
1 | P a g e

A Robust Machine Learning Approach for Malware Detection in

Linux

By

Rabbiya Tariq

(Registration No: 00000399879)

A thesis submitted to the National University of Sciences and Technology, Islamabad,

in partial fulfillment of the requirements for the degree of

Master of Science in

Information Security

Supervisor: Dr. Waseem Iqbal

Military College of Signals (MCS)

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2023)

2 | P a g e

THESIS ACCEPTANCE CERTIFICATE

3 | P a g e

4 | P a g e

CERTIFICATE OF APPROVAL

5 | P a g e

AUTHOR’S DECLARATION

6 | P a g e

PLAGIARISM UNDERTAKING

7 | P a g e

DEDICATION

To my parents, whose love, encouragement, and sacrifices have paved the way for all my

achievements. Your unwavering belief in me has been a constant source of strength and inspiration.

This thesis is dedicated to you.

To my brothers, who have been my guiding lights and steadfast supporters throughout my

academic journey. Your support has been invaluable.

To my mentor and advisor, Dr. Mian Muhammad Waseem Iqbal, for his profound wisdom, guidance,

and faith in my abilities. Your mentorship has been instrumental in shaping my path as a researcher.

To my friends, who have been the pillars of strength and a source of joy throughout this academic

endeavor. Your friendship has made this journey not only bearable but also profoundly enjoyable.

8 | P a g e

ACKNOWLEDGEMENTS

Primarily, I am profoundly grateful to Almighty Allah, the most gracious and the most merciful,

who bestowed upon me health, wisdom, knowledge, and the power of communication. I owe a

great deal of gratitude to my supervisor, whose valuable guidance, encouragement, and supervision

made it possible for me to undertake this project and complete my training in this area. I am deeply

thankful for the support of my colleagues, especially Syed Sohaib Karim, Major Amara Riaz and

Madiha Hassan whose cooperation was instrumental in the completion of my thesis. I am also

immensely grateful to my parents, brother and sisters for their motivation, sacrifice, cooperation,

love, and affection, which have helped me overcome my difficulties and enabled me to complete

this research work.

9 | P a g e

Table of Contents

ACKNOWLEDGEMENTS ... 8

LIST OF TABLES ...12

LIST OF FIGURES ...13

LIST OF SYMBOLS, ABBREVIATIONS and acronyms ...15

Abstract ..16

Chapter 1: Introduction ...17

1.1 Overview: ...17

1.2 Motivation:..18

1.3 Problem Statement ..18

1.4 Research Objectives ...19

1.5 Relevance to National Needs ...20

1.6 Area of Application ..20

1.7 Advantages ..21

1.8 Thesis Organization ...22

CHAPTER 2: Background and Literature Review ..24

2.1 Introduction: ...24

2.2 Literature Review: ...24

2.3 Summary of Related Work: ..31

2.4. Overview of Linux Malware  Ransomwares ...32

2.4.1. Ransomware: ...33

2.4.2. Linux Ransomware: ...34

2.4.3. Variants of Linux Ransomware: ..34

2.5. Attack Chain of Linux Ransomware: ..37

2.6. Chapter Summary: ..38

Chapter 3 Proposed Methodology ...39

3.1. Introduction: ...39

3.2. Data Collection: ...39

3.3. Malware Analysis Methods: ...40

3.4. Feature Extraction:..41

3.5. Data Preprocessing: ...42

3.6. Feature Selection: ..43

3.7. Classification: ..44

10 | P a g e

3.8. Evaluation Metrices: ..45

3.9. Chapter Summary: ..45

Chapter 4: Implementation and Experimental Results ..46

4.1 Introduction: ...46

4.2 Experimental setup: ...46

4.3 Collection of Dataset: ...47

4.4 Perform Malware Analysis: ..48

4.4.1 Static Analysis: ...48

4.5 Dynamic Analysis: ...50

4.5.1 Limon Sandbox: ...50

4.6 Extracting Features: ..52

4.6.1 Static Features: ...52

4.6.2 Dynamic Features: ..53

4.7 Feature Selection: ..55

4.8 Perform Data Processing: ..57

4.9 Model Selection: ..61

4.9.1 J48 ...61

4.9.2 Random forest: ...62

4.9.3 Logistic Regression: ..62

4.9.4 FNN ...63

4.10 Chapter Summary: ...63

Chapter 5: Result and Discussion ...64

5.1. Overview: ..64

5.2. Evaluation Metrices: ..64

5.3. Performance: ...65

5.3.1. Performance of J48: ..65

5.3.2. Performance of Random Forest:..67

5.3.3. Performance of Logistic Regression: ..68

5.3.4. Performance of FNN: ..70

5.4. Performance comparison between classifiers: ...71

5.5. Chapter Summary: ..72

Chapter 6: Conclusion and Future Recommendations ...73

6.1. Overview ...73

11 | P a g e

In this last chapter we recommended some different future work aspects that can be helpful for future

researchers. Other than that, we sum up our research work and provided a conclusion of the

contribution this research has made in the world of cyber security, all this is covered in this chapter. .73

6.2. Advanced feature selection and extraction techniques ..73

6.3. Expansion to comprehensive malware detection frameworks. ..73

6.4. Real-time detection and response systems. ..74

6.5. Joint research and development: ..74

6.6. Conclusion: ...74

6.7. Methodological Contributions: ...75

6.7.1. Practical Contributions: ..75

6.7.2. Contributions to Cybersecurity ...75

6.8. Chapter Summary: ..75

References ...76

12 | P a g e

LIST OF TABLES

Table 1 Summary Of Literature .. 31

Table 2 Hardware configuration ... 46

Table 3 Dataset samples .. 47

Table 4:List of static features .. 53

Table 5:List of some System calls .. 54

Table 6:List of some Encryption features ... 54

Table 7 Accuracy Result of J48 .. 66

Table 8 Accuracy Result of RF .. 67

Table 9 Accuracy Result of LR ... 69

Table 10 Accuracy Result of FNN .. 70

13 | P a g e

LIST OF FIGURES

Figure 1 Thesis Organization .. 23

Figure 2 Attack Ratio on Different OS ... 33

Figure 3 Timeline of Ransomware Attack .. 34

Figure 4 Variants of Linux Ransomware .. 37

Figure 5 Ransomware Attack Chain ... 38

Figure 6 Proposed Methodology ... 39

Figure 7 ELF Structure ... 40

Figure 8 Data Preprocessing ... 43

Figure 9 Readelf Output.. 48

Figure 10 Capa Output .. 49

Figure 11 Peframe Output ... 50

Figure 12 Limon File Execution ... 51

Figure 13 Saving Dynamic Analysis Report ... 52

Figure 14 Top 10 static features .. 56

Figure 15 Top 10 Dynamic Features ... 57

Figure 16 Handle Missing Values ... 58

Figure 17 Check Duplicated Rows ... 58

Figure 18 Check Datatype .. 59

Figure 19 Before Label Encoding ... 60

Figure 20 After Label Encoding ... 60

Figure 21 Standard Scaling ... 61

14 | P a g e

Figure 22 Performance Result of J48.. 66

Figure 23 Performance Result of RF .. 68

Figure 24 Performance Result of LR .. 69

Figure 25 Performance Result of FNN ... 71

15 | P a g e

LIST OF SYMBOLS, ABBREVIATIONS and acronyms

ML Machine Learning

RF Random Forest

LR Logistic Regression

FNN Feedforward Neuro Network

OS Operating System

16 | P a g e

Abstract

This thesis has presented the application of machine learning techniques to the detection of a class

of ransomware that specifically targets Linux-based systems. Due to the increasing prevalence and

complexity of such ransomware, traditional detection methods, which are primarily based on

signature-based matching, are becoming obsolescent. This research endeavored to provide a fresh,

novel, and effective way of combating malware that affects Linux operating systems in the form

of a hybrid analysis novel methodology that combined static and dynamic analysis methods to

extract maximum features from malware samples. The obtained features were then used to train

different machine learning models, such as Random Forest, Decision Trees, etc. The model’s

effectiveness was verified using accuracy, precision, recall, F1-score, etc. The experimental results

demonstrated the effectiveness of the applying machine learning techniques to improve malware

detection and develop a robust means of enhancing cybersecurity in a world where threats are ever-

growing

Keywords: Machine Learning, Ransomware, Malware Analysis, Linux

17 | P a g e

Chapter 1: Introduction

1.1 Overview:

Over the last few years, the threat landscape concerning Linux systems has significantly

transformed, with a conspicuous hike in both quantity and complexity of malware targeting

these platforms. Ransomware has emerged as one of the most common types of malwares

among these threats, causing extensive damage on users. This section provides an overview

of Linux malware, concentrating mainly on one type of Linux malware i.e., ransomware, and

describes the significance of creating efficient detection systems based on machine learning

techniques.

 Linux is ranked more secure as an operating system alongside others. But recently cyber

criminals have turned to malware attacks on Linux systems in personal as well as enterprise

levels just because these systems have become popular among the computer users for both

personal as well as enterprise use. There are different types of malwares in Linux, Among the

malwares used are the ransomwares which can be defined as a form of malicious software

that blocks access to data files by simply encrypting them and later demands for payment

from the owner to grant him or her access to his or her own files. In the past few years,

ransomware attacks have increased to a huge level.

Cybersecurity professionals face an important challenge in relation to the growth of

ransomware that is designed specifically for Linux. In many cases, the standard signature-

based detection methods do not perform as fast as the variations in malware multiply rapidly.

Therefore, there is a need for more sophisticated ways for identifying when Linux machines

are being attacked since the existing ones are not reliable. The primary objective of this study

18 | P a g e

is to offer solutions that will help detect Linux-based malware using machine learning

methodologies while focusing on Linux based ransomware and its different variants.

1.2 Motivation:

The reason for doing this research is that there is a growing menace of malware that mainly

targets Linux based systems, particularly ransomware. Linux has been traditionally seen as

more secure than any other operating system. However, recent developments show an increase

in Linux-specific malware which poses great danger for individual users as well as corporations.

For one to detect and forestall these threats there is a need for new ways and means where

machine learning can be highly effective as per practical solutions.

Most of the traditional antivirus solutions’ ability to detect emerging Linux malware by means

other than signature-based means is not effective. This is because they are not able to identify

and handle malicious programs that are not available in their databases. Machine learning,

however, offers a more effective and adaptable approach to malware detection. In fact, it is the

use of machine learning algorithms that has enabled antivirus programs to detect malicious

programs with an extremely high probability and without the need for regular updates. In other

words, machine learning algorithms have enabled antivirus programs to detect common

characteristics and patterns in the known viruses, hence the ability to detect unknown malware.

1.3 Problem Statement

Cyber-security professionals have a big task when it comes to handling the growing number of

Linux malware, specifically ransomware. It is not easy for conventional signature-based

detection techniques to be effective in the face of malware whose types change fast. Linux

systems also remain very prone to attacks due to inadequate strong and efficient detection

systems. These issues will be resolved by this research endeavor using machine-learning

19 | P a g e

methods to detect Linux based ransomware. The purpose of this research is to address this

problem by creating machine learning techniques that can identify ransomware on Linux with

particularity.

Ransomware attacks on Linux systems can have catastrophic effects on enterprises or people.

Encrypting files while asking for money in exchange for decryption keys is one of the things

ransomwares does; this can result in terrible consequences. Spreading to other computers within

the same network through lateral movement, one ransomware attack can cause severe damage

by infecting many systems apart from the intended target Computer-assisted detection is about

finding and controlling such dangers, but old-fashioned antivirus programs cannot cope with

them effectively. For detecting malware in particular Code written by computers that can learn

from experience or find patterns within data on its own.

1.4 Research Objectives

The fundamental tenets for this research thesis are summarized in the following broad range of

objectives:

 RO1: To study and analyze the Malware behavior specifically ransomware in Linux

Operating system.

 RO2: To propose an enhanced Machine Learning based mechanism to detect Malware in

Linux

 RO3: Comprehensive analysis of proposed methodology with existing solution available.

20 | P a g e

1.5 Relevance to National Needs

 Cybersecurity is a fundamental aspect of a country’s safety and survival in today’s digital age.

Major government systems could be paralyzed, and strategic data lost to attacks by malicious

software aimed at critical areas such as government operations or important facilities.

Contributing machine learning algorithms for the detection of Linux malware can make a

significant contribution towards global security mechanisms.

 As Linux is used widely in servers, IoT devices and other important systems, hackers are

focusing on this platform. For our country’s digital infrastructure to be secured we must come

up with state-of-the-art ways to figure out and resist these cyber threats.

 Disturbing the confidentiality of individuals may occur after a malware strikes against Linux

systems due to data leaking. It is worth noting that this study aimed at protecting national

intelligence and the personal life of citizens from unauthorized data access and leaking.

 To address this issue, there needs to be a collaboration of universities, government institutions,

and private sector organizations dealing with cybersecurity issues. For example, such

collaboration can produce hacking tools for computer systems that are up to date.

1.6 Area of Application

The usage of machine learning to detect Linux malware has multiple uses in different industries:

 The government and defense - shielding sensitive information from cyber assaults.

 Health care - securing electronic health information and devices against malware threats,

while

 Finance - at the same time guaranteeing that all financial transactions go on securely

without being hindered by any extortion maneuver directed at the banking system.

21 | P a g e

 Critical Infrastructure -To secure fundamental services like energy, transport, and

telecommunications, from potential cyber threats.

The cost of undesired and destructive cyber-attacks can be prevented, and such critical

systems protected through the application of AI-based malware detection mechanisms for

example. This works by closely scrutinizing vast repositories of pre-existing malware strains

enabling machine-learning algorithms to spot shared attributes as well as recurrent trends;

thus, enabling them to recognize novel malware types that were not present before in known

antivirus software systems.

1.7 Advantages

 The aim of malware detection research is to enhance cybersecurity practices and hearten

computer systems and networks from cyber threats with greater effectiveness in developing

detection technologies.

 Enhanced cybersecurity practices come because of using better detection techniques by this, it

is possible for experts to contrive more efficient detection techniques which would enable

organizations protect themselves more effectively against viruses thus reducing possible

damage after a hacking event.

 The field of malware detection research helps in developing a good understanding of emerging

cyber risks as well as methods used by cyber criminals in their activities hence more focus in

this area is essential. Knowing the behavior and features that define several types of malwares

will enable scholars to come up with mechanisms that are capable of accurately detecting these

programs thereby ensuring computer security.

22 | P a g e

 It is here that research projects in malware detection present themselves as excellent

opportunities for students interested in pursuing careers in cybersecurity as well as for

researchers. It is through solving actual problems that require practical solutions that students

can get direct training thus acquiring skills necessary for conducting their job duties in this

field.

 Detection research on malware therefore has worldwide significance. By creating better means

of detecting and sharing these findings with wider cyber security networks, scholars contribute

towards the global efforts to eradicate e-crime and make internet less dangerous.

1.8 Thesis Organization

The research work has been organized and distributed in the following chapters listed below.

Also Fig. 1.1, represents the layout of this thesis which is described in detail in this section.

 Chapter 1: A brief introduction is given in this chapter. Problem statement followed by

research objectives, relevance to national need, area of application and its advantages are

elaborated.

 Chapter 2: This chapter describes related works carried out by different researchers on

Linux in the malware field. Then we will see an overview Linux Malwares, and specially

ransomware and its 10 types that we will use to perform our research on. At the end there is

an attack chain of Linux based ransomwares.

 Chapter 3: This chapter explains the proposed model in detail. It is covering the major

research objectives of this research by explaining all phases of proposed model in detail and

presenting how malware detection will be performed using proposed methodology

23 | P a g e

 Chapter 4: This Chapters presents all the practical implementation of the modules discuss in

chapter three and the results of our analysis

 Chapter 5: This Chapter sums up the research with conclusions drawn and discusses the

future aspects of the research.

Figure 1 Thesis Organization

24 | P a g e

CHAPTER 2: Background and Literature Review

2.1 Introduction:

This chapter provides a comprehensive summary of previous research on Linux malware detection

and how different research has detected malware within Linux environment. It also presents

background knowledge about Linux based malware, how these are increasing at a rapid rate,

specifically Linux Ransomware and its variants.

2.2 Literature Review:

For the literature we have studied different research work but the existing literature on Linux

malware detection is very less as compared to windows malware detection. In one work [1] authors

present a new system for identifying Linux malware from a non-signature-based angle focusing

on zero-day malware detection. They developed a system from the ground up, named ELF-Miner,

that forensically analyzes the ELF header files. This generates and selects 383 specific uniquely

curated features from the ELF header files that distinguish malware from benign files. The study

demonstrates the features classification’s potential with a filtering algorithm known as information

gain and removes many random and irrelevant features utilizing a pre-processing filter. It then

utilizes 383 features in several classical and bio-inspired machine learning classifiers. From

repeated testing on a pre-defined test set with 709 Linux malware samples, the ELF-Miner shows

over 99% detection accuracy while maintaining a very low false alarm rate under 0.1%. The main

breakthrough of the paper is this feature, as it provides a solid foundation for malware detection

on Linux without relying on any known malware signatures, enabling it to identify unknown

threats in real-time. Given the rise of Linux systems in various fields, they are a prime target for

cyber-attacks, making such an approach relevant.

25 | P a g e

 In another work, Author [2] proposes a method to accurately identify the presence of malware in

Linux based IoT devices using static feature analysis methodology. The novelty of this work lies

in the method’s speed and accuracy in resource-constraint IoT devices and a proposed solution to

the same. The features are extracted from ELF executables, and then, using the chi-square method,

the features are reduced drastically and retrained on a limited feature set to still achieve a high

detection. This method allows this framework to run on such hardware. After feature reduction,

the author trains the model on machine-learning algorithms such as J48, JRIP, PART, Random

Forest, Naïve Bayes, Logistic, and RIDOR. All six classifiers were able to achieve above 99%

accuracy and precision, with extremely low FPR and FNR ratios considered helpful for a software-

based system searched for malicious software in an IoT device known for minimal computational

power. This case is particularly relevant as Linux-based IoT devices grow in popularity in various

fields and become a target for malware attacks.

In this paper the author [3] suggests a new way to detect library functions in Linux malware,

specifically in malware that is statically linked and deprived of information on function names and

addresses. This method is interesting primarily because the modification mentioned above impedes

traditional methods of function-level analysis. A more holistic approach was taken to the issue,

and, as a result, pattern matching was used to detect library functions among 2,256 malware

samples, the majority of which were designed with the help of Intel 80386 architecture. The

authors claim that their strategy was highly effective: Library functions have been found in over

90% in 97.7% of cases. The available data is the result of combining static analysis tools with

pattern matching, and they can be seen as a new tool for similar studies on threats in Linux space.

Therefore, this study is valuable both in terms of developing understanding of how Linux malware

is built and increasing the quality of forensic studies.

26 | P a g e

Authors [4] discuss a novel approach to machine learning enabled in detecting Linux malwares

from the dynamical extraction of system calls. The new mechanism is a breakthrough because it

enhances malware detection on the Linux platform, which is often less studied compared to

malware entry into Windows environments. The Key Components include Dynamic Extraction of

System Calls. The authors dynamically extract system calls using strace, a system call tracer. Such

extraction is critical because it captures the semantics of the executables’ behavior which is

essential in detecting malice. The authors used benign and malwares executables to determine the

optimal set of features that would make the given model a classifier or not. The paper assesses the

performance of classifiers such as SVM and NB in classifying a file as malware or benign based

on the extracted feature. The proposed models will have exploited the dynamical nature of system

calls to effectively make decisions regarding the classification. The approach led to a high

classification accuracy of 97%, meaning the model is flexed and suitable for differentiating

malware in Linux environments. - The authors used real malware in their experimentation, making

the findings more application warrantable and robust.

The work presented by Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide

Balzarotti, is a crucial addition to the field of cybersecurity research for several reasons. First and

foremost, despite the increasing importance of embedded devices and the Internet of Things,

investigations into malware have historically been scarce and have focused primarily on Windows-

based malware due to its market dominance. Thus, the decision to limit one’s study to Linux

malware represents a significantly understudied topic, which is more than beneficial. The key

insights and contributions of this work include: the diversity of targets; b the development of the

malware analysis pipeline; c the overview of Linux-specific techniques; and d the empirical

discovery described in the Conclusions. Furthermore, this work may serve as a valuable resource

27 | P a g e

for your future thesis. By providing open-source tools and results of the conducted research, the

authors suggest an effective way future scholars may address research questions. Therefore, it is

reasonable to include this work into the dissertation structure since it provides a methodological

framework based on real research experience.

In another approach [5] authors used for identifying malware on Linus systems employing system

tracers such as ftrace and strace. This paper is of high importance as Linux powers a vast number

of diverse platforms, namely servers and connected IoT devices, and it is targeted increasingly

often by malicious software due to these platforms’ connectivity and importance. Prominent

points. Malware Detection Techniques. The primary approach mentions the drawbacks of

signature-based detection and the necessity of dynamic analysis to find zero-day malware. This

approach is feasible using a system tracer that is employed for monitoring system execution during

the process. System Tracers and Sandboxing. The system tracer allows for collecting run-time data

and is essential for understanding the malware’s relationship with the running system. Sandbox is

discussed to safely test-run malware for dynamic analysis without risk to the host system. Machine

Learning Models. The paper introduces machine learning models for categorizing the collected

data into malicious and benign. This approach was considerably successful in increasing the

detection rates of signature systems facing a new type of sophisticated malware. Challenges and

Recommendations. Various difficulties are tackled, such as sandboxing not being as bulletproof

as advertised, the increase in computational costs due to the tracing, and the need for more high-

quality datasets to train the models effectively. Future Research Directions. The paper outlines

future research such as further refinement of tracing and sandboxing techniques, creating more

adaptable models that require fewer false positives, and various ML models that can adapt to new

forms of malware. In conclusion, the study’s authors demonstrate the urgency of utilizing modern

28 | P a g e

technologies and methodologies against modern malware that interests Linus systems. It provides

valuable data for increasing the resilience of the anti-malware systems and preventing most of the

infections.

Another [6] methodology combines machine learning methodology with tree-based classifiers to

detect malware. In addition, the authors discuss the use of two analysis types: static and dynamic.

This method helps to increase the precision of detection for unknown malware. Furthermore, it

employs Gain Ratio and Symmetric Uncertainty for feature selection. As classifiers Random

Forest, J48, and REPTree are used. This method has a high accuracy of 99.82% and a minimal

false-positive rate of 0.002%. The researchers analyzed a large amount of data, 24,000 files,

malware, and not facilitating research validation. As a result, it can be said that the use of a hybrid

method in analyzing showed on Linux experimental that it is effective. It is recommended for

future research to reduce the number of features and to expand the analysis to other file types.

Authors in research [7] aims to tackle ransomware detection through an approach that uses

dynamic features and deep learning methods. In this paper, the scholars examine the various

dynamic features such as API call sequences, DLL usage, enumerated directories, mutual

exclusions, and registry key operations and how they affect ransomware detection accuracy. The

methods used in dynamic analysis are as follows: API call sequences and the pattern that the

executable program makes are investigated since the dynamic API call sequence often reveals a

pattern of malicious use. DLLs and patterns of uses are also studied since some DLLs are

frequently used by malware. Enumerated directories in which ransomware is repeated and tries to

locate and encrypt the user’s files are simulated, as are the mutuality in which ransomware uses

files to alternately encrypt and encrypt ransom files. Furthermore, mutual exclusions are

29 | P a g e

determined by the analysis of mutual exclusions that ransomware may use to prevent files from

being accessed simultaneously or maintain control of the system. SQL and how it interacts with

system registry keys are analyzed, and the architecture of the design reveals intent with respect to

persistence or configuration changes. As for the models, CNN and LSTMs were used, as well as

simple MLP. In the experiment conducted to obtain the results, the scholars used three datasets

that infected the system and one dataset that had not infected it. The results produced all the

accuracies and were computed and analyzed using TPR and FPR, as showed in the results. Hence,

the experiment concludes that API call sequences produce an excellent true-positive rate but at the

cost of high false-positive rates. On the other hand, enumeration directories produce lower false

positives and accurate results.DLL. This dynamic feature results in a high true positive rate, but it

also causes a high false positive rate since it fails to classify benign behavior. However, mutual

exclusions produce noble results, as do registry operations, which remain to be adjusted but is the

most revealing feature of ransomware. It is predetermined that the symbiosis of the dynamic

features and deep learning models increase ransomware detection. Thus, further work is in the

benefit to the highly adaptable framework with this integration.

In paper [8] on which the authors list various components of their analysis, as well as the machine

learning models, they used to detect ransomware. These are the detailed aspects based on the

techniques and models they provided: Analysis Techniques: File and Network Monitoring: The

system files are examined for susceptibility to attack after being introduced in the computer

subunit. All packets are observed for traversing the network system to identify any packet that may

be ransomware. Behavioral Analysis: The behavioral overview of files and packets into the

computer system is recorded, and any piece of software or packet behaving strangely will trigger

a red flag. Packet Assessment: All packets in the subunit are inspected heavily. The act is done at

30 | P a g e

a micro-level that scrutinizes each network bit, and any anomaly of the ransomware piece is

identified quickly. Random Forest: This was specified during the data training stage. Random

Forest is an ensemble learning technique that involves multiple decision trees in making

predictions. This technique balances an added advantage of accuracy and being immune to

overfitting.

 Deep Learning Models: Deep learning models were not specified to include CNNs since the

architectural framework was not elaborated in my initial brief. However, the deep learning models

are used to sweep through high-level data aspects to quote any pattern that is likely to be

challenging for other ML techniques. Feature Extraction with Python’s pefile Module: The

decompile tool is used to extract features from executables for further training of the model. This

includes metadata from the header files and attributes of the binary. Feature Selection and

Extraction: Features are selected by opportunistic teachers who review the data to select the most

likely suspects to pick from the features that the researchers used to train the features selected. The

magnitude of file rigging is identified in a lucrative technique. For example, a hashed value can be

rough in a certain smart size square or a debug size, or an accurate major image version in the

system files. The models are programmed in a labeled training dataset with both benign and

malicious programs. The training is an iterative phase by which the developers inform the models

of the normal and customary file behavior concerning the file characteristics given. The

performance of the models analyzed against novel and incognito word ransomware to prove the

system’s daily efficiency. The prototype of the software should maintain high detection of

ransomware viruses. The integration of both machine learning models and the analyzing

methodology propose the detection of ransomware viruses.

31 | P a g e

2.3 Summary of Related Work:

Table 1 Summary of Literature

Sr.

No

Research Paper Algorithm Used Technique Limitations

1 ELF-miner: using

structural knowledge

and data mining

methods to detect

new (Linux)

malicious executable

RIPPER, PART,

J48

Performed static

analysis on ELF

executable.

Extracted features

from elf header and

applied machine

learning for

malware detection

Very small dataset

used. Only static

analysis is performed

2 Malware detection

through mining

symbol table of ELF

No machine

learning used

Symbol table is

extracted from the

elf executables and

used for malware

detection

Static analysis is only

done.

3 A machine learning

approach for Linux

malware detection

IBK-5, Random

Forest and Ada

boost

Performed

dynamic analysis

and extract system

calls and applied

machine

Less Files are used.

Only dynamic analysis

performed

4 Integrated Static and

Dynamic analysis for

malware detection

SVM, RBF and

J48

PSI is extracted

from binary files as

static and Api calls

are use as dynamic

feature to detect

malware

Small dataset used.

Very less features

5 In-execution

dynamic malware

analysis and

detection by mining

information in

process control

blocks of linux OS.

J-RIP ad J48 Dynamic analysis

is performed on

PCB and extracted

features are used to

train ML model.

Small and old dataset.

Only dynamic analysis

6 Detection of

Advance Linux

Malware using ML

technique

LMT, Random

Forest and NBT

Hybrid analysis is

done on ELF files

for extracting

features and then

using features for

machine learning

Small dataset, which

can affect accuracy of

machine learning.

32 | P a g e

7 Detection of

Malicious

Executable in Linux

Environment Using

Tree-Based

Classifier

J48 and Random

Forest

Both static and

dynamic analysis is

done to extract

features. System

calls and elf header

is used as features

Very Less features are

used.

8 Linux malware

detection using

extended-symmetric

Ada Boost and

Random Forest

System calls are

used to extract

feature and

information gain

method

Small dataset. Only

focus on system calls

2.4. Overview of Linux Malware  Ransomwares:

Linux malware is malicious software created to target Linux-based operating systems. Although

Linux is known for its exceptional security, it can still be vulnerable to malware. Linux malware

may infect various systems, including servers, desktop computers, IoT equipment, embedded

systems, and network appliances. Since Linux has gained great popularity for personal and

industrial purposes, the frequency and acuteness of Linux malware assaults have risen

significantly. According to a report published in [9] 55% attacks are observed within Linux

environment beating out windows for the first time. In figure-1 we can see the attack ratio on

different operating systems.

33 | P a g e

Figure 2 Attack Ratio on Different OS

As we started our research, we found a significant number of increases are reported in the attacks

on Linux systems and maximum attacks are Ransomware attacks on Linux systems. Before getting

into details, we must know what Ransomware is.

2.4.1. Ransomware:

Malware known as "Ransomware" is capable of infecting computers running on Windows, Mac,

Linux distributions, including Debian and Ubuntu. An attack of this kind would encrypt

documents after infiltrating a network or device and finding the important ones. Frequently, a

message requesting payment for the return of the encrypted files is the first indication that an

attack has occurred. This may seem scary to an individual, but it might seriously harm a

company's operations and reputation.

34 | P a g e

2.4.2. Linux Ransomware:

Ransomware attacks against Linux systems rose by 75% in 2022 compared to the previous year.

[10] An increasing number of Linux variants have been released by ransomware gangs. In the

figure below we can see the rising number of ransomware attacks in Linux environment:

Figure 3 Timeline of Ransomware Attack

2.4.3. Variants of Linux Ransomware:

There are many different variants of Linux Ransomware, however in our research we have

include these 10 variants to understand the workflow of Linux ransomwares:

2.4.3.1. AvosLocker:

The sophisticated ransomware known as AvosLocker was first identified in June 2021 and

became well-known for its twice extortion method. AvosLocker is intended to both steal and

encrypt files from a victim's PC. After that, the attackers demand payment of a ransom before

releasing the material to the public.

2.4.3.2. Blackcat:

The ransomware family ALPHV, commonly referred to as BlackCat, is used in ransomware as a

service (RaaS) activity. Available on Linux-based operating systems (Debian, Ubuntu, Ready

35 | P a g e

NAS, Synology), Windows, and VMware ESXi, ALPHV is built in the Rust programming

language.

2.4.3.3. Darkside:

The DarkSide ransomware functioned as "ransomware-as-a-service". DarkSide demanded

Bitcoin and other cryptocurrency ransoms after encrypting and stealing confidential data from

large organizations. Like a legitimate company, they also set up a functional platform and

provided real-time chat help.

2.4.3.4. Royal:

Targeting VMware ESXi virtual machines, Royal Ransomware is the most recent ransomware

operation that facilitates Linux device encryption. The Equinix Threat Analysis Center found it

for the first time. Linux Royal Ransomware uses the command line to execute properly.

2.4.3.5. Cylance:

Cylance is also a Linux based ransomware which operates using command line argument. Its

main target is VMware ESXi virtual machines. After getting access to the system, it encrypts all

the files specified in the command line argument. And leaves a ransom note at the end.

2.4.3.6. Cl0p:

The deadly Clop ransomware, which is a member of the well-known Cryptomix ransomware

family. It encrypts files by planting clop extension on infected systems and actively evading

protection measures.

2.4.3.7. Revil:

With the first appearance of REvil in May 2019, the ransomware-as-a-service (RaaS) operation

behind it has grown to become one of the most active and successful threat groups. Windows

36 | P a g e

systems have been the main target of REvil. New samples, aimed at Linux systems, have been

discovered, though.

2.4.3.8. RansomExx:

 Ransomware like LockBit demands money to be paid to unlock the encrypted file. Rather than

focusing primarily on consumers, it targets corporations and government bodies. The institutions

who would be inconvenienced and have the resources to provide a sizable payment are its

possible targets.

2.4.3.9. IceFire:

The ransomware IceFire, also referred to as iFire, encrypts files, appends the ". iFire" extension

to filenames and generates a ransom letter called "iFire-readme. txt". Ice Fire’s mission is to lock

down files until a ransom is paid.

2.4.3.10. LockBit:

Adopting the Ransomware-as-a-Service (RaaS) architecture, LockBit is an extremely persistent

and intelligent ransomware program. The ransomware variant LockBit was most often used

globally in 2022 and is still widely used in 2023.

Figure 4 illustrates all the ransomware variants used in this research.

37 | P a g e

Figure 4 Variants of Linux Ransomware

2.5. Attack Chain of Linux Ransomware:

Attack chain is a process in which the attacker attacks a system. In other words, we can say

the steps an attacker follows to attack the system. In figure-5 we have described the attack

chain of Linux ransomware. It follows the steps given below:

Step 1: Attack finds vulnerability in the system.

Step 2: After finding vulnerability, he tries to gain access to the system.

Step 3: Once he is successful in gaining access, he starts installing ransomware

Step 4: After successful installation of ransomware, he tests if the encryption is working.

Step 5: Then he checks CMD line argument which is used to give path of files to encrypted.

Step 6: Then he starts searching whether files are already encrypted or not.

Step 7: If not, he drops the ransomware, and it encrypts all the files mentioned in the given

path.

38 | P a g e

Figure 5 Ransomware Attack Chain

2.6. Chapter Summary:

In this chapter we discussed the existing literature on Linux malware and its detection

systems. After that we presented the entire literature along with its limitations in tabular

form. We have also discussed the increasing rate of attacks within Linux environment, Linux

based ransomware and its different variants that we have covered in this research work. At

the end we discussed the attack chain steps followed by Linux ransomware.

39 | P a g e

Chapter 3 Proposed Methodology

3.1. Introduction:

This chapter highlights the proposed methodology for detecting Linux based ransomware using

machine learning. It describes the flow diagram of our framework, data collection, different

analysis methods, feature extraction, steps for data preprocessing, importance of feature selection,

different machine learning algorithms and evaluation metrics based on which we will decide our

results.

Figure 6 Proposed Methodology

3.2. Data Collection:

To create a dataset, we need to collect data samples of both malicious files as well as benign files.

On these samples we will perform different methods to get useful information from these files and

later it will help us in training the machine learning model. As we are doing our research on Linux

malware, we need to collect ELF (Executable and Linkable Format) files. ELF [11] is a common

40 | P a g e

standard file format for executable files, object code, shared libraries, and core dumps. The

structure of ELF is shown in Figure 7.

Figure 7 ELF Structure

3.3. Malware Analysis Methods:

To analyze the elf files, we need to perform different malware analysis techniques on our file

samples to find the actual working of the file and whether it’s malicious or benign. There are three

main types of malware analysis [12]:

 Static Analysis: static analysis is the examination of the code and structure of the malware

without its execution. Static analysis includes the examination of the file’s metadata,

headers, strings, and embedded resources. Static analysis helps to identify the signatures

of known malware, understand the structural peculiarities of the malware, and reveal

potential indicators of compromise without executing the code. A drawback of static

analysis is that it is unable to detect behavior-based malware and threats, as well as

polymorphic or obfuscated code.

41 | P a g e

 Dynamic Analysis: Dynamic analysis is the process of running malware in a confined

environment and tracking what the malware does to learn more about its behavior.

Behavioral analysis, code emulations, and memory analysis are all involved in dynamic

analysis. The behavior of malware in activities includes file system changes, registry

alterations, network activity, and process behavior may all be detected in real-time.

However, not all malware behavior is detectable, and it may go undetected if the system

does not have enough telemetry or if the malware is developed to avoid detection.

 Hybrid Analysis: Hybrid analysis combines both static and dynamic analysis to offer

experts an in-depth perspective of malware. In this case, the approach integrates static

analysis which helps to define and understand malware’s structure and code, as well as

dynamic analysis to research its behavior upon execution. From this perspective, hybrid

analysis helps experts achieve better understanding of malware’s attributes, behaviors, and

impacts on a system. As such, it improves malware detection, analysis, and mitigation.

In our work we will use Hybrid analysis, to get both static as well as dynamic features of

the samples because now a days malwares are strong in functionality it gets hard to

understand the actual working of a malware because of sophisticated techniques used by

malware. Therefore, only by using static or only dynamic analysis is not sufficient to build

the detection system.

3.4. Feature Extraction:

 The extraction of features [13] is a critical step of developing effective machine learning models

to detect malware. By converting raw data into a subset of relevant features, one will lower the

dimension of the data while retaining the essential information for detection. Not only can this

approach help improve the performance of machine learning models by directing models to only

42 | P a g e

relevant and discriminatory features, but it can also improve the ability to generalize from the

training on new malware samples never previously seen by the model. In addition, feature

extraction improves the interpretability of machine learning models by enabling one to understand

which information may be essential for detection. In simple words we can say feature extraction

steps can result in more accurate, efficient, and interpretable detection models which can lead to

improved cybersecurity outcomes. There are several types of features which you can extract from

the analysis report. In our work we will use static as well as dynamic features.

3.5. Data Preprocessing:

Once we have extracted the features our next step is to clean the data. Machine learning models

cannot understand data without processing it. We must clean our dataset using different techniques,

so it gets easy for the model to learn it. Data processing [14] can be done in following sequence:

 Data Cleaning: In this step, we will check all the missing values in our dataset so we can

perform the next steps.

 Fill missing values: First we will find all the NaN values then we will perform fill method to

fill all those values.

 Remove duplicated rows: After filling missing values we will check if there are any

duplicated rows. If there are duplicated rows, we will remove them.

 Checking datatype: Then we will check datatype of all the columns so that we can decide

which encoding method we need to use

 Performing encoding: Once we find all datatype, we need to make them all float integer so

we will use different encoding methods. Such as, one-hot encoding, label encoding and

frequency encoding.

 Normalize data: by applying scaling methods we will then normalize the dataset.

43 | P a g e

Figure 8 Data Preprocessing

3.6. Feature Selection:

 The selection of relevant features is integral in the development of good machine learning

models for malware detection. By choosing the most informative features, the coders can decrease

the dimensionality of the data, which helps to develop better and more efficient code. Indeed, by

selecting the features that are the most significant in developing the models, the coders contribute

to better performance. It may reduce overfitting and assist in enhancing the ability to generalize.

Furthermore, it may lead to a significant decline in the time necessary for the computation of

predictive model development and use. It is especially vital for real-time malware defenses. Also,

such a selection results in a greater interpretation of the model’s results. The logical predictions

are to be based only on the key features that the security workers can easily grasp. It may benefit

in quicker identifying of the malware features and characteristics. Thus, choosing relevant features

is critical in the development of successful and interpretable malware detection models.

 In our work we are using we will use Information Gain. It is used for malware detection where

we must identify discriminative features, the kind of features that help in classifying a malware

44 | P a g e

file and any other benign file. Calculations of I.G help in understanding which feature is highly

discriminative between the two. A higher information gain implies a better distinction. It is helpful

in feature selection where many discriminative features will help in generating a more useful

classifier model in malware detection.

3.7. Classification:

 After performing all test steps, we need to decide which classifier we need to apply machine

learning [15] on our dataset. Selecting classifier is a particularly crucial step, we must check our

dataset depending on the data in the dataset and what type of work we want to get done by the

classifier we select our classifier. Following are some classifiers that we have selected to test our

research work:

 Random Forest: It is an ensemble learning method that builds a few decision trees at training

time and reports the class which is the mode of the classes in the case of a classifier.

 Decision Tree: It is an easy to understand and interpretable model that splits the dataset

recursively into subsets based on the highest-importance feature, resulting in a tree

constructed structure.

 Logistic Regression: It is a linear model for a binary classification problem that models the

probability of a default class using a logistic function.

 FNN: It is a neuro network model which is used to form networks.

45 | P a g e

3.8. Evaluation Metrices:

The metrics will help figure out whether the machine learning-based malware detection achieves

optimal levels in detecting the malware and, at the same time, minimizing the false positives and

false negatives. The evaluation metrics include:

 Accuracy: Referring to the proportion of samples correctly classified against the total

samples.

 Precision: The proportion of true positives within the samples classified as positive.

 Recall: The proportion of true positive within the samples considered positive out of all

positive samples.

 F1-score: It is the harmonic mean of precision and recall, thus being a balanced measure

between precision and recall.

3.9.Chapter Summary:

This chapter presented a detailed proposed methodology which is used for the detection of Linux

malware. Starting from collection of samples to malware analysis, data processing, feature

extraction and selection. Training ML classifiers for detection the Linux based ransomware. All

these modules are discussed in this chapter.

46 | P a g e

Chapter 4: Implementation and Experimental Results

4.1 Introduction:

In this chapter we will practically perform the things we have described in chapter three. Our

proposed architecture includes data collection analysis module, feature extraction module, data

preprocessing, feature selection module and classification module.

4.2 Experimental setup:

For performing malware analysis, we have use virtual machine on local system. Whereas for

the creation of dataset we collected malicious samples from malware bazar. Tasks related to

feature extraction, feature selection and training ML classifiers we have used Google Colab

platform. The programming language that is used for performing all the tasks is python.

 Hardware Configuration:

Lenovo laptop was used for the implementation of this research with following aspects:

 Table 2 Hardware configuration

Processor Intel(R) Core (TM) i5-4210U

Memory 8.00 GB

Operating system Ubuntu 20.04 LTS

 Programming Language:

 Python:

Guido van Rossum first developed Python programming language in 1991 and released it to

the public in the same year. Consequently, writing code in Python is both easy and

47 | P a g e

understandable due to white spaces. Python is generally an interpreted programming

language that was designed for general purposes.

 Google Colab:

A free cloud service provided by Google called Google Colaboratory offers users a simple

means for writing and running Python code through Jupyter notebooks. It consists of a web

accessible Jupyter Notebook that allows for running of Python code without any local

installations or maintenance. All the work done from feature extraction, feature selection,

data processing, train of model all the work is done in google colab.

4.3 Collection of Dataset:

To create our dataset, we have collected malicious files and benign files. We have used malware

bazaar [16] for malicious files and for benign files we have used files from different directories of

Linux which includes /user/ bin, /bin, /sbin. We have collected samples of 10 types of Linux based

ransomware. However, we were only able to find 70 samples of those types and 70 benign files.

So, our dataset has a total of 140 samples.

 Table 3 Dataset samples

Sr. No File Type Category No. of samples

1 ELF Malicious 70

2 ELF Benign 70

48 | P a g e

4.4 Perform Malware Analysis:

In our method we have used hybrid analysis so that we can use both static and dynamic useful

features.

4.4.1 Static Analysis:

To perform static analysis, we have used REMnux Operating System. It is specially designed for

malware analysis and reverse engineering.

REMnux: It is a Linux tool for figuring out and breaking down malignant programming[17].

Experts can use it to explore malware without finding, introducing, and arranging the devices. It

has various apparatuses that can be used for both static and dynamic examination. On our dataset,

we have utilized Readelf, Capa, and Peframe to extract useful static features from the files in our

work.

 Readelf: With Unix-like systems, readelf is a tool that shows different details about object

files, much like obj dump. The GNU binutils include it.

Figure 9 Readelf Output

49 | P a g e

 Capa: It is an open-source program called Capa is used to analyze malicious programs.

Capa offers a platform that the community can use to exchange, identify, and codify

behaviors that we've observed in malware. Capa analyses executable files to find their

capabilities.

Figure 10 Capa Output

 Peframe: It is an open-source utility designed to carry out static analysis on suspicious

files and portable executable malware. Malware researchers may find information on

50 | P a g e

suspicious files, suspicious sections and routines, packer, xor, digital signature, mutex, anti-

debug, anti-virtual machine, and much more with its assistance.

4.5 Dynamic Analysis:

To perform dynamic analysis, we have set up a sandbox to perform automated dynamic analysis.

We have used Limon Sandbox.

4.5.1 Limon Sandbox:

With the help of Limon[18], we may execute an executable in a controlled, sandboxed environment

and receive a report on its runtime behavior.

of an executable. A host computer that controls the guest computer is part of the configuration for

Figure 11 Peframe Output

51 | P a g e

the limon sandbox. Ubuntu 18.04 was utilized in this study as the host and guest operating systems,

respectively. The file runs in the guest machine's full privileged mode to provide a better

understanding of a file. The path to the file in the Limon Sandbox is determined by doing a

command line analysis of every file in a brand-new virtual computer. A current snapshot is taken

during virtual machine setup so that limon can reverse after the le is executed. The entire trail of

the network, system calls, and functions is saved in a text file called final report by the limon

sandbox to the analysis report folder after execution is finished.

Figure 12 Limon File Execution

52 | P a g e

4.6 Extracting Features:

In this phase we extracted features from the data generated by different tools during the analysis.

We have used Features from both static and dynamic analyses in this work which were good for

the classifier explained in this section.

4.6.1 Static Features:

We have extracted static features from various fields of an ELF file. Most of the information is

extracted from the ELF file header.

 ELF header

 File information

Following table contains static features:

Figure 13 Saving Dynamic Analysis Report

53 | P a g e

Table 4:List of static features

Sr. No Name Datatype Description

1 file_size float Size of file

2 Identification obj Special no to identify file

3 Class String Elf class

4 Version int Elf version

5 Os/ABI String Operating system

6 Machine String Machine name

7 ent_add int Entry point address

8 start_prog_header int Start of program headers

9 start_sec_header int Start of section headers

10 number_flag int No of Flag

11 size_header int Size of this header

12 size_prog_header int Size of program headers

13 num_ prog_header int Number of program headers

14 num_ sec_header int Number of section headers

15 sec_head_st_ind int Section header string table index

16 file_ent float Entropy of whole file content

4.6.2 Dynamic Features:

From dynamic analysis we have extracted:

54 | P a g e

4.6.2.1 System calls frequency:

After executing the files, we extracted all the system calls and then applied a python script to find

the frequency of every system call.

Table 5:List of some System calls

Sr. No Name Description

1 access check whether the calling program has access to a

specified file

2 Bind associates an address with the socket descriptor

3 Clone creates a new process

4 Exce to execute file

5 connect system call connects the socket referred to by the file

descriptor

6 chmod modifies the access rights of the file

4.6.2.2 Encryption Method:

Another feature that we have used is encryption method, as we have analyzed Linux based

ransomwares, encryption is main feature of a ransomware. Since ransomware usually encrypts

files on the victim's machine, keeping an eye out for unusual encryption activity might be helpful

in spotting possible ransomware attacks

Table 6: List of some Encryption features

Sr. No Name Datatype Description

1 Encryption Algorithm string Type of encryption algorithm used

2 Key size int Size of encryption key

55 | P a g e

3 extension string Extension used by ransomware

after encryption

4.6.2.3 Network Artifacts:

In ransomware attacks there is a high chance of network activity because the binary must connect

to its C2C server after getting access of the system. So, we have extracted some features from

network activity

Sr. No Name Datatype Description

1 Total Packets int No. of packets sent and receive

2 DNS Queries binary Did query, yes or no

3 HTTP Requests binary Did Request, yes or no

4 HTTPS Traffic int Traffic captured

5 Unique Source IPs int Unique source Ip address

6 Unique Desti IPs int Unique destination Ip address

7 Protocol string Type of protocol used

4.7 Feature Selection:

For feature selection we have used the selection method: Information Gain [19]. It gives score to

every feature based on the information that feature contains. Standard score ranges from 0 to 1.

Features below 0 are considered useless. Features are calculated as follows:

IG(X) = H(Y) - H(Y|X)

56 | P a g e

Where:

 IG(X) is the Information Gain of feature X.

 H(Y) is the entropy of the target variable Y before the split

 H(Y|X) is the conditional entropy of Y given feature X.

In the below graphs we can see the top 10 static and dynamic features selected by Information

Gain.

Figure 14 Top 10 static features

57 | P a g e

Figure 15 Top 10 Dynamic Features

4.8 Perform Data Processing:

. Data processing can be done in following sequence:

Step 1: Fill missing values:

First, we will find all the NaN values then we will perform fill method to fill all those

values.

58 | P a g e

Figure 16 Handle Missing Values

Step 2: Remove duplicated rows:

After filling missing values we will check if there any duplicated rows. If there are

duplicated rows, we will remove them.

Figure 17 Check Duplicated Rows

59 | P a g e

Step 3: Checking datatype:

Next step is to check all the unique data types do we can perform encoding to make

them all float datatype. In the figure below we can see we have 3 different data types:

o Object

o Float

o Integer

Figure 18 Check Datatype

Step 4: Performing encoding:

Once we find all datatype, we need to make them all float integer so we will use label

encoding methods.

60 | P a g e

Figure 19 Before Label Encoding

After performing label encoding, we can see we have only one data type left which is float.

Figure 20 After Label Encoding

 Step 5: Normalize data:

By applying the standard scaling method, we normalize the dataset.

61 | P a g e

Figure 21 Standard Scaling

4.9 Model Selection:

4.9.1 J48:

J48, more popularly recognized as C4.5, is an ADT technique that is broadly employed in

categorization systems. The following are the principal parameters of J48 algorithm:

 Confidence Factor (CF): Specify the confidence threshold to control tree pruning.

 Minimum Number of Instances per Leaf (M): Indicate the smallest number of examples

required to divide a node.

 Minimum Number of Instances per Split (L): Specifies the minimum number of instances

required to split a node.

 Binary Splits (B): Used to ascertain if binary divisions must be imposed divide a node

 Subtree Raising (S): It can be used to elevate useless sub trees and so improving tree

performances

62 | P a g e

4.9.2 Random forest:

Random Forest is an ensemble learning method that constructs multiple decision trees during

training and outputs the mode of the classes (classification) or the mean prediction (regression) of

the individual trees. It improves the performance and reduces overfitting compared to a single

decision tree classifier. It has some parameters:

 Number of Trees (n_estimators): The number of decision trees in the forest.

 Maximum Depth of Trees (max_depth): The maximum depth of each decision tree.

 Minimum Number of Samples to Split a Node (min_samples_split): The minimum number

of samples required to split an internal node.

 Min Number of Samples in Each Leaf Node (min_samples_leaf): The minimum number of

samples required to be at a leaf node.

4.9.3 Logistic Regression:

The afore-mentioned logistic regression model works on several parameters. The following are

some of the parameters:

 max_iter refers to the maximum number of iterations taken for the optimization algorithm.

 C refers to the inverse of regularization strength whereby smaller values are specified with

higher regularization strengths.

 class_weight=’balanced’ helps to pass class weights as they are assumed to be inverse class

frequencies. This parameter is used to solve the problem related to the weight imbalance.

63 | P a g e

4.9.4 FNN

The last classifier that we used is a neural network, specifically a feedforward neural network (also

known as a multi-layer perceptron, MLP) which is implemented using TensorFlow’s Kera’s API.

It is designed for binary classification tasks. The key parameters of this neural network classifier

are:

 Epochs: Number of epochs for training.

 Validation split: 20% of the training data is used for validation.

 Verbose: Verbosity mode for training logs.

4.10 Chapter Summary:

This chapter gives a detailed approach that we have used to implement our proposed

methodology. How we have created our own dataset. To perform malware analysis we have used

both static and dynamic analysis. For static we have used REMnux and for dynamic analysis we

have used Limon sandbox. After performing feature extraction, we have selected a list of static

and dynamic features. Then we applied an Information gain feature selection method to find

which features are useful. At the end we selected 4 ML classifiers and their parameters to train

our dataset.

64 | P a g e

Chapter 5: Result and Discussion

5.1. Overview:

In this chapter we will describe evaluation metrices based on which we will measure the

performance of all the classifiers. The performance is measured by using accuracy, F1-score,

Recall and precision. At the end we will also perform a comparative analysis between the

performance of all the 4 classifiers.

5.2. Evaluation Metrices:

 The metrics [20] will help figure out whether the machine learning-based malware detection

achieves optimal levels in detecting the malware and, at the same time, minimizing the false

positive and false negatives.

Following are the metrics that we have used:

• Accuracy: The ratio of correctly predicted instances to the total instances in the dataset.

 Accuracy =
 (𝐓 𝐏 + 𝐓 𝐍)

(𝐓 𝐏 + 𝐓 𝐍 − 𝐅 𝐏 + 𝐅 𝐍)

• Precision: The ratio of correctly predicted positive observations to the total predicted positive

observations.

 Precision =
𝑇𝑃

 (𝐓 𝐏 + 𝐅 𝐏)

 • Recall: The ratio of correctly predicted positive observations to all actual positives.

 Recall =
𝑇𝑃

 (𝐓 𝐍 + 𝐅 𝐍)

• F1 Score: The weighted average of Precision and Recall.

65 | P a g e

 F1 Score = 2
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗ 𝐑𝐞𝐜𝐚𝐥𝐥)

 (𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+ 𝐑𝐞𝐜𝐚𝐥𝐥)

Where:

TP = True Positives

TN = True Negatives

 FP = False Positives

FN = False Negatives

5.3. Performance:

5.3.1. Performance of J48:

Precision:

o Precision for class 0 (94%) means that when the model predicts an instance as class 0,

it is correct 94% of the time.

o Precision for class 1 (93%) indicates that the model is correct 93% of the time when it

predicts an instance as class 1.

Recall:

 Recall for class 0 (94%) means that the model successfully identifies 94% of all actual

class 0 instances.

 Recall for class 1 (93%) means that 93% of actual class 1 instances were correctly

identified by the model.

F1-Score:

 F1-score for class 0 (94%) suggests a good balance between the precision and recall

for class 0.

66 | P a g e

 F1-score for class 1 (93%) similarly indicates a good balance for class 1, though

slightly lower than class 0.

Accuracy:

Overall accuracy of 94% indicates that the model correctly predicts the class (whether 0

or 1) for 94% of all the test instances.

Table 7 Accuracy Result of J48

Label Precision Recall F1 score

0 0.94 0.94 0.94

1 0.93 0.93 0.93

Accuracy 0.95

Figure 22 Performance Result of J48

67 | P a g e

5.3.2. Performance of Random Forest:

Precision:

 For class 1, a precision of 1.00 means that every instance predicted as positive was

positive, which is excellent.

 For class 0, the precision is slightly lower at 0.89, but this is still quite good.

Recall:

 For class 0, a recall of 1.00 indicates perfect recall.

 For class 1, the recall is 0.87, which suggests that the model missed about 13% of

actual positives for this class.

F1-Score:

 F1-score close to 1 is excellent, and here, both classes have high F1-scores (0.94 for

class 0 and 0.93 for class 1), which suggests a good balance between precision and

recall.

Accuracy:

 The overall accuracy of 0.9375 indicates that the model correctly predicted about

93.75% of the total instances. This is generally considered a high accuracy rate.

Table 8 Accuracy Result of RF

Label Precision Recall F1 score

0 0.89 1.00 0.94

1 1.00 0.87 0.93

Accuracy 0.94

68 | P a g e

 Figure 23 Performance Result of RF

5.3.3. Performance of Logistic Regression:

Precision:

 For class 0, the precision is 0.85. This means 85% of instances predicted as class 0 are

indeed class 0, which is quite good though slightly lower than ideal.

 For class 1, the precision is 1.00, indicating perfect precision; all instances predicted as

class 1 are truly class 1.

Recall:

 For class 0, the recall is 1.00, indicating perfect recall; all actual class 0 instances were

predicted correctly.

 For class 1, the recall is 0.80. This means the model missed 20% of actual class 1

instances, which suggests room for improvement in identifying this class.

69 | P a g e

F1-Score:

 The F1-scores are 0.92 for class 0 and 0.89 for class 1. Both scores are high,

suggesting a good balance between precision and recall, especially for class 0.

Accuracy:

 The overall accuracy of 0.90625 (or 90.625%) is quite strong. This indicates that the

model correctly predicted the class for about 90.625% of the cases in the dataset.

Table 9 Accuracy Result of LR

Label Precision Recall F1 score

0 0.85 1.00 0.92

1 1.00 0.80 0.89

Accuracy 0.91

Figure 24 Performance Result of LR

70 | P a g e

5.3.4. Performance of FNN:

Precision:

 For class 0, the precision is 0.85. This means 85% of instances predicted as class 0 are

indeed class 0, which is quite good though slightly lower than ideal.

 For class 1, the precision is 1.00, indicating perfect precision; all instances predicted as

class 1 are truly class 1.

Recall:

 For class 0, the recall is 1.00, indicating perfect recall; all actual class 0 instances were

predicted correctly.

 For class 1, the recall is 0.80. This means the model missed 20% of actual class 1

instances, which suggests room for improvement in identifying this class.

F1-Score:

 The F1-scores are 0.92 for class 0 and 0.89 for class 1. Both scores are high,

suggesting a good balance between precision and recall, especially for class 0.

Accuracy:

 The overall accuracy of 0.97 (or 97%) is quite strong. This indicates that the model

correctly predicted the class for about 90.625% of the cases in the dataset.

Table 10 Accuracy Result of FNN

Label Precision Recall F1 score

0 0.80 1.00 0.92

1 1.00 0.80 0.89

Accuracy 0.97

71 | P a g e

Figure 25 Performance Result of FNN

5.4. Performance comparison between classifiers:

Among all the 4 classifiers the best performance is FNN with 97% accuracy, after FNN classifier

j48 has the best performance with 95% accuracy. Whereas RF has the 3rd highest accuracy, that

is 94%. Logistic regression has 91% accuracy which is the lowest accuracy among all the

classifiers. However, all the classifiers have accuracy above 90% which indicates that this

research work presents a good detection system for Linux based malware.

72 | P a g e

5.5. Chapter Summary:

We have used 4 different parameters to measure the performance of classifiers. According to

accuracy FNN has the highest score 97% followed by j48 which has 2nd highest score 95%.

Random forest has the 3rd highest score 94%. Logistic regression has the lowest score among all

the other classifiers, which is 91%.

73 | P a g e

Chapter 6: Conclusion and Future Recommendations

6.1. Overview

In this last chapter we recommended some different future work aspects that can be helpful for

future researchers. Other than that, we sum up our research work and provided a conclusion of

the contribution this research has made in the world of cyber security, all this is covered in this

chapter.

6.2. Advanced feature selection and extraction techniques.

 Further improvements in feature selection and extraction will be necessary to increase the

efficiency of machine learning models in malware detection. The use of state-of-the-art algorithms

such as deep learning, particularly CNNs and RNNs, may help to uncover the complex nonlinear

patterns in the data that traditional models gloss over. Additionally, utilizing autoencoders for

dimensionality reduction could optimize the feature set towards the most discriminative attributes,

which would enable more accurate prediction and quicker processing.

6.3. Expansion to comprehensive malware detection frameworks.

The current study deals with ransomware only, a small fraction of the malware landscape that

targets Linux systems. It is critical to create a broader malware detection framework that can

recognize a variety of malware threats, including zero-day exploits, spyware, and rootkits. This

will necessitate the development of a scalable and adaptable architecture capable of

accommodating new malware signatures and behaviors, which can be accomplished via adaptive

learning methods that update the models continuously without human intervention.

74 | P a g e

6.4. Real-time detection and response systems.

Implementing real-time detection and response systems is critical for reducing the consequences

of malware on the infected systems. Future work might include integrating the developed

machine learning models into existing IDS and IPS models for Linux, which would enable the

automation of response measures such as quarantining the system, installing patches, and

performing backups to avoid data loss.

6.5. Joint research and development:

The difficulty of contemporary cyber threats requires a collaborative effort in which diverse

industries and disciplines work together. Future work will be essential, with collaboration with

academic institutions, cybersecurity companies, and technology industry players providing

access to a vast array of data and knowledge that can improve the research’s robustness and

practicality. This collaboration would also facilitate the development of uniform Linux malware

data models that are critical in the training and testing machine learning custom tools.

6.6. Conclusion:

The thesis has successfully constructed and tested a machine learning framework for detecting

Linux systems ransomware, and carefully evaluated its efficacy in comparison to prior detection

methods. The merits of using a blended analytical approach incorporating static and dynamic

analyses are proven to be effective, with high ransom accuracy rate and high recall rate and

precision. This achievement is a significant advancement in cybersecurity, specifically on Linux

systems which are less commonly researched in malware detection studies. In Conclusion, the

thesis, regarding the research problem, contributes several factors:

75 | P a g e

6.7. Methodological Contributions:

This thesis has brought a distinctive method for malware detection that marries both static and

dynamic analyses to strengthen the identification of various ransomware through the generation

of an improved feature set that afforded to efficiently identify many ransomware types.

Machine Learning Contributions: The paper shows a positive comparison between different

ML classifiers which include, Logistic Regression, Random Forest and Decision Tree’s potential

ability to address ransomware cybersecurity difficulties.

6.7.1. Practical Contributions: I also lay down the basis for generating operational tools or

systems to protect and enforce systems in the Linux ecosystem.

6.7.2. Contributions to Cybersecurity: The method shortens the ransomware detection

time and among the other benefits also retains the ransomware attack window at its

worst, while the cost of ransomware hacking is increasing. Furthermore, the method

is vulnerable to changes in techniques and tactics demonstrated by new ransomware,

defending the method from change and needing another review.

6.8. Chapter Summary:

This chapter presents future recommendations for this research and the existing literature

which includes advance feature selection and extraction methods, using big dataset for

better accuracy, and creation of real time detection system. Other than this it gives

conclusion of this research work which explains the summary of this research.

76 | P a g e

References

[1] F. F. Shahzad, "ELF-miner: using structural knowledge and data mining methods to detect

new," IEEE, 2011.

[2] F. S. M. F. M. Shahzad, "In-execution dynamic malware analysis and detection by mining

information in process control blocks of linux OS," 2015.

[3] R. K. C. S. K. S. Sanjay Sharma, "Detection of Advanced Malware by Machine Learning

Techniques," Springer, 2020.

[4] N. K. a. A. Handa, "Detection of Advanced Linux Malware," Springer, India, 2020.

[5] K. V. P. Asmitha, "Linux malware detection using extended–symmetric uncertainty," IEEE,

2014.

[6] V. P. Asmitha K A, "A machine learning approach for linux malware detection,"

International Congress on Information and Communication Technology, 2014.

[7] C. R. K. S. S. Vaishali, "Detection of Malicious Executable in Linux Environment Using

Tree-Based Classifer," Springer, 2021.

[8] J. Miller, "Linux Ransomware Poses Significant Threat to Critical Infrastructure," Dark

Reading , 18 7 2023. [Online]. Available: https://www.darkreading.com/vulnerabilities-

threats/linux-ransomware-poses-significant-threat-to-critical-infrastructure.

[9] "REMnux: A Linux Toolkit for Malware Analysis," [Online]. Available:

https://remnux.org/.

[10] "Limon sandbox," [Online]. Available: https://github.com/monnappa22/Limon.

[11] "Dark reading," [Online]. Available: https://www.darkreading.com/vulnerabilities-

threats/linux-ransomware-poses-significant-threat-to-critical-infrastructure.

[12] "T. I. Standard. Executable and Linking Format (ELF) Specification Version 1.1," 1993.

[Online].

[13] M. a. P. R. C. a. o. Salvador and Galar, "Data level preprocessing methods," Learning from

Imbalanced Data Sets, 2018.

[14] B. a. T. A. S. a. o. Azhagusundari, "Feature selection based on information gain,"

International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol.

2, pp. 18--21, 2013.

77 | P a g e

[15] D. a. A. L. a. B. R. Ucci, "Survey of machine learning techniques for malware analysis,"

Elsiver Computers & Security, 2019.

[16] V. a. others, "Classification model evaluation metrics," International Journal of Advanced

Computer Science and Applications, vol. 12, pp. 599--606, 2021.

[17] "Malware Bazar," [Online]. Available: https://bazaar.abuse.ch/. [Accessed 12 September

2023].

[18] D.-S. a. M. S.-D. Huang, "Linear and nonlinear feedforward neural network classifiers: a

comprehensive understanding," Journal of Intelligent Systems, vol. 9, pp. 1-38, 1995.

[19] I. Riadi, "Implementation of malware analysis using static and dynamic analysis method,"

International Journal of Computer Applications, 2015.

[20] C.-T. a. W. N.-J. a. X. H. a. E. C. Lin, "Feature selection and extraction for malware

classification.," J. Inf. Sci. Eng., vol. 21, 2015.

