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ABSTRACT 

Machine learning models are the viable option contrary to the conventional experimental 

procedures that are complicated and tedious for liquefaction potential prediction. This study 

leverages the strength of machine learning models including K-nearest neighbor (KNN), random 

forest (RF), gradient boost (GB), extreme gradient boost (XGB), decision tree (DT) and artificial 

neural network (ANN) for predicting the soil responses and liquefaction susceptibility by utilizing 

the 500 SPT-N cases as input dataset. The predictive capabilities of models in assessing the 

intricate relationship between various soils parameters are assessed by employing the evaluation 

matrices of mean squared error (MSE), root mean square error (RMSE), mean absolute error 

(MAE), Nash-Sutcliffe efficiency, Percent Bias, Weighted Index and R2. Moreover, the 

comparative analysis of the models has been conducted to find the best optimized model for 

liquefaction potential determination by accuracy matrix, Akaike information criterion (AIC) and 

ranking analysis. The results indicated that RF model exhibited the highest prediction efficiency 

for shear stress with R2 of 0.998. Similarly, GB indicated the better performance as compared to 

other models in evaluating the shear wave velocity with 0.992 coefficient of determination (R2). 

The most important and critical parameter for liquefaction maximum shear modulus (Gmax) is 

predicted with high accuracy by all models with outperformance of ANN having R2 value of 0.999. 

Moreover, liquefaction potential index (LPI) is also well predicted by XGBoost model. The 

performance trend of all the models for each of the parameters is also in accordance with AIC 

criteria. Furthermore, scaling analysis of all models for collective comparison put RF model on 

rank first for overall prediction of liquefaction potential and dynamic properties. XGBoost and DT 

showed second and third best performance, followed by GB as fourth, ANN as fifth and KNN as 

least effective model for this task. The findings of this study offer sophisticated models for 

evaluating soil behavior and liquefaction potential, which has important ramifications for 

geotechnical engineering. 

Keywords: Machine Learning (ML), Dynamic properties, Liquification potential, DEEPSOIL, 

SPT-N dataset 
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1 Chapter 1: Introduction 

1.1 General 

Soil liquefaction is a complex phenomenon observed in several earthquakes in various forms. 

Upon liquefaction of a soil deposit, excess pore pressures within the soil reach the effective stress 

level, causing significant reduction in resilience and stiffness. Effects such as excessive 

settlements, tilting, and lateral movement can be observed during and after an earthquake. These 

effects mostly cause large-scale destruction of life and structures. A soil's susceptibility to 

liquefaction is influenced by several variables, including its type, density, saturation level, and the 

intensity and frequency of vibrations during a seismic event. Understanding these variables and 

their interplay is essential for assessing an area's susceptibility to liquefaction and developing 

suitable countermeasures (Guo, Zhuang, Chen, & Zhu, 2022). 

 

Figure 1.1: Dynamic load test and static load test at the site 

The primary cause of soil dynamics is loss of soil shear strength, resulting from an increase in pore 

pressure (Zheng et al., 2024). Before undertaking large-scale projects, a thorough evaluation of the 

liquefaction potential in the seismically active area surrounding the dam site must be conducted to 

minimize risks of failure. Evaluating liquefaction potential is also crucial before implementing 

prevention and mitigation strategies. Therefore, accurate prediction of soil liquefaction is 
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paramount in geotechnical engineering. Over the past decade, considerable research has employed 

machine learning (ML) techniques to forecast soil liquefaction. 'Dynamic properties' refer to how 

soil responds to dynamic loading, such as vibrations or earthquakes. Shear modulus, damping ratio, 

and wave propagation properties are some of these characteristics (Zeng et al., 2024). 

1.1.1 Soil dynamics Properties 

Shear wave velocity (Vs) analysis is a vital method for assessing the soil's susceptibility to 

liquefaction. One crucial factor that reveals the strength and stiffness properties of the material is 

the soil's shear wave velocity, which also indicates its fluidity. This information is crucial for 

understanding how the soil responds during earthquakes. A shear wave velocity test generates 

seismic waves that propagate through the soil (Mondal & Kumar, 2024). The test typically 

involves placing seismic sensors such as accelerometers or geophones at various depths in the soil 

profile. Seismic generators, such as hammer strikes or seismic vibrators, mechanically induce 

vibrations into the soil. Factors such as soil type, density, moisture content, and stress conditions 

influence shear wave velocity. Stiffer, denser soils with higher shear wave velocities generally 

exhibit greater resistance to earthquake shaking and lower liquefaction risk. Conversely, loose, 

low-density soils often show lower shear wave velocities, indicating weaker stiffness and higher 

liquefaction susceptibility. 

Increased pore pressure due to cyclic loading during seismic events can occur from dynamic soil 

reactivity. The soil's properties and drainage characteristics determine the depth at which excess 

pore water pressure dissipates. Accumulated pore water pressure is critical in assessing 

liquefaction potential, influenced by factors such as soil porosity, groundwater conditions, and the 

presence of confining layers. In-situ or laboratory studies are commonly used to assess how pore 

water pressure changes with depth (Bhalawe et al., 2024). 

The dynamic shear modulus, represented as G, is a key measure of a soil's stiffness under cyclic 

or dynamic loading conditions. It is crucial for understanding how well the soil can resist shear 

deformations under seismic forces. The dynamic modulus of elasticity typically depends on 

frequency, indicating that the applied force velocity can affect its value. With increasing strain 

levels, the maximum shear modulus (Gmax) decreases, indicating reduced stiffness under larger 

loads. Soil aging and degradation can also impact Gmax, affecting the soil's ability to resist shear 
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deformations. Understanding Gmax provides valuable insights into soil stiffness and its 

performance under dynamic stresses such as earthquakes. This knowledge aids in the design and 

evaluation of structures for stability and performance during seismic events (Pakzad & Arduino, 

2024) 

1.1.2 Machine learning 

 Machine learning algorithms have gained a lot of attention recently due to their efficaciousness 

as instruments for result prediction and sophisticated data analysis across a range of industries, 

including geotechnical construction. Using large-scale datasets and the deciphering of complex 

relationships between the properties of soil and seismic activity, machine learning algorithms offer 

a viable way to improve our understanding and prediction of the dynamic properties and 

liquefaction capacity of soil. An effective method for gaining knowledge about the properties of 

subsurface soil is the SPT-N test. Taking several SPT-N measurements at different depths allows 

for the identification of soil layering, changes in soil properties, and variations in liquefaction 

vulnerabilities within the soil profile. This information makes it easier to characterize the site, 

allowing engineers to assess the likelihood of liquefaction's geographical distribution and modify 

mitigation plans as needed (Padarian, Minasny, & McBratney, 2020). 

1.1.3 Machine learning approaches  

 In geotechnical engineering, a variety of machine learning models, including supported vector 

machines, random forest neural network models, and Gradient Boosting Machines, have been used 

to estimate shear modulus. These algorithms provide useful tools for precise prediction by 

capturing intricate correlations between the input parameters and soil variables. The kind of data 

and the degree of precision needed for a given application determine which model is best. The 

damping ratio significantly influences soil dynamics during seismic events. A higher damping ratio 

allows the soil to dissipate more energy, reducing the amplitude of vibrations and mitigating 

potential damage to structures. It affects settlement behavior, especially in loose and liquefiable 

soils, impacting the susceptibility to liquefaction-induced damage (Ozsagir, Erden, Bol, Sert, & 

Özocak, 2022). Accurate estimation of damping ratio is vital for soil-structure interaction analysis 

and seismic hazard assessment, ensuring resilient engineering design and risk evaluation. Different 

machine learning algorithms predict damping ratios in soil dynamics by analyzing historical data 

on soil behavior under dynamic loading. These models capture complex relationships between 
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input parameters and damping ratios, providing accurate predictions for seismic response analysis. 

Various approaches have been applied in the literature for assessing the liquification potential of 

soil. XGBoost- SHAP model proposed by Jas et al.  indicated the prediction efficiency of 88.24 % 

for liquification potential evaluation. Various models have been suggested by (Ozsagir, Erden, Bol, 

Sert, & Özocak, 2022) for assessing the liquefaction of fine soil and found the DT model with 90 

% success rate. ANN network was also proposed to identify the properties of liquification in Iran 

which indicated less than 5 % uncertainty. (Hanandeh et al. 2022) comparatively investigated three 

ML models including QDA, SVM and DT and found the highest precision of 0.94 and accuracy 

of 0.97 for QDA model in liquification identification. (Cai et al. 2022) utilized the LSSVM and 

RBFNN in combination with WGO, DE and GA for liquification potential studies. They found the 

better efficiency of WGO algorithm for optimizing both models. (Zhao et al. 2021) a hybrid 

machine learning algorithm based on PSO-KELM to evaluate the liquification by utilizing cone 

penetration test and shear wave velocity. It improved the liquification prediction accuracy by 

indicating R2 values of 0.839 and 0.892. (Kumar et al. 2023) also investigated the efficiency of 

DNN, CNN, RNN, LSTM and BILSTM for liquification prediction by employing the SPT-based 

data. RNN indicated the highest performance for N160 and CSR prediction and in return the 

liquification with R2 of 0.906 and 0.10 RMSE. Similarly various other studies also investigated 

the role of Machine learning models for liquification prediction like ANFIS-FF model by Ghani et 

al., ANN model, ANN-GP model, Greedy-AutoML and others. 

1.1.4 Research Gap 

This indicated that limited research has been conducted related to prediction of seismic soil 

liquefaction through Standard penetrations test. Conventional models are unable to determine both 

dynamic properties (Shear Modulus, Damping ratio, Shear wave velocity) along with liquefaction 

potential of soil. In seismically active zones, machine learning has not been used to assess the 

dynamic response and growth of pore water pressure, particularly in the areas between the Chenab 

and Jhelum rivers. This research deals with a comparatively large dataset of soils and assessed by 

using deep-soil software. The objective of this research is to utilize the most obedient algorithm of 

machine learning for the predictions of shear stress, Maximum shear modulus, Shear wave velocity 

to predict the liquification potential of soil. The SPT-N data obtained from the study area by 

subsurface soil investigation has been utilized as input for ML models. Machine learning models 

serve as beneficial in determining the dynamic properties or liquification potential by considering 
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the parameters of PPW, Shear Stress, Shear Wave velocity, Dynamic ratio, LPI and Maximum 

shear modulus. These proposed models including KNN, RF, GB, XGBoost, DT and ANN vary in 

their performance in predicting the various parameters for liquification potential determination. 

The effectiveness of these models has been compared and the experimental findings indicated the 

viability of the suggested algorithms. The model’s performance has been assessed by utilizing the 

evaluation matrices. Furthermore, performance matrices, AIC criteria, and scaling analysis have 

been conducted to compare their efficiency of prediction. These parameters help the researchers 

or academics to train the predictive models on this type of dataset that are highly accurate in 

determining the liquification potential or dynamic features. Better seismic risk assessments are 

made possible by these models, which help with the construction of resilient infrastructure and 

buildings in liquefaction-prone areas. Machine learning is a helpful tool for improving the 

reliability of geotechnical assessments and expanding our understanding of soil behavior under 

dynamic situations because of its capacity to handle complicated, multi-dimensional datasets. 

 

Figure 1.2: Soil dynamics and earthquake 

1.2 Significance of Research 

Soil properties are the most important parameters for the stability of soil and these impact our daily 

life. To analyze the natural geological phenomena and engineering projects, the evaluation of soil 

dynamic properties and liquefaction potential is considered compulsory. Moreover, continuously 
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increasing natural disasters affect the soil condition that should be known for the future and 

Machine Learning is considered an advanced technique for this purpose. 

1.3 Scope of Research 

Soil response under various hydraulic conditions and natural phenomena is important for the 

stability of the soil therefore, it is our national need to determine the type of soil, its properties like 

density, pore pressure and liquefaction potential to tackle with the problems during water resources 

management, drinking water supply, slope stability, land slide and other subsurface and geological 

engineering problems. There is long-term change in soil properties due to natural disasters like 

earthquakes and flooding so, there must be proper study to cover them. 

1.4 Objective of the research work 

The current study aims to utilize advanced ML algorithms - Random Forest, Artificial Neural 

Network (ANN), and XGBoost for the quick and economical prediction of dynamic properties and 

liquefaction potential index (LPI) using SPT-N value and shear wave velocity. 

1) Calculation of liquefaction potential index using standardized correlations. 

2) Use advanced machine learning methods: KNN, RF, ANN, GB, XGBoost, and DT 

3) Implement a thorough strategy for model validation, ensuring clarity at every stage. 

4) Utilize multiple evaluation techniques for comprehensive model assessment of best 

performance. 

1.5 Scheme of chapters 

The details about the chapters are given below. The scheme of the chapters is also shown in Figure 

1.2. 

Chapter. 1: This chapter highlights the precise summary of the research work.  

Chapter. 2: This chapter reports a literature review of liquefaction potential determination 

techniques, machine learning in geotechnical engineering, and previous research on SPT-N tests. 

Chapter. 3: This chapter discusses research methods involved in the formulation of machine 

learning algorithms, and model evaluations, etc. 

Chapter. 4: This chapter discusses the experimental setup to achieve the research objectives. 
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Chapter. 4: This chapter reports the results and discussions.  

Chapter. 5: This chapter summarizes the conclusions and key recommendations from the study.   

 

Figure 1.3: Scheme of chapters
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2 Chapter 2: Literature Review 

2.1 General 

Liquefaction is considered a damaging phenomenon of earthquakes and a major cause of concern 

in civil engineering. Therefore, its predictor assessment is an essential task for geotechnical 

experts. Pakistan lies in a seismically active and earthquake prone region of the world where 

Indian, Eurasian, and Arabian plates are interacting at different rates of movement. This study 

investigates the performance of three machine learning algorithms Artificial neural network, 

Support vector machine and XGBoost algorithm depending upon different soil parameters. To 

evaluate the dynamic response and development of pore water pressure in seismically active zone 

of between Chenab and Jhelum River generalized/Hyperbolic constitutive model will be 

combining with PWP development model in a one-dimensional seismic site response to evaluate 

PWP development beneath the soil layer. The result shows the behavior of seismic soil based upon 

the attained model parameters of empirical equation. These three models will be trained through 

Mean square error; Mean absolute error, Mean Bias error and coefficient of determination. This 

study also interprets the probabilistic reasoning of the robust model and most probable explanation 

of seismic soil liquefied sites, based on an engineering point of view (Zhang, Yin, & Jin, 2022). 

2.2 Soil Liquefaction 

One of the main factors contributing to building and structural instability during earthquakes is 

liquefaction, which makes it a crucial component of seismic research and foundation design. 

Almost every large earthquake causes widespread liquefaction-induced ground displacement and 

associated damage to soils and foundations, both of which have dramatic and disastrous effects. 

Liquefaction features may vary in geometry, type, and dimension at different locations because of 

multiple factors, including anomalous propagation and amplification of the seismic waves, and 

geological conditions (e.g., grain distribution and density of soil, groundwater level) (Galli 2000). 

A summary of the relationships and contrasts of liquefaction characteristics and related damage in 

previous earthquakes may help (1) to understand the mechanisms of liquefaction and (2) to develop 

hazard assessments for seismically induced liquefaction Piles transfer structural loads to stronger 

soil layers or rock strata deep below the surface. These elongated columns, commonly formed 

from materials like steel, concrete, or wood, are critical in supporting structures where surface soil 
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conditions are unsuitable for conventional shallow foundations. The selection of the foundation 

design depends upon the soil dynamics properties. During design there are different components 

chosen for it like soil types, site area, seismic location and ground water table. There are different 

types of foundations and have different characteristics (Khasawneh, Al-Akhrass, Rabab’ah, & Al-

sugaier, 2024). 

2.3 Earthquake and Soil Dynamics effects on Construction industry 

During building of seismic design liquefaction is a significant factor that’s considered. Building 

foundations failure occurs due to when soil strength decreases. Soil strength decreases when the 

soil is saturated. The consequent displacement of the earth can seriously harm foundations and 

soil, endangering the structural integrity of buildings. Several large earthquakes are historical 

instances of liquefaction inflicting considerable destruction. Building collapses resulting from 

liquefaction and significant soil displacement were triggered by the 1964 Tokyo Earthquake in 

Japan. Like this, the devastating impacts of collapse on urban structures were brought to light by 

the Chinese Tangshan Earthquake of 1976 and the Taiwanese Chi-Chi Earthquake of 1999. In 

response to these incidents, engineers and academics have carried out extensive study to 

understand and mitigate this phenomenon (Luque & Bray, 2020). Engineers and academics want 

to improve their ability to anticipate, stop, and lessen the negative consequences of liquefaction on 

infrastructure and structures by studying these past examples. To make communities more resilient 

to seismic shocks, this study is crucial. Because of geological parameters such soil grain 

transportation, density, and groundwater level, as well as the transmission and intensification of 

seismic waves, liquefaction features can vary greatly in terms of geometry, kind, and size at 

different places (Arboleda-Monsalve, Mercado, Terzic, & Mackie, 2020). To understand 

liquefaction mechanisms and create risk assessments for earthquake-induced liquefaction, it is 

essential to appreciate the correlations and differences in liquefaction characteristics and the 

ensuing damage from prior earthquakes. Most of the recent research on liquefaction of soil from 

earthquakes in the twenty-first century has concentrated on incidents and has not thoroughly 

examined general characteristics and associated harm done to soil and buildings. Enhancing risk 

assessments and mitigation measures would require a more comprehensive examination of several 

recent occurrences to get a deeper comprehension of the macroscopic impacts of soil liquefaction 

(Mourlas et al., 2020). 
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2.4 SPT-N count (N)  

In geotechnical engineering, the standard penetrating test (SPT) is frequently utilized to evaluate 

the characteristics of soil. By measuring soil barriers to penetration, the SPT-N count yields 

important details regarding the density, durability, and dynamic features of the soil. This 

investigates the connection between soil dynamics, SPT-N levels, and the likelihood of soil 

liquefaction. With the SPT, a regular hammer is used to drive a split-barrel sample into the ground 

at the lowest of a borehole. The N value is the total amount of blows needed to move the sampler 

a certain distance. As a measure of the behavior of the soil under dynamic as well as static loads, 

the N value is essential for determining the density and strength of the soil (Ayala, Sáez, & Magna-

Verdugo, 2022). N values are used in soil dynamics, the study of soil behavior during cyclic or 

transient stresses, such as earthquakes to calculate soil stiffness & shear strength. Increased 

pressure within the pores causes saturated, loose, granular dirt to become more fluid and lose their 

strength and stiffness, resulting in soil liquefaction. When determining the soil's susceptibility to 

liquefaction, the SPT-N count is crucial. Based on lab research and field case studies, empirical 

connections between N levels and potential for liquefaction have been established. There are 

known critical N value limits below where soils are more prone to liquefied in the event of an 

earthquake. The distribution of grain sizes, confining tension, and soil type all affect these 

thresholds. In sands and silty sands, for example, low N fields are more susceptible to collapse 

than higher N soils (Kasim & Raheem, 2021). Simplified techniques for assessing liquefaction 

potential, such the Seed and Idriss approach, integrate these findings. These correlations' 

refinements consider further variables including fines content and overburden pressure. 

Readjusting the observed N value for pressure from overburden and hammer efficiency of energy 

yields a correct N value (N1)60 that increases the accuracy of liquefaction forecast. To take into 

consideration the unpredictability and variety of soil qualities and seismic loading circumstances, 

probabilistic techniques have been devised. Integration of SPT data with geophysical and other in 

situ testing techniques is one of the recent advances. SPT-N values and shear wave velocity 

observations together offer a more thorough evaluation of soil flexibility and potential for 

liquefaction. The liquefaction hazard estimates are more reliable because to these combined 

methodologies. Developing regional liquefaction hazard maps using SPT data is another 

significant advancement, incorporating spatial variations in soil properties and seismic hazard 

levels to identify high-risk areas (Lu & Hwang, 2020). These maps are useful for disaster 
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preparedness, infrastructure design, and urban planning. Notwithstanding these developments, 

there are still issues with liquefaction evaluation using SPT data. Unpredictability in SPT 

protocols, apparatus, and operator methods can result in inconsistent N values. There is continuous 

work being done to enhance data quality and standardize SPT procedures. In geotechnical 

engineering, the SPT-N count is essential because it offers information on the density, strength, 

and dynamical behavior of the soil. Because of its function in determining the possibility for soil 

liquefaction, empirical correlations and streamlined liquefaction evaluation techniques have been 

developed. Understanding and forecasting liquefaction risks have improved by the integration of 

SPT data using other testing techniques and the creation of regional hazard maps. In order to 

increase the application and reliability of SPT-based liquefaction evaluations and create safer, more 

robust infrastructure in earthquake-prone locations, further research and standardization initiatives 

are needed (Yabe, Harada, Ito, & Watanabe, 2022). 

2.5 Shear wave velocity (Vs) 

The assessment of the link between liquefaction of soil and velocity of shear waves is a critical 

aspect of geotechnical engineering. Shear wave velocity is a crucial metric for predicting the 

behavior of soils during seismic events, in addition to being used to assess the liquefaction potential 

of soils. Below is a summary of several important studies on the connection between land 

liquefaction with shear wave velocity (Yunmin, Han, & Ren-peng, 2005). 

Various researchers have determined a connection between soil seismic sensitivity and shear wave 

velocity. They found that the shear wave velocity is a significant factor affecting how much the 

ground moves during earthquakes. the effect of soil properties on the connection between shear 

wave velocity and earthquake-induced ground motion. They found that the link between ground 

motion and shear wave velocity depended on soil type, water below the surface straight, and stress 

history. An innovative method of predicting the velocity of soil shear waves is through the use of 

machine learning algorithms. Using information from seismic surveys and lab experiments, they 

developed a model that can predict the velocity of soil shear waves depending on input parameters 

such as distribution of particle sizes and geology(Forte et al., 2019). 

The study found a substantial correlation between shear wave velocity and earthquakes, indicating 

that shear wave velocity plays a critical role in regulating the behavior of soil during seismic 

events. Numerous methods, including algorithms for machine learning, seismic inquiries, and 



Page | 12 

laboratory testing methods, can be used to determine shear wave velocity. These methods are 

essential for constructing earthquake-resistant buildings as well as other fundamental uses. The 

velocity of waves caused by shear (Vs) in non-cohesive soils is a crucial indicator of the likelihood 

of liquefaction. Since the 1980s, scientists have been able to identify connections between Vs and 

durability against liquefaction using data from both the lab and the field. These correlations can be 

directly obtained from measurements of Vs, such as seismic cone penetration tests (SCPT), or they 

can be deduced from a variety of in situ studies, such as the traditional penetration test (SPT-N) or 

a cone penetration test (CPT-qc) for liquefied places. Seed et al. were the first to propose a 

relationship between the cyclic resistant ratio (CRR) and standardized the velocity of shear waves 

(Vs1), considering the relationship between SPT-N and Vs. In the early 1990s, several research 

developed Vs1-based resistance to liquefied correlations by directly determining Vs at liquefied 

places. Using these Vs-based patterns, engineers may improve the predictability and resilience of 

structures constructed on non-cohesive properties by lessening the risk of soil failure during 

seismic activity. The shear wave velocity (Vs) chart has been utilized extensively in recent decades 

because of its non-invasive nature and adaptability to a broad variety of soil types. This graphic 

was created using data from both field and lab studies. Research indicates that the capacity to 

liquefy short- and dense-density sands grows more quickly compared to the case of loose sands as 

relative density rises. This suggests that the pattern of destabilization resistance development may 

depend on the kind of failure. Flow liquefaction and cyclic mobility must be included for sands 

with varying densities to improve the accuracy of Vs-based models (Nejad, Momeni, & 

Manahiloh, 2018). 

2.6 Maximum Shear Modulus (Gmax) 

While many studies have focused on predicting the maximum shear modulus (Gmax). Generally, 

Gmax values decrease as FC increases. This trend has been observed where parameter A in the 

predictive equation is influenced by FC and void ratio (e), while parameter n remains relatively 

constant and unaffected by FC. This reduction in Gmax with increasing FC has been confirmed by 

several studies. However, some research has shown that for a constant relative density (Dr), Gmax 

increases with FC up to 20% and decreases when FC exceeds 20%. Additionally, the rate of 

increase in Gmax slows as FC continues to rise (Muduli & Das, 2015). This finding differs from 

other research indicating that for a constant void ratio, Gmax decreases with increasing FC below 
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10% and then stays nearly constant beyond that point (Shahri, Behzadafshar, & Rajablou, 2013). 

Experimental data suggest that the transition from sand-dominated to fines-dominated behavior in 

sand-fines mixtures occurs gradually when FC ranges from 10% to 25%. Furthermore, significant 

variations in the parameter n of the predictive equation were observed with increasing FC, although 

some studies noted that n remains generally insensitive to changes in FC. These varying 

observations underscore the complexity of predicting Gmax in sandy soils with different fines 

contents and suggest a need for more comprehensive studies to fully understand these relationships 

(Shahri et al., 2013). 

2.7 Shear Stress (τ) 

Understanding how soil behaves under seismic loading requires an understanding of shear stresses 

and soil dynamics. Soil liquefaction can occur because of the dynamic reaction of soil to shear 

pressure during an earthquake, which presents serious concerns to the integrity of infrastructure 

and buildings. The link between shear stress, soil factors, and liquefaction is examined in this 

overview, which also highlights significant discoveries and advancements in the subject. The 

internal resistance that soil particles show to external pressures, such as those produced during an 

earthquake, is known as shear stress in soils (Huang, Chen, & Zhao, 2015). The general strength 

and deformation properties of the soil are significantly influenced by the amount and spatial 

distribution of shear stress present in its layers. Predicting the behavior of soils in response to 

seismic occurrences requires an understanding of the changing characteristics of soils under 

conditions of cyclic loading. Numerous studies have demonstrated that the shear strength and 

deformation resistance of soil are highly influenced by several soil parameters, such as moisture 

content, density, and grain size distribution (Ji, Kim, & Kim, 2021). Via repeated application and 

absorption of shear stress brought on by the cyclic loading imposed by seismic waves, variations 

in pore water pressure and successful stress within the soil matrix result. These modifications have 

a crucial role in predicting whether the soil would liquefy. Advancements in soil dynamics have 

led to the development of various analytical and numerical models that simulate the behavior of 

soils under seismic loading. These models incorporate factors such as strain rate dependency, 

hysteresis, and damping characteristics of soils, providing a more comprehensive understanding 

of soil response under dynamic conditions. Laboratory tests, such as cyclic triaxial and direct 

simple shear tests, have been instrumental in characterizing the dynamic properties of soils and 
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validating these models. Soil liquefaction is a transient transition from a solid to a liquid form 

caused by an increase in pressure in the pores that causes saturated, loose, sandy soils to lose their 

strength and rigidity. The primary cause of this phenomena is the cyclic shear forces produced by 

an earthquake. Understanding the beginning, spreading, and impacts of this process on the soil's 

resilience and structural integrity is all included in the research of soil liquefaction. The goal of 

early studies on soil liquefaction was to determine the circumstances that are most likely to lead 

to liquefaction. Based on observation in the field and laboratory testing, empirical correlations 

were created linking the probability of liquefaction to variables such soil type, the relative density, 

and seismic intensity. The liquefaction assessment techniques that were initially developed and 

extensively applied in engineering practice were based on these relationships. More complex 

methods, including dynamic principles and sophisticated soil mechanics, were included in later 

research to increase the precision of liquefaction forecasts. With the creation of the cyclic resistant 

ratio (CRR) and its comparison with the cyclic stress proportion (CSR), soil behavior under cyclic 

loading has been better understood. This method allowed engineers to balance the stresses being 

applied and soil resistance, allowing them to more accurately assess the likelihood of liquefaction. 

The influence of soil characteristics' spatial variability on liquefaction potential has been 

investigated in more detail. To evaluate the variability of soil deposits and improve evaluations of 

the liquefaction danger, techniques including geostatistical approaches and in situ testing (e.g., 

cone testing for penetration, shear wave velocity studies) have been used. These developments 

have made it easier to create comprehensive maps of the liquefaction hazard, which are essential 

for risk reduction and urban planning (Kokusho, 2013). Ground deformation caused by 

liquefaction can take many different forms, such as lateral spreading, ground fissures, and 

settlement. These deformations can cause severe damage to buildings, lifelines, and other 

infrastructure. Understanding the mechanisms behind these deformations and developing 

strategies to mitigate their impacts have been key areas of research. Ground improvement 

techniques, such as soil densification, drainage, and reinforcement, have been studied and 

implemented to reduce the susceptibility of soils to liquefaction. The interplay between shear 

stress, soil dynamics, and liquefaction is a complex and critical area of study in geotechnical 

engineering. Advances in understanding the dynamic behavior of soils and the mechanisms of 

liquefaction have significantly improved the ability to predict and mitigate the risks associated 

with seismic events. Ongoing research continues to enhance these predictive models and 
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mitigation techniques, contributing to the resilience of structures and infrastructure in earthquake-

prone regions. 

2.8 Liquefaction Potential Index (LPI) 

(M.Y. Khan et al 2021) utilized the technology of electrical resistivity tomography by having three 

zone of layers under the ground such as discontinuous zone of medium resistivity, high zone made 

up of basal layer overlaid by the low zone. The certain founding was that ground water was 

increased due to earthquake of 2019, Mirpur and also found sand blows, ground fractures in to the 

zone of maximum shaking. A new technique was again applied by using ground penetrating radar 

(GPR) and PSINSAR by finding the coseismic liquefaction hazard in the upper most 5 m layers 

of soil along with high ground water table which raised excess pore water pressure (Younis et al. 

2023). The Liquefaction Potential Index (LPI) has been developed as a quantitative measure to 

evaluate the likelihood and severity of soil liquefaction over a specific area (Hossain, 

Roknuzzaman, & Rahman, 2022). To give a thorough evaluation of the risk of liquefaction, LPI 

incorporates several variables, such as seismic characteristics, groundwater conditions, and soil 

qualities. To reduce damage during seismic occurrences, this index helps planners and engineers 

identify locations that are susceptible to earthquakes and put suitable mitigation measures in place.. 

The primary empirical correlations used in the assessment of liquefaction potential in the past were 

from field observations and case studies. These techniques concentrated on specific soil layers and 

their liquefaction susceptibility, but they frequently overlooked the combined impacts of many 

layers and the general site circumstances (GASHAW, 2020). The LPI was created by researchers 

as a more comprehensive technique once they became aware of these limitations. To determine the 

likelihood of surface manifestation of liquefaction, the LPI considers the depth, thickness, and 

characteristics of soil layers in addition to the magnitude of ground shaking. It is a helpful tool for 

risk assessment and urban planning since it gives a single number that represents the degree of 

possible liquefaction-induced ground deformation. Numerous studies have confirmed that LPI is 

successful in many seismic zones and that it can be used to a range of soil types and earthquake 

scales. By adding complex modeling tools and cutting-edge geotechnical data, researchers have 

further improved the LPI. These improvements have increased the LPI's usefulness in both 

practical and research applications and increased the precision of liquefaction forecasts. 

Furthermore, the spatial depiction of liquefaction risk made possible by the integration of LPI 
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using Geographic Information Systems, or GIS, has improved decision-making for infrastructure 

construction and land use planning. Planners and engineers can identify high-risk sites and 

prioritize mitigation actions by mapping LPI values throughout a region (Kayabasi & Gokceoglu, 

2018). The LPI is not without difficulties, despite its achievements. The quality and precision of 

input data, which can fluctuate greatly between sites, determines how accurate LPI forecasts are. 

Furthermore, uncertainties arising from the dynamic character of seismic occurrences and soil 

behavior need to be properly handled. These issues are still being researched, with the goal of 

improving the LPI's resilience and reliability as a forecasting tool. An important development in 

the realm of geotechnical engineering is the Liquefaction Probability Index (LPI), which offers a 

thorough and useful method for evaluating liquefaction risk. Its creation and improvement have 

been motivated by the need for trustworthy and useful information to safeguard infrastructure and 

populations against the catastrophic impacts of earthquakes (Kim, Kim, Baise, & Kim, 2021). 

2.9 Overview of Machine Learning 

Machine Learning, a branch of artificial intelligence, emphasizes the creation of algorithms and 

models that enable computers to undertake tasks autonomously, without the need for specific 

programming for each task. Essentially, a machine learns from data to find patterns and make 

predictions or decisions without any human interference. These machine learning algorithms have 

shown immense potential in solving complex problems across various domains (Pulina, 2010). 

The application of diverse machine learning algorithm portfolios is suggested for tackling intricate 

tasks in robotics and automated reasoning. Unlike traditional algorithms that follow a strict set of 

instructions, ML algorithms adapt and learn from the data they're provided. This means they can 

discover hidden patterns or subtle relationships in vast amounts of data that might be challenging 

or time-consuming for humans to discern (Erzin & Tuskan, 2019). Once trained, many ML models 

can adapt over time by learning from new data, allowing them to stay relevant in changing 

environments ". ML algorithms are designed to take a broad view from the training data to unseen 

scenarios, which means they can handle a variety of situations do not present in the initial training 

set. Deep learning models, which fall under the umbrella of ML, have the capability to 

autonomously extract features from unprocessed data, eliminating the need for manual feature 

engineering. This attribute renders them highly effective in tasks such as image and speech 

recognition. ML models, especially specific types like RF or Neural Networks (NN), can handle 
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high-dimensional data effectively, capturing interactions between various features. For tasks like 

data clustering or image recognition, manually defining rules or patterns would be cumbersome. 

ML models can automatically and efficiently handle these tasks after being trained on 

representative data. 

2.9.1 K-Nearest Neighbors (KNN)  

One of the most straightforward machine learning methods based on the technique of supervised 

learning is the algorithm for k-nearest-neighbors, often known as k-NN or KNN. It places the new 

sample in the group to which it is most comparable, assuming that the new and present data are 

similar. It is possible to apply the KNN approach to classification as well as regression. The KNN 

method works as follows: an exact approximation of K is selected, and since K must be an odd 

integer, the more precise the result. To maximize outcomes, different k-values and distance 

measurement metrics (consistent and distance) have been included in the Research settings. This 

allowed for a methodical exploration of various parameter combinations and the ten-fold cross-

validation process to identify the optimal effect parameters. In this investigation, setting the 

neighbors to 4 and the Weights to "distance" produced the KNN algorithm's most accurate results. 

 

Figure 2.1: K-Nearest Neighbors prediction model architecture 
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2.9.2 Random Forest Algorithm 

It is a versatile and widely used algorithm which belongs to the ensemble learning category. It uses 

a collection of decision trees to perform regression and classification tasks (Liu et al., 2012) and a 

graphical visualization of RF model is shown in Figure below. RF has been applied to many 

domains, including image classification, generating continuous field datasets, detection of spam 

mails, detection of credit card fraud, classification of genes, detection of network intrusion, email 

spam detection, gene classification, credit card fraud detection, and text classification (Horning, 

2010; Zakariah, 2014). 

 

Figure 2.2: Random Forest prediction model architecture  

2.9.3 Support Vector Regression (SVR) 

It’s a type of Support Vector Machine which is used for regression tasks. And SVM is mainly 

known for classification, SVR is its adaptation for predicting continuous values. SVR, or Support 

Vector Regression, learns directly from the data how important different variables are in explaining 

the connection between inputs and outputs. This is a step away from older regression methods, 

which often rely on assumptions that might not match the real-world data perfectly. SVR stands 

out because it figures out the value of variables directly through the data it analyzes, offering a 

more tailored approach to understanding data relationships and is shown in Figure 6. SVR has 
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been applied successfully to analyze brain imaging data and reveal patterns through multiple brain 

regions for various disorders(Amroune, 2022). 

 

Figure 2.3: Support vector machine model architecture 

2.9.4 XGBoost Algorithm 

XGBoost, short for Extreme Gradient Boosting, is a powerful tool that takes gradient boosting to 

the next level. It's crafted to work quickly and adaptively, making it a go-to for tackling big data 

challenges. Essentially, it's like having a supercharged engine for your data analysis, capable of 

handling tasks with speed and agility that traditional methods can't match (Chen & Guestrin, 2016). 

It works for both regression and classification problems (Tran et al., 2024). A flow chart diagram 

of XGBoost is shown in Figure below. 
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Figure 2.4: Extreme Gradient Boost prediction model architecture 

2.9.5 Decision Tree 

Decision trees (DT) are a well-liked technique for regression or classification that yields accurate 

and simple-to-understand results’ algorithms come in several varieties, but they all share a 

common framework. The algorithm, to put it succinctly, divides the data set into consecutive 

subsets in accordance with predetermined criteria. Tree-like structures can be used to graphically 

depict this process. Non-parametric DTs exist. They can simulate intricate interactions and do not 

make any assumptions about how the variables are connected (Ghani & Kumari, 2022). 

 They deal with data that is heterogeneous (comprising of both categories and numbers). 

 Because DTs choose the most crucial variables to use in their own operations, they are 

somewhat resistant to unimportant variables. 

 They withstand sorting mistakes and outliers equally well. 

 Even for those who have no prior experience with statistics, they are simple to understand. 

 Division rules, stop criteria, and assignment rules are the three components that go into 

creating a decision tree. 

A query whose response splits the set at the node's level into multiple subsets or more is 

referred to as a division at that node. Depending on the kind of decision tree selected, these 

queries or division rules change. Following the application of these criteria to every variable 
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in the collection, the variables are ranked in accordance with the data they yield, identifying 

the most valuable division as a node.  

 

2.9.6 Gradient Boost 

Based on the error function, the gradient boosting technique is an optimization technique. Machine 

learning techniques like gradient boosting are used to address regression and classification issues. 

By combining weak prediction models, like the decision tree, it creates a powerful prediction 

model. After that, Friedman built the GBRT algorithm. The fundamental notion is that a basic 

model performs each calculation, and the subsequent calculation is carried out to lower the residual 

of the previous model and build a new basic model that points in the gradient's direction with lower 

residuals (Das & Muduli, 2011). Thus, the loss function may be decreased and optimized by 

continuously modifying and improving the weight. The following algorithm parameters were 

chosen for this study: loss = "least squres," learning_rate = 0.1, subsample = 1.0, n_estimators = 

100, max_depth = 3, alpha = 0.9, min_samples_N = 1, and max_N = 0. The loss function for a 

collection of data points (𝑥𝑖,𝑦𝑖), where 𝑖=1,…,𝑁 , may be written as 𝑔𝑚(𝑥). There are 

discontinuous zones created in the input space. 1𝑚 

For every area 𝑏𝑗𝑚 , 𝑅2𝑚 ,..., 𝑅𝑗𝑚 , and a constant value is estimated. Regression trees have j leaf 

nodes in total. 

 

Figure 2.5: Gradient Boost prediction model architecture 

2.9.7 Artificial Neural Network 

The Sicilian soil database's generalized feedback (GFF) neural network was shown to be the most 

effective model for simulating soil water retention. A popular model for simulating physical 
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processes, the multi-layer perceptron (MLP) is generalized in this artificial neural network (ANN). 

Any neuron in a hidden layer of an MLP gets input from every other neuron in the layer before it 

and delivers its output to every other neuron in the layer after it. GFF contains connections between 

neurons in layers that are not contiguous, unlike MLP (Fahim, Rahman, Hossain, & Kamal, 2022). 

The term "feed-forward" refers to these kinds of networks since the signals only move from the 

point of entry to the output. Moreover, supervised learning is typically used to train them, which 

entails using a subset of observed input and output pairings. One input layer, two layers that were 

concealed with fifteen neurons apiece, and one layer of outputs made up the ANN design suggested 

in this work. Depending on the set of parameters being entered used, the input layer's neuron count 

ranged from three to four. Using a backpropagation technique with a momentum term, which 

adjusts weights along an error gradient to increase network convergence, the ANN training phase 

was carried out. 0.1, 0.001, and 0.1 learning rates were used for the input layer, first hidden layer, 

and second hidden layer connections, respectively. For every layer, the speed factor was 0.6. 

Online updates were made to the weights following the display of each input pattern (Kayabasi & 

Gokceoglu, 2018). 

 

Figure 2.6: ANN prediction model architecture 
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2.10 Model Evaluation Metrics 

Model evaluation is like a check-up for your machine learning model, ensuring it's smart enough 

to handle new, unseen data. It's about tweaking its learning settings and making sure it's not just 

memorizing but truly understanding, ready to face real-world challenge. 

There are two types of model metrics. One is for regression and the second is for classification. 

The regression metrics are given below. 

𝑅𝑀𝑆𝐸 =  √(
1

𝑛
) × ∑ [𝑝𝑖 − 𝑦𝑖]2

𝑛

𝑖=1
 (2.11) 

𝑀𝐴𝐸 =
1

𝑛
× ∑ (|𝑝𝑖 − 𝑦𝑖|)

𝑛

𝑖=1
 (2.12) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑝𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (2.13) 

Where: 

𝑛 = sample size 

𝑝𝑖 = predicted values 

𝑦𝑖 = actual values 

𝑦𝑖 = average of actual values 

These metrics are typically specific to the context of a study and depend on the data's nature, the 

model's complexity, and the field of application. Generally, for R², a value closer to 1 indicates a 

better fit, while for RMSE, a lower value indicates a better fit. However, standard reference values 

may not be universal and can vary based on the domain or specific application. 
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3 Chapter 3: Methodology 

The methodology for utilizing the machine learning algorithms to evaluate the dynamic properties 

and liquification properties of soil involves the several key steps. The methodology includes the 

study area for the exploration of soil data, soil profile and parameters for data collection, estimation 

of liquefaction potential index (LPI) using standardized correlation (Abdullah Ansari, Falak 

Zahoor, 2022), data pre-processing and screening for used as input dataset for machine learning 

models, and the experimental setup which includes the model’s architecture. The flowchart for the 

estimation of liquefaction potential index (LPI) and detailed methodology is shown in figure 1 (a) 

and (b) below. 

 

 

Whereas,  

FS = Factor of Safety                        amax = Peak ground surface acceleration  

CRRM=7.5,𝝈 v’=1atm = Cyclic Resistance Ratio at earthquake magnitude of 7.5 

MSF = Magnitude Scaling Factor              𝝈 v, 𝝈 v’ = Total and effective vertical Stress. 

CSR = Cyclic Stress Ratio 

(N1)60CS = SPT-N count (N) equivalent clean sand (CS) corrected 

Rd = Reduction Factor calculated in terms of depth, z in meters 
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Figure 3.1: Methodology flow charts 

 

3.1 Study area 

Subsurface soil research has been conducted for the locations around Bhimbar and Mirpur shown 

in Figure 2 in order to assess soil liquefaction potential using SPT-N values. This has been followed 

by nonlinear seismic site response analysis (NL GRA) of the explored soil data.  The locations 

selected for liquefaction potential and dynamic property assessment are close to the Jhelum River 
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bridge centers. To demonstrate the application of the soil investigation data, nonlinear ground 

response analysis (NL GRA) has been performed along Jhelum River in Mirpur, a northeastern of 

Pakistan, classified as one of the active regions of the country surrounded by many tectonic faults. 

The nonlinear ground response analysis was performed on three implemented soil columns. The 

profile is explored near the center of the bridge and flyover in Jhelum River. The explored depth 

consists of sand with increasing relative density; therefore, the chosen soil profile is assumed to 

be underlain by a bed rock beyond the exploration data. Because the chosen profile is close to a 

river, the soil columns are primarily made up of sand with a range of shear wave velocities in 

(Figure ). According to the Economic Affairs Division, Pakistan, earthquake 2005 & 2019 has 

caused several death approxing 80000 people, injuries reached to 70000. No of houses destroyed 

by the earthquake was 203,579 while damaged 196,576 houses. (S.M. Ali et al. 2011) there were 

more than 90 bridges damaged by the earthquake. The 2019 Bhimbar and Mirpur earthquakes, 

which caused liquefaction failure, inspired researchers to assess the dynamic reaction of soil. 

Therefore, whether conducting seismic requalification of existing structures or seismic resistant 

design of new buildings, evaluation of the dynamic characteristics and liquefaction potential of 

soil in one of the active seismic zones is highly beneficial. 
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Figure 3.2: Study area map 

3.2 Soil Profile 

Subsurface soil research has been conducted for the locations around Jhelum and Mirpur shown 

in Figure 1 to assess soil potential for liquefaction using SPT-N values. This has been followed by 

nonlinear seismic site reaction analysis (NL GRA) of the explored soil data.  Since the profile that 

was chosen is close to a river, the sites were chosen for a dynamic evaluation. As a result, the soil 

columns primarily consist of sand with changing shear wave velocity. 2019 saw a liquefaction 

failure brought on by an earthquake. The Mirpur earthquake motivated the researchers to evaluate 

the dynamic response of soil. Therefore, to execute seismic requalification of current structures or 

seismic resistance design of new buildings, evaluation of the dynamic characteristics and 

liquefaction potential of soils in one of the active seismic regions would be beneficial. Properties 

and potential for liquefaction are located close to the middle of the Chenab River and Jhelum River 

bridges for Sites 1-4, which have water table depths of 1, 1.5, 2, and 3 meters, respectively. 
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3.3 Data Collection 

Since nonlinear seismic site reaction analysis uses a more realistic method than the corresponding 

linear technique, it is undertaken in comparison with the latter. To assess the elevated pore water 

pressure ratio for the earth's columns under consideration, this study took the same into account. 

The study was carried out using version 7.0 of the DEEPSOIL program. The software that is now 

available proposes standard curves for evaluating dynamic features. The thickness of each of the 

layers is modified for every exploration data so that a layer can propagate at a maximum frequency 

greater than 30 Hz. The bed rock is represented as an elastic half area with a shear wave velocity 

of 760 m/s, a density of 25 kN/m3, and a damping value of 2%. The necessary input variable for 

the study is assessed based on SPT-N values in line with the following equation of (Ohsaki and 

Iwasaki, 1973) in ton/m2 for cohesionless soils since there was no calculated maximum shear 

modulus (Gmax) data available.  

                                                 𝐆𝐦𝐚𝐱 = 𝟔. 𝟓𝟎𝐍𝟎.𝟗𝟒                                                  (1) 

The unaffected soil investigation data was utilized to import the analysis's input parameters, and 

the DEEPSOIL hyperbolic and pressure-dependent MRDF-UIUC process was employed to fit the 

given data points. A suggested soil model was employed to assess the enhanced PWP production 

and dissipating of soil columns taken into consideration in this investigation. The information was 

gathered through experimental testing and fieldwork. Over five hundred soil property records were 

gathered. A broad range of soil kinds, characteristics, and specific soil weights are covered in the 

database. 

Two principles, were followed for pile bearing capacity determination: either the settlement of pile 

top at the current load level was at least 5 times that of settlement at the previous load level, or a 

linear load-settlement curve was observed. The bearing capacity was defined as the load level at 

which the settlement exceeded 10% of the pile diameter. This comprehensive dataset of static load 

tests on pre-cast reinforced concrete piles is substantial and forms a robust foundation for 

developing and validating advanced machine learning models, which is a key aspect of this 

research. The introduction of parameters is given in Table 3.1 and statistical summary of input is 

given in Table 1. 
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Table 3.1: Introduction of input parameters 

Parameters Count 

SPT-N 500 

Shear Stress (ton/m2) 500 

Gmax (ton/m2) 500 

Vs (m/s) 500 

PGAsurface (g) 500 

rd  (meter) 500 

MSF 500 

 

3.4 Data screening 

Large datasets can be affected by outliers, and improving efficiency often involves their removal, 

even though it may reduce errors in the analysis. Outliers can be identified using a box plot based 

on variance and median. However, caution should be exercised, and observations should not be 

discarded unless there is certainty that the outlier is due to measurement error or has a significant 

impact on the model. 

 The authors of the research work have chosen to use 80% of the total data as their training 

dataset. That is, 80% of 500, which equals 400 SPT-N case histories. 

The remaining 20% of the data, which amounts to 100 SPT-N case histories (20% of 500), is 

designated as the testing dataset. The purpose of this testing dataset is to assess and evaluate the 

performance of the models after they have been trained on the training dataset. 

3.5 Removing Outlier: 

Datasets become massive due to outliers, which should be removed to improve efficiency even 

though it narrows down the error to correct the result. Soil dynamics properties monitoring data 
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may have some outliers. Abnormal values can be obtained during monitoring. These values may 

affect the quality of the monitored data. Before building any model, observed data must be checked 

outliers by the Grubb test. The Grubbs test was developed to determine whether the greatest value 

or the lowest values are outliers. In this study, outliers can be removed from the data set and the 

nonlinear partial least squares algorithm (NIPALS). Research data were standardized before 

proceeding to build training models. In this study, data were normalized in the 0–1 range using the 

linear scale method. 

                                        𝑿 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 =
(𝒙 − 𝒙𝒎𝒊𝒏)

(𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏)
                                                     (2) 

Where x is the observed value, and x min and x max are the minimum and maximum value in the 

data set. 

With careful consideration to statistical details, the data division procedure was carried out to 

create training and testing datasets, guaranteeing that important parameters like minimum, 

maximum, mean, and standard deviation were evenly distributed throughout the datasets. This 

meticulous statistical consistency was essential to maximizing our models' performance and, as a 

result, supporting a comprehensive assessment of them. The statistical properties of the input 

variables, such as the mean, standard deviation, minimum, and maximum for the training and 

testing datasets, are shown in Table 2. 

Table 3.2: Statistical dataset 

Variables 
SPT-

N 
Gmax 

(ton/m2) 
Vs (m/s) 

Shear 

Stress 

(ton/m2) 

Peak Ground 

Surface 

Acceleration (g) 

Reduction 

Factor rd 

(m) 

LPI 

Minimum 3 17.902 98.76 0.000 0.583 0.51 0.007 

Maximum 30 131.364 621.50 8.304 1.173 0.943 3.935 

Mean 9 70.641 438.721 0.737 0.8361 0.641 1.8 

Standard 

Deviation 
6.271 36.819 147.597 1.216 0.133 0.0739 1.637 

Variance 39.321 1355.648 21784.889 1.480 0.0177 0.006 2.679 

Range 22 113.462 522.741 4.601 0.367 0.492 3.928 
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We evaluated the models we constructed in terms of their predictive power and generalization 

performance by dividing the sample suitably. The models showed impressive similarities in their 

performance on the training and testing datasets, indicating that our models are not overfitting but 

rather are able to apply their learned information to the trained ranges. Our models are well-suited 

to handle real-world scenarios with precision and reliability because of their resilience and 

uniformity in performance, which gives us confidence that they may be used successfully in 

practical applications within the designated data ranges. 

3.6 Data Partition: 

Once the dataset is meticulously preprocessed, the next step is its splitting into distinct sets for 

model training and validation. The partitioning was carried out using the `training, testing and 

validation` function from the Scikit-learn library. This function not only ensures a random 

distribution of data points into the two sets but also guarantees consistency in this random division. 

The result is a balanced and representative split that highlights effective model training and 

validation. For the current dataset, the data is split with a ratio of 90:10 and reasons are: 

 90% of the data is allocated towards the comprehensive process encompassing 

hyperparameter optimization, training, and internal validation of the model settings. This 

data is labeled as “training and testing data” and it will ensure that the model has enough 

information to understand and capture relationships and patterns. 

 The remaining 10% is reserved for validation purposes of proposed tuned models and 

labeled as “validation data”. 

3.7 Experimental Setup 

Using an Intel 2.20 GHz CPU for testing and a Windows 10 PC with a GeForce 980 GTX GPU, 

Python is employed to train the models. Google partnered with NVIDIA to supply GPUs and CPUs 

to speed up calculations. The investigation was conducted using Python 3.8, and Google Colab 

provided 16 gigabytes of RAM for the experimentation. Additionally, Google Colab is a helpful 

tool for running code and conducting tests because of its user-friendly interface and compatibility 

with Python. To accommodate larger datasets and memory-intensive operations, the platform 

additionally offers a substantial 16 gigabytes of RAM for the studies. It is an open-source machine 

learning library for Python that offers simple and efficient tools for data analysis and modeling. It 
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provides a range of supervised and unsupervised learning algorithms, is built upon the SciPy 

(Scientific Python) library and is known for its ease-of-use and versatility. RF Regressor, SVR, 

and XGBoost are carefully imported into python. 

3.8 Architecture of Models 

This section outlines the supervised classification that is employed in this study. This study uses 

several machine learning (ML) and Deep learning (DL models, which are discussed in this section. 

3.8.1 K-Nearest Neighbors (KNN)  

One such approach is K-Nearest Neighbors (KNN), which continues to perform rather well for 

huge training sets despite its simplicity (Maillo J. et al. 2017). It only depends on the most 

fundamental premise of any prediction, which is that comparable observations will typically 

provide similar results. The vast majority (often weighted) of a new observation's k "Nearest 

Neighbors" in the training set is used by Nearest Neighbor techniques to forecast a new 

observation's value (Richman et al. 2011). If an observation is given an infinite quantity of data, it 

will have many "neighbors" that are arbitrarily close to each other in terms of all characteristics 

measured, and the variability of their results will yield as accurate a prediction as is possible in 

theory, unless there is a completely specified model (Pandey et al. 2017). But since we can never 

have enough data, this asymptotic property's real usefulness is debatable, particularly for small 

datasets. 

 

Figure 3.3:K-Neighbors prediction model code 
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3.8.2 Random Forest (RF) 

One popular machine learning approach for regression tasks is called RF. Several decision trees 

are used in this ensemble approach to decrease over fitting and increase prediction accuracy. RF is 

superior to conventional machine learning algorithms in several ways, including its handling of 

missing values, high-dimensional data, and nonlinear correlations between variables (Rigatti et al. 

2017). Furthermore, it offers changeable relevance measurements that may be applied to feature 

interpretation and selection. One of the most widely used Python applications for RF classification 

and regression. It provides a simple interface for building and evaluating RF models and handles 

both regression and classification operations. 

 

Figure 3.4: Random Forest prediction model code 

3.8.3 Gradient Boosting (GB) 

Like random forests, Gradient boost is a machine learning technique for regression problems that 

creates predictions by aggregating the results of many decision trees. Gradient trees employ 

decision trees to detect learners who are not proficient (Si. S. et al. 2017). With the idea of 

residuals, gradient boosting calculates the difference between the current prediction and the actual 

target value. Following the residual's determination, the approach transfers the weak attributes to 

it, continuously pushing the model closer to the target value. By repairing the errors of the previous 

three trees, gradient boost regression constructs one tree at a time as opposed to random forest. 

Though the computational cost is higher, the final output is more accurate (Lusa et al. 2017). 
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Figure 3.5: Gradient Boost prediction model code 

3.9  Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting is a technique that has gained popularity recently because of its 

exceptional accuracy and efficiency. A group method known as XGBoost combines multiple 

ineffective learners, like decision trees, into a single, strong learner. The approach adds decision 

trees to the model iteratively, with each tree seeking to correct the flaws of the previous one. The 

XGBoost package is frequently used in R to execute the XGBoost regression model (Chen et al. 

2016). The XGBoost package also offers support for hyperparameter tweaking, which could 

significantly improve the model's performance. The hyper parameters, which include learning rate 

(eta), number of trees, maximum depth of each tree (max, depth), and regularization factors 

(gamma and alpha), can be fine-tuned in multiple ways. 

 

Figure 3.6:  Extreme Gradient Boost prediction model code 
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3.9.1 Decision Trees (DT) 

The DT approach is often used for tasks that require both regression and categorization. DT 

algorithm divides the results of the input parameters into subsets and labels are assigned to each 

subset according to the majority class (Suthaharan et al. 2016). The resulting tree structure can be 

used to make predictions on new data by traversing the tree from the starting point to a leaf node 

that correlates with a specific class or value. Quinlan asserts that decision trees are particularly 

useful in scenarios containing discrete-valued output parameters because they can manage both 

continuous and categorized input features. They are a popular option for exploratory data analysis 

and decision-making activities since they are also simple to understand and depict. The software 

offers ranges of DT hyper parameters that may be adjusted using search for grids or Bayesian 

optimization, such as complexity parameters, the maximum number of trees, the minimum number 

and splits, etc. Numerous geotechnical applications, such as categorization and soil parameter 

prediction, have made use of DT algorithms. 

 

Figure 3.7: Decision Tree prediction model code 

3.10 Artificial Neural Network (ANN) 

ANN is a modeling approach that permits learning by instance from data that is representative that 

explains a physical phenomenon or a decision-making process. It is inspired by the human being's 

nervous system. The ability of ANN to extract sophisticated knowledge and delicate information 

from representative data sets, as well as to build empirical correlations between variables that are 

both independent and dependent, is one of its distinctive features (Talwar, 2022). It is possible to 

establish the links between dependent and independent variables without making any presumptions 



Page | 36 

regarding the phenomenon's mathematical representation. ANN models provide several benefits 

over regression-based models, such as the ability to handle noisy data. 

𝒚 = 𝒘𝟏𝒙𝟏 + 𝒘𝟐𝒙𝟐 +  𝒘𝟑𝒙𝟑 + 𝒃𝒊𝒂𝒔                                              (1) 

𝒚 = ∑ (𝒘𝒊 ∗ 𝒙𝒊) + 𝒃𝒏
𝒊=𝟏                                                                         (2) 

𝒛 =
𝟏

𝟏+𝒆−(𝒘𝟏𝒙𝟏+𝒘𝟐𝒙𝟐+𝒘𝟑𝒙𝟑+𝒃)                   
                                                       (3) 

 

 

Figure 3.8:  ANN prediction model code 

3.11 Performance Evaluation: 

A variety of metrics were used to evaluate the suggested model’s performance indices, such as R2, 

RMSE, MAE, NSE, Weighted Index, and Percent Bias. The performance indices' mathematical 

formulation is in equations given below. Table 2 displays these performance indexes' optimal 

values. 

MAE =
1

n
∑ (|yi –  xi|)n−1

i=0                                                                                           (4) 

R2 = 1- 
∑(yi−y ̂)2

∑(y−yi)2
                                                                                           5) 

NSE=1- 
∑ Qoi−Qsi2i

n=1

∑ Qoi−n
i=1 μo2

                                                                                 (6) 

MSE = √
∑ (xi−yi)n

i=1

n
                                                                                                    (7) 

  Σ: Summation of all values 
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yi: Actual value for the ith observation 

xi: Calculated value for the ith observation 

N: Total number of observations  

WI = [1 −
∑ (di−yi)2n

i=1

∑ {|yi−davg|+|di−davg|}n
i=1

2]                                                       (8) 

Where yi is the model’s anticipated probability of the liquefied value, davg denotes the mean value 

of di, and n denotes the total number of data points in that specific phase. Where di represents the 

actual likelihood of the liquefaction value. 

 

 

(12)                                                                      
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4 Chapter 4: Results and discussion 

4.1 Preprocessed data 

This study focused on determining the dynamic properties and liquification potential of soil by 

considering the shear stress, shear wave velocity and maximum shear modulus by utilizing 

machine learning techniques. In this section, the performance of the proposed models has been 

evaluated and discussed. Moreover, the model’s performance has also been compared to identify 

the best model for prediction of liquification properties. It includes soil parameters analysis to 

evaluate the role of investigated parameters in determining the dynamics and liquification potential 

of soil, graphical representation of actual and predicted values of parameters for model’s 

performance, Performance analysis, Accuracy matrix, AIC criteria and Comparative analysis. 

4.1.1 Soil Parameters Analysis  

The sub-surface soil investigation clearly exhibited the contributing role of soil parameters in 

determination of dynamic properties and liquification potential of soil. The accurate assessment of 

shear stress is beneficial in grasping the soil behavior under dynamic load or seismic events. The 

significant cyclic stress during earthquakes caused contact loss and rearrangement of soil particles, 

leading to decrease in shear strength make them prone to liquification. Shear stress has a crucial 

role in determining the dynamic characteristics of soil, including damping ratio and shear modulus. 

Shear stress is a key parameter that numerical models primarily employ to simulate soil behavior 

under dynamic loading conditions. Precise modelling of shear stress is necessary to obtain accurate 

predictions of soil response (Yang et al. 2022). The stiffness and elastic characteristics of the soil 

are directly correlated with shear wave velocity. Usually, greater shear wave velocities signify 

more elastic and rigid soils. It is an important factor in determining the susceptibility of soil to 

liquification during seismic conditions. Low shear wave velocities are frequently linked to 

saturated, loose soils that are liquefiable (Aytas et al. 2023) Shear wave velocity is an essential 

input variable for response evaluation since it helps to predict how a particular site will react to 

seismic stresses. Maximum shear modulus is a key contributing factor in assessing the stiffness 

and shear strength of soil in response to dynamic loading circumstances. Gmax refers to the soil’s 

maximal stiffness. When dynamic stresses are applied, stiffer soil typically shows less setting and 

deformation. It is a typical dynamic property, and its lower value is associated with the higher risk 
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of liquification because dynamic loading can cause the soil to deform excessively and lose its 

strength. Maximum shear modulus is directly correlated with shear velocity. Therefore, it is the 

most essential input parameter for forecasting the dynamic behavior of soil under seismic load. 

Moreover, the pore water pressure and damping ratio has also the contributing role in evaluating 

the soil properties as the excessive PWP resulted in the reduction in stiffness and stability of soil 

and hence resulted in decrease in the shear strength, shear wave velocity and maximum shear 

modulus. Greater PWP is the primary indicator of liquification potential of soil. The results of the 

seismic response and DEEPSOIL analysis indicated that these parameters have the potential role 

in evaluating the dynamic properties and liquification potential of soil. 

4.1.2  Graphical Representation of Actual and Predicted Values  

This section graphically displays the performance of all the suggested models including KNN, FR, 

GB, XGBoost, DT and ANN as scatter plot of the actual and predicted probability values of the 

determined parameters (Shear stress, shear wave velocity and maximum shear modulus). Scatter 

plot from machine learning algorithms comparing the actual against anticipated probability is a 

valuable diagnostic tool for assessing the performance and accuracy of predictive models. 

Predicted probabilities that accurately reflect the possibility of an occurrence should be generated 

using a well-calibrated model. The scatter plot data points in this instance should be dispersed 

evenly around the 45o line. The models show better prediction accuracy when the plotted data 

points fall closer to the line (x = y) which means that the predicted values are close to the actual. 

The deviation from the line indicated that the predicted probability is not accurately representing 

the true possibilities. Points above the line indicated the overestimation and data points below the 

line indicated the underestimation. A tight cluster of points around the line demonstrates 

consistency, whereas the dispersed distribution indicated variability in prediction.  The scatter 

graphs display for each of the parameters predicted by various machine learning models are given 

and discussed below. 

4.1.3 Shear Stress 

The scatter plots of actual and predicted shear stress data are given in figure 3 below. It can be seen 

from the plots that all the models have shown reasonable performance in terms of shear stress 

prediction. Figure 3b from random forest (RF) model indicated the least scattering from the line 

and the predicted datapoints are closer to the actual ones demonstrating the highest efficiency of 
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all the suggested models for shear stress evaluation. Figure 3d of XGBoost also demonstrated the 

higher performance for SS prediction as this graph shows limited number of scatter values after 

RF. The efficiency of remaining models for the prediction of shear stress for liquification potential 

identification is in the order of DT > GB > ANN > KNN. Both ANN followed by KNN models 

showed the variant predicted data points from the actual data and least efficacy for shear stress 

evaluation from the input parameters. The coefficient of determination has also been evaluated 

from the scatter graphs for the numerical analysis of all the model’s performance and are given in 

next section. 
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Figure 4.1 : Scatter graphs for shear stress prediction: (a) KNN, (b) RF, (c) GB, (d) XGBoost, (e) DT and 

(f) ANN 
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4.1.4  Shear wave Velocity 

The scatter plots of actual and predicted data of shear wave velocity are given in figure 4 below. 

The plots of all the models have been assessed to evaluate their performance for shear wave 

velocity prediction. The graphs in figure 4 indicated that all the models have slight greater variation 

in prediction and actual value of shear wave velocity than the other parameters. GB model in figure 

4c has the least scatter predicted values than the other models. Gradient boost exhibited the best 

performance for determining the shear wave velocity. Moreover, RF in figure 4b also indicated 

better performance as compared to the other models. SV prediction efficiency by the proposed 

models is in order of GB > RF > KNN > ANN > XGBoost > DT. Decision tree model has indicated 

the minimum performance for shear velocity evaluation in liquification potential determination. 
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Figure 4.2: Scatter graphs for shear wave velocity prediction: (a) KNN, (b) RF, (c) GB, (d) XGBoost, (e) 

DT and (f) ANN 

4.2  Maximum Shear Modulus 

The scatter graphs of Gmax actual and predicted data by various suggested models is given in 

figure 5 below. The graphs indicated the evenly distributed datapoints with predicted value closer 

to the line or actual values. The less scattering of datapoints in the graph exhibited the well-
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calibrated models for Gmax prediction. It can be seen from graphs that these models have highest 

efficiency for Gmax prediction than other parameters to evaluate the dynamic properties and 

liquification potential. Figure 5d of ANN model exhibited the highest performance efficiency for 

maximum shear modulus prediction as this graph indicated least scattering from the actual data. 

Decision tree (DT) model (5e) also indicated greater efficiency with very litter predicted data 

variability. KNN model in 5a has limited efficacy for Gmax as compared to all other models. The 

trend for Gmax prediction from the input parameters of all models is in order of ANN > DT > 

XGBoost > RF > GB > KNN. As liquification potential is highly dependent on maximum shear 

modulus, Gmax prediction is extremely useful for assessing the dynamic properties of soil. 
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Figure 4.3: Scatter graphs for shear wave velocity prediction: (a) KNN, (b) RF, (c) GB, (d) XGBoost, (e) 

DT and (f) ANN 
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4.3 Liquefaction Potential Index 

The scatter plots for LIP prediction of all the proposed models are given in Figure 6 below. It can 

be clearly seen from the graphs that all models showed satisfactory performance for LIP 

determination when predicted by using the other soil parameters. XGBoost model outperformed 

all the models predicting LIP as there is comparatively less scattering of predicted values from the 

actual data as shown in Figure 6d. Moreover, DT model also exhibited greater efficiency in this 

parameter determination and almost have relatable performance to XGBoost model (Figure 6e). 

The highest scattering from the predicted data and in turn the least performance is observed in case 

of KNN model (Figure 6a). The general trend for the determination of LIP of soil by considering 

all other parameters is in the order of XGBoost > DT > RF > GB > ANN > KNN. The various 

performance indices have also been calculated from the plots and are discussed in the next section. 
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Figure 4.4: Scatter graphs for LIP prediction: (a) KNN, (b) RF, (c) GB, (d) XGBoost, (e) DT and 

(f) ANN 
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4.4 Performance analysis 

The performance of the recommended models (KNN, RF, GB, XGBoost, DT and ANN) has been 

computed with the help of various evaluation matrices. Consequently, the real and anticipated 

probability values of various parameters (SS, SV, Gmax, LIP) has been utilized to evaluate the 

performance indices. The real values of the calculated evaluation indices used for the performance 

analysis is given in table 3 below. It can be seen from the table that for shear stress determination, 

RF indicated lower efficiency errors with high 0.998 Nash-Sutcliffe Efficiency and 0.998 

coefficient of determination R2. High R-squraed value close to 1 indicated that this model regarded 

as good and optimized model for shear stress prediction. By determining the SS values, we can 

evaluate the dynamic properties and liquification potential of soil. Simlarly, for SV prediction, 

gradient boost (GB) model performed best with less efficiency errors, 0.990 of  Nash-Sutcliffe 

Efficiency and 0.992 coefficient of determination. By examining the SV, we can easily determine 

the trend of liquification potential of soil. Furthermore, maximum shear modulus (Gmax) 

considered as the highest contributing parameter in assessing the liquification potential. ANN 

model indicated the best performance efficiency for Gmax prediction with 0.999 Nash-Sutcliffe 

Efficiency and 0.999 R2. LIP of soil has also been determined with greater R2 value of 0.946 and 

NSE of 0.904 by XGBoost model. This indicated that these model are highly optimized model for 

Gmax and LIP determination. 

Table 4.1: Performance Matrices values for all models 

Parameters 
Evaluation 

Indices 

Models 

KNN RF GB XGBoost DT ANN 

SS 

MSE 0.020 0.004 0.007 0.004 0.005 0.014 

RMSE 0.142 0.060 0.085 0.061 0.070 0.120 

MAE 0.054 0.025 0.050 0.038 0.031 0.075 

Nash-

Sutcliffe 

Efficiency 

0.987 0.998 0.995 0.998 0.997 0.990 

Percent 

Bias 
3.599 1.201 1.542 2.615 0.193 3.083 
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Weighted 

Index 
0.196 0.085 0.135 0.098 0.101 0.136 

R2 0.987 0.998 0.995 0.998 0.997 0.990 

SV 

MSE 241.028 236.007 193.930 279.360 317.150 246.380 

RSME 15.525 15.360 13.920 16.710 17.809 15.690 

MAE 6.573 5.088 5.410 6.050 7.682 8.990 

Nash-

Sutcliffe 

Efficiency 

0.990 0.990 0.990 0.989 0.987 0.990 

Percent 

Bias 
0.592 0.227 0.150 0.293 0.491 -0.330 

Weighted 

Index 
22.099 20.450 19.300 22.770 25.491 15.710 

R2 0.990 0.990 0.992 0.980 0.987 0.990 

Gmax 

MSE 45.731 36.084 43.090 35.920 35.333 34.840 

RMSE 6.762 6.007 6.560 5.993 5.944 5.900 

MAE 3.134 2.337 2.672 2.789 1.829 4.612 

Nash-

Sutcliffe 

Efficiency 

0.999 0.999 0.999 0.999 0.999 0.999 

Weighted 

Index 
0.281 -0.190 -0.230 -0.080 -0.297 -0.050 

Percent 

Bias 
9.897 8.344 9.230 8.783 7.773 5.900 

R2 0.999 0.999 0.999 0.999 0.999 0.9999 

LPI 

MSE 0.0278 0.0137 0.0175 0.0121 0.0124 0.0242 

RMSE 0.167 0.117 0.1324 0.1101 0.111 0.736 

MAE 0.050 0.035 0.061 0.032 0.035 0.0256 
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Nash-

Sutcliffe 

Efficiency 

0.872 0.939 0.932 0.904 0.945 0.876 

Weighted 

Index 
0.217 0.153 0.193 0.142 0.147 0.850 

Percent 

Bias 
0.781 0.352 0.443 0.352 0.326 0.143 

R2 0.877 0.939 0.922 0.946 0.945 0.875 

 

4.4.1 Accuracy Matrix 

Heatmaps of the evaluation matrix statistical data are presented in figure 7. Heatmaps are created 

to present and visualize complex data and to identify the trends, patterns and variations. With color 

variations, the heatmap matrix shows the statistical parameter values and makes it easier to 

examine the multivariate data produced by different models’ side by side. The generation of 

heatmap is based on the comparison of model’s ideal values of the statistical parameters obtained 

from the predicted parameter values. The heatmap of shear stress in figure 7a indicated the color 

variation between the higher performed model RF and less performed model ANN and KNN. The 

difference in intensity of colors of various parameters indicates the trend of models for prediction 

efficiency performance. Similarly, the higher intensity colors of XGboost and DT in 7b indicated 

the least performance for SV prediction. The correlation pattern and trend of performance in figure 

7c is exhibited by color variation and showed ANN as best model and DT and XGboost as least 

performing models for maximum shear modulus prediction. The accuracy matrix of LIP parameter 

also indicates the higher zones along the three models (GB, ANN and KNN) which exhibited less 

efficiency as compared to all other three models. 
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Figure 4.5: Accuracy Matrix of statistical parameters data (a) SS (b) SV (c) Gmax (d) LPI 
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4.4.2 AIC Criteria 

Akaike Information Critera (AIC) is a statistical matric employed to choose model and access their 

generalization (Akaike, 2011). The AIC offers a quantitative method for comparing several models 

and determining which strikes the optimal trade-off between model complexity and goodness of 

fit. The following is the mathematical expression that was used to determine the AIC value: 

𝑨𝑰𝑪 = 𝒏 𝑿 𝒍𝒏(𝑹𝑺𝑴𝑬𝟐) + 𝟐𝒌             (9) 

In this equation, n represents the dependent variable, RSME is determined by the actual and 

predicted data, 2k indicates the maximum number of independent variables that are utilized in the 

models. The term 𝑛 𝑋 ln(𝑅𝑀𝑆𝐸2) indicates goddness of fit model. 

The model with lowest AIC value when compared with the other ones regarded as the best-fitted 

model for the data. The model that fits the data the best when compared to other models is the one 

with the lowest AIC value. By opting for the model with the lowest AIC, researchers can strike a 

compromise between model intricacy and goodness of fit, favouring more straightforward models 

that nonetheless provide a sufficient explanation for the data. Remember that the AIC is a 

comparison metric and does not offer a precise assessment of model fit. Its main application is to 

compare models within a given dataset. The AIC values for each model for various parameter 

prediction is given in table 4 below. The calculated AIC values are in accordance with the 

evaluation matrices. RF model has the lowest AIC value of 8.37 for shear stress prediction than all 

other models. This also indicates that RF model has highest efficiency for SS evaluation. Similarly, 

GB and ANN model has lowest AIC values of 19.26 and 17.55 for shear wave velocity and 

maximum shear modulus prediction respectively. The values of AIC for LPI parameter are also in 

accordance with the above findings and lowest AIC value of 9.58 is indicated by XGBoost model. 

These models with lowest AIC values indicate the goodness of fit model. Furthermore, all other 

AIC values also follow the performance trend for all four parameters. The decreasing trends of 

models performance by increasing AIC values for shear stress, shear wave velocity, maximum 

shear modulus and LPI in the form of radar diagrams are shown in figure 8 below. 

Table 4.2 AIC values of parameters for all proposed models 

Models Parameters 
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SS SV Gmax LIP 

KNN 10.09 19.48 17.82 10.41 

RF 8.37 19.46 17.58 9.71 

GB 9.03 19.26 17.76 9.95 

XGBoost 8.40 19.63 17.58 9.58 

DT 8.7 19.75 17.56 9.6 

ANN 9.73 19.50 17.55 10.28 
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Figure 4.6: Illustration of all proposed Model's AIC values using Radar Diagram for (a) SS parameter (b) 

SV parameter (c) Gmax parameter 

4.5 Rank Analysis 

Rank analysis is carried out to overall compare the model’s performance for determination of 

liquification potential. Rank analysis is conducted based on the model’s efficiency in predicting 

the parameters. This analysis entails score assigning to each model based on their optimized 

performance for prediction. In this analysis, 1 to 6 score is assigned to each model for each 

parameter prediction (SS, SV, Gmax) with lowest score (1) exhibiting the highest efficiency and 

the highest score (6) indicated the indeterminacy or less efficiency of model. In this way, score is 

assigned to each model for all the three parameters separately and then add the scores of each 

parameter of all individual models. The model with lowest final score is positioned as first in the 

rank for the overall determination of liquification potential while the suggested model with highest 

total score holds the last rank for prediction efficiency. The ranks or scores of various models for 

assessing the parameters and the final total score is given in table 4 below. The table indicated that 

random forest (RF) model exhibited the lowest total score and ranked first with highest 

performance for liquification potential determination. This indicated that RF has proved to be the 

most efficient model for all types of parameter prediction. Next XGBoost and DT indicated greater 

performance after RF model. These models performed either good or less effectively for different 

parameters. GB model ranked fourth while KNN model has highest score of 21 or least ranking in 

17.50

17.55

17.60

17.65

17.70

17.75

17.80

17.85

GB

RF

XGBoost

DT

ANN

 AIC for Gmax

KNN

(c)

9.4

9.6

9.8

10.0

10.2

10.4

10.6

ANN

GB

RF

DT

XGBoost

 AIC for LIP

KNN

(d)



Page | 56 

performance efficiency. The KNN model proved to be least suitable for liquification potential 

assessment of soil. 

Table 4.3: Ranking analysis of all models for dynamic properties and liquification potential 

determination 

Parameters Models 

KNN RF GB XGBoost DT ANN 

SS 6 1 4 2 3 5 

SV 3 2 1 5 6 4 

Gmax 6 4 5 3 2 1 

LIP 6 3 4 1 2 5 

Total score 21 10 14 11 13 15 

Rank 6th 1st 4th 2nd 3rd 5th 
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5 Chapter 5: Conclusions 

In conclusion, the use of ML algorithms has proven to be a useful and promising strategy in 

assessing the dynamic properties and liquification potential of soil. Six regression models 

including KNN, RF, GB, XGBoost, DT and ANN improved our vision of understanding soil 

behavior under seismic conditions by employing the large input SPT-N dataset of soil parameters. 

This paper includes a detailed evaluation of dynamic characteristics such as SS, SV, Gmax and 

LPI that are crucial in comprehending the behavior of soil during seismic events. The assessment 

of liquification potential is also conducted which is a crucial element in determining earthquake 

vulnerability. By employing the unique benefits of several machine learning approaches, this 

research aims to construct robust and accurate models capable of predicting soil responses and 

liquefaction susceptibility. The performance of the models has been evaluated by using the 

evaluation indices of MSE, RMSE, MAE, Nash-Sutcliffe Efficiency, Percent Bias, Weighted Index 

and R-squared. The model’s analysis has been conducted by scatter diagram, evaluation indices, 

Accuracy matrix, AIC criteria and Ranking Analysis. Following are the results obtained from this 

assessment. 

• It has been found that RF model performed well for shear stress prediction with R2 of 0.998, 

RMSE of 0.060 and NSE of 0.998. Its Scatter diagram indicated the least scattering from the actual 

values. AIC criteria also indicated its highest efficiency with lowest AIC value in SS prediction. 

XGBoost also indicated nearly the same efficiency with RMSE of 0.061 and considered the second 

best prediction model for SS. Next the performance trend is followed by DT > GB > ANN > KNN.  

• For Shear Wave velocity prediction, GB was found to be the best model with 0.992 R-

squared value, 0.990 NSE and 13.920 RMSE. Accuracy matrix and AIC criteria also exhibited its 

highest efficiency followed by RF > KNN > ANN > XGBoost > DT for SV prediction from SPT-

N dataset. 

• The performance analysis of models for maximum shear modulus ranked ANN model on 

the top for Gmax forecasting with 0.999 R2 value, 0.99 NSE and 0.56 RMSE. All other models 

also performed well for Gmax prediction which is a most important parameter for liquification 

determination. The performance trend is in the order of ANN > DT > XGBoost > RF > GB > KNN. 
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• For LPI parameter, XGBoost and DT models found to be the best predicting models for 

evaluating the liquification potential of soil. These models exhibited lower error for determination 

along with 0.946 R-squared value and only 0.352 and 0.142 PB and WI respectively. The general 

trend of models for LPI prediction in as: XGBoost > DT > RF > GB > ANN > KNN. 

• For comparative analysis of models, the scaling analysis is conducted, and score is assigned 

to each model according to their performance number. This analysis indicated that RF model 

ranked first for overall dynamic properties and liquification potential prediction with lowest score 

of 10. Moreover, XGBoost (11) and DT (13) found to be the second and third highest optimized 

models respectively for liquification potential determination. GB is assigned with total score of 14 

and served on fourth rank while ANN and KNN showed the least performance with 15 and 21 rank 

score respectively.  

The detailed analysis of this work demonstrates how machine learning may be used to capture 

intricate relationships between various input parameters and the dynamic response of soil. The 

algorithms showed unique skills to handle complex, nonlinear patterns found in geotechnical data. 

It contributes to the growing body of information in geotechnical engineering and its findings have 

relevance for infrastructure design and seismic risk assessment. The developed machine learning 

models have major applications for geologists and architects as they provide a dependable means 

of predicting and mitigating soil liquification hazards. The variety of scenarios in which machine 

learning models can be used to soil dynamics may be expanded and improved by further research 

in this field. More datasets, enhanced feature engineering techniques, and more intricate model 

designs can all help improve the reliability and robustness of predictive models. Ultimately, the 

integration of artificial intelligence into geotechnical processes represents a significant 

breakthrough in our ability to design resilient infrastructure and structures that can withstand the 

challenges posed by seismic activity and soil liquefaction.
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