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ABSTRACT 

Lung adenocarcinoma (LUAD) is the most prevalent form of lung cancer and is a 

significant contributor to cancer-related deaths globally. This cancer type displays 

extensive diversity and complex characteristics at molecular and cellular levels. 

Furthermore, LUAD frequently spreads to remote organs, including lymph nodes and the 

brain, complicating diagnosis, prognosis, and treatment processes. Its progression is a 

complex and multifaceted process that involves dynamic changes in gene expression 

patterns, cell identity, and the activation of critical pathways. This comprehensive study 

utilised single-cell RNA sequencing (scRNA-seq) technology to unveil the complex 

cellular heterogeneity within primary lung adenocarcinomas and their metastatic sites. This 

meticulous analysis led to several key findings. The differential gene expression analysis 

results revealed a striking diversity in gene expression patterns among various cell types 

within the primary tumour microenvironment. This heterogeneity underscores the 

specialised roles of distinct cell types in supporting or contributing to tumour growth and 

maintenance. Conversely, a consistent stemness signature emerged in metastatic samples, 

suggesting a potential activation of the epithelial-to-mesenchymal transition (EMT), a 

critical step in cancer metastasis. Our findings shed light on the dynamic changes in gene 

expression profiles during cancer progression. Gene set enrichment analysis highlighted 

the significance of several biological pathways in cancer initiation and progression. In 

primary tumours, the Epithelial-Mesenchymal Transition (EMT) pathway emerged as a 

central player, emphasising its role in cancer initiation. Other pathways, such as Androgen 

Response, Adipogenesis, and Coagulation, were also identified, potentially contributing to 

later-stage tumour growth. Pathways like UV Response Dn and Apical Junction appeared 

to act as safeguards against uncontrolled cell growth. The p53 Pathway has somehow 

complex role depending on the specific environment. In metastatic samples, pathways 

associated with EMT, TNF-alpha Signalling, and IL-2/STAT5 Signalling exhibited high 

significance, reflecting their importance in promoting tumour growth, metastasis, and 

immune evasion. Additionally, pathways linked to hypoxia and apoptosis were also found 

to be actively involved in metastatic processes. By comparing our results with The Cancer 

Genome Atlas (TCGA) data, we identified two previously unreported genes, ADGRL2 and 
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ERO1A, with potential roles in cancer progression. ADGRL2 emerged as a stem-cell-

specific negative regulator, while ERO1A was associated with poor prognosis in various 

cancer types and linked to metastasis and the epithelial-to-mesenchymal transition (EMT). 

Our study offers valuable insights into the intricate processes of cancer progression, 

emphasising the role of EMT and identifying potential therapeutic targets. It provides a 

broader context for understanding cancer biology and paves the way for personalised 

cancer treatments. While acknowledging the study's limitations, including sample size and 

the need for experimental validation, this research sets the stage for future investigations 

to explore the identified genes and pathways further, potentially revolutionising cancer 

diagnosis and treatment. 
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CHAPTER 1: INTRODUCTION 

1.1 Cancer 

Cancer is a diverse and complex disease characterised by uncontrolled cell growth of 

abnormal cells. It can originate in any part of the body where abnormal cells multiply, 

forming tumours and invading surrounding tissues[1]. This disease can occur in various 

body parts and may spread to other organs through metastasis. It constitutes a substantial 

global public health concern, occupying second in global mortality statistics, closely 

behind cardiovascular diseases[2]. According to the statistics provided by the World Health 

Organisation (WHO), Cancer is responsible for nearly 10 million deaths globally, with lung 

cancer being the most common in men and second most common in women[3]. Cancer's 

lethality depends on its type and stage, making early detection vital for survival. It arises 

from a mix of genetic, environmental, and lifestyle factors. Common risks include tobacco 

and alcohol use, an unhealthy diet, lack of exercise, radiation exposure, chemicals, and 

genetic predisposition. Comprehensive prevention involves reducing these risks, adopting 

healthy habits, and having regular screenings to catch cancer early and improve survival 

chances[4, 5].  

 

Figure 1.1: Comparison between normal cells and cancer cells within a tissue showing invasive 

nature of cancer cells. 
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1.1.1 Lung Cancer 

Lung cancer is a highly lethal disease. It ranks as the leading cause of cancer-related deaths. 

According to data from the World Health Organisation (WHO), in the year 2020, there 

were approximately 2.21 million newly reported lung cancer cases, along with 1.80 million 

fatalities[6]. From a histological perspective, lung carcinoma can be divided into non-small 

cell lung carcinoma (NSCLC), small cell lung carcinoma (SCLC), mesothelioma, sarcoma, 

and carcinoid. SCLC and NSCLC are the most prevalent, accounting for approximately 

90% of all lung cancer cases, while other types are relatively infrequent[7, 8]. Non-small 

cell lung carcinoma (NSCLC) can be categorised into four distinct types: Adenocarcinoma, 

squamous cell carcinoma, large-cell undifferentiated carcinoma, and Pancoast tumour [8, 

9]. The development of lung cancer is primarily attributed to smoking habits, genetic 

predisposition, urban living, and environmental influences, including arsenic, toxins, and 

asbestos exposure[10]. Within the Non-small cell lung carcinoma (NSCLC), 

Adenocarcinoma has now emerged as the most prevalent histological subtype of primary 

lung cancer, constituting over 40% of cases, and its frequency continues to grow[11]. 

1.1.1.1 Lung Adenocarcinoma 

Lung Adenocarcinoma (LUAD), a subtype of non-small cell lung cancer, originates from 

glandular cells in the smaller airways on the outer periphery of the lungs. It is the most 

common histological type, encompassing roughly 40% of all lung cancer incidences. 

LUAD is frequently identified at an advanced stage, often accompanied by distant 

metastasis, which presents considerable hurdles in clinical treatment. Although this form 

of lung cancer is more common among individuals who currently smoke or have smoked 

in the past, it is also the predominant type of lung cancer seen in non-smokers[12, 13]. 

Hence, gaining insight into the molecular and cellular mechanisms that drive the 

progression and spread of LUAD is of utmost importance in creating innovative 

approaches for diagnosis and treatment. The prognosis for lung cancer is heavily influenced 

by the stage at diagnosis. On average, the current 5-year survival rate is around 18%. Early 

detection can substantially enhance the outcome, leading to a 5-year survival rate of 54% 

for cases detected at the localised stage[12]. Unfortunately, only 15% of all incidences are 

detected early, whereas the overwhelming majority (57%) are diagnosed in advanced 
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stages. Consequently, it is crucial to conduct screenings for lung cancer in individuals at 

high risk[14]. The various stages of primary tumours in lung adenocarcinoma are 

categorised according to the tumour's size, its extent of infiltration into neighbouring 

tissues, and regional or distant metastases[15]. 

 

Figure 1.2: Histology of human lungs highlighting the growth of adenocarcinoma.  

The different stages of primary tumours in lung adenocarcinoma are typically defined by 

the TNM staging system, which takes into account the size of the tumour (T), the extent of 

spread to nearby lymph nodes (N), and the presence of distant metastases (M)[16].  

• Stage I: At this stage of lung adenocarcinoma, the tumour is small, with no invasion 

of nearby tissues or lymph nodes. Typically, its diameter is less than 3 cm and has 

yet to extend to distant locations. 

• Stage II: In stage II lung adenocarcinoma, the tumour is more prominent and may 

have reached nearby lymph nodes, but it has not metastasized to distant sites. The 

tumour's diameter can range from 3 to 7 cm. 

• Stage III: At stage III of lung adenocarcinoma, the tumour has typically invaded 

nearby tissues and lymph nodes but has not yet spread to distant sites. This stage 

has two subcategories: IIIA, where the tumour has extended to nearby lymph nodes 

and the chest wall, and IIIB, where the tumour has reached the heart's lining or 

other organs within the chest cavity. 
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• Stage IV: In stage IV lung adenocarcinoma, the tumour has metastasized to distant 

sites, including other organs or bones. It may also be present in multiple locations 

within the lung. 

It is crucial to emphasise that various stages of lung adenocarcinoma exhibit unique 

molecular and cellular attributes, which significantly influence treatment choices and 

patient results. For instance, early-stage tumours are frequently more amenable to surgical 

or radiation treatments, whereas advanced-stage tumours might necessitate chemotherapy 

or targeted interventions. Hence, precise staging of lung adenocarcinoma plays a vital role 

in determining the most suitable treatment strategy tailored to each patient's needs[13]. 

Primary tumour sites frequently exhibit multiple metastatic markers in lung 

adenocarcinoma. These markers refer to molecules or genes present in the primary tumour 

tissue and are linked to the probability of the tumour spreading to distant areas within the 

body[17]. Numerous metastatic markers have been discovered and examined in lung 

adenocarcinoma to assess their potential in predicting disease advancement and gauging 

treatment effectiveness. 

1.2 Single-cell RNA-seq Analysis 

Bulk RNA sequencing (RNA-seq) has become a valuable tool for understanding genetic 

phenomena and biological processes across various animal and plant species. Bulk RNA 

sequencing (bulk RNA-seq) has played a pivotal role in cancer research by providing 

insights into gene expression patterns and genomic alterations within tumour samples. 

Nonetheless, it comes with inherent limitations. One significant constraint is its inability 

to resolve heterogeneity within cell populations, as it averages gene expression profiles 

across a mix of cells. It can obscure rare cell subpopulations that may be vital in 

understanding treatment resistance or specific disease mechanisms. Moreover, bulk RNA-

seq struggles to discriminate between distinct cell types within a sample, making it 

challenging to attribute specific gene expression patterns to individual cell populations. 

Additionally, it may not efficiently capture alternative splicing, point mutations, novel 

transcripts, long non-coding RNAs, and gene fusions, which are vital components of cancer 

biology. Lastly, bulk RNA-seq does not provide information at the single-cell level, 

limiting its ability to dissect the nuanced heterogeneity of gene expression within tumours, 
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an essential aspect of understanding tumorigenesis and treatment response. These 

limitations have driven the development of single-cell RNA sequencing (scRNA-seq) and 

other advanced technologies to address these challenges and provide a more 

comprehensive view of cancer biology[18]. Unlike traditional bulk RNA sequencing, 

which averages gene expression across all cells in a tissue sample, scRNA-seq offers a 

revolutionary approach. It enables the detection of rare cell populations, reveals cell-to-cell 

differences in gene expression, and uncovers novel cell types and molecular pathways that 

often remain hidden in bulk sequencing data[19].  scRNA-seq has emerged as a powerful 

tool for unravelling the complexities of cell biology[20]. It allows researchers to delve into 

the transcriptomes of individual cells, enabling a comprehensive exploration of gene 

expression patterns. This innovation has paved the way for a deeper understanding of the 

masked diversity within cell populations, shedding new light on cellular heterogeneity[21]. 

By applying scRNA-seq to the study of different cancers, researchers have unveiled 

previously obscured layers of cellular diversity within tumours, offering unprecedented 

insights into the complexity of these cancers, including lung adenocarcinoma[22]. This 

technique provides unprecedented resolution in understanding tumour heterogeneity and 

dynamics within the microenvironment. In summary, scRNA-seq is a potent tool for 

exploring the intricate cellular diversity within tumour samples at a deeper level. In turn, it 

yields fresh insights into the molecular and cellular mechanisms driving cancer and informs 

the development of more efficacious treatment strategies. This thesis used scRNA-seq to 

examine LUAD cells from primary and metastatic sites, revealing distinct cellular and 

transcriptional modules associated with lung cancer survival.  
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Figure 1.3: Single-Cell RNA-seq vs Bulk RNA-seq 

1.3 Problem Statement 

Despite substantial advancements in cancer research, lung cancer continues to exhibit a 

low 5-year survival rate, primarily attributed to its complex and poorly understood 

heterogeneity at the molecular level. The variability in genetic mutations, cellular 

phenotypes, and microenvironmental interactions within lung tumors presents a 

challenging obstacle to effective diagnosis and treatment. Thus, there is a critical need to 

comprehensively explore and delineate this heterogeneity using advanced methodologies, 

such as single-cell RNA analysis, to uncover novel molecular signatures that could inform 

targeted therapeutic strategies and improve patient outcomes. 

1.4 Thesis Objectives 

The main objectives and contributions of this thesis are: 

• The primary aim of this study is to conduct a comparative analysis of Differentially 

Expressed Genes (DEGs) identified through single-cell RNA sequencing (scRNA-

seq) between primary cancer stages and their corresponding metastatic stages. By 

contrasting the gene expression profiles in these conditions, we seek to elucidate 

the molecular distinctions underlying cancer progression and metastasis. 
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• Another key objective is to understand better the functional relevance of the DEGs 

identified through scRNA-seq. It will be achieved by employing Gene Set 

Enrichment Analysis (GSEA) to uncover the enrichment of these DEGs in specific 

biological pathways and molecular processes. Through GSEA, we aim to elucidate 

the broader biological context in which these genes operate and their potential roles 

in driving cancer progression. 

• The final objective of this study is to establish a meaningful connection between 

our findings and existing knowledge in the field. The identified DEGs will be 

compared with those documented in the extensive dataset from The Cancer 

Genome Atlas (TCGA) to achieve this. This comparative analysis will help validate 

our results and provide insights into the consistency and relevance of our scRNA-

seq findings in the context of a larger-scale genomic database.  

1.5 Thesis Outline 

The outline of this thesis is as follows: Chapter 2 provides a literature review of the current 

state-of-the-art LUAD research, focusing on the molecular and cellular mechanisms of 

LUAD progression and metastasis and the applications of scRNA-seq in lung cancer. 

Chapter 3 describes the materials and methods used in this study. Chapter 4 presents the 

results and main findings of scRNA-seq analysis of LUAD cells from primary and 

metastatic sites. Chapter 5 consists of a discussion, and Chapter 6 concludes the thesis and 

provides suggestions for future work. 



10 
 

CHAPTER 2: REVIEW OF LITERATURE 

This chapter aims to provide an overview of recent research employing RNA sequencing 

studies, both bulk and single cell, to visualise the genetic makeup of LUAD cells and their 

surrounding environment at various stages and sites of metastasis. scRNA-seq is a potent 

tool that can unveil the diverse characteristics and dynamics of cell populations with 

exceptional detail, leading to the identification of new cell subtypes and potential 

biomarkers. Below is an overview of a synopsis of the fundamental discoveries and their 

significance in advancing LUAD research and treatment. Additionally, we will underscore 

the existing gaps in knowledge and the challenges that warrant further investigation in this 

domain. 

2.1 Overview of LUAD 

LUAD is the most prevalent histological subtype of non-small cell lung cancer (NSCLC), 

arising from the epithelial cells that line the bronchioles and alveoli in the lung. LUAD 

constitutes approximately 40% of all lung cancer cases, making it the most common type 

within the NSCLC category[16]. It is frequently linked to smoking but can also develop in 

non-smokers, particularly in women and younger individuals. LUAD exhibits significant 

heterogeneity within and between tumours, reflecting its diverse cellular origins, molecular 

changes, and influences from the surrounding microenvironment. LUAD can be 

categorised into various subtypes based on its histological, molecular, and clinical 

characteristics, each with important implications for its diagnosis and treatment[13]. 

In most cases, spontaneous tumours begin with a single cell. However, when clinically 

diagnosed, many human tumours exhibit significant heterogeneity in various aspects, 

including cell surface receptor expression, growth potential, and angiogenesis. This 

diversity can be partly explained by morphological and epigenetic adaptability. 

Nevertheless, there is compelling evidence to suggest the presence of genetically distinct 

tumour cell populations coexisting within these tumours[23]. Due to this property of 

cancer, diagnosing lung cancer is challenging. This heterogeneity exists at cellular, 

histological, and molecular levels. It affects diagnosis, understanding of pre-neoplastic 

lesions, and identifying cell origins. Molecular differences within and between tumours 



11 
 

and temporal changes further complicate the picture. Tumor heterogeneity has significant 

implications for understanding pathogenesis, making accurate diagnoses, selecting tissues 

for molecular testing, and deciding on treatments. Recognising and addressing this 

heterogeneity is essential for future advancements in lung cancer management[24].  

 

 

Figure 2.1: Progression of tumour leading to tumour heterogeneity. 

Over the past few decades, the transcriptome study has become a standard practice in 

unravelling the biological processes underlying normal physiology and pathological 

mechanisms. This interest has driven the rapid advancement of sequencing technologies, 

progressing from whole-tissue analysis to cell population studies and, most recently, to the 

single-cell level. While these advancements have significantly expanded our understanding 

of molecular signalling, intercellular communication networks, and the identification of 

rare cell sub-populations, it is crucial to recognise that there is no one-size-fits-all approach 

to RNA sequencing[25]. Researchers must meticulously design their studies, considering 

sample availability, preparation methods, platform advantages and limitations, and specific 

sequencing attributes. 

Lung adenocarcinoma (LUAD) is the prevailing lung cancer type and frequently exhibits 

distant metastasis, notably to the brain and lymph nodes. Metastasis is the primary driver 

of mortality in individuals diagnosed with LUAD, presenting significant clinical 

complexities and challenges[26]. Understanding the intricate molecular and cellular 

processes driving the progression and spread of LUAD (Lung Adenocarcinoma) is pivotal 

for developing innovative diagnostic and therapeutic approaches.  
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2.2 Bulk RNA-seq Studies on LUAD 

The scientists utilised RNA-seq data for analysis to present an RNA-seq prognostic 

signature for lung adenocarcinoma, identifying a four-gene signature, including a lncRNA 

gene (LINC00941), with prognostic solid association. The signature was validated in 

multiple patient cohorts, demonstrating its potential for individualising therapy decisions 

in early-stage lung adenocarcinoma and risk stratification in advanced cases, particularly 

for EGFR mutant patients. These findings offered a promising avenue for improving 

clinical management and tailoring treatment strategies for this challenging cancer[27].  

2.2.1 Impact of Smoking on Gene Expression 

Bulk RNA sequencing was used again to investigate gene expression variations in lung 

adenocarcinoma patients, with a specific focus on distinguishing between smokers and 

nonsmokers. The findings revealed that tobacco smoking substantially influenced the RNA 

expression profiles in tumour tissues, exacerbating the dysregulation of gene expression, 

particularly the downregulation of genes. Notably, specific genes, such as Secreted 

Phosphoprotein 1(SPP1) and Family with Sequence Similarity 83 Member D (FAM83D), 

consistently exhibited overexpression in smokers and nonsmokers, suggesting their 

potential utility as biomarkers for early lung cancer detection and therapeutic targeting. 

The study shows the significance of RNA sequencing studies on lung adenocarcinoma. It 

proposes potential RNA expression signatures associated with smokers and nonsmokers 

while recognising the need for further validation and exploration in diverse patient 

populations[28].  

2.2.2 Stage-Specific Biomarkers 

Another study performed on LUAD aimed to identify stage-specific biomarkers for 

distinguishing different stages of progression using bulk RNA-seq data, which provides an 

average expression profile of tissue samples. The research revealed a set of genes 

significantly correlated with LUAD stages, including ANGPTL5, C7orf16, EDN3, 

LOC150622, HOXA11AS, IL1F5, and USH1G, which were identified as potential 

biomarkers for distinguishing stage III from stages I and II. Additionally, GJB6 was 

implicated in the gap junction trafficking pathway, while C7orf16 and EDN3 were 
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associated with the Wnt signalling pathway, cell cycle, and G protein-coupled receptor 

(GPCR) signalling. These findings offer insights into the molecular mechanisms 

underlying LUAD progression based on bulk RNA-seq data, providing potential targets for 

further investigation and therapy[29].  

2.3 scRNA Seq Studies 

Single-cell RNA sequencing (scRNA-seq) is a potent method capable of unveiling the 

intricacies and fluctuations within cell populations with exceptional precision. It identifies 

novel cell subtypes and potential biomarkers and offers profound insights into research and 

treatment for lung adenocarcinoma (LUAD). However, it is essential to emphasise that 

unexplored areas and unresolved challenges within this field still demand attention. In a 

particular study, researchers devised a seven-gene signature linked to metastasis, aiming to 

forecast the prognosis of patients with lung adenocarcinoma (LUAD) using scRNA-seq 

data from LUAD tissues. They pinpointed 14 metastasis-associated genes (MAGs) that 

displayed differential expression patterns between primary and metastatic LUAD cells. 

The validity of this signature was then confirmed across various independent datasets. 

Additionally, the study demonstrated a correlation between this signature and immune cell 

infiltration in LUAD[30]. 

A study conducted scRNA-seq on a substantial dataset comprising 208,506 individual cells 

extracted from 44 patients diagnosed with either primary or metastatic Lung 

Adenocarcinoma (LUAD). The investigation unveiled the existence of a distinct cancer 

cell subtype that exhibited a marked deviation from the standard differentiation trajectory, 

and notably, this subtype predominated during the metastatic phase of the disease. 

Furthermore, the study shed light on significant ontological and functional changes 

occurring within the stromal and immune cell populations, collectively creating a 

microenvironment conducive to tumour growth and immune suppression in metastatic 

LUAD[31]. Researchers also utilised scRNA-seq to generate comprehensive molecular 

profiles from five patients diagnosed with ground glass nodule (GGN) adenocarcinoma, an 

early-stage variant of Lung Adenocarcinoma (LUAD). They compared them with profiles 

from five patients with solid adenocarcinoma (SADC), a more advanced form of the 

disease. Their investigation revealed distinct molecular characteristics between these two 
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subtypes. Specifically, the cancer cells in GGN-ADC exhibited downregulation of 

signalling pathways associated with cell proliferation, suggesting a potentially less 

aggressive phenotype than SADC. Meanwhile, the stromal cells displayed differential 

effects on processes such as angiogenesis, fibrosis, and immunity in GGN-ADC compared 

to SADC. These findings highlight the intricate interplay between cancer cells and the 

tumour microenvironment in different LUAD subtypes and may provide valuable insights 

into their progression and potential treatment strategies[32].  

2.3.1 Integrating scRNA-seq with Genomic Data 

scRNA-seq was conducted on 1,368 LUAD cells sourced from 10 patients. They 

subsequently integrated this data with bulk whole-genome sequencing and RNA 

sequencing to understand the molecular landscape better. Through this integrated 

approach, the team successfully delineated the functional repercussions of co-occurring 

genomic alterations in LUAD cells. Moreover, their findings illuminated the remarkable 

heterogeneity in the expression of driver genes and the activity of pertinent pathways 

within individual tumours and across the cohort of patients. This newfound insight into the 

intricate genomic and functional diversity within LUAD tumours holds significant promise 

for advancing our comprehension of disease progression and tailoring more effective 

therapeutic strategies[33]. 

2.3.2 Reference Component Analysis 

Researchers utilised reference component analysis to examine scRNA-seq data obtained 

from 23 colorectal tumours. This analysis revealed the presence of six major cell types and 

11 distinct subtypes within the tumour samples. Furthermore, comparable cell types and 

subtypes were identified when applying this method to scRNA-seq data from LUAD. This 

study effectively showcased the utility of reference component analysis in unravelling the 

intricate cellular diversity and tumour microenvironment within human malignancies[32]. 

2.3.3 Therapy-Induced Evolution 

In a different study, scientists used 17,648 cells from 20 treatment-naive and 10 post-

treatment LUAD tumours to perform scRNA-seq. They demonstrated how LUAD cells 

and their microenvironment underwent therapy-induced evolution following treatment 
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with tyrosine kinase inhibitors or immune checkpoint inhibitors. In LUAD, they discovered 

unexpected cell types linked to immune evasion and treatment resistance[34].  

2.4 scRNA-seq in Metastatic LUAD 

Metastatic LUAD has a poor prognosis and few treatment options. Several studies have 

used single-cell RNA sequencing (scRNA-seq) to study the transcriptomic diversity, 

dynamics of LUAD cells, and their microenvironment throughout different stages and 

locales of metastasis to obtain insights into the molecular and cellular causes of LUAD 

metastasis. scRNA-seq effectively captures individual cellular gene expression levels and 

identifies novel cell subtypes and biomarkers[16]. This article offers an overview of several 

studies, delving into their findings and significance in research and treatment for Lung 

Adenocarcinoma (LUAD). Below, are the some of these related studies in detail. 

scRNA-seq analysis was performed on 60,459 cells from 10 patients with ground glass 

nodule (GGN) adenocarcinoma, an early variant of LUAD, and 10 patients with solid 

adenocarcinoma (SADC), a more advanced variety, in one of the investigations. They 

discovered that GGN-ADC cancer cells showed downregulated cell growth signalling 

pathways, but stromal cells had different effects on angiogenesis, fibrosis, and immunity 

in GGN-ADC and SADC. They also discovered a new subtype of cancer-associated 

fibroblasts (CAFs) in GGN-ADC that expressed high levels of C-X-C motif chemokine 12 

(CXCL12) and platelet derived growth factor receptor beta (PDGFRB)[32]. scRNA-seq 

was also conducted on 1,368 LUAD cells obtained from 10 different patients. They 

combined this scRNA-seq data with bulk whole-genome sequencing and RNA sequencing 

data to explore the functional consequences of co-occurring genomic alterations in LUAD 

cells. Their analysis uncovered notable variations in the expression of driver genes and 

pathway activities within individuals and across different tumours. Specifically, they 

observed that KRAS mutations were linked to increased activity in glycolysis and oxidative 

phosphorylation pathways, whereas EGFR mutations were associated with reduced cell 

cycle pathway activity. Additionally, the researchers identified a previously unrecognised 

subgroup of LUAD cells characterized by high expression levels of AXL receptor tyrosine 

kinase (AXL) and Growth Arrest Specific 6 (GAS6)[26]. scRNA-seq on 17,648 cells from 

20 treatment-naive and 10 post-treatment LUAD tumours was utilised to demonstrate the 
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evolution of LUAD cells and their microenvironment following treatment with tyrosine 

kinase inhibitors or immune checkpoint inhibitors. They discovered new cell states in 

LUAD that are linked to medication resistance and immune evasion. They discovered that 

after tyrosine kinase inhibitor treatment, EGFR-mutant LUAD cells gained mesenchymal 

epithelial transition factor (MET) amplification or human epidermal growth factor receptor 

2 (HER2) activation, whereas PD-L1-positive LUAD cells acquired TGF-beta or WNT 

signalling [35]. Spatial distribution and functional states of immune cells in LUAD tissues 

was observed using scRNA-seq on 20,000 cells from 20 LUAD patients. They discovered 

that immune cells showed distinct spatial patterns depending on their cell type and 

activation state. They also discovered a new subtype of cytotoxic T cells with impressive 

anti-tumor activity and high granzyme B (GZMB), Perforin-1 (PRF1), interferon gamma 

(IFNG), and tumour necrosis factor (TNF) levels[36]. A study found that IFN-signaling 

pathway genes are heterogeneously expressed and correlated with other genes in single 

cancer cells, including MHC class II (MHCII). Downregulation of genes in IFN-signaling 

pathways in cell lines corresponds to an acquired resistance phenotype. This study was 

performed through scRNA-seq analysis[22]. scRNA-seq also identified a new population 

of tumour-associated neutrophils (TANs) that aid in the spread of lung cancer. The 

researchers discovered that TANs increase lung cancer spread by secreting IL-8. In the 

study, galectin-1 was also identified as a possible therapeutic target for non-small cell lung 

cancer. Galectin-1 is a protein in many malignancies linked to a bad prognosis[37]. Another 

study, published in PubMed, discovered that single-cell RNA profiling of lung 

adenocarcinoma gives new prognostic information based on the microenvironment and 

may assist in predicting therapy response and disclose potential target cell types for future 

therapeutic approaches[27]. 

2.5 scRNA-seq in Breast Cancer 

Apart from studies on Luad, scRNA-seq analysis was also used for many other cancer 

types, resulting in some novel findings. Such a type of study was done on breast cancer. 

The study used single-cell transcriptomics to examine HER2+ breast cancer cells and their 

response to trastuzumab treatment. They successfully distinguished treated and untreated 

cells, attributing the separation to trastuzumab. Known and new expression patterns were 
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identified. Some genes upregulated under trastuzumab treatment, like Clusterin (CLU) and 

SELENOP selenoprotein P (SEPP1), may be markers for cardiotoxicity. Trastuzumab's 

impact on tumor-promoting genes was noted. Upregulated MGP may indicate better 

outcomes. Additionally, a 48-gene signature related to cardiomyocyte cell death was 

identified, shedding light on cardiotoxicity mechanisms. The researchers also identified 

new genes previously not shown to be upregulated in previous studies, including C-X-C 

Motif Chemokine Ligand 1 (CXCL1), C-X-C Motif Chemokine Ligand 8 (CXCL8), 

Calcium and Integrin Binding 1 (CIB1), Interferon Induced Transmembrane Protein 1 

(IFITM1), and Secreted Phosphoprotein 1 (SPP1). This research contributes to a better 

understanding of trastuzumab therapy's molecular mechanisms and the usage of scRNA-

seq technology[38]. 

The key findings presented in this thorough literature review illustrate the growing 

importance of single-cell RNA sequencing in figuring out the complex cellular landscape 

of primary lung adenocarcinomas and their metastatic counterparts. This refined technique 

has enabled researchers to identify distinct cellular subpopulations inside lung 

adenocarcinomas, identify the underlying molecular pathways driving tumour initiation, 

and gain critical insights into metastatic processes. Furthermore, single-cell RNA 

sequencing has revealed attractive treatment targets for lung cancer and set the groundwork 

for pursuing personalised medicine approaches. However, despite these remarkable strides, 

substantial knowledge gaps remain within this domain that necessitate further exploration. 

For instance, a deeper comprehension of the heterogeneity inherent in the tumour 

microenvironment is imperative, as is the identification of novel biomarkers that can serve 

as predictive indicators for enhanced treatment responses in lung adenocarcinomas. 

Another compelling avenue for future research could be the development of more precise 

and effective therapies for lung adenocarcinoma, specifically targeting distinct cellular 

subsets within the tumour microenvironment. Efforts to bridge these knowledge gaps are 

pivotal in advancing our understanding of lung adenocarcinoma and enhancing patient 

outcomes. The findings summarised in this literature review underscore the immense 

potential of single-cell RNA sequencing in cancer research, hinting at its transformative 

capacity to redefine the diagnosis and treatment of cancer. 
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CHAPTER 3: METHODS 

This chapter details the methodology used to investigate the cellular atlas of primary lung 

adenocarcinomas and metastatic lesions using single-cell RNA sequencing (scRNA-seq). 

It includes data processing steps such as quality control, gene expression normalisation, 

PCA, and cell clustering using Seurat v4.0. Additionally, differential gene expression 

analysis and functional enrichment were performed. Furthermore, a comparison between 

DEGs identified through scRNA-seq and TCGA data was carried out to identify unique 

genes not present in the TCGA database. 
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Figure 3.1: An overview of the methodology implemented in this study 

3.1 Data Collection 

The scRNA-seq dataset investigated in this study was sourced from the NCBI Gene 

Expression Omnibus (GEO) database under the accession number GSE131907. This 

dataset was generated by high-throughput sequencing of 44 lung adenocarcinoma patients, 

producing 58 samples. It encompasses scRNA-seq data from 208,506 cells originating 

from 15 primary lung adenocarcinoma samples, seven lymph node metastases, and 10 brain 
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metastases. Furthermore, the dataset includes five pleural effusion samples, ten normal 

lymph node samples, and 11 distant standard samples. For this research, a subset of 11 

primary tumour samples and 11 metastatic tumour samples were selected, with the 

metastatic samples consisting of 5 lymph node samples and 6 brain samples. The original 

dataset was provided as a .rds.gz count matrix, as raw sequencing data was withheld due 

to privacy concerns for the patients involved[31]. 

3.2 Tools 

To begin the analysis of the scRNA-seq data using the Seurat pipeline in R, the initial step 

involved converting the .rds file into the 10X format, which includes Barcodes, Features, 

and Count Matrices. This analysis was conducted in R, a programming language, with the 

assistance of R-Studio, an integrated development environment (IDE) for R. The Seurat 

pipeline, designed explicitly for single-cell data analysis, was then employed in addition to 

harmony to perform subsequent data processing and analysis tasks. The harmony package 

was used for the integration step in single-cell RNA-seq analysis. Enrich R, a web tool, 

was used for the pathway analysis, and the TCGA data was accessed through The 

University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN)[39, 40]. 

3.2.1 R Language 

R is a widely accepted programming language and software environment known for its 

statistical computing and graphics proficiency. It encompasses extensive statistical 

techniques, ranging from linear and nonlinear modelling to time-series analysis, 

classification, and clustering. This open-source, freely available software is compatible 

with Windows, Mac OS X, and Linux operating systems and boasts an active community 

of dedicated users and developers[41, 42].  

3.2.1.1 R studio 

R Studio is a robust and user-friendly integrated development environment (IDE) tailored 

explicitly for the R programming language. It boasts many tools and features that simplify 

data management, code writing, and visualization creation. Its intuitive code editor, with 

features like syntax highlighting and code completion, enhances code efficiency and 

accuracy[41, 42].  
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3.2.2 Seurat v4.0 and Harmony 

Seurat is a prominent and widely used analysis pipeline for single-cell RNA sequencing 

(scRNA-seq) data, developed by Rahul Satija and his team at the New York Genome 

Center[43]. The Seurat pipeline encompasses several critical steps, including quality 

control, normalisation, clustering, and cell type identification, making it a standard tool for 

scRNA-seq data analysis. 

3.2.3 Enrich R 

A web tool called Enrich R was used for Gene set enrichment Analysis. Enrich R is a 

powerful and user-friendly web-based tool widely used in bioinformatics for pathway 

analysis. Its primary purpose is to help researchers uncover biological pathways and 

processes significantly associated with a list of genes of interest. By identifying which 

pathways or processes are overrepresented in the gene list, Enrich R aids researchers in 

gaining critical insights into the molecular mechanisms and functions of their genes[44-

46]. 

3.3 Demultiplexing 

The original dataset was in the form of a compressed .rds.gz count matrix, as privacy 

concerns prevented sharing raw sequencing data related to patients. The initial dataset 

underwent a demultiplexing process, creating 10X file formats, including Barcodes, 

Features, and Count Matrices. This transformation was carried out for each of the 11 

selected samples. Following the data conversion into the 10X file format, the next step 

involved importing this processed data into R Studio, serving as the starting point for our 

analytical investigations. 

3.4 Data Loading 

Out of the total of 58 samples in the dataset, there are 15 primary tumour samples, seven 

from metastatic lymph nodes, 10 from metastatic brain lesions, five from pleural effusion, 

10 from normal lymph nodes, and 11 from distant normal tissues. The primary focus for 

analysis was on the 11 primary tumour samples and their associated metastatic lesions, 

which included five samples from lymph nodes and six samples from brain metastases[31]. 

A 10X sparse matrix from the loaded data to effectively handle the complex nature of 
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single-cell data. This matrix creation process was carried out using the R function 

Seurat::Read10X(). 

3.5 Quality Control 

After creating the Seurat object in the scRNA-seq analysis pipeline, a crucial step involves 

quality control to ensure the reliability of the dataset. This quality control process involves 

the application of criteria to retain only high-quality cells and genes. Specifically, cells 

with at least 100 expressed genes and genes expressed in at least three cells are retained. It 

was achieved through the Seurat::CreateSeuratObject() function[47]. 

Another crucial step involves calculating the percentages of mitochondrial and ribosomal 

genes in each cell using Seurat::PercentageFeatureSet() to ensure data integrity. High 

levels of mitochondrial or ribosomal gene content can distort analysis results and obscure 

the expression of nuclear genes. A high number of mitochondrial genes can be present due 

to damaged cells because when a cell's membrane is damaged, its genetic material can leak 

out. So, cells with more than 8% mitochondrial or ribosomal gene content are removed, 

enhancing the dataset's suitability for subsequent analyses accomplished through the 

subset() function[48]. 

In the final quality control step, cells with over 5000 features per cell are removed using 

subset(subset = nFeature_RNA < 5000). It indicates potential doublets that could distort 

the expression data, so it is necessary to remove them for accurate analysis. 

3.6 Normalisation and Scaling 

Normalisation is crucial in analyzing single-cell RNA sequencing (scRNA-seq) data to 

assess gene expression at the individual cell level. Since scRNA-seq experiments involve 

processing cells in batches, variations in sequencing depth and library size across cells and 

batches can introduce technical noise that hinders the accurate detection of biologically 

significant differences in gene expression[49]. Normalisation eliminates these technical 

variations and effectively aligns gene expression values to compare them across cells and 

batches [50]. 

In this analysis, a global-scaling normalisation method called "LogNormalise" was 

utilised. This method involves normalising the gene expression measurements for each cell 
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based on the total expression, multiplying the result by a scale factor (typically 10,000 by 

default), and applying a logarithmic transformation. The resulting normalised values are 

then stored in the "RNA" assay within the '@assay' slot of the “seu” object. This 

normalisation step was executed using the R function "Seurat::NormaliseData()"[51].  

The next stage in our scRNA-seq data analysis involves identifying variable features. A 

method commonly employed for detecting variable features in scRNA-seq data analysis is 

the variance stabilizing transformation (VST) method. VST is a data normalisation 

technique designed to correct technical noise and variability in scRNA-seq data. This 

technique transforms read counts to approximate a normal distribution, enabling more 

precise statistical analysis and gene expression comparisons between individual cells[50]. 

Genes are initially ranked based on their mean expression levels to identify variable 

features using the VST method. Subsequently, the variance of each gene is computed, and 

genes are filtered according to their Coefficient of Variation (CV), which measures the 

relative variability in gene expression across cells. Genes exhibiting high CV values are 

considered variable and are retained for further analysis[47].  

Subsequently, scaling, a standard preprocessing step, was performed before dimensional 

reduction techniques like Principal Component Analysis (PCA). It was achieved using the 

“ScaleData()” function, which adjusts the expression of each gene so that the mean 

expression across cells becomes 0, and the gene expression variance across cells becomes 

1. This transformation ensures that downstream analyses assign equal weight to each gene, 

preventing highly expressed genes from dominating the results. The scaled data is stored 

in “seu$RNA@scale.data”, where the R function “Seurat::ScaleData()” was employed 

for this purpose. 

Scaling in scRNA-seq data analysis offers several advantages. Firstly, it facilitates the 

detection of differentially expressed genes across individual cells or cell types by 

accounting for variations in sequencing depth and gene expression variability. Secondly, it 

aids in identifying rare cell types or subpopulations that might exhibit lower sequencing 

depth than more abundant cell types. Lastly, it allows for comparing gene expression levels 

across different scRNA-seq datasets or platforms, as scaling ensures that the data is 

consistently normalised. 
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3.7 Dimensionality Reduction 

In single-cell RNA sequencing (scRNA-seq) data analysis, dimensionality reduction is a 

crucial step that simplifies the high-dimensional gene expression data into a lower-

dimensional representation, making it more manageable and revealing key patterns. In the 

dimensionality reduction phase, Principal Component Analysis (PCA) was employed as 

the initial step, followed by t-distributed Stochastic Neighbor Embedding (t-SNE). 

PCA identifies patterns in the data and generates orthogonal variables known as principal 

components (PCs), which capture the most significant data variation sources. PCA is 

essential for several reasons in scRNA-seq analysis. Firstly, scRNA-seq data is inherently 

high-dimensional, making visualization and analysis challenging. PCA reduces data 

dimensionality, facilitating visualization and downstream analysis. Secondly, it helps 

remove technical noise and batch effects, clarifying biological variability. Lastly, PCA can 

uncover biologically meaningful subpopulations with coordinated gene expression 

patterns[52]. To perform PCA, gene expression data is scaled and centred to account for 

differences in sequencing depth and gene expression variability across cells. The 

covariance matrix of the scaled data is then computed, and its eigenvectors and eigenvalues 

determine the principal components. The analysis uses “Seurat::RunPCA()” for this 

purpose[51]. 

Determining the optimal number of principal components to retain is crucial. The elbow 

plot technique, executed via Seurat::ElbowPlot(), aids in this decision by plotting the 

variance explained by each PC against the number retained. It visually identifies the point 

where the increase in variance explained levels off, resembling an "elbow" shape[53]. The 

goal of the elbow plot is to strike a balance between capturing most of the data's variation 

and avoiding overfitting or including irrelevant components. Only some components may 

lose vital data variation, while too many can lead to overfitting, reducing result 

interpretability.  

After PCA analysis, t-distributed Stochastic Neighbor Embedding (t-SNE) was introduced. Unlike 

PCA, t-SNE is a method that focuses on keeping nearby cells together, preserving their local 

interactions. After identifying dimensions with PCA, t-SNE captured detailed connections within 

the data and maintained local structures. The analysis was conducted using the R function 
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"Seurat::RunTSNE()" and selecting dimensions based on the elbow plot. This two-step approach 

offered a comprehensive understanding of overall and detailed patterns in the scRNA-seq data, 

contributing to a more detailed and interpretable analysis. t-SNE's non-linear dimensionality 

reduction is particularly beneficial in uncovering complex patterns between cells, making it a 

valuable tool in single-cell transcriptomics for exploring hidden patterns and facilitating the 

identification of distinct cell populations[54]. 

3.8 Integration  

Integration in single-cell RNA sequencing (scRNA-seq) data analysis is a critical step that 

involves merging and aligning multiple scRNA-seq datasets from distinct samples or 

experiments into a unified dataset. This process is essential for enhancing statistical power, 

enabling cross-sample comparisons, and uncovering shared biological signals[50]. 

The harmony package integrates scRNA-seq data by identifying shared "anchors" between 

datasets based on expression similarities. It then employs non-linear dimensionality 

reduction to map data from each dataset into a common low-dimensional space. Batch 

correction is applied to minimise technical variations, and the aligned, integrated data can 

be used for downstream analyses while preserving biological signals and reducing 

noise[55, 56]. This step was carried out using the R function “RunHarmony()”. The choice 

of integration method depends on specific research objectives and dataset characteristics. 

3.9 Clustering 

Clustering is essential for comprehending functional heterogeneity within cell populations, 

uncovering rare cell types, and gaining insights into complex biological systems. Seurat's 

"FindClusters" function is central to identifying cell types and subpopulations based on 

gene expression patterns. A clustering tree is constructed to determine the optimal 

resolution for clustering, generating various clustering distributions based on different 

resolutions[57]. The resolution parameter influences the number of clusters, and the choice 

is guided by examining the clustering tree. The "clustree" package's "clustree()" function 

facilitates this evaluation[51]. 

 Before clustering, neighbouring points need to be identified. Seurat's "FindNeighbors" 

function utilises shared gene expression profiles to identify the K-nearest neighbours for 
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each cell, creating a K-nearest neighbour graph using a shared nearest neighbour (SNN) 

algorithm. The number of dimensions retained is determined by examining the elbow 

plot[47]. Subsequently, "FindClusters" performs unsupervised clustering analysis based 

on the K-nearest neighbour graph, grouping cells through modularity optimisation[57]. 

Together, these functions enable the characterisation of cell populations and 

subpopulations, providing valuable insights into gene expression patterns and functional 

diversity within scRNA-seq data. 

3.10 Cell Type Annotation 

Cell type annotation can be done manually, relying on expert knowledge and marker gene 

expression. Although it is a valuable approach for verifying computational results or 

identifying rare cell types, it is subjective and time-consuming[50]. Alternatively, 

computational tools like SingleR streamline cell-type annotation. Singler leverages a 

reference dataset of known cell types, and their gene expression profiles to predict the cell 

type of individual cells in a new dataset. It assesses the similarity between each cell's 

expression profile and the reference dataset, assigning cells to the closest matching cell 

type[58].  

This analysis used SingleR with the "FindClusters" function to annotate cell types within 

each cluster. The reference dataset was accessed via the R function 

celldex::HumanPrimaryCellAtlas(), providing a rich resource of over 350,000 single-cell 

transcriptomes from diverse human tissues. This dataset empowers researchers to explore 

gene expression profiles, delineate cell types and subtypes, and investigate molecular 

mechanisms underlying cell function and disease[59]. 

The Human Primary Cell Atlas, hosted on the CellDex platform, is a comprehensive single-

cell data repository encompassing a wide range of human tissues and organs[60]. For cell 

type annotation using SingleR, the downloaded reference set is compared to the normalised 

count data, determining the most likely cell type. This automated approach expedites the 

annotation process, enhances objectivity, and facilitates the discovery of novel or rare cell 

types in scRNA-seq datasets. 
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Similarly, the cell cycling state annotation can also be applied to the data. It is achieved by 

utilising a function called “CellCycleScore”, which, in turn, employs “AddModuleScore” 

to calculate a score for two critical phases of the cell cycle, G2/M and S (both of which are 

associated with mitosis). Furthermore, the “CellCycleScore” function categorises each cell 

into three phases: G2/M, S, or G1. The initial step in this process involves extracting the 

predefined genes associated with cell cycling, which presumably play pivotal roles in 

regulating and signalling the various phases of the cell cycle. These genes are essential for 

accurately characterising and categorising cells based on their cycling states. Plots were 

created to illustrate the distribution of cells across these phases, offering insights into cell 

behaviour and cell cycle dynamics. These annotations and visualisations are invaluable for 

understanding the cell cycle's regulation within primary and metastatic stages. 

3.11 Differential Gene Expression 

Differential expression analysis conducted via the "FindAllMarkers" function in the 

Seurat package allows for identifying genes that exhibit significant differences in 

expression between specific clusters of cells, conditions, or cell types within their scRNA-

seq datasets[47]. 

This analysis leverages two key statistical measures: log2 fold change (log2FC) and p-

values. Log2 fold change (log2FC) quantifies the magnitude of gene expression differences 

between clusters or conditions. In the context of single-cell data, log2FC values are 

typically positive because scRNA-seq data predominantly captures upregulated genes. A 

positive log2FC suggests that a gene is upregulated in one cluster relative to another, 

reflecting the extent of this upregulation. Conversely, P-values are statistical measures that 

assess the likelihood of observing gene expression differences by random chance. A low 

p-value indicates that the observed differences are unlikely to be due to chance, signifying 

significant differential expression[61]. A commonly used threshold for statistical 

significance is an adjusted p-value of less than 0.05, which indicates that there is less than 

a 5% chance that the observed difference in expression is due to random chance. However, 

the threshold for statistical significance can vary depending on the specific research 

question and the level of stringency desired[57]. 
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3.12 Comparison with TCGA data 

After identifying differentially expressed genes, the data is compared with the TCGA 

dataset for further analysis and insights. The Cancer Genome Atlas (TCGA) is a 

collaborative project between the National Cancer Institute and the National Human 

Genome Research Institute that began in 2005. It aims to analyse various cancer types' 

genetic and molecular characteristics comprehensively. TCGA has generated a wealth of 

data that improves understanding of cancer and leads to potential treatment targets and 

personalised medicine approaches[62]. The Cancer Genome Atlas (TCGA) dataset 

primarily comprises bulk RNA sequencing (RNA-seq) and microarray data from various 

cancer types. Unique genes that may not be present in typical reference databases are 

expected to be encountered when analysing data. These unique genes hold significant 

importance in cancer research as they can play pivotal roles in cancer progression and 

provide insights into novel pathways within the cell. The presence of these unique genes 

in cancer suggests many possibilities. For example, these genes may indicate 

undocumented mutations, serving as potential biomarkers for specific cancer subtypes, or 

these unique genes might be involved in undiscovered cellular processes, providing 

insights into cancer development and suggesting new therapeutic targets. It can also lead 

to the discovery of rare cell types actively involved in cancer. Investigating their functions 

could reveal unconventional mechanisms driving malignancy. The "University of Alabama 

at Birmingham CANcer data analysis (UALCAN) Portal" will be utilised to identify these 

unique genes in the data. It allows the comparison of the differentially expressed genes 

with the TCGA data. By doing this, those genes not present in the TCGA database can be 

identified. This targeted approach helps to focus on the most promising candidates for 

further investigation, maximizing the potential impact of the research.  

3.13 Gene Set Enrichment Analysis 

Enrichment analysis in single-cell RNA sequencing (scRNA-seq) data plays a pivotal role 

in identifying dysregulated pathways and biological processes within cancer cells. The 

analysis offers a deeper understanding of the molecular complexities driving cancer 

development and progression, revealing potential therapeutic targets[63]. The pathway 

analysis was exclusively conducted using the EnrichR tool, focusing on the MSigDB 
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hallmark pathways[44-46]. The Molecular Signatures Database (MSigDB), developed by 

the Broad Institute, is a vital resource for genomics and cancer researchers. Its "Hallmark 

Gene Sets," a collection of 50 well-defined biological processes and pathways, are 

commonly used in gene set enrichment analysis (GSEA) to analyze gene expression data 

from cancer studies to identify key biological pathways and processes that are dysregulated 

in different types of cancer. It helps to understand the molecular mechanisms underlying 

the cancer and identify potential therapeutic targets[64]. This step involved the selection 

of gene lists for primary and metastatic samples based on specific thresholds, which were 

subjected to pathway analysis using the EnrichR web portal. The focus primarily remained 

on the MSigDB hallmark pathways. The top ten were preferred among these pathways 

based on their respective p-values. This stringent selection criterion enabled the 

identification of the most statistically significant pathways associated with cancer 

development and metastasis, thereby highlighting critical biological processes highly 

relevant to cancer biology. The study aimed to show critical biological processes and 

signalling pathways highly pertinent to cancer biology by selecting this curated collection 

of predefined gene sets.  



30 
 

CHAPTER 4: RESULTS 

This study employed single-cell RNA sequencing (scRNA-seq) technology to delve into 

the cellular heterogeneity of primary lung adenocarcinomas and their metastatic sites. A 

robust scRNA-seq data analysis pipeline was meticulously executed, encompassing quality 

control, normalisation, scaling, dimensionality reduction, cell clustering, cell type 

identification, differential expression analysis, and enrichment analysis. A comparison 

with the TCGA dataset was conducted to enhance the analysis. The study culminated in 

the identification of distinct cell clusters representing known lung cell types, as well as the 

discovery of previously uncharacterized cell types specific to lung cancer. Furthermore, 

two unique genes not present in the TCGA Database were identified. These findings also 

significantly contribute to our understanding of the complex cellular landscape in lung 

adenocarcinomas, shedding light on the molecular mechanisms driving tumour progression 

and metastasis. The results of each step are described in detail in the following paragraphs: 

4.1 Data Collection 

In the initial phase of the methodology, a publicly available scRNA-seq dataset (Accession 

No. GSE131907) from the Gene Expression Omnibus was accessed. This dataset contained 

raw UMI count matrices in the formed of compressed .rds.gz format for two distinct 

samples: Primary Tumour and metastatic sites in the brain and lymph nodes. Subsequently, 

a demultiplexing process was used to generate 10X genomics files for each sample. This 

demultiplexing step was essential in identifying and grouping reads belonging to individual 

cells based on their unique barcode sequences. High-quality transcriptome data was 

obtained for each cell, which was utilised for subsequent analysis. 

The resulting 10X genomics files underwent preprocessing using the Seurat package in R. 

This preprocessing step involved filtering out low-quality cells that expressed less than 100 

genes and genes that are expressed in less than 3 cells per sample. After the preprocessing, 

45,149 cells were retained in primary samples, as shown in Figure 4-1 and 31,497 cells in 

metastatic samples, as shown in Figure 4-2. This rigorous filtration process ensured that 

only high-quality cells and genes were retained for downstream analysis. 
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Figure 4.1: Frequency plot of cell abundance in each Primary sample 

 

Figure 4.2: Frequency plot of cell abundance in each Metastatic sample 
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4.2 Quality Control 

In the Quality Control (QC) phase, the two assays were treated separately: the primary 

tumour and metastatic samples. Since the dataset had already undergone some 

preprocessing, we ended up with 45,149 clean-read cells for the primary tumour and 31,497 

for the metastatic samples, following filtering and quality control measures. 

During this QC process, various metrics were assessed, including the percentage of mapped 

reads to the genome, the count of unique molecular identifiers (UMIs), the number of 

detected genes, and the percentage of mitochondrial and ribosomal genes, among others. 

In this step, two key filtering steps were applied. Firstly, cells with over 8% expression of 

mitochondrial genes were removed to prevent potential interference with expression 

analysis as they depict damaged cells. Figures 4-5 and 4-6 show the mitochondrial, 

ribosomal and haemoglobin gene percentages. These figures depict removing the cells with 

mitochondrial genes greater than 8%.  Secondly, cells displaying more than 5000 features 

were identified as potential doublets and excluded from further analysis to maintain data 

accuracy, as shown in Figures 4-3 and 4-4, respectively. These quality control measures 

were implemented to ensure the reliability of subsequent data analysis and interpretation. 

The outcomes of our QC analysis confirmed that all the samples met the predefined QC 

criteria, and all of them were retained for subsequent analysis. 

4.3 Normalisation and Scaling 

Normalisation and scaling procedures were carried out to address variations in sequencing 

depth and technical noise across the samples. After normalisation, an average of around 

50,000 unique molecular identifiers (UMIs) per cell across all samples were achieved, 

ensuring consistency. Subsequently, the "ScaleData" function from Seurat was utilised to 

standardise the data, accounting for differences in sequencing depth among individual 

cells. It shifted gene expression to a mean of 0 across cells and scaled it to have a variance 

of 1. Furthermore, comparison of the distribution of UMIs per cell was carried out across 

samples and found no significant differences, suggesting that the normalisation and scaling 

methods effectively eliminated batch effects[65]. 
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4.4 Dimensionality Reduction 

After completing quality control, normalisation, and scaling, Principal Component 

Analysis (PCA) was applied to reduce the dimensionality of the scRNA-seq data for both 

Primary and Metastatic samples. Elbow plots were constructed based on the PCA results 

to determine the most suitable number of principal components to retain. The elbow plots 

guided the selection of the top 30 principal components in both datasets for further analysis. 

Subsequently, t-distributed Stochastic Neighbor Embedding (t-SNE) was utilised for data 

visualisation, which helped observe patterns in the data and identified clusters of cells 

exhibiting similar expression profiles. 

As a preliminary step in dimensionality reduction, a subset of features that display 

significant cell-to-cell variation within the datasets was identified. In both assays, 2,000 

genes (features) per dataset were retained by default for downstream analysis, such as PCA. 

Focusing on these genes in subsequent analyses helps us emphasise the biological signals 

within the single-cell datasets. The 2,000 highly variable genes across both datasets are 

shown in Figures 4-9 and 4-10, respectively.  Selecting 2000 variable features helps cover 

diverse biological information without using enormous computational resources. 

Additionally, it ensures the inclusion of crucial genes and pathways relevant to the 

biological question while facilitating effective dimensionality reduction techniques like 

PCA or t-SNE.  
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Figure 4.3: Plot showing two thousand variably expressed genes (Primary samples) 

 

Figure 4.4: Plot showing two thousand variably expressed genes (Metastatic samples) 
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The elbow plots are visualised to see how many principal components are needed to retain 

for the downstream analysis. The elbow plot is a powerful tool in scRNA-seq data analysis 

that helps determine the optimal number of principal components for downstream analysis. 

Elbow plots for choosing the number of components for both primary and metastatic 

samples are given below, as shown in Figures 4-13 and 4-14. There is a sharp decrease in 

standard deviation in the initial number of components added, which signifies that as 

components are added, variations are better explained, but after a while, adding more 

components does not affect the standard deviation and a plateau is reached. The number of 

components needed to reduce is picked after the plateau is achieved, which looks like the 

bent elbow of a human, signifying its name. In both datasets, the elbow point, indicating 

the optimal number of principal components, was observed around the 25th component. 

However, 30 principal components were selected to enhance data compatibility and 

minimise potential errors, which may have led to overfitting. 

 

Figure 4.5: Elbow plot for selecting appropriate no. of PCs (Primary samples) 
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Figure 4.6: Elbow plot for selecting appropriate no. of PCs (Metastatic samples) 

The t-SNE plots, based on the ideal number of principal components chosen from the elbow 

plot, offer a visual representation of the data in two or three dimensions. These plots help 

to identify distinct clusters within the data. In Figures 4-15 and 4-16, numerous clusters for 

both primary and metastatic samples indicate different cell types. In Figure 4-14, focusing 

on the primary data, it is noticed that samples T30 and T34 form separate clusters from the 

rest of the samples. Further analysis reveals that these patients have never smoked, unlike 

the others who are either current smokers or ex-smokers. It suggests that specific unique 

characteristics in these patients might contribute to cancer development. 
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Figure 4.7: Raw TSNE after dimensionality reduction (Primary samples) 

Moving to Figure 4-16, which shows metastatic samples, the clusters are clearer and more 

diverse. It could be attributed to different metastatic regions and varied patient histories. 

Some patients are in stage 3, while others are in stage 4, and there is a mix of smokers, 

non-smokers, and ex-smokers among them. Overlaying these clusters with cell type 

annotations or gene expression data helps extract insights into the underlying biology. By 

reducing the dimensionality of the data, it becomes easier to identify specific cell 

subpopulations and explore relationships between different cell types. 
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Figure 4.8: Raw TSNE after dimensionality reduction (Metastatic samples) 

4.5 Integration 

The Harmony package in R was utilised to integrate the data. It constructs shared nearest-

neighbour graphs for individual datasets and then employs an iterative optimisation process 

to align and harmonise cells across batches. The algorithm adjusts cell positions to 

minimise batch-specific differences while preserving biological signals.  

Following integration through Harmony, the t-SNE analysis was carried out again. Before 

integration, Figures 4-15 and 4-16 show clusters in both primary and metastatic samples in 

their raw form, scattered and less organized. Cells are primarily clustered by their 

respective samples, representing an initial clustering stage with no refinement. However, 

after integration, as shown in Figures 4-17 and 4-18, clusters in both primary and metastatic 

samples become more distinct and separated from each other compared to the raw t-SNE. 

Cells are more evenly distributed based on similarities and differences. In the primary data, 

sample T34 is confined to a single separate cluster, which can be attributed to the presence 

of distinct features or cells. 
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Figure 4.9: Integrated TSNE after dimensionality reduction (Primary samples) 

 

Figure 4.10: Integrated TSNE after dimensionality reduction (Metastatic samples) 
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The integration process yielded unified datasets that promoted more robust and informative 

downstream analyses, providing valuable insights into the biology being studied. These 

harmonized datasets are utilised for subsequent tasks like clustering, cell type annotation, 

and differential expression analysis.  

4.6 Clustering 

Before conducting clustering, a hierarchical clustering tree was created to depict the 

relationships between cell clusters at various resolutions. A range from 0.1 to 0.8 was 

explored to determine the most suitable clustering resolution. The tree illustrated different 

levels of cell clusters at each resolution, with broader clusters at lower resolutions and more 

refined, specific clusters at higher resolutions. 

In primary samples, a resolution of 0.3 emerged as the most suitable value for clustering, 

yielding 17 distinct clusters, as shown in Figure 4-19. This choice balanced interpretability 

and computational efficiency. Notably, this resolution facilitated clear clustering, with only 

one additional division observed at cluster 7. Upon closer examination, it became evident 

that cluster 0 harboured the highest number of transcripts, followed by clusters 1 and 2. 

The colour intensity of edges within cluster 0 suggested elevated expression levels 

compared to other clusters. These clusters likely represent the dominant cell types in the 

data, such as immune cells or epithelial cells. Further observation of edge transparency at 

the 0.3 resolution revealed stable clustering patterns within the data. 

For metastatic samples, a resolution of 0.5 emerged as the most reasonable value, as shown 

in Figure 4-20, resulting in 22 distinct clusters. Although clusters 0 and 2 show further 

projection towards clusters 6 and 12, respectively, they exhibited less effectiveness due to 

their transparency, as depicted in Figure 4-20. This indicates that the cells within Cluster 2 

share some similarities with Cluster 12, while those in Cluster 0 are akin to Cluster 6. 

Cluster 0 contained the highest number of cells, followed by clusters 1 and 2. The colour 

of the edges also suggests that cluster 1 exhibits the highest expression level, followed by 

clusters 0, 3, 2, and 4. Furthermore, the edges indicate that the clustering at this resolution 

is stable. The more considerable number of clusters in metastatic samples suggests that 

they contain cells from other regions and lung cells. 
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Figure 4.11: Clustering tree of resolution ranging between 0.1 - 0.8 (Primary samples) 

 

Figure 4.12: Clustering tree of resolution ranging between 0.1 - 0.8 (Metastatic samples) 

Based on the hierarchical clustering tree, 0.3 for primary samples and 0.5 for metastatic 

samples were selected to cluster cells. Once clustering was completed, we applied the 

dimensionality reduction technique known as t-SNE to visualise the clustering outcomes. 

Separate t-SNE plots were created for each of our samples, and the t-SNE plots for both 

states can be found below: 
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Figure 4.13: TSNE with 0.3 resolution (Primary samples) 

 

Figure 4.14: TSNE with 0.5 resolution (Metastatic samples) 
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4.7 Cell Type Annotation 

The cell type annotation step entails assigning a biological identity to each cluster identified 

during the prior clustering phase. This study used The SingleR package with the Human 

Primary Cell Atlas as a reference dataset for cell annotation. 19 distinct cell type clusters 

were readily shown in primary samples and 22 in metastatic samples, encompassing 

various cell types like tumour, endothelial, T, B, and macrophages.  A predominant T cell 

population, constituting approximately 40-45% of all cells, was notable in the primary 

samples depicted in Figure 4-23.  These T cells are a crucial part of the immune system 

and actively fight against the tumour. Other prominent cell types included macrophages, 

epithelial cells, and B lymphocytes. Smaller populations of endothelial cells, monocytes, 

and natural killer cells, each making up less than 10% of the total cell count, were also 

identified. 

 

Figure 4.15: Stacked bar plot showing cell type abundance in each Sample (Primary samples) 

In contrast, metastatic tumours exhibited a more diverse range of cell types, as shown in 

Figure 4-24. It shows that they metastasised to other body parts. Along with the abundance 

of immune cells, metastatic tumours also contained substantial numbers of other types of 
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cells, including epithelial cells, fibroblasts, astrocytes and monocytes, as shown in Figure 

4-24. The variation in cell composition between primary and metastatic tumours highlights 

the dynamic nature of cancer progression. As tumours evolve and disseminate to distant 

locations, they undergo genetic, epigenetic, and microenvironmental changes that shape 

the cellular landscape. These changes and factors, such as treatment effects and site-

specific influences, contribute to the observed differences in cell composition. 

Understanding these variations is crucial for developing targeted therapies personalised to 

the specific cell types in metastatic tumours, ultimately improving outcomes for patients 

with cancer. 

 

Figure 4.1: Stacked bar plot showing cell type abundance in each Sample (Metastatic samples) 
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Figure 4.17: TSNE labelled with cell types (Primary samples) 

 

Figure 4.18: TSNE labelled with cell types (Metastatic samples) 
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The cell cycle dynamics observed in primary and metastatic LUAD samples depict distinct 

stages of tumour progression and microenvironmental adaptations. In primary tumour 

stages characterized by localized growth, a prevalence of cells in the G2/M and S phases 

signifies active proliferation and DNA replication, typical of rapidly dividing cancer cells, 

as shown in Figure 4-27. Additionally, T and B cells in similar phases suggest a concurrent 

immune response, possibly driven by the tumour's antigens. However, as the disease 

advances to the metastatic stage, where cancer cells spread to distant sites, a notable shift 

toward G1 phase dominance emerges, as shown in Figure 4-28. This alteration hints at a 

potential slowdown in cell cycle progression, likely influenced by changes in the 

microenvironment. Metastatic cells may enter an inert state to adapt to new environmental 

conditions, evade immune detection, or initiate the formation of secondary tumours. The 

observed differences indicate the interactions between cancer cells and their surroundings, 

shaping tumour development and invasion to distant sites throughout the disease 

progression. 

 

Figure 4.19: TSNE labelled with cell Cycle Phases (Primary samples) 
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Figure 4.20: TSNE labelled with cell Cycle Phases (Metastatic samples) 

4.8 Differential Gene Expression 

Differential expression analysis revealed distinct gene expression patterns among different 

cell types within primary tumour samples, as indicated by the "findallmarkers" analysis 

conducted separately for primary and metastatic samples. Several genes showed a unique 

expression profile in primary tumour samples, as shown in Figure 4-29, with only a few 

being expressed across multiple cell clusters: Ferritin Light Chain (FTL), Cystatin B 

(CSTB), Surfactant Protein C (SFTPC), Immunoglobulin Lambda Constant 2 (IGLC2) and 

Immunoglobulin Kappa Constant (IGKC). FTL and CSTB are associated with tumour-

promoting activities. FTL is known for its involvement in gliomas. The hypoxic 

microenvironment characteristic of these tumours influences it. It is crucial in regulating 

the Epithelial Mesenchymal Transition (EMT) process, contributing to tumour invasion 

and metastasis. It induces EMT through the Protein Kinase B/Glycogen Synthase Kinase 

3 Beta/Beta-catenin (AKT/GSK3β/β-catenin) signalling pathway, enhancing tumour 

aggressiveness[66]. Cystatin B (CSTB) is implicated in hepatocellular carcinoma (HCC), 

where its overexpression correlates with aggressive tumorigenesis and poor prognosis. 
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Functionally, CSTB acts as an oncogene, driving tumour growth and invasion by 

promoting cell proliferation and inducing G2 phase cell cycle arrest. CSTB also positively 

regulates EMT and influences vital signalling pathways such as MAPK, mTOR, and AKT, 

thereby contributing to cancer progression[67]. In contrast, SFTPC exhibits tumour-

suppressing activity in LUAD by inhibiting the PI3K/AKT/mTOR pathway, which 

controls cell proliferation. Low levels of SFTPC are associated with poor prognosis in 

LUAD patients and increased sensitivity to Programmed Cell Death Protein 1 (PD-1) and 

Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA-4) antibodies, suggesting its 

potential as a predictive marker for immunotherapy response[68]. Targeting SFTPC or its 

downstream pathways may offer new therapeutic avenues for LUAD treatment. IGLC2 

and IGKC, as components of the immune system, contribute to antibody production and 

play a role in identifying and neutralizing abnormal cells, thus aiding the body's defence 

against cancer[69, 70]. The dot plot analysis of primary samples depicted distinct gene 

expression patterns among different cell types within the primary tumour 

microenvironment, indicating that cells maintain their unique characteristics and polarity 

within the primary stage. 

 

Figure 4.21: Dot plot showing top three markers for each cluster (Primary samples) 

In metastatic samples, a consistent expression pattern of genes, including Microsomal 

Glutathione S-Transferase 1 (MGST1), Keratin 19 (KRT19), CD9 Molecule (CD9), 

Keratin 18 (KRT18), Growth Hormone 3 (GHG3), Immunoglobulin Lambda Constant 2 

(IGLC2), Adenomatous Polyposis Coli (APC), Secreted Phosphoprotein 1 (SPP1), Aldo-

Keto Reductase Family 1 Member B1 (AKR1B1), Surfactant Protein A1 (SFTPA1), 
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Phospholipase C Gamma 2 (PLCG2), Surfactant Protein C (SFTPC), X Inactive Specific 

Transcript (XIST), BCL2 Interacting Protein 3 (BNIP3) and Secretory Leukocyte 

Peptidase Inhibitor (SLPI) was observed as shown in Figure: 4-30, suggesting a stemness 

signature across various cell types. This stemness indicates heightened expression of 

multiple genes associated with stem cell properties and genes related to tumour suppression 

and immune response.  This uniform stemness signature implies a shift in cancer cell 

biology at the metastatic stage, potentially indicating a more aggressive phenotype 

characterized by epithelial-to-mesenchymal transition (EMT). EMT is a crucial process 

wherein cancer cells acquire traits enhancing their invasive potential, facilitating 

detachment from the primary tumour and initiation of metastasis. The activation of EMT 

in later cancer stages is pivotal for metastatic spread, as observed in the differential 

expression results. CD9, KRT19, KRT18, and SPP1 are some of the genes contributing to 

this stemness. Research indicates that CD9 expression in pancreatic ductal adenocarcinoma 

promotes annexin A6-induced cell migration and EMT via the p38 MAPK pathway[71]. 

KRT19 and KRT18 play pivotal roles in circulating tumour cells' survival and metastatic 

potential (CTCs) by enhancing structural integrity, enabling clustered CTCs to withstand 

shear forces and evade anoikis[72]. Additionally, they contribute to immune evasion 

mechanisms, potentially hindering interactions with Cytotoxic T Lymphocytes (CTLs) via 

Major Histocompatibility Complex-1 (MHCI) inhibition. These genes are implicated in 

various aspects of cancer biology, including EMT regulation, cell adhesion, and migration. 

Their expression in metastatic samples further supports the shift in gene expression patterns 

during cancer progression, elucidating the molecular mechanisms driving tumour growth 

and metastasis. Furthermore, osteopontin/secreted phosphoprotein 1 (SPP1) has been 

highlighted for its pivotal role in promoting stemness characteristics in pancreatic cancer 

(PC) cells within the tumour microenvironment[73]. Elevated SPP1 levels also correlate 

with poor prognosis in LUAD patients, indicating its potential as a prognostic biomarker. 

SPP1 promotes LUAD progression and metastasis by driving the EMT pathway, enhancing 

cancer cell mobility and invasiveness. Additionally, SPP1 regulates the tumour 

microenvironment by modulating Collagen Type XI Alpha 1 Chain (COL11A1) 

expression, further fuelling EMT and metastasis in LUAD cells[74]. Targeting the SPP1-

COL11A1 axis presents a promising therapeutic strategy to inhibit LUAD progression and 
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metastasis. Additionally, genes such as APC, BNIP3, IGHG3, and IGLC2 were found to 

be expressed in multiple cell types independent of their cellular function, and they are 

implicated in tumour suppression and inhibition of metastasis[69, 70, 75, 76]. 

 

Figure 4.22: Dot plot showing top three markers for each cluster (Metastatic samples) 

The differential expression highlights how cancer cells change as they spread. Initially, 

different genes are active in different cell types within the tumour. However, as cancer 

progresses to the metastatic stage, a common set of genes linked to stem cell properties 

becomes active across various cell types. This shift marks a crucial step where cancer cells 

become more aggressive and able to spread to other parts of the body. Understanding these 

changes can help develop better treatments for various stages of cancer. 

4.9 Comparison with TCGA data 

The Cancer Genome Atlas (TCGA) is a pioneering project by the National Cancer Institute 

and the National Human Genome Research Institute. It has been running since 2005. It 

aims to analyze various cancers' genetic and molecular features to improve understanding 

of cancer and personalised treatments. TCGA data primarily includes bulk RNA 

sequencing and microarray data from diverse cancer types. By comparing the differential 

analysis results with TCGA data, the scRNA-seq also identified two more genes not 

reported in TCGA. One is Adhesion G Protein-Coupled Receptor L2 (ADGRL2), 

downregulated in the metastatic stage, and the second is Endoplasmic Reticulum 

Oxidoreductase 1 Alpha (ERO1A), which is overexpressed in the metastatic stage.  In 

primary samples, looking at Figure 4-13, ADGRL2 shows a higher expression level with a 
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log2FC of 3 and is only expressed in endothelial cells. However, in metastatic samples, the 

expression of ADGRL2 decreases with a log2FC value below 2, as shown in Figure 4-32, 

while it is expressed in endothelial cells along with smooth muscle cells. This shift in 

expression pattern suggests a potential loss of specificity towards endothelial lineage and 

a broader distribution within the tumour microenvironment. 

On the other hand, ERO1A demonstrates a significant upregulation in metastatic samples, 

as shown in Figure 4-34, characterized by a log2FC value of 5. In primary samples, ERO1A 

exhibits a lower log2FC value of around 3, as shown in Figure 4-3, and is confined to 

epithelial cells and macrophages. The metastatic environment showed an expansion of 

ERO1A expression across multiple cell types, such as epithelial cells, dendritic cells (DC), 

natural killer (NK) cells, monocytes, and macrophages. This alteration in expression 

profiles of ADGRL2 and ERO1A suggests a transition toward stemness in the metastatic 

stage. The acquisition of stemness characteristics is often associated with cancer as it 

progresses into the metastatic stage. Moreover, the presence of ERO1A in epithelial cells, 

macrophages, and other immune cells in the metastatic microenvironment hints at a 

potential role in promoting tumour progression and immune evasion, contributing to the 

acquisition of stem-like properties by the tumour cells. 

 

Figure 4.23: Expression of ADGRL2 & ERO1A in Primary Samples 
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Figure 4.24: Expression of ADGRL2 & ERO1A in Metastatic Samples 

4.10 Gene Set Enrichment Analysis 

Enrichment analysis is crucial in analyzing single-cell RNA sequencing (scRNA-seq) data, 

as it helps uncover dysregulated pathways and biological processes within cancer cells. 

This analysis provides valuable insights into the molecular intricacies underlying cancer 

development and progression, offering potential therapeutic targets. In this study, we 

exclusively employed the EnrichR tool, explicitly focusing on the MSigDB hallmark 

pathways. 

We initially selected 438 highly upregulated genes from the primary assay to identify 

critical pathways encompassing unique and shared genes. Similarly, the metastatic assay 

yielded 628 genes, meeting the same selection criteria. Subsequently, both sets of genes 

were subjected to the pathway analysis mentioned earlier, resulting in the identification of 

enriched pathways for both groups. We chose the top 10 from these enriched pathways 

based on their statistical significance, as indicated by the p-value. Figures below show these 

top 10 enriched pathways for the primary and metastatic assays. 
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Figure 4.25: Bar plot of enriched terms (Primary samples) 

 

Figure 4.26: Dot plot of enriched terms (Primary samples) 

The analysis of the primary and metastatic samples reveals intriguing insights into the roles 

of various biological pathways in cancer. In the primary samples, as shown in Figures 4-

33 and 4-34, the Epithelial-Mesenchymal Transition (EMT) pathway is critically involved 

in cancer initiation, metastasis, and treatment resistance. It enables cells to transition from 

stationary to mobile, which is crucial in tumour development[77]. Induced by EMT-

convincing transcription factors (EMT-TFs) and regulated by microRNAs, EMT induces 
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epithelial cells to acquire mesenchymal traits, promoting their migration and invasion into 

surrounding tissues. This process disrupts cell-cell adhesion and alters marker expression, 

enhancing cancer cell motility and invasiveness, which are vital steps in metastatic spread. 

Moreover, EMT grants cancer cells stem-like properties, making them resistant to therapy 

and prone to tumour recurrence. Targeting EMT and its regulatory networks holds promise 

for impeding cancer progression and improving patient outcomes. The heightened activity 

of the EMT pathway in primary cancer underscores its significant role in driving tumour 

aggressiveness and progression, laying the groundwork for metastasis[78]. Conversely, 

pathways like Androgen Response, Adipogenesis, and Coagulation, while less statistically 

significant, may contribute to later-stage tumour growth by promoting cellular processes 

like proliferation, survival, and angiogenesis[79-81]. Interestingly, pathways like 

ultraviolet (UV) Response Downn, p53 Pathway, and Apical Junction inhibit or prevent 

tumour growth as potential safeguards against uncontrolled cell growth[82, 83]. 'UV-

response-DN' are genes that are downregulated in response to UV light. This 

downregulation may indicate an inhibitory function against cancer, particularly during the 

early stages, as they were downregulated in the metastatic stage[84]. 

 

Figure 4.27: Bar plot of enriched terms (Metastatic samples) 
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Figure 4.28: Dot plot of enriched terms (Metastatic samples) 

In the metastatic samples, pathways associated with EMT, TNF-alpha Signaling, and IL-

2/STAT5 Signaling exhibit high combined scores and negative log10 p-values, as shown 

in Figures 4-35 and 4-36, reflecting their importance in cancer metastasis. EMT drives 

tumour metastasis by triggering molecular and cellular changes in primary tumour cells, 

allowing them to spread to distant organs. Various signals like Transforming Growth 

Factor Beta (TGF-β), cytokines, hypoxia, and Extracellular Matrix (ECM) stiffness initiate 

EMT, leading to decreased epithelial junction proteins and increased mesenchymal 

markers. This facilitates the loss of cell-cell adhesion, promotes motility, and enhances 

invasion capabilities. Key transcription factors like Snail Family Transcriptional Repressor 

(SNAIL), Twist Family BHLH Transcription Factor (TWIST), and Zinc Finger E-Box 

Binding Homeobox (ZEB) families drive these changes by suppressing epithelial markers 

and activating mesenchymal gene expression. Although three tumour-suppressing genes, 

TIMP Metallopeptidase Inhibitor 3 (TIMP3), Growth Arrest and DNA Damage Inducible 

Alpha (GADD45A) and Growth Arrest and DNA Damage Inducible Beta (GADD45B) 

were shown to be upregulated in the metastatic stage, their expression levels were lower 

than other genes involved in EMT.  EMT's reversible nature enables transitions between 

epithelial and mesenchymal states, with partial EMT aiding metastatic progression. 

Evidence from cell studies, mouse models, and patient samples highlights EMT's crucial 

role in metastasis and its potential as a therapeutic target in combating metastatic 

cancer.[85] Additionally, pathways linked to hypoxia and apoptosis show moderate values, 

aligning with their recognised roles in metastatic processes. Hypoxia is associated with 
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metastasis by influencing cellular behaviours, while apoptosis regulates cell survival and 

tissue remodelling in metastatic contexts[86]. Categorising pathways based on their impact 

on tumour progression reveals tumour-promoting and tumour-suppressing pathways. 

EMT, IL-2/STAT5 Signaling, and other pathways like hypoxia and glycolysis promote 

tumour growth, metastasis, and immune evasion[86-89]. On the other hand, apoptotic 

pathway genes have a complex nature. Most of the genes were involved in tumour 

progression, and few were involved in tumour suppression[90-93]. Typically, TNF-alpha 

signalling through Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-

κB) is involved in the immune response. However, in cancer, it is found to cause problems 

by promoting inflammation and helping cancer cells to go into a metastatic state.[94] Dual 

Specificity Phosphatase 1 (DUSP1), a gene shown to be upregulated, can be a good guy in 

this situation. It acts as a stop sign for NF-kB, reducing inflammation and slowing cancer 

growth[95]. Another gene called G0/G1 Switch 2 (GOS2) is involved in how the body 

manages fats, but when it comes to cancer, its role is very complex, depending on the type 

of cell. Generally, it promotes effects in tumorigenesis, but overexpression in estrogen 

receptor cells decreases cell proliferation[96].
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CHAPTER 5: DISCUSSION 

Lung cancer is a deadly disease responsible for a large number of cancer-related deaths 

worldwide.[6] It consists of different types, with small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC) being the most common types with around 90% share.[7, 

8] Among NSCLC, lung adenocarcinoma (LUAD) is the most prevalent, with 40% of all 

the cases not only occurring in smokers but also in non-smokers, particularly women and 

younger individuals.[11, 12, 16] LUAD is known for its diverse cellular origins and tumour 

heterogeneity, making it challenging to diagnose and treat effectively.[24] Recent 

technological advancements, such as single-cell RNA sequencing (scRNA-seq), have 

allowed scientists to uncover the complex cellular heterogeneity within cancer tumours and 

their metastatic sites[38]. In. this comprehensive study, single-cell RNA sequencing 

(scRNA-seq) technology was utilised to elucidate the complex cellular heterogeneity 

within primary lung adenocarcinomas and their metastatic sites. The study encompassed 

various data processing steps, including quality control, gene expression normalization, 

principal component analysis (PCA), and cell clustering using Seurat v4.0. Integration of 

datasets was conducted utilizing Harmony. Additionally, the analysis included differential 

gene expression analysis and functional enrichment analysis. Furthermore, a comparative 

analysis between differentially expressed genes (DEGs) identified through scRNA-seq and 

data from The Cancer Genome Atlas (TCGA) was undertaken to pinpoint unique genes 

absent in the TCGA database.  

Differential expression analysis uncovered distinct gene expression patterns among 

different cell types within primary tumour samples. In primary tumour samples, most genes 

displayed a unique expression profile, with only a few being expressed across multiple cell 

clusters, including FTL, CSTB, SFTPC, IGLC2, and IGKC. FTL and CSTB are associated 

with tumor-promoting activities. FTL is found to be involved in gliomas. It is influenced 

by the hypoxic tumour microenvironment, regulating the epithelial-to-mesenchymal 

transition (EMT) process and thereby contributing to tumour invasion into metastasis 

through the AKT/GSK3β/β-catenin signalling pathway[66]. CSTB, known for its 

implication in hepatocellular carcinoma (HCC), acts as an oncogene. It is involved in 

tumour progression, invasion, and induction of EMT by modulating key signalling 
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pathways such as MAPK, mTOR, and AKT[67]. Conversely, SFTPC exhibits tumor-

suppressing activity in lung adenocarcinoma (LUAD) by inhibiting the PI3K/AKT/mTOR 

pathway, thus controlling cell proliferation. Low levels of SFTPC are linked to poor 

prognosis in LUAD patients and increased sensitivity to PD-1 and CTLA-4 antibodies, 

suggesting its potential as a predictive marker for immunotherapy response[68]. Targeting 

SFTPC or its downstream pathways may offer new therapeutic avenues for LUAD 

treatment. IGLC2 and IGKC are the components of the immune system that contribute to 

antibody production and aid in identifying and neutralizing abnormal cells, boosting the 

body's defense against cancer[69, 70]. Dot plot analysis of primary samples as shown in 

figure() explained distinct gene expression patterns among different cell types within the 

primary tumor microenvironment, indicating the preservation of distinct cellular 

characteristics and polarity during the primary stage. 

In metastatic samples, a consistent expression pattern of most genes, including MGST1, 

KRT19, CD9, KRT18, GHG3, IGLC2, APCE, SPP1, AKR1B1, SFTPA1, PLCG2, 

SFTPC, XIST, BNIP3, and SLPI was observed that suggests the occurrence of stemness 

across various cell types. It implies the upregulated expression of multiple genes in 

multiple cell types, including genes associated with stem cell properties and a few genes 

related to tumour suppression and immune response.  It indicates a shift in cancer cell 

biology at the metastatic stage, potentially reflecting a more aggressive phenotype 

characterized by EMT. CD9, KRT19, KRT18, and SPP1 are a few genes that contribute to 

this stemness. CD9 expression in pancreatic ductal adenocarcinoma is found to promote 

cell migration and EMT via the p38 MAPK pathway[71]. KRT19 and KRT18 enhance the 

survival and metastatic potential of circulating tumour cells (CTCs) by promoting 

structural integrity and immune evasion mechanisms[72]. Additionally, SPP1 has been 

highlighted for its critical role in promoting stemness characteristics in pancreatic cancer 

(PC) cells within the tumour microenvironment[9]. Increased SPP1 levels also correlate 

with adverse outcomes in LUAD patients, suggesting its potential role as a prognostic 

indicator. SPP1 fuels LUAD advancement and metastasis by stimulating the EMT 

pathway, enhancing cancer cell mobility and invasiveness. Moreover, SPP1 modulates the 

tumour microenvironment by regulating COL11A1 expression, further promoting EMT 

and metastasis in LUAD cells[74]. Targeting the SPP1-COL11A1 axis can be a promising 
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therapeutic approach to impede LUAD progression and metastasis. Additionally, genes 

such as APC, BNIP3, IGHG3, and IGLC2 were expressed in multiple cell types 

independent of their cellular function and are implicated in tumour suppression and 

inhibition of metastasis[69, 70, 75, 76]. The change in gene expression pattern highlights 

the evolution of cancer cells during cancer progression toward metastasis. Initially, diverse 

genes are engaged across various cell types within the tumour. However, as cancer 

advances to the metastatic phase, a shared group of genes associated with stem cell traits 

becomes activated across diverse cell types. This transition signifies a pivotal phase 

wherein cancer cells heighten their aggressiveness and capacity for dissemination to distant 

sites. Grasping these alterations can potentially refine therapeutic strategies designed for 

distinct cancer stages.  

The gene set enrichment analysis further elucidates the role of various biological pathways 

in cancer progression. In the primary samples, the Epithelial-Mesenchymal Transition 

(EMT) pathway stands out with the highest enrichment score and significant negative 

log10 p-value, emphasizing its critical role in cancer initiation. EMT enables cells to 

transition from a stationary to a mobile state, an essential step in tumour development[77]. 

EMT is induced by EMT-transcription factors (EMT-TFs) and regulated by microRNAs 

that enable epithelial cells to acquire mesenchymal traits, increasing their motility and 

invasiveness, which are the critical steps in metastasis. This process disrupts cell-to-cell 

adhesion, altering their marker expression and providing cancer cells with stem-like 

properties that cause resistance to therapy and recurrence of the cancer.[78] Targeting EMT 

and its regulatory networks offers the potential for impeding cancer progression and 

improving outcomes. The heightened activity of EMT in primary cancers underscores its 

crucial role in driving tumour aggressiveness and metastasis. Conversely, pathways like 

Androgen Response, Adipogenesis, and Coagulation, while less statistically significant, 

may contribute to later-stage tumour growth by promoting cellular processes like 

proliferation, survival, and angiogenesis[79-81]. On the other hand, pathways like UV 

Response Dn, p53 Pathway, and Apical Junction inhibit or prevent tumour growth as 

potential safeguards against uncontrolled cell growth[82, 83]. 'UV-response-DN' are genes 

that are downregulated in response to UV light. This downregulation may indicate an 
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inhibitory function against cancer, particularly during the early stages, as they were 

downregulated in the metastatic stage[84].  

In the metastatic samples, EMT, TNF-alpha Signaling, and IL-2/STAT5 Signaling exhibit 

high combined scores and negative log10 p-values, as shown in figures(), reflecting their 

importance in cancer metastasis. EMT drives tumour metastasis by triggering molecular 

and cellular changes in primary tumour cells, allowing them to spread to distant organs. 

Various signals like TGF-β, cytokines, hypoxia, and ECM stiffness initiate EMT, leading 

to decreased epithelial junction proteins and increased mesenchymal markers. This 

facilitates the loss of cell-cell adhesion, promotes motility, and enhances invasion 

capabilities. Key transcription factors like SNAIL, TWIST, and ZEB families drive these 

changes by suppressing epithelial markers and activating mesenchymal gene expression. 

Although three tumor-suppressing genes, named TIMP3, GADD45A, and GADD45B, 

were shown to be upregulated in the metastatic stage, their expression levels were lower 

than other genes involved in EMT. EMT's reversible nature enables transitions between 

epithelial and mesenchymal states, with partial EMT aiding metastatic progression. 

Evidence from cell studies, mouse models, and patient samples highlights EMT's crucial 

role in metastasis and its potential as a therapeutic target in combating metastatic 

cancer[85]. Additionally, pathways linked to hypoxia and apoptosis show moderate values, 

aligning with their recognised roles in metastatic processes. Hypoxia is associated with 

metastasis by influencing cellular behaviours, while apoptosis regulates cell survival and 

tissue remodelling in metastatic contexts[86]. Categorizing pathways based on their impact 

on tumor progression reveals tumor-promoting and tumor-suppressing pathways. EMT, 

IL-2/STAT5 Signaling, hypoxia, glycolysis and others are associated with promoting 

tumour growth, metastasis, and immune evasion[86-89]. On the other hand, apoptotic 

pathway genes have a complex nature. Most of the genes were involved in tumour 

progression, and a few were involved in tumour suppression[90-93]. Usually, TNF-alpha 

signalling through NF-kB is involved in immune response. However, in cancer, it is found 

to cause problems by promoting inflammation and helping cancer cells to enter a metastatic 

state[94]. DUSP1, a gene shown upregulated, can be a positive factor in this situation. It 

acts as a stop sign for NF-kB, reducing inflammation and slowing down cancer growth[95]. 

Another gene called GOS2 is involved in how the body manages fats, but when it comes 
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to cancer, its role is very complex, depending on the type of cell. Generally, it promotes 

tumorigenesis, but overexpression in estrogen receptor cells decreases cell 

proliferation[96].  

By comparing the findings with The Cancer Genome Atlas (TCGA) data, two genes not 

reported in TCGA were identified: ADGRL2 and ERO1A. ADGRL2's role in restricting 

stem cell expansion and its potential as a stem-cell-specific negative regulator in colorectal 

cancer are intriguing findings. Similarly, ERO1A's association with poor prognosis in 

various cancer types, including gastric, breast, and pancreatic cancer, suggests its 

significance in tumour metastasis and the epithelial-to-mesenchymal transition. Further 

investigation into the Akt/mTOR pathway and the potential upstream role of ERO1A adds 

complexity to its involvement in cancer progression. 

The adhesion G-protein-coupled receptor L2 (ADGRL2), also known as Latrophilin-2, has 

yet to be sufficiently explored in human health despite its known importance in heart 

development and neural synaptogenesis. One previous study was carried out to investigate 

the physiological function of ADGRL2 in the colon. Previous findings indicated that 

ADGRL2 is lost in colorectal cancer (CRC) and downregulated during hyperproliferative 

recovery from colitis. It is enriched in stem and progenitor cells, and cell growth is arrested 

in stem cells, but stemness features are a hallmark of cancer. In this study, intestinal-

epithelial specific Adgrl2 knockout mice (Adgrl2 IE KO) were used to assess the effect of 

Adgrl2 on cell proliferation in the colon. These findings support the hypothesis that 

ADGRL2 modulates epithelial regeneration in the colon, potentially functioning as a stem-

cell-specific negative regulator. This research may provide insights into dysregulated 

growth and repair mechanisms in the colon. It could potentially reveal targets to prevent 

colitis-associated cancer in patients with inflammatory bowel disease (IBD)[97].  

ERO1A was upregulated in the metastatic stage. In various cancer types like gastric, breast, 

and pancreatic cancer, high expression of ERO1A is linked to poor prognosis. Similar 

findings were observed in cholangiocarcinoma (CCA) in another study and were shown to 

be associated with shortened patient survival and pathological and clinical stages. ERO1A's 

involvement in proliferation and migration was supported by experiments showing that 

depleting ERO1A inhibited these processes in CCA cells while overexpression enhanced 
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them. It can be proposed that ERO1A might be linked to tumour metastasis and epithelial-

mesenchymal transition (EMT) because it is involved in hypoxia, mTORC1 signalling 

pathway, and glycolysis, both significant factors in cancer progression. It can be 

hypothesized that ERO1A can be a successful therapeutic target, as said in the previous 

study above, that depletion of ERO1A suppressed EMT progression, and its 

overexpression accelerated it in CCA cells[98]. Further investigation into the Akt/mTOR 

pathway was conducted due to its relevance in cellular processes like proliferation and 

survival. Depleting ERO1A reduced activation of this pathway, while overexpression had 

the opposite effect. Though the exact mechanism remains unclear, our study suggested that 

ERO1A might be positioned upstream of the Akt signalling pathway. In conclusion, 

ERO1A's role in promoting proliferation and migration, influencing EMT, and interacting 

with the Akt/mTOR pathway makes it an appealing target for diagnosis and potential 

therapeutic interventions in LUAD. 

 

Figure 5.1: Molecular Mechanisms of ERO1a in Angiogenesis 
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In conclusion, this research provides a comprehensive analysis of differential gene 

expression and pathway enrichment in cancer progression, highlighting the central role of 

EMT and identifying potential therapeutic targets. However, it is essential to acknowledge 

the study's limitations, such as sample size and the need for experimental validation. Future 

research should address these limitations and further explore the identified genes and 

pathways, ultimately contributing to cancer diagnosis and treatment advancements. 
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CHAPTER 6: CONCLUSIONS 

In conclusion, our study has delved into the intricate landscape of lung adenocarcinoma 

(LUAD), shedding light on its diverse and complex nature at both molecular and cellular 

levels. This prevalent form of lung cancer poses a significant global health challenge, 

contributing to many cancer-related deaths. Through the application of cutting-edge single-

cell RNA sequencing (scRNA-seq) technology, we have uncovered valuable insights into 

the progression of this aggressive disease. Our analysis revealed remarkable heterogeneity 

in gene expression patterns among various cell types within the primary tumour 

microenvironment. This diversity underscores the specialized roles distinct cell types play 

in supporting or driving tumour growth and maintenance. The gene set enrichment analysis 

illuminated the importance of various biological pathways in cancer initiation and 

progression. Comparing our results with The Cancer Genome Atlas (TCGA) data, we 

uncovered two previously unreported genes, ADGRL2 and ERO1A, with potential roles in 

cancer progression. ADGRL2 emerged as a stem-cell-specific negative regulator, while 

ERO1A was associated with poor prognosis in various cancer types and linked to 

metastasis and EMT. Our findings provide a broader context for understanding the dynamic 

processes involved in cancer progression. They emphasise the pivotal role of EMT and 

pinpoint potential therapeutic targets for intervention. Our findings concluded that scRNA-

seq is a powerful tool for investigating the molecular mechanisms of cancer development 

and progression. The ability to characterize the transcriptomic profiles of individual cells 

provides a more accurate and detailed understanding of the complex biology of tumours. 

Our study also highlights the importance of studying tumour microenvironments and their 

interactions with cancer cells, which could lead to identifying novel therapeutic targets for 

cancer treatment.  

In conclusion, this study contributes to understanding the cellular and molecular 

mechanisms underlying lung adenocarcinomas and their metastatic potential. Our findings 

provide insights into tumours' complex biology and microenvironments and offer potential 

avenues for developing new therapeutic strategies. 
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Future Aspects 

To conclude this study, looking at the promising future aspects arising from these findings 

is essential. The insights gained from our research open several avenues for further 

exploration and potential breakthroughs in the understanding and treatment of lung 

adenocarcinoma (LUAD) and cancer in general. First and foremost, the identified genes 

and pathways hold great promise as targets for novel therapeutic interventions. Developing 

strategies to modulate EMT and the associated pathways could lead to more effective 

treatments to inhibit metastasis, a significant challenge in cancer management. 

Additionally, the potential roles of ADGRL2 and ERO1A in cancer progression provide 

exciting prospects for targeted therapies and further research into their mechanisms of 

action. Expanding our understanding of the intricate cellular heterogeneity within primary 

tumours and their metastatic sites could pave the way for more personalised treatment 

approaches. By tailoring therapies to the specific characteristics of individual tumours, we 

may improve treatment outcomes and reduce the side effects associated with conventional 

cancer treatments. The field of single-cell RNA sequencing (scRNA-seq) continues to 

advance rapidly. As this technology becomes more accessible and cost-effective, it holds 

the potential to become a standard tool in cancer research and clinical practice. Future 

studies with larger sample sizes and more diverse datasets can further refine our knowledge 

of cancer progression and provide a more comprehensive picture of the disease. 

Furthermore, comparing our results with data from The Cancer Genome Atlas (TCGA) 

highlights the importance of collaborative efforts in cancer research. Continued integration 

of data from various sources and the development of comprehensive databases can 

accelerate the discovery of novel genes and pathways associated with cancer, ultimately 

leading to more effective diagnosis and treatment strategies. 

In conclusion, our study serves as a crucial steppingstone in the ongoing battle against lung 

adenocarcinoma and cancer in general. The future holds tremendous potential for 

translating these findings into improved patient outcomes, and we anticipate further 

breakthroughs in understanding and managing this challenging disease. As researchers and 

clinicians continue to work together, building upon these insights, we move closer to 

realizing more effective, personalised, and targeted approaches to cancer diagnosis and 

treatment.
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