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Abstract 

This thesis has presented the application of machine learning techniques to the detection of a class 

of ransomware that specifically targets Linux-based systems. Due to the increasing prevalence and 

complexity of such ransomware, traditional detection methods, which are primarily based on 

signature-based matching, are becoming obsolescent. This research endeavored to provide a fresh, 

novel, and effective way of combating malware that affects Linux operating systems in the form 

of a hybrid analysis novel methodology that combined static and dynamic analysis methods to 

extract maximum features from malware samples. The obtained features were then used to train 

different machine learning models, such as Random Forest, Decision Trees, etc. The model’s 

effectiveness was verified using accuracy, precision, recall, F1-score, etc. The experimental results 

demonstrated the effectiveness of the applying machine learning techniques to improve malware 

detection and develop a robust means of enhancing cybersecurity in a world where threats are ever-

growing 

Keywords: Machine Learning, Ransomware, Malware Analysis, Linux 
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Chapter 1: Introduction 

1.1 Overview: 

Over the last few years, the threat landscape concerning Linux systems has significantly 

transformed, with a conspicuous hike in both quantity and complexity of malware targeting 

these platforms. Ransomware has emerged as one of the most common types of malwares 

among these threats, causing extensive damage on users. This section provides an overview 

of Linux malware, concentrating mainly on one type of Linux malware i.e., ransomware, and 

describes the significance of creating efficient detection systems based on machine learning 

techniques. 

 Linux is ranked more secure as an operating system alongside others. But recently cyber 

criminals have turned to malware attacks on Linux systems in personal as well as enterprise 

levels just because these systems have become popular among the computer users for both 

personal as well as enterprise use. There are different types of malwares in Linux, Among the 

malwares used are the ransomwares which can be defined as a form of malicious software 

that blocks access to data files by simply encrypting them and later demands for payment 

from the owner to grant him or her access to his or her own files. In the past few years, 

ransomware attacks have increased to a huge level. 

Cybersecurity professionals face an important challenge in relation to the growth of 

ransomware that is designed specifically for Linux. In many cases, the standard signature-

based detection methods do not perform as fast as the variations in malware multiply rapidly. 

Therefore, there is a need for more sophisticated ways for identifying when Linux machines 

are being attacked since the existing ones are not reliable. The primary objective of this study 
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is to offer solutions that will help detect Linux-based malware using machine learning 

methodologies while focusing on Linux based ransomware and its different variants. 

1.2 Motivation:  

The reason for doing this research is that there is a growing menace of malware that mainly 

targets Linux based systems, particularly ransomware. Linux has been traditionally seen as 

more secure than any other operating system. However, recent developments show an increase 

in Linux-specific malware which poses great danger for individual users as well as corporations. 

For one to detect and forestall these threats there is a need for new ways and means where 

machine learning can be highly effective as per practical solutions. 

Most of the traditional antivirus solutions’ ability to detect emerging Linux malware by means 

other than signature-based means is not effective. This is because they are not able to identify 

and handle malicious programs that are not available in their databases. Machine learning, 

however, offers a more effective and adaptable approach to malware detection. In fact, it is the 

use of machine learning algorithms that has enabled antivirus programs to detect malicious 

programs with an extremely high probability and without the need for regular updates. In other 

words, machine learning algorithms have enabled antivirus programs to detect common 

characteristics and patterns in the known viruses, hence the ability to detect unknown malware. 

1.3 Problem Statement 

Cyber-security professionals have a big task when it comes to handling the growing number of 

Linux malware, specifically ransomware. It is not easy for conventional signature-based 

detection techniques to be effective in the face of malware whose types change fast. Linux 

systems also remain very prone to attacks due to inadequate strong and efficient detection 

systems. These issues will be resolved by this research endeavor using machine-learning 
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methods to detect Linux based ransomware. The purpose of this research is to address this 

problem by creating machine learning techniques that can identify ransomware on Linux with 

particularity. 

Ransomware attacks on Linux systems can have catastrophic effects on enterprises or people. 

Encrypting files while asking for money in exchange for decryption keys is one of the things 

ransomwares does; this can result in terrible consequences. Spreading to other computers within 

the same network through lateral movement, one ransomware attack can cause severe damage 

by infecting many systems apart from the intended target Computer-assisted detection is about 

finding and controlling such dangers, but old-fashioned antivirus programs cannot cope with 

them effectively. For detecting malware in particular Code written by computers that can learn 

from experience or find patterns within data on its own. 

 

1.4 Research Objectives 

The fundamental tenets for this research thesis are summarized in the following broad range of 

objectives: 

 RO1: To study and analyze the Malware behavior specifically ransomware in Linux 

Operating system.  

 RO2: To propose an enhanced Machine Learning based mechanism to detect Malware in 

Linux  

 RO3: Comprehensive analysis of proposed methodology with existing solution available. 
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1.5 Relevance to National Needs 

 Cybersecurity is a fundamental aspect of a country’s safety and survival in today’s digital age. 

Major government systems could be paralyzed, and strategic data lost to attacks by malicious 

software aimed at critical areas such as government operations or important facilities. 

Contributing machine learning algorithms for the detection of Linux malware can make a 

significant contribution towards global security mechanisms. 

 As Linux is used widely in servers, IoT devices and other important systems, hackers are 

focusing on this platform. For our country’s digital infrastructure to be secured we must come 

up with state-of-the-art ways to figure out and resist these cyber threats. 

 Disturbing the confidentiality of individuals may occur after a malware strikes against Linux 

systems due to data leaking. It is worth noting that this study aimed at protecting national 

intelligence and the personal life of citizens from unauthorized data access and leaking. 

 To address this issue, there needs to be a collaboration of universities, government institutions, 

and private sector organizations dealing with cybersecurity issues. For example, such 

collaboration can produce hacking tools for computer systems that are up to date. 

1.6 Area of Application 

The usage of machine learning to detect Linux malware has multiple uses in different industries:  

 The government and defense - shielding sensitive information from cyber assaults. 

 Health care - securing electronic health information and devices against malware threats, 

while  

 Finance - at the same time guaranteeing that all financial transactions go on securely 

without being hindered by any extortion maneuver directed at the banking system. 
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 Critical Infrastructure -To secure fundamental services like energy, transport, and 

telecommunications, from potential cyber threats. 

The cost of undesired and destructive cyber-attacks can be prevented, and such critical 

systems protected through the application of AI-based malware detection mechanisms for 

example. This works by closely scrutinizing vast repositories of pre-existing malware strains 

enabling machine-learning algorithms to spot shared attributes as well as recurrent trends; 

thus, enabling them to recognize novel malware types that were not present before in known 

antivirus software systems. 

1.7 Advantages 

 The aim of malware detection research is to enhance cybersecurity practices and hearten 

computer systems and networks from cyber threats with greater effectiveness in developing 

detection technologies.  

 Enhanced cybersecurity practices come because of using better detection techniques by this, it 

is possible for experts to contrive more efficient detection techniques which would enable 

organizations protect themselves more effectively against viruses thus reducing possible 

damage after a hacking event. 

 The field of malware detection research helps in developing a good understanding of emerging 

cyber risks as well as methods used by cyber criminals in their activities hence more focus in 

this area is essential. Knowing the behavior and features that define several types of malwares 

will enable scholars to come up with mechanisms that are capable of accurately detecting these 

programs thereby ensuring computer security. 
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 It is here that research projects in malware detection present themselves as excellent 

opportunities for students interested in pursuing careers in cybersecurity as well as for 

researchers. It is through solving actual problems that require practical solutions that students 

can get direct training thus acquiring skills necessary for conducting their job duties in this 

field. 

 Detection research on malware therefore has worldwide significance. By creating better means 

of detecting and sharing these findings with wider cyber security networks, scholars contribute 

towards the global efforts to eradicate e-crime and make internet less dangerous. 

 

1.8 Thesis Organization 

The research work has been organized and distributed in the following chapters listed below. 

Also Fig. 1.1, represents the layout of this thesis which is described in detail in this section.  

 Chapter 1: A brief introduction is given in this chapter. Problem statement followed by 

research objectives, relevance to national need, area of application and its advantages are 

elaborated.  

 Chapter 2: This chapter describes related works carried out by different researchers on 

Linux in the malware field. Then we will see an overview Linux Malwares, and specially 

ransomware and its 10 types that we will use to perform our research on. At the end there is 

an attack chain of Linux based ransomwares.  

 Chapter 3: This chapter explains the proposed model in detail. It is covering the major 

research objectives of this research by explaining all phases of proposed model in detail and 

presenting how malware detection will be performed using proposed methodology 
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 Chapter 4: This Chapters presents all the practical implementation of the modules discuss in 

chapter three and the results of our analysis 

 Chapter 5: This Chapter sums up the research with conclusions drawn and discusses the 

future aspects of the research.  

 

Figure 1 Thesis Organization 
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CHAPTER 2: Background and Literature Review 

 

2.1 Introduction: 

This chapter provides a comprehensive summary of previous research on Linux malware detection 

and how different research has detected malware within Linux environment. It also presents 

background knowledge about Linux based malware, how these are increasing at a rapid rate, 

specifically Linux Ransomware and its variants.  

2.2 Literature Review: 

For the literature we have studied different research work but the existing literature on Linux 

malware detection is very less as compared to windows malware detection. In one work [1] authors 

present a new system for identifying Linux malware from a non-signature-based angle focusing 

on zero-day malware detection. They developed a system from the ground up, named ELF-Miner, 

that forensically analyzes the ELF header files. This generates and selects 383 specific uniquely 

curated features from the ELF header files that distinguish malware from benign files. The study 

demonstrates the features classification’s potential with a filtering algorithm known as information 

gain and removes many random and irrelevant features utilizing a pre-processing filter. It then 

utilizes 383 features in several classical and bio-inspired machine learning classifiers. From 

repeated testing on a pre-defined test set with 709 Linux malware samples, the ELF-Miner shows 

over 99% detection accuracy while maintaining a very low false alarm rate under 0.1%. The main 

breakthrough of the paper is this feature, as it provides a solid foundation for malware detection 

on Linux without relying on any known malware signatures, enabling it to identify unknown 

threats in real-time. Given the rise of Linux systems in various fields, they are a prime target for 

cyber-attacks, making such an approach relevant. 
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 In another work, Author [2] proposes a method to accurately identify the presence of malware in 

Linux based IoT devices using static feature analysis methodology. The novelty of this work lies 

in the method’s speed and accuracy in resource-constraint IoT devices and a proposed solution to 

the same. The features are extracted from ELF executables, and then, using the chi-square method, 

the features are reduced drastically and retrained on a limited feature set to still achieve a high 

detection. This method allows this framework to run on such hardware. After feature reduction, 

the author trains the model on machine-learning algorithms such as J48, JRIP, PART, Random 

Forest, Naïve Bayes, Logistic, and RIDOR. All six classifiers were able to achieve above 99% 

accuracy and precision, with extremely low FPR and FNR ratios considered helpful for a software-

based system searched for malicious software in an IoT device known for minimal computational 

power. This case is particularly relevant as Linux-based IoT devices grow in popularity in various 

fields and become a target for malware attacks.  

In this paper the author [3] suggests a new way to detect library functions in Linux malware, 

specifically in malware that is statically linked and deprived of information on function names and 

addresses. This method is interesting primarily because the modification mentioned above impedes 

traditional methods of function-level analysis. A more holistic approach was taken to the issue, 

and, as a result, pattern matching was used to detect library functions among 2,256 malware 

samples, the majority of which were designed with the help of Intel 80386 architecture. The 

authors claim that their strategy was highly effective: Library functions have been found in over 

90% in 97.7% of cases. The available data is the result of combining static analysis tools with 

pattern matching, and they can be seen as a new tool for similar studies on threats in Linux space. 

Therefore, this study is valuable both in terms of developing understanding of how Linux malware 

is built and increasing the quality of forensic studies. 
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Authors [4] discuss a novel approach to machine learning enabled in detecting Linux malwares 

from the dynamical extraction of system calls. The new mechanism is a breakthrough because it 

enhances malware detection on the Linux platform, which is often less studied compared to 

malware entry into Windows environments. The Key Components include Dynamic Extraction of 

System Calls. The authors dynamically extract system calls using strace, a system call tracer. Such 

extraction is critical because it captures the semantics of the executables’ behavior which is 

essential in detecting malice. The authors used benign and malwares executables to determine the 

optimal set of features that would make the given model a classifier or not. The paper assesses the 

performance of classifiers such as SVM and NB in classifying a file as malware or benign based 

on the extracted feature. The proposed models will have exploited the dynamical nature of system 

calls to effectively make decisions regarding the classification. The approach led to a high 

classification accuracy of 97%, meaning the model is flexed and suitable for differentiating 

malware in Linux environments. - The authors used real malware in their experimentation, making 

the findings more application warrantable and robust.  

The work presented by Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide 

Balzarotti, is a crucial addition to the field of cybersecurity research for several reasons. First and 

foremost, despite the increasing importance of embedded devices and the Internet of Things, 

investigations into malware have historically been scarce and have focused primarily on Windows-

based malware due to its market dominance. Thus, the decision to limit one’s study to Linux 

malware represents a significantly understudied topic, which is more than beneficial. The key 

insights and contributions of this work include: the diversity of targets; b the development of the 

malware analysis pipeline; c the overview of Linux-specific techniques; and d the empirical 

discovery described in the Conclusions. Furthermore, this work may serve as a valuable resource 
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for your future thesis. By providing open-source tools and results of the conducted research, the 

authors suggest an effective way future scholars may address research questions. Therefore, it is 

reasonable to include this work into the dissertation structure since it provides a methodological 

framework based on real research experience.  

In another approach [5] authors used for identifying malware on Linus systems employing system 

tracers such as ftrace and strace. This paper is of high importance as Linux powers a vast number 

of diverse platforms, namely servers and connected IoT devices, and it is targeted increasingly 

often by malicious software due to these platforms’ connectivity and importance. Prominent 

points. Malware Detection Techniques. The primary approach mentions the drawbacks of 

signature-based detection and the necessity of dynamic analysis to find zero-day malware. This 

approach is feasible using a system tracer that is employed for monitoring system execution during 

the process. System Tracers and Sandboxing. The system tracer allows for collecting run-time data 

and is essential for understanding the malware’s relationship with the running system. Sandbox is 

discussed to safely test-run malware for dynamic analysis without risk to the host system. Machine 

Learning Models. The paper introduces machine learning models for categorizing the collected 

data into malicious and benign. This approach was considerably successful in increasing the 

detection rates of signature systems facing a new type of sophisticated malware. Challenges and 

Recommendations. Various difficulties are tackled, such as sandboxing not being as bulletproof 

as advertised, the increase in computational costs due to the tracing, and the need for more high-

quality datasets to train the models effectively. Future Research Directions. The paper outlines 

future research such as further refinement of tracing and sandboxing techniques, creating more 

adaptable models that require fewer false positives, and various ML models that can adapt to new 

forms of malware. In conclusion, the study’s authors demonstrate the urgency of utilizing modern 
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technologies and methodologies against modern malware that interests Linus systems. It provides 

valuable data for increasing the resilience of the anti-malware systems and preventing most of the 

infections.  

Another [6] methodology combines machine learning methodology with tree-based classifiers to 

detect malware. In addition, the authors discuss the use of two analysis types: static and dynamic. 

This method helps to increase the precision of detection for unknown malware. Furthermore, it 

employs Gain Ratio and Symmetric Uncertainty for feature selection. As classifiers Random 

Forest, J48, and REPTree are used. This method has a high accuracy of 99.82% and a minimal 

false-positive rate of 0.002%. The researchers analyzed a large amount of data, 24,000 files, 

malware, and not facilitating research validation. As a result, it can be said that the use of a hybrid 

method in analyzing showed on Linux experimental that it is effective. It is recommended for 

future research to reduce the number of features and to expand the analysis to other file types. 

Authors in research [7] aims to tackle ransomware detection through an approach that uses 

dynamic features and deep learning methods. In this paper, the scholars examine the various 

dynamic features such as API call sequences, DLL usage, enumerated directories, mutual 

exclusions, and registry key operations and how they affect ransomware detection accuracy. The 

methods used in dynamic analysis are as follows: API call sequences and the pattern that the 

executable program makes are investigated since the dynamic API call sequence often reveals a 

pattern of malicious use. DLLs and patterns of uses are also studied since some DLLs are 

frequently used by malware. Enumerated directories in which ransomware is repeated and tries to 

locate and encrypt the user’s files are simulated, as are the mutuality in which ransomware uses 

files to alternately encrypt and encrypt ransom files. Furthermore, mutual exclusions are 
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determined by the analysis of mutual exclusions that ransomware may use to prevent files from 

being accessed simultaneously or maintain control of the system. SQL and how it interacts with 

system registry keys are analyzed, and the architecture of the design reveals intent with respect to 

persistence or configuration changes. As for the models, CNN and LSTMs were used, as well as 

simple MLP. In the experiment conducted to obtain the results, the scholars used three datasets 

that infected the system and one dataset that had not infected it. The results produced all the 

accuracies and were computed and analyzed using TPR and FPR, as showed in the results. Hence, 

the experiment concludes that API call sequences produce an excellent true-positive rate but at the 

cost of high false-positive rates. On the other hand, enumeration directories produce lower false 

positives and accurate results.DLL. This dynamic feature results in a high true positive rate, but it 

also causes a high false positive rate since it fails to classify benign behavior. However, mutual 

exclusions produce noble results, as do registry operations, which remain to be adjusted but is the 

most revealing feature of ransomware. It is predetermined that the symbiosis of the dynamic 

features and deep learning models increase ransomware detection. Thus, further work is in the 

benefit to the highly adaptable framework with this integration. 

In paper [8] on which the authors list various components of their analysis, as well as the machine 

learning models, they used to detect ransomware. These are the detailed aspects based on the 

techniques and models they provided: Analysis Techniques: File and Network Monitoring: The 

system files are examined for susceptibility to attack after being introduced in the computer 

subunit. All packets are observed for traversing the network system to identify any packet that may 

be ransomware. Behavioral Analysis: The behavioral overview of files and packets into the 

computer system is recorded, and any piece of software or packet behaving strangely will trigger 

a red flag. Packet Assessment: All packets in the subunit are inspected heavily. The act is done at 
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a micro-level that scrutinizes each network bit, and any anomaly of the ransomware piece is 

identified quickly. Random Forest: This was specified during the data training stage. Random 

Forest is an ensemble learning technique that involves multiple decision trees in making 

predictions. This technique balances an added advantage of accuracy and being immune to 

overfitting. 

 Deep Learning Models: Deep learning models were not specified to include CNNs since the 

architectural framework was not elaborated in my initial brief. However, the deep learning models 

are used to sweep through high-level data aspects to quote any pattern that is likely to be 

challenging for other ML techniques. Feature Extraction with Python’s pefile Module: The 

decompile tool is used to extract features from executables for further training of the model. This 

includes metadata from the header files and attributes of the binary. Feature Selection and 

Extraction: Features are selected by opportunistic teachers who review the data to select the most 

likely suspects to pick from the features that the researchers used to train the features selected. The 

magnitude of file rigging is identified in a lucrative technique. For example, a hashed value can be 

rough in a certain smart size square or a debug size, or an accurate major image version in the 

system files. The models are programmed in a labeled training dataset with both benign and 

malicious programs. The training is an iterative phase by which the developers inform the models 

of the normal and customary file behavior concerning the file characteristics given. The 

performance of the models analyzed against novel and incognito word ransomware to prove the 

system’s daily efficiency. The prototype of the software should maintain high detection of 

ransomware viruses. The integration of both machine learning models and the analyzing 

methodology propose the detection of ransomware viruses.  
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2.3 Summary of Related Work: 

 

Table 1 Summary of Literature  

Sr. 

No  

Research Paper Algorithm Used Technique Limitations 

1 ELF-miner: using 

structural knowledge 

and data mining 

methods to detect 

new (Linux) 

malicious executable 

RIPPER, PART,  

J48 

Performed static 

analysis on ELF 

executable. 

Extracted features 

from elf header and 

applied machine 

learning for 

malware detection 

Very small dataset 

used. Only static 

analysis is performed 

2 Malware detection 

through mining 

symbol table of ELF 

No machine 

learning used 

Symbol table is 

extracted from the 

elf executables and 

used for malware 

detection 

Static analysis is only 

done. 

3 A machine learning 

approach for Linux 

malware detection 

IBK-5, Random 

Forest and Ada 

boost 

Performed 

dynamic analysis 

and extract system 

calls and applied 

machine 

Less Files are used. 

Only dynamic analysis 

performed 

4 Integrated Static and 

Dynamic analysis for 

malware detection 

SVM, RBF and 

J48 

PSI is extracted 

from binary files as 

static and Api calls 

are use as dynamic 

feature to detect 

malware 

Small dataset used. 

Very less features 

5 In-execution 

dynamic malware 

analysis and 

detection by mining 

information in 

process control 

blocks of linux OS. 

J-RIP ad J48 Dynamic analysis 

is performed on 

PCB and extracted 

features are used to 

train ML model. 

Small and old dataset. 

Only dynamic analysis 

6 Detection of 

Advance Linux 

Malware using ML 

technique 

LMT, Random 

Forest and NBT 

Hybrid analysis is 

done on ELF files 

for extracting 

features and then 

using features for 

machine learning 

Small dataset, which 

can affect accuracy of 

machine learning. 
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7 Detection of 

Malicious 

Executable in Linux 

Environment Using 

Tree-Based 

Classifier 

J48 and Random 

Forest 

Both static and 

dynamic analysis is 

done to extract 

features. System 

calls and elf header 

is used as features 

Very Less features are 

used. 

8 Linux malware 

detection using 

extended-symmetric 

Ada Boost and 

Random Forest 

System calls are 

used to extract 

feature and 

information gain 

method 

Small dataset. Only 

focus on system calls 

 

2.4. Overview of Linux Malware  Ransomwares:  

Linux malware is malicious software created to target Linux-based operating systems. Although 

Linux is known for its exceptional security, it can still be vulnerable to malware. Linux malware 

may infect various systems, including servers, desktop computers, IoT equipment, embedded 

systems, and network appliances. Since Linux has gained great popularity for personal and 

industrial purposes, the frequency and acuteness of Linux malware assaults have risen 

significantly. According to a report published in [9] 55% attacks are observed within Linux 

environment beating out windows for the first time. In figure-1 we can see the attack ratio on 

different operating systems. 
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Figure 2 Attack Ratio on Different OS 

 

As we started our research, we found a significant number of increases are reported in the attacks 

on Linux systems and maximum attacks are Ransomware attacks on Linux systems. Before getting 

into details, we must know what Ransomware is.  

2.4.1. Ransomware: 

Malware known as "Ransomware" is capable of infecting computers running on Windows, Mac, 

Linux distributions, including Debian and Ubuntu. An attack of this kind would encrypt 

documents after infiltrating a network or device and finding the important ones. Frequently, a 

message requesting payment for the return of the encrypted files is the first indication that an 

attack has occurred. This may seem scary to an individual, but it might seriously harm a 

company's operations and reputation.  
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2.4.2. Linux Ransomware:  

Ransomware attacks against Linux systems rose by 75% in 2022 compared to the previous year. 

[10] An increasing number of Linux variants have been released by ransomware gangs. In the 

figure below we can see the rising number of ransomware attacks in Linux environment:  

 

Figure 3 Timeline of Ransomware Attack 

 

 

2.4.3. Variants of Linux Ransomware:  

There are many different variants of Linux Ransomware, however in our research we have 

include these 10 variants to understand the workflow of Linux ransomwares:  

2.4.3.1. AvosLocker:  

The sophisticated ransomware known as AvosLocker was first identified in June 2021 and 

became well-known for its twice extortion method. AvosLocker is intended to both steal and 

encrypt files from a victim's PC. After that, the attackers demand payment of a ransom before 

releasing the material to the public.  

2.4.3.2. Blackcat:  

The ransomware family ALPHV, commonly referred to as BlackCat, is used in ransomware as a 

service (RaaS) activity. Available on Linux-based operating systems (Debian, Ubuntu, Ready 
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NAS, Synology), Windows, and VMware ESXi, ALPHV is built in the Rust programming 

language. 

2.4.3.3. Darkside:  

The DarkSide ransomware functioned as "ransomware-as-a-service". DarkSide demanded 

Bitcoin and other cryptocurrency ransoms after encrypting and stealing confidential data from 

large organizations. Like a legitimate company, they also set up a functional platform and 

provided real-time chat help.  

2.4.3.4. Royal:  

Targeting VMware ESXi virtual machines, Royal Ransomware is the most recent ransomware 

operation that facilitates Linux device encryption. The Equinix Threat Analysis Center found it 

for the first time. Linux Royal Ransomware uses the command line to execute properly.  

2.4.3.5. Cylance:  

Cylance is also a Linux based ransomware which operates using command line argument. Its 

main target is VMware ESXi virtual machines. After getting access to the system, it encrypts all 

the files specified in the command line argument. And leaves a ransom note at the end.  

2.4.3.6. Cl0p:  

The deadly Clop ransomware, which is a member of the well-known Cryptomix ransomware 

family. It encrypts files by planting clop extension on infected systems and actively evading 

protection measures.  

2.4.3.7. Revil:  

With the first appearance of REvil in May 2019, the ransomware-as-a-service (RaaS) operation 

behind it has grown to become one of the most active and successful threat groups. Windows 



36 | P a g e  
 

systems have been the main target of REvil. New samples, aimed at Linux systems, have been 

discovered, though. 

2.4.3.8. RansomExx: 

 Ransomware like LockBit demands money to be paid to unlock the encrypted file. Rather than 

focusing primarily on consumers, it targets corporations and government bodies. The institutions 

who would be inconvenienced and have the resources to provide a sizable payment are its 

possible targets.  

2.4.3.9. IceFire:  

The ransomware IceFire, also referred to as iFire, encrypts files, appends the ". iFire" extension 

to filenames and generates a ransom letter called "iFire-readme. txt". Ice Fire’s mission is to lock 

down files until a ransom is paid.  

2.4.3.10. LockBit:  

Adopting the Ransomware-as-a-Service (RaaS) architecture, LockBit is an extremely persistent 

and intelligent ransomware program. The ransomware variant LockBit was most often used 

globally in 2022 and is still widely used in 2023. 

Figure 4 illustrates all the ransomware variants used in this research. 
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Figure 4 Variants of Linux Ransomware 

 

2.5. Attack Chain of Linux Ransomware: 

Attack chain is a process in which the attacker attacks a system. In other words, we can say 

the steps an attacker follows to attack the system. In figure-5 we have described the attack 

chain of Linux ransomware. It follows the steps given below: 

Step 1: Attack finds vulnerability in the system. 

Step 2: After finding vulnerability, he tries to gain access to the system. 

Step 3: Once he is successful in gaining access, he starts installing ransomware  

Step 4:  After successful installation of ransomware, he tests if the encryption is working.  

Step 5: Then he checks CMD line argument which is used to give path of files to encrypted. 

Step 6: Then he starts searching whether files are already encrypted or not. 

Step 7: If not, he drops the ransomware, and it encrypts all the files mentioned in the given 

path. 
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Figure 5 Ransomware Attack Chain 

 

2.6. Chapter Summary: 

In this chapter we discussed the existing literature on Linux malware and its detection 

systems. After that we presented the entire literature along with its limitations in tabular 

form. We have also discussed the increasing rate of attacks within Linux environment, Linux 

based ransomware and its different variants that we have covered in this research work. At 

the end we discussed the attack chain steps followed by Linux ransomware.  
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Chapter 3 Proposed Methodology 

  

3.1. Introduction: 

This chapter highlights the proposed methodology for detecting Linux based ransomware using 

machine learning. It describes the flow diagram of our framework, data collection, different 

analysis methods, feature extraction, steps for data preprocessing, importance of feature selection, 

different machine learning algorithms and evaluation metrics based on which we will decide our 

results. 

 

Figure 6 Proposed Methodology 

 

3.2. Data Collection: 

To create a dataset, we need to collect data samples of both malicious files as well as benign files. 

On these samples we will perform different methods to get useful information from these files and 

later it will help us in training the machine learning model. As we are doing our research on Linux 

malware, we need to collect ELF (Executable and Linkable Format) files. ELF [11] is a common 
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standard file format for executable files, object code, shared libraries, and core dumps. The 

structure of ELF is shown in Figure 7. 

 

 

Figure 7 ELF Structure 

 

3.3. Malware Analysis Methods: 

To analyze the elf files, we need to perform different malware analysis techniques on our file 

samples to find the actual working of the file and whether it’s malicious or benign. There are three 

main types of malware analysis [12]: 

 Static Analysis: static analysis is the examination of the code and structure of the malware 

without its execution. Static analysis includes the examination of the file’s metadata, 

headers, strings, and embedded resources. Static analysis helps to identify the signatures 

of known malware, understand the structural peculiarities of the malware, and reveal 

potential indicators of compromise without executing the code. A drawback of static 

analysis is that it is unable to detect behavior-based malware and threats, as well as 

polymorphic or obfuscated code. 
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 Dynamic Analysis: Dynamic analysis is the process of running malware in a confined 

environment and tracking what the malware does to learn more about its behavior. 

Behavioral analysis, code emulations, and memory analysis are all involved in dynamic 

analysis. The behavior of malware in activities includes file system changes, registry 

alterations, network activity, and process behavior may all be detected in real-time. 

However, not all malware behavior is detectable, and it may go undetected if the system 

does not have enough telemetry or if the malware is developed to avoid detection. 

 

 Hybrid Analysis: Hybrid analysis combines both static and dynamic analysis to offer 

experts an in-depth perspective of malware. In this case, the approach integrates static 

analysis which helps to define and understand malware’s structure and code, as well as 

dynamic analysis to research its behavior upon execution. From this perspective, hybrid 

analysis helps experts achieve better understanding of malware’s attributes, behaviors, and 

impacts on a system. As such, it improves malware detection, analysis, and mitigation. 

In our work we will use Hybrid analysis, to get both static as well as dynamic features of 

the samples because now a days malwares are strong in functionality it gets hard to 

understand the actual working of a malware because of sophisticated techniques used by 

malware. Therefore, only by using static or only dynamic analysis is not sufficient to build 

the detection system. 

3.4. Feature Extraction: 

 The extraction of features [13] is a critical step of developing effective machine learning models 

to detect malware. By converting raw data into a subset of relevant features, one will lower the 

dimension of the data while retaining the essential information for detection. Not only can this 

approach help improve the performance of machine learning models by directing models to only 
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relevant and discriminatory features, but it can also improve the ability to generalize from the 

training on new malware samples never previously seen by the model. In addition, feature 

extraction improves the interpretability of machine learning models by enabling one to understand 

which information may be essential for detection. In simple words we can say feature extraction 

steps can result in more accurate, efficient, and interpretable detection models which can lead to 

improved cybersecurity outcomes. There are several types of features which you can extract from 

the analysis report. In our work we will use static as well as dynamic features. 

3.5. Data Preprocessing: 

Once we have extracted the features our next step is to clean the data. Machine learning models 

cannot understand data without processing it. We must clean our dataset using different techniques, 

so it gets easy for the model to learn it. Data processing [14] can be done in following sequence: 

 Data Cleaning: In this step, we will check all the missing values in our dataset so we can 

perform the next steps. 

 Fill missing values: First we will find all the NaN values then we will perform fill method to 

fill all those values. 

 Remove duplicated rows: After filling missing values we will check if there are any 

duplicated rows. If there are duplicated rows, we will remove them. 

 Checking datatype: Then we will check datatype of all the columns so that we can decide 

which encoding method we need to use 

 Performing encoding: Once we find all datatype, we need to make them all float integer so 

we will use different encoding methods. Such as, one-hot encoding, label encoding and 

frequency encoding. 

 Normalize data: by applying scaling methods we will then normalize the dataset. 
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Figure 8 Data Preprocessing 

 

 

 

3.6. Feature Selection: 

      The selection of relevant features is integral in the development of good machine learning 

models for malware detection. By choosing the most informative features, the coders can decrease 

the dimensionality of the data, which helps to develop better and more efficient code. Indeed, by 

selecting the features that are the most significant in developing the models, the coders contribute 

to better performance. It may reduce overfitting and assist in enhancing the ability to generalize. 

Furthermore, it may lead to a significant decline in the time necessary for the computation of 

predictive model development and use. It is especially vital for real-time malware defenses. Also, 

such a selection results in a greater interpretation of the model’s results. The logical predictions 

are to be based only on the key features that the security workers can easily grasp. It may benefit 

in quicker identifying of the malware features and characteristics. Thus, choosing relevant features 

is critical in the development of successful and interpretable malware detection models. 

      In our work we are using we will use Information Gain. It is used for malware detection where 

we must identify discriminative features, the kind of features that help in classifying a malware 
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file and any other benign file. Calculations of I.G help in understanding which feature is highly 

discriminative between the two. A higher information gain implies a better distinction. It is helpful 

in feature selection where many discriminative features will help in generating a more useful 

classifier model in malware detection. 

3.7. Classification: 

      After performing all test steps, we need to decide which classifier we need to apply machine 

learning [15] on our dataset. Selecting classifier is a particularly crucial step, we must check our 

dataset depending on the data in the dataset and what type of work we want to get done by the 

classifier we select our classifier. Following are some classifiers that we have selected to test our 

research work: 

 Random Forest: It is an ensemble learning method that builds a few decision trees at training 

time and reports the class which is the mode of the classes in the case of a classifier. 

 Decision Tree: It is an easy to understand and interpretable model that splits the dataset 

recursively into subsets based on the highest-importance feature, resulting in a tree 

constructed structure. 

 Logistic Regression: It is a linear model for a binary classification problem that models the 

probability of a default class using a logistic function. 

 FNN: It is a neuro network model which is used to form networks. 
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3.8. Evaluation Metrices: 

The metrics will help figure out whether the machine learning-based malware detection achieves 

optimal levels in detecting the malware and, at the same time, minimizing the false positives and 

false negatives. The evaluation metrics include:  

 Accuracy: Referring to the proportion of samples correctly classified against the total 

samples. 

 Precision: The proportion of true positives within the samples classified as positive.  

 Recall: The proportion of true positive within the samples considered positive out of all 

positive samples. 

 F1-score: It is the harmonic mean of precision and recall, thus being a balanced measure 

between precision and recall.  

3.9.Chapter Summary:  

This chapter presented a detailed proposed methodology which is used for the detection of Linux 

malware. Starting from collection of samples to malware analysis, data processing, feature 

extraction and selection. Training ML classifiers for detection the Linux based ransomware. All 

these modules are discussed in this chapter. 
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Chapter 4: Implementation and Experimental Results 

 

4.1 Introduction: 

In this chapter we will practically perform the things we have described in chapter three. Our 

proposed architecture includes data collection analysis module, feature extraction module, data 

preprocessing, feature selection module and classification module. 

4.2 Experimental setup: 

For performing malware analysis, we have use virtual machine on local system. Whereas for 

the creation of dataset we collected malicious samples from malware bazar. Tasks related to 

feature extraction, feature selection and training ML classifiers we have used Google Colab 

platform. The programming language that is used for performing all the tasks is python. 

 Hardware Configuration: 

Lenovo laptop was used for the implementation of this research with following aspects:  

      Table 2 Hardware configuration 

Processor Intel(R) Core (TM) i5-4210U 

Memory 8.00 GB 

Operating system Ubuntu 20.04 LTS 

 

 

 

 Programming Language: 

 Python:  

Guido van Rossum first developed Python programming language in 1991 and released it to 

the public in the same year. Consequently, writing code in Python is both easy and 
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understandable due to white spaces. Python is generally an interpreted programming 

language that was designed for general purposes. 

 Google Colab: 

A free cloud service provided by Google called Google Colaboratory offers users a simple 

means for writing and running Python code through Jupyter notebooks. It consists of a web 

accessible Jupyter Notebook that allows for running of Python code without any local 

installations or maintenance. All the work done from feature extraction, feature selection, 

data processing, train of model all the work is done in google colab. 

 

4.3 Collection of Dataset:  

To create our dataset, we have collected malicious files and benign files. We have used malware 

bazaar [16] for malicious files and for benign files we have used files from different directories of 

Linux which includes /user/ bin, /bin, /sbin. We have collected samples of 10 types of Linux based 

ransomware. However, we were only able to find 70 samples of those types and 70 benign files. 

So, our dataset has a total of 140 samples. 

 

 

                          Table 3 Dataset samples 

Sr. No File Type Category No. of samples 

1 ELF Malicious 70 

2 ELF Benign 70 
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4.4 Perform Malware Analysis: 

In our method we have used hybrid analysis so that we can use both static and dynamic useful 

features.  

4.4.1 Static Analysis: 

To perform static analysis, we have used REMnux Operating System. It is specially designed for 

malware analysis and reverse engineering.  

REMnux: It is a Linux tool for figuring out and breaking down malignant programming[17]. 

Experts can use it to explore malware without finding, introducing, and arranging the devices. It 

has various apparatuses that can be used for both static and dynamic examination. On our dataset, 

we have utilized Readelf, Capa, and Peframe to extract useful static features from the files in our 

work. 

 Readelf: With Unix-like systems, readelf is a tool that shows different details about object 

files, much like obj dump. The GNU binutils include it. 

 

Figure 9 Readelf Output 
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 Capa: It is an open-source program called Capa is used to analyze malicious programs. 

Capa offers a platform that the community can use to exchange, identify, and codify 

behaviors that we've observed in malware. Capa analyses executable files to find their 

capabilities. 

 

 

Figure 10 Capa Output 

                                                               

 

 Peframe: It is an open-source utility designed to carry out static analysis on suspicious 

files and portable executable malware. Malware researchers may find information on 
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suspicious files, suspicious sections and routines, packer, xor, digital signature, mutex, anti-

debug, anti-virtual machine, and much more with its assistance.  

 

 

 

4.5 Dynamic Analysis: 

To perform dynamic analysis, we have set up a sandbox to perform automated dynamic analysis. 

We have used Limon Sandbox.  

4.5.1 Limon Sandbox: 

With the help of Limon[18], we may execute an executable in a controlled, sandboxed environment 

and receive a report on its runtime behavior. 

of an executable.  A host computer that controls the guest computer is part of the configuration for 

Figure 11 Peframe Output  
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the limon sandbox. Ubuntu 18.04 was utilized in this study as the host and guest operating systems, 

respectively. The file runs in the guest machine's full privileged mode to provide a better 

understanding of a file. The path to the file in the Limon Sandbox is determined by doing a 

command line analysis of every file in a brand-new virtual computer. A current snapshot is taken 

during virtual machine setup so that limon can reverse after the le is executed. The entire trail of 

the network, system calls, and functions is saved in a text file called final report by the limon 

sandbox to the analysis report folder after execution is finished. 

 

 

 

                           

Figure 12 Limon File Execution 
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4.6 Extracting Features: 

In this phase we extracted features from the data generated by different tools during the analysis. 

We have used Features from both static and dynamic analyses in this work which were good for 

the classifier explained in this section. 

4.6.1 Static Features:  

We have extracted static features from various fields of an ELF file. Most of the information is 

extracted from the ELF file header.  

 ELF header 

 File information 

Following table contains static features: 

 

Figure 13 Saving Dynamic Analysis Report 
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Table 4:List of static features 

Sr. No Name  Datatype Description 

1 file_size float Size of file 

2 Identification obj Special no to identify file 

3 Class String Elf class 

4 Version int Elf version 

5 Os/ABI String Operating system 

6 Machine String Machine name 

7 ent_add  int Entry point address 

8 start_prog_header int Start of program headers 

9 start_sec_header int Start of section headers 

10 number_flag int No of Flag 

11 size_header int Size of this header 

12 size_prog_header int Size of program headers 

13 num_ prog_header int Number of program headers 

14 num_ sec_header int Number of section headers 

15 sec_head_st_ind int Section header string table index 

16 file_ent float Entropy of whole file content 

 

4.6.2 Dynamic Features: 

From dynamic analysis we have extracted: 
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4.6.2.1 System calls frequency: 

After executing the files, we extracted all the system calls and then applied a python script to find 

the frequency of every system call. 

Table 5:List of some System calls 

Sr. No Name Description 

1 access  check whether the calling program has access to a 

specified file 

2 Bind associates an address with the socket descriptor 

3 Clone  creates a new process 

4 Exce to execute file 

5 connect system call connects the socket referred to by the file 

descriptor 

6 chmod modifies the access rights of the file 

 

4.6.2.2 Encryption Method: 

Another feature that we have used is encryption method, as we have analyzed Linux based 

ransomwares, encryption is main feature of a ransomware. Since ransomware usually encrypts 

files on the victim's machine, keeping an eye out for unusual encryption activity might be helpful 

in spotting possible ransomware attacks 

Table 6: List of some Encryption features 

Sr. No Name Datatype Description 

1 Encryption Algorithm string Type of encryption algorithm used 

2 Key size int Size of encryption key 
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3 extension string Extension used by ransomware 

after encryption 

 

4.6.2.3 Network Artifacts: 

In ransomware attacks there is a high chance of network activity because the binary must connect 

to its C2C server after getting access of the system. So, we have extracted some features from 

network activity  

Sr. No Name Datatype Description 

1 Total Packets int No. of packets sent and receive 

2 DNS Queries binary Did query, yes or no 

3 HTTP Requests binary Did Request, yes or no 

4 HTTPS Traffic int Traffic captured 

5 Unique Source IPs int Unique source Ip address 

6 Unique Desti IPs int Unique destination Ip address 

7 Protocol string Type of protocol used 

 

 

4.7 Feature Selection: 

For feature selection we have used the selection method: Information Gain [19]. It gives score to 

every feature based on the information that feature contains. Standard score ranges from 0 to 1. 

Features below 0 are considered useless. Features are calculated as follows: 

IG(X) = H(Y) - H(Y|X) 

 



56 | P a g e  
 

Where: 

 IG(X) is the Information Gain of feature X.  

 H(Y) is the entropy of the target variable Y before the split 

 H(Y|X) is the conditional entropy of Y given feature X. 

In the below graphs we can see the top 10 static and dynamic features selected by Information 

Gain. 

 

Figure 14 Top 10 static features 
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Figure 15 Top 10 Dynamic Features 

 

4.8 Perform Data Processing: 

 

. Data processing can be done in following sequence: 

Step 1: Fill missing values:  

First, we will find all the NaN values then we will perform fill method to fill all those 

values. 
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Figure 16 Handle Missing Values 

 

Step 2: Remove duplicated rows:  

After filling missing values we will check if there any duplicated rows. If there are 

duplicated rows, we will remove them. 

 

Figure 17 Check Duplicated Rows 
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Step 3: Checking datatype:  

Next step is to check all the unique data types do we can perform encoding to make 

them all float datatype. In the figure below we can see we have 3 different data types: 

o Object 

o Float  

o Integer 

 

Figure 18 Check Datatype 

 

Step 4: Performing encoding:  

Once we find all datatype, we need to make them all float integer so we will use label 

encoding methods.  
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Figure 19 Before Label Encoding 

 

After performing label encoding, we can see we have only one data type left which is float. 

 

Figure 20 After Label Encoding 

 

 Step 5: Normalize data:  

By applying the standard scaling method, we normalize the dataset. 
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Figure 21 Standard Scaling 

 

4.9 Model Selection: 

 

4.9.1 J48: 

J48, more popularly recognized as C4.5, is an ADT technique that is broadly employed in 

categorization systems. The following are the principal parameters of J48 algorithm: 

 Confidence Factor (CF): Specify the confidence threshold to control tree pruning. 

 Minimum Number of Instances per Leaf (M): Indicate the smallest number of examples 

required to divide a node.  

 Minimum Number of Instances per Split (L): Specifies the minimum number of instances 

required to split a node. 

 Binary Splits (B): Used to ascertain if binary divisions must be imposed divide a node  

 Subtree Raising (S): It can be used to elevate useless sub trees and so improving tree 

performances  
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4.9.2 Random forest: 

Random Forest is an ensemble learning method that constructs multiple decision trees during 

training and outputs the mode of the classes (classification) or the mean prediction (regression) of 

the individual trees. It improves the performance and reduces overfitting compared to a single 

decision tree classifier. It has some parameters: 

 Number of Trees (n_estimators): The number of decision trees in the forest. 

 Maximum Depth of Trees (max_depth): The maximum depth of each decision tree. 

 Minimum Number of Samples to Split a Node (min_samples_split): The minimum number 

of samples required to split an internal node. 

 Min Number of Samples in Each Leaf Node (min_samples_leaf): The minimum number of 

samples required to be at a leaf node. 

 

4.9.3 Logistic Regression: 

The afore-mentioned logistic regression model works on several parameters. The following are 

some of the parameters: 

 max_iter refers to the maximum number of iterations taken for the optimization algorithm. 

 C refers to the inverse of regularization strength whereby smaller values are specified with 

higher regularization strengths.  

 class_weight=’balanced’ helps to pass class weights as they are assumed to be inverse class 

frequencies. This parameter is used to solve the problem related to the weight imbalance. 
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4.9.4 FNN 

The last classifier that we used is a neural network, specifically a feedforward neural network (also 

known as a multi-layer perceptron, MLP) which is implemented using TensorFlow’s Kera’s API. 

It is designed for binary classification tasks. The key parameters of this neural network classifier 

are:  

 Epochs: Number of epochs for training.  

 Validation split: 20% of the training data is used for validation. 

 Verbose: Verbosity mode for training logs. 

 

4.10 Chapter Summary: 

This chapter gives a detailed approach that we have used to implement our proposed 

methodology. How we have created our own dataset. To perform malware analysis we have used 

both static and dynamic analysis. For static we have used REMnux and for dynamic analysis we 

have used Limon sandbox. After performing feature extraction, we have selected a list of static 

and dynamic features. Then we applied an Information gain feature selection method to find 

which features are useful. At the end we selected 4 ML classifiers and their parameters to train 

our dataset. 
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Chapter 5: Result and Discussion 

 

5.1. Overview: 

In this chapter we will describe evaluation metrices based on which we will measure the 

performance of all the classifiers. The performance is measured by using accuracy, F1-score, 

Recall and precision. At the end we will also perform a comparative analysis between the 

performance of all the 4 classifiers. 

 

5.2. Evaluation Metrices: 

 The metrics [20] will help figure out whether the machine learning-based malware detection 

achieves optimal levels in detecting the malware and, at the same time, minimizing the false 

positive and false negatives.  

Following are the metrics that we have used:  

• Accuracy: The ratio of correctly predicted instances to the total instances in the dataset.  

    Accuracy =  
 (𝐓 𝐏 + 𝐓 𝐍)

(𝐓 𝐏 + 𝐓 𝐍 − 𝐅 𝐏 + 𝐅 𝐍) 
  

• Precision: The ratio of correctly predicted positive observations to the total predicted positive    

observations. 

    Precision =   
𝑇𝑃

 (𝐓 𝐏 + 𝐅 𝐏)
    

 • Recall: The ratio of correctly predicted positive observations to all actual positives.  

    Recall =  
𝑇𝑃

 (𝐓 𝐍 + 𝐅 𝐍)
    

• F1 Score: The weighted average of Precision and Recall.  
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    F1 Score = 2 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗ 𝐑𝐞𝐜𝐚𝐥𝐥) 

 (𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+ 𝐑𝐞𝐜𝐚𝐥𝐥) 
    

Where:  

TP = True Positives  

TN = True Negatives 

 FP = False Positives  

FN = False Negatives 

 

5.3. Performance: 

5.3.1.  Performance of J48: 

Precision:  

o Precision for class 0 (94%) means that when the model predicts an instance as class 0, 

it is correct 94% of the time. 

o Precision for class 1 (93%) indicates that the model is correct 93% of the time when it 

predicts an instance as class 1. 

Recall:  

 Recall for class 0 (94%) means that the model successfully identifies 94% of all actual 

class 0 instances. 

 Recall for class 1 (93%) means that 93% of actual class 1 instances were correctly 

identified by the model. 

F1-Score:  

 F1-score for class 0 (94%) suggests a good balance between the precision and recall 

for class 0. 
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 F1-score for class 1 (93%) similarly indicates a good balance for class 1, though 

slightly lower than class 0. 

Accuracy: 

Overall accuracy of 94% indicates that the model correctly predicts the class (whether 0 

or 1) for 94% of all the test instances. 

Table 7 Accuracy Result of J48 

Label  Precision  Recall  F1 score 

0 0.94 0.94 0.94 

1 0.93 0.93 0.93 

Accuracy 0.95 

 

 

Figure 22 Performance Result of J48 
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5.3.2. Performance of Random Forest: 

Precision:  

 For class 1, a precision of 1.00 means that every instance predicted as positive was 

positive, which is excellent.  

 For class 0, the precision is slightly lower at 0.89, but this is still quite good. 

Recall:  

 For class 0, a recall of 1.00 indicates perfect recall.  

 For class 1, the recall is 0.87, which suggests that the model missed about 13% of 

actual positives for this class. 

F1-Score:  

 F1-score close to 1 is excellent, and here, both classes have high F1-scores (0.94 for 

class 0 and 0.93 for class 1), which suggests a good balance between precision and 

recall. 

Accuracy: 

 The overall accuracy of 0.9375 indicates that the model correctly predicted about 

93.75% of the total instances. This is generally considered a high accuracy rate. 

Table 8 Accuracy Result of RF 

Label  Precision  Recall  F1 score 

0 0.89 1.00  0.94 

1 1.00  0.87 0.93 

Accuracy 0.94 

 



68 | P a g e  
 

 

                   Figure 23 Performance Result of RF 

 

5.3.3.  Performance of Logistic Regression: 

Precision: 

 For class 0, the precision is 0.85. This means 85% of instances predicted as class 0 are 

indeed class 0, which is quite good though slightly lower than ideal. 

 For class 1, the precision is 1.00, indicating perfect precision; all instances predicted as 

class 1 are truly class 1. 

Recall: 

 For class 0, the recall is 1.00, indicating perfect recall; all actual class 0 instances were 

predicted correctly. 

 For class 1, the recall is 0.80. This means the model missed 20% of actual class 1 

instances, which suggests room for improvement in identifying this class. 
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F1-Score: 

 The F1-scores are 0.92 for class 0 and 0.89 for class 1. Both scores are high, 

suggesting a good balance between precision and recall, especially for class 0. 

Accuracy: 

 The overall accuracy of 0.90625 (or 90.625%) is quite strong. This indicates that the 

model correctly predicted the class for about 90.625% of the cases in the dataset. 

Table 9 Accuracy Result of LR 

Label  Precision  Recall  F1 score 

0 0.85  1.00  0.92 

1 1.00  0.80  0.89 

Accuracy 0.91 

 

 

Figure 24 Performance Result of LR 
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5.3.4. Performance of FNN: 

Precision: 

 For class 0, the precision is 0.85. This means 85% of instances predicted as class 0 are 

indeed class 0, which is quite good though slightly lower than ideal. 

 For class 1, the precision is 1.00, indicating perfect precision; all instances predicted as 

class 1 are truly class 1. 

Recall: 

 For class 0, the recall is 1.00, indicating perfect recall; all actual class 0 instances were 

predicted correctly. 

 For class 1, the recall is 0.80. This means the model missed 20% of actual class 1 

instances, which suggests room for improvement in identifying this class. 

F1-Score: 

 The F1-scores are 0.92 for class 0 and 0.89 for class 1. Both scores are high, 

suggesting a good balance between precision and recall, especially for class 0. 

Accuracy: 

 The overall accuracy of 0.97 (or 97%) is quite strong. This indicates that the model 

correctly predicted the class for about 90.625% of the cases in the dataset. 

Table 10 Accuracy Result of FNN 

Label  Precision  Recall  F1 score 

0  0.80  1.00  0.92 

1 1.00  0.80  0.89 

Accuracy 0.97 
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Figure 25 Performance Result of FNN 

 

 

5.4. Performance comparison between classifiers: 

Among all the 4 classifiers the best performance is FNN with 97% accuracy, after FNN classifier 

j48 has the best performance with 95% accuracy. Whereas RF has the 3rd highest accuracy, that 

is 94%. Logistic regression has 91% accuracy which is the lowest accuracy among all the 

classifiers. However, all the classifiers have accuracy above 90% which indicates that this 

research work presents a good detection system for Linux based malware.  
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5.5. Chapter Summary: 

We have used 4 different parameters to measure the performance of classifiers. According to 

accuracy FNN has the highest score 97% followed by j48 which has 2nd highest score 95%. 

Random forest has the 3rd highest score 94%. Logistic regression has the lowest score among all 

the other classifiers, which is 91%. 
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Chapter 6: Conclusion and Future Recommendations 

6.1. Overview 

In this last chapter we recommended some different future work aspects that can be helpful for 

future researchers. Other than that, we sum up our research work and provided a conclusion of 

the contribution this research has made in the world of cyber security, all this is covered  in this 

chapter. 

6.2. Advanced feature selection and extraction techniques. 

 Further improvements in feature selection and extraction will be necessary to increase the 

efficiency of machine learning models in malware detection. The use of state-of-the-art algorithms 

such as deep learning, particularly CNNs and RNNs, may help to uncover the complex nonlinear 

patterns in the data that traditional models gloss over. Additionally, utilizing autoencoders for 

dimensionality reduction could optimize the feature set towards the most discriminative attributes, 

which would enable more accurate prediction and quicker processing.  

6.3. Expansion to comprehensive malware detection frameworks.  

The current study deals with ransomware only, a small fraction of the malware landscape that 

targets Linux systems. It is critical to create a broader malware detection framework that can 

recognize a variety of malware threats, including zero-day exploits, spyware, and rootkits. This 

will necessitate the development of a scalable and adaptable architecture capable of 

accommodating new malware signatures and behaviors, which can be accomplished via adaptive 

learning methods that update the models continuously without human intervention.  
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6.4. Real-time detection and response systems.  

Implementing real-time detection and response systems is critical for reducing the consequences 

of malware on the infected systems. Future work might include integrating the developed 

machine learning models into existing IDS and IPS models for Linux, which would enable the 

automation of response measures such as quarantining the system, installing patches, and 

performing backups to avoid data loss. 

6.5. Joint research and development: 

The difficulty of contemporary cyber threats requires a collaborative effort in which diverse 

industries and disciplines work together. Future work will be essential, with collaboration with 

academic institutions, cybersecurity companies, and technology industry players providing 

access to a vast array of data and knowledge that can improve the research’s robustness and 

practicality. This collaboration would also facilitate the development of uniform Linux malware 

data models that are critical in the training and testing machine learning custom tools.  

6.6. Conclusion: 

The thesis has successfully constructed and tested a machine learning framework for detecting 

Linux systems ransomware, and carefully evaluated its efficacy in comparison to prior detection 

methods. The merits of using a blended analytical approach incorporating static and dynamic 

analyses are proven to be effective, with high ransom accuracy rate and high recall rate and 

precision. This achievement is a significant advancement in cybersecurity, specifically on Linux 

systems which are less commonly researched in malware detection studies. In Conclusion, the 

thesis, regarding the research problem, contributes several factors: 
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6.7. Methodological Contributions:  

This thesis has brought a distinctive method for malware detection that marries both static and 

dynamic analyses to strengthen the identification of various ransomware through the generation 

of an improved feature set that afforded to efficiently identify many ransomware types.  

Machine Learning Contributions: The paper shows a positive comparison between different 

ML classifiers which include, Logistic Regression, Random Forest and Decision Tree’s potential 

ability to address ransomware cybersecurity difficulties.  

6.7.1. Practical Contributions: I also lay down the basis for generating operational tools or 

systems to protect and enforce systems in the Linux ecosystem.  

6.7.2. Contributions to Cybersecurity: The method shortens the ransomware detection 

time and among the other benefits also retains the ransomware attack window at its 

worst, while the cost of ransomware hacking is increasing. Furthermore, the method 

is vulnerable to changes in techniques and tactics demonstrated by new ransomware, 

defending the method from change and needing another review. 

6.8. Chapter Summary: 

This chapter presents future recommendations for this research and the existing literature 

which includes advance feature selection and extraction methods, using big dataset for 

better accuracy, and creation of real time detection system. Other than this it gives 

conclusion of this research work which explains the summary of this research. 
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