 and Eqs (4.1.15)–(4.1.17), we get

reg
(

S/(I(En) : xn−2)
)
= reg

(
K[V (En−4)]/I(En−4)

)
=

⌈
n−5

3

⌉
,

reg
(

S/
(
(I(En),xn−2) : yn−2

))
= reg

(
K[V (En−4)]/I(En−4)

)
=

⌈
n−5

3

⌉
,

and by Lemma 1.4.14,

reg
(

S/
(
(I(En),xn−2),yn−2

))
= reg

(
K[V (En−3)]/I(En−3)

)
+ reg

(
K[V (E2)]/I(E2)

)
=

⌈
n−4

3

⌉
+1 =

⌈
n−1

3

⌉
.

Since

reg
(

S/
(
(I(En),xn−2) : yn−2

))
< reg

(
S/

(
(I(En),xn−2),yn−1

))
,

by Lemma 1.4.12(c) we get reg
(

S/(I(En),xn−2)
)
=
⌈n−1

3

⌉
. Also we have

reg
(

S/(I(En) : xn−2)
)
< reg

(
S/(I(En),xn−2

)
.

Again by Lemma 1.4.12(c), the desired result follows.

Lemma 4.1.9 ([82]). Let n ≥ 2 and S = K[V (Fn)]. Then reg(S/I(Fn)) =
⌈n

2

⌉
.

Proof. If n= 2, then we have S/(I(F2) : y1)∼=K[y1,x2], and S/(I(F2),y1)∼=K[V (C3)]/I(C3). By

Lemmas 1.4.10 and 1.4.16, reg
(

S/(I(F2) : y1)
)
= 0 and reg

(
S/(I(F2),y1)

)
=K[V (C3)]/I(C3)=

1. Since reg
(

S/(I(F2) : y1)
)
< reg

(
S/(I(F2),y1)

)
, therefore by Lemma 1.4.12(c), we have

reg(K[V (F2)]/I(F2)) = 1. Let n = 3 and F3 = H1 ∪H2, where H1 ∼= H2 ∼= F2 and H1 ∩H2 ̸= /0.

By Lemma 1.4.13, we get

reg
(

S/I(F3)
)
≤ reg

(
K[V (H1)]/I(H1)

)
+ reg

(
K[V (H2)]/I(H2)

)
= 2.

For the other inequality, let M =
{
{x1,y1},{x3,y3}

}
. It is clear that M is an induced matching,

therefore, indmat(Fn) ≥ |M| = 2. By combining the two inequalities, we get reg(S/I(F3)) = 2.

Let n ≥ 4. Here we consider the following two cases:

Case 1. If n is even. We have the K-algebra isomorphisms:

S/(I(Fn) : yn−1)∼= K[V (Fn−3)]/I(Fn−3)⊗K K[yn−1,xn], (4.1.18)

85



CHAPTER 4: ALGEBRAIC INVARIANTS AND SOME CIRCULANT GRAPHS

S/
(
(I(Fn),yn−1),xn−1

)∼= K[V (Fn−2)]/I(Fn−2)⊗K K[V (P2)]/I(P2), (4.1.19)

S/
((
(I(Fn),yn−1) : xn−1

)
,yn−2

)∼= K[V (Fn−3)]/I(Fn−3)⊗K K[xn−1], (4.1.20)

S/
((
(I(Fn),yn−1) : xn−1

)
: yn−2

)∼= K[V (Fn−4)]/I(Fn−4)⊗K K[xn−1,yn−2]. (4.1.21)

If n = 4, we have

S/(I(F4) : y3)∼= K[V (F1)]/I(F1)⊗K K[y3,x4],

S/
(
(I(F4),y3),x3

)∼= K[V (F2)]/I(F2)⊗K K[V (P2)]/I(P2),

S/
(
(I(F4),y3) : x3

)∼= K[V (C3)]/I(C3)⊗K K[x3].

By Lemma 1.4.10, Remark 4.1.1 we have reg
(

S/(I(F4) : y3)
)
= reg

(
K[V (F1)]/I(F1)

)
=

1, and by Lemmas 1.4.15 and 1.4.16, we have

reg
(

S/
(
(I(F4),y3),x3

))
= reg

(
K[V (F2)]/I(F2)

)
+ reg

(
K[V (P2)]/I(P2)

)
= 2

and

reg
(

S/
(
(I(F4),y3) : x3

))
= reg

(
K[V (C3)]/I(C3)

)
= 1.

Since reg
(

S/
(
(I(F4),y3) : x3

))
< reg

(
S/

(
(I(F4),y3),x3

))
, by using Lemma 1.4.12(c),

we get reg
(

S/(I(F4),y3)
)
= 2. Moreover, reg

(
S/(I(F4) : y3)

)
< reg

(
S/(I(F4),y3

)
, and

again by using Lemma 1.4.12(c), we get reg
(
S/(I(F4)

)
= 2. Let n≥ 6. By using induction

on n, Lemmas 1.4.10 and 1.4.14 on Eqs (4.1.18)–(4.1.21), we get

reg
(

S/(I(Fn) : yn−1)
)
= reg

(
K[V (Fn−3)]/I(Fn−3)

)
=

⌈
n−3

2

⌉
,

reg
(

S/
(
(I(Fn),yn−1),xn−1

))
= reg

(
K[V (Fn−2)]/I(Fn−2)

)
+ reg

(
K[V (P2)]/I(P2)

)
=

⌈
n−2

2

⌉
+1 =

⌈n
2

⌉
,

reg
(

S/
((
(I(Fn),yn−1) : xn−1

)
,yn−2

))
= reg

(
K[V (Fn−3)]/I(Fn−3)

)
=

⌈
n−3

2

⌉
,

reg
(

S/
((
(I(Fn),yn−1) : xn−1

)
: yn−2

))
= reg

(
K[V (Fn−4)]/I(Fn−4)

)
=

⌈
n−4

2

⌉
.

Since n is even, therefore

reg
(

S/
((
(I(Fn),yn−1) : xn−1

)
: yn−2

))
< reg

(
S/

((
(I(Fn),yn−1) : xn−1

)
,yn−2

))
,

by Lemma 1.4.12(c), we get

reg
(

S/
(
(I(Fn),yn−1) : xn−1

))
=

⌈
n−3

2

⌉
.
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Also, reg
(

S/
(
(I(Fn),yn−1) : xn−1

))
< reg

(
S/((I(Fn),yn−1),xn−1)

)
, again by Lemma

1.4.12(c), reg
(

S/(I(Fn),yn−1)
)
=
⌈n

2

⌉
. We have reg

(
S/(I(Fn) : yn−1)

)
< reg

(
S/(I(Fn),yn−1)

)
,

therefore, by Lemma 1.4.12(c), the required result follows.

Case 2. If n is odd. Here Fn = F2 ∪H, where H ∼= Fn−1 and F2 ∩H ̸= /0. By induction on n and

Lemma 1.4.13, we get

reg(S/I(Fn))≤ reg(K[V (F2)]/I(F2))+ reg(K[V (Fn−1)]/I(Fn−1))

= 1+
⌈

n−1
2

⌉
=

⌈
n+1

2

⌉
=
⌈n

2

⌉
.

For the other inequality, we define M =
{
{x1,y1},{x3,y3}, . . . ,{xn,yn}

}
. M is clearly an

induced matching and |M| =
⌈n

2

⌉
, thus, indmat(Fn) ≥

⌈n
2

⌉
. By Lemma 1.4.9, we have

reg(S/I(Fn))≥
⌈n

2

⌉
.

Lemma 4.1.10 ([82]). If n ≥ 2 and S = K[V (Gn)], then reg(S/I(Gn)) =
⌈n

2

⌉
.

Proof. If n = 2, then clearly G2 ∼= K4, therefore by Lemma 1.4.9, indmat(G2) = 1 and we have

reg(K[V (G2)]/I(G2)) = 1. Let n ≥ 3, we have the K-algebra isomorphisms:

S/(I(Gn) : yn−1)∼= K[V (Gn−3)]/I(Gn−3)⊗K K[yn−1], (4.1.22)

S/((I(Gn),yn−1),xn−1)∼= K[V (Gn−2)]/I(Gn−2)⊗K K[V (P2)]/I(P2), (4.1.23)

S/((I(Gn),yn−1) : xn−1)∼= K[V (Gn−3)]/I(Gn−3)⊗K K[xn−1]. (4.1.24)

If n = 3, we have

S/(I(G3) : y2)∼= K[V (G0)]/I(G0)⊗K K[y2],

S/((I(G3),y2),x2)∼= K[V (G1)]/I(G1)⊗K K[V (P2)]/I(P2),

S/((I(G3),y2) : x2)∼= K[V (G0)]/I(G0)⊗K K[x2].

By Remark 4.1.1, Lemmas 1.4.10 and 1.4.15, reg
(

S/(I(G3) : y2)
)
= 0, reg

(
S/

(
(I(G3),y2),x2

))
=

reg
(

K[V (G1)]/I(G1)
)
+ reg

(
K[V (P2)]/I(P2)

)
= 2 and reg

(
S/

(
(I(G3),y2) : x2

))
= 0. Since

reg
(

S/
(
(I(G3),y2) : x2

))
< reg

(
S/

(
(I(G3),y2),x2

))
, by Lemma 1.4.12(c), reg

(
S/(I(G3),y2)

)
=

⌈3
2⌉= 2. Also, we have reg

(
S/(I(G3) : y2)

)
< reg

(
S/(I(G3),y2

)
, and again by Lemma 1.4.12(c),
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we get reg(S/I(G3)) = 2. Let n ≥ 4. By induction on n, Lemmas 1.4.10, 1.4.15 and using Eqs

(4.1.22)–(4.1.24),

reg
(

S/(I(Gn) : yn−1)
)
= reg

(
K[V (Gn−3)]/I(Gn−3)

)
=

⌈
n−3

2

⌉
,

reg
(

S/
(
(I(Gn),yn−1) : xn−1

))
= reg

(
K[V (Gn−3)]/I(Gn−3)

)
=

⌈
n−3

2

⌉
,

and by Lemma 1.4.14,

reg
(

S/
(
(I(Gn),yn−1),xn−1

))
= reg

(
K[V (Gn−2)]/I(Gn−2)

)
+ reg

(
K[V (P2)]/I(P2)

)
=

⌈
n−2

2

⌉
+1 =

⌈n
2

⌉
.

Since we have reg
(

S/
(
(I(Gn),yn−1) : xn−1

))
< reg

(
S/

(
(I(Gn),yn−1),xn−1

))
, by using Lemma

1.4.12(c), reg
(

S/(I(Gn),yn−1)
)
=

⌈n
2

⌉
. Also, reg

(
S/(I(Gn) : yn−1)

)
< reg

(
S/(I(Gn),yn−1

)
,

and again by Lemma 1.4.12(c), required result follows. This ends the proof.

Example 4.1.11. For n = 1013, we have

(a) reg(K[V (E1013)])/I(E1013) = ⌈1013−1
3 ⌉= 338.

(b) reg(K[V (F1013)])/I(F1013) = ⌈1013
2 ⌉= 507.

(c) reg(K[V (G1013)])/I(G1013) = ⌈1013
2 ⌉= 507.

4.2 Invariants of cyclic modules associated with C2n(1,n−1),C2n(1,2)

and C2n(1,n−1,n)

In this section, we find some invariants of the edge ideals of some families of 4-regular and 5-

regular circulant graphs. We find depth and projective dimension of the cyclic module K[V (C2n(1,n−

1))]/I(C2n(1,n−1)). Moreover, bounds for Stanley depth of such module are also given. When

n ≡ 0,1(mod3), we give the exact value for the regularity of such module, otherwise, we

have sharp bounds. Zahid et al. gave values and sharp bounds in [66, Corollaries 3.6 and

3.8] for depth and Stanley depth of module K[V (C2n(1,2))]/I(C2n(1,2)). For cyclic module

K[V (C2n(1,2))]/I(C2n(1,2)), we give the exact value of regularity if n is even and sharp bounds

if n is odd. Also, the exact values for depth and sharp bounds for Stanley depth of the module

K[V (C2n(1,n−1,n))]/I(C2n(1,n−1,n)) given by Zahid et al. in [76, Theorem 3.3, and Corol-

lary 3.4]. We find the exact value of the regularity of K[V (C2n(1,n−1,n))]/I(C2n(1,n−1,n)).
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It will be convenient to use the labeling of the vertices of the graphs as shown in Figures 4.7 and

4.8.

Before proving the main results, we give the following example by using Remark 4.1.3 which

will be helpful in understanding the strategy of the proofs. See for instance; Figures 4.9 and 4.10

for subgraphs G(I(C16(1,7)):x8),G(I(C16(1,7)),x8),G((I(C16(1,7)),x8),y8) and G((I(C16(1,7)),x8):y8) of circulant

graph GI(C16(1,7). It is clear from the Figures 4.9 and 4.10, we have the following isomorphisms:

K[V (C16(1,7))]/(I(C16(1,7)) : x8)∼= K[V (E5)]/I(E5)⊗K K[x8,y8],

K[V (C16(1,7))]/(I(C16(1,7)),x8)∼= K[V (E7),y8]/(I(E7),x1y8,y1y8,x7y8,y7y8),

K[V (C16(1,7))]/
(
(I(C16(1,7)),x8),y8

)∼= K[V (E7)]/I(E7),

and

K[V (C16(1,7))]/
(
(I(C16(1,7)),x8) : y8

)∼= K[V (E5)]/I(E5)⊗K K[y8].

x1
x2

x3

x4

xi
xn−2

xn−1

xn

y1

y2

y3

y4

yi

yn−2

yn−1

yn

x1
xn

xn−1
xn−2

xi
x4

x3

x2

y1

yn

yn−1

yn−2

yi

y4

y3

y2

Figure 4.7: From left to right C2n(1,n−1) and C2n(1,2).

x1
xn

xn−1
xn−2

xi
x4

x3

x2

y1

yn

yn−1

yn−2

yi

y4

y3

y2

Figure 4.8: C2n(1,n−1,n).
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Figure 4.9: From left to right G(I(C16(1,7)):x8) and G(I(C16(1,7)),x8).
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Figure 4.10: From left to right G((I(C16(1,7)),x8),y8) and G((I(C16(1,7)),x8):y8).

Firstly, we will compute the exact value of depth and lower bound of Stanley depth for cyclic

module K[V (C2n(1,n−1))]/I(C2n(1,n−1)).

Theorem 4.2.1 ([82]). Let n ≥ 3, G =C2n(1,n−1) and S = K[V (G)]. Then

sdepth(S/I(G))≥ depth(S/I(G)) =


⌈n−1

3

⌉
, if n ≡ 0,1(mod 3);

⌈n
3

⌉
, otherwise.

Proof. Firstly, we provide the proof for depth. If n = 3, we consider the short exact sequence

0 −→ (I(G) : x3)/I(G)
·x3−→ S/I(G)−→ S/(I(G) : x3)−→ 0. (4.2.1)

We have

K[V (G)]/(I(G) : x3)∼=
K[y3]

(0)
[x3], (4.2.2)
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and

NG(x3) = {y2,x2,y1,x1} ,

S1 = K[V (G)\NG(y2)], S2 = K[V (G)\(NG(x2)∪{y2})],

S3 = K[V (G)\(NG(y1)∪{y2,x2})], S4 = K[V (G)\(NG(x1)∪{y2,x2,y1})],

J1 = (S1 ∩ I(G)), J2 = (S2 ∩ I(G)),

J3 = (S3 ∩ I(G)), J4 = (S4 ∩ I(G)),

then by using Lemma 3.1.1, we have

(I(G) : x3)/I(G)∼= S1/J1[y2]⊕S2/J2[x2]⊕S3/J3[y1]⊕S4/J4[x1]

∼=
K[x2]

(0)
[y2]⊕

K
(0)

[x2]⊕
K[x1]

(0)
[y1]⊕

K
(0)

[x1].
(4.2.3)

We apply Lemma 1.4.10 on Eq (4.2.2), depth(K[V (G)]/(I(G) : x3)) = depth(K[y3,x3]) = 2 and

by Eq (4.2.3)

depth((I(G) : x3)/I(G))

= min
{

depth(K[x2])+1,depth(K[x2]),depth(K[x1])+1,depth(K[x1])
}
= 1.

By using Lemma 3.1.4 on Eq (4.2.1), depth(S/I(G)) = 1. If n = 4, we consider the short exact

sequence

0 −→ (I(G) : x4)/I(G)
·x4−→ S/I(G)−→ S/(I(G) : x4)−→ 0. (4.2.4)

We have

K[V (G)]/(I(G) : x4)∼= K[x2,x4,y2,y4], (4.2.5)

and

NG(x4) = {y3,x3,y1,x1},

S1 = K[V (G)\NG(y3)], S2 = K[V (G)\(NG(x3)∪{y3})],

S3 = K[V (G)\(NG(y1)∪{y3,x3})], S4 = K[V (G)\(NG(x1)∪{y3,x3,y1})],

J1 = (S1 ∩ I(G)), J2 = (S2 ∩ I(G)),

J3 = (S3 ∩ I(G)), J4 = (S4 ∩ I(G)),

then by using Lemma 3.1.1,

(I(G) : x4)/I(G)∼= S1/J1[y3]⊕S2/J2[x3]⊕S3/J3[y1]⊕S4/J4[x1]

∼=
K[x1,x3,y1]

(0)
[y3]⊕

K[x1,y1]

(0)
[x3]⊕

K[x1]

(0)
[y1]⊕

K
(0)

[x1].
(4.2.6)
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By applying Lemma 1.4.10 on Eq (4.2.5),

depth
(

K[V (G)]/(I(G) : x4)
)
= depth

(
K[x2,x4,y2,y4]

)
= 4

and by using Eq (4.2.6) we get

depth
(
(I(G) : x4)/I(G)

)
= min

{
depth(K[x1,x3,y1,y3]),depth(K[x1,y1,x3]),depth(K[x1,y1]),depth(K[x1])

}
= 1.

By using Lemma 3.1.4 on Eq (4.2.4), we get depth(S/I(G)) = 1. Let n ≥ 5. Consider the short

exact sequence

0 −→ (I(G) : xn)/I(G)
·xn−→ S/I(G)−→ S/(I(G) : xn)−→ 0. (4.2.7)

We have the following K-algebra isomorphisms:

S/(I(G) : xn)∼= K[V (En−3)]/I(En−3)⊗K K[yn,xn], (4.2.8)

and

NG(xn) = {yn−1,xn−1,y1,x1},

S1 = K[V (G)\NG(yn−1)], S2 = K[V (G)\(NG(xn−1)∪{yn−1})],

S3 = K[V (G)\(NG(y1)∪{yn−1,xn−1})], S4 = K[V (G)\(NG(x1)∪{yn−1,xn−1,y1})],

J1 = (S1 ∩ I(G)), J2 = (S2 ∩ I(G)),

J3 = (S3 ∩ I(G)), J4 = (S4 ∩ I(G)),

then by Lemma 3.1.1,

(I(G) : xn)/I(G)∼= S1/J1[yn−1]⊕S2/J2[xn−1]⊕S3/J3[y1]⊕S4/J4[x1]

∼=
K[x1, . . . ,xn−3,xn−1,y1, . . . ,yn−3](
∪n−4

i=1 {xiyi+1,xixi+1,yiyi+1,xi+1yi}
) [yn−1]

⊕ K[x1, . . . ,xn−3,y1, . . . ,yn−3](
∪n−4

i=1 {xiyi+1,xixi+1,yiyi+1,xi+1yi}
) [xn−1]

⊕ K[x1,x3, . . . ,xn−2,y3, . . . ,yn−2](
∪n−3

i=3 {xiyi+1,xixi+1,yiyi+1,xi+1yi}
) [y1]

⊕ K[x3, . . . ,xn−2,y3, . . . ,yn−2](
∪n−3

i=3 {xiyi+1,xixi+1,yiyi+1,xi+1yi}
) [x1]

∼=
(

K[V (En−3)]/I(En−3)⊗K K[xn−1,yn−1]
)
⊕
(
K[V (En−3)]/I(En−3)⊗K K[xn−1]

)
⊕
(

K[V (En−4)]/I(En−4)⊗K K[x1,y1]
)
⊕
(

K[V (En−4)]/I(En−4)⊗K K[x1]
)
.

(4.2.9)
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By Lemma 1.4.10, we have

depth(S/(I(G) : xn)) = depthK[V (En−3)]/I(En−3)+depthK[yn,xn], (4.2.10)

depth
(
(I(G) : xn)/I(G)

)
= min

{
depth(K[V (En−3)]/I(En−3))+2,depth(K[V (En−3)]/I(En−3))+1,

depth(K[V (En−4)]/I(En−4))+2,depth(K[V (En−4)]/I(En−4))+1
}
.

(4.2.11)

If n ≡ 1(mod3), then n− 3 ≡ 1(mod3) and n− 4 ≡ 0(mod3). By using Lemma 4.1.4 in Eq

(4.2.10), we get

depth(S/(I(G) : xn)) =

⌈
n−3+4

3

⌉
+2 =

⌈
n+4

3

⌉
+1.

By applying Lemma 4.1.4 on Eq (4.2.11), we get

depth
(
(I(G) : xn)/I(G)

)
= min

{⌈
n−3+4

3

⌉
+2,

⌈
n−3+4

3

⌉
+1,

⌈
n−4

3

⌉
+2,

⌈
n−4

3

⌉
+1

}

= min

{⌈
n+4

3

⌉
+1,

⌈
n+4

3

⌉
,

⌈
n−1

3

⌉
+1,

⌈
n−1

3

⌉}

=

⌈
n−1

3

⌉
.

We obtain the desired result by applying Lemma 3.1.4 on Eq (4.2.7). If n ≡ 0(mod3), the proof

is similar. If n ≡ 2(mod3), then n− 3 ≡ 2(mod3) and n− 4 ≡ 1(mod3). By using a similar

strategy and Remark 4.1.1, we get depth(S/I(G)) =
⌈n

3

⌉
. For the lower bound of Stanley depth,

the proof is similar to depth one has to replacing the Lemma 3.1.4 with Lemma 1.3.10. This

ends the proof.

Corollary 4.2.2 ([82]). Let n ≥ 3, G =C2n(1,n−1) and S = K[V (G)]. Then

pdim(S/I(G)) =


2n−

⌈n−1
3

⌉
, if n ≡ 0,1(mod 3);

2n−
⌈n

3

⌉
, if n ≡ 2(mod 3).

Proof. The required result follows by Lemma 1.4.11 and Theorem 4.2.1.

Now we give an upper bound for Stanley depth of K[V (C2n(1,n−1))]/I(C2n(1,n−1)).
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Proposition 4.2.3 ([82]). Let n ≥ 3, G =C2n(1,n−1) and S = K[V (G)]. Then

sdepth(S/I(G))≤



2n
3 , if n ≡ 0(mod 3);

2n+2
3 , if n ≡ 2(mod 3);

2n+4
3 , if n ≡ 1(mod 3).

Proof. If n = 3, by Lemma 1.3.12, sdepth(S/I(G)) ≤ sdepth(S/(I(G) : x3). By Eq (4.2.2),

Lemma 1.4.10, sdepth(S/I(G))≤ 2. If n= 4 and x4 /∈ I(G), by Lemma 1.3.12, sdepth(S/I(G))≤

sdepth(S/(I(G) : x4). By Eq (4.2.5), Lemma 1.4.10, sdepth(S/I(G)) ≤ 4, let n ≥ 5. If n ≡

1(mod3), then n− 3 ≡ 1(mod3). By using Lemmas 1.3.12 and 1.4.10 on Eq (4.2.8), we get

sdepth(S/I(G)) ≤ sdepth(S/(I(G) : xn)) = sdepth(K[V (En−3)]/I(En−3)) + 2. Thus, by using

Lemma 4.1.6, sdepth(S/(I(G) : xn)) ≤ 2(n−3)+4
3 +2 = 2n+4

3 . The required result follows that is

sdepth(S/I(G))≤ 2n+4
3 . For n ≡ 0,2(mod3), the proof is similar.

Remark 4.2.4 ([82]). Let n ≥ 3, then Stanley’s inequality for K[V (C2n(1,n−1))]/I(C2n(1,n−

1)) holds.

The next two results provide the values and bounds for regularity of modules K[V (C2n(1,n−

1))]/I(C2n(1,n−1)) and K[V (C2n(1,2))]/I(C2n(1,2)).

Theorem 4.2.5 ([82]). Let n ≥ 3 and S = K[V (C2n(1,n−1))]. If n ≡ 0,1(mod 3), then

reg
(

S/I(C2n(1,n−1)
)
=

⌈
n−2

3

⌉
.

Otherwise ⌈
n−2

3

⌉
≤ reg

(
S/I(C2n(1,n−1)

)
≤
⌈

n−2
3

⌉
+1.

Proof. We have the following K-algebra isomorphisms:

S/(I(C2n(1,n−1)) : xn)∼= K[V (En−3)]/I(En−3)⊗K K[xn,yn], (4.2.12)

S/
((

I(C2n(1,n−1)),xn
)
,yn

)∼= K[V (En−1)]/I(En−1), (4.2.13)

S/
((

I(C2n(1,n−1)),xn
)

: yn
)∼= K[V (En−3)]/I(En−3)⊗K K[yn]. (4.2.14)

If n = 3, we have

S/(I(C6(1,2)) : x3)∼= K[V (E0)]/I(E0)⊗K K[x3,y3],
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S/
((

I(C6(1,2)),x3
)
,y3

)∼= K[V (E2)]/I(E2),

S/
((

I(C6(1,2)),x3
)

: y3
)∼= K[V (E0)]/I(E0)⊗K K[y3].

By applying Lemmas 1.4.10, 4.1.8 and Remark 4.1.1, we get

reg
(

S/(I(C6(1,2)) : x3)
)
= reg

(
K[V (E0)]/I(E0)

)
= 0,

reg
(

S/
((

I(C6(1,2)),x3
)

: y3
))

= reg
(

K[V (E0)]/I(E0)
)
= 0,

reg
(

S/
((

I(C6(1,2)),x3
)
,y3

))
= reg

(
K[V (E2)]/I(E2)

)
= 1.

Since reg
(

S/
((

I(C6(1,2)),x3
)

: y3
))

< reg
(

S/
((

I(C6(1,2)),x3
)
,y3

))
, by Lemma 1.4.12(c),

we get reg
(

S/
(
I(C6(1,2)),x3

))
= 1. Also reg

(
S/(I(C6(1,2)) : x3)

)
< reg

(
S/(I(C6(1,2)),x3)

)
,

and by Lemma 1.4.12(c), reg(S/I(C6(1,2))) = 1. For n= 4, by using the similar strategy, we get

reg(S/I(C8(1,3)))= 1. Let n≥ 5. If n≡ 0(mod3), then n−3≡ 0(mod3) and n−1≡ 2(mod3).

By applying Lemmas 4.1.8 and 1.4.10 on Eqs (4.2.12)–(4.2.14), we get

reg
(

S/
(
I(C2n(1,n−1)) : xn

))
= reg

(
K[V (En−3)]/I(En−3)

)
=

⌈
n−4

3

⌉
,

reg
(

S/
((

I(C2n(1,n−1)),xn
)

: yn
))

= reg
(

K[V (En−3)]/I(En−3)
)
=

⌈
n−4

3

⌉
,

and

reg
(

S/
((

I(C2n(1,n−1)),xn
)
,yn

))
= reg

(
K[V (En−1)]/I(En−1)

)
=

⌈
n−2

3

⌉
.

Since
⌈n−4

3

⌉
<
⌈n−2

3

⌉
, by Lemma 1.4.12(c) we get reg

(
S/

(
I(C2n(1,n−1)),xn

))
=
⌈n−2

3

⌉
. Also

we have reg
(

S/(I(C2n(1,n− 1)) : xn)
)
< reg

(
S/(I(C2n(1,n− 1)),xn)

)
, and again by Lemma

1.4.12(c), we get the required result. If n ≡ 1(mod3), then n− 3 ≡ 1(mod3) and n− 1 ≡

0(mod3). By applying the similar strategy, we get the desired result. Let n ≡ 2(mod3). Here

C2n(1,n− 1) = E3 ∪H, where H ∼= En−1 and E3 ∩H ̸= /0. In this case n− 1 ≡ 1(mod 3) as

reg(S/I(E3)) = 1, by Lemmas 4.1.8 and 1.4.13,

reg(S/I(C2n(1,n−1)))≤ reg(K[V (E3)]/I(E3))+ reg(K[V (En−1)]/I(En−1)) = 1+
⌈

n−2
3

⌉
.

For the other inequality, define M =
{
{x1,x2},{x4,x5}, . . . ,{xn−3,xn−4}

}
. Since M is an in-

duced matching and |M| =
⌈n−2

3

⌉
, then, indmat(C2n(1,n− 1)) ≥

⌈n−2
3

⌉
. By Lemma 1.4.9, we

have reg(S/I(C2n(1,n−1)))≥
⌈n−2

3

⌉
. This ends the proof.

Example 4.2.6. For n = 15 and G =C30(1,14). Then
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(a) sdepth(K[V (C30(1,14))]/I(C30(1,14)))≥ depth(K[V (C30(1,14))]/I(C30(1,14))) = 5.

(b) pdim(K[V (C30(1,14))]/I(C30(1,14))) = 25.

(c) sdepth(K[V (C30(1,14))]/I(C30(1,14)))≤ 10.

(d) reg(K[V (C30(1,14))]/I(C30(1,14))) = 5.

Theorem 4.2.7 ([82]). Let n ≥ 3. If n is even, then

reg
(

K[V (C2n(1,2))]/I(C2n(1,2))
)
=

⌈
n−1

2

⌉
.

If n is odd, we have

n−1
2

≤ reg
(

K[V (C2n(1,2))]/I(C2n(1,2))
)
≤
⌈

n−1
2

⌉
+2.

Proof. Let S = K[V (C2n(1,2))]. If n = 3, then C6(1,2) = F3∪H, where H ∼= F2 and F3∩H ̸= /0.

By Lemmas 1.4.13 and 4.1.9, we get

reg(K[V (C6(1,2))]/I(C6(1,2)))≤ reg(K[V (F3)]/I(F3))+ reg(K[V (H)]/I(H)) = 3.

For the second inequality, let M = {{x1,y1}} . Here M is an induced matching, thus we have

indmat(C6(1,2))≥ |M|= 1 and 1 ≤ reg(K[V (C6(1,2))]/I(C6(1,2))≤ 3. If n = 4,

K[V (C8(1,2))]/(I(C8(1,2)) : x3)∼= K[V (C3)]/I(C3)⊗K K[x3],

K[V (C8(1,2))]/
((

I(C8(1,2)),x3
)
,y3

)∼= K[V (F3)]/I(F3),

K[V (C8(1,2))]/
((

I(C8(1,2)),x3
)

: y3
)∼= K[V (C3)]/I(C3)⊗K K[y3].

By using Lemmas 1.4.10, 4.1.9 and 1.4.16, we get

reg
(

K[V (C8(1,2))]/(I(C8(1,2)) : x3)
)
= reg

(
K[V (C3)]/I(C3)

)
= 1,

reg
(

K[V (C8(1,2))]/
(
(I(C8(1,2)),x3),y3

))
= reg

(
K[V (F3)]/I(F3)

)
= 2,

reg
(

K[V (C8(1,2))]/
(
(I(C8(1,2)),x3) : y3

))
= reg

(
K[V (C3)]/I(C3)

)
= 1,

as we have

reg
(

K[V (C8(1,2))]/
(
(I(C8(1,2)),x3) : y3

))
< reg

(
K[V (C8(1,2))]/

(
(I(C8(1,2)),x3),y3

))
.

By Lemma 1.4.12(c),

K[V (C8(1,2))]/(I(C8(1,2)),x3) = 2 > K[V (C8(1,2))]/(I(C8(1,2)) : x3),

and again by Lemma 1.4.12(c), reg
(

K[V (C8(1,2))]/I(C8(1,2)
)
= 2. Let n ≥ 5. Here we con-

sider the following two cases:

96



CHAPTER 4: ALGEBRAIC INVARIANTS AND SOME CIRCULANT GRAPHS

Case 1. If n is even. By using Lemma 1.4.12(c), reg
(

S/I(C2n(1,2))
)
= reg

(
S/(I(C2n(1,2)),xn−1)

)
if reg

(
S/(I(C2n(1,2)) : xn−1)

)
< reg

(
S/(I(C2n(1,2)),xn−1)

)
. We have the following iso-

morphisms:

S/
((

I(C2n(1,2)) : xn−1
)

: yn−2
)∼= K[V (Fn−4)]/I(Fn−4)⊗K K[yn−2,xn−1],

S/
((

I(C2n(1,2)) : xn−1
)
,yn−2

)∼= K[V (Fn−3)]/I(Fn−3)⊗K K[xn−1],

S/
((

I(C2n(1,2)),xn−1
)
,yn−1

)∼= K[V (Fn−1)]/I(Fn−1),

S/
((
(I(C2n(1,2)),xn−1) : yn−1

)
,xn

)∼= K[V (Fn−3)]/I(Fn−3)⊗K K[yn−1],

S/
((
(I(C2n(1,2)),xn−1) : yn−1

)
: xn

)∼= K[V (Fn−4)]/I(Fn−4)⊗K K[yn−1,xn].

By using Lemmas 1.4.10 and 4.1.9 on above isomorphisms, we get

reg
(

S/
((

I(C2n(1,2)) : xn−1
)

: yn−2
))

= reg
(

K[V (Fn−4)]/I(Fn−4)
)
=

⌈
n−4

2

⌉
,

reg
(

S/
((

I(C2n(1,2)) : xn−1
)
,yn−2

))
= reg

(
K[V (Fn−3)]/I(Fn−3)

)
=

⌈
n−3

2

⌉
,

reg
(

S/
((

I(C2n(1,2)),xn−1
)
,yn−1

))
= reg

(
K[V (Fn−1)]/I(Fn−1)

)
=

⌈
n−1

2

⌉
,

reg
(

S/
((
(I(C2n(1,2)),xn−1) : yn−1

)
,xn

))
= reg

(
K[V (Fn−3)]/I(Fn−3)

)
=

⌈
n−3

2

⌉
,

reg
(

S/
((
(I(C2n(1,2)),xn−1) : yn−1

)
: xn

))
= reg

(
K[V (Fn−4)]/I(Fn−4)

)
=

⌈
n−4

2

⌉
.

Since reg
(

S/
((

I(C2n(1,2)) : xn−1
)

: yn−2
))

< reg
(

S/((I(C2n(1,2)) : xn−1),yn−2)
)
, by

Lemma 1.4.12(c), reg
(

S/(I(C2n(1,2)) : xn−1)
)
=
⌈n−3

2

⌉
. Also reg

(
S/

((
(I(C2n(1,2)),xn−1) :

yn−1
)

: xn
))

< reg
(

S/
((
(I(C2n(1,2)),xn−1) : yn−1

)
,xn

))
, again by Lemma 1.4.12(c) we

get reg
(

S/
(
(I(C2n(1,2)),xn−1) : yn−1

))
=
⌈n−3

2

⌉
. This implies reg

(
S/

((
I(C2n(1,2)),xn−1

)
:

yn−1
))

< reg
(

S/
((

I(C2n(1,2)),xn−1
)
,yn−1

))
by using Lemma 1.4.12(c), we have that

reg
(

S/(I(C2n(1,2)),xn−1)
)
=
⌈n−1

2

⌉
. Thus the result follows as

reg
(

S/(I(C2n(1,2)) : xn−1)
)
< reg

(
S/(I(C2n(1,2)),xn−1)

)
=

⌈
n−1

2

⌉
.

Case 2. If n is odd. Here C2n(1,2) = F3 ∪H, where H ∼= Fn−1 and F3 ∩H ̸= /0. By Lemmas

1.4.13 and 4.1.9, we get

reg(S/I(C2n(1,2)))≤ reg(K[V (F3)]/I(F3))+ reg(K[V (Fn−1)]/I(Fn−1)) = 2+
⌈

n−1
2

⌉
.

In the case of the second inequality, we define M =
{
{x1,y1},{x3,y3}, . . . ,{xn−2,yn−2}

}
.

Clearly M is an induced matching, it follows that indmat(C2n(1,2)) ≥ |M| = n−1
2 . By

Lemma 1.4.9, we have reg(S/I(C2n(1,2)))≥ n−1
2 .
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Example 4.2.8. If n = 20 is even, then

reg
(

K[V (C2n(1,2))]/I(C2n(1,2))
)
= reg

(
K[V (C40(1,2))]/I(C40(1,2))

)
= 10.

If n = 31 is odd, we have

15 ≤ reg
(

K[V (C2n(1,2))]/I(C2n(1,2))
)
= reg

(
K[V (C62(1,2))]/I(C62(1,2))

)
≤ 17.

In the following result, we find the exact value for the regularity of cyclic module K[V (C2n(1,n−

1,n))]/I(C2n(1,n−1,n)).

Theorem 4.2.9 ([82]). If n ≥ 3, then reg
(

K[V (C2n(1,n−1,n))]/I(C2n(1,n−1,n))
)
=
⌈n−1

2

⌉
.

Proof. Let S = K[V (C2n(1,n−1,n))]. We have the following K-algebra isomorphisms:

S/(I(C2n(1,n−1,n)) : yn)∼= K[V (Gn−3)]/I(Gn−3)⊗K K[yn], (4.2.15)

S/
((

I(C2n(1,n−1,n)),yn
)
,xn

)∼= K[V (Gn−1)]/I(Gn−1), (4.2.16)

S/
((

I(C2n(1,n−1,n)),yn
)

: xn
)∼= K[V (Gn−3)]/I(Gn−3)⊗K K[xn]. (4.2.17)

By applying Lemmas 4.1.10, 1.4.10, Remark 4.1.1 on Eqs (4.2.15)–(4.2.17),

reg
(

S/(I(C2n(1,n−1,n)) : yn)
)
= reg

(
K[V (Gn−3)]/I(Gn−3)

)
=

⌈
n−3

2

⌉
,

reg
(

S/
((

I(C2n(1,n−1,n)),yn
)

: xn
))

= reg
(

K[V (Gn−3)]/I(Gn−3)
)
=

⌈
n−3

2

⌉
,

and

reg
(

S/
((

I(C2n(1,n−1,n)),yn
)
,xn

))
= reg

(
K[V (Gn−1)]/I(Gn−1)

)
=

⌈
n−1

2

⌉
.

Since
⌈n−3

2

⌉
<

⌈n−1
2

⌉
, by Lemma 1.4.12(c) we get reg

(
S/

(
I(C2n(1,n− 1,n)),yn

))
=

⌈n−1
2

⌉
.

Also,

reg
(

S/
(
I(C2n(1,n−1,n)) : yn

))
< reg

(
S/

(
I(C2n(1,n−1,n)),yn

))
,

and again by Lemma 1.4.12(c), the required result follows.

Example 4.2.10. If n = 50, then we get

reg
(

K[V (C2n(1,n−1,n))]/I(C2n(1,n−1,n))
)
= reg

(
K[V (C100(1,49,50))]/I(C100(1,49,50))

)
= 25.
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4.3 Conclusion

In this chapter we compute the algebraic invariants namely regularity, projective dimension,

depth, and Stanley depth of the edge ideals associated with some classes of circulant graphs. It

will be interesting but seems challenging to find these algebraic invariants for the edge ideals of

all four and five regular circulant graph.
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CHAPTER 5

Summary and future directions

This chapter concludes with a summary of all the important findings and outcomes of this re-

search. Towards the end, some recommendations for further research based on this work will be

made.

5.1 Summary

In this dissertation, the precise formulas for the values of the algebraic invariants depth, Stanley

depth, regularity, projective dimension and Krull dimension quotient of edge ideals associated

with perfect semiregular trees are provided. For the computations of the said invariants of the

quotient of the polynomial rings by edge ideals associated to perfect semiregular trees, the exact

values regarding the aforementioned invariants for perfect (n−1)-ary tree are also given.

Furthermore, values of depth, projective dimension, and lower bounds for Stanley depth of the

quotient rings of the edge ideals of all cubic circulant graphs are presented. Lemma 3.1.1 is

proved in this thesis, which is inspired by a result of Cimpoeas [53, Proposition 1.3] and it

played a vital role in the computation of depth and a lower bound for Stanley depth in our main

findings. For proving over main results the precise values of the said invariants of the quotient

rings of the edge ideals associated with certain supergraphs are also computed.

In the end, the exact values of depth, projective dimension, and bounds for the Stanley depth of

edge ideal associated with four regular circulant graph C2n(1,n− 1) are given. Also a formula

for the regularity of the edge ideal associated with C2n(1,n−1) when n ≡ 0,1(mod3), and sharp

bounds when n ≡ 2(mod3) are provided. The exact values of the regularity of the edge ideal

associated with four regular circulant graph C2n(1,2) when n is even and tight bounds when n
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is odd has been established. The exact value for the regularity of edge ideal associated with five

regular circulant graph C2n(1,n− 1,n) are determined. For computation of the said algebraic

invariants for four and five regular circulant graphs, the values/bounds of algebraic invariants

associated with certain subgraphs of C2n(1,n−1),C2n(1,2) and C2n(1,n−1,n) are computed.

Future Work

Considering this study, the following can be examined as a future research work:

• Can we find the aforementioned invariants for the quotient rings of edge ideals of all four

and five regular circulant graphs?

• We are unable at the moment to find value of Stanley depth of cyclic modules associated

with all cubic circulant graphs, one can try to fix the value/upper bound by using some

other approach.

• One can explore the Herzog Conjecture for the classes of modules we considered in this

study.

• One can find the depth, Stanley depth and regularity of powers of edge ideals considered

in this working.
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