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Chapter 1

Logic and Proof

In a sense, we know a lot more than we realize, because everything
that we know has consequences—logical consequences—that follow auto-
matically. If you know that all humans are mortal, and you know that
you are human, then in a sense you know that you are mortal, whether or
not you have ever considered or wanted to consider that fact. This is an
example of logical deduction: From the premises that “All humans are
mortal” and “I am human,” the conclusion that “I am mortal” can be
deduced by logic.

Logical deduction is a kind of computation. By applying rules of logic
to a given set of premises, conclusions that follow from those premises can
be generated automatically, by a computational process which could be
carried out by a computer. Once you know the premises, or are willing to
accept them for the sake of argument, you are forced—by logic—to accept
the conclusions. Still, to say that you “know” those conclusions would be
misleading. The problem is that there are too many of them (infinitely
many), and, in general, most of them are not particularly interesting. Until
you have actually made the deduction, you don’t really know the conclusion,
and knowing which of the possible chains of deduction to follow is not easy.
The art of logic is to find an interesting conclusion and a chain of logical
deductions that leads from the premises to that conclusion. Checking that
the deductions are valid is the mechanical, computational side of logic.

This chapter is mostly about the mechanics of logic. We will investigate
logic as a branch of mathematics, with its own symbols, formulas, and rules
of computation. Your object is to learn the rules of logic, to understand
why they are valid, and to develop skill in applying them. As with any
branch of mathematics, there is a certain beauty to the symbols and for-
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2 CHAPTER 1. LOGIC AND PROOF

mulas themselves. But it is the applications that bring the subject to life
for most people. We will, of course, cover some applications as we go along.
In a sense, though, the real applications of logic include much of computer
science and of mathematics itself.

Among the fundamental elements of thought, and therefore of logic, are
propositions. A proposition is a statement that has a truth value: It is
either true or false. “Grass is green” and “2 + 2 = 5” are propositions. In
the first part of this chapter, we will study propositional logic, which
takes propositions as basic and considers how they can be combined and
manipulated. This branch of logic has surprising application to the design
of the electronic circuits that make up computers.

Logic gets more interesting when we consider the internal structure of
propositions. In English, a proposition is expressed as a sentence, and, as
you know from studying grammar, sentences have parts. A simple sentence
like “Grass is green” has a subject and a predicate. The sentence says
something about its subject. The subject of “Grass is green” is grass. The
sentence says something about grass. The something that the sentence
says about its subject is the predicate. In the example, the predicate is the
phrase “is green.” Once we start working with predicates, we can create
propositions using quantifiers like “all,” “some,” and “no.” For example,
working with the predicate “is above average,” we can move from simple
propositions like “Johnny is above average” to “All children are above av-
erage” or to “No child is above average” or to the rather more realistic
“Some children are above average.” Logical deduction usually deals with
quantified statements, as shown by the basic example of human mortality
with which we began this chapter. Logical deduction will be a major topic
of this chapter; under the name of proof , it will be the last major topic of
this chapter, and a major tool for the rest of this book.

1.1 Propositional Logic

A proposition is a statement which is either true or false. In propositional
logic, we take propositions as basic and see what we can do with them.
Since this is mathematics, we need to be able to talk about propositions
without saying which particular propositions we are talking about, so we
use symbolic names to represent them. We will always use lowercase letters
such as p, q, and r to represent propositions. A letter used in this way is
called a propositional variable. Remember that when I say something
like “Let p be a proposition,” I mean “For the rest of this discussion, let the
symbol p stand for some particular statement, which is either true or false
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(although I am not at the moment making any assumption about which it
is).” The discussion has mathematical generality in that p can represent
any statement, and the discussion will be valid no matter which statement
it represents.

What we do with propositions is combine them with logical operators.
A logical operator can be applied to one or more propositions to produce
a new proposition. The truth value of the new proposition is completely
determined by the operator and by the truth values of the propositions to
which it is applied.1 In English, logical operators are represented by words
such as “and,” “or,” and “not.” For example, the proposition “I wanted
to leave and I left” is formed from two simpler propositions joined by the
word “and.” Adding the word “not” to the proposition “I left” gives “I did
not leave” (after a bit of necessary grammatical adjustment).

But English is a little too rich for mathematical logic. When you read
the sentence “I wanted to leave and I left,” you probably see a connotation of
causality: I left because I wanted to leave. This implication does not follow
from the logical combination of the truth values of the two propositions
“I wanted to leave” and “I left.” Or consider the proposition “I wanted
to leave but I did not leave.” Here, the word “but” has the same logical
meaning as the word “and,” but the connotation is very different. So, in
mathematical logic, we use symbols to represent logical operators. These
symbols do not carry any connotation beyond their defined logical meaning.
The logical operators corresponding to the English words “and,” “or,”and
“not” are ∧, ∨, and ¬.

Definition 1.1. Let p and q be propositions. Then p∨ q, p∧ q, and ¬p are
propositions, whose truth values are given by the rules:

• p ∧ q is true when both p is true and q is true, and in no other case.

• p ∨ q is true when either p is true, or q is true, or both p and q are
true, and in no other case.

• ¬p is true when p is false, and in no other case.

The operators ∧, ∨, and ¬ are referred to as conjunction, disjunction,
and negation, respectively. (Note that p ∧ q is read as “p and q,” p ∨ q is
read as “p or q,” and ¬p is read as “not p.”)

1It is not always true that the truth value of a sentence can be determined from the
truth values of its component parts. For example, if p is a proposition, then “George
Bush believes p” is also a proposition, so “George Bush believes” is some kind of operator.
However, it does not count as a logical operator because just from knowing whether or
not p is true, we get no information at all about whether “George Bush believes p” is
true.
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These operators can be used in more complicated expressions, such as
p∧ (¬q) or (p∨ q)∧ (q ∨ r). A proposition made up of simpler propositions
and logical operators is called a compound proposition. Parentheses
can be used in compound expressions to indicate the order in which the
operators are to be evaluated. In the absence of parentheses, the order of
evaluation is determined by precedence rules. For the logical operators
defined above, the rules are that ¬ has higher precedence that ∧, and ∧ has
precedence over ∨. This means that in the absence of parentheses, any ¬
operators are evaluated first, followed by any ∧ operators, followed by any
∨ operators.

For example, the expression ¬p ∨ q ∧ r is equivalent to the expression
(¬p)∨(q∧r), while p∨q∧q∨r is equivalent to p∨(q∧q)∨r. As a practical
matter, when you make up your own expressions, it is usually better to
put in parentheses to make your meaning clear. Remember that even if
you leave out parentheses, your expression has an unambiguous meaning.
If you say “¬p ∧ q” when what you meant was “¬(p ∧ q),” you’ve got it
wrong!

This still leaves open the question of which of the ∧ operators in the
expression p ∧ q ∧ r is evaluated first. This is settled by the following
rule: When several operators of equal precedence occur in the absence of
parentheses, they are evaluated from left to right. Thus, the expression
p ∧ q ∧ r is equivalent to (p ∧ q) ∧ r rather than to p ∧ (q ∧ r). In this
particular case, as a matter of fact, it doesn’t really matter which ∧ operator
is evaluated first, since the two compound propositions (p∧q)∧r and p∧(q∧
r) always have the same value, no matter what logical values the component
propositions p, q, and r have. We say that ∧ is an associative operation.
We’ll see more about associativity and other properties of operations in the
next section.

Suppose we want to verify that, in fact, (p ∧ q) ∧ r and p ∧ (q ∧ r) do
always have the same value. To do so, we have to consider all possible
combinations of values of p, q, and r, and check that for all such combina-
tions, the two compound expressions do indeed have the same value. It is
convenient to organize this computation into a truth table. A truth table
is a table that shows the value of one or more compound propositions for
each possible combination of values of the propositional variables that they
contain. Figure 1.1 is a truth table that compares the value of (p∧ q)∧ r to
the value of p∧ (q ∧ r) for all possible values of p, q, and r. There are eight
rows in the table because there are exactly eight different ways in which
truth values can be assigned to p, q, and r.2 In this table, we see that the

2In general, if there are n variables, then there are 2n different ways to assign truth
values to the variables. This might become clear to you if you try to come up with a
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p q r p ∧ q q ∧ r (p ∧ q) ∧ r p ∧ (q ∧ r)

false false false false false false false

false false true false false false false
false true false false false false false
false true true false true false false
true false false false false false false
true false true false false false false
true true false true false false false
true true true true true true true

Figure 1.1: A truth table that demonstrates the logical equivalence
of (p ∧ q) ∧ r and p ∧ (q ∧ r). The fact that the last two columns
of this table are identical shows that these two expressions have the
same value for all eight possible combinations of values of p, q, and
r.

last two columns, representing the values of (p ∧ q) ∧ r and p ∧ (q ∧ r), are
identical.

More generally, we say that two compound propositions are logically
equivalent if they always have the same value, no matter what truth values
are assigned to the propositional variables that they contain. If the number
of propositional variables is small, it is easy to use a truth table to check
whether or not two propositions are logically equivalent.

There are other logical operators besides ∧, ∨, and ¬. We will consider
the conditional operator, →, the biconditional operator, ↔, and the
exclusive or operator, ⊕.3 These operators can be completely defined
by a truth table that shows their values for the four possible combinations
of truth values of p and q.

Definition 1.2. For any propositions p and q, we define the propositions
p → q, p ↔ q, and p ⊕ q according to the truth table:

scheme for systematically listing all possible sets of values. If not, you’ll find a rigorous
proof of the fact later in this chapter.

3Note that the symbols used in this book for the logical operators are not universal.
While ∧, ∨, and → are fairly standard, ¬ is often replaced by ∼ and ↔ is sometimes
represented by ≡ or ⇔. There is even less standardization of the exclusive or operator,
but that operator is generally not so important as the others.
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p q p → q p ↔ q p ⊕ q

false false true true false

false true true false true
true false false false true
true true true true false

When these operators are used in expressions, in the absence of paren-
theses to indicate order of evaluation, we use the following precedence rules:
The exclusive or operator, ⊕, has the same precedence as ∨. The condi-
tional operator, →, has lower precedence than ∧, ∨, ¬, and ⊕, and is
therefore evaluated after them. Finally, the biconditional operator, ↔,
has the lowest precedence and is therefore evaluated last. For example,
the expression “p → q ∧ r ↔ ¬p ⊕ s” is evaluated as if it were written
“(p → (q ∧ r)) ↔ ((¬p) ⊕ s).”

In order to work effectively with the logical operators, you need to know
more about their meaning and how they relate to ordinary English expres-
sions.

The proposition p → q is called an implication or a conditional. It
is usually read as “p implies q.” In English, p → q is often expressed as “if
p then q.” For example, if p represents the proposition “Bill Gates is poor”
and q represents “the moon is made of green cheese,” then p → q could be
expressed in English as “If Bill Gates is poor, then the moon is made of
green cheese.” In this example, p is false and q is also false. Checking the
definition of p → q, we see that p → q is a true statement. Most people
would agree with this. It’s worth looking at a similar example in more
detail. Suppose that I assert that “If the Mets are a great team, then I’m
the king of France.” This statement has the form m → k where m is the
proposition “the Mets are a great team” and k is the proposition “I’m the
king of France.” Now, demonstrably I am not the king of France, so k is
false. Since k is false, the only way for m → k to be true is for m to be false
as well. (Check the definition of → in the table!) So, by asserting m → k,
I am really asserting that the Mets are not a great team.

Or consider the statement, “If the party is on Tuesday, then I’ll be
there.” What am I trying to say if I assert this statement? I am asserting
that p → q is true, where p represents “The party is on Tuesday” and q
represents “I will be at the party.” Suppose that p is true, that is, the party
does in fact take place on Tuesday. Checking the definition of →, we see
that in the only case where p is true and p → q is true, q is also true. So
from the truth of “If the party is on Tuesday, then I will be at the party”
and “The party is in fact on Tuesday,” you can deduce that “I will be at
the party” is also true. But suppose, on the other hand, that the party is
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actually on Wednesday. Then p is false. When p is false and p → q is true,
the definition of p → q allows q to be either true or false. So, in this case,
you can’t make any deduction about whether or not I will be at the party.
The statement “If the party is on Tuesday, then I’ll be there” doesn’t assert
anything about what will happen if the party is on some other day than
Tuesday.

The implication (¬q) → (¬p) is called the contrapositive of p → q. An
implication is logically equivalent to its contrapositive. The contrapositive
of “If this is Tuesday, then we are in Belgium” is “If we aren’t in Belgium,
then this isn’t Tuesday.” These two sentences assert exactly the same thing.

Note that p → q is not logically equivalent to q → p. The implication
q → p is called the converse of p → q. The converse of “If this is Tuesday,
then we are in Belgium” is “If we are in Belgium, then this is Tuesday.” Note
that it is possible for either one of these statements to be true while the other
is false. In English, I might express the fact that both statements are true by
saying “If this is Tuesday, then we are in Belgium, and conversely.” In logic,
this would be expressed with a proposition of the form (p → q) ∧ (q → p).

The biconditional operator is closely related to the conditional operator.
In fact, p ↔ q is logically equivalent to (p → q)∧ (q → p). The proposition
p ↔ q is usually read as “p if and only if q.” (The “p if q” part represents
q → p, while “p only if q” is another way of asserting that p → q.) It
could also be expressed as “if p then q, and conversely.” Occasionally in
English, “if. . . then” is used when what is really meant is “if and only if.”
For example, if a parent tells a child, “If you are good, Santa will bring you
toys,” the parent probably really means to say “Santa will bring you toys
if and only if you are good.” (The parent would probably not respond well
to the child’s perfectly logical plea “But you never said what would happen
if I wasn’t good!”)

Finally, we turn to the exclusive or operator. The English word “or”
is actually somewhat ambiguous. The two operators ⊕ and ∨ express the
two possible meanings of this word. The proposition p∨ q can be expressed
unambiguously as “p or q, or both,” while p ⊕ q stands for “p or q, but not
both.” If a menu says that you can choose soup or salad, it doesn’t mean
that you can have both. In this case, “or” is an exclusive or. On the other
hand, in “You are at risk of heart disease if you smoke or drink,” the or is
inclusive since you certainly don’t get off the hook if you both smoke and
drink. In mathematics, the word “or” is always taken in the inclusive sense
of p ∨ q.

Now, any compound proposition that uses any of the operators →, ↔,
and ⊕ can be rewritten as a logically equivalent proposition that uses only
∧, ∨, and ¬. It is easy to check that p → q is logically equivalent to (¬p)∨q.
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(Just make a truth table for (¬p) ∨ q.) Similarly, p ↔ q can be expressed
as ((¬p) ∨ q) ∧ ((¬q) ∨ p), So, in a strict logical sense, →, ↔, and ⊕ are
unnecessary. (Nevertheless, they are useful and important, and we won’t
give them up.)

Even more is true: In a strict logical sense, we could do without the
conjunction operator ∧. It’s easy to check that p ∧ q is logically equivalent
to ¬(¬p∨¬q), so any expression that uses ∧ can be rewritten as one that uses
only ¬ and ∨. Alternatively, we could do without ∨ and write everything
in terms of ¬ and ∧.

Certain types of proposition will play a special role in our further work
with logic. In particular, we define tautologies and contradictions as follows:

Definition 1.3. A compound proposition is said to be a tautology if
and only if it is true for all possible combinations of truth values of the
propositional variables which it contains. A compound proposition is said
to be a contradiction if and only if it is false for all possible combinations
of truth values of the propositional variables which it contains.

For example, the proposition ((p∨ q)∧¬q) → p is a tautology. This can
be checked with a truth table:

p q p ∨ q ¬q (p ∨ q) ∧ ¬q ((p ∨ q) ∧ ¬q) → p

false false false true false true

false true true false false true
true false true true true true
true true true false false true

The fact that all entries in the last column are true tells us that this
expression is a tautology. Note that for any compound proposition P , P is
a tautology if and only if ¬P is a contradiction. (Here and in the future,
I use uppercase letters to represent compound propositions. P stands for
any formula made up of simple propositions, propositional variables, and
logical operators.) Logical equivalence can be defined in terms of tautology:

Definition 1.4. Two compound propositions, P and Q, are said to be
logically equivalent if and only if the proposition P ↔ Q is a tautology.

The assertion that P is logically equivalent to Q will be expressed sym-
bolically as “P ≡ Q.” For example, (p → q) ≡ (¬p ∨ q), and p ⊕ q ≡
(p ∨ q) ∧ ¬(p ∧ q).
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Exercises

1. Give the three truth tables that define the logical operators ∧, ∨, and ¬.

2. Insert parentheses into the following compound propositions to show the order
in which the operators are evaluated:

a) ¬p ∨ q b) p ∧ q ∨ ¬p c) p ∨ q ∧ r d) p ∧ ¬q ∨ r

3. List the 16 possible combinations of truth values for the four propositional
variables s, p, q, r. Try to find a systematic way to list the values. (Hint: Start
with the eight combinations of values for p, q, and r, as given in the truth
table in Figure 1.1. Now, explain why there are 32 possible combinations of
values for five variables, and describe how they could be listed systematically.)

4. Some of the following compound propositions are tautologies, some are con-
tradictions, and some are neither. In each case, use a truth table to decide to
which of these categories the proposition belongs:

a) (p ∧ (p → q)) → q b) ((p → q) ∧ (q → r)) → (p → r)
c) p ∧ (¬p) d) (p ∨ q) → (p ∧ q)
e) p ∨ (¬p) f) (p ∧ q) → (p ∨ q)

5. Use truth tables to show that each of the following propositions is logically
equivalent to p ↔ q.

a) (p → q) ∧ (q → p) b) (¬p) ↔ (¬q)
c) (p → q) ∧ ((¬p) → (¬q)) d) ¬(p ⊕ q)

6. Is → an associative operation? This is, is (p → q) → r logically equivalent to
p → (q → r)? Is ↔ associative?

7. Let p represent the proposition “You leave” and let q represent the proposition
“I leave.” Express the following sentences as compound propositions using p

and q, and show that they are logically equivalent:
a) Either you leave or I do. (Or both!)
b) If you don’t leave, I will.

8. Suppose that m represents the proposition “The Earth moves,” c represents
“The Earth is the center of the universe,” and g represents “Galileo was rail-
roaded.” Translate each of the following compound propositions into English:

a) ¬g ∧ c b) m → ¬c

c) m ↔ ¬c d) (m → g) ∧ (c → ¬g)

9. Give the converse and the contrapositive of each of the following English
sentences:

a) If you are good, Santa brings you toys.
b) If the package weighs more than one ounce, then you need extra postage.
c) If I have a choice, I don’t eat eggplant.

10. In an ordinary deck of fifty-two playing cards, for how many cards is it true

a) that “This card is a ten and this card is a heart”?
b) that “This card is a ten or this card is a heart”?
c) that “If this card is a ten, then this card is a heart”?



10 CHAPTER 1. LOGIC AND PROOF

d) that “This card is a ten if and only if this card is a heart”?

11. Define a logical operator ↓ so that p ↓ q is logically equivalent to ¬(p ∨ q).
(This operator is usually referred to as “nor,” short for “not or”). Show that
each of the propositions ¬p, p ∧ q, p ∨ q, p → q, p ↔ q, and p ⊕ q can be
rewritten as a logically equivalent proposition that uses ↓ as its only operator.

1.2 Boolean Algebra

So far we have discussed how to write and interpret propositions. This
section deals with manipulating them. For this, we need algebra. Ordinary
algebra, of the sort taught in high school, is about manipulating numbers,
variables that represent numbers, and operators such as + and × that
apply to numbers. Now, we need an algebra that applies to logical values,
propositional variables, and logical operators. The first person to think
of logic in terms of algebra was the mathematician, George Boole, who
introduced the idea in a book that he published in 1854. The algebra of
logic is now called Boolean algebra in his honor.

The algebra of numbers includes a large number of rules for manipu-
lating expressions. The distributive law, for example, says that x(y + z) =
xy + xz, where x, y, and z are variables that stand for any numbers or
numerical expressions. This law means that whenever you see something
of the form xy + xz in a numerical expression, you can substitute x(y + z)
without changing the value of the expression, and vice versa. Note that the
equals sign in x(y + z) = xy + xz means “has the same value as, no matter
what numerical values x, y, and z have.”

In Boolean algebra, we work with logical values instead of numerical
values. There are only two logical values, true and false. We will write
these values as T and F. The symbols T and F play a similar role in Boolean
algebra to the role that constant numbers such as 1 and 3.14159 play in
ordinary algebra. Instead of the equals sign, Boolean algebra uses logical
equivalence, ≡, which has essentially the same meaning.4 For example, for
propositions p, q, and r, the ≡ operator in p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r means
“has the same value as, no matter what logical values p, q, and r have.”

Many of the rules of Boolean algebra are fairly obvious, if you think a
bit about what they mean. Even those that are not obvious can be verified
easily by using a truth table. Figure 1.2 lists the most important of these

4In ordinary algebra, it’s easy to be confused by the equals sign, because it has two
very different roles. In an identity such as the distributive law, it means “is always equal
to.” On the other hand, an equation such as x2 + 3x = 4 is a statement that might or
might not be true, depending on the value of x. Boolean algebra has two operators, ≡
and ↔, that play roles similar to the two roles of the equals sign.
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Double negation ¬(¬p) ≡ p

Excluded middle p ∨ ¬p ≡ T
Contradiction p ∧ ¬p ≡ F
Identity laws T ∧ p ≡ p

F ∨ p ≡ p

Idempotent laws p ∧ p ≡ p

p ∨ p ≡ p

Commutative laws p ∧ q ≡ q ∧ p

p ∨ q ≡ q ∨ p

Associative laws (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributive laws p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

DeMorgan’s laws ¬(p ∧ q) ≡ (¬p) ∨ (¬q)

¬(p ∨ q) ≡ (¬p) ∧ (¬q)

Figure 1.2: Laws of Boolean Algebra. These laws hold for any propo-
sitions p, q, and r.

laws. You will notice that all these laws, except the first, come in pairs:
Each law in the pair can be obtained from the other by interchanging ∧
with ∨ and T with F. This cuts down on the number of facts you have to
remember.5

Just as an example, let’s verify the first rule in the table, the Law of
Double Negation. This law is just the old, basic grammar rule that two
negatives make a positive. Although this rule is questionable as it applies
to English as it is actually used—no matter what the grammarian says,
“I can’t get no satisfaction” doesn’t really mean “I can get satisfaction”—
the validity of the rule in logic can be verified just by computing the two
possible cases: when p is true and when p is false. When p is true, then
by the definition of the ¬ operator, ¬p is false. But then, again by the

5It is also an example of a more general fact known as duality, which asserts that
given any tautology that uses only the operators ∧, ∨, and ¬, another tautology can be
obtained from it by interchanging ∧ with ∨ and T with F. We won’t attempt to prove
this here.
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definition of ¬, the value of ¬(¬p) is true, which is the same as the value
of p. Similarly, in the case where p is false, ¬(¬p) is also false. Organized
into a truth table, this argument takes the rather simple form

p ¬p ¬(¬p)

true false true

false true false

The fact that the first and last columns are identical shows the logical
equivalence of p and ¬(¬p). The point here is not just that ¬(¬p) ≡ p,
but also that this logical equivalence is valid because it can be verified
computationally based just on the relevant definitions. Its validity does
not follow from the fact that “it’s obvious” or “it’s a well-known rule of
grammar.” Students often ask “Why do I have to prove something when
it’s obvious.” The point is that logic—and mathematics more generally—is
its own little world with its own set of rules. Although this world is related
somehow to the real world, when you say that something is obvious (in the
real world), you aren’t playing by the rules of the world of logic. The real
magic of mathematics is that by playing by its rules, you can come up with
things that are decidedly not obvious, but that still say something about
the real world—often, something interesting and important.

Each of the rules in Figure 1.2 can be verified in the same way, by
making a truth table to check all the possible cases.

It’s important to understand that the propositional variables in the laws
of Boolean algebra can stand for any propositions, including compound
propositions. It is not just true, as the Double Negation Law states, that
¬(¬p) ≡ p. It is also true that ¬(¬q) ≡ q, that ¬(¬(p ∧ q)) ≡ (p ∧ q),
that ¬(¬(p → (q ∧ ¬p))) ≡ (p → (q ∧ ¬p)), and an infinite number of
other statements of the same form. Here, a “statement of the same form”
is one that can be obtained by substituting something for p in both places
where it occurs in ¬(¬p) ≡ p. How can I be sure that all these infinitely
many statements are valid when all that I’ve checked is one little two-line
truth table? The answer is that any given proposition, Q, no matter how
complicated, has a particular truth value, either true or false. So, the
question of the validity of ¬(¬Q) ≡ Q always reduces to one of the two
cases I already checked in the truth table. (Note that for this argument to
be valid, the same Q must be substituted for p in every position where it
occurs.) While this argument may be “obvious,” it is not exactly a proof,
but for now we will just accept the validity of the following theorem:

Theorem 1.1 (First Substitution Law). Suppose that Q is any proposition,
and that p is a propositional variable. Consider any tautology. If (Q) is
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substituted for p in all places where p occurs in the tautology, then the result
is also a tautology.

Since logical equivalence is defined in terms of tautology, it is also true
that when (Q) is substituted for p in a logical equivalence, the result is
again a logical equivalence.6

The First Substitution Law lets you do algebra! For example, you can
substitute p → q for p in the law of double negation, ¬(¬p) ≡ p. This al-
lows you to “simplify” the expression ¬(¬(p → q)) to p → q with confidence
that the resulting expression has the same logical value as the expression
you started with. (That’s what it means for ¬(¬(p → q)) and p → q to be
logically equivalent.) You can play similar tricks with all the laws in Fig-
ure 1.2. Even more important is the Second Substitution Law, which says
that you can substitute an expression for a logically equivalent expression,
wherever it occurs. Once again, we will accept this as a theorem without
trying to prove it here. It is surprisingly hard to put this law into words:

Theorem 1.2 (Second Substitution Law). Suppose that P and Q are any
propositions such that P ≡ Q. Suppose that R is any compound proposition
in which (P ) occurs as a subproposition. Let R′ be the proposition that is
obtained by substituting (Q) for that occurrence of (P ) in R. Then R ≡ R′.

Note that in this case, the theorem does not require (Q) to be sub-
stituted for every occurrence of (P ) in R. You are free to substitute for
one, two, or as many occurrences of (P ) as you like, and the result is still
logically equivalent to R.

The Second Substitution Law allows us to use the logical equivalence
¬(¬p) ≡ p to “simplify” the expression q → (¬(¬p)) by substituting (p)
for (¬(¬p)). The resulting expression, q → (p), or just q → p without
the parentheses, is logically equivalent to the original q → (¬(¬p)). Once
again, we have to be careful about parentheses: The fact that p ∨ p ≡ p
does not allow us to rewrite q ∧ p ∨ p ∧ r as q ∧ p ∧ r. The problem is that
q ∧ p ∨ p ∧ r means (q ∧ p) ∨ (p ∧ r), so that (p ∨ p) is not a subexpression.
So even though in practice we won’t always write all the parentheses, you
always have to be aware of where the parentheses belong.

The final piece of algebra in Boolean algebra is the observation that we
can chain logical equivalences together. That is, from P ≡ Q and Q ≡ R,

6I’ve added parentheses around Q here for technical reasons. Sometimes, the paren-
theses are necessary to make sure that Q is evaluated as a whole, so that its final value
is used in place of p. As an example of what can go wrong, consider q ∧ r. If this is
substituted literally for p in ¬(¬p), without parentheses, the result is ¬(¬q ∧ r). But
this expression means ¬((¬q) ∧ r), which is not equivalent to q ∧ r.
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it follows that P ≡ R. (This is really just an easy consequence of the Sec-
ond Substitution Law, if you think about it and remember Definition 1.4.)
This means that we can show that two compound propositions are logically
equivalent by finding a chain of logical equivalences that lead from one to
the other. For example:

p ∧ (p → q) ≡ p ∧ (¬p ∨ q) definition of p → q, Theorem 1.2

≡ (p ∧ ¬p) ∨ (p ∧ q) Distributive Law

≡ F ∨ (p ∧ q) Law of Contradiction, Theorem 1.2

≡ (p ∧ q) Identity Law

Each step in the chain has its own justification. In several cases, a substitu-
tion law is used without stating as much. In the first line, for example, the
definition of p → q is that p → q ≡ ¬p ∨ q. The Second Substitution Law
allows us to substitute (¬p ∨ q) for (p → q). In the last line, we implicitly
applied the First Substitution Law to the Identity Law, F∨p ≡ p, to obtain
F ∨ (p ∧ q) ≡ (p ∧ q).

The chain of equivalences in the above example allow us to conclude
that p ∧ (p → q) is logically equivalent to p ∧ q. This means that if you
were to make a truth table for these two expressions, the truth values in
the column for p ∧ (p → q) would be identical to those in the column for
p ∧ q. We know this without actually making the table. In this case, the
table would only be four lines long and easy enough to make. But Boolean
algebra can be applied in cases where the number of propositional variables
is too large for a truth table to be practical.

Let’s do another example. Recall that a compound proposition is a
tautology if it is true for all possible combinations of truth values of the
propositional variables that it contains. But another way of saying the same
thing is that P is a tautology if P ≡ T. So, we can prove that a compound
proposition, P , is a tautology by finding a chain of logical equivalences
leading from P to T. For example:

((p ∨ q) ∧ ¬p) → q

≡ (¬((p ∨ q) ∧ ¬p)) ∨ q definition of →
≡ (¬(p ∨ q) ∨ ¬(¬p)) ∨ q DeMorgan’s Law, Theorem 1.2

≡ (¬(p ∨ q) ∨ p) ∨ q Double Negation, Theorem 1.2

≡ (¬(p ∨ q)) ∨ (p ∨ q) Associative Law for ∨
≡ T Law of Excluded Middle
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From this chain of equivalences, we can conclude that ((p∨ q)∧¬p) → q is
a tautology.

Now, it takes some practice to look at an expression and see which rules
can be applied to it; to see (¬(p ∨ q)) ∨ (p∨ q) as an application of the law
of the excluded middle for example, you need to mentally substitute (p∨ q)
for p in the law as it is stated in Figure 1.2. Often, there are several rules
that apply, and there are no definite guidelines about which one you should
try. This is what makes algebra something of an art.

It is certainly not true that all possible rules of Boolean algebra are
given in Figure 1.2. For one thing, there are many rules that are easy
consequences of the rules that are listed there. For example, although the
table asserts only that F∨ p ≡ p, it is also true that p∨F ≡ p. This can be
checked directly or by a simple calculation:

p ∨ F ≡ F ∨ p Commutative Law

≡ p Identity Law as given in the table

Additional rules can be obtained by applying the Commutative Law to
other rules in the table, and we will use such rules freely in the future.

Another sort of easy extension can be applied to the Associative Law,
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r). The law is stated for the ∨ operator applied to
three terms, but it generalizes to four or more terms. For example

((p ∨ q) ∨ r) ∨ s

≡ (p ∨ q) ∨ (r ∨ s) by the Associative Law for three terms

≡ p ∨ (q ∨ (r ∨ s)) by the Associative Law for three terms

We will, of course, often write this expression as p ∨ q ∨ r ∨ s, with no
parentheses at all, knowing that wherever we put the parentheses the value
is the same.

One other thing that you should keep in mind is that rules can be
applied in either direction. The Distributive Law, for example, allows you
to distribute the p in p ∨ (q ∧ ¬p) to get (p ∨ q) ∧ (p ∨ ¬p). But it can
also be used in reverse to “factor out” a term, as when you start with
(q∨(p → q))∧(q∨(q → p)) and factor out the q to get q∨((p → q)∧(q → p)).

So far in this section, I have been working with the laws of Boolean alge-
bra without saying much about what they mean or why they are reasonable.
Of course, you can apply the laws in calculations without understanding
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them. But if you want to figure out which calculations to do, you need some
understanding. Most of the laws are clear enough with a little thought. For
example, if we already know that q is false, then p ∨ q will be true when p
is true and false when p is false. That is, p ∨ F has the same logical value
as p. But that’s just what the Identity Law for ∨ says. A few of the laws
need more discussion.

The Law of the Excluded Middle, p ∨ ¬p ≡ T, says that given any
proposition p, at least one of p or ¬p must be true. Since ¬p is true exactly
when p is false, this is the same as saying that p must be either true or
false. There is no middle ground.7 The Law of Contradiction, p ∧ ¬p ≡ F,
says that it is not possible for both p and ¬p to be true. Both of these rules
are obvious.

The Distributive Laws cannot be called obvious, but a few examples can
show that they are reasonable. Consider the statement, “This card is the
ace of spades or clubs.” Clearly, this is equivalent to “This card is the ace
of spaces or this card is the ace of clubs.” But this is just an example of the
first distributive law! For, let a represent the proposition “This card is an
ace,” let s represent “This card is a spade,” and let c represent “This card
is a club.” Then “This card is the ace of spades or clubs” can be translated
into logic as a∧ (s∨ c), while “This card is the ace of spades or this card is
the ace of clubs” becomes (a∧s)∨ (a∧ c). And the distributive law assures
us that a ∧ (s ∨ c) ≡ (a ∧ s) ∨ (a ∧ c). The second distributive law tells us,
for example, that “This card is either a joker or is the ten of diamonds” is
logically equivalent to “This card is either a joker or a ten, and it is either a
joker or a diamond.” That is, j ∨ (t∧d) ≡ (j ∨ t)∧ (j ∨d). The distributive
laws are powerful tools and you should keep them in mind whenever you
are faced with a mixture of ∧ and ∨ operators.

DeMorgan’s Laws must also be less than obvious, since people often get
them wrong. But they do make sense. When considering ¬(p ∧ q), you
should ask yourself, how can “p and q” fail to be true. It will fail to be true
if either p is false or if q is false (or both). That is, ¬(p∧ q) is equivalent to
(¬p)∨(¬q). Consider the sentence “A raven is large and black.” If a bird is
not large and black, then it is not a raven. But what exactly does it mean
to be “not (large and black)”? How can you tell whether the assertion “not
(large and black)” is true of something? This will be true if it is either
not large or not black. (It doesn’t have to be both—it could be large and

7In propositional logic, this is easily verified with a small truth table. But there is
a surprising amount of argument about whether this law is valid in all situations. In
the real world, there often seems to be a gray area between truth and falsity. Even in
mathematics, there are some people who think there should be a third truth value, one
that means something like “unknown” or “not proven.” But the mathematicians who
think this way tend to be considered a bit odd by most other mathematicians.
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white, it could be small and black.) Similarly, for “p or q” to fail to be true,
both p and q must be false. That is, ¬(p ∨ q) is equivalent to (¬p) ∧ (¬q).
This is DeMorgan’s second law.

Recalling that p → q is equivalent to (¬p)∨q, we can apply DeMorgan’s
law to obtain a formula for the negation an implication:

¬(p → q) ≡ ¬((¬p) ∨ q)

≡ (¬(¬p)) ∧ (¬q)

≡ p ∧ ¬q

That is, p → q is false exactly when both p is true and q is false. For
example, the negation of “If you have an ace, you win” is “You have an
ace, and you don’t win.” Think of it this way: if you had an ace and you
didn’t win, then the statement “If you have an ace, you win” was not true.

Exercises

1. Construct truth tables to demonstrate the validity of each of the distributive
laws.

2.
a) Construct truth tables to demonstrate that ¬(p ∧ q) is not logically

equivalent to (¬p) ∧ (¬q).
b) Construct truth tables to demonstrate that ¬(p ∨ q) is not logically

equivalent to (¬p) ∨ (¬q).
c) Construct truth tables to demonstrate the validity of both DeMorgan’s

Laws.

3. Construct truth tables to demonstrate that ¬(p → q) is not logically equiva-
lent to any of the following.

a) (¬p) → (¬q)
b) (¬p) → q

c) p → (¬q)
Refer back to this section for a formula that is logically equivalent to ¬(p → q).

4. Is ¬(p ↔ q) logically equivalent to (¬p) ↔ (¬q)?

5. In the algebra of numbers, there is a distributive law of multiplication over
addition: x(y + z) = xy +xz. What would a distributive law of addition over
multiplication look like? Is it a valid law in the algebra of numbers?

6. The distributive laws given in Figure 1.2 are sometimes called the left distribu-
tive laws. The right distributive laws say that (p∨ q)∧ r ≡ (p∧ r)∨ (q∧ r)
and that (p ∧ q) ∨ r ≡ (p ∨ r) ∧ (q ∨ r). Show that the right distributive laws
are also valid laws of Boolean algebra. (Note: In practice, both the left and
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the right distributive laws are referred to simply as the distributive laws, and
both can be used freely in proofs.)

7. Show that p∧ (q ∨ r ∨ s) ≡ (p∧ q)∨ (p∧ r)∨ (p∧ s) for any propositions p, q,
r, and s. In words, we can say that conjunction distributes over a disjunction
of three terms. (Recall that the ∧ operator is called conjunction and ∨ is
called disjunction.) Translate into logic and verify the fact that conjunction
distributes over a disjunction of four terms. Argue that, in fact, conjunction
distributes over a disjunction of any number of terms.

8. There are two additional basic laws of logic, involving the two expression p∧F
and p ∨ T. What are the missing laws? Show that your answers are, in fact,
laws.

9. For each of the following pairs of propositions, show that the two propositions
are logically equivalent by finding a chain of equivalences from one to the
other. State which definition or law of logic justifies each equivalence in the
chain.

a) p ∧ (q ∧ p), p ∧ q b) (¬p) → q, p ∨ q

c) (p ∨ q) ∧ ¬q, p ∧ ¬q d) p → (q → r), (p ∧ q) → r

e) (p → r) ∧ (q → r), (p ∨ q) → r f) p → (p ∧ q), p → q

10. For each of the following compound propositions, find a simpler proposition
that is logically equivalent. Try to find a proposition that is as simple as
possible.

a) (p ∧ q) ∨ ¬q b) ¬(p ∨ q) ∧ p c) p → ¬p

d) ¬p ∧ (p ∨ q) e) (q ∧ p) → q f) (p → q) ∧ (¬p → q)

11. Express the negation of each of the following sentences in natural English:
a) It is sunny and cold.
b) I will have cake or I will have pie.
c) If today is Tuesday, this is Belgium.
d) If you pass the final exam, you pass the course.

12. Apply one of the laws of logic to each of the following sentences, and rewrite
it as an equivalent sentence. State which law you are applying.

a) I will have coffee and cake or pie.
b) He has neither talent nor ambition.
c) You can have spam, or you can have spam.

1.3 Application: Logic Circuits

Computers have a reputation—not always deserved—for being “logical.”
But fundamentally, deep down, they are made of logic in a very real sense.
The building blocks of computers are logic gates, which are electronic
components that compute the values of simple propositions such as p ∧ q
and ¬p. (Each gate is in turn built of even smaller electronic components
called transistors, but this needn’t concern us here.)
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A wire in a computer can be in one of two states, which we can think
of as being on and off. These two states can be naturally associated with
the Boolean values T and F. When a computer computes, the multitude
of wires inside it are turned on and off in patterns that are determined by
certain rules. The rules involved can be most naturally expressed in terms
of logic. A simple rule might be, “turn wire C on whenever wire A is on
and wire B is on.” This rule can be implemented in hardware as an AND
gate. An and gate is an electronic component with two input wires and
one output wire, whose job is to turn its output on when both of its inputs
are on and to turn its output off in any other case. If we associate “on”
with T and “off” with F, and if we give the names A and B to the inputs of
the gate, then the gate computes the value of the logical expression A∧B.
In effect, A is a proposition with the meaning “the first input is on,” and B
is a proposition with the meaning “the second input is on.” The and gate
functions to ensure that the output is described by the proposition A ∧ B.
That is, the output is on if and only if the first input is on and the second
input is on.

An OR gate is an electronic component with two inputs and one output
which turns its output on if either (or both) of its inputs is on. If the inputs
are given names A and B, then the or gate computes the logical value of
A∨B. A NOT gate has one input and one output, and it turns its output
off when the input is on and on when the input is off. If the input is named
A, then the not gate computes the value of ¬A.

Other types of logic gates are, of course, possible. Gates could be made
to compute A → B or A⊕B, for example. However, any computation that
can be performed by logic gates can be done using only and, or, and not

gates, as we will see below. In practice, nand gates and nor gates, which
compute the values of ¬(A ∧ B) and ¬(A ∨ B) respectively, are often used
because they are easier to build from transistors than and and or gates.

The three types of logic gates are represented by standard symbols,
as shown in Figure 1.3. Since the inputs and outputs of logic gates are
just wires carrying on/off signals, logic gates can be wired together by
connecting outputs from some gates to inputs of other gates. The result is
a logic circuit. An example is also shown in Figure 1.3.

The logic circuit in the figure has three inputs, labeled A, B, and C. The
circuit computes the value of the compound proposition (¬A)∧ (B ∨¬(A∧
C)). That is, when A represents the proposition “the input wire labeled A
is on,” and similarly for B and C, then the output of the circuit is on if
and only if the value of the compound proposition (¬A) ∧ (B ∨ ¬(A ∧ C))
is true.

Given any compound proposition made from the operators ∧, ∨, and
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AND gate OR gate NOT gate

A

B

C

output

Figure 1.3: The standard symbols for the three basic logic gates,
and a logic circuit that computes the value of the logical expression
(¬A) ∧ (B ∨ ¬(A ∧ C)). The input wires to each logic gate are on
the left, with the output wire on the right. Note that when wires
cross each other in a diagram such as this, the wires don’t actually
intersect unless there is a black circle at the point where they cross.

¬, it is possible to build a logic circuit that computes the value of that
proposition. The proposition itself is a blueprint for the circuit. As noted
in Section 1.1, every logical operator that we have encountered can be
expressed in terms of ∧, ∨, and ¬, so in fact every compound proposition
that we know how to write can be computed by a logic circuit.

Given a proposition constructed from ∧, ∨, and ¬ operators, it is easy
to build a circuit to compute it. First, identify the main operator in the
proposition—the one whose value will be computed last. Consider (A ∨
B) ∧ ¬(A ∧ B). This circuit has two input values, A and B, which are
represented by wires coming into the circuit. The circuit has an output
wire that represents the computed value of the proposition. The main
operator in (A ∨ B) ∧ ¬(A ∧ B), is the first ∧, which computes the value
of the expression as a whole by combining the values of the subexpressions
A ∨ B and ¬(A ∧ B). This ∧ operator corresponds to an and gate in the
circuit that computes the final output of the circuit.

Once the main operator has been identified and represented as a logic
gate, you just have to build circuits to compute the input or inputs to that
operator. In the example, the inputs to the main and gate come from two
subcircuits. One subcircuit computes the value of A ∨ B and the other
computes the value of ¬(A ∧ B). Building each subcircuit is a separate
problem, but smaller than the problem you started with. Eventually, you’ll
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(A B)
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1.  We know that the final
output of the circuit is

computed by an AND gate,

whose inputs are as shown.

2.  These inputs, in
turn come from an

OR gate and a NOT

gate, with inputs as

shown.

3.  The circuit is completed by adding an AND gate
to compute the input for the NOT gate, and and connecting

the  circuit inputs, A and B, to the apropriate gate inputs.

Figure 1.4: Stages in the construction of a circuit that computes the
compound proposition (A ∨ B) ∧ ¬(A ∧ B).

come to a gate whose input comes directly from one of the input wires—A
or B in this case—instead of from a subcircuit.

So, every compound proposition is computed by a logic circuit with one
output wire. Is the reverse true? That is, given a logic circuit with one
output, is there a proposition that expresses the value of the output in
terms of the values of the inputs? Not quite. When you wire together some
logic gates to make a circuit, there is nothing to stop you from introducing
feedback loops. A feedback loop occurs when the output from a gate is
connected—possibly through one or more intermediate gates—back to an
input of the same gate. Figure 1.5 shows an example of a circuit with a
feedback loop. Feedback loops cannot be described by compound propo-
sitions, basically because there is no place to start, no input to associate
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Figure 1.5: This circuit contains a feedback loop, so it is not a
combinatorial logic circuit. The feedback loop includes the and gate
and the or gate on the right. This circuit does not compute the
value of a compound proposition. This circuit does, however, play
an important role in computer memories, since it can be used to
store a logical value.

with a propositional variable. But feedback loops are the only thing that
can go wrong. A logic circuit that does not contain any feedback loops is
called a combinatorial logic circuit. Every combinatorial logic circuit
with just one output computes the value of some compound proposition.
The propositional variables in the compound proposition are just names
associated with the input wires of the circuit. (Of course, if the circuit has
more than one output, you can simply use a different proposition for each
output.)

The key to understanding why this is true is to note that each wire in
the circuit—not just the final output wire—represents the value of some
proposition. Furthermore, once you know which proposition is represented
by each input wire to a gate, it’s obvious what proposition is represented by
the output: You just combine the input propositions with the appropriate
∧, ∨, or ¬ operator, depending on what type of gate it is. To find the
proposition associated with the final output, you just have to start from
the inputs and move through the circuit, labeling the output wire of each
gate with the proposition that it represents. Figure 1.6 illustrates this
process.

So, compound propositions correspond naturally with combinatorial
logic circuits. But we have still not quite settled the question of just how
powerful these circuits and propositions are. We’ve looked at a number of
logical operators and noted that they can all be expressed in terms of ∧, ∨,
and ¬. But might there be other operators that cannot be so expressed?
Equivalently, might there be other types of logic gates—possibly with some
large number of inputs—whose computations cannot be duplicated with
and, or, and not gates? Any logical operator or logic gate computes a
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Figure 1.6: Finding the proposition whose value is computed by a
combinatorial logic circuit. Each wire in the circuit is labeled with
the proposition that it represents. The numbering of the labels shows
one of the orders in which they can be associated with the wires. The
circuit as a whole computes the value of ¬(A ∧ B) ∧ (B ∨ ¬C).

value for each possible combination of logical values of its inputs. We could
always make a truth table showing the output for each possible combina-
tion of inputs. As it turns out, given any such truth table, it is possible to
find a proposition, containing only the ∧, ∨, and ¬ operators, whose value
for each combination of inputs is given precisely by that table.

To see why this is true, it is useful to introduce a particular type of
compound proposition. Define a simple term to be either a propositional
variable or the negation of a propositional variable. A conjunction of simple
terms would then consist of one or more simple terms put together with
∧ operators. (A “conjunction of one simple term” is just a single simple
term by itself. This might not make grammatical sense, but it’s the way
mathematicians think.) Some examples of conjunctions of simple terms
would be p ∧ q, p, ¬q, and p ∧ ¬r ∧ ¬w ∧ s ∧ t. Finally, we can take one or
more such conjunctions and join them into a “disjunction of conjunctions of
simple terms.” This is the type of compound proposition we need. We can
avoid some redundancy by assuming that no propositional variable occurs
more than once in a single conjunction (since p∧p can be replaced by p, and
if p and ¬p both occur in a conjunction, then the value of the conjuction
is false, and it can be eliminated.) We can also assume that the same
conjunction does not occur twice in the disjunction.

Definition 1.5. A compound proposition is said to be in disjunctive
normal form, or DNF, if it is a disjunction of conjunctions of simple terms,
and if, furthermore, each propositional variable occurs at most once in each
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conjunction and each conjunction occurs at most once in the disjunction.

Using p, q, r, s, A, and B as propositional variables, here are a few
examples of propositions that are in disjunctive normal form:

(p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r ∧ s) ∨ (¬p ∧ ¬q)
(p ∧ ¬q)

(A ∧ ¬B) ∨ (¬A ∧ B)
p ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r ∧ w)

Propositions in DNF are just what we need to deal with input/output tables
of the type that we have been discussing. Any such table can be computed
by a proposition in disjunctive normal form. It follows that it is possible to
build a circuit to compute that table using only and, or, and not gates.

Theorem 1.3. Consider a table that lists a logical output value for every
combination of values of several propositional variables. Assume that at
least one of the output values is true. Then there is a proposition contain-
ing those variables such that the value of the proposition for each possible
combination of the values of the variables is precisely the value specified in
the table. It is possible to choose the proposition to be in disjunctive normal
form.

Proof. Consider any row in the table for which the output value is T. Form
a conjunction of simple terms as follows: For each variable, p, whose value
is T in that row, include p itself in the conjunction; for each variable, q,
whose value is F in the row, include ¬q in the conjunction. The value of
this conjunction is T for the combination of variable values given in that
row of the table, since each of the terms in the conjuction is true for that
combination of variables. Furthermore, for any other possible combination
of variable values, the value of the conjunction will be F, since at least one
of the simple terms in the conjunction will be false.

Take the disjunction of all such conjunctions constructed in this way,
for each row in the table where the output value is true. This disjunction
has the value T if and only if one of the conjunctions that make it up has
the value T—and that is precisely when the output value specified by the
table is T. So, this disjunction of conjunctions satisfies the requirements of
the theorem.

As an example, consider the table in Figure 1.7. This table speci-
fies a desired output value for each possible combination of values for the
propositional variables p, q, and r. Look at the second row of the table,
where the output value is true. According to the proof of the theorem,
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p q r output

F F F F

F F T T (¬p ∧ ¬q ∧ r)

F T F F

F T T T (¬p ∧ q ∧ r)

T F F F

T F T F

T T F F

T T T T p ∧ q ∧ r

Figure 1.7: An input/output table specifying a desired output for
each combination of values of the propositional variables p, q, and r.
Each row where the output is T corresponds to a conjunction, shown
next to that row in the table. The disjunction of these conjunctions
is a proposition whose output values are precisely those specified by
the table.

this row corresponds to the conjunction (¬p ∧ ¬q ∧ r). This conjunction
is true when p is false, q is false, and r is true; in all other cases it is
false, since in any other case at least one of the terms ¬p, ¬q, or r is
false. The other two rows where the output is true give two more conjunc-
tions. The three conjunctions are combined to produce the DNF proposi-
tion (¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧q∧r). This proposition computes all the
output values specified in the table. Using this proposition as a blueprint,
we get a logic circuit whose outputs match those given in the table.

Now, given any combinatorial logic circuit, there are many other cir-
cuits that have the same input/output behavior. When two circuits have
the same input/output table, the compound propositions associated with
the two circuits are logically equivalent. To put this another way, propo-
sitions that are logically equivalent produce circuits that have the same
input/output behavior. As a practical matter, we will usually prefer the
circuit that is simpler. The correspondence between circuits and proposi-
tions allows us to apply Boolean algebra to the simplification of circuits.

For example, consider the DNF proposition corresponding to the table
in Figure 1.7. In (¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧q∧r), we can factor (q∧r)
from the last two terms, giving (¬p ∧ ¬q ∧ r) ∨ ((¬p ∨ p) ∧ (q ∧ r)). Since
¬p ∨ p ≡ T, and T ∧ Q ≡ Q for any proposition Q, this can be simplified
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to (¬p ∧ ¬q ∧ r) ∨ (q ∧ r). Again, we can apply the distributive law to this
to factor out an r, giving ((¬p ∧ ¬q) ∨ q) ∧ r). This compound proposition
is logically equivalent to the one we started with, but implementing it in
a circuit requires only five logic gates, instead of the ten required by the
original proposition.8

If you start with a circuit instead of a proposition, it is often possible
to find the associated proposition, simplify it using Boolean algebra, and
use the simplified proposition to build an equivalent circuit that is simpler
than the original.

All this explains nicely the relationship between logic and circuits, but
it doesn’t explain why logic circuits should be used in computers in the first
place. Part of the explanation is found in the fact that computers use binary
numbers. A binary number is a string of zeros and ones. Binary numbers
are easy to represent in an electronic device like a computer: Each position
in the number corresponds to a wire. When the wire is on, it represents
one; when the wire is off, it represents zero. When we are thinking in terms
of logic, the same states of the wire represent true and false, but either
representation is just an interpretation of the reality, which is a wire that
is on or off. The question is whether the interpretation is fruitful.

Once wires are thought of as representing zeros and ones, we can build
circuits to do computations with binary numbers. Which computations?
Any that we want! If we know what the answer should be for each combi-
nation of inputs, then by Theorem 1.3 we can build a circuit to compute
that answer. Of course, the procedure described in that theorem is only
practical for small circuits, but small circuits can be used as building blocks
to make all the calculating circuits in a computer.

For example, let’s look at binary addition. To add two ordinary, decimal
numbers, you line them up one on top of the other, and add the digits in
each column. In each column, there might also be a carry from the previous
column. To add up a column, you only need to remember a small number
of rules, such as 7 + 6 + 1 = 14 and 3 + 5 + 0 = 8. For binary addition, it’s

8No, I didn’t count wrong. There are eleven logical operators in the original expres-
sion, but you can get by with ten gates in the circuit: Use a single not gate to compute
¬p, and connect the output of that gate to two different and gates. Reusing the output
of a logic gate is an obvious way to simplify circuits that does not correspond to any
operation on propositions.
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A B C output

0 0 0 0

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A B C output

0 0 0 0

0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 1.8: Input/output tables for the addition of three binary dig-
its, A, B, and C.

even easier, since the only digits are 0 and 1. There are only eight rules:

0 + 0 + 0 = 00 1 + 0 + 0 = 01

0 + 0 + 1 = 01 1 + 0 + 1 = 10

0 + 1 + 0 = 01 1 + 1 + 0 = 10

0 + 1 + 1 = 10 1 + 1 + 1 = 11

Here, I’ve written each sum using two digits. In a multi-column addition,
one of these digits is carried over to the next column. Here, we have a
calculation that has three inputs and two outputs. We can make an in-
put/output table for each of the two outputs. The tables are shown in
Figure 1.8. We know that these tables can be implemented as combina-
torial circuits, so we know that circuits can add binary numbers. To add
multi-digit binary numbers, we just need one copy of the basic addition
circuit for each column in the sum.

Exercises

1. Using only and, or, and not gates, draw circuits that compute the value of
each of the propositions A → B, A ↔ B, and A ⊕ B.

2. For each of the following propositions, find a combinatorial logic circuit that
computes that proposition:

a) A ∧ (B ∨ ¬C) b) (p ∧ q) ∧ ¬(p ∧ ¬q)
c) (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) d) ¬(A ∧ (B ∨ C)) ∨ (B ∧ ¬A)

3. Find the compound proposition computed by each of the following circuits:
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A

B

C

A

B

C

4. This section describes a method for finding the compound proposition com-
puted by any combinatorial logic circuit. This method fails if you try to
apply it to a circuit that contains a feedback loop. What goes wrong? Give
an example.

5. Show that every compound proposition which is not a contradiction is equiva-
lent to a proposition in disjunctive normal form. (Note: We can eliminate the
restriction that the compound proposition is not a contradiction by agreeing
that “F” counts as a proposition in disjunctive normal form. F is logically
equivalent to any contradiction.)

6. A proposition in conjunctive normal form (CNF) is a conjunction of dis-
junctions of simple terms (with the proviso, as in the definition of DNF that
a single item counts as a conjunction or disjunction). Show that every com-
pound proposition which is not a tautology is logically equivalent to a com-
pound proposition in conjunctive normal form. (Hint: What happens if you
take the negation of a DNF proposition and apply DeMorgan’s Laws?)

7. Use the laws of Boolean algebra to simplify each of the following circuits:

A

B

A

B

C

A

B

C

8. Design circuits to implement the input/output tables for addition, as given
in Figure 1.8. Try to make your circuits as simple as possible. (The circuits
that are used in real computers for this purpose are more simplified than the
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ones you will probably come up with, but the general approach of using logic
to design computer circuits is valid.)

1.4 Predicates and Quantifiers

In propositional logic, we can let p stand for “Roses are red” and q stand for
“Violets are blue.” Then p∧ q will stand for “Roses are red and violets are
blue.” But we lose a lot in the translation into logic. Since propositional
logic only deals with truth values, there’s nothing we can do with p and q
in propositional logic that has anything to do with roses, violets, or color.
To apply logic to such things, we need predicates. The type of logic that
uses predicates is called predicate logic, or, when the emphasis is on
manipulating and reasoning with predicates, predicate calculus.

A predicate is a kind of incomplete proposition, which becomes a propo-
sition when it is applied to some entity (or, as we’ll see later, to several
entities). In the proposition “the rose is red,” the predicate is is red. By it-
self, “is red” is not a proposition. Think of it as having an empty slot, that
needs to be filled in to make a proposition: “— is red.” In the proposition
“the rose is red,” the slot is filled by the entity “the rose,” but it could just
as well be filled by other entities: “the barn is red”; “the wine is red”; “the
banana is red.” Each of these propositions uses the same predicate, but
they are different propositions and they can have different truth values.

If P is a predicate and a is an entity, then P (a) stands for the proposition
that is formed when P is applied to a. If P represents “is red” and a
stands for “the rose,” then P (a) is “the rose is red.” If M is the predicate
“is mortal” and s is “Socrates,” then M(s) is the proposition “Socrates is
mortal.”

Now, you might be asking, just what is an entity anyway? I am using
the term here to mean some specific, identifiable thing to which a predicate
can be applied. Generally, it doesn’t make sense to apply a given predicate
to every possible entity, but only to entities in a certain category. For
example, it probably doesn’t make sense to apply the predicate “is mortal”
to your living room sofa. This predicate only applies to entities in the
category of living things, since there is no way something can be mortal
unless it is alive. This category is called the domain of discourse for the
predicate.9

9In the language of set theory, which will be introduced in the next chapter, we would
say that a domain of discourse is a set, U , and a predicate is a function from U to the set
of truth values. The definition should be clear enough without the formal language of set
theory, and in fact you should think of this definition—and many others—as motivation
for that language.
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We are now ready for a formal definition of one-place predicates. A
one-place predicate, like all the examples we have seen so far, has a single
slot which can be filled in with one entity:

Definition 1.6. A one-place predicate associates a proposition with
each entity in some collection of entities. This collection is called the do-
main of discourse for the predicate. If P is a predicate and a is an entity
in the domain of discourse for P , then P (a) denotes the proposition that
is associated with a by P . We say that P (a) is the result of applying P
to a.

We can obviously extend this to predicates that can be applied to two
or more entities. In the proposition “John loves Mary,” loves is a two-place
predicate. Besides John and Mary, it could be applied to other pairs of
entities: “John loves Jane,” “Bill loves Mary,” “John loves Bill,” “John loves
John.” If Q is a two-place predicate, then Q(a, b) denotes the proposition
that is obtained when Q is applied to the entities a and b. Note that each of
the “slots” in a two-place predicate can have its own domain of discourse.
For example, if Q represents the predicate “owns,” then Q(a, b) will only
make sense when a is a person and b is an inanimate object. An example of
a three-place predicate is “a gave b to c,” and a four-place predicate would
be “a bought b from c for d dollars.” But keep in mind that not every
predicate has to correspond to an English sentence.

When predicates are applied to entities, the results are propositions,
and all the operators of propositional logic can be applied to these proposi-
tions just as they can to any propositions. Let R be the predicate “is red,”
and let L be the two-place predicate “loves.” If a, b, j, m, and b are enti-
ties belonging to the appropriate categories, then we can form compound
propositions such as:

R(a) ∧ R(b) a is red and b is red
¬R(a) a is not red
L(j, m) ∧ ¬L(m, j) j loves m, and m does not love j
L(j, m) → L(b, m) if j loves m then b loves m
R(a) ↔ L(j, j) a is red if and only if j loves j

Let’s go back to the proposition with which we started this section:
“Roses are red.” This sentence is more difficult to handle than it might
appear. We still can’t express it properly in logic. The problem is that
this proposition is not saying something about some particular entity. It
really says that all roses are red (which happens to be a false statement,
but that’s what it means). Predicates can only be applied to individual
entities.
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Many other sentences raise similar difficulties: “All persons are mor-
tal.” “Some roses are red, but no roses are black.” “All math courses are
interesting.” “Every prime number greater than two is odd.” Words like
all, no, some, and every are called quantifiers. We need to be able to
express similar concepts in logic.

Suppose that P is a predicate, and we want to express the proposition
that P is true when applied to any entity in the domain of discourse. That
is, we want to say “for any entity x in the domain of discourse, P (x) is
true.” In predicate logic, we write this in symbols as ∀x(P (x)). The ∀
symbol, which looks like an upside-down A, is usually read “for all,” so
that ∀x(P (x)) is read as “for all x, P (x).” (It is understood that this
means for all x in the domain of discourse for P .) For example, if R is the
predicate “is red” and the domain of discourse consists of all roses, then
∀x(R(x)) expresses the proposition “All roses are red.” Note that the same
proposition could be expressed in English as “Every rose is red” or “Any
rose is red.”

Now, suppose we want to say that a predicate, P , is true for some
entity in its domain of discourse. This is expressed in predicate logic as
∃x(P (x)). The ∃ symbol, which looks like a backwards E, is usually read
“there exists,” but a more exact reading would be “there is at least one.”
Thus, ∃x(P (x)) is read as “There exists an x such that P (x),” and it means
“there is at least one x in the domain of discourse for P for which P (x)
is true.” If, once again, R stands for “is red” and the domain of discourse
is “roses,” then ∃x(R(x)) could be expressed in English as “There is a red
rose” or “At least one rose is red” or “Some rose is red.” It might also be
expressed as “Some roses are red,” but the plural is a bit misleading since
∃x(R(x)) is true even if there is only one red rose. We can now give the
formal definitions:

Definition 1.7. Suppose that P is a one-place predicate. Then ∀x(P (x))
is a proposition, which is true if and only if P (a) is true for every entity a in
the domain of discourse for P . And ∃x(P (x)) is a proposition which is true
if and only if there is at least one entity, a, in the domain of discourse for P
for which P (a) is true. The ∀ symbol is called the universal quantifier,
and ∃ is called the existential quantifier.

The x in ∀x(P (x)) and ∃x(P (x)) is a variable. (More precisely, it is an
entity variable, since its value can only be an entity.) Note that a plain
P (x)—without the ∀x or ∃x—is not a proposition. P (x) is neither true
nor false because x is not some particular entity, but just a placeholder in
a slot that can be filled in with an entity. P (x) would stand for something
like the statement “x is red,” which is not really a statement in English at
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all. But it becomes a statement when the x is replaced by some particular
entity, such as “the rose.” Similarly, P (x) becomes a proposition if some
entity a is substituted for the x, giving P (a).10

An open statement is an expression that contains one or more entity
variables, which becomes a proposition when entities are substituted for
the variables. (An open statement has open “slots” that need to be filled
in.) P (x) and “x is red” are examples of open statements that contain
one variable. If L is a two-place predicate and x and y are variables,
then L(x, y) is an open statement containing two variables. An example in
English would be “x loves y.” The variables in an open statement are called
free variables. An open statement that contains x as a free variable can
be quantified with ∀x or ∃x. The variable x is then said to be bound. For
example, x is free in P (x) and is bound in ∀x(P (x)) and ∃x(P (x)). The
free variable y in L(x, y) becomes bound in ∀y(L(x, y)) and in ∃y(L(x, y)).

Note that ∀y(L(x, y)) is still an open statement, since it contains x as
a free variable. Therefore, it is possible to apply the quantifier ∀x or ∃x
to ∀y(L(x, y)), giving ∀x

(

∀y(L(x, y))
)

and ∃x
(

∀y(L(x, y))
)

. Since all the
variables are bound in these expressions, they are propositions. If L(x, y)
represents “x loves y,” then ∀y(L(x, y)) is something like “x loves every-
one,” and ∃x

(

∀y(L(x, y))
)

is the proposition, “There is someone who loves
everyone.” Of course, we could also have started with ∃x(L(x, y)): “There
is someone who loves y.” Applying ∀y to this gives ∀y

(

∃x(L(x, y))
)

, which
means “For every person, there is someone who loves that person.” Note
in particular that ∃x

(

∀y(L(x, y))
)

and ∀y
(

∃x(L(x, y))
)

do not mean the
same thing. Altogether, there are eight different propositions that can be
obtained from L(x, y) by applying quantifiers, with six distinct meanings
among them.

(From now on, I will leave out parentheses when there is no ambiguity.
For example, I will write ∀xP (x) instead of ∀x(P (x)) and ∃x∃y L(x, y)
instead of ∃y

(

∃x(L(x, y))
)

. Furthermore, I will sometimes give predicates
and entities names that are complete words instead of just letters, as in
Red(x) and Loves(john, mary). This might help to make examples more
readable.)

In predicate logic, the operators and laws of Boolean algebra still apply.
For example, if P and Q are one-place predicates and a is an entity in the
domain of discourse, then P (a) → Q(a) is a proposition, and it is logically
equivalent to ¬P (a) ∨ Q(a). Furthermore, if x is a variable, then P (x) →

10There is certainly room for confusion about names here. In this discussion, x is a
variable and a is an entity. But that’s only because I said so. Any letter could be used
in either role, and you have to pay attention to the context to figure out what is going
on. Usually, x, y, and z will be variables.
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Q(x) is an open statement, and ∀x(P (x) → Q(x)) is a proposition. So are
P (a) ∧ (∃xQ(x)) and (∀xP (x)) → (∃xP (x)). Obviously, predicate logic
can be very expressive. Unfortunately, the translation between predicate
logic and English sentences is not always obvious.

Let’s look one more time at the proposition “Roses are red.” If the
domain of discourse consists of roses, this translates into predicate logic
as ∀xRed(x). However, the sentence makes more sense if the domain of
discourse is larger—for example if it consists of all flowers. Then “Roses
are red” has to be read as “All flowers which are roses are red,” or “For
any flower, if that flower is a rose, then it is red.” The last form trans-
lates directly into logic as ∀x

(

Rose(x) → Red(x)
)

. Suppose we want to say
that all red roses are pretty. The phrase “red rose” is saying both that the
flower is a rose and that it is red, and it must be translated as a conjunc-
tion, Rose(x) ∧ Red(x). So, “All red roses are pretty” can be rendered as
∀x
(

(Rose(x) ∧ Red(x)) → Pretty(x)
)

.
Here are a few more examples of translations from predicate logic to

English. Let H(x) represent “x is happy,” let C(y) represent “y is a com-
puter,” and let O(x, y) represent “x owns y.” (The domain of discourse for
x consists of people, and the domain for y consists of inanimate objects.)
Then we have the following translations:

• Jack owns a computer: ∃x
(

O(jack, x) ∧ C(x)
)

. (That is, there is at
least one thing such that Jack owns that thing and that thing is a
computer.)

• Everything Jack owns is a computer: ∀x
(

O(jack, x) → C(x)
)

.

• If Jack owns a computer, then he’s happy:
(

∃y(O(jack, y) ∧ C(y))
)

→ H(jack).

• Everyone who owns a computer is happy:
∀x
( (

∃y(O(x, y) ∧ C(y)
)

→ H(x)
) )

.

• Everyone owns a computer: ∀x∃y
(

C(y) ∧ O(x, y)
)

. (Note that this
allows each person to own a different computer. The proposition
∃y ∀x

(

C(y) ∧ O(x, y)
)

would mean that there is a single computer
which is owned by everyone.)

• Everyone is happy: ∀xH(x).

• Everyone is unhappy: ∀x(¬H(x)).

• Someone is unhappy: ∃x(¬H(x)).

• At least two people are happy: ∃x∃y
(

H(x) ∧ H(y) ∧ (x 6= y)
)

. (The
stipulation that x 6= y is necessary because two different variables can
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refer to the same entity. The proposition ∃x∃y(H(x) ∧ H(y)) is true
even if there is only one happy person.)

• There is exactly one happy person:
(

∃xH(x)
)

) ∧
(

∀y∀z((H(y) ∧ H(z)) → (y = z))
)

. (The first
part of this conjunction says that there is at least one happy person.
The second part says that if y and z are both happy people, then
they are actually the same person. That is, it’s not possible to find
two different people who are happy.)

To calculate in predicate logic, we need a notion of logical equivalence.
Clearly, there are pairs of propositions in predicate logic that mean the same
thing. Consider the propositions ¬(∀xH(x)) and ∃x(¬H(x)), where H(x)
represents “x is happy.” The first of these propositions means “Not every-
one is happy,” and the second means “Someone is not happy.” These state-
ments have the same truth value: If not everyone is happy, then someone
is unhappy and vice versa. But logical equivalence is much stronger than
just having the same truth value. In propositional logic, logical equivalence
is defined in terms of propositional variables: two compound propositions
are logically equivalent if they have the same truth values for all possible
truth values of the propositional variables they contain. In predicate logic,
two formulas are logically equivalent if they have the same truth value for
all possible predicates.

Consider ¬(∀xP (x)) and ∃x(¬P (x)). These formulas make sense for
any predicate P , and for any predicate P they have the same truth value.
Unfortunately, we can’t—as we did in propositional logic—just check this
fact with a truth table: there are no subpropositions, connected by ∧, ∨,
etc, out of which to build a table. So, let’s reason it out: To say ¬(∀xP (x))
is true is just to say that it is not the case that P (x) is true for all possible
entities x. So, there must be some entity a for which P (a) is false. Since
P (a) is false, ¬P (a) is true. But saying that there is an a for which ¬P (a)
is true is just saying that ∃x(¬P (x)) is true. So, the truth of ¬(∀xP (x))
implies the truth of ∃x(¬P (x)). On the other hand, if ¬(∀xP (x)) is false,
then ∀xP (x) is true. Since P (x) is true for every x, ¬P (x) is false for
every x. But then, ∃x(¬P (x)) is false. In any case, then, the truth values
of ¬(∀xP (x)) and ∃x(¬P (x)) are the same. Since this is true for any
predicate P , we will say that these two formulas are logically equivalent
and write ¬(∀xP (x)) ≡ ∃x(¬P (x)).

A similar argument would show that ¬(∃xP (x)) ≡ ∀x(¬P (x)). These
two equivalences, which explicate the relation between negation and quan-
tification, are known as DeMorgan’s Laws for predicate logic. (They are
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¬ (∀xP (x)) ≡ ∃x(¬P (x))

¬ (∃xP (x)) ≡ ∀x(¬P (x))

∀x∀yQ(x, y) ≡ ∀y∀xQ(x, y)

∃x∃yQ(x, y) ≡ ∃y∃xQ(x, y)

Figure 1.9: Four important rules of predicate logic. P can be any
one-place predicate, and Q can be any two-place predicate. The first
two rules are called DeMorgan’s Laws for predicate logic.

closely related to DeMorgan’s Laws for propositional logic; see the exer-
cises.) These laws can be used to help simplify expressions. For example,

¬∀y(R(y) ∨ Q(y)) ≡ ∃y(¬(R(y) ∨ Q(y)))

≡ ∃y((¬R(y)) ∧ (¬Q(y))

It might not be clear exactly why this qualifies as a “simplification,” but
it’s generally considered simpler to have the negation operator applied to
basic propositions such as R(y), rather than to quantified expressions such
as ∀y(R(y) ∨ Q(y)). For a more complicated example:

¬∃x
(

P (x) ∧ (∀y(Q(y) → Q(x)))
)

≡ ∀x
(

¬
(

P (x) ∧ (∀y(Q(y) → Q(x)))
)

≡ ∀x
(

(¬P (x)) ∨ (¬∀y(Q(y) → Q(x)))
)

≡ ∀x
(

(¬P (x)) ∨ (∃y(¬(Q(y) → Q(x))))
)

≡ ∀x
(

(¬P (x)) ∨ (∃y(¬(¬Q(y) ∨ Q(x))))
)

≡ ∀x
(

(¬P (x)) ∨ (∃y(¬¬Q(y) ∧ ¬Q(x)))
)

≡ ∀x
(

(¬P (x)) ∨ (∃y(Q(y) ∧ ¬Q(x)))
)

DeMorgan’s Laws are listed in Figure 1.9 along with two other laws of
predicate logic. The other laws allow you to interchange the order of the
variables when two quantifiers of the same type (both ∃ or ∀) occur together.

To define logical equivalence in predicate logic more formally, we need
to talk about formulas that contain predicate variables, that is, variables
that act as place-holders for arbitrary predicates in the same way that



36 CHAPTER 1. LOGIC AND PROOF

propositional variables are place-holders for propositions and entity vari-
ables are place-holders for entities. With this in mind, we can define logical
equivalence and the closely related concept of tautology for predicate logic.

Definition 1.8. Let P be a formula of predicate logic which contains one or
more predicate variables. P is said to be a tautology if it is true whenever
all the predicate variables that it contains are replaced by actual predicates.
Two formulas P and Q are said to be logically equivalent if P ↔ Q is
a tautology, that is if P and Q always have the same truth value when
the predicate variables they contain are replaced by actual predicates. The
notation P ≡ Q asserts that P is logically equivalent to Q.

Exercises

1. Simplify each of the following propositions. In your answer, the ¬ operator
should be applied only to individual predicates.

a) ¬∀x(¬P (x)) b) ¬∃x(P (x)∧ Q(x))
c) ¬∀z(P (z) → Q(z)) d) ¬

`

(∀xP (x))∧ ∀y(Q(y))
´

e) ¬∀x∃yP (x, y) f) ¬∃x(R(x)∧ ∀yS(x, y))
g) ¬∃y(P (y) ↔ Q(y)) h) ¬

`

∀x(P (x) → (∃yQ(x, y)))
´

2. Give a careful argument to show that the second of DeMorgan’s laws for
predicate calculus, ¬(∀xP (x)) ≡ ∃x(¬P (x)), is valid.

3. Find the negation of each of the following propositions. Simplify the result; in
your answer, the ¬ operator should be applied only to individual predicates.

a) ¬∃N(∀sC(s, N))
b) ¬∃N(∀s(L(s, N) → P (s)))
c) ¬∃N(∀s(L(s, N) → (∃x∃y∃zQ(x,y, z)))).
d) ¬∃N(∀s(L(s, N) → (∃x∃y∃z(s = xyz ∧ R(x, y) ∧ T (y) ∧ U(x, y, z)))).

4. Suppose that the domain of discourse for a predicate P contains only two en-
tities. Show that ∀xP (x) is equivalent to a conjunction of two simple propo-
sitions, and ∃xP (x) is equivalent to a disjunction. Show that in this case,
DeMorgan’s Laws for propositional logic and DeMorgan’s Laws for predicate
logic actually say exactly the same thing. Extend the results to a domain of
discourse that contains exactly three entities.

5. Let H(x) stand for “x is happy,” where the domain of discourse consists of
people. Express the proposition “There are exactly three happy people” in
predicate logic.

6. Let T (x, y) stand for “x has taken y,” where the domain of discourse for
x consists of students and the domain of discourse for y consists of math
courses (at your school). Translate each of the following propositions into an
unambiguous English sentence:

a) ∀x∀y T (x, y) b) ∀x∃y T (x, y) c) ∀y ∃x T (x, y)
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d) ∃x∃y T (x, y) e) ∃x∀y T (x, y) f) ∃y ∀x T (x, y)

7. Let F (x, t) stand for “You can fool person x at time t.” Translate the following
sentence into predicate logic: “You can fool some of the people all of the time,
and you can fool all of the people some of the time, but you can’t fool all of
the people all of the time.”

8. Translate each of the following sentences into a proposition using predicate
logic. Make up any predicates you need. State what each predicate means
and what its domain of discourse is.

a) All crows are black.

b) Any white bird is not a crow.

c) Not all politicians are honest.

d) All green elephants have purple feet.

e) There is no one who does not like pizza.

f) Anyone who passes the final exam will pass the course.

g) If x is any positive number, then there is a number y such that y2 = x.

9. The sentence “Someone has the answer to every question” is ambiguous. Give
two translations of this sentence into predicate logic, and explain the difference
in meaning.

10. The sentence “Jane is looking for a dog” is ambiguous. One meaning is that
there is some particular dog—maybe the one she lost—that Jane is looking for.
The other meaning is that Jane is looking for any old dog—maybe because she
wants to buy one. Express the first meaning in predicate logic. Explain why
the second meaning is not expressed by ∀x(Dog(x) → LooksFor(jane, x)). In
fact, the second meaning cannot be expressed in predicate logic. Philosophers
of language spend a lot of time thinking about things like this. They are
especially fond of the sentence “Jane is looking for a unicorn,” which is not
ambiguous when applied to the real world. Why is that?

1.5 Deduction

Logic can be applied to draw conclusions from a set of premises. A premise
is just a proposition that is known to be true or that has been accepted to
be true for the sake of argument, and a conclusion is a proposition that can
be deduced logically from the premises. The idea is that if you believe that
the premises are true, then logic forces you to accept that the conclusion
is true. An “argument” is a claim that a certain conclusion follows from a
given set of premises. Here is an argument laid out in a traditional format:

If today is Tuesday, then this is Belgium
Today is Tuesday
∴ This is Belgium
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The premises of the argument are shown above the line, and the conclusion
below. The symbol ∴ is read “therefore.” The claim is that the conclusion,
“This is Belgium,” can be deduced logically from the two premises, “If
today is Tuesday, then this is Belgium” and “Today is Tuesday.” In fact,
this claim is true. Logic forces you to accept this argument. Why is that?

Let p stand for the proposition “Today is Tuesday,” and let q stand for
the proposition “This is Belgium.” Then the above argument has the form

p → q
p
∴ q

Now, for any propositions p and q—not just the ones in this particular
argument—if p → q is true and p is true, then q must also be true. This is
easy to check in a truth table:

p q p → q

false false true
false true true
true false false
true true true

The only case where both p → q and p are true is on the last line of the
table, and in this case, q is also true. If you believe p → q and p, you have
no logical choice but to believe q. This applies no matter what p and q
represent. For example, if you believe “If Jill is breathing, then Jill pays
taxes,” and you believe that “Jill is breathing,” logic forces you to believe
that “Jill pays taxes.” Note that we can’t say for sure that the conclusion is
true, only that if the premises are true, then the conclusion must be true.

This fact can be rephrased by saying that
(

(p → q) ∧ p
)

→ q is a
tautology. More generally, for any compound propositions P and Q, saying
“P → Q is a tautology” is the same as saying that “in all cases where P

is true, Q is also true”.11 We will use the notation P =⇒ Q to mean that
P → Q is a tautology. Think of P as being the premise of an argument or
the conjunction of several premises. To say P =⇒ Q is to say that Q follows
logically from P. We will use the same notation in both propositional logic
and predicate logic.

Definition 1.9. Let P and Q be any formulas in either propositional logic
or predicate logic. The notation P =⇒ Q is used to mean that P → Q is a

11Here, “in all cases” means for all combinations of truth values of the propositional
variables in P and Q. Saying P → Q is a tautology means it is true in all cases. But by
definition of →, it is automatically true in cases where P is false. In cases where P is
true, P→ Q will be true if and only if Q is true.
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tautology. That is, in all cases where P is true, Q is also true. We then say
that Q can be logically deduced from P or that P logically implies Q.

An argument in which the conclusion follows logically from the premises
is said to be a valid argument. To test whether an argument is valid,
you have to replace the particular propositions or predicates that it con-
tains with variables, and then test whether the conjunction of the premises
logically implies the conclusion. We have seen that any argument of the
form

p → q
p
∴ q

is valid, since
(

(p → q) ∧ p
)

→ q is a tautology. This rule of deduction is
called modus ponens. It plays a central role in logic. Another, closely
related rule is modus tollens, which applies to arguments of the form

p → q
¬q
∴ ¬p

To verify that this is a valid argument, just check that
(

(p → q) ∧ ¬q
)

=⇒
¬p, that is, that

(

(p → q) ∧ ¬q
)

→ ¬p is a tautology. As an example, the
following argument has the form of modus tollens and is therefore a valid
argument:

If Keanu Reeves is a good actor, then I’m the king of France
I am not the king of France
∴ Keanu Reeves in not a good actor

You should note carefully that the validity of this argument has nothing to
do with whether or not Keanu Reeves can act well. The argument forces
you to accept the conclusion only if you accept the premises. You can
logically believe that the conclusion is false, as long as you believe that at
least one of the premises is false.

Another named rule of deduction is the Law of Syllogism, which has
the form

p → q
q → r
∴ p → r

For example:



40 CHAPTER 1. LOGIC AND PROOF

If you study hard, you do well in school
If you do well in school, you get a good job
∴ If you study hard, you get a good job

There are many other rules. Here are a few that might prove useful.
Some of them might look trivial, but don’t underestimate the power of a
simple rule when it is combined with other rules.

p ∨ q
¬p
∴ q

p
q
∴ p ∧ q

p ∧ q
∴ p

p
∴ p ∨ q

Logical deduction is related to logical equivalence. We defined P and
Q to be logically equivalent if P ↔ Q is a tautology. Since P ↔ Q is
equivalent to (P → Q) ∧ (Q → P), we see that P ≡ Q if and only if both
Q =⇒ P and P =⇒ Q. Thus, we can show that two statements are logically
equivalent if we can show that each of them can be logically deduced from
the other. Also, we get a lot of rules about logical deduction for free—two
rules of deduction for each logical equivalence we know. For example, since
¬(p ∧ q) ≡ (¬p ∨ ¬q), we get that ¬(p ∧ q) =⇒ (¬p ∨ ¬q). For example,
if we know “It is not both sunny and warm,” then we can logically deduce
“Either it’s not sunny or it’s not warm.” (And vice versa.)

In general, arguments are more complicated that those we’ve considered
so far. Here, for example, is an argument that has five premises:

(p ∧ r) → s
q → p
t → r
q
t
∴ s

Is this argument valid? Of course, you could use a truth table to check
whether the conjunction of the premises logically implies the conclusion.
But with five propositional variables, the table would have 32 lines, and
the size of the table grows quickly when more propositional variables are
used. So, in general, truth tables are not practical.

Fortunately, there is another way to proceed, based on the fact that it
is possible to chain several logical deductions together. That is, if P =⇒ Q

and Q =⇒ R, it follows that P =⇒ R. This means we can demonstrate the
validity of an argument by deducing the conclusion from the premises in a
sequence of steps. These steps can be presented in the form of a proof:
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Definition 1.10. A formal proof that an argument is valid consists of
a sequence of propositions such that the last proposition in the sequence
is the conclusion of the argument, and every proposition in the sequence
is either a premise of the argument or follows by logical deduction from
propositions that precede it in the list.

The existence of such a proof shows that the conclusion follows logically
from the premises, and therefore that the argument is valid. Here is a
formal proof that the argument given above is valid. The propositions in
the proof are numbered, and each proposition has a justification.

1. q → p premise
2. q premise
3. p from 1 and 2 (modus ponens)
4. t → r premise
5. t premise
6. r from 4 and 5 (modus ponens)
7. p ∧ r from 3 and 6
8. (p ∧ r) → s premise
9. s from 7 and 8 (modus ponens)

Once a formal proof has been constructed, it is convincing. Unfortunately,
it’s not necessarily easy to come up with the proof. Usually, the best
method is a combination of working forward (“Here’s what I know, what
can I deduce from that?”) and working backwards (“Here’s what I need
to prove, what other things would imply that?”). For this proof, I might
have thought: I want to prove s. I know that p ∧ r implies s, so if I can
prove p ∧ r, I’m OK. But to prove p ∧ r, it’ll be enough to prove p and r
separately. . . .

Of course, not every argument is valid, so the question also arises, how
can we show that an argument is invalid? Let’s assume that the argument
has been put into general form, with all the specific propositions replaced
by propositional variables. The argument is valid if in all cases where all
the premises are true, the conclusion is also true. The argument is invalid
if there is even one case where all the premises are true and the conclusion
is false. We can prove that an argument is invalid by finding an assignment
of truth values to the propositional variables which makes all the premises
true but makes the conclusion false. For example, consider an argument of
the form:

p → q
q → (p ∧ r)
r
∴ p
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In the case where p is false, q is false, and r is true, the three premises of
this argument are all true, but the conclusion is false. This shows that the
argument is invalid.

To apply all this to arguments stated in English, we have to introduce
propositional variables to represent all the propositions in the argument.
For example, consider:

John will be at the party if Mary is there and Bill is not there.
Mary will be at the party if it’s on Friday or Saturday. If Bill
is at the party, Tom will be there. Tom won’t be at the party if
it’s on Friday. The party is on Friday. Therefore, John will be
at the party.

Let j stand for “John will be at the party,” m for “Mary will be there,” b
for “Bill will be there,” t for “Tom will be there,” f for “The party is on
Friday,” and s for “The party is on Saturday.” Then this argument has the
form

(m ∧ ¬b) → j
(f ∨ s) → m
b → t
f → ¬t
f
∴ j

This is a valid argument, as the following proof shows:

1. f → ¬t premise
2. f premise
3. ¬t from 1 and 2 (modus ponens)
4. b → t premise
5. ¬b from 4 and 3 (modus tollens)
6. f ∨ s from 2
7. (f ∨ s) → m premise
8. m from 6 and 7 (modus ponens)
9. m ∧ ¬b from 8 and 5

10. (m ∧ ¬b) → j premise
11. j from 10 and 9 (modus ponens)

So far in this section, we have been working mostly with propositional
logic. But the definitions of valid argument and logical deduction apply
to predicate logic as well. One of the most basic rules of deduction in
predicate logic says that (∀xP (x)) =⇒ P (a) for any entity a in the domain
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of discourse of the predicate P . That is, if a predicate is true of all entities,
then it is true of any given particular entity. This rule can be combined
with rules of deduction for propositional logic to give the following valid
arguments

∀x(P (x) → Q(x))
P (a)
∴ Q(a)

∀x(P (x) → Q(x))
¬Q(a)
∴ ¬P (a)

These valid arguments go by the names of modus ponens and modus tollens
for predicate logic. Note that from the premise ∀x(P (x) → Q(x)) we can
deduce P (a) → Q(a). From this and from the premise that P (a), we can
deduce Q(a) by modus ponens. So the first argument above is valid. The
second argument is similar, using modus tollens.

The most famous logical deduction of them all is an application of modus
ponens for predicate logic:

All humans are mortal
Socrates is human
∴ Socrates is mortal

This has the form of modus ponens with P (x) standing for “x is human,”
Q(x) standing for “x is mortal,” and a standing for the noted entity,
Socrates.

There is a lot more to say about logical deduction and proof in predicate
logic, and we’ll spend the rest of this chapter on the subject.

Exercises

1. Verify the validity of modus tollens and the Law of Syllogism.

2. Each of the following is a valid rule of deduction. For each one, give an
example of a valid argument in English that uses that rule.

p ∨ q

¬p

∴ q

p

q

∴ p ∧ q

p ∧ q

∴ p

p

∴ p ∨ q

3. There are two notorious invalid arguments that look deceptively like modus

ponens and modus tollens:

p → q

q

∴ p

p → q

¬p

∴ ¬q
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Show that each of these arguments is invalid. Give an English example that
uses each of these arguments.

4. Decide whether each of the following arguments is valid. If it is valid, give a
formal proof. If it is invalid, show that it is invalid by finding an appropriate
assignment of truth values to propositional variables.

a) p → q

q → s

s

∴ p

b) p ∧ q

q → (r ∨ s)
¬r

∴ s

c) p ∨ q

q → (r ∧ s)
¬p

∴ s

d) (¬p) → t

q → s

r → q

¬(q ∨ t)

∴ p

e) p

s → r

q ∨ r

q → ¬p

∴ ¬s

f) q → t

p → (t → s)
p

∴ q → s

5. For each of the following English arguments, express the argument in terms
of propositional logic and determine whether the argument is valid or invalid.

a) If it is Sunday, it rains or snows. Today, it is Sunday and it’s not
raining. Therefore, it must be snowing.

b) If there are anchovies on the pizza, Jack won’t eat it. If Jack doesn’t
eat pizza, he gets angry. Jack is angry. Therefore, there were anchovies
on the pizza.

c) At 8:00, Jane studies in the library or works at home. It’s 8:00 and
Jane is not studying in the library. So she must be working at home.

1.6 Proof

Mathematics is unique in that it claims a certainty that is beyond all pos-
sible doubt or argument. A mathematical proof shows how some result
follows by logic alone from a given set of assumptions, and once the result
has been proven, it is as solid as the foundations of logic themselves. Of
course, mathematics achieves this certainty by restricting itself to an arti-
ficial, mathematical world, and its application to the real world does not
carry the same degree of certainty.

Within the world of mathematics, consequences follow from assumptions
with the force of logic, and a proof is just a way of pointing out logical
consequences. There is an old mathematical joke about this:

This mathematics professor walks into class one day and says “We’ll
start today with this result, which is obvious,” and he writes it on the
board. Then, he steps back and looks at the board for a while. He walks
around the front of the room, stares into space and back at the board. This
goes on till the end of class, and he walks out without saying anything else.
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The next class period, the professor walks into the room with a big smile,
writes the same result on the board, turns to the class and says, “I was
right. It is obvious.”

For of course, the fact that mathematical results follow logically does
not mean that they are obvious in any normal sense. Proofs are convincing
once they are discovered, but finding them is often very difficult. They are
written in a language and style that can seem obscure to the uninitiated.
Often, a proof builds on a long series of definitions and previous results,
and while each step along the way might be “obvious,” the end result
can be surprising and powerful. This is what makes the search for proofs
worthwhile.

In the rest of this chapter, we’ll look at some approaches and techniques
that can be used for proving mathematical results, including two important
proof techniques known as proof by contradiction and mathematical induc-
tion. Along the way, we’ll encounter a few new definitions and notations.
Hopefully, you will be left with a higher level of confidence for exploring
the mathematical world on your own.

The mathematical world and the real world weren’t always quite so
separate. Until some time near the middle of the nineteenth century, the
statements of mathematics were regarded as statements about the world.
A proof was simply a convincing argument, rather than a chain forged of
absolute logic. It was something closer to the original meaning of the word
“proof”, as a test or trial: To prove something was to test its truth by
putting it to the trial of logical argument.

The first rumble of trouble came in the form of non-Euclidean geom-
etry. For two thousand years, the geometry of the Greek mathematician
Euclid had been accepted, simply, as the geometry of the world. In the
middle of the nineteenth century, it was discovered that there are other
systems of geometry, which are at least as valid and self-consistent as Eu-
clid’s system. Mathematicians can work in any of these systems, but they
cannot all claim to be working in the real world.

Near the end of the nineteenth century came another shock, in the form
of cracks in the very foundation of mathematics. At that time, mathemati-
cian Gottlieb Frege was finishing a book on set theory that represented his
life’s work. In Frege’s set theory, a set could be defined by any property.
You could have, for example, the set consisting of all sets that contain
three objects. As he was finishing his book, Frege received a letter from
a young mathematician named Bertrand Russell which described what be-
came known as Russell’s Paradox. Russell pointed out that the set of all
sets—that is, the set that contains every entity that satisfies the property
of being a set—cannot logically exist. We’ll see Russell’s reasoning in the
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following chapter. Frege could only include a postscript in his book stating
that the basis of the work had been swept away.

Mathematicians responded to these problems by banishing appeals to
facts about the real world from mathematical proof. Mathematics was
to be its own world, built on its own secure foundation. The foundation
would be a basic set of assumptions or “axioms” from which everything
else would follow by logic. It would only be necessary to show that the
axioms themselves were logically consistent and complete, and the world
of mathematics would be secure. Unfortunately, even this was not to be.
In the 1930s, Kurt Gödel showed that there is no consistent, finite set
of axioms that completely describes even the corner of the mathematical
world known as arithmetic. Gödel showed that given any finite, consistent
set of axioms, there are true statements about arithmetic that do not follow
logically from those axioms.

We are left with a mathematical world in which iron chains of logic still
bind conclusions to assumptions. But the assumptions are no longer rooted
in the real world. Nor is there any finite core of axioms to which the rest of
the mathematical world can be chained. In this world, axioms are set up
as signposts in a void, and then structures of logic are built around them.
For example, instead of talking about the set theory that describes the real
world, we have a set theory, based on a given set of axioms. That set theory
is necessarily incomplete, and it might differ from other set theories which
are based on other sets of axioms.

Understandably, mathematicians are very picky about getting their
proofs right. It’s how they construct their world. Students sometimes
object that mathematicians are too picky about proving things that are
“obvious.” But the fact that something is obvious in the real world counts
for very little in the constructed world of mathematics. Too many ob-
vious things have turned out to be dead wrong. (For that matter, even
things in the real world that seem “obviously” true are not necessarily true
at all. For example, consider the quantity f(n) = n2 + n + 41. When
n = 0, f(n) = 41 which is prime; when n = 1, f(n) = 43 which is prime;
when n = 2, f(n) = 47, which is prime. By the time you had calculated
f(3), f(4), . . . , f(10) and found that they were all prime, you might con-
clude that it is “obvious” that f(n) is prime for all n ≥ 0. But this is not in
fact the case! (See exercises.) Similarly, those of you who are baseball fans
might consider it “obvious” that if player A has a higher batting average
against left-handers than player B, and player A has a higher batting aver-
age against right-handers than player B, then player A must have a higher
batting average than player B. Again, this is not true!)

As we saw in Section 1.5, a formal proof consists of a sequence of state-
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ments where each statement is either an assumption or follows by a rule of
logic from previous statements. The examples in that section all worked
with unspecified generic propositions (p, q, etc). Let us now look at how
one might use the same techniques to prove a specific proposition about the
mathematical world. We will prove that for all integers n, if n is even then
n2 is even. (Definition: an integer n is even iff n = 2k for some integer k.
For example, 2 is even since 2 = 2 · 1; 66 is even since 66 = 2 · 33; 0 is even
since 0 = 2 · 0.)

Proof. This is a proposition of the form ∀n(P (n) → Q(n)) where P (n) is
“n is even” and Q(n) is “n2 is even.” We need to show that P (n) → Q(n)
is true for all values of n. In the language of Section 1.5, we need to show
that for any n, P (n) logically implies Q(n); or, equivalently, that Q(n) can
be logically deduced from P (n); or, equivalently, that

n is even
∴ n2 is even

is a valid argument. Here is a formal proof that

n is even
∴ n2 is even

is in fact a valid argument for any value of n:

Let n be an arbitrary integer.

1. n is even premise
2. if n is even, then n = 2k

for some integer k definition of even
3. n = 2k for some integer k from 1, 2 (modus ponens)
4. if n = 2k for some integer k,

then n2 = 4k2 for that integer k basic algebra
5. n2 = 4k2 for some integer k from 3, 4 (modus ponens)
6. if n2 = 4k2 for some integer k,

then n2 = 2(2k2) for that k basic algebra
7. n2 = 2(2k2) for some integer k from 5, 6 (modus ponens)
8. if n2 = 2(2k2) for some integer k,

then n2 = 2k′ for some integer k′ basic fact about integers
9. n2 = 2k′ for some integer k′ from 7, 8 (modus ponens)

10. if n2 = 2k′ for some integer k′,
then n2 is even definition of even

11. n2 is even from 9, 10 (modus ponens)
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(The “basic fact about integers” referred to above is that the product of
integers is again an integer.) Since n could be replaced by any integer
throughout this argument, we have proved the statement “if n is even then
n2 is even” is true for all integers n. (You might worry that the argument is
only valid for even n; see the disclaimer about Keanu Reeves’ acting ability
on page 34, or remind yourself that P (n) → Q(n) is automatically true if
P (n) is false.)

Mathematical proofs are rarely presented with this degree of detail and
formality. A slightly less formal proof of our proposition might leave out the
explicit implications and instances of modus ponens and appear as follows:

Proof. Let n be an arbitrary integer.

1. n is even premise
2. n = 2k for some integer k definition of even
3. n2 = 4k2 for that integer k basic algebra
4. n2 = 2(2k2) for that k basic algebra
5. n2 = 2k′ for some integer k′ substituting k′ = 2k2

6. n2 is even definition of even

Since n was an arbitrary integer, the statement is true for all integers.

A more typical proof would take the argument above and present it in
prose rather than list form:

Proof. Let n be an arbitrary integer and assume n is even. Then n = 2k
for some integer k by the definition of even, and n2 = 4k2 = 2(2k2). Since
the product of integers is an integer, we have n2 = 2k′ for some integer k′.
Therefore n2 is even. Since n was an arbitrary integer, the statement is
true for all integers.

Typically, in a “formal” proof, it is this kind of (relatively) informal
discussion that is given, with enough details to convince the reader that a
complete, formal proof could be constructed. Of course, how many details
the reader can be expected to fill in depends on the reader, and reading
proofs is a skill that must be developed and practiced. Writing a proof is
even more difficult. Every proof involves a creative act of discovery, in which
a chain of logic that leads from assumptions to conclusion is discovered. It
also involves a creative act of expression, in which that logic is presented
in a clear and convincing way. There is no algorithm for producing correct,
coherent proofs. There are, however, some general guidelines for discovering
and writing proofs.
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One of the most important pieces of advice to keep in mind is, “Use the
definition.” In the world of mathematics, terms mean exactly what they
are defined to mean and nothing more. Definitions allow very complex
ideas to be summarized as single terms. When you are trying to prove
things about those terms, you generally need to “unwind” the definitions.
In our example above, we used the definition of even to write n = 2k,
and then we worked with that equation. When you are trying to prove
something about equivalence relations in Chapter 2, you can be pretty sure
that you will need to use the fact that equivalence relations, by definition,
are symmetric, reflexive, and transitive. (And, of course, you’ll need to
know what how the term “relation” is defined in the first place! You’ll get
nowhere if you working from the idea that “relations” are something like
your aunt and uncle.)

More advice along the same line is to check whether you are using the
assumptions of the theorem. An assumption that is made in a theorem
is called an hypothesis. The hypotheses of the theorem state conditions
whose truth will guarantee the conclusion of the theorem. To prove the
theorem means to assume that the hypotheses are true, and to show, under
that assumption, that the conclusion must be true. It’s likely (though not
guaranteed) that you will need to use the hypotheses explicitly at some
point in the proof, as we did in our example above.12 Also, you should
keep in mind that any result that has already been proved is available to
be used in your proof.

A proof is a logical argument, based on the rules of logic. Since there
are really not all that many basic rules of logic, the same patterns keep
showing up over and over. Let’s look at some of the patterns.

The most common pattern arises in the attempt to prove that something
is true “for all” or “for every” or “for any” entity in a given category. In
terms of logic, the statement you are trying to prove is of the form ∀xP (x).
In this case, the most likely way to begin the proof is by saying something
like, “Let x be an arbitrary entity in the domain of discourse. We want
to show that P (x).” In the rest of the proof, x refers to some unspecified
but definite entity in the domain of discourse. Since x is arbitrary, proving
P (x) amounts to proving ∀xP (x). You only have to be careful that you
don’t use any facts about x beyond what you have assumed. For example,
in our proof above, we cannot make any assumptions about the integer n
except that it is even; if we had made such assumptions, then the proof
would have been incorrect, or at least incomplete.

12Of course, if you set out to discover new theorems on your own, you aren’t given
the hypotheses and conclusion in advance, which makes things quite a bit harder—and
more interesting.
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Sometimes, you have to prove that an entity exists that satisfies certain
stated properties. Such a proof is called an existence proof . In this case,
you are attempting to prove a statement of the form ∃xP (x). The way to do
this is to find an example, that is, to find a specific entity a for which P (a)
is true. One way to prove the statement “There is an even prime number” is
to find a specific number that satisfies this description. The same statement
could also be expressed “Not every prime number is odd.” This statement
has the form ¬(∀xP (x)), which is equivalent to the statement ∃x (¬P (x)).
An example that proves the statement ∃x (¬P (x)) also proves ¬(∀xP (x)).
Such an example is called a counterexample to the statement ∀xP (x):
A counterexample proves that the statement ∀xP (x) is false. The number
2 is a counterexample to the statement “All prime numbers are odd.” In
fact, 2 is the only counterexample to this statement; many statements have
multiple counterexamples.

Note that we have now discussed how to prove and disprove universally
quantified statements, and how to prove existentially quantified statements.
How do you disprove ∃xP (x)? Recall that ¬∃xP (x) is logically equivalent
to ∀x (¬P (x)), so to disprove ∃xP (x) you need to prove ∀x (¬P (x)).

Many statements, like that in our example above, have the logical
form of an implication, p → q. (More accurately, they are of the form
“∀x (P (x) → Q(x))”, but as discussed above the strategy for proving such
a statement is to prove P (x) → Q(x) for an arbitrary element x of the
domain of discourse.) The statement might be “For all natural numbers n,
if n is even then n2 is even,” or “For all strings x, if x is in the language
L then x is generated by the grammar G,” or “For all elements s, if s ∈ A
then s ∈ B.” Sometimes the implication is implicit rather than explicit: for
example, “The sum of two rationals is rational” is really short for “For any
numbers x and y, if x and y are rational then x + y is rational.” A proof
of such a statement often begins something like this: “Assume that p. We
want to show that q.” In the rest of the proof, p is treated as an assumption
that is known to be true. As discussed above, the logical reasoning behind
this is that you are essentially proving that

p
∴ q

is a valid argument. Another way of thinking about it is to remember that
p → q is automatically true in the case where p is false; to show that p → q
is true when p is true, we need to show that the truth of q follows from the
truth of p.

A statement of the form p ∧ q can be proven by proving p and q sepa-
rately. A statement of the form p∨q can be proved by proving the logically
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equivalent statement (¬p) → q: to prove p ∨ q, you can assume that p
is false and prove, under that assumption, that q is true. For example,
the statement “Every integer is either even or odd” is equivalent to the
statement “Every integer that is not even is odd.”

Since p ↔ q is equivalent to (p → q) ∧ (q → p), a statement of the form
p ↔ q is often proved by giving two proofs, one of p → q and one of q → p.
In English, p ↔ q can be stated in several forms such as “p if and only if
q”, “if p then q and conversely,” and “p is necessary and sufficient for q.”
The phrase “if and only if” is so common in mathematics that it is often
abbreviated iff .

You should also keep in mind that you can prove p → q by displaying a
chain of valid implications p → r → s → · · · → q. Similarly, p ↔ q can be
proved with a chain of valid biconditionals p ↔ r ↔ s ↔ · · · ↔ q.

We’ll turn to a few examples, but first here is some terminology that
we will use throughout our sample proofs:

• The natural numbers (denoted N) are the numbers 0, 1, 2, . . .. Note
that the sum and product of natural numbers are natural numbers.

• The integers (denoted Z) are the numbers 0,−1, 1,−2, 2,−3, 3, . . ..
Note that the sum, product, and difference of integers are integers.

• The rational numbers (denoted Q) are all numbers that can be
written in the form m

n
where m and n are integers and n 6= 0. So 1

3

and −65
7 are rationals; so, less obviously, are 6 and

√
27√
12

since 6 = 6
1

(or, for that matter, 6 = −12
−2 ), and

√
27√
12

=
√

27
12 =

√

9
4 = 3

2 . Note

the restriction that the number in the denominator cannot be 0: 3
0 is

not a number at all, rational or otherwise; it is an undefined quantity.
Note also that the sum, product, difference, and quotient of rational
numbers are rational numbers (provided you don’t attempt to divide
by 0.)

• The real numbers (denoted R) are numbers that can be written
in decimal form, possibly with an infinite number of digits after the
decimal point. Note that the sum, product, difference, and quotient of
real numbers are real numbers (provided you don’t attempt to divide
by 0.)

• The irrational numbers are real numbers that are not rational, i.e.
they cannot be written as a ratio of integers. Such numbers include√

3 (which we will prove is not rational) and π (if anyone ever told
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you that π = 22
7 , they lied—22

7 is only an approximation of the value
of π.)

• An integer n is divisible by m iff n = mk for some integer k. So
for example, n is divisible by 2 iff n = 2k for some integer k; n is
divisible by 3 iff n = 3k for some integer k, and so on. Note that if
n is not divisible by 2, then n must be 1 more than a multiple of 2
so n = 2k + 1 for some integer k. Similarly, if n is not divisible by 3
then n must be 1 or 2 more than a multiple of 3, so n = 2k + 1 or
n = 2k + 2 for some integer k.

• An integer is even iff it is divisible by 2 and odd iff it is not.

• An integer n > 1 is prime if it is divisible by exactly two positive
integers, namely 1 and itself. Note that a number must be greater
than 1 to even have a chance of being termed “prime”. In particular,
neither 0 nor 1 is prime.

Let’s look now at another example: prove that the sum of any two
rational numbers is rational.

Proof. We start by assuming that x and y are arbitrary rational numbers.
Here’s a formal proof that the inference rule

x is rational
y is rational
∴ x + y is rational

is a valid rule of inference:
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1. x is rational premise
2. if x is rational, then x = a

b

for some integers a and b 6= 0 definition of rationals
3. x = a

b
for some integers a and b 6= 0 from 1,2 (modus ponens)

4. y is rational premise
5. if y is rational, then y = c

d
for

some integers c and d 6= 0 definition of rational
6. y = c

d
for some c and d 6= 0 from 4,5 (modus ponens)

7. x = a
b

for some a and b 6= 0 and
y = c

d
for some c and d 6= 0 from 3,6

8. if x = a
b

for some a and b 6= 0 and
y = c

d
for c and d 6= 0 then

x + y = ad+bc
bd

where a, b, c, d
are integers and b, d 6= 0 basic algebra

9. x + y = ad+bc
bd

for some a, b, c, d
where b, d 6= 0 from 7,8 (modus ponens)

10. if x + y = ad+bc
bd

for some a, b, c, d
where b, d 6= 0 then x + y = m

n

where m, n are integers and n 6= 0 properties of integers
11. x + y = m

n
where m and n

are integers and n 6= 0 from 9,10 (modus ponens)
12. if x + y = m

n
where m and n are

integers and n 6= 0
then x + y is rational definition of rational

13. x + y is rational from 11,12 (modus ponens)

So the rule of inference given above is valid. Since x and y are arbitrary
rationals, we have proved that the rule is valid for all rationals, and hence
the sum of any two rationals is rational.

Again, a more informal presentation would look like:

Proof. Let x and y be arbitrary rational numbers. By the definition of
rational, there are integers a, b 6= 0, c, d 6= 0 such that x = a

b
and y = c

d
.

Then x+ y = ad+bc
bd

; we know ad+ bc and bd are integers since the sum and
product of integers are integers, and we also know bd 6= 0 since neither b nor
d is 0. So we have written x+y as the ratio of two integers, the denominator
being non-zero. Therefore, by the definition of rational numbers, x + y
is rational. Since x and y were arbitrary rationals, the sum of any two
rationals is rational.
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And one more example: we will prove that any 4-digit number d1d2d3d4

is divisible by 3 iff the sum of the 4 digits is divisible by 3.

Proof. This statement is of the form p ↔ q; recall that p ↔ q is logically
equivalent to (p → q) ∧ (q → p). So we need to prove for any 4-digit
number d1d2d3d4 that (1) if d1d2d3d4 is divisible by 3 then d1 +d2 +d3 +d4

is divisible by 3, and (2) if d1 + d2 + d3 + d4 is divisible by 3 then d1d2d3d4

is divisible by 3. So let d1d2d3d4 be an arbitrary 4-digit number.
(1) Assume d1d2d3d4 is divisible by 3, i.e. d1d2d3d4 = 3k for some

integer k. The number d1d2d3d4 is actually d1×1000+d2×100+d3×10+d4,
so we have the equation

d1 × 1000 + d2 × 100 + d3 × 10 + d4 = 3k.

Since 1000 = 999 + 1, 100 = 99 + 1, and 10 = 9 + 1, this equation can be
rewritten

999d1 + d1 + 99d2 + d2 + 9d3 + d3 + d4 = 3k.

Rearranging gives

d1 + d2 + d3 + d4 = 3k − 999d1 − 99d2 − 9d3

= 3k − 3(333d1) − 3(33d2) − 3(3d3).

We can now factor a 3 from the right side to get

d1 + d2 + d3 + d4 = 3(k − 333d1 − 33d2 − d3).

Since (k−333d1−33d2−d3) is an integer, we have shown that d1+d2+d3+d4

is divisible by 3.
(2) Assume d1 + d2 + d3 + d4 is divisible by 3. Consider the number

d1d2d3d4. As remarked above,

d1d2d3d4 = d1 × 1000 + d2 × 100 + d3 × 10 + d4

so

d1d2d3d4 = 999d1 + d1 + 99d2 + d2 + 9d3 + d3 + d4

= 999d1 + 99d2 + 9d3 + (d1 + d2 + d3 + d4).

We assumed that d1 + d2 + d3 + d4 = 3k for some integer k, so we can
substitute into the last equation to get

d1d2d3d4 = 999d1 + 99d2 + 9d3 + 3k = 3(333d1 + 33d2 + 3d3 + k).
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Since the quantity in parentheses is an integer, we have proved that d1d2d3d4

is divisible by 3.
In (1) and (2) above, the number d1d2d3d4 was an arbitrary 4-digit

integer, so we have proved that d1d2d3d4 is divisible by 3 iff the sum of the
4 digits is divisible by 3 for all 4-digit integers.

Now suppose we wanted to prove the statement “For all integers n,
n2 is even if and only if n is even.” We have already proved half of this
statement (“For all integers n, if n is even then n2 is even”), so all we
need to do is prove the statement “For all integers n, if n2 is even then n
is even” and we’ll be done. Unfortunately, this is not as straightforward
as it seems: suppose we started in our standard manner and let n be an
arbitrary integer and assumed that n2 = 2k for some integer k. Then we’d
be stuck! Taking the square root of both sides would give us n on the left
but would leave a

√
2k on the right. This quantity is not of the form 2k′

for any integer k′; multiplying it by
√

2√
2

would give 2
√

k√
2

but there is no way

for us to prove that
√

k√
2

is an integer. So we’ve hit a dead end. What do

we do now?
The answer is that we need a different proof technique. The proofs we

have written so far are what are called direct proofs: to prove p → q you
assume p is true and prove that the truth of q follows. Sometimes, when a
direct proof of p → q fails, an indirect proof will work. Recall that the
contrapositive of the implication p → q is the implication ¬q → ¬p, and
that this proposition is logically equivalent to p → q. An indirect proof
of p → q, then, is a direct proof of the contrapositive ¬q → ¬p. In our
current example, instead of proving “if n2 is even then n is even” directly,
we can prove its contrapositive “if n is not even (i.e. n is odd) then n2

is not even (i.e. n2 is odd.)” The proof of this contrapositive is a routine
direct argument which we leave to the exercises.

Exercises

1. Find a natural number n for which n2 + n + 41 is not prime.

2. Show that the propositions p ∨ q and (¬p) → q are logically equivalent.

3. Show that the proposition (p ∨ q) → r is equivalent to (p → r) ∧ (q → r).

4. Determine whether each of the following statements is true. If it true, prove
it. If it is false, give a counterexample.

a) Every prime number is odd.

b) Every prime number greater than 2 is odd.
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c) If x and y are integers with x < y, then there is an integer z such that
x < z < y.

d) If x and y are real numbers with x < y, then there is a real number z

such that x < z < y.

5. Prove that for all integers n, if n is odd then n2 is odd.

6. Prove that an integer n is divisible by 3 iff n2 is divisible by 3. (Hint: give
an indirect proof of “if n2 is divisible by 3 then n is divisible by 3.”)

7. Prove or disprove each of the following statements.

a) The product of two even integers is even.

b) The product of two integers is even only if both integers are even.

c) The product of two rational numbers is rational.

d) The product of two irrational numbers is irrational.

e) For all integers n, if n is divisible by 4 then n2 is divisible by 4.

f) For all integers n, if n2 is divisible by 4 then n is divisible by 4.

1.7 Proof by Contradiction

Suppose that we start with some set of assumptions and apply rules of
logic to derive a sequence of statements that can be proved from those
assumptions, and suppose that we derive a statement that we know to be
false. When the laws of logic are applied to true statements, the statements
that are derived will also be true. If we derive a false statement by applying
rules of logic to a set of assumptions, then at least one of the assumptions
must be false. This observation leads to a powerful proof technique, which
is known as proof by contradiction.

Suppose that you want to prove some proposition, p. To apply proof by
contradiction, assume that ¬p is true, and apply the rules of logic to derive
conclusions based on this assumption. If it is possible to derive a statement
that is known to be false, it follows that the assumption, ¬p, must be false.
(Of course, if the derivation is based on several assumptions, then you only
know that at least one of the assumptions must be false.) The fact that
¬p is false proves that p is true. Essentially, you are arguing that p must
be true, because if it weren’t, then some statement that is known to be
false could be proved to be true. Generally, the false statement that is
derived in a proof by contradiction is of the form q ∧ ¬q. This statement
is a contradiction in the sense that it is false no matter what the value of
q. Note that deriving the contradiction q ∧ ¬q is the same as showing that
the two statements, q and ¬q, both follow from the assumption that ¬p.

As a first example of proof by contradiction, consider the following the-
orem:
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Theorem 1.4. The number
√

3 is irrational.

Proof. Assume for the sake of contradiction that
√

3 is rational. Then
√

3
can be written as the ratio of two integers,

√
3 = m′

n′
for some integers m′

and n′. Furthermore, the fraction m′

n′
can be reduced to lowest terms by

canceling all common factors of m′ and n′. So
√

3 = m
n

for some integers m
and n which have no common factors. Squaring both sides of this equation

gives 3 = m2

n2 and re-arranging gives 3n2 = m2. From this equation we see
that m2 is divisible by 3; you proved in the previous section (Exercise 6)
that m2 is divisible by 3 iff m is divisible by 3. Therefore m is divisible
by 3 and we can write m = 3k for some integer k. Substituting m = 3k
into the last equation above gives 3n2 = (3k)2 or 3n2 = 9k2, which in turn
becomes n2 = 3k2. From this we see that n2 is divisible by 3, and again we
know that this implies that n is divisible by 3. But now we have (i) m and
n have no common factors, and (ii) m and n have a common factor, namely
3. It is impossible for both these things to be true, yet our argument has
been logically correct. Therefore our original assumption, namely that

√
3

is rational, must be incorrect. Therefore
√

3 must be irrational.

One of the oldest mathematical proofs, which goes all the way back to
Euclid, is a proof by contradiction. Recall that a prime number is an integer
n, greater than 1, such that the only positive integers that evenly divide n
are 1 and n. We will show that there are infinitely many primes. Before
we get to the theorem, we need a lemma. (A lemma is a theorem that
is introduced only because it is needed in the proof of another theorem.
Lemmas help to organize the proof of a major theorem into manageable
chunks.)

Lemma 1.5. If N is an integer and N > 1, then there is a prime number
which evenly divides N .

Proof. Let D be the smallest integer which is greater than 1 and which
evenly divides N . (D exists since there is at least one number, namely N
itself, which is greater than 1 and which evenly divides N . We use the fact
that any non-empty subset of N has a smallest member.) I claim that D is
prime, so that D is a prime number that evenly divides N .

Suppose that D is not prime. We show that this assumption leads to a
contradiction. Since D is not prime, then, by definition, there is a number
k between 2 and D − 1, inclusive, such that k evenly divides D. But since
D evenly divides N , we also have that k evenly divides N . That is, k is
an integer greater than one which evenly divides N . But since k is less
than D, this contradicts the fact that D is the smallest such number. This
contradiction proves that D is a prime number.
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Theorem 1.6. There are infinitely many prime numbers.

Proof. Suppose that there are only finitely many prime numbers. We will
show that this assumption leads to a contradiction.

Let p1, p2, . . . , pn be a complete list of all prime numbers (which exists
under the assumption that there are only finitely many prime numbers).
Consider the number N obtained by multiplying all the prime numbers
together and adding one. That is,

N = (p1 · p2 · p3 · · · pn) + 1.

Now, since N is larger than any of the prime numbers pi, and since p1,
p2, . . . , pn is a complete list of prime numbers, we know that N cannot
be prime. By the lemma, there is a prime number p which evenly divides
N . Now, p must be one of the numbers p1, p2, . . . , pn. But in fact, none
of these numbers evenly divides N , since dividing N by any pi leaves a
remainder of 1. This contradiction proves that the assumption that there
are only finitely many primes is false.

This proof demonstrates the power of proof by contradiction. The fact
that is proved here is not at all obvious, and yet it can be proved in just a
few paragraphs.

Exercises

1. Suppose that a1, a2, . . . , a10 are real numbers, and suppose that a1 + a2 +
· · ·+ a10 > 100. Use a proof by contradiction to conclude that at least one of
the numbers ai must be greater than 10.

2. Prove that each of the following statements is true. In each case, use a proof
by contradiction. Remember that the negation of p → q is p ∧ ¬q.

a) Let n be an integer. If n2 is an even integer, then n is an even integer.
b)

√
2 is irrational.

c) If r is a rational number and x is an irrational number, then r + x is
an irrational number. (That is, the sum of a rational number and an
irrational number is irrational.)

d) If r is a non-zero rational number and x is an irrational number, then
rx is an irrational number.

e) If r and r + x are both rational, then x is rational.

3. The pigeonhole principle is the following obvious observation: If you have
n pigeons in k pigeonholes and if n > k, then there is at least one pigeonhole
that contains more than one pigeon. Even though this observation seems
obvious, it’s a good idea to prove it. Prove the pigeonhole principle using a
proof by contradiction.
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1.8 Mathematical Induction

The structure of the natural numbers—0, 1, 2, 3, and on to infinity—makes
possible a powerful proof technique known as induction or mathematical
induction. The idea behind induction is simple. Let P be a one-place
predicate whose domain of discourse includes the natural numbers. Suppose
that we can prove that P (0) is true. Suppose that we can also prove the
statements P (0) → P (1), P (1) → P (2), P (2) → P (3), and so on. The
principal of mathematical induction is the observation that we can then
conclude that P (n) is true for all natural numbers n. This should be clear.
Since P (0) and P (0) → P (1) are true, we can apply the rule of modus
ponens to conclude that P (1) is true. Then, since P (1) and P (1) → P (2)
are true, we can conclude by modus ponens that P (2) is true. From P (2)
and P (2) → P (3), we conclude that P (3) is true. For any given n in the set
N, we can continue this chain of deduction for n steps to prove that P (n)
is true.

When applying induction, we don’t actually prove each of the implica-
tions P (0) → P (1), P (1) → P (2), and so on, individually. That would
require an infinite amount of work. The whole point of induction is to
avoid any infinitely long process. Instead, we prove ∀k (P (k) → P (k + 1))
(where the domain of discourse for the predicate P is N). The statement
∀k (P (k) → P (k + 1)) summarizes all the infinitely many implications in a
single statement. Stated formally, the principle of mathematical induction
says that if we can prove the statement P (0)∧

(

∀k (P (k) → P (k+1)
)

, then
we can deduce that ∀n P (n) (again, with N as the domain of discourse).

It should be intuitively clear that the principle of induction is valid. It
follows from the fact that the list 0, 1, 2, 3, . . . , if extended long enough,
will eventually include any given natural number. If we start from P (0) and
take enough steps of the form P (k) → P (k + 1), we can get P (n) for any
given natural number n. However, whenever we deal with infinity, we are
courting the possibility of paradox. We will prove the principle of induction
rigorously in the next chapter (see Theorem 2.3), but for now we just state
it as a theorem:

Theorem 1.7. Let P be a one-place predicate whose domain of discourse
includes the natural numbers. Suppose that P (0)∧

(

∀k ∈ N (P (k) → P (k +

1))
)

. Then P (n) is true for all natural numbers n. (That is, the statement
∀n P (n) is true, where the domain of discourse for P is the set of natural
numbers.)

Mathematical induction can be applied in many situations: you can
prove things about strings of characters by doing induction on the length of
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the string, things about graphs by doing induction on the number of nodes
in the graph, things about grammars by doing induction on the number of
productions in the grammar, and so on. We’ll be looking at applications of
induction for the rest of this chapter, and throughout the remainder of the
text. Although proofs by induction can be very different from one another,
they all follow just a few basic structures. A proof based on the preceding
theorem always has two parts. First, P (0) is proved. This is called the
base case of the induction. Then the statement ∀k (P (k) → P (k + 1)) is
proved. This statement can be proved by letting k be an arbitrary element
of N and proving P (k) → P (k+1). This in turn can be proved by assuming
that P (k) is true and proving that the truth of P (k + 1) follows from that
assumption. This case is called the inductive case, and P (k) is called the
inductive hypothesis or the induction hypothesis. Note that the base
case is just as important as the inductive case. By itself, the truth of the
statement ∀k (P (k) → P (k + 1)) says nothing at all about the truth of any
of the individual statements P (n). The chain of implications P (0) → P (1),
P (1) → P (2), . . . , P (n − 1) → P (n) says nothing about P (n) unless the
chain is anchored at the other end by the truth of P (0). Let’s look at a few
examples.

Theorem 1.8. The number 22n−1 is divisible by 3 for all natural numbers
n.

Proof. Here, P (n) is the statement that 22n − 1 is divisible by 3.

Base case: When n = 0, 22n − 1 = 20 − 1 = 1 − 1 = 0 and 0 is divisible
by 3 (since 0 = 3 · 0.) Therefore the statement holds when n = 0.

Inductive case: we want to show that if the statement is true for n = k
(where k is an arbitrary natural number), then it is true for n = k +1 also,
i.e. we are proving the implication P (k) → P (k + 1). So we assume P (k):
we assume that 22k is divisible by 3. This means that 22k − 1 = 3m for
some integer m. We want to prove that 22(k+1) − 1 is also divisible by 3:

22(k+1) − 1 = 22k+2 − 1

= 22k · 22 − 1 properties of exponents

= 4 · 22k − 1

= 4 · 22k − 4 + 4 − 1

= 4(22k − 1) + 3 algebra

= 4(3m) + 3 the inductive hypothesis

= 3(4m + 1) algebra
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and from the last line we see that 22k+1 is in fact divisible by 3. (The
third step—subtracting and adding 4—was done to enable us to use our
inductive hypothesis.)

Altogether, we have proved that P (0) holds and that, for all k, P (k) →
P (k + 1) is true. Therefore, by the principle of induction, P (n) is true for
all n in N, i.e. 22n − 1 is divisible by 3 for all n in N.

The principal of mathematical induction gives a method for proving
P (n) for all n in the set N. It should be clear that if M is any natural
number, a similar method can be used to show that P (n) is true for all
natural numbers n that satisfy n ≥ M . Just start the induction with a
base case of n = M instead of with a base case of n = 0. I leave the proof
of this extension of the principle of induction as an exercise. We can use the
extended principle of induction to prove a result that was first mentioned
in Section 1.1.

Theorem 1.9. Suppose that a compound proposition contains exactly n
propositional variables, where n ≥ 1. Then there are exactly 2n different
ways of assigning truth values to the n variables.

Proof. Let P (n) be the statement “There are exactly 2n different ways of
assigning truth values to n propositional variables.” We will use induction
to prove the P (n) is true for all n ≥ 1.

Base case: First, we prove the statement P (1). If there is exactly one
variable, then there are exactly two ways of assigning a truth value to that
variable. Namely, the variable can be either true or false. Since 2 = 21,
P (1) is true.

Inductive case: Suppose that P (k) is already known to be true. We want
to prove that, under this assumption, P (k + 1) is also true. Suppose that
p1, p2, . . . , pk+1 are k + 1 propositional variables. Since we are assuming
that P (k) is true, we know that there are 2k ways of assigning truth values
to p1, p2, . . . , pk. But each assignment of truth values to p1, p2, . . . , pk

can be extended to the complete list p1, p2, . . . , pk, pk+1 in two ways.
Namely, pk+1 can be assigned the value true or the value false. It follows
that there are 2 ·2k ways of assigning truth values to p1, p2, . . . , pk+1. Since
2 · 2k = 2k+1, this finishes the proof.

The sum of an arbitrary number of terms is written using the symbol
∑

. (This symbol is the Greek letter sigma, which is equivalent to the Latin



62 CHAPTER 1. LOGIC AND PROOF

letter S and stands for “sum.”) Thus, we have

5
∑

i=1

i2 = 12 + 22 + 32 + 42 + 52

7
∑

k=3

ak = a3 + a4 + a5 + a6 + a7

N
∑

n=0

1

n + 1
=

1

1 + 1
+

1

2 + 1
+

1

3 + 1
+ · · · + 1

N + 1

This notation for a sum, using the
∑

operator, is called summation no-
tation. A similar notation for products uses the symbol

∏

. (This is the
Greek letter pi, which is equivalent to the Latin letter P and stands for
“product.”) For example,

5
∏

k=2

(3k + 2) = (3 · 2 + 2)(3 · 3 + 2)(3 · 4 + 2)(3 · 5 + 2)

n
∏

i=1

1

i
=

1

1
· 1

2
· · · 1

n
·

Induction can be used to prove many formulas that use these notations.
Here are two examples:

Theorem 1.10.

n
∑

i=1

i =
n(n + 1)

2
for any integer n greater than zero.

Proof. Let P (n) be the statement

n
∑

i=1

i =
n(n + 1)

2
. We use induction to

show that P (n) is true for all n ≥ 1.

Base case: Consider the case n = 1. P (1) is the statement that
1
∑

i=1

i =

1(1 + 1)

2
. Since

1
∑

i=1

i = 1 and
1(1 + 1)

2
= 1, P (1) is true.

Inductive case: Let k > 1 be arbitrary, and assume that P (k) is true.

We want to show that P (k + 1) is true. P (k + 1) is the statement

k+1
∑

i=1

i =
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(k + 1)(k + 2)

2
. But

k+1
∑

i=1

i =

(

k
∑

i=1

i

)

+ (k + 1)

=
k(k + 1)

2
+ (k + 1) (inductive hypothesis)

=
k(k + 1)

2
+

2(k + 1)

2

=
k(k + 1) + 2(k + 1)

2

=
(k + 2)(k + 1)

2

=
(k + 1)(k + 2)

2

which is what we wanted to show. This computation completes the induc-
tion.

Theorem 1.11.

n
∑

i=1

i2i−1 = (n−1) ·2n +1 for any natural number n > 0.

Proof. Let P (n) be the statement

n
∑

i=1

i2i−1 = (n − 1) · 2n + 1. We use

induction to show that P (n) is true for all n > 0

Base case: Consider the case n = 1. P (1) is the statement that
1
∑

i=1

i2i−1 = (1 − 1) · 21 + 1. Since each side of this equation is equal

to one, this is true.

Inductive case: Let k > 1 be arbitrary, and assume that P (k) is true.

We want to show that P (k+1) is true. P (k+1) is the statement

k+1
∑

i=1

i2i−1 =
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((k + 1) − 1) · 2k+1 + 1. But, we can compute that

k+1
∑

i=1

i2i−1 =

(

k
∑

i=1

i2i−1

)

+ (k + 1)2(k+1)−1

=
(

(k − 1) · 2k + 1
)

+ (k + 1)2k (inductive hypothesis)

=
(

(k − 1) + (k + 1)
)

2k + 1

= (k · 2) · 2k + 1

= k2k+1 + 1

which is what we wanted to show. This completes the induction.

For example, these theorems show that

100
∑

i=1

i = 1+2+3+4+ · · ·+100 =

100(100 + 1)

2
= 5050 and that 1·20+2·21+3·22+4·23+5·24 = (5−1)25+1 =

129, as well as infinitely many other such sums.

There is a second form of the principle of mathematical induction which
is useful in some cases. To apply the first form of induction, we assume
P (k) for an arbitrary natural number k and show that P (k + 1) follows
from that assumption. In the second form of induction, the assumption
is that P (x) holds for all x between 0 and k inclusive, and we show that
P (k + 1) follows from this. This gives us a lot more to work with when
deducing P (k + 1). We will need this second form of induction in the next
two sections. A proof will be given in the next chapter.

Theorem 1.12. Let P be a one-place predicate whose domain of discourse
includes the natural numbers. Suppose that P (0) is true and that

(P (0) ∧ P (1) ∧ · · · ∧ P (k)) → P (k + 1)

is true for each natural number k ≥ 0. Then P (n) is true for every natural
number n.

For example, we can use this theorem to prove that every integer greater
than one can be written as a product of prime numbers (where a number
that is itself prime is considered to be a product of one prime number).
The proof illustrates an important point about applications of this theorem:
When proving P (k + 1), you don’t necessarily have to use the assumptions
that P (0), P (1), . . . , and P (k) are true. If P (k + 1) is proved by any
means—possibly including the assumptions—then the statement (P (0) ∧
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P (1) ∧ · · · ∧ P (k)) → P (k + 1) has been shown to be true. It follows from
this observation that several numbers, not just zero, can be “base cases” in
the sense that P (x+1) can be proved independently of P (0) through P (x).
In this sense, 0, 1, and every prime number are base cases in the following
theorem.

Theorem 1.13. Every natural number greater than one can be written as
a product of prime numbers.

Proof. Let P (n) be the statement “if n > 1, then n can be written as a
product of prime numbers.” We will prove that P (n) is true for all n by
applying the second form of the principle of induction.

Note that P (0) and P (1) are both automatically true, since n = 0 and
n = 1 do not satisfy the condition that n > 1, and P (2) is true since 2 is
the product of the single prime number 2. Suppose that k is an arbitrary
natural number with k > 1, and suppose that P (0), P (1), . . . , P (k) are
already known to be true; we want to show that P (k + 1) is true. In the
case where k + 1 is a prime number, then k + 1 is a product of one prime
number, so P (k + 1) is true.

Consider the case where k + 1 is not prime. Then, according to the
definition of prime number, it is possible to write k + 1 = ab where a and
b are numbers in the range from 2 to k inclusive. Since P (0) through P (k)
are known to be true, a and b can each be written as a product of prime
numbers. Since k + 1 = ab, k + 1 can also be written as a product of prime
numbers. We have shown that P (k+1) follows from P (0)∧P (1)∧· · ·∧P (k),
and this completes the induction.

Exercises

1. Evaluate the following sums, using results proved in this section and in the
previous exercises:

a) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19

b) 1 +
1

3
+

1

32
+

1

33
+

1

34
+

1

35
+

1

36

c) 50 + 51 + 52 + 53 + · · · + 99 + 100
d) 1 + 4 + 9 + 16 + 25 + 36 + 49 + 81 + 100

e)
1

22
+

1

23
+ · · · + 1

299

2. Write each of the sums in the preceding problem using summation notation.

3. Rewrite the proofs of Theorem 1.10 and Theorem 1.11 without using summa-
tion notation.

4. Use induction to prove that n3 + 3n2 + 2n is divisible by 3 for all natural
numbers n.
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5. Use induction to prove that

n
X

i=0

r
i =

1 − rn+1

1 − r

for any natural number n and for any real number r such that r 6= 1.

6. Use induction to prove that for any natural number n,

n
X

i=0

1

2i
= 2 − 1

2n

In addition to proving this by induction, show that it follows as a corollary of
Exercise 2.

7. Use induction to prove that for any natural number n,

n
X

i=0

2i = 2n+1 − 1

In addition to proving this by induction, show that it follows as a corollary of
Exercise 2.

8. Use induction to prove that for any positive integer n,

n
X

i=1

i
2 =

n(n + 1)(2n + 1)

6

9. Use induction to prove that for any positive integer n,

n
X

i=1

(2i − 1) = n
2

10. Use induction to prove the following generalized distributive laws for propo-
sitional logic: For any natural number n > 1 and any propositions q, p1, p2,
. . . , pn,

a) q ∧ (p1 ∨ p2 ∨ · · · ∨ pn) = (q ∧ p1) ∨ (q ∧ p2) ∨ · · · ∨ (q ∧ pn)
b) q ∨ (p1 ∧ p2 ∧ · · · ∧ pn) = (q ∨ p1) ∧ (q ∨ p2) ∧ · · · ∧ (q ∨ pn)

1.9 Application: Recursion and Induction

In computer programming, there is a technique called recursion that is
closely related to induction. In a computer program, a subroutine is a
named sequence of instructions for performing a certain task. When that
task needs to be performed in a program, the subroutine can be called by
name. A typical way to organize a program is to break down a large task
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into smaller, simpler subtasks by calling subroutines to perform each of the
subtasks. A subroutine can perform its task by calling other subroutines to
perform subtasks of the overall task. A subroutine can also call itself. That
is, in the process of performing some large task, a subroutine can call itself
to perform a subtask. This is known as recursion, and a subroutine that
does this is said to be a recursive subroutine. Recursion is appropriate
when a large task can be broken into subtasks where some or all of the
subtasks are smaller, simpler versions of the main task.

Like induction, recursion is often considered to be a “hard” topic by
students. Professors, on the other hand, often say that they can’t see what
all the fuss is about, since induction and recursion are elegant methods
which “obviously” work. In fairness, students have a point, since induction
and recursion both manage to pull infinite rabbits out of very finite hats.
But the magic is indeed elegant, and learning the trick is very worthwhile.

A simple example of a recursive subroutine is a function that computes
n! for a non-negative integer n. n!, which is read “n factorial,” is defined
as follows:

0! = 1

n! =

n
∏

i=1

i for n > 0

For example, 5! = 1 · 2 · 3 · 4 · 5 = 120. Note that for n > 1,

n! =

n
∏

i=1

i =

(

n−1
∏

i=1

i

)

· n =
(

(n − 1)!
)

· n

It is also true that n! =
(

(n−1)!
)

·n when n = 1. This observation makes it
possible to write a recursive function to compute n!. (All the programming
examples in this section are written in the Java programming language.)

int factorial( int n ) {

// Compute n!. Assume that n >= 0.

int answer;

if ( n == 0 ) {

answer = 1;

}

else {

answer = factorial( n-1 ) * n;

}
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return answer;

}

In order to compute factorial(n) for n > 0, this function first computes
factorial(n − 1) by calling itself recursively. The answer from that compu-
tation is then multiplied by n to give the value of n!. The recursion has a
base case, namely the case when n = 0. For the base case, the answer is
computed directly rather than by using recursion. The base case prevents
the recursion from continuing forever, in an infinite chain of recursive calls.

Now, as it happens, recursion is not the best way to compute n!. It
can be computed more efficiently using a loop. Furthermore, except for
small values of n, the value of n! is outside the range of numbers that
can be represented as 32-bit ints. However, ignoring these problems, the
factorial function provides a nice first example of the interplay between
recursion and induction. We can use induction to prove that factorial(n)
does indeed compute n! for n ≥ 0. (In the proof, we pretend that the
data type int is not limited to 32 bits. In reality, the function only gives
the correct answer when the answer can be represented as a 32-bit binary
number.)

Theorem 1.14. Assume that the data type int can represent arbitrarily
large integers. Under this assumption, the factorial function defined above
correctly computes n! for any natural number n.

Proof. Let P (n) be the statement “factorial(n) correctly computes n!.” We
use induction to prove that P (n) is true for all natural numbers n.

Base case: In the case n = 0, the if statement in the function assigns
the value 1 to the answer. Since 1 is the correct value of 0!, factorial(0)
correctly computes 0!.

Inductive case: Let k be an arbitrary natural number, and assume that
P (k) is true. From this assumption, we must show that P (k + 1) is true.
The assumption is that factorial(k) correctly computes k!, and we want to
show that factorial(k + 1) correctly computes (k + 1)!.

When the function computes factorial(k+1), the value of the parameter
n is k + 1. Since k + 1 > 0, the if statement in the function computes the
value of factorial(k + 1) by applying the computation factorial(k) ∗ (k +
1). We know, by the induction hypothesis, that the value computed by
factorial(k) is k!. It follows that the value computed by factorial(k + 1) is
(k!)·(k+1). As we observed above, for any k+1 > 0, (k!)·(k+1) = (k+1)!.
We see that factorial(k + 1) correctly computes (k + 1)!. This completes
the induction.

In this proof, we see that the base case of the induction corresponds
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to the base case of the recursion, while the inductive case corresponds to a
recursive subroutine call. A recursive subroutine call, like the inductive case
of an induction, reduces a problem to a “simpler” or “smaller” problem,
which is closer to the base case.

Another standard example of recursion is the Towers of Hanoi problem.
Let n be a positive integer. Imagine a set of n disks of decreasing size, piled
up in order of size, with the largest disk on the bottom and the smallest
disk on top. The problem is to move this tower of disks to a second pile,
following certain rules: Only one disk can be moved at a time, and a disk
can only be placed on top of another disk if the disk on top is smaller.
While the disks are being moved from the first pile to the second pile, disks
can be kept in a third, spare pile. All the disks must at all times be in one
of the three piles. For example, if there are two disks, the problem can be
solved by the following sequence of moves:

Move disk 1 from pile 1 to pile 3

Move disk 2 from pile 1 to pile 2

Move disk 1 from pile 3 to pile 2

A simple recursive subroutine can be used to write out the list of moves
to solve the problem for any value of n. The recursion is based on the
observation that for n > 1, the problem can be solved as follows: Move
n − 1 disks from pile number 1 to pile number 3 (using pile number 2 as
a spare). Then move the largest disk, disk number n, from pile number
1 to pile number 2. Finally, move the n − 1 disks from pile number 3 to
pile number 2, putting them on top of the nth disk (using pile number 1
as a spare). In both cases, the problem of moving n − 1 disks is a smaller
version of the original problem and so can be done by recursion. Here is
the subroutine, written in Java:

void Hanoi(int n, int A, int B, int C) {

// List the moves for moving n disks from

// pile number A to pile number B, using

// pile number C as a spare. Assume n > 0.

if ( n == 1 ) {

System.out.println("Move disk 1 from pile "

+ A + " to pile " + B);

}

else {

Hanoi( n-1, A, C, B );

System.out.println("Move disk " + n

+ " from pile " + A + " to pile " + B);
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Hanoi( n-1, C, B, A );

}

}

We can use induction to prove that this subroutine does in fact solve the
Towers of Hanoi problem.

Theorem 1.15. The sequence of moves printed by the Hanoi subroutine
as given above correctly solves the Towers of Hanoi problem for any integer
n ≥ 1.

Proof. We prove by induction that whenever n is a positive integer and A,
B, and C are the numbers 1, 2, and 3 in some order, the subroutine call
Hanoi(n, A, B, C) prints a sequence of moves that will move n disks from
pile A to pile B, following all the rules of the Towers of Hanoi problem.

In the base case, n = 1, the subroutine call Hanoi(1, A, B, C) prints out
the single step “Move disk 1 from pile A to pile B,” and this move does
solve the problem for 1 disk.

Let k be an arbitrary positive integer, and suppose that Hanoi(k, A, B, C)
correctly solves the problem of moving the k smallest disks from pile A to
pile B, whenever A, B, and C are the numbers 1, 2, and 3 in some order.
We need to show that Hanoi(k + 1, A, B, C) correctly solves the problem
for k + 1 disks. Since k + 1 > 1, Hanoi(k + 1, A, B, C) begins by call-
ing Hanoi(k, A, C, B). By the induction hypothesis, this correctly moves k
disks from pile A to pile C. (Note that the k disks that are being moved
are smaller than any remaining disks, so any time one of the k disks is
placed on top of one of the remaining disks, it is a legal move.) At that
point, pile C contains only the k smallest disks and pile A still contains the
(k + 1)st disk, which has not yet been moved. So the next move printed by
the subroutine, “Move disk (k + 1) from pile A to pile B,” is legal. Finally,
the subroutine calls Hanoi(k, C, B, A), which correctly moves the k small-
est disks from pile C to pile B, on top of the (k + 1)st disk. At this point,
all (k + 1) disks are on pile B in the correct order, so the problem for k +1
disks has been correctly solved.

Recursion is often used with linked data structures, which are data
structures that are constructed by linking several objects of the same type
together with pointers. (If you don’t already know about objects and point-
ers, you will not be able to follow the rest of this section.) For an example,
we’ll look at the data structure known as a binary tree. A binary tree
consists of nodes linked together in a tree-like structure. The nodes can
contain any type of data, but we will consider binary trees in which each
node contains an integer. A binary tree can be empty, or it can consist of a
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node (called the root of the tree) and two smaller binary trees (called the
left subtree and the right subtree of the tree). You can already see the
recursive structure: A tree can contain smaller trees. In Java, the nodes of
a tree can be represented by objects belonging to the class

class BinaryTreeNode {

int item; // An integer value stored in the node.

BinaryTreeNode left; // Pointer to left subtree.

BinaryTreeNode right; // Pointer to right subtree.

}

An empty tree is represented by a pointer that has the special value null. If
root is a pointer to the root node of a tree, then root.left is a pointer to the
left subtree and root.right is a pointer to the right subtree. Of course, both
root.left and root.right can be null if the corresponding subtree is empty.
Similarly, root.item is a name for the integer in the root node.

Let’s say that we want a function that will find the sum of all the
integers in all the nodes of a binary tree. We can do this with a simple
recursive function. The base case of the recursion is an empty tree. Since
there are no integers in an empty tree, the sum of the integers in an empty
tree is zero. For a non-empty tree, we can use recursion to find the sums
of the integers in the left and right subtrees, and then add those sums to
the integer in the root node of the tree. In Java, this can be expressed as
follows:

int TreeSum( BinaryTreeNode root ) {

// Find the sum of all the integers in the

// tree that has the given root.

int answer;

if ( root == null ) { // The tree is empty.

answer = 0;

}

else {

answer = TreeSum( root.left );

answer = answer + TreeSum( root.right );

answer = answer + root.item;

}

return answer;

}

We can use the second form of the principle of mathematical induction to
prove that this function is correct.
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Theorem 1.16. The function TreeSum, defined above, correctly computes
the sum of all the integers in a binary tree.

Proof. We use induction on the number of nodes in the tree. Let P (n) be
the statement “TreeSum correctly computes the sum of the nodes in any
binary tree that contains exactly n nodes.” We show that P (n) is true for
every natural number n.

Consider the case n = 0. A tree with zero nodes is empty, and an empty
tree is represented by a null pointer. In this case, the if statement in the
definition of TreeSum assigns the value 0 to the answer, and this is the
correct sum for an empty tree. So, P (0) is true.

Let k be an arbitrary natural number, with k > 0. Suppose we already
know P (x) for each natural number x with 0 ≤ x < k. That is, TreeSum
correctly computes the sum of all the integers in any tree that has fewer
than k nodes. We must show that it follows that P (k) is true, that is, that
TreeSum works for a tree with k nodes. Suppose that root is a pointer to
the root node of a tree that has a total of k nodes. Since the root node
counts as a node, that leaves a total of k − 1 nodes for the left and right
subtrees, so each subtree must contain fewer than k nodes. By the induction
hypothesis, we know that TreeSum(root.left) correctly computes the sum
of all the integers in the left subtree, and TreeSum(root.right) correctly
computes the sum of all the integers in the right subtree. The sum of all
the integers in the tree is root.item plus the sums of the integers in the
subtrees, and this is the value computed by TreeSum. So, TreeSum does
work for a tree with k nodes. This completes the induction.

Note how closely the structure of the inductive proof follows the struc-
ture of the recursive function. In particular, the second principle of math-
ematical induction is very natural here, since the size of subtree could be
anything up to one less than the size of the complete tree. It would be very
difficult to use the first principle of induction in a proof about binary trees.

Exercises

1. The Hanoi subroutine given in this section does not just solve the Towers of
Hanoi problem. It solves the problem using the minimum possible number of
moves. Use induction to prove this fact.

2. Use induction to prove that the Hanoi subroutine uses 2n − 1 moves to solve
the Towers of Hanoi problem for n disks. (There is a story that goes along
with the Towers of Hanoi problem. It is said that on the day the world was
created, a group of monks in Hanoi were set the task of solving the problem
for 64 disks. They can move just one disk each day. On the day the problem
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is solved, the world will end. However, we shouldn’t worry too much, since
264 − 1 days is a very long time—about 50 million billion years.)

3. Consider the following recursive function:

int power( int x, int n ) {

// Compute x raised to the power n.

// Assume that n >= 0.

int answer;

if ( n == 0 ) {

answer = 1;

}

else if (n % 2 == 0) {

answer = power( x * x, n / 2);

}

else {

answer = x * power( x * x, (n-1) / 2);

}

return answer;

}

Show that for any integer x and any non-negative integer n, the function
power(x,n) correctly computes the value of xn. (Assume that the int data
type can represent arbitrarily large integers.) Note that the test “if (n % 2

== 0)” tests whether n is evenly divisible by 2. That is, the test is true if n

is an even number. (This function is actually a very efficient way to compute
xn.)

4. A leaf node in a binary tree is a node in which both the left and the right
subtrees are empty. Prove that the following recursive function correctly
counts the number of leaves in a binary tree:

int LeafCount( BinaryTreeNode root ) {

// Counts the number of leaf nodes in

// the tree with the specified root.

int count;

if ( root == null ) {

count = 0;

}

else if ( root.left == null && root.right == null ) {

count = 1;

}

else {

count = LeafCount( root.left );

count = count + LeafCount( root.right );

}

return count;

}
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5. A binary sort tree satisfies the following property: If node is a pointer to
any node in the tree, then all the integers in the left subtree of node are less
than node.item and all the integers in the right subtree of node are greater
than or equal to node.item. Prove that the following recursive subroutine
prints all the integers in a binary sort tree in non-decreasing order:

void SortPrint( BinaryTreeNode root ) {

// Assume that root is a pointer to the

// root node of a binary sort tree. This

// subroutine prints the integers in the

// tree in non-decreasing order.

if ( root == null ) {

// There is nothing to print.

}

else {

SortPrint( root.left );

System.out.println( root.item );

SortPrint( root.right );

}

}

1.10 Recursive Definitions

Recursion occurs in programming when a subroutine is defined—partially,
at least—in terms of itself. But recursion also occurs outside of program-
ming. A recursive definition is a definition that includes a reference to
the term that is being defined. A recursive definition defines something at
least partially in terms of itself. As in the case of recursive subroutines,
mathematical induction can often be used to prove facts about things that
are defined recursively.

As already noted, there is a recursive definition for n!, for n in N. We can
define 0! = 1 and n! = n·(n−1)! for n > 0. Other sequences of numbers can
also be defined recursively. For example, the famous Fibonacci sequence
is the sequence of numbers f0, f1, f2, . . . , defined recursively by

f0 = 0

f1 = 1

fn = fn−1 + fn−2 for n > 1
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Using this definition, we compute that

f2 = f1 + f0 = 0 + 1 = 1

f3 = f2 + f1 = 1 + 1 = 2

f4 = f3 + f2 = 2 + 1 = 3

f5 = f4 + f3 = 3 + 2 = 5

f6 = f5 + f4 = 5 + 3 = 8

f7 = f6 + f5 = 8 + 5 = 13

and so on. Based on this definition, we can use induction to prove facts
about the Fibonacci sequence. We can prove, for example, that fn grows
exponentially with n, even without finding an exact formula for fn:

Theorem 1.17. The Fibonacci sequence, f0, f1, f2, . . . , satisfies fn >
(

3
2

)n−1
, for n ≥ 6.

Proof. We prove this by induction on n. For n = 6, we have that fn = 8
while 1.5n−1 = 1.55, which is about 7.6. So fn > 1.5n−1 for n = 6.
Similarly, for n = 7, we have fn = 13 and 1.5n−1 = 1.56, which is about
11.4. So fn > 1.5n−1 for n = 7.

Now suppose that k is an arbitrary integer with k > 7. Suppose that
we already know that fn > 1.5n−1 for n = k − 1 and for n = k − 2. We
want to show that the inequality then holds for n = k as well. But

fk = fk−1 + fk−2

> 1.5(k−1)−1 + 1.5(k−2)−1 (by the induction hypothesis)

= 1.5k−2 + 1.5k−3

= (1.5) · (1.5k−3) + (1.5k−3)

= (2.5) · (1.5k−3)

> (1.52) · (1.5k−3) (since 1.52 = 2.25)

= 1.5k−1

This string of equalities and inequalities shows that fk > 1.5k−1. This
completes the induction and proves the theorem.

Exercises

1. Prove that the Fibonacci sequence, f0, f1, f2, . . . , satisfies fn < 2n for all
natural numbers n.
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2. Suppose that a1, a2, a3, . . . , is a sequence of numbers which is defined recur-
sively by a1 = 1 and an = 2an−1 + 2n−1 for n > 1. Prove that an = n2n−1

for every positive integer n.



Chapter 2

Sets, Functions, and

Relations

We deal with the complexity of the world by putting things into
categories. There are not just hordes of individual creatures. There are
dogs, cats, elephants, and mice. There are mammals, insects, and fish.
Animals, vegetables, and minerals. Solids, liquids, and gasses. Things that
are red. Big cities. Pleasant memories. . . . Categories build on categories.
They are the subject and the substance of thought.

In mathematics, which operates in its own abstract and rigorous world,
categories are modeled by sets. A set is just a collection of elements. Along
with logic, sets form the “foundation” of mathematics, just as categories
are part of the foundation of day-to-day thought. In this chapter, we study
sets and relationships among sets.

2.1 Basic Concepts

A set is a collection of elements. A set is defined entirely by the elements
that it contains. An element can be anything, including another set. You
will notice that this is not a precise mathematical definition. Instead, it is
an intuitive description of what the word “set” is supposed to mean: Any
time you have a bunch of entities and you consider them as a unit, you have
a set. Mathematically, sets are really defined by the operations that can be
performed on them. These operations model things that can be done with
collections of objects in the real world. These operations are the subject of
the branch of mathematics known as set theory.

The most basic operation in set theory is forming a set from a given list

77
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of specific entities. The set that is formed in this way is denoted by enclosing
the list of entities between a left brace, “{”, and a right brace, “}”. The
entities in the list are separated by commas. For example, the set denoted
by

{ 17, π, New York City, Bill Clinton, Big Ben }
is the set that contains the entities 17, π, New York City, Bill Clinton,
and Big Ben. These entities are the elements of the set. Since we assume
that a set is completely defined by the elements that it contains, the set
is well-defined. Of course, we still haven’t said what it means to be an
“entity.” Something as definite as “New York City” should qualify, except
that it doesn’t seem like New York City really belongs in the world of
Mathematics. The problem is that mathematics is supposed to be its own
self-contained world, but it is supposed to model the real world. When we
use mathematics to model the real world, we admit entities such as New
York City and even Big Ben. But when we are doing mathematics per se,
we’ll generally stick to obviously mathematical entities such as the integer
17 or the real number π. We will also use letters such as a and b to refer to
entities. For example, when I say something like “Let A be the set {a, b, c},”
I mean a, b, and c to be particular, but unspecified, entities.

It’s important to understand that a set is defined by the elements that
it contains, and not by the order in which those elements might be listed.
For example, the notations {a, b, c, d} and {b, c, a, d} define the same set.
Furthermore, a set can only contain one copy of a given element, even
if the notation that specifies the set lists the element twice. This means
that {a, b, a, a, b, c, a} and {a, b, c} specify exactly the same set. Note in
particular that it’s incorrect to say that the set {a, b, a, a, b, c, a} contains
seven elements, since some of the elements in the list are identical. The
notation {a, b, c} can lead to some confusion, since it might not be clear
whether the letters a, b, and c are assumed to refer to three different entities.
A mathematician would generally not make this assumption without stating
it explicitly, so that the set denoted by {a, b, c} could actually contain either
one, two, or three elements. When it is important that different letters refer
to different entities, I will say so explicitely, as in “Consider the set {a, b, c},
where a, b, and c are distinct.”

The symbol ∈ is used to express the relation “is an element of.” That
is, if a is an entity and A is a set, then a ∈ A is a statement that is true
if and only if a is one of the elements of A. In that case, we also say that
a is a member of the set A. The assertion that a is not an element of A
is expressed by the notation a 6∈ A. Note that both a ∈ A and a 6∈ A are
statements in the sense of propositional logic. That is, they are assertions
which can be either true or false. The statement a 6∈ A is equivalent to



2.1. BASIC CONCEPTS 79

¬(a ∈ A).
It is possible for a set to be empty, that is, to contain no elements

whatsoever. Since a set is completely determined by the elements that it
contains, there is only one set that contains no elements. This set is called
the empty set, and it is denoted by the symbol ∅. Note that for any
element a, the statement a ∈ ∅ is false. The empty set, ∅, can also be
denoted by an empty pair of braces, { }.

If A and B are sets, then, by definition, A is equal to B if and only
if they contain exactly the same elements. In this case, we write A = B.
Using the notation of predicate logic, we can say that A = B if and only if
∀x(x ∈ A ↔ x ∈ B).

Suppose now that A and B are sets such that every element of A is an
element of B. In that case, we say that A is a subset of B, i.e. A is a
subset of B if and only if ∀x(x ∈ A → x ∈ B). The fact that A is a subset
of B is denoted by A ⊆ B. Note that ∅ is a subset of every set B: x ∈ ∅ is
false for any x, and so given any B, (x ∈ ∅ → x ∈ B) is true for all x.

If A = B, then it is automatically true that A ⊆ B and that B ⊆ A.
The converse is also true: If A ⊆ B and B ⊆ A, then A = B. This follows
from the fact that for any x, the statement (x ∈ A ↔ x ∈ B) is logically
equivalent to the statement (x ∈ A → x ∈ B) ∧ (x ∈ B → x ∈ A). This
fact is important enough to state as a theorem.

Theorem 2.1. Let A and B be sets. Then A = B if and only if both
A ⊆ B and B ⊆ A.

This theorem expresses the following advice: If you want to check that
two sets, A and B, are equal, you can do so in two steps. First check
that every element of A is also an element of B, and then check that every
element of B is also an element of A.

If A ⊆ B but A 6= B, we say that A is a proper subset of B. We
use the notation A  B to mean that A is a proper subset of B. That is,
A  B if and only if A ⊆ B ∧ A 6= B. We will sometimes use A ⊇ B as an
equivalent notation for B ⊆ A, and A ! B as an equivalent for B  A.

A set can contain an infinite number of elements. In such a case, it is
not possible to list all the elements in the set. Sometimes the ellipsis “. . . ”
is used to indicate a list that continues on infinitely. For example, N, the
set of natural numbers, can be specified as

N = {0, 1, 2, 3, . . .}

However, this is an informal notation, which is not really well-defined, and
it should only be used in cases where it is clear what it means. It’s not
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very useful to say that “the set of prime numbers is {2, 3, 5, 7, 11, 13, . . .},”
and it is completely meaningless to talk about “the set {17, 42, 105, . . .}.”
Clearly, we need another way to specify sets besides listing their elements.
The need is fulfilled by predicates.

If P (x) is a predicate, then we can form the set that contains all entities
a such that a is in the domain of discourse for P and P (a) is true. The
notation {x |P (x)} is used to denote this set. The name of the variable,
x, is arbitrary, so the same set could equally well be denoted as {z |P (z)}
or {r |P (r)}. The notation {x |P (x)} can be read “the set of x such that
P (x).” For example, if E(x) is the predicate “x is an even number,” and
if the domain of discourse for E is the set N of natural numbers, then the
notation {x |E(x)} specifies the set of even natural numbers. That is,

{x |E(x)} = {0, 2, 4, 6, 8, . . .}

It turns out, for deep and surprising reasons that we will discuss later in this
section, that we have to be a little careful about what counts as a predicate.
In order for the notation {x |P (x)} to be valid, we have to assume that the
domain of discourse of P is in fact a set. (You might wonder how it could
be anything else. That’s the surprise!) Often, it is useful to specify the
domain of discourse explicitly in the notation that defines a set. In the
above example, to make it clear that x must be a natural number, we could
write the set as {x ∈ N |E(x)}. This notation can be read as “the set of all
x in N such that E(x).” More generally, if X is a set and P is a predicate
whose domain of discourse includes all the elements of X , then the notation

{x ∈ X |P (x)}

is the set that consists of all entities a that are members of the set X and
for which P (a) is true. In this notation, we don’t have to assume that
the domain of discourse for P is a set, since we are effectively limiting the
domain of discourse to the set X . The set denoted by {x ∈ X |P (x)} could
also be written as {x |x ∈ X ∧ P (x)}.

We can use this notation to define the set of prime numbers in a rigorous
way. A prime number is a natural number n which is greater than 1 and
which satisfies the property that for any factorization n = xy, where x
and y are natural numbers, either x or y must be n. We can express this
definition as a predicate and define the set of prime numbers as

{n ∈ N | (n > 1) ∧ ∀x∀y
(

(x ∈ N ∧ y ∈ N ∧ n = xy) → (x = n ∨ y = n)
)

}.

Admittedly, this definition is hard to take in in one gulp. But this example
shows that it is possible to define complex sets using predicates.
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Now that we have a way to express a wide variety of sets, we turn to
operations that can be performed on sets. The most basic operations on
sets are union and intersection. If A and B are sets, then we define the
union of A and B to be the set that contains all the elements of A together
with all the elements of B. The union of A and B is denoted by A ∪ B.
The union can be defined formally as

A ∪ B = {x |x ∈ A ∨ x ∈ B}.

The intersection of A and B is defined to be the set that contains every
entity that is both a member of A and a member of B. The intersection of
A and B is denoted by A ∩ B. Formally,

A ∩ B = {x |x ∈ A ∧ x ∈ B}.

An entity gets into A ∪ B if it is in either A or B. It gets into A ∩ B if it
is in both A and B. Note that the symbol for the logical “or” operator, ∨,
is similar to the symbol for the union operator, ∪, while the logical “and”
operator, ∧, is similar to the intersection operator, ∩.

The set difference of two sets, A and B, is defined to be the set of
all entities that are members of A but are not members of B. The set
difference of A and B is denoted ArB. The idea is that ArB is formed
by starting with A and then removing any element that is also found in B.
Formally,

ArB = {x |x ∈ A ∧ x 6∈ B}.
Union and intersection are clearly commutative operations. That is, A ∪
B = B∪A and A∩B = B∩A for any sets A and B. However, set difference
is not commutative. In general, ArB 6= B rA.

Suppose that A = {a, b, c}, that B = {b, d}, and that C = {d, e, f}.
Then we can apply the definitions of union, intersection, and set difference
to compute, for example, that:

A ∪ B = {a, b, c, d} A ∩ B = {b} ArB = {a, c}
A ∪ C = {a, b, c, d, e, f} A ∩ C = ∅ Ar C = {a, b, c}

In this example, the sets A and C have no elements in common, so that
A ∩ C = ∅. There is a term for this: Two sets are said to be disjoint if
they have no elements in common. That is, for any sets A and B, A and
B are said to be disjoint if and only if A ∩ B = ∅.

Of course, the set operations can also be applied to sets that are defined
by predicates. For example, let L(x) be the predicate “x is lucky,” and let
W (x) be the predicate “x is wise,” where the domain of discourse for each
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Notation Definition

a ∈ A a is a member (or element) of A

a 6∈ A ¬(a ∈ A), a is not a member of A

∅ the empty set, which contains no elements

A ⊆ B A is a subset of B, ∀x(x ∈ A → x ∈ B)

A  B A is a proper subset of B, A ⊆ B ∧ A 6= B

A ⊇ B A is a superset of B, same as B ⊆ A

A ! B A is a proper superset of B, same as B ! A

A = B A and B have the same members, A ⊆ B ∧ B ⊆ A

A ∪ B union of A and B, {x |x ∈ A ∨ x ∈ B}
A ∩ B intersection of A and B, {x |x ∈ A ∧ x ∈ B}
ArB set difference of A and B, {x |x ∈ A ∧ x 6∈ B}
P(A) power set of A, {X |X ⊆ A}

Figure 2.1: Some of the notations that are defined in this section.
A and B are sets, and a is an entity.

predicate is the set of people. Let X = {x |L(x)}, and let Y = {x |W (x)}.
Then

X ∪ Y = {x |L(x) ∨ W (x)} = {people who are lucky or wise}
X ∩ Y = {x |L(x) ∧ W (x)} = {people who are lucky and wise}
X r Y = {x |L(x) ∧ ¬W (x)} = {people who are lucky but not wise}
Y rX = {x |W (x) ∧ ¬L(x)} = {people who are wise but not lucky}

You have to be a little careful with the English word “and.” We might
say that the set X ∪ Y contains people who are lucky and people who are
wise. But what this means is that a person gets into the set X ∪ Y either
by being lucky or by being wise, so X ∪ Y is defined using the logical “or”
operator, ∨.

Sets can contain other sets as elements. For example, the notation
{a, {b}} defines a set that contains two elements, the entity a and the
set {b}. Since the set {b} is a member of the set {a, {b}}, we have that
{b} ∈ {a, {b}}. On the other hand, provided that a 6= b, the statement
{b} ⊆ {a, {b}} is false, since saying {b} ⊆ {a, {b}} is equivalent to saying
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that b ∈ {a, {b}}, and the entity b is not one of the two members of {a, {b}}.
For the entity a, it is true that {a} ⊆ {a, {b}}.

Given a set A, we can construct the set that contains all the subsets of
A. This set is called the power set of A, and is denoted P(A). Formally,
we define

P(A) = {X |X ⊆ A}.
For example, if A = {a, b}, then the subsets of A are the empty set, {a},
{b}, and {a, b}, so the power set of A is set given by

P(a) = { ∅, {a}, {b}, {a, b} }.

Note that since the empty set is a subset of any set, the empty set is an
element of the power set of any set. That is, for any set A, ∅ ⊆ A and
∅ ∈ P(A). Since the empty set is a subset of itself, and is its only subset,
we have that P(∅) = {∅}. The set {∅} is not empty. It contains one element,
namely ∅.

We remarked earlier in this section that the notation {x |P (x)} is only
valid if the domain of discourse of P is a set. This might seem a rather puz-
zling thing to say—after all, why and how would the domain of discourse
be anything else? The answer is related to Russell’s Paradox, which we
mentioned briefly in Chapter 1 and which shows that it is logically impos-
sible for the set of all sets to exist. This impossibility can be demonstrated
using a proof by contradiction. In the proof, we use the existence of the
set of all sets to define another set which cannot exist because its existence
would lead to a logical contradiction.

Theorem 2.2. There is no set of all sets.

Proof. Suppose that the set of all sets exists. We will show that this as-
sumption leads to a contradiction. Let V be the set of all sets. We can
then define the set R to be the set which contains every set that does not
contain itself. That is,

R = {X ∈ V |X 6∈ X}

Now, we must have either R ∈ R or R 6∈ R. We will show that either case
leads to a contradiction.

Consider the case where R ∈ R. Since R ∈ R, R must satisfy the
condition for membership in R. A set X is in R iff X 6∈ X . To say that
R satisfies this condition means that R 6∈ R. That is, from the fact that
R ∈ R, we deduce the contradiction that R 6∈ R.
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Now consider the remaining case, where R 6∈ R. Since R 6∈ R, R does
not satisfy the condition for membership in R. Since the condition for
membership is that R 6∈ R, and this condition is false, the statement R 6∈ R
must be false. But this means that the statement R ∈ R is true. From the
fact that R 6∈ R, we deduce the contradiction that R ∈ R.

Since both possible cases, R ∈ R and R 6∈ R, lead to contradictions, we
see that it is not possible for R to exist. Since the existence of R follows
from the existence of V , we see that V also cannot exist.

To avoid Russell’s paradox, we must put limitations on the construction
of new sets. We can’t force the set of all sets into existence simply by think-
ing of it. We can’t form the set {x |P (x)} unless the domain of discourse of
P is a set. Any predicate Q can be used to form a set {x ∈ X |Q(x)}, but
this notation requires a pre-existing set X . Predicates can be used to form
subsets of existing sets, but they can’t be used to form new sets completely
from scratch.

We end this section with proofs of the two forms of the principle of math-
ematical induction. These proofs were omitted from the previous chapter,
but only for the lack of a bit of set notation. In fact, the principle of math-
ematical induction is valid only because it follows from one of the basic
axioms that define the natural numbers, namely the fact that any non-
empty set of natural numbers has a smallest element. Given this axiom,
we can prove the following two theorems:

Theorem 2.3. Let P be a one-place predicate whose domain of discourse
includes the natural numbers. Suppose that P (0)∧

(

∀k ∈ N (P (k) → P (k +

1))
)

. Then ∀n ∈ N, P (n).

Proof. Suppose that both P (0) and ∀k ∈ N (P (k) → P (k + 1)) are true,
but that ∀n ∈ N, P (n) is false. We show that this assumption leads to a
contradiction.

Since the statement ∀n ∈ N, P (n) is false, its negation, ¬(∀n ∈ N, P (n)),
is true. The negation is equivalent to ∃n ∈ N, ¬P (n). Let X = {n ∈
N | ¬P (n)}. Since ∃n ∈ N, ¬P (n) is true, we know that X is not empty.
Since X is a non-empty set of natural numbers, it has a smallest element.
Let x be the smallest element of X . That is, x is the smallest natural
number such that P (x) is false. Since we know that P (0) is true, x cannot
be 0. Let y = x − 1. Since x 6= 0, y is a natural number. Since y < x,
we know, by the definition of x, that P (y) is true. We also know that
∀k ∈ N (P (k) → P (k + 1)) is true. In particular, taking k = y, we know
that P (y) → P (y + 1). Since P (y) and P (y) → P (y + 1), we deduce by
modus ponens that P (y+1) is true. But y+1 = x, so we have deduced that
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P (x) is true. This contradicts the fact that P (x) is false. This contradiction
proves the theorem.

Theorem 2.4. Let P be a one-place predicate whose domain of discourse
includes the natural numbers. Suppose that P (0) is true and that

(P (0) ∧ P (1) ∧ · · · ∧ P (k)) → P (k + 1)

is true for each natural number k ≥ 0. Then it is true that ∀n ∈ N, P (n).

Proof. Suppose that P is a predicate that satisfies the hypotheses of the
theorem, and suppose that the statement ∀n ∈ N, P (n) is false. We show
that this assumption leads to a contradiction.

Let X = {n ∈ N | ¬P (n)}. Because of the assumption that ∀n ∈
N, P (n) is false, X is non-empty. It follows that X has a smallest element.
Let x be the smallest element of X . The assumption that P (0) is true means
that 0 6∈ X , so we must have x > 0. Since x is the smallest natural number
for which P (x) is false, we know that P (0), P (1), . . . , and P (x− 1) are all
true. From this and the fact that (P (0)∧P (1)∧· · ·∧P (x−1)) → P (x), we
deduce that P (x) is true. But this contradicts the fact that P (x) is false.
This contradiction proves the theorem.

Exercises

1. If we don’t make the assumption that a, b, and c are distinct, then the set
denoted by {a, b, c} might actually contain either 1, 2, or 3 elements. How
many different elements might the set { a, b, {a}, {a, c}, {a, b, c} } contain?
Explain your answer.

2. Compute A ∪ B, A ∩ B, and Ar B for each of the following pairs of sets
a) A = {a, b, c}, B = ∅
b) A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 10}
c) A = {a, b}, B = {a, b, c, d}
d) A = {a, b, {a, b}}, B = {{a}, {a, b}}

3. Recall that N represents the set of natural numbers. That is, N = {0, 1, 2, 3, . . . }.
Let X = {n ∈ N |n ≥ 5}, let Y = {n ∈ N |n ≤ 10}, and let Z = {n ∈
N |n is an even number}. Find each of the following sets:

a) X ∩ Y b) X ∪ Y c) X r Y d) N r Z

e) X ∩ Z f) Y ∩ Z g) Y ∪ Z h) Z r N

4. Find P
`

{1, 2, 3}
´

. (It has eight elements.)

5. Assume that a and b are entities and that a 6= b. Let A and B be the sets de-
fined by A = { a, {b}, {a, b} } and B = { a, b, {a, {b}} }. Determine whether
each of the following statements is true or false. Explain your answers.

a) b ∈ A b) {a, b} ⊆ A c) {a, b} ⊆ B
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d) {a, b} ∈ B e) {a, {b}} ∈ A f) {a, {b}} ∈ B

6. Since P(A) is a set, it is possible to form the set P
`

P(A)
´

. What is P
`

P(∅)
´

?
What is P

`

P({a, b})
´

? (It has sixteen elements.)

7. In the English sentence, “She likes men who are tall, dark, and handsome,”
does she like an intersection or a union of sets of men? How about in the
sentence, “She likes men who are tall, men who are dark, and men who are
handsome?”

8. If A is any set, what can you say about A∪A ? About A∩A ? About ArA ?
Why?

9. Suppose that A and B are sets such that A ⊆ B. What can you say about
A ∪ B ? About A ∩ B ? About Ar B ? Why?

10. Suppose that A, B, and C are sets. Show that C ⊆ A ∩ B if and only if
(C ⊆ A) ∧ (C ⊆ B).

11. Suppose that A, B, and C are sets, and that A ⊆ B and B ⊆ C. Show that
A ⊆ C.

12. Suppose that A and B are sets such that A ⊆ B. Is it necessarily true that
P(A) ⊆ P(B) ? Why or why not?

13. Let M be any natural number, and let P (n) be a predicate whose domain of
discourse includes all natural numbers greater than or equal to M . Suppose
that P (M) is true, and suppose that P (k) → P (k + 1) for all k ≥ M . Show
that P (n) is true for all n ≥ M .

2.2 The Boolean Algebra of Sets

It is clear that set theory is closely related to logic. The intersection and
union of sets can be defined in terms of the logical “and” and logical “or”
operators. The notation {x |P (x)} makes it possible to use predicates to
specify sets. And if A is any set, then the formula x ∈ A defines a one place
predicate that is true for an entity x if and only if x is a member of A. So
it should not be a surprise that many of the rules of logic have analogs in
set theory.

For example, we have already noted that ∪ and ∩ are commutative
operations. This fact can be verified using the rules of logic. Let A and B
be sets. According to the definition of equality of sets, we can show that
A ∪ B = B ∪ A by showing that ∀x

(

(x ∈ A ∪ B) ↔ (x ∈ B ∪ A)
)

. But for
any x,

x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B (definition of ∪)

↔ x ∈ B ∨ x ∈ A (commutativity of ∨)

↔ x ∈ B ∪ A (definition of ∪)
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The commutativity of ∩ follows in the same way from the definition of ∩
in terms of ∧ and the commutativity of ∧, and a similar argument shows
that union and intersection are associative operations.

The distributive laws for propositional logic give rise to two similar rules
in set theory. Let A, B, and C be any sets. Then

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

and

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

These rules are called the distributive laws for set theory. To verify the
first of these laws, we just have to note that for any x,

x ∈ A ∪ (B ∩ C)

↔ (x ∈ A) ∨ ((x ∈ B) ∧ (x ∈ C)) (definition of ∪, ∩)

↔ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x ∈ A) ∨ (x ∈ C)) (distributivity of ∨)

↔ (x ∈ A ∪ B) ∧ (x ∈ A ∪ C) (definition of ∪)

↔ x ∈ ((A ∪ B) ∩ (A ∪ C)) (definition of ∩)

The second distributive law for sets follows in exactly the same way.

While ∪ is analogous to ∨ and ∩ is analogous to ∧, we have not yet seen
any operation is set theory that is analogous to the logical “not” operator,¬.
Given a set A, it is tempting to try to define {x | ¬(x ∈ A)}, the set that
contains everything that does not belong to A. Unfortunately, the rules of
set theory do not allow us to define such a set. The notation {x |P (x)}
can only be used when the domain of discourse of P is a set, so there
must be an underlying set from which the elements that are/are not in A
are chosen, i.e. some underlying set of which A is a subset. We can get
around this problem by restricting the discussion to subsets of some fixed
set. This set will be known as the universal set. Keep in mind that the
universal set is only universal for some particular discussion. It is simply
some set that is large enough to contain all the sets under discussion as
subsets. Given a universal set U and any subset A of U , we can define the
set {x ∈ U | ¬(x ∈ A)}.

Definition 2.1. Let U be a given universal set, and let A be any subset of
U . We define the complement of A in U to be the set A that is defined
by A = {x ∈ U |x 6∈ A}.
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Usually, we will refer to the complement of A in U simply as the com-
plement of A, but you should remember that whenever complements of sets
are used, there must be some universal set in the background.

Given the complement operation on sets, we can look for analogs to the
rules of logic that involve negation. For example, we know that p∧¬p = F
for any proposition p. It follows that for any subset A of U ,

A ∩ A = {x ∈ U | (x ∈ A) ∧ (x ∈ A)} (definition of ∩)

= {x ∈ U | (x ∈ A) ∧ (x 6∈ A)} (definition of complement)

= {x ∈ U | (x ∈ A) ∧ ¬(x ∈ A)} (definition of 6∈)

= ∅

since the proposition (x ∈ A) ∧ ¬(x ∈ A) is false for any x. Similarly, we

can show that A ∪ A = U and that A = A (where A is the complement of
the complement of A, that is, the set obtained by taking the complement
of A.)

The most important laws for working with complements of sets are De-
Morgan’s Laws for sets. These laws, which follow directly from DeMorgan’s
Laws for logic, state that for any subsets A and B of a universal set U ,

A ∪ B = A ∩ B

and

A ∩ B = A ∪ B

For example, we can verify the first of these laws with the calculation

A ∪ B = {x ∈ U |x 6∈ (A ∪ B)} (definition of complement)

= {x ∈ U | ¬(x ∈ A ∪ B)} (definition of 6∈)

= {x ∈ U | ¬(x ∈ A ∨ x ∈ B)} (definition of ∪)

= {x ∈ U | (¬(x ∈ A)) ∧ (¬(x ∈ B))} (DeMorgan’s Law for logic)

= {x ∈ U | (x 6∈ A) ∧ (x 6∈ B)} (definition of 6∈)

= {x ∈ U | (x ∈ A) ∧ (x ∈ B)} (definition of complement)

= A ∩ B (definition of ∩)

An easy inductive proof can be used to verify generalized versions of
DeMorgan’s Laws for set theory. (In this context, all sets are assumed to
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Double complement A = A

Miscellaneous laws A ∪ A = U

A ∩ A = ∅
∅ ∪ A = A

∅ ∩ A = ∅
Idempotent laws A ∩ A = A

A ∪ A = A

Commutative laws A ∩ B = B ∩ A

A ∪ B = B ∪ A

Associative laws A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C

Distributive laws A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

DeMorgan’s laws A ∩ B = A ∪ B

A ∪ B = A ∩ B

Figure 2.2: Some Laws of Boolean Algebra for sets. A, B, and C
are sets. For the laws that involve the complement operator, they
are assumed to be subsets of some universal set, U . For the most
part, these laws correspond directly to laws of Boolean Algebra for
propositional logic as given in Figure 1.2.

be subsets of some unnamed universal set.) A simple calculation verifies
DeMorgan’s Law for three sets:

A ∪ B ∪ C = (A ∪ B) ∪ C

= (A ∪ B) ∩ C (by DeMorgan’s Law for two sets)

= (A ∩ B) ∩ C (by DeMorgan’s Law for two sets)

= A ∩ B ∩ C

From there, we can derive similar laws for four sets, five sets, and so on.
However, just saying “and so on” is not a rigorous proof of this fact. Here
is a rigorous inductive proof of a generalized DeMorgan’s Law:

Theorem 2.5. For any natural number n ≥ 2 and for any sets X1, X2,
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. . . , Xn,
X1 ∪ X2 ∪ · · · ∪ Xn = X1 ∩ X2 ∩ · · · ∩ X2

Proof. We give a proof by induction. In the base case, n = 2, the statement
is that X1 ∪ X2 = X1 ∩ Xn. This is true since it is just an application of
DeMorgan’s law for two sets.

For the inductive case, suppose that the statement is true for n = k.
We want to show that it is true for n = k + 1. Let X1, X2, . . . , Xk+1 be
any k sets. Then we have:

X1 ∪ X2 ∪ · · · ∪ Xk+1 = (X1 ∪ X2 ∪ · · · ∪ Xk) ∪ Xk+1

= (X1 ∪ X2 ∪ · · · ∪ Xk) ∩ Xk+1

= (X1 ∩ X2 ∩ · · · ∩ Xk) ∩ Xk+1

= X1 ∩ X2 ∩ · · · ∩ Xk+1

In this computation, the second step follows by DeMorgan’s Law for two
sets, while the third step follows from the induction hypothesis.

Just as the laws of logic allow us to do algebra with logical formulas,
the laws of set theory allow us to do algebra with sets. Because of the close
relationship between logic and set theory, their algebras are very similar.
The algebra of sets, like the algebra of logic, is Boolean algebra. When
George Boole wrote his 1854 book about logic, it was really as much about
set theory as logic. In fact, Boole did not make a clear distinction between
a predicate and the set of objects for which that predicate is true. His
algebraic laws and formulas apply equally to both cases. More exactly, if
we consider only subsets of some given universal set U , then there is a direct
correspondence between the basic symbols and operations of propositional
logic and certain symbols and operations in set theory, as shown in this
table:

Logic Set Theory

T U

F ∅
p ∧ q A ∩ B

p ∨ q A ∪ B

¬p A

Any valid logical formula or computation involving propositional variables
and the symbols T, F, ∧, ∨, and ¬ can be transformed into a valid formula
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or computation in set theory by replacing the propositions in the formula
with subsets of U and replacing the logical symbols with U , ∅, ∩, ∪, and
the complement operator.

Just as in logic, the operations of set theory can be combined to form

complex expressions such as (A∪C)∩(B ∪ C ∪ D). Parentheses can always
be used in such expressions to specify the order in which the operations
are to be performed. In the absence of parentheses, we need precedence
rules to determine the order of operation. The precedence rules for the
Boolean algebra of sets are carried over directly from the Boolean algebra
of propositions. When union and intersection are used together without
parentheses, intersection has precedence over union. Furthermore, when
several operators of the same type are used without parentheses, then they
are evaluated in order from left to right. (Of course, since ∪ and ∩ are
both associative operations, it really doesn’t matter whether the order of
evaluation is left-to-right or right-to-left.) For example, A ∪ B ∩ C ∪ D is
evaluated as (A ∪ ((B ∩ C)) ∪ D. The complement operation is a special
case. Since it is denoted by drawing a line over its operand, there is never
any ambiguity about which part of a formula it applies to.

The laws of set theory can be used to simplify complex expressions
involving sets. (As usual, of course, the meaning of “simplification” is
partly in the eye of the beholder.) For example, for any sets X and Y ,

(X ∪ Y ) ∩ (Y ∪ X) = (X ∪ Y ) ∩ (X ∪ Y ) (Commutative Law)

= (X ∪ Y ) (Idempotent Law)

where in the second step, the Idempotent Law, which says that A∩A = A,
is applied with A = X ∪ Y . For expressions that use the complement
operation, it is usually considered to be simpler to apply the operation to an
individual set, as in A, rather than in a formula, as in A ∩ B. DeMorgan’s
Laws can always be used to simplify an expression in which the complement
operation is applied to a formula. For example,

A ∩ B ∪ A = A ∩ (B ∩ A) (DeMorgan’s Law)

= A ∩ (B ∩ A) (Double Complement)

= A ∩ (A ∩ B) (Commutative Law)

= (A ∩ A) ∩ B) (Associative Law)

= A ∩ B (Idempotent Law)

As a final example of the relationship between set theory and logic,
consider the set-theoretical expression A ∩ (A ∪ B) and the corresponding
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compound proposition p ∧ (p ∨ q). (These correspond since for any x,
x ∈ A ∩ (A ∪ B) ≡ (x ∈ A) ∧ ((x ∈ A) ∨ (x ∈ B)).) You might find it
intuitively clear that A∩ (A∪B) = A. Formally, this follows from the fact
that p ∧ (p ∨ q) ≡ p, which might be less intuitively clear and is surprising
difficult to prove algebraically from the laws of logic. However, there is
another way to check that a logical equivalence is valid: Make a truth
table. Consider a truth table for p ∧ (p ∨ q):

p q p ∨ q p ∧ (p ∨ q)

false false false false

false true true false
true false true true
true true true true

The fact that the first column and the last column of this table are identical
shows that p ∧ (p ∨ q) ≡ p. Taking p to be the proposition x ∈ A and q to
be the proposition x ∈ B, it follows that the sets A and A ∩ (A ∪ B) have
the same members and therefore are equal.

Exercises

1. Use the laws of logic to verify the associative laws for union and intersection.
That is, show that if A, B, and C are sets, then A ∪ (B ∪ C) = (A ∪ B) ∪ C

and A ∩ (B ∩ C) = (A ∩ B) ∩ C.

2. Show that for any sets A and B, A ⊆ A ∪ B and A ∩ B ⊆ A.

3. Recall that the symbol ⊕ denotes the logical exclusive or operation. If A and
B sets, define the set A △ B by A△ B = {x | (x ∈ A) ⊕ (x ∈ B)}. Show that
A△B = (ArB)∪ (BrA). (A△B is known as the symmetric difference
of A and B.)

4. Let A be a subset of some given universal set U . Verify that A = A and that
A ∪ A = U .

5. Verify the second of DeMorgan’s Laws for sets, A ∩ B = A∪B. For each step
in your verification, state why that step is valid.

6. The subset operator, ⊆, is defined in terms of the logical implication opera-
tor, →. However, ⊆ differs from the ∩ and ∪ operators in that A ∩ B and
A ∪ B are sets, while A ⊆ B is a statement. So the relationship between ⊆
and → isn’t quite the same as the relationship between ∪ and ∨ or between
∩ and ∧. Nevertheless, ⊆ and → do share some similar properties. This
problem shows one example.

a) Show that the following three compound propositions are logically equiv-
alent: p → q, (p ∧ q) ↔ p, and (p ∨ q) ↔ q.
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b) Show that for any sets A and B, the following three statements are
equivalent: A ⊆ B, A ∩ B = A, and A ∪ B = B.

7. DeMorgan’s Laws apply to subsets of some given universal set U . Show that
for a subset X of U , X = U r X. It follows that DeMorgan’s Laws can be
written as Ur(A∪B) = (UrA)∩(UrB) and Ur(A∩B) = (UrA)∪(UrB).
Show that these laws hold whether or not A and B are subsets of U . That is,
show that for any sets A, B, and C, C r (A ∪ B) = (C r A) ∩ (C r B) and
C r (A ∩ B) = (C r A) ∪ (C r B).

8. Show that A ∪ (A ∩ B) = A for any sets A and B.

9. Let X and Y be sets. Simplify each of the following expressions. Justify each
step in the simplification with one of the rules of set theory.

a) X ∪ (Y ∪ X) b) (X ∩ Y ) ∩ X

c) (X ∪ Y ) ∩ Y d) (X ∪ Y ) ∪ (X ∩ Y )

10. Let A, B, and C be sets. Simplify each of the following expressions. In your
answer, the complement operator should only be applied to the individual
sets A, B, and C.

a) A ∪ B ∪ C b) A ∪ B ∩ C c) A ∪ B

d) B ∩ C e) A ∩ B ∩ C f) A ∩ A ∪ B

11. Use induction to prove the following generalized DeMorgan’s Law for set
theory: For any natural number n ≥ 2 and for any sets X1, X2, . . . , Xn,

X1 ∩ X2 ∩ · · · ∩ Xn = X1 ∪ X2 ∪ · · · ∪ Xn

12. State and prove generalized distributive laws for set theory.

2.3 Application: Programming with Sets

On a computer, all data are represented, ultimately, as strings of zeros
and ones. At times, computers need to work with sets. How can sets be
represented as strings of zeros and ones?

A set is determined by its elements. Given a set A and an entity x, the
fundamental question is, does x belong to A or not? If we know the answer
to this question for each possible x, then we know the set. For a given x,
the answer to the question, “Is x a member of A,” is either yes or no. The
answer can be encoded by letting 1 stand for yes and 0 stand for no. The
answer, then, is a single bit, that is, a value that can be either zero or one.
To represent the set A as a string of zeros and ones, we could use one bit
for each possible member of A. If a possible member x is in the set, then
the corresponding bit has the value one. If x is not in the set, then the
corresponding bit has the value zero.
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Now, in cases where the number of possible elements of the set is very
large or infinite, it is not practical to represent the set in this way. It
would require too many bits, perhaps an infinite number. In such cases,
some other representation for the set can be used. However, suppose we
are only interested in subsets of some specified small set. Since this set
plays the role of a universal set, let’s call it U . To represent a subset of
U , we just need one bit for each member of U . If the number of members
of U is n, then a subset of U is represented by a string of n zeros and
ones. Furthermore, every string of n zeros and ones determines a subset
of U , namely that subset that contains exactly the elements of U that
correspond to ones in the string. A string of n zeros and ones is called an
n-bit binary number. So, we see that if U is a set with n elements, then
the subsets of U correspond to n-bit binary numbers.

To make things more definite, let U be the set {0, 1, 2, . . . , 31}. This
set consists of the 32 integers between 0 and 31, inclusive. Then each
subset of U can be represented by a 32-bit binary numbers. We use 32 bits
because most computer languages can work directly with 32-bit numbers.
For example, the programming languages Java, C, and C++ have a data
type named int. A value of type int is a 32-bit binary number.1 Before we
get a definite correspondence between subsets of U and 32-bit numbers, we
have to decide which bit in the number will correspond to each member of
U . Following tradition, we assume that the bits are numbered from right
to left. That is, the rightmost bit corresponds to the element 0 in U , the
second bit from the right corresponds to 1, the third bit from the right to
2, and so on. For example, the 32-bit number

1000000000000000000001001110110

corresponds to the subset {1, 2, 4, 5, 6, 9, 31}. Since the leftmost bit of the
number is 1, the number 31 is in the set; since the next bit is 0, the number
30 is not in the set; and so on.

From now on, I will write binary numbers with a subscript of 2 to
avoid confusion with ordinary numbers. Furthermore, I will often leave
out leading zeros. For example, 11012 is the binary number that would be
written out in full as

00000000000000000000000000001101

and which corresponds to the set {0, 2, 3}. On the other hand 1101 repre-
sents the ordinary number one thousand one hundred and one.

1Actually, in some versions of C and C++, a value of type int is a 16-bit number. A
16-bit number can be used to represent a subset of the set {0, 1, 2, . . . , 15}. The principle,
of course, is the same.



2.3. APPLICATION: PROGRAMMING WITH SETS 95

Hex. Binary Hex. Binary

0 00002 8 10002

1 00012 9 10012

2 00102 A 10102

3 00112 B 10112

4 01002 C 11002

5 01012 D 11012

6 01102 E 11102

7 01112 F 11112

Figure 2.3: The 16 hexadecimal digits and the corresponding bi-
nary numbers. Each hexadecimal digit corresponds to a 4-bit binary
number. Longer binary numbers can be written using two or more
hexadecimal digits. For example, 1010000111112 = 0xA1F .

Even with this notation, it can be very annoying to write out long bi-
nary numbers—and almost impossible to read them. So binary numbers
are never written out as sequences of zeros and ones in computer programs.
An alternative is to use hexadecimal numbers. Hexadecimal numbers
are written using the sixteen symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, and F. These symbols are knows as the hexadecimal digits. Each
hexadecimal digit corresponds to a 4-bit binary number, as shown in Fig-
ure 2.3. To represent a longer binary number, several hexadecimal digits
can be strung together. For example, the hexadecimal number C7 repre-
sents the binary number 110001112. In Java and many related languages,
a hexadecimal number is written with the prefix “0x”. Thus, the hexadec-
imal number C7 would appear in the program as 0xC7. I will follow the
same convention here. Any 32-bit binary number can be written using eight
hexadecimal digits (or fewer if leading zeros are omitted). Thus, subsets of
{0, 1, 2, . . . , 31} correspond to 8-digit hexadecimal numbers. For example,
the subset {1, 2, 4, 5, 6, 9, 31} corresponds to 0x80000276, which represents
the binary number 10000000000000000000010011101102. Similarly, 0xFF
corresponds to {0, 1, 2, 3, 4, 5, 6, 7} and 0x1101 corresponds to the binary
number 00010001000000012 and to the set {0, 8, 12}.

Now, if you have worked with binary numbers or with hexadecimal
numbers, you know that they have another, more common interpretation.
They represent ordinary integers. Just as 342 represents the integer 3 ·
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102 + 4 · 101 + 2 · 100, the binary number 11012 represents the integer
1 ·23+1 ·22+0 ·21+1 ·20, or 13. When used in this way, binary numbers are
known as base-2 numbers, just as ordinary numbers are base-10 numbers.
Hexadecimal numbers can be interpreted as base-16 numbers. For example,
0x3C7 represents the integer 3 · 162 + 12 · 161 + 7 · 160, or 874. So, does
11012 really represent the integer 13, or does it represent the set {0, 2, 3} ?
The answer is that to a person, 11012 can represent either. Both are valid
interpretations, and the only real question is which interpretation is useful
in a given circumstance. On the other hand, to the computer, 11012 doesn’t
represent anything. It’s just a string of bits, and the computer manipulates
the bits according to its program, without regard to their interpretation.

Of course, we still have to answer the question of whether it is ever
useful to interpret strings of bits in a computer as representing sets.

If all we could do with sets were to “represent” them, it wouldn’t be
very useful. We need to be able to compute with sets. That is, we need to
be able to perform set operations such as union and complement.

Many programming languages provide operators that perform set oper-
ations. In Java and related languages, the operators that perform union,
intersection, and complement are written as | , &, and ~. For exam-
ple, if x and y are 32-bit integers representing two subsets, X and Y , of
{0, 1, 2, . . . , 31}, then x | y is a 32-bit integer that represents the set X ∪ Y .
Similarly, x& y represents the set X∩Y , and ~x represents the complement,
X.

The operators | , &, and ~ are called bitwise logical operators be-
cause of the way they operate on the individual bits of the numbers to
which they are applied. If 0 and 1 are interpreted as the logical values false
and true, then the bitwise logical operators perform the logical operations
∨, ∧, and ¬ on individual bits. To see why this is true, let’s look at the
computations that these operators have to perform.

Let k be one of the members of {0, 1, 2, . . . , 31}. In the binary numbers
x, y, x | y, x& y, and ~x, the number k corresponds to the bit in position k.
That is, k is in the set represented by a binary number if and only if the bit
in position k in that binary number is 1. Considered as sets, x& y is the
intersection of x and y, so k is a member of the set represented by x& y if
and only if k is a member of both of the sets represented by x and y. That
is, bit k is 1 in the binary number x& y if and only if bit k is 1 in x and bit
k is 1 in y. When we interpret 1 as true and 0 as false, we see that bit k of
x& y is computed by applying the logical “and” operator, ∧, to bit k of x
and bit k of y. Similarly, bit k of x | y is computed by applying the logical
“or” operator, ∨, to bit k of x and bit k of y. And bit k of ~x is computed
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by applying the logical “not” operator, ¬, to bit k of x. In each case, the
logical operator is applied to each bit position separately. (Of course, this
discussion is just a translation to the language of bits of the definitions of
the set operations in terms of logical operators: A∩B = {x |x ∈ A∧x ∈ B},
A ∪ B = {x |x ∈ A ∨ x ∈ B}, and A = {x ∈ U | ¬(x ∈ A)}.)

For example, consider the binary numbers 10110102 and 101112, which
represent the sets {1, 3, 4, 6} and {0, 1, 2, 4}. Then 10110102 & 101112 is
100102. This binary number represents the set {1, 4}, which is the inter-
section {1, 3, 4, 6}∩{0, 1, 2, 4}. It’s easier to see what’s going on if we write
out the computation in columns, the way you probably first learned to do
addition:

1 0 1 1 0 1 0 { 6, 4, 3, 1 }
& 0 0 1 0 1 1 1 { 4, 2, 1, 0 }

0 0 1 0 0 1 0 { 4, 1 }
Note that in each column in the binary numbers, the bit in the bottom row
is computed as the logical “and” of the two bits that lie above it in the
column. I’ve written out the sets that correspond to the binary numbers
to show how the bits in the numbers correspond to the presence or absence
of elements in the sets. Similarly, we can see how the union of two sets is
computed as a bitwise “or” of the corresponding binary numbers.

1 0 1 1 0 1 0 { 6, 4, 3, 1 }
| 0 0 1 0 1 1 1 { 4, 2, 1, 0 }

1 0 1 1 1 1 1 { 6, 4, 3, 2, 1, 0 }
The complement of a set is computed using a bitwise “not” operation. Since
we are working with 32-bit binary numbers, the complement is taken with
respect to the universal set {0, 1, 2, . . . , 31}. So, for example,

~10110102 = 111111111111111111111111101001012

Of course, we can apply the operators &, | , and ~ to numbers written in
hexadecimal form, or even in ordinary, base-10 form. When doing such
calculations by hand, it is probably best to translate the numbers into
binary form. For example,

0xAB7 & 0x168E = 1010 1011 01112 & 1 0110 1000 11102

= 0 0010 1000 01102

= 0x286

When computing with sets, it is sometimes necessary to work with in-
dividual elements. Typical operations include adding an element to a set,



98 CHAPTER 2. SETS, FUNCTIONS, AND RELATIONS

removing an element from a set, and testing whether an element is in a set.
However, instead of working with an element itself, it’s convenient to work
with the set that contains that element as its only member. For example,
testing whether 5 ∈ A is the same as testing whether {5} ∩ A 6= ∅. The
set {5} is represented by the binary number 1000002 or by the hexadeci-
mal number 0x20. Suppose that the set A is represented by the number x.
Then, testing whether 5 ∈ A is equivalent to testing whether 0x20 & x 6= 0.
Similarly, the set A∪{5}, which is obtained by adding 5 to A, can be com-
puted as x | 0x20. The set Ar {5}, which is the set obtained by removing
5 from A if it occurs in A, is represented by x & ~0x20.

The sets {0}, {1}, {2}, {3}, {4}, {5}, {6}, . . . , {31} are represented by
the hexadecimal numbers 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, . . . , 0x80000000.
In typical computer applications, some of these numbers are given names,
and these names are thought of as names for the possible elements of a
set (although, properly speaking, they are names for sets containing those
elements). Suppose, for example, that a, b, c, and d are names for four of
the numbers from the above list. Then a | c is the set that contains the two
elements corresponding to the numbers a and c. If x is a set, then x& ~d
is the set obtained by removing d from x. And we can test whether b is in
x by testing if x& b 6= 0.

Here is an actual example, which is used in the Macintosh operating
system. Characters can be printed or displayed on the screen in various sizes
and styles. A font is a collection of pictures of characters in a particular
size and style. On the Macintosh, a basic font can be modified by specifying
any of the following style attributes: bold, italic, underline, outline, shadow,
condense, and extend. The style of a font is a subset of this set of attributes.
A style set can be specified by or-ing together individual attributes. For
example, an underlined, bold, italic font has style set underline | bold |
italic. For a plain font, with none of the style attributes set, the style set
is the empty set, which is represented by the number zero.

The Java programming language uses a similar scheme to specify style
attributes for fonts, but currently there are only two basic attributes,
Font.BOLD and Font.ITALIC. A more interesting example in Java is pro-
vided by event types. An event in Java represents some kind of user action,
such as pressing a key on the keyboard. Events are associated with “com-
ponents” such as windows, push buttons, and scroll bars. Components can
be set to ignore a given type of event. We then say that that event type
is disabled for that component. If a component is set to process events
of a given type, then that event type is said to be enabled. Each compo-
nent keeps track of the set of event types that are currently enabled. It
will ignore any event whose type is not in that set. Each event type has
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an associated constant with a name such as AWTEvent.MOUSE EVENT MASK.
These constants represent the possible elements of a set of event types. A
set of event types can be specified by or-ing together a number of such con-
stants. If c is a component and x is a number representing a set of event
types, then the command “c.enableEvents(x)” enables the events in the set
x for the component c. If y represents the set of event types that were
already enabled for c, then the effect of this command is to replace y with
the union, y |x. Another command, “c.disableEvents(x)”, will disable the
event types in x for the component c. It does this by replacing the current
set, y, with y & ~x.

Exercises

1. Suppose that the numbers x and y represent the sets A and B. Show that
the set Ar B is represented by x& (~y).

2. Write each of the following binary numbers in hexadecimal:
a) 101101102 b) 102 c) 1111000011112 d) 1010012

3. Write each of the following hexadecimal numbers in binary:
a) 0x123 b) 0xFADE c) 0x137F d) 0xFF11

4. Give the value of each of the following expressions as a hexadecimal number:
a) 0x73 | 0x56A b) ~0x3FF0A2FF
c) (0x44 | 0x95) & 0xE7 d) 0x5C35A7 & 0xFF00
e) 0x5C35A7 & ~0xFF00 f) ~(0x1234 & 0x4321)

5. Find a calculator (or a calculator program on a computer) that can work
with hexadecimal numbers. Write a short report explaining how to work with
hexadecimal numbers on that calculator. You should explain, in particular,
how the calculator can be used to do the previous problem.

6. This question assumes that you know how to add binary numbers. Suppose x

and y are binary numbers. Under what circumstances will the binary numbers
x + y and x | y be the same?

7. In addition to hexadecimal numbers, the programming languages Java, C,
and C++ support octal numbers. Look up and report on octal numbers in
Java, C, or C++. Explain what octal numbers are, how they are written, and
how they are used.

8. In the UNIX (or Linux) operating system, every file has an associated set of
permissions, which determine who can use the file and how it can be used.
The set of permissions for a given file is represented by a nine-bit binary
number. This number is sometimes written as an octal number. Research
and report on the UNIX systems of permissions. What set of permissions
is represented by the octal number 752? by the octal number 622? Explain
what is done by the UNIX commands “chmod g+rw filename” and “chmod
o-w filename” in terms of sets. (Hint: Look at the man page for the chmod
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command. To see the page, use the UNIX command “man chmod”. If you
don’t know what this means, you probably don’t know enough about UNIX
to do this exercise.)

9. Java, C, and C++ each have a boolean data type that has the values true and
false. The usual logical and, or, and not operators on boolean values are rep-
resented by the operators &&, | |, and !. C and C++ allow integer values to
be used in places where boolean values are expected. In this case, the integer
zero represents the boolean value false while any non-zero integer represents
the boolean value true. This means that if x and y are integers, then both
x& y and x&& y are valid expressions, and both can be considered to rep-
resent boolean values. Do the expressions x & y and x&& y always represent
the same boolean value, for any integers x and y? Do the expressions x | y
and x | | y always represent the same boolean values? Explain your answers.

10. Suppose that you, as a programmer, want to write a subroutine that will open
a window on the computer’s screen. The window can have any of the following
options: a close box, a zoom box, a resize box, a minimize box, a vertical
scroll bar, a horizontal scroll bar. Design a scheme whereby the options
for the window can be specified by a single parameter to the subroutine.
The parameter should represent a set of options. How would you use your
subroutine to open a window that has a close box and both scroll bars and
no other options? Inside your subroutine, how would you determine which
options have been specified for the window?

2.4 Functions

Both the real world and the world of mathematics are full of what are called,
in mathematics, “functional relationships.” A functional relationship is a
relationship between two sets, which associates exactly one element from
the second set to each element of the first set.

For example, each item for sale in a store has a price. The first set in
this relationship is the set of items in the store. For each item in the store,
there is an associated price, so the second set in the relationship is the set of
possible prices. The relationship is a functional relationship because each
item has a price. That is, the question “What is the price of this item?”
has a single, definite answer for each item in the store.

Similarly, the question “Who is the (biological) mother of this person?”
has a single, definite answer for each person. So, the relationship “mother
of” defines a functional relationship. In this case, the two sets in the rela-
tionship are the same set, namely the set of people.2 On the other hand,

2I’m avoiding here the question of Adam and Eve or of pre-human ape-like ancestors.
(Take your pick.)
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the relationship “child of” is not a functional relationship. The question
“Who is the child of this person?” does not have a single, definite answer
for each person. A given person might not have any child at all. And a
given person might have more than one child. Either of these cases—a
person with no child or a person with more than one child—is enough to
show that the relationship “child of” is not a functional relationship.

Or consider an ordinary map, such as a map of New York State or a
street map of Rome. The whole point of the map, if it is accurate, is that
there is a functional relationship between points on the map and points on
the surface of the Earth. Perhaps because of this example, a functional
relationship is sometimes called a mapping .

There are also many natural examples of functional relationships in
mathematics. For example, every rectangle has an associated area. This
fact expresses a functional relationship between the set of rectangles and the
set of numbers. Every natural number n has a square, n2. The relationship
“square of” is a functional relationship from the set of natural numbers to
itself.

In mathematics, of course, we need to work with functional relationships
in the abstract. To do this, we introduce the idea of function. You should
think of a function as a mathematical object that expresses a functional
relationship between two sets. The notation f : A → B expresses the fact
that f is a function from the set A to the set B. That is, f is a name for
a mathematical object that expresses a functional relationship between the
two sets, A and B. The notation f : A → B is read as “f is a function from
A to B” or more simply as “f maps A to B.”

If f : A → B and if a ∈ A, the fact that f is a functional relationship
from A to B means that f associates some element of B to a. That element
is denoted f(a). That is, for each a ∈ A, f(a) ∈ B and f(a) is the single,
definite answer to the question “What element of B is associated to a by
the function f ?” The fact that f is a function from A to B means that
this question has a single, well-defined answer. Given a ∈ A, f(a) is called
the value of the function f at a.

For example, if I is the set of items for sale in a given store and M is the
set of possible prices, then there is function c : I → M which is defined by
the fact that for each x ∈ I, c(x) is the price of the item x. Similarly, if P
is the set of people, then there is a function m : P → P such that for each
person p, m(p) is the mother of p. And if N is the set of natural numbers,
then the formula s(n) = n2 specifies a function s : N → N. It is in the
form of formulas such as s(n) = n2 or f(x) = x3 − 3x + 7 that most people
first encounter functions. But you should note that a formula by itself is
not a function, although it might well specify a function between two given
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sets of numbers. Functions are much more general than formulas, and they
apply to all kinds of sets, not just to sets of numbers.

Suppose that f : A → B and g : B → C are functions. Given a ∈ A,
there is an associated element f(a) ∈ B. Since g is a function from B to C,
and since f(a) ∈ B, g associates some element of C to f(a). That element
is g(f(a)). Starting with an element a of A, we have produced an associated
element g(f(a)) of C. This means that we have defined a new function from
the set A to the set C. This function is called the composition of g with
f , and it is denoted by g ◦ f . That is, if f : A → B and g : B → C are
functions, then g ◦ f : A → C is the function which is defined by

(g ◦ f)(a) = g(f(a))

for each a ∈ A. For example, suppose that p is the function that associates
to each item in a store the price of the item, and suppose that t is a function
that associates the amount of tax on a price to each possible price. The
composition, t ◦ p, is the function that associates to each item the amount
of tax on that item. Or suppose that s : N → N and r : N → N are the
functions defined by the formulas s(n) = n2 and r(n) = 3n + 1, for each
n ∈ N. Then r ◦ s is a function from N to N, and for n ∈ N, (r ◦ s)(n) =
r(s(n)) = r(n2) = 3n2 + 1. In this case, we also have the function s ◦ r,
which satisfies (s ◦ r)(n) = s(r(n)) = s(3n + 1) = (3n + 1)2 = 9n2 + 6n + 1.
Note in particular that r ◦ s and s ◦ r are not the same function. The
operation ◦ is not commutative.

If A is a set and f : A → A, then f ◦ f , the composition of f with itself,
is defined. For example, using the function s from the preceding example,
s◦s is the function from N to N given by the formula (s◦s)(n) = s(s(n)) =
s(n2) = (n2)2 = n4. If m is the function from the set of people to itself
which associates to each person that person’s mother, then m ◦ m is the
function that associates to each person that person’s maternal grandmother.

If a and b are entities, then (a, b) denotes the ordered pair containing a
and b. The ordered pair (a, b) differs from the set {a, b} because a set is not
ordered. That is, {a, b} and {b, a} denote the same set, but if a 6= b, then
(a, b) and (b, a) are different ordered pairs. More generally, two ordered
pairs (a, b) and (c, d) are equal if and only if both a = c and b = d. If (a, b)
is an ordered pair, then a and b are referred to as the coordinates of the
ordered pair. In particular, a is the first coordinate and b is the second
coordinate.

If A and B are sets, then we can form the set A×B which is defined by

A × B = {(a, b) | a ∈ A and b ∈ B}.
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This set is called the cross product or Cartesian product of the sets
A and B. The set A × B contains every ordered pair whose first co-
ordinate is an element of A and whose second coordinate is an element
of B. For example, if X = {c, d} and Y = {1, 2, 3}, then X × Y =
{(c, 1), (c, 2), (c, 3), (d, 1), (d, 2), (d, 3)}. It is possible to extend this idea
to the cross product of more than two sets. The cross product of the three
sets A, B, and C is denoted A×B ×C. It consists of all ordered triples
(a, b, c) where a ∈ A, b ∈ B, and c ∈ C. The definition for four or more
sets is similar. The general term for a member of a cross product is tuple
or, more specifically, ordered n-tuple. For example, (a, b, c, d, e) is an
ordered 5-tuple.

Given a function f : A → B, consider the set {(a, b) ∈ A × B | a ∈
A and b = f(a)}. This set of ordered pairs consists of all pairs (a, b) such
that a ∈ A and b is the element of B that is associated to a by the function f .
The set {(a, b) ∈ A × B | a ∈ A and b = f(a)} is called the graph of the
function f . Since f is a function, each element a ∈ A occurs once and only
once as a first coordinate among the ordered pairs in the graph of f . Given
a ∈ A, we can determine f(a) by finding that ordered pair and looking at
the second coordinate. In fact, it is convenient to consider the function and
its graph to be the same thing, and to use this as our official mathematical
definition.3

Definition 2.2. Let A and B be sets. A function from A to B is a subset
of A × B which has the property that for each a ∈ A, the set contains one
and only one ordered pair whose first coordinate is a. If (a, b) is that ordered
pair, then b is called the value of the function at a and is denoted f(a). If
b = f(a), then we also say that the function f maps a to b. The fact that
f is a function from A to B is indicated by the notation f : A → B.

For example, if X = {a, b} and Y = {1, 2, 3}, then the set {(a, 2), (b, 1)}
is a function from X to Y , and {(1, a), (2, a), (3, b)} is a function from Y
to X . On the other hand, {(1, a), (2, b)} is not a function from Y to X ,
since it does not specify any value for 3. And {(a, 1), (a, 2), (b, 3)} is not
a function from X to Y because it specifies two different values, 1 and 2,
associated with the same element, a, of X .

Even though the technical definition of a function is a set of ordered
pairs, it’s usually better to think of a function from A to B as something

3This is a convenient definition for the mathematical world, but as is often the case
in mathematics, it leaves out an awful lot of the real world. Functional relationships
in the real world are meaningful, but we model them in mathematics with meaningless
sets of ordered pairs. We do this for the usual reason: to have something precise and
rigorous enough that we can make logical deductions and prove things about it.
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that associates some element of B to every element of A. The set of ordered
pairs is one way of expressing this association. If the association is expressed
in some other way, it’s easy to write down the set of ordered pairs. For
example, the function s : N→ N which is specified by the formula s(n) = n2

can be written as the set of ordered pairs {(n, n2) |n ∈ N}.
Suppose that f : A → B is a function from the set A to the set B.

We say that A is the domain of the function f and that B is the range
of the function. We define the image of the function f to be the set
{b ∈ B | ∃a ∈ A (b = f(a))}. Put more simply, the image of f is the set
{f(a) | a ∈ A}. That is, the image is the set of all values, f(a), of the
function, for all a ∈ A. (You should note that in some cases—particularly
in calculus courses—the term “range” is used to refer to what I am calling
the image.) For example, for the function s : N → N that is specified by
s(n) = n2, both the domain and the range are N, and the image is the set
{n2 |n ∈ N}, or {0, 1, 4, 9, 16, . . .}.

Note that the image of a function is a subset of its range. It can be
a proper subset, as in the above example, but it is also possible for the
image of a function to be equal to the range. In that case, the function is
said to be onto. Sometimes, the fancier term surjective is used instead.
Formally, a function f : A → B is said to be onto (or surjective) if every
element of B is equal to f(a) for some element of A. In terms of logic, f is
onto if and only if

∀b ∈ B
(

∃a ∈ A (b = f(a))
)

.

For example, let X = {a, b} and Y = {1, 2, 3}, and consider the function
from Y to X specified by the set of ordered pairs {(1, a), (2, a), (3, b)}. This
function is onto because its image, {a, b}, is equal to the range, X . However,
the function from X to Y given by {(a, 1), (b, 3)} is not onto, because its
image, {1, 3}, is a proper subset of its range, Y . As a further example,
consider the function f from Z to Z given by f(n) = n− 52. To show that
f is onto, we need to pick an arbitrary b in the range Z and show that
there is some number a in the domain Z such that f(a) = b. So let b be an
arbitrary integer; we want to find an a such that a − 52 = b. Clearly this
equation will be true when a = b + 52. So every element b is the image of
the number a = b + 52, and f is therefore onto. Note that if f had been
specified to have domain N, then f would not be onto, as for some b ∈ Z
the number a = b + 52 is not in the domain N (for example, the integer
−73 is not in the image of f , since −21 is not in N.)

If f : A → B and if a ∈ A, then a is associated to only one element of
B. This is part of the definition of a function. However, no such restriction
holds for elements of B. If b ∈ B, it is possible for b to be associated to zero,
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one, two, three, . . . , or even to an infinite number of elements of A. In the
case where each element of the range is associated to at most one element
of the domain, the function is said to be one-to-one. Sometimes, the term
injective is used instead. The function f is one-to-one (or injective) if for
any two distinct elements x and y in the domain of f , f(x) and f(y) are
also distinct. In terms of logic, f : A → B is one-to-one if and only if

∀x ∈ A ∀y ∈ A
(

x 6= y → f(x) 6= f(y)
)

.

Since a proposition is equivalent to its contrapositive, we can write this
condition equivalently as

∀x ∈ A ∀y ∈ A
(

f(x) = f(y) → x = y
)

.

Sometimes, it is easier to work with the definition of one-to-one when it is
expressed in this form. The function that associates every person to his or
her mother is not one-to-one because it is possible for two different people
to have the same mother. The function s : N → N specified by s(n) = n2

is one-to-one. However, suppose that Z is the set of all integers, positive,
negative, or zero. We can define a function r : Z→ Z by the same formula:
r(n) = n2, for n ∈ Z. The function r is not one-to-one since two different
integers can have the same square. For example, r(−2) = r(2).

A function that is both one-to-one and onto is said to be bijective.
The function that associates each point in a map of New York State to a
point in the state itself is presumably bijective. For each point on the map,
there is a corresponding point in the state, and vice versa. If we specify
the function f from the set {1, 2, 3} to the set {a, b, c} as the set of ordered
pairs {(1, b), (2, a), (3, c)},then f is a bijective function. Or consider the
function from Z to Z given by f(n) = n− 52. We have already shown that
f is onto. We can show that it is also one-to-one: pick an arbitrary x and
y in Z and assume that f(x) = f(y). This means that x− 52 = y− 52, and
adding 52 to both sides of the equation gives x = y. Since x and y were
arbitrary, we have proved ∀x ∈ Z ∀y ∈ Z (f(x) = f(y) → x = y), i.e. that
f is one-to-one. Altogether, then, f is a bijection.

One difficulty that people sometimes have with mathematics is its gen-
erality. A set is a collection of entities, but an “entity” can be anything at
all, including other sets. Once we have defined ordered pairs, we can use
ordered pairs as elements of sets. We could also make ordered pairs of sets.
Now that we have defined functions, every function is itself an entity. This
means that we can have sets that contain functions. We can even have a
function whose domain and range are sets of functions. Similarly, the do-
main or range of a function might be a set of sets, or a set of ordered pairs.
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Computer scientists have a good name for this. They would say that sets,
ordered pairs, and functions are first-class objects. Once a set, ordered
pair, or function has been defined, it can be used just like any other entity.
If they were not first-class objects, there could be restrictions on the way
they can be used. For example, it might not be possible to use functions
as members of sets. (This would make them “second class.”)

For example, suppose that A, B, and C are sets. Then since A × B is
a set, we might have a function f : A×B → C. If (a, b) ∈ A ×B, then the
value of f at (a, b) would be denoted f((a, b)). In practice, though, one set
of parentheses is usually dropped, and the value of f at (a, b) is denoted
f(a, b). As a particular example, we might define a function p : N×N→ N

with the formula p(n, m) = nm + 1. Similarly, we might define a function
q : N× N× N→ N× N by q(n, m, k) = (nm − k, nk − n).

Suppose that A and B are sets. There are, in general, many functions
that map A to B. We can gather all those functions into a set. This
set, whose elements are all the functions from A to B, is denoted BA.
(We’ll see later why this notation is reasonable.) Using this notation, saying
f : A → B is exactly the same as saying f ∈ BA. Both of these notations
assert that f is a function from A to B. Of course, we can also form
an unlimited number of other sets, such as the power set P

(

BA
)

, the cross
product BA×A, or the set AA×A, which contains all the functions from the
set A×A to the set A. And of course, any of these sets can be the domain
or range of a function. An example of this is the function E : BA ×A → B
defined by the formula E(f, a) = f(a). Let’s see if we can make sense of
this notation. Since the domain of E is BA × A, an element in the domain
is an ordered pair in which the first coordinate is a function from A to B
and the second coordinate is an element of A. Thus, E(f, a) is defined for
a function f : A → B and an element a ∈ A. Given such an f and a, the
notation f(a) specifies an element of B, so the definition of E(f, a) as f(a)
makes sense. The function E is called the “evaluation function” since it
captures the idea of evaluating a function at an element of its domain.

Exercises

1. Let A = {1, 2, 3, 4} and let B = {a, b, c}. Find the sets A × B and B × A.

2. Let A be the set {a, b, c, d}. Let f be the function from A to A given by the
set of ordered pairs {(a, b), (b, b), (c, a), (d, c)}, and let g be the function given
by the set of ordered pairs {(a, b), (b, c), (c, d), (d, d)}. Find the set of ordered
pairs for the composition g ◦ f .

3. Let A = {a, b, c} and let B = {0, 1}. Find all possible functions from A to
B. Give each function as a set of ordered pairs. (Hint: Every such function
corresponds to one of the subsets of A.)
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4. Consider the functions from Z to Z which are defined by the following formu-
las. Decide whether each function is onto and whether it is one-to-one; prove
your answers.

a) f(n) = 2n b) g(n) = n + 1 c) h(n) = n2 + n + 1

d) s(n) =



n/2, if n is even
(n+1)/2, if n is odd

5. Prove that composition of functions is an associative operation. That is, prove
that for functions f : A → B, g : B → C, and h : C → D, the compositions
(h ◦ g) ◦ f and h ◦ (g ◦ f) are equal.

6. Suppose that f : A → B and g : B → C are functions and that g ◦ f is one-
to-one.

a) Prove that f is one-to-one. (Hint: use a proof by contradiction.)

b) Find a specific example that shows that g is not necessarily one-to-one.

7. Suppose that f : A → B and g : B → C, and suppose that the composition
g ◦ f is an onto function.

a) Prove that g is an onto function.

b) Find a specific example that shows that f is not necessarily onto.

2.5 Application: Programming with Functions

Functions are fundamental in computer programming, although not every-
thing in programming that goes by the name of “function” is a function
according to the mathematical definition.

In computer programming, a function is a routine that is given some
data as input and that will calculate and return an answer based on that
data. For example, in the C++ programming language, a function that
calculates the square of an integer could be written

int square(int n) {

return n*n;

}

In C++, int is a data type. From the mathematical point of view, a
data type is a set. The data type int is the set of all integers that can
be represented as 32-bit binary numbers. Mathematically, then, int ⊆ Z.
(You should get used to the fact that sets and functions can have names
that consist of more than one character, since it’s done all the time in
computer programming.) The first line of the above function definition,
“int square(int n)”, says that we are defining a function named square
whose range is int and whose domain is int. In the usual notation for func-
tions, we would express this as square : int → int, or possibly as square ∈
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intint, where intint is the set of all functions that map the set int to the set
int.

The first line of the function, int square(int n), is called the proto-
type of the function. The prototype specifies the name, the domain, and
the range of the function and so carries exactly the same information as
the notation “f : A → B”. The “n” in “int square(int n)” is a name
for an arbitrary element of the data type int. In computer jargon, n is
called a parameter of the function. The rest of the definition of square
tells the computer to calculate the value of square(n) for any n ∈ int by
multiplying n times n. The statement “return n*n” says that n ∗ n is the
value that is computed, or “returned,” by the function. (The ∗ stands for
multiplication.)

C++ has many data types in addition to int. There is a boolean data
type named bool. The values of type bool are true and false. Mathemati-
cally, bool is a name for the set {true, false}. The type float consists of real
numbers, which can include a decimal point. Of course, on a computer, it’s
not possible to represent the entire infinite set of real numbers, so float rep-
resents some subset of the mathematical set of real numbers. There is also
a data type whose values are strings of characters, such as “Hello world”
or “xyz152QQZ”. The name for this data type in C++ is string. All these
types, and many others, can be used in functions. For example, in C++,
m % n is the remainder when the integer m is divided by the integer n. We
can define a function to test whether an integer is even as follows:

bool even(int k) {

if ( k % 2 == 1 )

return false;

else

return true;

}

You don’t need to worry about all the details here, but you should under-
stand that the prototype, bool even(int k), says that even is a function
from the set int to the set bool. That is, even : int → bool. Given an integer
N , even(N) has the value true if N is an even integer, and it has the value
false if N is an odd integer.

A function can have more than one parameter. For example, we might
define a function with prototype int index(string str, string sub).
If s and t are strings, then index (s, t) would be the int that is the value of
the function at the ordered pair (s, t). We see that the domain of index is the
cross product string× string, and we can write index : string× string → int
or, equivalently, index ∈ intstring×string.
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Not every C++ function is actually a function in the mathematical
sense. In mathematics, a function must associate a single value in its range
to each value in its domain. There are two things that can go wrong: The
value of the function might not be defined for every element of the domain,
and the function might associate several different values to the same element
of the domain. Both of these things can happen with C++ functions.

In computer programming, it is very common for a “function” to be
undefined for some values of its parameter. In mathematics, a partial
function from a set A to a set B is defined to be a function from a subset
of A to B. A partial function from A to B can be undefined for some
elements of A, but when it is defined for some a ∈ A, it associates just one
element of B to a. Many functions in computer programs are actually par-
tial functions. (When dealing with partial functions, an ordinary function,
which is defined for every element of its domain, is sometimes referred to as
a total function. Note that—with the mind-boggling logic that is typical
of mathematicians—a total function is a type of partial function, because
a set is a subset of itself.)

It’s also very common for a “function” in a computer program to pro-
duce a variety of values for the same value of its parameter. A common
example is a function with prototype int random(int N), which returns
a random integer between 1 and N . The value of random(5) could be 1, 2,
3, 4, or 5. This is not the behavior of a mathematical function!

Even though many functions in computer programs are not really math-
ematical functions, I will continue to refer to them as functions in this sec-
tion. Mathematicians will just have to stretch their definitions a bit to
accommodate the realities of computer programming.

In most programming languages, functions are not first-class objects.
That is, a function cannot be treated as a data value in the same way as
a string or an int. However, C++ does take a step in this direction. It is
possible for a function to be a parameter to another function. For example,
consider the function prototype

float sumten( float f(int) )

This is a prototype for a function named sumten whose parameter is a
function. The parameter is specified by the prototype “float f(int)”.
This means that the parameter must be a function from int to float. The
parameter name, f , stands for an arbitrary such function. Mathematically,
f ∈ floatint, and so sumten : floatint → float.

My idea is that sumten(f) would compute f(1) + f(2) + · · ·+ f(10). A
more useful function would be able to compute f(a)+ f(a + 1)+ · · ·+ f(b)
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for any integers a and b. This just means that a and b should be parameters
to the function. The prototype for the improved function would look like

float sum( float f(int), int a, int b )

The parameters to sum form an ordered triple in which the first coordinate
is a function and the second and third coordinates are integers. So, we
could write

sum : floatint × int × int → float

It’s interesting that computer programmers deal routinely with such com-
plex objects.

One thing you can’t do in C++ is write a function that creates new
functions from scratch. The only functions that exist are those that are
coded into the source code of the program. There are programming lan-
guages that do allow new functions to be created from scratch while a
program is running. In such languages, functions are first-class objects.
These languages support what is called functional programming .

One of the most accessible languages that supports functional program-
ming is JavaScript, a language that is used on Web pages. (Although
the names are similar, JavaScript and Java are only distantly related.) In
JavaScript, the function that computes the square of its parameter could
be defined as

function square(n) {

return n*n;

}

This is similar to the C++ definition of the same function, but you’ll notice
that no type is specified for the parameter n or for the value computed by
the function. Given this definition of square, square(x) would be legal for
any x of any type. (Of course, the value of square(x) would be undefined
for most types, so square is a very partial function, like most functions in
JavaScript.) In effect, all possible data values in JavaScript are bundled
together into one set, which I will call data. We then have square : data →
data.4

In JavaScript, a function really is a first-class object. We can begin to
see this by looking at an alternative definition of the function square:

square = function(n) { return n*n; }

4Not all functional programming languages lump data types together in this way.
There is a functional programming language named Haskell, for example, that is as strict
about types as C++. For information about Haskell, see http://www.Haskell.org/.
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Here, the notation “function(n) { return n*n; }” creates a function
that computes the square of its parameter, but it doesn’t give any name
to this function. This function object is then assigned to a variable named
square. The value of square can be changed later, with another assignment
statement, to a different function or even to a different type of value. This
notation for creating function objects can be used in other places besides as-
signment statements. Suppose, for example, that a function with prototype
function sum(f,a,b) has been defined in a JavaScript program to com-
pute f(a)+f(a+1)+ · · ·+f(b). Then we could compute 12+22+ · · ·+1002

by saying

sum( function(n) { return n*n; }, 1, 100 )

Here, the first parameter is the function that computes squares. We have
created and used this function without ever giving it a name.

It is even possible in JavaScript for a function to return another function
as its value. For example,

function monomial(a, n) {

return ( function(x) { a*Math.pow(x,n); } );

}

Here, Math.pow(x,n) computes xn, so for any numbers a and n, the value
of monomial(a,n) is a function that computes axn. Thus,

f = monomial(2,3);

would define f to be the function that satisfies f(x) = 2x3, and if sum is
the function described above, then

sum( monomial(8,4), 3, 6 )

would compute 8 ∗ 34 + 8 ∗ 44 + 8 ∗ 54 + 8 ∗ 64. In fact, monomial can
be used to create an unlimited number of new functions from scratch. It
is even possible to write monomial(2,3)(5) to indicate the result of apply-
ing the function monomial(2,3) to the value 5. The value represented by
monomial(2,3)(5) is 2∗53, or 250. This is real functional programming and
might give you some idea of its power.

Exercises

1. For each of the following C++ function prototypes, translate the prototype
into a standard mathematical function specification, such as func : float → int.

a) int strlen(string s)
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b) float pythag(float x, float y)

c) int round(float x)

d) string sub(string s, int n, int m)

e) string unlikely( int f(string) )

f) int h( int f(int), int g(int) )

2. Write a C++ function prototype for a function that belongs to each of the
following sets.

a) stringstring

b) boolfloat×float

c) floatintint

3. It is possible to define new types in C++. For example, the definition

struct point {

float x;

float y;

}

defines a new type named point. A value of type point contains two values of
type float. What mathematical operation corresponds to the construction of
this data type? Why?

4. Let square, sum and monomial be the JavaScript functions described in this
section. What is the value of each of the following?

a) sum(square, 2, 4)
b) sum(monomial(5,2), 1, 3)
c) monomial(square(2), 7)
d) sum(function(n) { return 2 ∗ n; }, 1, 5)
e) square(sum(monomial(2,3), 1, 2))

5. Write a JavaScript function named compose that computes the composition
of two functions. That is, compose(f ,g) is f ◦g, where f and g are functions of
one parameter. Recall that f ◦g is the function defined by (f ◦g)(x) = f(g(x)).

2.6 Counting Past Infinity

As children, we all learned to answer the question “How many?” by count-
ing with numbers: 1, 2, 3, 4, . . . . But the question of “How many?” was
asked and answered long before the abstract concept of number was in-
vented. The answer can be given in terms of “as many as.” How many
cousins do you have? As many cousins as I have fingers on both hands.
How many sheep do you own? As many sheep as there are notches on this
stick. How many baskets of wheat must I pay in taxes? As many baskets
as there are stones in this box. The question of how many things are in one
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collection of objects is answered by exhibiting another, more convenient,
collection of objects that has just as many members.

In set theory, the idea of one set having just as many members as another
set is expressed in terms of one-to-one correspondence. A one-to-one
correspondence between two sets A and B pairs each element of A with an
element of B in such a way that every element of B is paired with one and
only one element of A. The process of counting, as it is learned by children,
establishes a one-to-one correspondence between a set of n objects and the
set of numbers from 1 to n. The rules of counting are the rules of one-to-one
correspondence: Make sure you count every object, make sure you don’t
count the same object more than once. That is, make sure that each object
corresponds to one and only one number. Earlier in this chapter, we used
the fancy name “bijective function” to refer to this idea, but we can now
see it as as an old, intuitive way of answering the question “How many?”

In counting, as it is learned in childhood, the set {1, 2, 3, . . . , n} is used
as a typical set that contains n elements. In mathematics and computer
science, it has become more common to start counting with zero instead of
with one, so we define the following sets to use as our basis for counting:

N0 = ∅, a set with 0 elements
N1 = {0}, a set with 1 element
N2 = {0, 1}, a set with 2 elements
N3 = {0, 1, 2}, a set with 3 elements
N4 = {0, 1, 2, 3}, a set with 4 elements

and so on. In general, Nn = {0, 1, 2, . . . , n − 1} for each n ∈ N. For each
natural number n, Nn is a set with n elements. Note that if n 6= m, then
there is no one-to-one correspondence between Nn and Nm. This is obvious,
but like many obvious things is not all that easy to prove rigorously, and
we omit the argument here.

Theorem 2.6. For each n ∈ N, let Nn be the set Nn = {0, 1, . . . , n − 1}.
If n 6= m, then there is no bijective function from Nm to Nn.

We can now make the following definitions:

Definition 2.3. A set A is said to be finite if there is a one-to-one cor-
respondence between A and Nn for some natural number n. We then say
that n is the cardinality of A. The notation |A| is used to indicate the
cardinality of A. That is, if A is a finite set, then |A| is the natural number
n such that there is a one-to-one correspondence between A and Nn. A set
that is not finite is said to be infinite. That is, a set B is infinite if for
every n ∈ N, there is no one-to-one correspondence between B and Nn.
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Fortunately, we don’t always have to count every element in a set indi-
vidually to determine its cardinality. Consider, for example, the set A×B,
where A and B are finite sets. If we already know |A| and |B|, then we can
determine |A × B| by computation, without explicit counting of elements.
In fact, |A × B| = |A| · |B|. The cardinality of the cross product A × B
can be computed by multiplying the cardinality of A by the cardinality of
B. To see why this is true, think of how you might count the elements of
A × B. You could put the elements into piles, where all the ordered pairs
in a pile have the same first coordinate. There are as many piles as there
are elements of A, and each pile contains as many ordered pairs as there
are elements of B. That is, there are |A| piles, with |B| items in each. By
the definition of multiplication, the total number of items in all the piles
is |A| · |B|. A similar result holds for the cross product of more that two
finite sets. For example, |A × B × C| = |A| · |B| · |C|.

It’s also easy to compute |A∪B| in the case where A and B are disjoint
finite sets. (Recall that two sets A and B are said to be disjoint if they
have no members in common, that is, if A ∩ B = ∅.) Suppose |A| = n
and |B| = m. If we wanted to count the elements of A ∪ B, we could use
the n numbers from 0 to n − 1 to count the elements of A and then use
the m numbers from n to n + m − 1 to count the elements of B. This
amounts to a one-to-one correspondence between A∪B and the set Nn+m.
We see that |A ∪ B| = n + m. That is, for disjoint finite sets A and B,
|A ∪ B| = |A| + |B|.

What about A ∪ B, where A and B are not disjoint? We have to
be careful not to count the elements of A ∩ B twice. After counting the
elements of A, there are only |B|−|A∩B| new elements in B that still need
to be counted. So we see that for any two finite sets A and B, |A ∪ B| =
|A| + |B| − |A ∩ B|.

What about the number of subsets of a finite set A? What is the rela-
tionship between |A| and |P(A)|? The answer is provided by the following
theorem.

Theorem 2.7. A finite set with cardinality n has 2n subsets.

Proof. Let P (n) be the statement “Any set with cardinality n has 2n sub-
sets.” We will use induction to show that P (n) is true for all n ∈ N .

Base case: For n = 0, P (n) is the statement that a set with cardinality
0 has 20 subsets. The only set with 0 elements is the empty set. The empty
set has exactly 1 subset, namely itself. Since 20 = 1, P (0) is true.

Inductive case: Let k be an arbitrary element of N, and assume that
P (k) is true. That is, assume that any set with cardinality k has 2k ele-
ments. (This is the induction hypothesis.) We must show that P (k + 1)
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follows from this assumption. That is, using the assumption that any set
with cardinality k has 2k subsets, we must show that any set with cardi-
nality k + 1 has 2k+1 subsets.

Let A be an arbitrary set with cardinality k + 1. We must show that
|P(A)| = 2k+1. Since |A| > 0, A contains at least one element. Let x be
some element of A, and let B = Ar {x}. The cardinality of B is k, so we
have by the induction hypothesis that |P(B)| = 2k. Now, we can divide the
subsets of A into two classes: subsets of A that do not contain x and subsets
of A that do contain x. Let Y be the collection of subsets of A that do not
contain x, and let X be the collection of subsets of A that do contain x.
X and Y are disjoint, since it is impossible for a given subset of A both to
contain and to not contain x. It follows that |P(A)| = |X ∪Y | = |X |+ |Y |.

Now, a member of Y is a subset of A that does not contain x. But that
is exactly the same as saying that a member of Y is a subset of B. So Y =
P(B), which we know contains 2k members. As for X , there is a one-to-one
correspondence between P(B) and X . Namely, the function f : P(B) → X
defined by f(C) = C ∪ {x} is a bijective function. (The proof of this is left
as an exercise.) From this, it follows that |X | = |P(B)| = 2k. Putting these
facts together, we see that |P(A)| = |X | + |Y | = 2k + 2k = 2 · 2k = 2k+1.
This completes the proof that P (k) → P (k + 1).

We have seen that the notation AB represents the set of all functions
from B to A. Suppose A and B are finite, and that |A| = n and |B| = m.
Then

∣

∣AB
∣

∣ = nm = |A||B|. (This fact is one of the reasons why the notation
AB is reasonable.) One way to see this is to note that there is a one-to-one
correspondence between AB and a cross product A × A × · · ·A, where the
number of terms in the cross product is m. (This will be shown in one of the
exercises at the end of this section.) It follows that

∣

∣AB
∣

∣ = |A| · |A| · · · |A| =
n · n · · ·n, where the factor n occurs m times in the product. This product
is, by definition, nm.

This discussion about computing cardinalities is summarized in the fol-
lowing theorem:

Theorem 2.8. Let A and B be finite sets. Then

• |A × B| = |A| · |B|.

• |A ∪ B| = |A| + |B| − |A ∩ B|.

• If A and B are disjoint then |A ∪ B| = |A| + |B|.

•
∣

∣AB
∣

∣ = |A||B|.

• |P(A)| = 2|A|.
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When it comes to counting and computing cardinalities, this theorem
is only the beginning of the story. There is an entire large and deep branch
of mathematics known as combinatorics that is devoted mostly to the
problem of counting. But the theorem is already enough to answer many
questions about cardinalities.

For example, suppose that |A| = n and |B| = m. We can form the set
P(A×B), which consists of all subsets of A×B. Using the theorem, we can
compute that |P(A × B)| = 2|A×B| = 2|A|·|B| = 2nm. If we assume that A
and B are disjoint, then we can compute that

∣

∣AA∪B
∣

∣ = |A||A∪B| = nn+m.

To be more concrete, let X = {a, b, c, d, e} and let Y = {c, d, e, f}
where a, b, c, d, e, and f are distinct. Then |X × Y | = 5 · 4 = 20 while
|X ∪ Y | = 5 + 4 − |{c, d, e}| = 6 and

∣

∣XY
∣

∣ = 54 = 625.

We can also answer some simple practical questions. Suppose that in a
restaurant you can choose one appetizer and one main course. What is the
number of possible meals? If A is the set of possible appetizers and C is the
set of possible main courses, then your meal is an ordered pair belonging
to the set A × C. The number of possible meals is |A × C|, which is the
product of the number of appetizers and the number of main courses.

Or suppose that four different prizes are to be awarded, and that the set
of people who are eligible for the prizes is A. Suppose that |A| = n. How
many different ways are there to award the prizes? One way to answer
this question is to view a way of awarding the prizes as a function from
the set of prizes to the set of people. Then, if P is the set of prizes, the
number of different ways of awarding the prizes is

∣

∣AP
∣

∣. Since |P | = 4 and
|A| = n, this is n4. Another way to look at it is to note that the people
who win the prizes form an ordered tuple (a, b, c, d), which is an element of
A × A × A × A. So the number of different ways of awarding the prizes is
|A × A × A × A|, which is |A| · |A| · |A| · |A|. This is |A|4, or n4, the same
answer we got before.5

So far, we have only discussed finite sets. N, the set of natural numbers
{0, 1, 2, 3, . . .}, is an example of an infinite set. There is no one-to-one
correspondence between N and any of the finite sets Nn. Another example
of an infinite set is the set of even natural numbers, E = {0, 2, 4, 6, 8, . . .}.
There is a natural sense in which the sets N and E have the same number

5This discussion assumes that one person can receive any number of prizes. What
if the prizes have to go to four different people? This question takes us a little farther
into combinatorics than I would like to go, but the answer is not hard. The first award
can be given to any of n people. The second prize goes to one of the remaining n − 1
people. There are n − 2 choices for the third prize and n − 3 for the fourth. The
number of different ways of awarding the prizes to four different people is the product
n(n − 1)(n − 2)(n − 3).
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of elements. That is, there is a one-to-one correspondence between them.
The function f : N→ E defined by f(n) = 2n is bijective. We will say that
N and E have the same cardinality, even though that cardinality is not a
finite number. Note that E is a proper subset of N. That is, N has a proper
subset that has the same cardinality as N.

We will see that not all infinite sets have the same cardinality. When
it comes to infinite sets, intuition is not always a good guide. Most people
seem to be torn between two conflicting ideas. On the one hand, they think,
it seems that a proper subset of a set should have fewer elements than the
set itself. On the other hand, it seems that any two infinite sets should have
the same number of elements. Neither of these is true, at least if we define
having the same number of elements in terms of one-to-one correspondence.

A set A is said to be countably infinite if there is a one-to-one corre-
spondence between N and A. A set is said to be countable if it is either
finite or countably infinite. An infinite set that is not countably infinite
is said to be uncountable. If X is an uncountable set, then there is no
one-to-one correspondence between N and X .

The idea of “countable infinity” is that even though a countably infi-
nite set cannot be counted in a finite time, we can imagine counting all
the elements of A, one-by-one, in an infinite process. A bijective func-
tion f : N→ A provides such an infinite listing: (f(0), f(1), f(2), f(3), . . . ).
Since f is onto, this infinite list includes all the elements of A. In fact,
making such a list effectively shows that A is countably infinite, since the
list amounts to a bijective function from N to A. For an uncountable set,
it is impossible to make a list, even an infinite list, that contains all the
elements of the set.

Before you start believing in uncountable sets, you should ask for an
example. In Chapter 1, we worked with the infinite sets Z (the integers), Q
(the rationals), R (the reals), and RrQ (the irrationals). Intuitively, these
are all “bigger” than N, but as we have already mentioned, intuition is a
poor guide when it comes to infinite sets. Are any of Z, Q, R, and R r Q
in fact uncountable?

It turns out that both Z and Q are only countably infinite. The proof
that Z is countable is left as an exercise; we will show here that the set
of non-negative rational numbers is countable. (The fact that Q itself is
countable follows easily from this.) The reason is that it’s possible to make
an infinite list containing all the non-negative rational numbers. Start the
list with all the non-negative rational numbers n/m such that n + m = 1.
There is only one such number, namely 0/1. Next come numbers with
n + m = 2. They are 0/2 and 1/1, but we leave out 0/2 since it’s just
another way of writing 0/1, which is already in the list. Now, we add the
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numbers with n + m = 3, namely 0/3, 1/2, and 2/1. Again, we leave out
0/3, since it’s equal to a number already in the list. Next come numbers
with n+m = 4. Leaving out 0/4 and 2/2 since they are already in the list,
we add 1/3 and 3/1 to the list. We continue in this way, adding numbers
with n + m = 5, then numbers with n + m = 6, and so on. The list looks
like

(

0

1
,

1

1
,

1

2
,

2

1
,

1

3
,

3

1
,

1

4
,

2

3
,

3

2
,

4

1
,

1

5
,

5

1
,

1

6
,

2

5
, . . .

)

This process can be continued indefinitely, and every non-negative rational
number will eventually show up in the list. So we get a complete, infinite list
of non-negative rational numbers. This shows that the set of non-negative
rational numbers is in fact countable.

On the other hand, R is uncountable. It is not possible to make an
infinite list that contains every real number. It is not even possible to make
a list that contains every real number between zero and one. Another way
of saying this is that every infinite list of real numbers between zero and
one, no matter how it is constructed, leaves something out. To see why this
is true, imagine such a list, displayed in an infinitely long column. Each
row contains one number, which has an infinite number of digits after the
decimal point. Since it is a number between zero and one, the only digit
before the decimal point is zero. For example, the list might look like this:

0.90398937249879561297927654857945.. .
0.12349342094059875980239230834549.. .
0.22400043298436234709323279989579.. .
0.50000000000000000000000000000000.. .
0.77743449234234876990120909480009.. .
0.77755555588888889498888980000111.. .
0.12345678888888888888888800000000.. .
0.34835440009848712712123940320577.. .
0.93473244447900498340999990948900.. .

...

This is only (a small part of) one possible list. How can we be certain that
every such list leaves out some real number between zero and one? The
trick is to look at the digits shown in bold face. We can use these digits to
build a number that is not in the list. Since the first number in the list has
a 9 in the first position after the decimal point, we know that this number
cannot equal any number of, for example, the form 0.4. . . . Since the second
number has a 2 in the second position after the decimal point, neither of
the first two numbers in the list is equal to any number that begins with
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0.44. . . . Since the third number has a 4 in the third position after the
decimal point, none of the first three numbers in the list is equal to any
number that begins 0.445. . . . We can continue to construct a number in
this way, and we end up with a number that is different from every number
in the list. The nth digit of the number we are building must differ from
the nth digit of the nth number in the list. These are the digits shown in
bold face in the above list. To be definite, I use a 5 when the corresponding
boldface number is 4, and otherwise I use a 4. For the list shown above, this
gives a number that begins 0.44544445. . . . The number constructed in this
way is not in the given list, so the list is incomplete. The same construction
clearly works for any list of real numbers between zero and one. No such
list can be a complete listing of the real numbers between zero and one,
and so there can be no complete listing of all real numbers. We conclude
that the set R is uncountable.

The technique used in this argument is called diagonalization. It is
named after the fact that the bold face digits in the above list lie along a
diagonal line. This proof was discovered by a mathematician named Georg
Cantor, who caused quite a fuss in the nineteenth century when he came up
with the idea that there are different kinds of infinity. Since then, his notion
of using one-to-one correspondence to define the cardinalities of infinite sets
has been accepted. Mathematicians now consider it almost intuitive that N,
Z, and Q have the same cardinality while R has a strictly larger cardinality.

Theorem 2.9. Suppose that X is an uncountable set, and that K is a
countable subset of X. Then the set X rK is uncountable.

Proof. Let X be an uncountable set. Let K ⊆ X , and suppose that K
is countable. Let L = X r K. We want to show that L is uncountable.
Suppose that L is countable. We will show that this assumption leads to a
contradiction.

Note that X = K ∪ (X r K) = K ∪ L. You will show in Exercise 11
of this section that the union of two countable sets is countable. Since X
is the union of the countable sets K and L, it follows that X is countable.
But this contradicts the fact that X is uncountable. This contradiction
proves the theorem.

In the proof, both q and ¬q are shown to follow from the assumptions,
where q is the statement “X is countable.” The statement q is shown to
follow from the assumption that X rK is countable. The statement ¬q is
true by assumption. Since q and ¬q cannot both be true, at least one of
the assumptions must be false. The only assumption that can be false is
the assumption that X rK is countable.
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This theorem, by the way, has the following easy corollary. (A corol-
lary is a theorem that follows easily from another, previously proved the-
orem.)

Corollary 2.10. The set of irrational real numbers is uncountable.

Proof. Let I be the set of irrational real numbers. By definition, I = RrQ.
We have already shown that R is uncountable and that Q is countable, so
the result follows immediately from the previous theorem.

You might still think that R is as big as things get, that is, that any
infinite set is in one-to-one correspondence with R or with some subset
of R. In fact, though, if X is any set then it’s possible to find a set that has
strictly larger cardinality than X . In fact, P(X) is such a set. A variation
of the diagonalization technique can be used to show that there is no one-
to-one correspondence between X and P(X). Note that this is obvious for
finite sets, since for a finite set X , |P(X)| = 2|X|, which is larger than |X |.
The point of the theorem is that it is true even for infinite sets.

Theorem 2.11. Let X be any set. Then there is no one-to-one correspon-
dence between X and P(X).

Proof. Given an arbitrary function f : X → P(X), we can show that f is
not onto. Since a one-to-one correspondence is both one-to-one and onto,
this shows that f is not a one-to-one correspondence.

Recall that P(X) is the set of subsets of X . So, for each x ∈ X , f(x) is
a subset of X . We have to show that no matter how f is defined, there is
some subset of X that is not in the image of f .

Given f , we define A to be the set A = {x ∈ X |x 6∈ f(x)}. The test
“x 6∈ f(x)” makes sense because f(x) is a set. Since A ⊆ X , we have that
A ∈ P(X). However, A is not in the image of f . That is, for every y ∈ X ,
A 6= f(y).6 To see why this is true, let y be any element of X . There are
two cases to consider. Either y ∈ f(y) or y 6∈ f(y). We show that whichever
case holds, A 6= f(y). If it is true that y ∈ f(y), then by the definition of A,
y 6∈ A. Since y ∈ f(y) but y 6∈ A, f(y) and A do not have the same elements
and therefore are not equal. On the other hand, suppose that y 6∈ f(y).
Again, by the definition of A, this implies that y ∈ A. Since y 6∈ f(y)
but y ∈ A, f(y) and A do not have the same elements and therefore are
not equal. In either case, A 6= f(y). Since this is true for any y ∈ X , we
conclude that A is not in the image of f and therefore f is not a one-to-one
correspondence.

6In fact, we have constructed A so that the sets A and f(y) differ in at least one
element, namely y itself. This is where the “diagonalization” comes in.



2.6. COUNTING PAST INFINITY 121

From this theorem, it follows that there is no one-to-one correspondence
between R and P(R). The cardinality of P(R) is strictly bigger than the
cardinality of R. But it doesn’t stop there. P(P(R)) has an even bigger
cardinality, and the cardinality of P(P(P(R))) is bigger still. We could
go on like this forever, and we still won’t have exhausted all the possible
cardinalities. If we let X be the infinite union R ∪ P(R) ∪ P(P(R)) ∪ · · · ,
then X has larger cardinality than any of the sets in the union. And then
there’s P(X), P(P(X)), X ∪ P(X) ∪ P(P(X)) ∪ · · · . There is no end to this.
There is no upper limit on possible cardinalities, not even an infinite one!
We have counted past infinity.

We have seen that |R| is strictly larger than |N|. We end this section
with what might look like a simple question: Is there a subset of R that
is neither in one-to-one correspondence with N nor with R? That is, is
the cardinality of R the next largest cardinality after the cardinality of N,
or are there other cardinalities intermediate between them? This problem
was unsolved for quite a while, and the solution, when it was found, proved
to be completely unexpected. It was shown that both “yes” and “no” are
consistent answers to this question! That is, the logical structure built on
the system of axioms that had been accepted as the basis of set theory was
not extensive enough to answer the question. It is possible to extend the
system in various ways. In some extensions, the answer is yes. In others,
the answer is no. You might object, “Yes, but which answer is true for the
real real numbers?” Unfortunately, it’s not even clear whether this question
makes sense, since in the world of mathematics, the real numbers are just
part of a structure built from a system of axioms. And it’s not at all clear
whether the “real numbers” exist in some sense in the real world. If all this
sounds like it’s a bit of a philosophical muddle, it is. That’s the state of
things today at the foundation of mathematics.

Exercises

1. Suppose that A, B, and C are finite sets which are pairwise disjoint. (That is,
A∩B = A∩C = B∩C = ∅.) Express the cardinality of each of the following
sets in terms of |A|, |B|, and |C|. Which of your answers depend on the fact
that the sets are pairwise disjoint?

a) P(A ∪ B) b) A × (BC) c) P(A) × P(C)
d) AB×C e) (A × B)C f) P(AB)
g) (A ∪ B)C h) (A ∪ B) × A i) A × A × B × B

2. Suppose that A and B are finite sets which are not necessarily disjoint. What
are all the possible values for |A ∪ B| ?

3. Let’s say that an “identifier” consists of one or two characters. The fist
character is one of the twenty-six letters (A, B, . . . , C). The second character,
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if there is one, is either a letter or one of the ten digits (0, 1, . . . , 9). How
many different identifiers are there? Explain your answer in terms of unions
and cross products.

4. Suppose that there are five books that you might bring along to read on your
vacation. In how many different ways can you decide which books to bring,
assuming that you want to bring at least one? Why?

5. Show that the cardinality of a finite set is well-defined. That is, show that if
f is a bijective function from a set A to Nn, and if g is a bijective function
from A to Nm, then n = m.

6. Finish the proof of Theorem 2.7 by proving the following statement: Let A be
a non-empty set, and let x ∈ A. Let B = Ar {x}. Let X = {C ⊆ A |x ∈ C}.
Define f : P(B) → X by the formula f(C) = C ∪ {x}. Show that f is a
bijective function.

7. Use induction on the cardinality of B to show that for any finite sets A and
B,

˛

˛AB
˛

˛ = |A||B|. (Hint: For the case where B 6= ∅, choose x ∈ B, and divide

AB into classes according to the value of f(x).)

8. Let A and B be finite sets with |A| = n and |B| = m. List the elements of B as
B = {b0, b1, . . . , bm−1}. Define the function F : AB → A×A×· · ·×A, where A

occurs m times in the cross product, by F(f) =
`

f(b0), f(b1), . . . , f(bm−1)
´

.
Show that F is a one-to-one correspondence.

9. Show that Z, the set of integers, is countable by finding a one-to-one corre-
spondence between N and Z.

10. Show that the set N× N is countable.

11. Complete the proof of Theorem 2.9 as follows:

a) Suppose that A and B are countably infinite sets. Show that A ∪ B is
countably infinite.

b) Suppose that A and B are countable sets. Show that A∪B is countable.

12. Prove that each of the following statements is true. In each case, use a proof
by contradiction.

a) Let X be a countably infinite set, and let N be a finite subset of X.
Then X r N is countably infinite.

b) Let A be an infinite set, and let X be a subset of A. Then at least one
of the sets X and ArX is infinite.

c) Every subset of a finite set is finite.

13. Let A and B be sets and let ⊥ be an entity that is not a member of B. Show
that there is a one-to-one correspondence between the set of functions from
A to B ∪{⊥} and the set of partial functions from A to B. (Partial functions
were defined in Section 2.5. The symbol “⊥” is sometimes used in theoretical
computer science to represent the value “undefined.”)
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2.7 Relations

In Section 2.4, we saw that “mother of” is a functional relationship because
every person has one and only one mother, but that “child of” is not a
functional relationship, because a person can have no children or more than
one child. However, the relationship expressed by “child of” is certainly one
that we have a right to be interested in and one that we should be able to
deal with mathematically.

There are many examples of relationships that are not functional re-
lationships. The relationship that holds between two natural numbers n
and m when n ≤ m is an example in mathematics. The relationship be-
tween a person and a book that that person has on loan from the library
is another. Some relationships involve more than two entities, such as the
relationship that associates a name, an address, and a phone number in an
address book or the relationship that holds among three real numbers x, y,
and z if x2 + y2 + z2 = 1. Each of these relationships can be represented
mathematically by what is called a “relation.”

A relation on two sets, A and B, is defined to be a subset of A × B.
Since a function from A to B is defined, formally, as a subset of A×B that
satisfies certain properties, a function is a relation. However, relations are
more general than functions, since any subset of A × B is a relation. We
also define a relation among three or more sets to be a subset of the cross
product of those sets. In particular, a relation on A, B, and C is a subset
of A × B × C.

For example, if P is the set of people and B is the set of books owned
by a library, then we can define a relation R on the sets P and B to be the
set R = {(p, b) ∈ P × B | p has b out on loan}. The fact that a particular
(p, b) ∈ R is a fact about the world that the library will certainly want to
keep track of. When a collection of facts about the world is stored on a
computer, it is called a database. We’ll see in the next section that relations
are the most common means of representing data in databases.

If A is a set and R is a relation on the sets A and A (that is, on two
copies of A), then R is said to be a binary relation on A. That is, a
binary relation on the set A is a subset of A × A. The relation consisting
of all ordered pairs (c, p) of people such that c is a child of p is a binary
relation on the set of people. The set {(n, m) ∈ N×N |n ≤ m} is a binary
relation on N. Similarly, we define a ternary relation on a set A to be a
subset of A × A × A. The set {(x, y, z) ∈ R× R× R |x2 + y2 + z2 = 1} is
a ternary relation on R. For complete generality, we can define an n-ary
relation on A, for any positive integer n, to be a subset of A×A×· · ·×A,
where A occurs n times in the cross product.
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For the rest of this section, we will be working exclusively with binary
relations. Suppose that R ⊆ A × A. That is, suppose that R is a binary
relation on a set A. If (a, b) ∈ R, then we say that a is related to b by R.
Instead of writing “(a, b) ∈ R”, we will often write “a R b”. This notation
is used in analogy to the notation n ≤ m to express the relation that n is
less than or equal to m. Remember that a R b is just an alternative way of
writing (a, b) ∈ R. In fact, we could consider the relation ≤ to be a set of
ordered pairs and write (n, m) ∈≤ in place of n ≤ m.

In many applications, attention is restricted to relations that satisfy
some property or set of properties. (This is, of course, just what we do
when we study functions.) We begin our discussion of binary relations by
considering several important properties. In this discussion, let A be a set
and let R be a binary relation on A, that is, a subset of A × A.

R is said to be reflexive if ∀a ∈ A (a R a). That is, a binary relation
on a set is reflexive if every element of the set is related to itself. This is
true, for example, for the relation ≤ on the set N, since n ≤ n for every
n ∈ N. On the other hand, it is not true for the relation < on N, since, for
example, the statement 17 < 17 is false.7

R is called transitive if ∀a ∈ A, ∀b ∈ A, ∀c ∈ A
(

(a R b ∧ b R c) →
(a R c)

)

. Transitivity allows us to “chain together” two true statements
a R b and b R c, which are “linked” by the b that occurs in each statement,
to deduce that a R c. For example, suppose P is the set of people, and
define the relation C on P such that xP y if and only if x is a child of y.
The relation P is not transitive because the child of a child of a person
is not a child of that person. Suppose, on the other hand, that we define
a relation D on P such that xD y if and only if x is a descendent of y.
Then D is a transitive relation on the set of people, since a descendent of
a descendent of a person is a descendent of that person. That is, from the
facts that Elizabeth is a descendent of Victoria and Victoria is a descendent
of James, we can deduce that Elizabeth is a descendent of James. In the
mathematical world, the relations ≤ and < on the set N are both transitive.

R is said to be symmetric if ∀a ∈ A, ∀b ∈ B (a R b → b R a). That is,
whenever a is related to b, it follows that b is related to a. The relation “is
a first cousin of” on the set of people is symmetric, since whenever x is a
first cousin of y, we have automatically that y is a first cousin of x. On the
other hand, the “child of” relation is certainly not symmetric. The relation
≤ on N is not symmetric. From the fact that n ≤ m, we cannot conclude

7Note that to show that the relation R is not reflexive, you only need to find one a such
that a Ra is false. This follows from the fact that ¬

`

∀a ∈ A (a Ra)
´

≡ ∃a ∈ A
`

¬(a Ra)
´

.
A similar remark holds for each of the properties of relations that are discussed here.
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that m ≤ n. It is true for some n and m in N that n ≤ m → m ≤ n, but
it is not true for all n and m in N.

Finally, R is antisymmetric if ∀a ∈ A, ∀b ∈ B
(

(a R b∧b R a) → a = b
)

.
The relation R is antisymmetric if for any two distinct elements x and y of
A, we can’t have both xR y and y R x. The relation ≤ on N is antisymmetric
because from the facts that n ≤ m and m ≤ n, we can deduce that n = m.
The relation “child of” on the set of people is antisymmetric since it’s
impossible to have both that x is a child of y and y is a child of x.

There are a few combinations of properties that define particularly use-
ful types of binary relations. The relation ≤ on the set N is reflexive,
antisymmetric, and transitive. These properties define what is called a
partial order: A partial order on a set A is a binary relation on A that is
reflexive, antisymmetric, and transitive.

Another example of a partial order is the subset relation, ⊆, on the
power set of any set. If X is a set, then of course P(X) is a set in its own
right, and ⊆ can be considered to be a binary relation on this set. Two
elements A and B of P(X) are related by ⊆ if and only if A ⊆ B. This
relation is reflexive since every set is a subset of itself. The fact that it is
antisymmetric follows from Theorem 2.1. The fact that it is transitive was
Exercise 11 in Section 2.1.

The ordering imposed on N by ≤ has one important property that the
ordering of subsets by ⊆ does not share. If n and m are natural numbers,
then at least one of the statements n ≤ m and m ≤ n must be true.
However, if A and B are subsets of a set X , it is certainly possible that
both A ⊆ B and B ⊆ A are false. A binary relation R on a set A is said
to be a total order if it is a partial order and furthermore for any two
elements a and b of A, either a R b or b R a. The relation ≤ on the set N is
a total order. The relation ⊆ on P(X) is not. (Note once again the slightly
odd mathematical language: A total order is a kind of partial order—not,
as you might expect, the opposite of a partial order.)

For another example of ordering, let L be the set of strings that can be
made from lowercase letters. L contains both English words and nonsense
strings such as “sxjja”. There is a commonly used total order on the set L,
namely alphabetical order.

We’ll approach another important kind of binary relation indirectly,
through what might at first appear to be an unrelated idea. Let A be a
set. A partition of A is defined to be a collection of non-empty subsets
of A such that each pair of distinct subsets in the collection is disjoint and
the union of all the subsets in the collection is A. A partition of A is just
a division of all the elements of A into non-overlapping subsets. For exam-
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ple, the sets {1, 2, 6}, {3, 7}, {4, 5, 8, 10}, and {9} form a partition of the
set {1, 2, . . . , 10}. Each element of {1, 2, . . . , 10} occurs in exactly one of
the sets that make up the partition. As another example, we can partition
the set of all people into two sets, the set of males and the set of females.
Biologists try to partition the set of all organisms into different species.
Librarians try to partition books into various categories such as fiction, bi-
ography, and poetry. In the real world, classifying things into categories is
an essential activity, although the boundaries between categories are not al-
ways well-defined. The abstract mathematical notion of a partition of a set
models the real-world notion of classification. In the mathematical world,
though, the categories are sets and the boundary between two categories is
sharp.

In the real world, items are classified in the same category because they
are related in some way. This leads us from partitions back to relations.
Suppose that we have a partition of a set A. We can define a relation R

on A by declaring that for any a and b in A, a R b if and only if a and b
are members of the same subset in the partition. That is, two elements of
A are related if they are in the same category. It is clear that the relation
defined in this way is reflexive, symmetric, and transitive.

An equivalence relation is defined to be a binary relation that is
reflexive, symmetric, and transitive. Any relation defined, as above, from
a partition is an equivalence relation. Conversely, we can show that any
equivalence relation defines a partition. Suppose that R is an equivalence
relation on a set A. Let a ∈ A. We define the equivalence class of a
under the equivalence relation R to be the subset [a]R defined as [a]R =
{b ∈ A | b R a}. That is, the equivalence class of a is the set of all elements
of A that are related to a. In most cases, we’ll assume that the relation in
question is understood, and we’ll write [a] instead of [a]R. Note that each
equivalence class is a subset of A. The following theorem shows that the
collection of equivalence classes form a partition of A.

Theorem 2.12. Let A be a set and let R be an equivalence relation on A.
Then the collection of all equivalence classes under R is a partition of A.

Proof. To show that a collection of subsets of A is a partition, we must
show that each subset is non-empty, that the intersection of two distinct
subsets is empty, and that the union of all the subsets is A.

If [a] is one of the equivalence classes, it is certainly non-empty, since
a ∈ [a]. To show that A is the union of all the equivalence classes, we just
have to show that each element of A is a member of one of the equivalence
classes. Again, the fact that a ∈ [a] for each a ∈ A shows that this is true.

Finally, we have to show that the intersection of two distinct equivalence
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classes is empty. Suppose that a and b are elements of A and consider the
equivalence classes [a] and [b]. We have to show that if [a] 6= [b], then
[a] ∩ [b] = ∅. Equivalently, we can show the converse: If [a] ∩ [b] 6= ∅ then
[a] = [b]. So, assume that [a] ∩ [b] 6= ∅. Saying that a set is not empty just
means that the set contains some element, so there must be an x ∈ A such
that x ∈ [a] ∩ [b]. Since x ∈ [a], xR a. Since R is symmetric, we also have
a R x. Since x ∈ [b], xR b. Since R is transitive and since (a R x) ∧ (xR b),
it follows that a R b.

Our object is to deduce that [a] = [b]. Since [a] and [b] are sets, they
are equal if and only if [a] ⊆ [b] and [b] ⊆ [a]. To show that [a] ⊆ [b], let c
be an arbitrary element of [a]. We must show that c ∈ [b]. Since c ∈ [a],
we have that c R a. And we have already shown that a R b. From these
two facts and the transitivity of R, it follows that c R b. By definition, this
means that c ∈ [b]. We have shown that any member of [a] is a member of
[b] and therefore that [a] ⊆ [b]. The fact that [b] ⊆ [a] can be shown in the
same way. We deduce that [a] = [b], which proves the theorem.

The point of this theorem is that if we can find a binary relation that
satisfies certain properties, namely the properties of an equivalence relation,
then we can classify things into categories, where the categories are the
equivalence classes.

For example, suppose that U is a set. Define a binary relation ∼ on P(U)
as follows: For X and Y in P(U), X ∼ Y if and only if there is a bijective
function from the set X to the set Y . In other words, X ∼ Y means that
X and Y have the same cardinality. Then ∼ is an equivalence relation on
P(U). (The symbol ∼ is often used to denote equivalence relations. It is
usually read “is equivalent to.”) If X ∈ P(U), then the equivalence class
[X ]∼ consists of all the subsets of U that have the same cardinality as X .
We have classified all the subsets of U according to their cardinality—even
though we have never said what an infinite cardinality is. (We have only
said what it means to have the same cardinality.)

You might remember a popular puzzle called Rubic’s Cube, a cube made
of smaller cubes with colored sides that could be manipulated by twisting
layers of little cubes. The object was to manipulate the cube so that the
colors of the little cubes formed a certain configuration. Define two con-
figurations of the cube to be equivalent if it’s possible to manipulate one
configuration into the other by a sequence of twists. This is, in fact, an
equivalence relation on the set of possible configurations. (Symmetry fol-
lows from the fact that each move is reversible.) It has been shown that this
equivalence relation has exactly twelve equivalence classes. The interesting
fact is that it has more than one equivalence class: If the configuration that
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the cube is in and the configuration that you want to achieve are not in the
same equivalence class, then you are doomed to failure.

Suppose that R is a binary relation on a set A. Even though R might
not be transitive, it is always possible to construct a transitive relation from
R in a natural way. If we think of a R b as meaning that a is related by R to
b “in one step,” then we consider the relationship that holds between two
elements x and y when x is related by R to y “in one or more steps.” This
relationship defines a binary relation on A that is called the transitive
closure of R. The transitive closure of R is denoted R∗. Formally, R∗ is
defined as follows: For a and b in A, a R∗ b if there is a sequence x0, x1, . . . xn

of elements of A, where n > 0 and x0 = a and xn = b, such that x0 R x1,
x1 R x2, . . . , and xn−1 R xn.

For example, if a R c, c R d, and d R b, then we would have that a R∗ b.
Of course, we would also have that a R∗ c, and a R∗ d.

For a practical example, suppose that C is the set of all cities and let
A be the binary relation on C such that for x and y in C, xA y if there is
a regularly scheduled airline flight from x to y. Then the transitive closure
A∗ has a natural interpretation: xA∗ y if it’s possible to get from x to y by
a sequence of one or more regularly scheduled airline flights. You’ll find a
few more examples of transitive closures in the exercises.

Exercises

1. For a finite set, it is possible to define a binary relation on the set by listing
the elements of the relation, considered as a set of ordered pairs. Let A be the
set {a, b, c, d}, where a, b, c, and d are distinct. Consider each of the following
binary relations on A. Is the relation reflexive? Symmetric? Antisymmetric?
Transitive? Is it a partial order? An equivalence relation?

a) R = {(a, b), (a, c), (a, d)}.
b) S = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a)}.
c) T = {(b, b), (c, c), (d, d)}.
d) C = {(a, b), (b, c), (a, c), (d, d)}.
e) D = {(a, b), (b, a), (c, d), (d, c)}.

2. Let A be the set {1, 2, 3, 4, 5, 6}. Consider the partition of A into the subsets
{1, 4, 5}, {3}, and {2, 6}. Write out the associated equivalence relation on A

as a set of ordered pairs.

3. Consider each of the following relations on the set of people. Is the relation
reflexive? Symmetric? Transitive? Is it an equivalence relation?

a) x is related to y if x and y have the same biological parents.
b) x is related to y if x and y have at least one biological parent in common.
c) x is related to y if x and y were born in the same year.
d) x is related to y if x is taller than y.
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e) x is related to y if x and y have both visited Honolulu.

4. It is possible for a relation to be both symmetric and antisymmetric. For
example, the equality relation, =, is a relation on any set which is both
symmetric and antisymmetric. Suppose that A is a set and R is a relation on
A that is both symmetric and antisymmetric. Show that R is a subset of =
(when both relations are considered as sets of ordered pairs). That is, show
that for any a and b in A, (aR b) → (a = b).

5. Let ∼ be the relation on R, the set of real numbers, such that for x and y in
R, x ∼ y if and only if x − y ∈ Z. For example,

√
2 − 1 ∼

√
2 + 17 because

the difference, (
√

2 − 1) − (
√

2 + 17), is −18, which is an integer. Show that
∼ is an equivalence relation. Show that each equivalence class [x]∼ contains
exactly one number a which satisfies 0 ≤ a < 1. (Thus, the set of equivalence
classes under ∼ is in one-to-one correspondence with the half-open interval
[0, 1).)

6. Let A and B be any sets, and suppose f : A → B. Define a relation ∼ on B

such that for any a and b in A, a ∼ b if and only if f(a) = f(b). Show that ∼
is an equivalence relation on A.

7. Let Z+ be the set of positive integers {1, 2, 3, . . . }. Define a binary relation
D on Z+ such that for n and m in Z+, n D m if n divides evenly into m, with
no remainder. Equivalently, n D m if n is a factor of m, that is, if there is a
k in Z+ such that m = nk. Show that D is a partial order.

8. Consider the set N×N, which consists of all ordered pairs of natural numbers.
Since N× N is a set, it is possible to have binary relations on N× N. Such a
relation would be a subset of (N × N) × (N × N). Define a binary relation �
on N × N such that for (m, n) and (k, ℓ) in N × N, (m,n) � (k, ℓ) if and only
if either m < k or (m = k ∧ n ≤ ℓ). Which of the following are true?

a) (2, 7) � (5, 1) b) (8, 5) � (8, 0)
c) (0, 1) � (0, 2) d) (17, 17) � (17, 17)

Show that � is a total order on N× N.

9. Let ∼ be the relation defined on N × N such that (n, m) ∼ (k, ℓ) if and only
if n − ℓ = k − m. Show that ∼ is an equivalence relation.

10. Let P be the set of people and let C be the “child of” relation. That is x C y

means that x is a child of y. What is the meaning of the transitive closure
C
∗? Explain your answer.

11. Let R be the binary relation on N such that x R y if and only if y = x + 1.
Identify the transitive closure R

∗. (It is a well-known relation.) Explain your
answer.

12. Suppose that R is a reflexive, symmetric binary relation on a set A. Show
that the transitive closure R

∗ is an equivalence relation.
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2.8 Application: Relational Databases

One of the major uses of computer systems is to store and manipulate
collections of data. A database is a collection of data that has been orga-
nized so that it is possible to add and delete information, to update the data
that it contains, and to retrieve specified parts of the data. A Database
Management System, or DBMS, is a computer program that makes it
possible to create and manipulate databases. A DBMS must be able to
accept and process commands that manipulate the data in the databases
that it manages. These commands are called queries, and the languages
in which they are written are called query languages. A query language
is a kind of specialized programming language.

There are many different ways that the data in a database could be rep-
resented. Different DBMS’s use various data representations and various
query languages. However, data is most commonly stored in relations. A
relation in a database is a relation in the mathematical sense. That is, it
is a subset of a cross product of sets. A database that stores its data in
relations is called a relational database. The query language for most re-
lational database management systems is some form of the language known
as Structured Query Language, or SQL. In this section, we’ll take a
very brief look at SQL, relational databases, and how they use relations.

A relation is just a subset of a cross product of sets. Since we are
discussing computer representation of data, the sets are data types. As in
Section 2.5, we’ll use data type names such as int and string to refer to
these sets. A relation that is a subset of the cross product int× int× string
would consist of ordered 3-tuples such as (17, 42, “hike”). In a relational
database, the data is stored in the form of one or more such relations. The
relations are called tables, and the tuples that they contain are called rows
or records.

As an example, consider a lending library that wants to store data about
its members, the books that it owns, and which books the members have
out on loan. This data could be represented in three tables, as illustrated
in Figure 2.4. The relations are shown as tables rather than as sets of
ordered tuples, but each table is, in fact, a relation. The rows of the table
are the tuples. The Members table, for example, is a subset of int× string×
string × string, and one of the tuples is (1782, “Smith, John”, “107 Main
St”, “New York, NY”). A table does have one thing that ordinary relations
in mathematics do not have. Each column in the table has a name. These
names are used in the query language to manipulate the data in the tables.

The data in the Members table is the basic information that the library
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needs in order to keep track of its members, namely the name and address
of each member. A member also has a MemberID number, which is pre-
sumably assigned by the library. Two different members can’t have the
same MemberID, even though they might have the same name or the same
address. The MemberID acts as a primary key for the Members table. A
given value of the primary key uniquely identifies one of the rows of the
table. Similarly, the BookID in the Books table is a primary key for that
table. In the Loans table, which holds information about which books are
out on loan to which members, a MemberID unambiguously identifies the
member who has a given book on loan, and the BookID says unambiguously
which book that is. Every table has a primary key, but the key can consist
of more than one column. The DBMS enforces the uniqueness of primary
keys. That is, it won’t let users make a modification to the table if it would
result in two rows having the same primary key.

The fact that a relation is a set—a set of tuples—means that it can’t
contain the same tuple more than once. In terms of tables, this means that
a table shouldn’t contain two identical rows. But since no two rows can
contain the same primary key, it’s impossible for two rows to be identical.
So tables are in fact relations in the mathematical sense.

The library must have a way to add and delete members and books
and to make a record when a book is borrowed or returned. It should
also have a way to change the address of a member or the due date of a
borrowed book. Operations such as these are performed using the DBMS’s
query language. SQL has commands named INSERT, DELETE, and UPDATE

for performing these operations. The command for adding Bill Clinton as
a member of the library with MemberID 999 would be

INSERT INTO Members

VALUES (999, "Bill Clinton",

"1600 Pennsylvania Ave", "Washington, DC")

When it comes to deleting and modifying rows, things become more inter-
esting because it’s necessary to specify which row or rows will be affected.
This is done by specifying a condition that the rows must fulfill. For ex-
ample, this command will delete the member with ID 4277:

DELETE FROM Members

WHERE MemberID = 4277

It’s possible for a command to affect multiple rows. For example,

DELETE FROM Members

WHERE Name = "Smith, John"
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would delete every row in which the name is “Smith, John.” The update
command also specifies what changes are to be made to the row:

UPDATE Members

SET Address="19 South St", City="Hartford, CT"

WHERE MemberID = 4277

Of course, the library also needs a way of retrieving information from
the database. SQL provides the SELECT command for this purpose. For
example, the query

SELECT Name, Address

FROM Members

WHERE City = "New York, NY"

asks for the name and address of every member who lives in New York City.
The last line of the query is a condition that picks out certain rows of the
“Members” relation, namely all the rows in which the City is “New York,
NY”. The first line specifies which data from those rows should be retrieved.
The data is actually returned in the form of a table. For example, given
the data in Figure 2.4, the query would return this table:

Smith, John 107 Main St

Jones, Mary 1515 Center Ave
Lee, Joseph 90 Park Ave
O’Neil, Sally 89 Main St

The table returned by a SELECT query can even be used to construct more
complex queries. For example, if the table returned by SELECT has only
one column, then it can be used with the IN operator to specify any value
listed in that column. The following query will find the BookID of every
book that is out on loan to a member who lives in New York City:

SELECT BookID

FROM Loans

WHERE MemberID IN (SELECT MemberID

FROM Members

WHERE City = "New York, NY")

More than one table can be listed in the FROM part of a query. The tables
that are listed are joined into one large table, which is then used for the
query. The large table is essentially the cross product of the joined tables,
when the tables are understood as sets of tuples. For example, suppose that
we want the titles of all the books that are out on loan to members who
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live in New York City. The titles are in the Books table, while information
about loans is in the Loans table. To get the desired data, we can join the
tables and extract the answer from the joined table:

SELECT Title

FROM Books, Loans

WHERE MemberID IN (SELECT MemberID

FROM Members

WHERE City = "New York, NY")

In fact, we can do the same query without using the nested SELECT. We
need one more bit of notation: If two tables have columns that have the
same name, the columns can be named unambiguously by combining the
table name with the column name. For example, if the Members table and
Loans table are both under discussion, then the MemberID columns in the
two tables can be referred to as Members.MemberID and Loans.MemberID.
So, we can say:

SELECT Title

FROM Books, Loans

WHERE City ="New York, NY"

AND Members.MemberID = Loans.MemberID

This is just a sample of what can be done with SQL and relational
databases. The conditions in WHERE clauses can get very complicated, and
there are other operations besides the cross product for combining tables.
The database operations that are needed to complete a given query can
be complex and time-consuming. Before carrying out a query, the DBMS
tries to optimize it. That is, it manipulates the query into a form that can
be carried out most efficiently. The rules for manipulating and simplifying
queries form an algebra of relations, and the theoretical study of relational
databases is in large part the study of the algebra of relations.

Exercises

1. Using the library database from Figure 2.4, what is the result of each of the
following SQL commands?

a) SELECT Name, Address

FROM Members

WHERE Name = "Smith, John"

b) DELETE FROM Books
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WHERE Author = "Isaac Asimov"

c) UPDATE Loans

SET DueDate = "November 20"

WHERE BookID = 221

d) SELECT Title

FROM Books, Loans

WHERE Books.BookID = Loans.BookID

e) DELETE FROM Loans

WHERE MemberID IN (SELECT MemberID

FROM Members

WHERE Name = "Lee, Joseph")

2. Using the library database from Figure 2.4, write an SQL command to do
each of the following database manipulations:

a) Find the BookID of every book that is due on November 1, 2000.
b) Change the DueDate of the book with BookID 221 to November 15, 2000.
c) Change the DueDate of the book with title “Summer Lightning” to

November 14, 2000. Use a nested SELECT.
d) Find the name of every member who has a book out on loan. Use joined

tables in the FROM clause of a SELECT command.

3. Suppose that a college wants to use a database to store information about
its students, the courses that are offered in a given term, and which students
are taking which courses. Design tables that could be used in a relational
database for representing this data. Then write SQL commands to do each
of the following database manipulations. (You should design your tables so
that they can support all these commands.)

a) Enroll the student with ID number 1928882900 in “English 260”.
b) Remove “John Smith” from “Biology 110”.
c) Remove the student with ID number 2099299001 from every course in

which that student is enrolled.
d) Find the names and addresses of the students who are taking “Com-

puter Science 229”.
e) Cancel the course “History 101”.
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Members

MemberID Name Address City

1782 Smith, John 107 Main St New York, NY

2889 Jones, Mary 1515 Center Ave New York, NY
378 Lee, Joseph 90 Park Ave New York, NY
4277 Smith, John 2390 River St Newark, NJ
5704 O’Neil, Sally 89 Main St New York, NY

Books

BookID Title Author

182 I, Robot Isaac Asimov

221 The Sound and the Fury William Faulkner
38 Summer Lightning P.G. Wodehouse
437 Pride and Prejudice Jane Austen
598 Left Hand of Darkness Ursula LeGuin
629 Foundation Trilogy Isaac Asimov
720 Mirror Dance Lois McMaster Bujold

Loans

MemberID BookID DueDate

378 221 October 8, 2000

2889 182 November 1, 2000
4277 221 November 1, 2000
1782 38 October 30, 2000

Figure 2.4: Tables that could be part of a relational database. Each
table has a name, shown above the table. Each column in the table
also has a name, shown in the top row of the table. The remaining
rows hold the data.
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Chapter 3

Regular Expressions and

Finite-State Automata

With the set of mathematical tools from the first two chapters,
we are now ready to study languages and formal language theory.
Our intent is to examine the question of how, and which, languages can be
mechanically generated and recognized; and, ultimately, to see what this
tells us about what computers can and can’t do.

3.1 Languages

In formal language theory, an alphabet is a finite, non-empty set. The
elements of the set are called symbols. A finite sequence of symbols
a1a2 . . . an from an alphabet is called a string over that alphabet.

Example 3.1. Σ = {0, 1} is an alphabet, and 011, 1010, and 1 are all
strings over Σ.

Note that strings really are sequences of symbols, which implies that
order matters. Thus 011, 101, and 110 are all different strings, though
they are made up of the same symbols. The strings x = a1a2 . . . an and
y = b1b2 . . . bm are equal only if m = n (i.e. the strings contain the same
number of symbols) and ai = bi for all 1 ≤ i ≤ n.

Just as there are operations defined on numbers, truth values, sets, and
other mathematical entities, there are operations defined on strings. Some
important operations are:

137
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1. length: the length of a string x is the number of symbols in it. The
notation for the length of x is |x|. Note that this is consistent with
other uses of | |, all of which involve some notion of size: |number|
measures how big a number is (in terms of its distance from 0); |set|
measures the size of a set (in terms of the number of elements).

We will occasionally refer to a length-n string. This is a slightly
awkward, but concise, shorthand for “a string whose length is n”.

2. concatenation: the concatenation of two strings x = a1a2 . . . am and
y = b1b2 . . . bn is the sequence of symbols a1 . . . amb1 . . . bn. Some-
times · is used to denote concatenation, but it is far more usual
to see the concatenation of x and y denoted by xy than by x · y.
You can easily convince yourself that concatenation is associative (i.e.
(xy)z = x(yz) for all strings x, y and z.) Concatenation is not com-
mutative (i.e. it is not always true that xy = yx: for example, if
x = a and y = b then xy = ab while yx = ba and, as discussed above,
these strings are not equal.)

3. reversal: the reverse of a string x = a1a2 . . . an is the string xR =
anan−1 . . . a2a1.

Example 3.2. Let Σ = {a, b}, x = a, y = abaa, and z = bab. Then
|x| = 1, |y| = 4, and |z| = 3. Also, xx = aa, xy = aabaa, xz = abab, and
zx = baba. Finally, xR = a, yR = aaba, and zR = bab.

By the way, the previous example illustrates a naming convention stan-
dard throughout language theory texts: if a letter is intended to represent
a single symbol in an alphabet, the convention is to use a letter from the
beginning of the English alphabet (a, b, c, d ); if a letter is intended to
represent a string, the convention is to use a letter from the end of the
English alphabet (u, v, etc).

In set theory, we have a special symbol to designate the set that contains
no elements. Similarly, language theory has a special symbol ε which is used
to represent the empty string , the string with no symbols in it. (Some
texts use the symbol λ instead.) It is worth noting that |ε| = 0, that εR = ε,
and that ε · x = x · ε = x for all strings x. (This last fact may appear a bit
confusing. Remember that ε is not a symbol in a string with length 1, but
rather the name given to the string made up of 0 symbols. Pasting those 0
symbols onto the front or back of a string x still produces x.)

The set of all strings over an alphabet Σ is denoted Σ∗. (In language
theory, the symbol ∗ is typically used to denote “zero or more”, so Σ∗ is the
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set of strings made up of zero or more symbols from Σ.) Note that while
an alphabet Σ is by definition a finite set of symbols, and strings are by
definition finite sequences of those symbols, the set Σ∗ is always infinite.
Why is this? Suppose Σ contains n elements. Then there is one string over
Σ with 0 symbols, n strings with 1 symbol, n2 strings with 2 symbols (since
there are n choices for the first symbol and n choices for the second), n3

strings with 3 symbols, etc.

Example 3.3. If Σ = {1}, then Σ∗ = {ε, 1, 11, 111, . . .}. If Σ = {a, b},
then Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

Note that Σ∗ is countably infinite: if we list the strings as in the pre-
ceding example (length-0 strings, length-1 strings in “alphabetical” order,
length-2 strings similarly ordered, etc) then any string over Σ will eventu-
ally appear. (In fact, if |Σ| = n ≥ 2 and x ∈ Σ∗ has length k, then x will

appear on the list within the first nk+1−1
n−1 entries.)

We now come to the definition of a language in the formal language
theoretical sense.

Definition 3.1. A language over an alphabet Σ is a subset of Σ∗. Thus,
a language over Σ is an element of P(Σ), the power set of Σ.

In other words, any set of strings (over alphabet Σ) constitutes a lan-
guage (over alphabet Σ).

Example 3.4. Let Σ = {0, 1}. Then the following are all languages over
Σ:

L1 = {011, 1010, 111}
L2 = {0, 10, 110, 1110, 11110, . . .}
L3 = {x ∈ Σ∗ | n0(x) = n1(x)}, where the notation n0(x) stands for

the
number of 0’s in the string x, and similarly for n1(x).

L4 = {x | x represents a multiple of 5 in binary}

Note that languages can be either finite or infinite. Because Σ∗ is infi-
nite, it clearly has an infinite number of subsets, and so there are an infinite
number of languages over Σ. But are there countably or uncountably many
such languages?

Theorem 3.1. For any alphabet Σ, the number of languages over Σ is
uncountable.
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This fact is an immediate consequence of the result, proved in a previ-
ous chapter, that the power set of a countably infinite set is uncountable.
Since the elements of P(Σ) are exactly the languages over Σ, there are
uncountably many such languages.

Languages are sets and therefore, as for any sets, it makes sense to
talk about the union, intersection, and complement of languages. Because
languages are sets of strings, there are additional operations that can be
defined on languages (operations that would be meaningless on more general
sets.) For example, the idea of concatenation can be extended from strings
to languages.

For two sets of strings S and T , we define the concatenation of S
and T (denoted S · T or just ST ) to be the set ST = {st | s ∈ S, t ∈
T }. For example, if S = {ab, aab} and T = {ε, 110, 1010}, then ST =
{ab, ab110, ab1010, aab, aab110, aab1010}. Note in particular that ab ∈ ST ,
because ab ∈ S, ε ∈ T , and ab · ε = ab. Because concatenation of sets is
defined in terms of the concatenation of the strings that the sets contain,
concatenation of sets is associative and not commutative. (This can easily
be verified.)

When a set S is concatenated with itself, the notation SS is usually
scrapped in favour of S2; if S2 is concatenated with S, we write S3 for the
resulting set, etc. So S2 is the set of all strings formed by concatenating
two (possibly different, possibly identical) strings from S, S3 is the set of
strings formed by concatenating three strings from S, etc. Extending this
notation, we take S1 to be the set of strings formed from one string in S
(i.e. S1 is S itself), and S0 to be the set of strings formed from zero strings
in S (i.e. S0 = {ε}). If we take the union S0 ∪ S1 ∪ S2 ∪ . . ., then the
resulting set is the set of all strings formed by concatenating zero or more
strings from S, and is denoted S∗. The set S∗ is called the Kleene closure
of S, and the ∗ operator is called the Kleene star operator.

Example 3.5. Let S = {01, ba}. Then
S0 = {ε}
S1 = {01, ba}
S2 = {0101, 01ba, ba01, baba}
S3 = {010101, 0101ba, 01ba01, 01baba, ba0101, ba01ba, baba01, bababa}
etc, so
S∗ = {ε, 01, ba, 0101, 01ba, ba01, baba, 010101, 0101ba, . . .}.

Note that this is the second time we have seen the notation something∗.
We have previously seen that for an alphabet Σ, Σ∗ is defined to be the set
of all strings over Σ. If you think of Σ as being a set of length-1 strings,
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and take its Kleene closure, the result is once again the set of all strings
over Σ, and so the two notions of ∗ coincide.

Example 3.6. Let Σ = {a, b}. Then
Σ0 = {ε}
Σ1 = {a, b}
Σ2 = {aa, ab, ba, bb}
Σ3 = {aaa, aab, aba, abb, baa, bab, bba, bbb}
etc, so
Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, . . .}.

Exercises

1. Let S = {ε, ab, abab} and T = {aa, aba, abba, abbba, . . .}. Find the following:
a) S2 b) S3 c) S∗ d) ST e) TS

2. The reverse of a language L is defined to be LR = {xR | x ∈ L}. Find SR

and T R for the S and T in the preceding problem.

3. Give an example of a language L such that L = L∗.

3.2 Regular Expressions

Though we have used the term string throughout to refer to a sequence of
symbols from an alphabet, an alternative term that is frequently used is
word. The analogy seems fairly obvious: strings are made up of “letters”
from an alphabet, just as words are in human languages like English. In En-
glish, however, there are no particular rules specifying which sequences of
letters can be used to form legal English words—even unlikely combinations
like ghth and ckstr have their place. While some formal languages may sim-
ply be random collections of arbitrary strings, more interesting languages
are those where the strings in the language all share some common struc-
ture: L1 = {x ∈ {a, b}∗ |na(x) = nb(x)}; L2 = {legal Java identifiers};
L3 = {legal C++ programs}. In all of these languages, there are structural
rules which determine which sequences of symbols are in the language and
which aren’t. So despite the terminology of “alphabet” and “word” in for-
mal language theory, the concepts don’t necessarily match “alphabet” and
“word” for human languages. A better parallel is to think of the alphabet
in a formal language as corresponding to the words in a human language;
the words in a formal language correspond to the sentences in a human lan-
guage, as there are rules (grammar rules) which determine how they can
legally be constructed.
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One way of describing the grammatical structure of the strings in a lan-
guage is to use a mathematical formalism called a regular expression. A
regular expression is a pattern that “matches” strings that have a partic-
ular form. For example, consider the language (over alphabet Σ = {a, b})
L = {x | x starts and ends with a}. What is the symbol-by-symbol struc-
ture of strings in this language? Well, they start with an a, followed by
zero or more a’s or b’s or both, followed by an a. The regular expression
a·(a+b)∗ ·a is a pattern that captures this structure and matches any string
in L (· and ∗ have their usual meanings, and + designates or.) Conversely,
consider the regular expression (a ·(a+b)∗)+((a+b)∗ ·a). This is a pattern
that matches any string that either has the form “a followed by zero or
more a’s or b’s or both” (i.e. any string that starts with an a) or has the
form “zero or more a’s or b’s or both followed by an a” (i.e. any string that
ends with an a). Thus the regular expression generates the language of all
strings that start or end (or both) in an a: this is the set of strings that
match the regular expression.

Here are the formal definitions of a regular expression and the language
generated by a regular expression:

Definition 3.2. Let Σ be an alphabet. Then the following patterns are
regular expressions over Σ:

1. Φ and ε are regular expressions;

2. a is a regular expression, for each a ∈ Σ;

3. if r1 and r2 are regular expressions, then so are r1 + r2, r1 · r2, r∗1
and (r1) (and of course, r∗2 and (r2)). As in concatenation of strings,
the · is often left out of the second expression. (Note: the order of
precedence of operators is, lowest to highest, +, ·, ∗.)

No other patterns are regular expressions.

Definition 3.3. The language generated by a regular expression r,
denoted L(r), is defined as follows:

1. L(Φ) = ∅, i.e. no strings match Φ;

2. L(ε) = {ε}, i.e. ε matches only the empty string;

3. L(a) = {a}, i.e. a matches only the string a;

4. L(r1 + r2) = L(r1)∪L(r2), i.e. r1 + r2 matches strings that match r1

or r2 or both;
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5. L(r1r2) = L(r1)L(r2), i.e. r1r2 matches strings of the form “some-
thing that matches r1 followed by something that matches r2”;

6. L(r∗1) = (L(r1))
∗, i.e. r∗1 matches sequences of 0 or more strings each

of which matches r1.

7. L((r1)) = L(r1), i.e. (r1) matches exactly those strings matched by
r1.

Example 3.7. Let Σ = {a, b}, and consider the regular expression r =
a∗b∗. What is L(r)? Well, L(a) = {a} so L(a∗) = (L(a))∗ = {a}∗, and {a}∗
is the set of all strings of zero or more a’s, so L(a∗) = {ε, a, aa, aaa, . . .}.
Similarly, L(b∗) = {ε, b, bb, bbb, . . .}. Since L(a∗b∗) = L(a∗)L(b∗) = {xy | x ∈
L(a∗), y ∈ L(b∗)}, we have L(a∗b∗) = {ε, a, b, aa, ab, bb, aaa, aab, abb, bbb, . . .},
which is the set of all strings of the form “zero or more a’s followed by zero
or more b’s”.

Example 3.8. Let Σ = {a, b}, and consider the regular expression r =
(a + aa + aaa)(bb)∗. Since L(a) = {a}, L(aa) = L(a)L(a) = {aa}.
Similarly, L(aaa) = {aaa} and L(bb) = {bb}. Now L(a + aa + aaa) =
L(a)∪L(aa)∪L(aaa) = {a, aa, aaa}, and L((bb)∗) = (L((bb)))∗ = (L(bb))∗

(the last equality is from clause 7 of Definition3.3), and (L(bb))∗ = {bb}∗ =
{ε, bb, bbbb, . . .}. So L(r) is the set of strings formed by concatenating a or
aa or aaa with zero or more pairs of b’s.

Definition 3.4. A language is regular if it is generated by a regular ex-
pression.

Clearly the union of two regular languages is regular; likewise, the con-
catenation of regular languages is regular; and the Kleene closure of a reg-
ular language is regular. It is less clear whether the intersection of regular
languages is always regular; nor is it clear whether the complement of a
regular language is guaranteed to be regular. These are questions that will
be taken up in Section 3.6.

Regular languages, then, are languages whose strings’ structure can be
described in a very formal, mathematical way. The fact that a language
can be “mechanically” described or generated means that we are likely to
be able to get a computer to recognize strings in that language. We will
pursue the question of mechanical language recognition in Section 3.4, and
subsequently will see that our first attempt to model mechanical language
recognition does in fact produce a family of “machines” that recognize
exactly the regular languages. But first, in the next section, we will look
at some practical applications of regular expressions.
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Exercises

1. Give English-language descriptions of the languages generated by the follow-
ing regular expressions.

a) (a + b)∗ b) a∗ + b∗ c) b∗(ab∗ab∗)∗ d) b∗(abb∗)

2. Give regular expressions over Σ = {a, b} that generate the following languages.

a) L1 = {x | x contains 3 consecutive a’s}
b) L2 = {x | x has even length}
c) L3 = {x | nb(x) = 2 mod 3}
d) L4 = {x | x contains the substring aaba}
e) L5 = {x | nb(x) < 2}
f) L6 = {x | x doesn’t end in aa}

3. Prove that all finite languages are regular.

3.3 Application: Using Regular Expressions

A common operation when editing text is to search for a given string of
characters, sometimes with the purpose of replacing it with another string.
Many “search and replace” facilities have the option of using regular expres-
sions instead of simple strings of characters. A regular expression describes
a language, that is, a set of strings. We can think of a regular expression
as a pattern that matches certain strings, namely all the strings in the
language described by the regular expression. When a regular expression
is used in a search operation, the goal is to find a string that matches the
expression. This type of pattern matching is very useful.

The ability to do pattern matching with regular expressions is provided
in many text editors, including nedit and kwrite. Programming languages
often come with libraries for working with regular expressions. Java (as of
version 1.4) provides regular expression handling though a package named
java.util.regexp. C++ typically provides a header file named regexp.h for
the same purpose. In all these applications, the syntax for regular ex-
pressions is somewhat different from what we are using in this book, and
many new notations are added to the syntax to make it more convenient to
use. The syntax can vary from one implementation to another, but most
implementations include the capabilities discussed in this section.

In applications of regular expressions, the alphabet usually includes all
the characters on the keyboard. This leads to a problem, because regular
expressions actually use two types of symbols: symbols that are members
of the alphabet and special symbols such a “*” and “)” that are used to
construct expressions. These special symbols, which are not part of the
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language being described but are used in the description, are called meta-
characters. The problem is, when the alphabet includes all the available
characters, what do we do about meta-characters? If the language that we
are describing uses the “*” character, for example, how can we represent
the Kleene star operation?

The solution is to use a so-called “escape character,” which is usually
the backslash, \. We agree, for example, that the notation \* refers to the
symbol * that is a member of the alphabet, while * by itself is the meta-
character that represents the Kleene star operation. Similarly, ( and ) are
the meta-characters that are used for grouping, while the corresponding
characters in the language are written as \( and \). For example, a regular
expression that matches the string a*b repeated any number of times would
be written: (a\*b)*. The backslash is also used to represent certain non-
printing characters. For example, a tab is represented as \t and a new line
character is \n.

Outside this section of this book, we use the symbol + as a meta-
character to represent a choice between alternatives in a regular expression.
In applications, however, the same operation is almost universally expressed
using the vertical bar symbol |, which computer scientists tend to associate
with the word “or.” In this section, we follow the same convention and use
a|b rather than a+b for the regular expression that matches either a or
b. (This means, of course, that if we want to use | as a normal character
rather than a meta-character, we must write it as \|. The same remark
applies to all the new meta-characters that are introduced below.)

We introduce two new common operations on regular expressions. The
first operation gives a new meaning to the meta-character +: If r is a regular
expression, then r+ represents the occurrence of r one or more times. The
second operation is represented by ?: r? represents an occurrence of r zero
or one times. That is to say, r? represents an optional occurrence of r.
Note that these operations are introduced for convenience only and do not
represent any real increase in the power. In fact, r+ is exactly equivalent
to rr*, and r? is equivalent to (r|ε) (except that in applications there is
generally no equivalent to ε).

To make it easier to deal with the large number of characters in the
alphabet, character classes are introduced. A character class consists of
a list of characters enclosed between brackets, [ and ]. (The brackets are
meta-characters.) A character class matches a single character, which can
be any of the characters in the list. For example, [0123456789] matches
any one of the digits 0 through 9. The same thing could be expressed as
(0|1|2|3|4|5|6|7|8|9), so once again we have added only convenience,
not new representational power. For even more convenience, a hyphen can
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be included in a character class to indicate a range of characters. This
means that [0123456789] could also be written as [0-9] and that the
regular expression [a-z] will match any single lowercase letter. A character
class can include multiple ranges, so that [a-zA-Z] will match any letter,
lower- or uppercase. The period (.) is a meta-character that will match any
single character, except (in most implementations) for an end-of-line. These
notations can, of course, be used in more complex regular expressions. For
example, [A-Z][a-zA-Z]* will match any capitalized word, and \(.*\)

matches any string of characters enclosed in parentheses.
In most implementations, the meta-character ^ can be used in a regular

expression to match the beginning of a line of text, so that the expres-
sion ^[a-zA-Z]+ will only match a word that occurs at the start of a line.
Similarly, $ is used as a meta-character to match the end of a line. Some
implementations also have a way of matching beginnings and ends of words.
Typically, \b will match such “word boundaries.” Using this notation, the
pattern \band\b will match the string “and” when it occurs as a word, but
will not match the a-n-d in the word “random.” We are going a bit beyond
basic regular expressions here: Previously, we only thought of a regular
expression as something that either will match or will not match a given
string in its entirety. When we use regular expressions for a search opera-
tion, however, we want to find a substring of a given string that matches
the expression. The notations ^, $ and \b put a restrictions on where the
matching substring can be located in the string.

When regular expressions are used in search-and-replace operations, one
regular expression is used for the search pattern. A search is made in a
(typically long) string for a substring that matches the pattern, and then the
substring is replaced by a specified replacement pattern. The replacement
pattern is not used for matching and is not a regular expression. However,
it can be more than just a simple string. It’s possible to include parts of the
substring that is being replaced in the replacement string. The notations
\0, \1, . . . , \9 are used for this purpose. The first of these, \0, stands for
the entire substring that is being replaced. The others are only available
when parentheses are used in the search pattern. The notation \1 stands
for “the part of the substring that matched the part of the search pattern
beginning with the first ( in the pattern and ending with the matching ).”
Similarly, \2 represents whatever matched the part of the search pattern
between the second pair of parentheses, and so on.

Suppose, for example, that you would like to search for a name in
the form last-name,first-name and replace it with the same name in the
form first-name last-name. For example, “Reeves, Keanu” should be con-
verted to “Keanu Reeves”. This could be done using the search pattern
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([A-Za-z]+), ([A-Za-z]+) and the replacement pattern \2 \1. When
the match is made, the first ([A-Za-z]+) will match “Reeves,” so that in
the replacement pattern, \1 represents the substring “Reeves”. Similarly,
\2 will represent “Keanu”. Note that the parentheses are included in the
search pattern only to specify what parts of the string are represented by
\1 and \2. In practice, you might use ^([A-Za-z]+), ([A-Za-z])$ as the
search pattern to constrain it so that it will only match a complete line of
text. By using a “global” search-and-replace, you could convert an entire
file of names from one format to the other in a single operation.

Regular expressions are a powerful and useful technique that should be
part of any computer scientist’s toolbox. This section has given you a taste
of what they can do, but you should check out the specific capabilities of the
regular expression implementation in the tools and programming languages
that you use.

Exercises

1. The backslash is itself a meta-character. Suppose that you want to match a
string that contains a backslash character. How do you suppose you would
represent the backslash in the regular expression?

2. Using the notation introduced in this section, write a regular expression that
could be used to match each of the following:

a) Any sequence of letters (upper- or lowercase) that includes the letter Z
(in uppercase).

b) Any eleven-digit telephone number written in the form (xxx)xxx-xxxx.
c) Any eleven-digit telephone number either in the form (xxx)xxx-xxxx

or xxx-xxx-xxxx.
d) A non-negative real number with an optional decimal part. The ex-

pression should match numbers such as 17, 183.9999, 182., 0, 0.001,
and 21333.2.

e) A complete line of text that contains only letters.
f) A C++ style one-line comment consisting of // and all the following

characters up to the end-of-line.

3. Give a search pattern and a replace pattern that could be used to perform
the following conversions:

a) Convert a string that is enclosed in a pair of double quotes to the same
string with the double quotes replaced by single quotes.

b) Convert seven-digit telephone numbers in the format xxx-xxx-xxxx to
the format (xxx)xxx-xxxx.

c) Convert C++ one-line comments, consisting of characters between //

and end-of-line, to C style comments enclosed between /* and */ .
d) Convert any number of consecutive spaces and tabs to a single space.



148 CHAPTER 3. REGULAR EXPRESSIONS AND FSA’S

4. In some implementations of “regular expressions,” the notations \1, \2, and
so on can occur in a search pattern. For example, consider the search pattern
^([a-zA-Z]).*\1$. Here, \1 represents a recurrence of the same substring
that matched [a-zA-Z], the part of the pattern between the first pair of
parentheses. The entire pattern, therefore, will match a line of text that
begins and ends with the same letter. Using this notation, write a pattern
that matches all strings in the language L = {anban | n ≥ 0}. (Later in this
chapter, we will see that L is not a regular language, so allowing the use of
\1 in a “regular expression” means that it’s not really a regular expression at
all! This notation can add a real increase in expressive power to the patterns
that contain it.)

3.4 Finite-State Automata

We have seen how regular expressions can be used to generate languages
mechanically. How might languages be recognized mechanically? The ques-
tion is of interest because if we can mechanically recognize languages like
L = {all legal C++ programs that will not go into infinite loops on any
input}, then it would be possible to write über-compilers that can do seman-
tic error-checking like testing for infinite loops, in addition to the syntactic
error-checking they currently do.

What formalism might we use to model what it means to recognize a
language “mechanically”? We look for inspiration to a language-recognizer
with which we are all familiar, and which we’ve already in fact mentioned:
a compiler. Consider how a C++ compiler might handle recognizing a legal
if statement. Having seen the word if, the compiler will be in a state or
phase of its execution where it expects to see a ‘(’; in this state, any other
character will put the compiler in a “failure” state. If the compiler does in
fact see a ‘(’ next, it will then be in an “expecting a boolean condition” state;
if it sees a sequence of symbols that make up a legal boolean condition, it
will then be in an “expecting a ‘)’” state; and then “expecting a ‘{’ or a
legal statement”; and so on. Thus one can think of the compiler as being in
a series of states; on seeing a new input symbol, it moves on to a new state;
and this sequence of transitions eventually leads to either a “failure” state
(if the if statement is not syntactically correct) or a “success” state (if the if
statement is legal). We isolate these three concepts—states, input-inspired
transitions from state to state, and “accepting” vs “non-accepting” states—
as the key features of a mechanical language-recognizer, and capture them
in a model called a finite-state automaton. (Whether this is a successful
distillation of the essence of mechanical language recognition remains to be
seen; the question will be taken up later in this chapter.)



3.4. FINITE-STATE AUTOMATA 149

A finite-state automaton (FSA), then, is a machine which takes,
as input, a finite string of symbols from some alphabet Σ. There is a
finite set of states in which the machine can find itself. The state it is
in before consuming any input is called the start state. Some of the
states are accepting or final. If the machine ends in such a state after
completely consuming an input string, the string is said to be accepted
by the machine. The actual functioning of the machine is described by
something called a transition function, which specifies what happens
if the machine is in a particular state and looking at a particular input
symbol. (“What happens” means “in which state does the machine end
up”.)

Example 3.9. Below is a table that describes the transition function of a
finite-state automaton with states p, q, and r, on inputs 0 and 1.

p q r

0 p q r

1 q r r

The table indicates, for example, that if the FSA were in state p and
consumed a 1, it would move to state q.

FSAs actually come in two flavours depending on what properties you
require of the transition function. We will look first at a class of FSAs
called deterministic finite-state automata (DFAs). In these machines, the
current state of the machine and the current input symbol together deter-
mine exactly which state the machine ends up in: for every <current state,
current input symbol> pair, there is exactly one possible next state for the
machine.

Definition 3.5. Formally, a deterministic finite-state automaton M
is specified by 5 components: M = (Q, Σ, q0, δ, F ) where

• Q is a finite set of states;

• Σ is an alphabet called the input alphabet;

• q0 ∈ Q is a state which is designated as the start state;

• F is a subset of Q; the states in F are states designated as final or
accepting states;

• δ is a transition function that takes <state, input symbol> pairs and
maps each one to a state: δ : Q × Σ → Q. To say δ(q, a) = q′
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means that if the machine is in state q and the input symbol a is
consumed, then the machine will move into state q′. The function
δ must be a total function, meaning that δ(q, a) must be defined for
every state q and every input symbol a. (Recall also that, according
to the definition of a function, there can be only one output for any
particular input(s). This means that for any given q and a, δ(q, a) can
have only one value. This is what makes the finite-state automaton
deterministic: given the current state and input symbol, there is only
one possible move the machine can make.)

Example 3.10. The transition function described by the table in the pre-
ceding example is that of a DFA. If we take p to be the start state and r
to be a final state, then the formal description of the resulting machine is
M = ({p, q, r}, {0, 1}, p, δ, {r}), where δ is given by

δ(p, 0) = p δ(p, 1) = q
δ(q, 0) = q δ(q, 1) = r
δ(r, 0) = r δ(r, 1) = r

The transition function δ describes only individual steps of the machine
as individual input symbols are consumed. However, we will often want
to refer to “the state the automaton will be in if it starts in state q and
consumes input string w”, where w is a string of input symbols rather than
a single symbol. Following the usual practice of using ∗ to designate “0 or
more”, we define δ∗(q, w) as a convenient shorthand for “the state that the
automaton will be in if it starts in state q and consumes the input string
w”. For any string, it is easy to see, based on δ, what steps the machine
will make as those symbols are consumed, and what δ∗(q, w) will be for any
q and w. Note that if no input is consumed, a DFA makes no move, and so
δ∗(q, ε) = q for any state q.

Example 3.11. Let M be the automaton in the preceding example. Then,
for example:

δ∗(p, 001) = q, since δ(p, 0) = p, δ(p, 0) = p, and δ(p, 1) = q;
δ∗(p, 01000) = q;
δ∗(p, 1111) = r;
δ∗(q, 0010) = r.

We have divided the states of a DFA into accepting and non-accepting
states, with the idea that some strings will be recognized as “legal” by the
automaton, and some not. Formally:

Definition 3.6. Let M = (Q, Σ, q0, δ, F ). A string w ∈ Σ∗ is accepted
by M iff δ∗(q0, w) ∈ F . (Don’t get confused by the notation. Remember,
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it’s just a shorter and neater way of saying “w ∈ Σ∗ is accepted by M if
and only if the state that M will end up in if it starts in q0 and consumes
w is one of the states in F .”)

The language accepted by M , denoted L(M), is the set of all strings
w ∈ Σ∗ that are accepted by M : L(M) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

Note that we sometimes use a slightly different phrasing and say that a
language L is accepted by some machine M . We don’t mean by this that
L and maybe some other strings are accepted by M ; we mean L = L(M),
i.e. L is exactly the set of strings accepted by M .

It may not be easy, looking at a formal specification of a DFA, to de-
termine what language that automaton accepts. Fortunately, the mathe-
matical description of the automaton M = (Q, Σ, q0, δ, F ) can be neatly
and helpfully captured in a picture called a transition diagram. Con-
sider again the DFA of the two preceding examples. It can be represented
pictorially as:

M: 1 1

0 0 0,1

p q r

The arrow on the left indicates that p is the start state; double circles
indicate that a state is accepting. Looking at this picture, it should be
fairly easy to see that the language accepted by the DFA M is L(M) =
{x ∈ {0, 1}∗ | n1(x) ≥ 2}.

Example 3.12. Find the language accepted by the DFA shown below (and
describe it using a regular expression!)

M:
a b b

ab

a,b

b

a

qq

q

q 2
0

q
1

3

4

a

The start state of M is accepting, which means ε ∈ L(M). If M is in
q0, a sequence of two a’s or three b’s will move M back to q0 and hence be
accepted. So L(M) = L((aa + bbb)∗).
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The state q4 in the preceding example is often called a garbage or trap
state: it is a non-accepting state which, once reached by the machine,
cannot be escaped. It is fairly common to omit such states from transition
diagrams. For example, one is likely to see the diagram:

a

b

Note that this cannot be a complete DFA, because a DFA is required to
have a transition defined for every state-input pair. The diagram is “short
for” the full diagram:

a a

b

a,b

b

As well as recognizing what language is accepted by a given DFA, we
often want to do the reverse and come up with a DFA that accepts a
given language. Building DFAs for specified languages is an art, not a sci-
ence. There is no algorithm that you can apply to produce a DFA from an
English-language description of the set of strings the DFA should accept.
On the other hand, it is not generally successful, either, to simply write
down a half-dozen strings that are in the language and design a DFA to
accept those strings—invariably there are strings that are in the language
that aren’t accepted, and other strings that aren’t in the language that
are accepted. So how do you go about building DFAs that accept all and
only the strings they’re supposed to accept? The best advice I can give
is to think about relevant characteristics that determine whether a string
is in the language or not, and to think about what the possible values or
“states” of those characteristics are; then build a machine that has a state
corresponding to each possible combination of values of relevant character-
istics, and determine how the consumption of inputs affects those values.
I’ll illustrate what I mean with a couple of examples.

Example 3.13. Find a DFA with input alphabet Σ = {a, b} that accepts
the language L = {w ∈ Σ∗ | na(w) and nb(w) are both even }.

The characteristics that determine whether or not a string w is in L
are the parity of na(w) and nb(w). There are four possible combinations of
“values” for these characteristics: both numbers could be even, both could
be odd, the first could be odd and the second even, or the first could be even
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and the second odd. So we build a machine with four states q1, q2, q3, q4

corresponding to the four cases. We want to set up δ so that the machine
will be in state q1 exactly when it has consumed a string with an even
number of a’s and an even number of b’s, in state q2 exactly when it has
consumed a string with an odd number of a’s and an odd number of b’s,
and so on.

To do this, we first make the state q1 into our start state, because the
DFA will be in the start state after consuming the empty string ε, and ε
has an even number (zero) of both a’s and b’s. Now we add transitions
by reasoning about how the parity of a’s and b’s is changed by additional
input. For instance, if the machine is in q1 (meaning an even number of a’s
and an even number of b’s have been seen) and a further a is consumed,
then we want the machine to move to state q3, since the machine has now
consumed an odd number of a’s and still an even number of b’s. So we
add the transition δ(q1, a) = q3 to the machine. Similarly, if the machine is
in q2 (meaning an odd number of a’s and an odd number of b’s have been
seen) and a further b is consumed, then we want the machine to move to
state q3 again, since the machine has still consumed an odd number of a’s,
and now an even number of b’s. So we add the transition δ(q2, b) = q3 to
the machine. Similar reasoning produces a total of eight transitions, one
for each state-input pair. Finally, we have to decide which states should
be final states. The only state that corresponds to the desired criteria for
the language L is q1, so we make q1 a final state. The complete machine is
shown below.

q
3

q
1

q
4

q
2

b b bb

a

a

a

a

Example 3.14. Find a DFA with input alphabet Σ = {a, b} that accepts
the language L = {w ∈ Σ∗ | na(w) is divisible by 3 }.

The relevant characteristic here is of course whether or not the number
of a’s in a string is divisible by 3, perhaps suggesting a two-state machine.
But in fact, there is more than one way for a number to not be divisible
by 3: dividing the number by 3 could produce a remainder of either 1 or 2
(a remainder of 0 corresponds to the number in fact being divisible by 3).
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So we build a machine with three states q0, q1, q2, and add transitions so
that the machine will be in state q0 exactly when the number of a’s it has
consumed is evenly divisible by 3, in state q1 exactly when the number of
a’s it has consumed is equivalent to 1 mod 3, and similarly for q2. State q0

will be the start state, as ε has 0 a’s and 0 is divisible by 3. The completed
machine is shown below. Notice that because the consumption of a b does
not affect the only relevant characteristic, b’s do not cause changes of state.

0
q

1
q

2
q

a a

a

b b
b

Example 3.15. Find a DFA with input alphabet Σ = {a, b} that accepts
the language L = {w ∈ Σ∗ |w contains three consecutive a’s }.

Again, it is not quite so simple as making a two-state machine where
the states correspond to “have seen aaa” and “have not seen aaa”. Think
dynamically: as you move through the input string, how do you arrive at
the goal of having seen three consecutive a’s? You might have seen two
consecutive a’s and still need a third, or you might just have seen one a
and be looking for two more to come immediately, or you might just have
seen a b and be right back at the beginning as far as seeing 3 consecutive
a’s goes. So once again there will be three states, with the “last symbol was
not an a” state being the start state. The complete automaton is shown
below.

a a

b

b
b

a

a,b

Exercises

1. Give DFAs that accept the following languages over Σ = {a, b}.
a) L1 = {x | x contains the substring aba}
b) L2 = L(a∗b∗)
c) L3 = {x | na(x) + nb(x) is even }
d) L4 = {x | na(x) is a multiple of 5 }
e) L5 = {x | x does not contain the substring abb}
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f) L6 = {x | x has no a’s in the even positions}
g) L7 = L(aa∗ + aba∗b∗)

2. What languages do the following DFAs accept?

b bb

a

a

a a,ba)

b

b

b

a,b

a

a

a

b)

3. Let Σ = {0, 1}. Give a DFA that accepts the language

L = {x ∈ Σ∗ | x is the binary representation of an integer divisible by 3}.

3.5 Nondeterministic Finite-State Automata

As mentioned briefly above, there is an alternative school of though as to
what properties should be required of a finite-state automaton’s transition
function. Recall our motivating example of a C++ compiler and a legal if
statement. In our description, we had the compiler in an “expecting a ‘)’”
state; on seeing a ‘)’, the compiler moved into an “expecting a ‘{’ or a legal
statement” state. An alternative way to view this would be to say that
the compiler, on seeing a ‘)’, could move into one of two different states:
it could move to a “expecting a ‘{’” state or move to a “expecting a legal
statement” state. Thus, from a single state, on input ‘)’, the compiler has
multiple moves. This alternative interpretation is not allowed by the DFA
model. A second point on which one might question the DFA model is the
fact that input must be consumed for the machine to change state. Think
of the syntax for C++ function declarations. The return type of a function
need not be specified (the default is taken to be int). The start state of the
compiler when parsing a function declaration might be “expecting a return
type”; then with no input consumed, the compiler can move to the state
“expecting a legal function name”. To model this, it might seem reasonable
to allow transitions that do not require the consumption of input (such
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transitions are called ε-transitions). Again, this is not supported by the
DFA abstraction. There is, therefore, a second class of finite-state automata
that people study, the class of nondeterministic finite-state automata.

A nondeterministic finite-state automaton (NFA) is the same as
a deterministic finite-state automaton except that the transition function
is no longer a function that maps a state-input pair to a state; rather, it
maps a state-input pair or a state-ε pair to a set of states. No longer do
we have δ(q, a) = q′, meaning that the machine must change to state q′ if it
is in state q and consumes an a. Rather, we have ∂(q, a) = {q1, q2, . . . , qn},
meaning that if the machine is in state q and consumes an a, it might move
directly to any one of the states q1, . . . , qn. Note that the set of next states
∂(q, a) is defined for every state q and every input symbol a, but for some
q’s and a’s it could be empty, or contain just one state (there don’t have

to be multiple next states). The function ∂ must also specify whether it is
possible for the machine to make any moves without input being consumed,
i.e. ∂(q, ε) must be specified for every state q. Again, it is quite possible
that ∂(q, ε) may be empty for some states q: there need not be ε-transitions
out of q.

Definition 3.7. Formally, a nondeterministic finite-state automaton M is
specified by 5 components: M = (Q, Σ, q0, ∂, F ) where

• Q, Σ, q0 and F are as in the definition of DFAs;

• ∂ is a transition function that takes <state, input symbol> pairs and
maps each one to a set of states. To say ∂(q, a) = {q1, q2, . . . , qn}
means that if the machine is in state q and the input symbol a is
consumed, then the machine may move directly into any one of states
q1, q2, . . . , qn. The function ∂ must also be defined for every <state,ε>
pair. To say ∂(q, ε) = {q1, q2, . . . , qn} means that there are direct ε-
transitions from state q to each of q1, q2, . . . , qn.

The formal description of the function ∂ is ∂ : Q× (Σ∪{ε}) → P(Q).

The function ∂ describes how the machine functions on zero or one
input symbol. As with DFAs, we will often want to refer to the behavior
of the machine on a string of inputs, and so we use the notation ∂∗(q, w)
as shorthand for “the set of states in which the machine might be if it
starts in state q and consumes input string w”. As with DFAs, ∂∗(q, w) is
determined by the specification of ∂. Note that for every state q, ∂∗(q, ε)
contains at least q, and may contain additional states if there are (sequences
of) ε-transitions out of q.



3.5. NONDETERMINISTIC FINITE-STATE AUTOMATA 157

We do have to think a bit carefully about what it means for an NFA
to accept a string w. Suppose ∂∗(q0, w) contains both accepting and non-
accepting states, i.e. the machine could end in an accepting state after
consuming w, but it might also end in a non-accepting state. Should we con-
sider the machine to accept w, or should we require every state in ∂∗(q0, w)
to be accepting before we admit w to the ranks of the accepted? Think of
the C++ compiler again: provided that an if statement fits one of the legal
syntax specifications, the compiler will accept it. So we take as the defini-
tion of acceptance by an NFA: a string w is accepted by an NFA provided
that at least one of the states in ∂∗(q0, w) is an accepting state. That is, if
there is some sequence of steps of the machine that consumes w and leaves
the machine in an accepting state, then the machine accepts w. Formally:

Definition 3.8. Let M = (Q, Σ, q0, ∂, F ) be a nondeterministic finite-state
automaton. The string w ∈ Σ∗ is accepted by M iff ∂∗(q0, w) contains at
least one state qF ∈ F .

The language accepted by M , denoted L(M), is the set of all strings
w ∈ Σ∗ that are accepted by M : L(M) = {w ∈ Σ∗ | ∂∗(q0, w) ∩ F 6= ∅}.

Example 3.16. The NFA shown below accepts all strings of a’s and b’s in
which the second-to-last symbol is a.

a a,b

a,b

It should be fairly clear that every language that is accepted by a DFA is
also accepted by an NFA. Pictorially, a DFA looks exactly like an NFA (an
NFA that doesn’t happen to have any ε-transitions or multiple same-label
transitions from any state), though there is slightly more going on behind
the scenes. Formally, given the DFA M = (Q, Σ, q0, δ, F ), you can build an
NFA M ′ = (Q, Σ, q0, ∂, F ) where 4 of the 5 components are the same and
where every transition δ(q, a) = q′ has been replaced by ∂(q, a) = {q′}.

But is the reverse true? Can any NFA-recognized language be recog-
nized by a DFA? Look, for example, at the language in Example 3.16. Can
you come up with a DFA that accepts this language? Try it. It’s pretty
difficult to do. But does that mean that there really is no DFA that accepts
the language, or only that we haven’t been clever enough to find one?

It turns out that the limitation is in fact in our cleverness, and not in
the power of DFAs.
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Theorem 3.2. Every language that is accepted by an NFA is accepted by
a DFA.

Proof. Suppose we are given an NFA N = (P, Σ, p0, ∂, Fp), and we want
to build a DFA D = (Q, Σ, q0, δ, Fq) that accepts the same language. The
idea is to make the states in D correspond to subsets of N ’s states, and
then to set up D’s transition function δ so that for any string w, δ∗(q0, w)
corresponds to ∂∗(p0, w); i.e. the single state that w gets you to in D
corresponds to the set of states that w could get you to in N . If any
of those states is accepting in N , w would be accepted by N , and so the
corresponding state in D would be made accepting as well.

So how do we make this work? The first thing to do is to deal with
a start state q0 for D. If we’re going to make this state correspond to a
subset of N ’s states, what subset should it be? Well, remember (1) that in
any DFA, δ∗(q0, ε) = q0; and (2) we want to make δ∗(q0, w) correspond to
∂∗(p0, w) for every w. Putting these two limitations together tells us that
we should make q0 correspond to ∂∗(p0, ε). So q0 corresponds to the subset
of all of N ’s states that can be reached with no input.

Now we progressively set up D’s transition function δ by repeatedly
doing the following:

– find a state q that has been added to D but whose out-transitions have
not yet been added. (Note that q0 initially fits this description.) Remember
that the state q corresponds to some subset {p1, . . . , pn} of N ’s states.

– for each input symbol a, look at all N ’s states that can be reached from
any one of p1, . . . , pn by consuming a (perhaps making some ε-transitions
as well). That is, look at ∂∗(p1, a) ∪ . . . ∪ ∂∗(pn, a). If there is not already
a DFA state q′ that corresponds to this subset of N ’s states, then add one,
and add the transition δ(q, a) = q′ to D’s transitions.

The above process must halt eventually, as there are only a finite number
of states n in the NFA, and therefore can be at most 2n states in the DFA,
as that is the number of subsets of the NFA’s states. The final states of
the new DFA are those where at least one of the associated NFA states is
an accepting state of the NFA.

Can we now argue that L(D) = L(N)? We can, if we can argue that
δ∗(q0, w) corresponds to ∂∗(p0, w) for all w ∈ Σ∗: if this latter property
holds, then w ∈ L(D) iff δ∗(q0, w) is accepting, which we made be so iff
∂∗(p0, w) contains an accepting state of N , which happens iff N accepts w
i.e. iff w ∈ L(N).

So can we argue that δ∗(q0, w) does in fact correspond to ∂∗(p0, w) for
all w? We can, using induction on the length of w.

First, a preliminary observation. Suppose w = xa, i.e. w is the string x
followed by the single symbol a. How are ∂∗(p0, x) and ∂∗(p0, w) related?
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Well, recall that ∂∗(p0, x) is the set of all states that N can reach when
it starts in p0 and consumes x: ∂∗(p0, x) = {p1, . . . , pn} for some states
p1, . . . , pn. Now, w is just x with an additional a, so where might N end
up if it starts in p0 and consumes w? We know that x gets N to p1 or . . .
or pn, so xa gets N to any state that can be reached from p1 with an a
(and maybe some ε-transitions), and to any state that can be reached from
p2 with an a (and maybe some ε-transitions), etc. Thus, our relationship
between ∂∗(p0, x) and ∂∗(p0, w) is that if ∂∗(p0, x) = {p1, . . . , pn}, then
∂∗(p0, w) = ∂∗(p1, a) ∪ . . . ∪ ∂∗(pn, a). With this observation in hand, let’s
proceed to our proof by induction.

We want to prove that δ∗(q0, w) corresponds to ∂∗(p0, w) for all w ∈ Σ∗.
We use induction on the length of w.

1. Base case: Suppose w has length 0. The only string w with length
0 is ε, so we want to show that δ∗(q0, ε) corresponds to ∂∗(p0, ε).
Well, δ∗(q0, ε) = q0, since in a DFA, δ∗(q, ε) = q for any state q. We
explicitly made q0 correspond to ∂∗(p0, ε), and so the property holds
for w with length 0.

2. Inductive case: Assume that the desired property holds for some num-
ber n, i.e. that δ∗(q0, x) corresponds to ∂∗(p0, x) for all x with length
n. Look at an arbitrary string w with length n+1. We want to show
that δ∗(q0, w) corresponds to ∂∗(p0, w). Well, the string w must look
like xa for some string x (whose length is n) and some symbol a. By
our inductive hypothesis, we know δ∗(q0, x) corresponds to ∂∗(p0, x).
We know ∂∗(p0, x) is a set of N ’s states, say ∂∗(p0, x) = {p1, . . . , pn}.
At this point, our subsequent reasoning might be a bit clearer if we
give explicit names to δ∗(q0, w) (the state D reaches on input w) and
δ∗(q0, x) (the state D reaches on input x). Call δ∗(q0, w) qw, and
call δ∗(q0, x) qx. We know, because w = xa, there must be an a-
transition from qx to qw. Look at how we added transitions to δ:
the fact that there is an a-transition from qx to qw means that qw

corresponds to the set ∂∗(p1, a)∪ . . .∪∂∗(pn, a) of N ’s states. By our
preliminary observation, ∂∗(p1, a)∪. . .∪∂∗(pn, a) is just ∂∗(p0, w). So
qw (or δ∗(q0, w)) corresponds to ∂∗(p0, w), which is what we wanted
to prove. Since w was an arbitrary string of length n + 1, we have
shown that the property holds for n + 1.

Altogether, we have shown by induction that δ∗(q0, w) corresponds to
∂∗(p0, w) for all w ∈ Σ∗. As indicated at the very beginning of this proof,
that is enough to prove that L(D) = L(N). So for any NFA N , we can find
a DFA D that accepts the same language.
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Example 3.17. Consider the NFA shown below.

b a,b

a,b

a,b

p
0

p
1

p
2

p
3

We start by looking at ∂∗(p0, ε), and then add transitions and states as
described above.

• ∂∗(p0, ε) = {p0} so q0 = {p0}.
• δ(q0, a) will be ∂∗(p0, a), which is {p0}, so δ(q0, a) = q0.

• δ(q0, b) will be ∂∗(p0, b), which is {p0, p1}, so we need to add a new
state q1 = {p0, p1} to the DFA; and add δ(q0, b) = q1 to the DFA’s
transition function.

• δ(q1, a) will be ∂∗(p0, a) unioned with ∂∗(p1, a) since q1 = {p0, p1}.
Since ∂∗(p0, a)∪ ∂∗(p1, a) = {p0}∪ {p2} = {p0, p2}, we need to add a
new state q2 = {p0, p2} to the DFA, and a transition δ(q1, a) = q2.

• δ(q1, b) will be ∂∗(p0, b) unioned with ∂∗(p1, b), which gives {p0, p1}∪
{p2}, which again gives us a new state q3 to add to the DFA, together
with the transition δ(q1, b) = q3.

At this point, our partially-constructed DFA looks as shown below:

{p }
0

{p ,p }
0 1

q
1

q
2

q
0

{p ,p ,p }
0 1 2

q
3

{p ,p }
0 2

a

a

b

b

The construction continues as long as there are new states being added,
and new transitions from those states that have to be computed. The final
DFA is shown below.

{p ,p ,p }
0 1 2

{p ,p }
0 1a

b

a

b

{p ,p }
0 3

{p ,p ,p ,p }
0 1 2

{p ,p ,p }
0 1 3 3

b

b

b

b

a

a

a

a

a

a
{p ,p ,p }

0 2 3

b

{p ,p }
0 2

{p }
0

a

b
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Exercises

1. What language does the NFA in Example 3.17 accept?

2. Give a DFA that accepts the language accepted by the following NFA.

a,b

a,bb

a

b

a,b

a

3. Give a DFA that accepts the language accepted by the following NFA. (Be
sure to note that, for example, it is possible to reach both q1 and q3 from q0

on consumption of an a, because of the ε-transition.)

q
0

q
1

q
2

q
3

q
4

a

b

a

a

b a

b

a

b

4. Prove that the reverse of a regular language is regular.

3.6 Finite-State Automata and Regular Lan-

guages

We know now that our two models for mechanical language recognition ac-
tually recognize the same class of languages. The question still remains: do
they recognize the same class of languages as the class generated mechan-
ically by regular expressions? The answer turns out to be “yes”. There
are two parts to proving this: first that every language generated can be
recognized, and second that every language recognized can be generated.

Theorem 3.3. Every language generated by a regular expression can be
recognized by an NFA.

Proof. The proof of this theorem is a nice example of a proof by induction
on the structure of regular expressions. The definition of regular expression
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is inductive: Φ, ε, and a are the simplest regular expressions, and then more
complicated regular expressions can be built from these. We will show that
there are NFAs that accept the languages generated by the simplest regular
expressions, and then show how those machines can be put together to form
machines that accept languages generated by more complicated regular
expressions.

Consider the regular expression Φ. L(Φ) = {}. Here is a machine that
accepts {}:

Consider the regular expression ε. L(ε) = {ε}. Here is a machine that
accepts {ε}:

Consider the regular expression a. L(a) = {a}. Here is a machine that
accepts {a}:

a

Now suppose that you have NFAs that accept the languages generated
by the regular expressions r1 and r2. Building a machine that accepts
L(r1 + r2) is fairly straightforward: take an NFA M1 that accepts L(r1)
and an NFA M2 that accepts L(r2). Introduce a new state qnew, connect it
to the start states of M1 and M2 via ε-transitions, and designate it as the
start state of the new machine. No other transitions are added. The final
states of M1 together with the final states of M2 are designated as the final
states of the new machine. It should be fairly clear that this new machine
accepts exactly those strings accepted by M1 together with those strings
accepted by M2: any string w that was accepted by M1 will be accepted
by the new NFA by starting with an ε-transition to the old start state of
M1 and then following the accepting path through M1; similarly, any string
accepted by M2 will be accepted by the new machine; these are the only
strings that will be accepted by the new machine, as on any input w all
the new machine can do is make an ε-move to M1’s (or M2’s) start state,
and from there w will only be accepted by the new machine if it is accepted
by M1 (or M2). Thus, the new machine accepts L(M1) ∪ L(M2), which is
L(r1) ∪ L(r2), which is exactly the definition of L(r1 + r2).
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M

M

M

1

2

new
:

q
new

(A pause before we continue: note that for the simplest regular expres-
sions, the machines that we created to accept the languages generated by
the regular expressions were in fact DFAs. In our last case above, however,
we needed ε-transitions to build the new machine, and so if we were trying
to prove that every regular language could be accepted by a DFA, our proof
would be in trouble. THIS DOES NOT MEAN that the statement “every
regular language can be accepted by a DFA” is false, just that we can’t
prove it using this kind of argument, and would have to find an alternative
proof.)

Suppose you have machines M1 and M2 that accept L(r1) and L(r2)
respectively. To build a machine that accepts L(r1)L(r2) proceed as follows.
Make the start state q01 of M1 be the start state of the new machine. Make
the final states of M2 be the final states of the new machine. Add ε-
transitions from the final states of M1 to the start state q02 of M2.

M
1 2

M

of M ,

not of M   

final states

new

1

M
new

:

final states

of M ,

and of M   new

2

q
02

q
01

It should be fairly clear that this new machine accepts exactly those
strings of the form xy where x ∈ L(r1) and y ∈ L(r2): first of all, any
string of this form will be accepted because x ∈ L(r1) implies there is a
path that consumes x from q01 to a final state of M1; a ε-transition moves
to q02; then y ∈ L(r2) implies there is a path that consumes y from q02 to a
final state of M2; and the final states of M2 are the final states of the new
machine, so xy will be accepted. Conversely, suppose z is accepted by the
new machine. Since the only final states of the new machine are in the old
M2, and the only way to get into M2 is to take a ε-transition from a final
state of M1, this means that z = xy where x takes the machine from its
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start state to a final state of M1, a ε-transition occurs, and then y takes the
machine from q02 to a final state of M2. Clearly, x ∈ L(r1) and y ∈ L(r2).

We leave the construction of an NFA that accepts L(r∗) from an NFA
that accepts L(r) as an exercise.

Theorem 3.4. Every language that is accepted by a DFA or an NFA is
generated by a regular expression.

Proving this result is actually fairly involved and not very illuminating.
Instead of presenting a proof, we will give an illustrative example of how
one might go about extracting a regular expression from an NFA or a DFA.

Example 3.18. Consider the DFA shown below:

q
1

q
2

0
q b

b

a

b

a

a

Note that there is a loop from state q2 back to state q2: any number of
a’s will keep the machine in state q2, and so we label the transition with
the regular expression a∗. We do the same thing to the transition labeled b
from q0. (Note that the result is no longer a DFA, but that doesn’t concern
us, we’re just interested in developing a regular expression.)

q
1

q
2

0
q b a

b

a

a

b*

*

Next we note that there is in fact a loop from q1 to q1 via q0. A regular
expression that matches the strings that would move around the loop is
ab∗a. So we add a transition labeled ab∗a from q1 to q1, and remove the
now-irrelevant a-transition from q1 to q0. (It is irrelevant because it is not
part of any other loop from q1 to q1.)

q
2

0
q q

1
b a

b

a

b*

*

*ab a
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Next we note that there is also a loop from q1 to q1 via q2. A regular
expression that matches the strings that would move around the loop is
ba∗b. Since the transitions in the loop are the only transitions to or from
q2, we simply remove q2 and replace it with a transition from q1 to q1.

*ab a

ba b*

a

b*

It is now clear from the diagram that strings of the form b∗a get you to
state q1, and any number of repetitions of strings that match ab∗a or ba∗b
will keep you there. So the machine accepts L(b∗a(ab∗a + ba∗b)∗).

We have already seen that if two languages L1 and L2 are regular, then
so are L1 ∪ L2, L1L2, and L∗

1 (and of course L∗
2). We have not yet seen,

however, how the common set operations intersection and complementation
affect regularity. Is the complement of a regular language regular? How
about the intersection of two regular languages?

Both of these questions can be answered by thinking of regular languages
in terms of their acceptance by DFAs. Let’s consider first the question of
complementation. Suppose we have an arbitrary regular language L. We
know there is a DFA M that accepts L. Pause a moment and try to think
of a modification that you could make to M that would produce a new
machine M ′ that accepts L.... Okay, the obvious thing to try is to make
M ′ be a copy of M with all final states of M becoming non-final states of
M ′ and vice versa. This is in fact exactly right: M ′ does in fact accept L.
To verify this, consider an arbitrary string w. The transition functions for
the two machines M and M ′ are identical, so δ∗(q0, w) is the same state
in both M and M ′; if that state is accepting in M then it is non-accepting
in M ′, so if w is accepted by M it is not accepted by M ′; if the state is
non-accepting in M then it is accepting in M ′, so if w is not accepted by
M then it is accepted by M ′. Thus M ′ accepts exactly those strings that
M does not, and hence accepts L.

It is worth pausing for a moment and looking at the above argument
a bit longer. Would the argument have worked if we had looked at an
arbitrary language L and an arbitrary NFA M that accepted L? That is,
if we had built a new machine M ′ in which the final and non-final states
had been switched, would the new NFA M ′ accept the complement of the
language accepted by M? The answer is “not necessarily”. Remember that
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acceptance in an NFA is determined based on whether or not at least one
of the states reached by a string is accepting. So any string w with the
property that ∂∗(q0, w) contains both accepting and non-accepting states
of M would be accepted both by M and by M ′.

Now let’s turn to the question of intersection. Given two regular lan-
guages L1 and L2, is L1 ∩ L2 regular? Again, it is useful to think in terms
of DFAs: given machines M1 and M2 that accept L1 and L2, can you use
them to build a new machine that accepts L1 ∩L2? The answer is yes, and
the idea behind the construction bears some resemblance to that behind
the NFA-to-DFA construction. We want a new machine where transitions
reflect the transitions of both M1 and M2 simultaneously, and we want to
accept a string w only if that those sequences of transitions lead to final
states in both M1 and M2. So we associate the states of our new ma-
chine M with pairs of states from M1 and M2. For each state (q1, q2) in
the new machine and input symbol a, define δ((q1, q2), a) to be the state
(δ1(q1, a), δ2(q2, a)). The start state q0 of M is (q01, q02), where q0i is the
start state of Mi. The final states of M are the the states of the form
(qf1, qf2) where qf1 is an accepting state of M1 and qf2 is an accepting
state of M2. You should convince yourself that M accepts a string x iff x
is accepted by both M1 and M2.

The results of the previous section and the preceding discussion are
summarized by the following theorem:

Theorem 3.5. The intersection of two regular languages is a regular lan-
guage.

The union of two regular languages is a regular language.
The concatenation of two regular languages is a regular language.
The complement of a regular language is a regular language.
The Kleene closure of a regular language is a regular language.

Exercises

1. Give a DFA that accepts the intersection of the languages accepted by the
machines shown below. (Suggestion: use the construction discussed in the
chapter just before Theorem 3.5.)

p
1 p

2
p

0

a a

b b b

a

q
0

q
1

b a

b

a

2. Complete the proof of Theorem 3.3 by showing how to modify a machine that
accepts L(r) into a machine that accepts L(r∗).
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3. Using the construction described in Theorem 3.3, build an NFA that accepts
L((ab + a)∗(bb)).

4. Show that for any DFA or NFA, there is an NFA with exactly one final state
that accepts the same language.

5. Suppose we change the model of NFAs to allow NFAs to have multiple start
states. Show that for any “NFA” with multiple start states, there is an NFA
with exactly one start state that accepts the same language.

3.7 Non-regular Languages

The fact that our models for mechanical language-recognition accept ex-
actly the same languages as those generated by our mechanical language-
generation system would seem to be a very positive indication that in “reg-
ular” we have in fact managed to isolate whatever characteristic it is that
makes a language “mechanical”. Unfortunately, there are languages that
we intuitively think of as being mechanically-recognizable (and which we
could write C++ programs to recognize) that are not in fact regular.

How does one prove that a language is not regular? We could try proving
that there is no DFA or NFA that accepts it, or no regular expression
that generates it, but this kind of argument is generally rather difficult
to make. It is hard to rule out all possible automata and all possible
regular expressions. Instead, we will look at a property that all regular
languages have; proving that a given language does not have this property
then becomes a way of proving that that language is not regular.

Consider the language L = {w ∈ {a, b}∗ | na(w) = 2 mod 3, nb(w) =
2 mod 3}. Below is a DFA that accepts this language, with states numbered
1 through 9.

1 2 3

4 5 6

7 8 9

b

b
b

b

b
b

b

b
b

a

a a

a

a a

a

a a
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Consider the sequence of states that the machine passes through while
processing the string abbbabb. Note that there is a repeated state (state
2). We say that abbbabb “goes through the state 2 twice”, meaning that in
the course of the string being processed, the machine is in state 2 twice (at
least). Call the section of the string that takes you around the loop y, the
preceding section x, and the rest z. Then xz is accepted, xyyz is accepted,
xyyyz is accepted, etc. Note that the string aabb cannot be divided this
way, because it does not go through the same state twice. Which strings
can be divided this way? Any string that goes through the same state
twice - this may include some relatively short strings and must include any
string with length greater than or equal to 9, because there are only 9 states
in the machine, and so repetition must occur after 9 input symbols at the
latest.

More generally, consider an arbitrary DFA M , and let the number of
states in M be n. Then any string w that is accepted by M and has n or
more symbols must go through the same state twice, and can therefore be
broken up into three pieces x, y, z (where y contains at least one symbol)
so that w = xyz and

xz is accepted by M
xyz is accepted by M (after all, we started with w in L(M))
xyyz is accepted by M
etc.
Note that you can actually say even more: within the first n characters

of w you must already get a repeated state, so you can always find an x, y, z
as described above where, in addition, the xy portion of w (the portion of w
that takes you to and back to a repeated state) contains at most n symbols.

So altogether, if M is an n-state DFA that accepts L, and w is a string
in L whose length is at least n, then w can be broken down into three pieces
x, y, and z, w = xyz, such that

(i) x and y together contain no more than n symbols;
(ii) y contains at least one symbol;
(iii) xz is accepted by M

(xyz is accepted by M)
xyyz is accepted by M
etc.

The usually-stated form of this result is the Pumping Lemma:

Theorem 3.6. If L is a regular language, then there is some number n > 0
such that any string w in L whose length is greater than or equal to n can
be broken down into three pieces x, y, and z, w = xyz, such that

(i) x and y together contain no more than n symbols;
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(ii) y contains at least one symbol;

(iii) xz is accepted by M

(xyz is accepted by M)

xyyz is accepted by M

etc.

Though the Pumping Lemma says something about regular languages,
it is not used to prove that languages are regular. It says “if a language is
regular, then certain things happen”, not “if certain things happen, then

you can conclude that the language is regular.” However, the Pumping
Lemma is useful for proving that languages are not regular, since the con-
trapositive of “if a language is regular then certain things happen” is “if
certain things don’t happen then you can conclude that the language is not
regular.” So what are the “certain things”? Basically, the P.L. says that if a
language is regular, there is some “threshold” length for strings, and every
string that goes over that threshold can be broken down in a certain way.
Therefore, if we can show that “there is some threshold length for strings
such that every string that goes over that threshold can be broken down in
a certain way” is a false assertion about a language, we can conclude that
the language is not regular. How do you show that there is no threshold
length? Saying a number is a threshold length for a language means that
every string in the language that is at least that long can be broken down
in the ways described. So to show that a number is not a threshold value,
we have to show that there is some string in the language that is at least
that long that cannot be broken down in the appropriate way.

Theorem 3.7. {anbn | n ≥ 0} is not regular.

Proof. We do this by showing that there is no threshold value for the lan-
guage. Let N be an arbitrary candidate for threshold value. We want to
show that it is not in fact a threshold value, so we want to find a string in
the language whose length is at least N and which can’t be broken down
in the way described by the Pumping Lemma. What string should we try
to prove unbreakable? We can’t pick strings like a100b100 because we’re
working with an arbitrary N i.e. making no assumptions about N ’s value;
picking a100b100 is implicitly assuming that N is no bigger than 200 — for
larger values of N , a100b100 would not be “a string whose length is at least
N”. Whatever string we pick, we have to be sure that its length is at least
N , no matter what number N is. So we pick, for instance, w = aNbN . This
string is in the language, and its length is at least N , no matter what num-
ber N is. If we can show that this string can’t be broken down as described
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by the Pumping Lemma, then we’ll have shown that N doesn’t work as a
threshold value, and since N was an arbitrary number, we will have shown
that there is no threshold value for L and hence L is not regular. So let’s
show that w = aNbN can’t be broken down appropriately.

We need to show that you can’t write w = aNbN as w = xyz where x
and y together contain at most N symbols, y isn’t empty, and all the strings
xz, xyyz, xyyyz, etc are still in L, i.e. of the form anbn for some number n.
The best way to do this is to show that any choice for y (with x being
whatever precedes it and z being whatever follows) that satisfies the first
two requirements fails to satisfy the third. So what are our possible choices
for y? Well, since x and y together can contain at most N symbols, and w
starts with N a’s, both x and y must be made up entirely of a’s; since y
can’t be empty, it must contain at least one a and (from (i)) no more than N
a’s. So the possible choices for y are y = ak for some 1 ≤ k ≤ N . We want
to show now that none of these choices will satisfy the third requirement
by showing that for any value of k, at least one of the strings xz, xyyz,
xyyyz, etc will not be in L. No matter what value we try for k, we don’t
have to look far for our rogue string: the string xz, which is aNbN with
k a’s deleted from it, looks like aN−kbN , which is clearly not of the form
anbn. So the only y’s that satisfy (i) and (ii) don’t satisfy (iii); so w can’t
be broken down as required; so N is not a threshold value for L; and since
N was an arbitrary number, there is no threshold value for L; so L is not
regular.

The fact that languages like {anbn | n ≥ 0} and {ap |p is prime} are
not regular is a severe blow to any idea that regular expressions or finite-
state automata capture the language-generation or language-recognition
capabilities of a computer: they are both languages that we could easily
write programs to recognize. It is not clear how the expressive power of
regular expressions could be increased, nor how one might modify the FSA
model to obtain a more powerful one. However, in the next chapter you
will be introduced to the concept of a grammar as a tool for generating
languages. The simplest grammars still only produce regular languages, but
you will see that more complicated grammars have the power to generate
languages far beyond the realm of the regular.

Exercises

1. Use the Pumping Lemma to show that the following languages over {a, b} are
not regular.

a) L1 = {x | na(x) = nb(x)}
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b) L2 = {xx | x ∈ {a, b}∗}
c) L3 = {xxR | x ∈ {a, b}∗}
d) L4 = {anbm | n < m}
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Chapter 4

Grammars

Both natural languages, such as English and the artificial languages
used for programming have a structure known as grammar or syntax. In
order to form legal sentences or programs, the parts of the language must
be fit together according to certain rules. For natural languages, the rules
are somewhat informal (although high-school English teachers might have
us believe differently). For programming languages, the rules are absolute,
and programs that violate the rules will be rejected by a compiler.

In this chapter, we will study formal grammars and languages defined by
them. The languages we look at will, for the most part, be “toy” languages,
compared to natural languages or even to programming languages, but the
ideas and techniques are basic to any study of language. In fact, many of
the ideas arose almost simultaneously in the 1950s in the work of linguists
who were studying natural language and programmers who were looking
for ways to specify the syntax of programming languages.

The grammars in this chapter are generative grammars. A generative
grammar is a set of rules that can be used to generate all the legal strings
in a language. We will also consider the closely related idea of parsing .
To parse a string means to determine how that string can be generated
according to the rules.

This chapter is a continuation of the preceding chapter. Like a regular
expression, a grammar is a way to specify a possibly infinite language with
a finite amount of information. In fact, we will see that every regular
language can be specified by a certain simple type of grammar, and that
some non-regular languages can be specified by grammars.

173
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4.1 Context-free Grammars

In its most general form, a grammar is a set of rewriting rules. A rewrit-
ing rule specifies that a certain string of symbols can be substituted for all
or part of another string. If w and u are strings, then w −→ u is a rewrit-
ing rule that specifies that the string w can be replaced by the string u.
The symbol “−→” is read “can be rewritten as.” Rewriting rules are also
called production rules or productions, and “−→” can also be read as
“produces.” For example, if we consider strings over the alphabet {a, b, c},
then the production rule aba −→ cc can be applied to the string abbabac
to give the string abbccc. The substring aba in the string abbabac has been
replaced with cc.

In a context-free grammar, every rewriting rule has the form A −→
w, where A is single symbol and w is a string of zero or more symbols. (The
grammar is “context-free” in the sense that w can be substituted for A wher-
ever A occurs in a string, regardless of the surrounding context in which A
occurs.) The symbols that occur on the left-hand sides of production rules
in a context-free grammar are called non-terminal symbols. By conven-
tion, the non-terminal symbols are usually uppercase letters. The strings
on the right-hand sides of the production rules can include non-terminal
symbols as well as other symbols, which are called terminal symbols. By
convention, the terminal symbols are usually lowercase letters. Here are
some typical production rules that might occur in context-free grammars:

A −→ aAbB

S −→ SS

C −→ Acc

B −→ b

A −→ ε

In the last rule in this list, ε represents the empty string, as usual. For
example, this rule could be applied to the string aBaAcA to produce the
string aBacA. The first occurrence of the symbol A in aBaAcA has been
replaced by the empty string—which is just another way of saying that the
symbol has been dropped from the string.

In every context-free grammar, one of the non-terminal symbols is des-
ignated as the start symbol of the grammar. The start symbol is often,
though not always, denoted by S. When the grammar is used to generate
strings in a language, the idea is to start with a string consisting of nothing
but the start symbol. Then a sequence of production rules is applied. Each
application of a production rule to the string transforms the string to a
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new string. If and when this process produces a string that consists purely
of terminal symbols, the process ends. That string of terminal symbols is
one of the strings in the language generated by the grammar. In fact, the
language consists precisely of all strings of terminal symbols that can be
produced in this way.

As a simple example, consider a grammar that has three production
rules: S −→ aS, S −→ bS, and S −→ b. In this example, S is the only
non-terminal symbol, and the terminal symbols are a and b. Starting from
the string S, we can apply any of the three rules of the grammar to produce
either aS, bS, or b. Since the string b contains no non-terminals, we see
that b is one of the strings in the language generated by this grammar. The
strings aS and bS are not in that language, since they contain the non-
terminal symbol S, but we can continue to apply production rules to these
strings. From aS, for example, we can obtain aaS, abS, or ab. From abS,
we go on to obtain abaS, abbS, or abb. The strings ab and abb are in the
language generated by the grammar. It’s not hard to see that any string
of a’s and b’s that ends with a b can be generated by this grammar, and
that these are the only strings that can be generated. That is, the language
generated by this grammar is the regular language specified by the regular
expression (a + b)∗b.

It’s time to give some formal definitions of the concepts which we have
been discussing.

Definition 4.1. A context-free grammar is a 4-tuple (V, Σ, P, S), where:

1. V is a finite set of symbols. The elements of V are the non-terminal
symbols of the grammar.

2. Σ is a finite set of symbols such that V ∩Σ = ∅. The elements of Σ are
the terminal symbols of the grammar.

3. P is a set of production rules. Each rule is of the form A −→ w where
A is one of the symbols in V and w is a string in the language (V ∪Σ)∗.

4. S ∈ V . S is the start symbol of the grammar.

Even though this is the formal definition, grammars are often specified
informally simply by listing the set of production rules. When this is done
it is assumed, unless otherwise specified, that the non-terminal symbols are
just the symbols that occur on the left-hand sides of production rules of
the grammar. The terminal symbols are all the other symbols that occur
on the right-hand sides of production rules. The start symbol is the symbol
that occurs on the left-hand side of the first production rule in the list.
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Thus, the list of production rules

T −→ TT

T −→ A

A −→ aAa

A −→ bB

B −→ bB

B −→ ε

specifies a grammar G = (V, Σ, P, T ) where V is {T, A, B}, Σ is {a, b}, and
T is the start symbol. P , of course, is a set containing the six production
rules in the list.

Let G = (V, Σ, P, S) be a context-free grammar. Suppose that x and
y are strings in the language (V ∪ Σ)∗. The notation x =⇒G y is used
to express the fact that y can be obtained from x by applying one of the
production rules in P . To be more exact, we say that x =⇒G y if and only
if there is a production rule A −→ w in the grammar and two strings u
and v in the language (V ∪ Σ)∗ such that x = uAv and y = uwv. The fact
that x = uAv is just a way of saying that A occurs somewhere in x. When
the production rule A −→ w is applied to substitute w for A in uAv, the
result is uwv, which is y. Note that either u or v or both can be the empty
string.

If a string y can be obtained from a string x by applying a sequence of
zero or more production rules, we write x =⇒∗

G y. In most cases, the “G” in
the notations =⇒G and =⇒∗

G will be omitted, assuming that the grammar
in question is understood. Note that =⇒ is a relation on the set (V ∪ Σ)∗.
The relation =⇒∗ is the reflexive, transitive closure of that relation. (This
explains the use of “∗”, which is usually used to denote the transitive, but
not necessarily reflexive, closure of a relation. In this case, =⇒∗ is reflexive
as well as transitive since x=⇒∗x is true for any string x.) For example,
using the grammar that is defined by the above list of production rules, we
have

aTB =⇒ aTTB

=⇒ aTAB

=⇒ aTAbB

=⇒ aT bBbB

=⇒ aT bbB

From this, it follows that aTB=⇒∗aT bbB. The relation =⇒ is read “yields”
or “produces” while =⇒∗ can be read “yields in zero or more steps” or
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“produces in zero or more steps.” The following theorem states some simple
facts about the relations =⇒ and =⇒∗:

Theorem 4.1. Let G be the context-free grammar (V, Σ, P, S). Then:
1. If x and y are strings in (V ∪ Σ)∗ such that x =⇒ y, then x=⇒∗y.
2. If x, y, and z are strings in (V ∪ Σ)∗ such that x=⇒∗y and y=⇒∗z,

then x=⇒∗z.
3. If x and y are strings in (V ∪Σ)∗ such that x =⇒ y, and if s and t are

any strings in (V ∪ Σ)∗, then sxt =⇒ syt.
4. If x and y are strings in (V ∪ Σ)∗ such that x=⇒∗y, and if s and t are

any strings in (V ∪ Σ)∗, then sxt=⇒∗syt.

Proof. Parts 1 and 2 follow from the fact that =⇒∗ is the transitive closure
of =⇒. Part 4 follows easily from Part 3. (I leave this as an exercise.) To
prove Part 3, suppose that x, y, s, and t are strings such that x =⇒ y. By
definition, this means that there exist strings u and v and a production rule
A −→ w such that x = uAv and y = uwv. But then we also have sxt =
suAvt and syt = suwvt. These two equations, along with the existence of
the production rule A −→ w show, by definition, that sxt =⇒ syt.

We can use =⇒∗ to give a formal definition of the language generated
by a context-free grammar:

Definition 4.2. Suppose that G = (V, Σ, P, S) is a context-free grammar.
Then the language generated by G is the language L(G) over the alphabet
Σ defined by

L(G) = {w ∈ Σ∗ |S =⇒∗
G w}

That is, L(G) contains any string of terminal symbols that can be obtained
by starting with the string consisting of the start symbol, S, and applying
a sequence of production rules.

A language L is said to be a context-free language if there is a
context-free grammar G such that L(G) is L. Note that there might be
many different context-free grammars that generate the same context-free
language. Two context-free grammars that generate the same language are
said to be equivalent.

Suppose G is a context-free grammar with start symbol S and suppose
w ∈ L(G). By definition, this means that there is a sequence of one or more
applications of production rules which produces the string w from S. This
sequence has the form S =⇒ x1 =⇒ x2 =⇒ · · · =⇒ w. Such a sequence
is called a derivation of w (in the grammar G). Note that w might have
more than one derivation. That is, it might be possible to produce w in
several different ways.
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Consider the language L = {anbn |n ∈ N}. We already know that L
is not a regular language. However, it is a context-free language. That is,
there is a context-free grammar such that L is the language generated by
G. This gives us our first theorem about grammars:

Theorem 4.2. Let L be the language L = {anbn |n ∈ N}. Let G be
the context-free grammar (V, Σ, P, S) where V = {S}, Σ = {a, b} and P
consists of the productions

S −→ aSb

S −→ ε

Then L = L(G), so that L is a context-free language. In particular, there
exist context-free languages which are not regular.

Proof. To show that L = L(G), we must show both that L ⊆ L(G) and
that L(G) ⊆ L. To show that L ⊆ L(G), let w be an arbitrary element
of L. By definition of L, w = anbn for some n ∈ N. We show that
w ∈ L(G) by induction on n. In the case where n = 0, we have w = ε.
Now, ε ∈ L(G) since ε can be produced from the start symbol S by an
application of the rule S −→ ε, so our claim is true for n = 0. Now,
suppose that k ∈ N and that we already know that akbk ∈ L(G). We must
show that ak+1bk+1 ∈ L(G). Since S=⇒∗akbk, we also have, by Theorem
4.1, that aSb=⇒∗aakbkb. That is, aSb=⇒∗ak+1bk+1. Combining this with
the production rule S −→ aSb, we see that S=⇒∗ak+1bk+1. This means
that ak+1bk+1 ∈ L(G), as we wanted to show. This completes the proof
that L ⊆ L(G).

To show that L(G) ⊆ L, suppose that w ∈ L(G). That is, S=⇒∗w. We
must show that w = anbn for some n. Since S=⇒∗w, there is a derivation
S =⇒ x0 =⇒ x1 =⇒ · · · =⇒ xn, where w = xn. We first prove by induction
on n that in any derivation S =⇒ x0 =⇒ x1 =⇒ · · · =⇒ xn, we must have
either xn = anbn or xn = an+1Sbn+1. Consider the case n = 0. Suppose
S =⇒ x0. Then, we must have that S −→ x0 is a rule in the grammar, so x0

must be either ε or aSb. Since ε = a0b0 and aSb = a0+1Sb0+1, x0 is of the
required form. Next, consider the inductive case. Suppose that k > 1 and
we already know that in any derivation S =⇒ x0 =⇒ x1 =⇒ · · · =⇒ xk,
we must have xk = akbk or x = ak+1Sbk+1. Suppose that S =⇒ x0 =⇒
x1 =⇒ · · · =⇒ xk =⇒ xk+1. We know by induction that xk = akbk or
x = ak+1Sbk+1, but since xk =⇒ xk+1 and akbk contains no non-terminal
symbols, we must have xk = ak+1Sbk+1. Since xk+1 is obtained by applying
one of the production rules S −→ ε or S −→ aSb to xk, xk+1 is either
ak+1εbk+1 or ak+1aSbbk+1. That is, xk+1 is either ak+1bk+1 or ak+2Sbk+2,
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as we wanted to show. This completes the induction. Turning back to w,
we see that w must be of the form anbn or of the form anSbn. But since
w ∈ L(G), it can contain no non-terminal symbols, so w must be of the form
anbn, as we wanted to show. This completes the proof that L(G) ⊆ L.

I have given a very formal and detailed proof of this theorem, to show
how it can be done and to show how induction plays a role in many proofs
about grammars. However, a more informal proof of the theorem would
probably be acceptable and might even be more convincing. To show that
L ⊆ L(G), we could just note that the derivation S =⇒ aSb =⇒ a2Sb2 =⇒
· · · =⇒ anSbn =⇒ anbn demonstrates that anbn ∈ L. On the other hand,
it is clear that every derivation for this grammar must be of this form, so
every string in L(G) is of the form anbn.

For another example, consider the language {anbm |n ≥ m ≥ 0}. Let’s
try to design a grammar that generates this language. This is similar to the
previous example, but now we want to include strings that contain more a’s
than b’s. The production rule S −→ aSb always produces the same number
of a’s and b’s. Can we modify this idea to produce more a’s than b’s?

One approach would be to produce a string containing just as many
a’s as b’s, and then to add some extra a’s. A rule that can generate any
number of a’s is A −→ aA. After applying the rule S −→ aSb for a while,
we want to move to a new state in which we apply the rule A −→ aA. We
can get to the new state by applying a rule S −→ A that changes the S
into an A. We still need a way to finish the process, which means getting
rid of all non-terminal symbols in the string. For this, we can use the rule
A −→ ε. Putting these rules together, we get the grammar

S −→ aSb

S −→ A

A −→ aA

A −→ ε

This grammar does indeed generate the language {anbm |n ≥ m ≥ 0}.
With slight variations on this grammar, we can produce other related lan-
guages. For example, if we replace the rule A −→ ε with A −→ a, we get
the language {anbm |n > m ≥ 0}.

There are other ways to generate the language {anbm |n ≥ m ≥ 0}. For
example, the extra non-terminal symbol, A, is not really necessary, if we
allow S to sometimes produce a single a without a b. This leads to the
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grammar

S −→ aSb

S −→ aS

S −→ ε

(But note that the rule S −→ Sa would not work in place of S −→ aS,
since it would allow the production of strings in which an a can follow a b,
and there are no such strings in the language {anbm |n ≥ m ≥ 0}.) And
here are two more grammars that generate this language:

S −→ AB S −→ ASb

A −→ aA A −→ aA

B −→ aBb S −→ ε

A −→ ε A −→ ε

B −→ ε

Consider another variation on the language {anbn |n ∈ N}, in which the
a’s and b’s can occur in any order, but the number of a’s is still equal to the
number of b’s. This language can be defined as L = {w ∈ {a, b}∗ |na(w) =
nb(w)}. This language includes strings such as abbaab, baab, and bbbaaa.

Let’s start with the grammar containing the rules S −→ aSb and S −→
ε. We can try adding the rule S −→ bSa. Every string that can be
generated using these three rules is in the language L. However, not every
string in L can be generated. A derivation that starts with S =⇒ aSb can
only produce strings that begin with a and end with b. A derivation that
starts with S =⇒ bSa can only generate strings that begin with b and end
with a. There is no way to generate the strings baab or abbbabaaba, which
are in the language L. But we shall see that any string in L that begins
and ends with the same letter can be written in the form xy where x and y
are shorter strings in L. To produce strings of this form, we need one more
rule, S −→ SS. The complete set of production rules for the language L is

S −→ aSb

S −→ bSa

S −→ SS

S −→ ε

It’s easy to see that every string that can be generated using these rules is
in L, since each rule introduces the same number of a’s as b’s. But we also
need to check that every string w in L can be generated by these rules. This
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can be done by induction on the length of w, using the second form of the
principle of mathematical induction. In the base case, |w| = 0 and w = ε.
In this case, w ∈ L since S =⇒ ε in one step. Suppose |w| = k, where
k > 0, and suppose that we already know that for any x ∈ L with |x| < k,
S=⇒∗x. To finish the induction we must show, based on this induction
hypothesis, that S=⇒∗w.

Suppose that the first and last characters of w are different. Then w is
either of the form axb or of the form bxa, for some string x. Let’s assume
that w is of the form axb. (The case where w is of the form bxa is handled
in a similar way.) Since w has the same number of a’s and b’s and since
x has one fewer a than w and one fewer b than w, x must also have the
same number of a’s as b’s. That is x ∈ L. But |x| = |w| − 2 < k, so by the
induction hypothesis, x ∈ L(G). So we have S=⇒∗x. By Theorem 4.1, we
get then aSb=⇒∗axb. Combining this with the fact that S =⇒ aSb, we get
that S=⇒∗axb, that is, S=⇒∗w. This proves that w ∈ L(G).

Finally, suppose that the first and last characters of w are the same.
Let’s say that w begins and ends with a. (The case where w begins and
ends with b is handled in a similar way.) I claim that w can be written
in the form xy where x ∈ L(G) and y ∈ L(G) and neither x nor y is the
empty string. This will finish the induction, since we will then have by the
induction hypothesis that S=⇒∗x and S=⇒∗y, and we can derive xy from
S by first applying the rule S −→ SS and then using the first S on the
right-hand side to derive x and the second to derive y.

It only remains to figure out how to divide w into two strings x and y
which are both in L(G). The technique that is used is one that is more
generally useful. Suppose that w = c1c2 · · · ck, where each ci is either
a or b. Consider the sequence of integers r1, r2, . . . , rk where for each
i = 1, 2, . . . , k, ri is the number of a’s in c1c2 · · · ci minus the number of b’s
in c1c2 · · · ci. Since c1 = a, r1 = 1. Since w ∈ L, rk = 0. And since ck = a,
we must have rk−1 = rk − 1 = −1. Furthermore the difference between
ri+1 and ri is either 1 or −1, for i = 1, 2, . . . , k − 1.

Since r1 = 1 and rk−1 = −1 and the value of ri goes up or down by
1 when i increases by 1, ri must be zero for some i between 1 and k − 1.
That is, ri cannot get from 1 to −1 unless it passes through zero. Let i be
a number between 1 and k − 1 such that ri = 0. Let x = c1c2 · · · ci and let
y = ci+1ci+2 · · · ck. Note that xy = w. The fact that ri = 0 means that
the string c1c2 · · · ci has the same number of a’s and b’s, so x ∈ L(G). It
follows automatically that y ∈ L(G) also. Since i is strictly between 1 and
k − 1, neither x nor y is the empty string. This is all that we needed to
show to finish the proof that L = L(G).

The basic idea of this proof is that if w contains the same number of a’s
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as b’s, then an a at the beginning of w must have a “matching” b somewhere
in w. This b matches the a in the sense that the corresponding ri is zero,
and the b marks the end of a string x which contains the same number of
a’s as b’s. For example, in the string aababbabba, the a at the beginning of
the string is matched by the third b, since aababb is the shortest prefix of
aababbabba that has an equal number of a’s and b’s.

Closely related to this idea of matching a’s and b’s is the idea of bal-
anced parentheses. Consider a string made up of parentheses, such as
(()(()))(()). The parentheses in this sample string are balanced because
each left parenthesis has a matching right parenthesis, and the matching
pairs are properly nested. A careful definition uses the sort of integer se-
quence introduced in the above proof. Let w be a string of parentheses.
Write w = c1c2 · · · cn, where each ci is either ( or ). Define a sequence
of integers r1, r2, . . . , rn, where ri is the number of left parentheses in
c1c2 · · · ci minus the number of right parentheses. We say that the paren-
theses in w are balanced if rn = 0 and ri ≥ 0 for all i = 1, 2, . . . , n. The
fact that rn = 0 says that w contains the same number of left parenthe-
ses as right parentheses. The fact the ri ≥ 0 means that the nesting of
pairs of parentheses is correct: You can’t have a right parenthesis unless it
is balanced by a left parenthesis in the preceding part of the string. The
language that consists of all balanced strings of parentheses is context-free.
It is generated by the grammar

S −→ (S )

S −→ SS

S −→ ε

The proof is similar to the preceding proof about strings of a’s and b’s.
(It might seem that I’ve made an awfully big fuss about matching and
balancing. The reason is that this is one of the few things that we can do
with context-free languages that we can’t do with regular languages.)

Before leaving this section, we should look at a few more general re-
sults. Since we know that most operations on regular languages produce
languages that are also regular, we can ask whether a similar result holds
for context-free languages. We will see later that the intersection of two
context-free languages is not necessarily context-free. Also, the comple-
ment of a context-free language is not necessarily context-free. However,
some other operations on context-free languages do produce context-free
languages.

Theorem 4.3. Suppose that L and M are context-free languages. Then
the languages L ∪ M , LM , and L∗ are also context-free.
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Proof. I will prove only the first claim of the theorem, that L∪M is context-
free. In the exercises for this section, you are asked to construct grammars
for LM and L∗ (without giving formal proofs that your answers are correct).

Let G = (V, Σ, P, S) and H = (W, Γ, Q, T ) be context-free grammars
such that L = L(G) and M = L(H). We can assume that W ∩ V = ∅,
since otherwise we could simply rename the non-terminal symbols in W .
The idea of the proof is that to generate a string in L ∪ M , we first decide
whether we want a string in L or a string in M . Once that decision is made,
to make a string in L, we use production rules from G, while to make a
string in M , we use rules from H . We have to design a grammar, K, to
represent this process.

Let R be a symbol that is not in any of the alphabets V , W , Σ, or Γ.
R will be the start symbol of K. The production rules for K consist of all
the production rules from G and H together with two new rules:

R −→ S

R −→ T

Formally, K is defined to be the grammar

(V ∪ W ∪ {R}, P ∪ Q ∪ {R −→ S, R −→ T }, Σ ∪ Γ, R)

Suppose that w ∈ L. That is w ∈ L(G), so there is a derivation S =⇒∗
G w.

Since every rule from G is also a rule in K, if follows that S =⇒∗
K w.

Combining this with the fact that R =⇒K S, we have that R =⇒∗
K w, and

w ∈ L(K). This shows that L ⊆ L(K). In an exactly similar way, we can
show that M ⊆ L(K). Thus, L ∪ M ⊆ L(K).

It remains to show that L(K) ⊆ L∪M . Suppose w ∈ L(K). Then there
is a derivation R =⇒∗

K w. This derivation must begin with an application
of one of the rules R −→ S or R −→ T , since these are the only rules in
which R appears. If the first rule applied in the derivation is R −→ S,
then the remainder of the derivation shows that S =⇒∗

K w. Starting from
S, the only rules that can be applied are rules from G, so in fact we have
S =⇒∗

G w. This shows that w ∈ L. Similarly, if the first rule applied in the
derivation R =⇒∗

K w is R −→ T , then w ∈ M . In any case, w ∈ L ∪ M .
This proves that L(K) ⊆ L ∪ M .

Finally, we should clarify the relationship between context-free lan-
guages and regular languages. We have already seen that there are context-
free languages which are not regular. On the other hand, it turns out that
every regular language is context-free. That is, given any regular language,
there is a context-free grammar that generates that language. This means



184 CHAPTER 4. GRAMMARS

that any syntax that can be expressed by a regular expression, by a DFA,
or by an NFA could also be expressed by a context-free grammar. In fact,
we only need a certain restricted type of context-free grammar to duplicate
the power of regular expressions.

Definition 4.3. A right-regular grammar is a context-free grammar in
which the right-hand side of every production rule has one of the following
forms: the empty string; a string consisting of a single non-terminal symbol;
or a string consisting of a single terminal symbol followed by a single non-
terminal symbol.

Examples of the types of production rule that are allowed in a right-
regular grammar are A −→ ε, B −→ C, and D −→ aE. The idea of
the proof is that given a right-regular grammar, we can build a corre-
sponding NFA and vice-versa. The states of the NFA correspond to the
non-terminal symbols of the grammar. The start symbol of the grammar
corresponds to the starting state of the NFA. A production rule of the form
A −→ bC corresponds to a transition in the NFA from state A to state
C while reading the symbol b. A production rule of the form A −→ B
corresponds to an ε-transition from state A to state B in the NFA. And
a production rule of the form A −→ ε exists in the grammar if and only
if A is a final state in the NFA. With this correspondence, a derivation of
a string w in the grammar corresponds to an execution path through the
NFA as it accepts the string w. I won’t give a complete proof here. You
are welcome to work through the details if you want. But the important
fact is:

Theorem 4.4. A language L is regular if and only if there is a right-regular
grammar G such that L = L(G). In particular, every regular language is
context-free.

Exercises

1. Show that Part 4 of Theorem 4.1 follows from Part 3.

2. Give a careful proof that the language {anbm |n ≥ m ≥ 0} is generated by
the context-free grammar

S −→ aSb

S −→ A

A −→ aA

A −→ ε
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3. Identify the language generated by each of the following context-free gram-
mars.

a) S −→ aaSb

S −→ ε

b) S −→ aSb

S −→ aaSb

S −→ ε

c) S −→ TS

S −→ ε

T −→ aTb

T −→ ε

d) S −→ ABA

A −→ aA

A −→ a

B −→ bB

B −→ cB

B −→ ε

4. For each of the following languages find a context-free grammar that generates
the language:

a) {anbm |n ≥ m > 0} b) {anbm |n, m ∈ N}
c) {anbm |n ≥ 0 ∧ m = n + 1} d) {anbmcn |n, m ∈ N}
e) {anbmck |n = m + k} f) {anbm |n 6= m}
g) {anbmcrdt |n + m = r + t} h) {anbmck |n 6= m + k}

5. Find a context-free grammar that generates the language {w ∈ {a, b}∗ |na(w) >

nb(w)}.
6. Find a context-free grammar that generates the language {w ∈ {a, b, c}∗ |na(w) =

nb(w)}.
7. A palindrome is a string that reads the same backwards and forwards, such

as “mom”, “radar”, or “aabccbccbaa”. That is, w is a palindrome if w = wR.
Let L = {w ∈ {a, b, c}∗ | w is a palindrome }. Show that L is a context-free
language by finding a context-free grammar that generates L.

8. Let Σ = { (, ), [, ] }. That is, Σ is the alphabet consisting of the four sym-
bols (, ), [, and ]. Let L be the language over Σ consisting of strings in
which both parentheses and brackets are balanced. For example, the string
([][()()])([]) is in L but [(]) is not. Find a context-free grammar that
generates the language L.

9. Suppose that G and H are context-free grammars. Let L = L(G) and let M =
L(H). Explain how to construct a context-free grammar for the language LM .
You do not need to give a formal proof that your grammar is correct.

10. Suppose that G is a context-free grammar. Let L = L(G). Explain how to
construct a context-free grammar for the language L∗. You do not need to
give a formal proof that your grammar is correct.

11. Suppose that L is a context-free language. Prove that LR is a context-free
language. (Hint: Given a context-free grammar G for L, make a new gram-
mar, GR, by reversing the right-hand side of each of the production rules in
G. That is, A −→ w is a production rule in G if and only if A −→ wR is a
production rule in GR.)

12. Define a left-regular grammar to be a context-free grammar in which the
right-hand side of every production rule is of one of the following forms: the



186 CHAPTER 4. GRAMMARS

empty string; a single non-terminal symbol; or a non-terminal symbol followed
by a terminal symbol. Show that a language is regular if and only if it can be
generated by a left-regular grammar. (Hint: Use the preceding exercise and
Theorem 4.4.)

4.2 Application: BNF

Context-free grammars are used to describe some aspects of the syntax of
programming languages. However, the notation that is used for grammars
in the context of programming languages is somewhat different from the
notation introduced in the preceding section. The notation that is used is
called Backus-Naur Form or BNF. It is named after computer scientists
John Backus and Peter Naur, who developed the notation. Actually, several
variations of BNF exist. I will discuss one of them here. BNF can be used to
describe the syntax of natural languages, as well as programming languages,
and some of the examples in this section will deal with the syntax of English.

Like context-free grammars, BNF grammars make use of production
rules, non-terminals, and terminals. The non-terminals are usually given
meaningful, multi-character names. Here, I will follow a common practice
of enclosing non-terminals in angle brackets, so that they can be easily
distinguished. For example, 〈noun〉 and 〈sentence〉 could be non-terminals
in a BNF grammar for English, while 〈program〉 and 〈if-statement〉 might
be used in a BNF grammar for a programming language. Note that a BNF
non-terminal usually represents a meaningful syntactic category, that
is, a certain type of building block in the syntax of the language that is
being described, such as an adverb, a prepositional phrase, or a variable
declaration statement. The terminals of a BNF grammar are the things
that actually appear in the language that is being described. In the case of
natural language, the terminals are individual words.

In BNF production rules, I will use the symbol “::=” in place of the
“−→” that is used in context-free grammars. BNF production rules are
more powerful than the production rules in context-free grammars. That
is, one BNF rule might be equivalent to several context-free grammar rules.
As for context-free grammars, the left-hand side of a BNF production rule
is a single non-terminal symbol. The right hand side can include terminals
and non-terminals, and can also use the following notations, which should
remind you of notations used in regular expressions:

• A vertical bar, |, indicates a choice of alternatives. For example,

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

indicates that the non-terminal 〈digit〉 can be replaced by any one
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of the terminal symbols 0, 1, . . . , 9.

• Items enclosed in brackets are optional. For example,

〈declaration〉 ::= 〈type〉 〈variable〉 [ = 〈expression〉 ] ;

says that 〈declaration〉 can be replaced either by “〈type〉 〈variable〉 ;”
or by “〈type〉 〈variable〉 = 〈expression〉 ;”. (The symbols “=” and
“;” are terminal symbols in this rule.)

• Items enclosed between “[” and “]. . . ” can be repeated zero or
more times. (This has the same effect as a “∗”in a regular expres-
sion.) For example,

〈integer〉 ::= 〈digit〉 [ 〈digit〉 ]. . .

says that an 〈integer〉 consists of a 〈digit〉 followed optionally by
any number of additional 〈digit〉’s. That is, the non-terminal
〈integer〉 can be replaced by 〈digit〉 or by 〈digit〉〈digit〉 or by
〈digit〉〈digit〉〈digit〉, and so on.

• Parentheses can be used as usual, for grouping.

All these notations can be expressed in a context-free grammar by intro-
ducing additional production rules. For example, the BNF rule “〈sign〉 ::=
+ | −” is equivalent to the two rules, “〈sign〉 ::= +” and “〈sign〉 ::= −”.
A rule that contains an optional item can also be replaced by two rules.
For example,

〈declaration〉 ::= 〈type〉 〈variable〉 [ = 〈expression〉 ] ;

can be replaced by the two rules

〈declaration〉 ::= 〈type〉 〈variable〉 ;
〈declaration〉 ::= 〈type〉 〈variable〉 = 〈expression〉 ;

In context-free grammars, repetition can be expressed by using a recursive
rule such as “S −→ aS”, in which the same non-terminal symbol appears
both on the left-hand side and on the right-hand side of the rule. BNF-style
notation using “[” and “]. . . ” can be eliminated by replacing it with a new
non-terminal symbol and adding a recursive rule to allow that symbol to
repeat zero or more times. For example, the production rule

〈integer〉 ::= 〈digit〉 [ 〈digit〉 ]. . .

can be replaced by three rules using a new non-terminal symbol 〈digit-list〉
to represent a string of zero or more 〈digit〉’s:

〈integer〉 ::= 〈digit〉 〈digit-list〉
〈digit-list〉 ::= 〈digit〉 〈digit-list〉
〈digit-list〉 ::= ε

As an example of a complete BNF grammar, let’s look at a BNF gram-
mar for a very small subset of English. The start symbol for the grammar is
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〈sentence〉, and the terminal symbols are English words. All the sentences
that can be produced from this grammar are syntactically correct English
sentences, although you wouldn’t encounter many of them in conversation.
Here is the grammar:

〈sentence〉 ::= 〈simple-sentence〉 [ and 〈simple-sentence〉 ]. . .

〈simple-sentence〉 ::= 〈nout-part〉 〈verb-part〉
〈noun-part〉 ::= 〈article〉 〈noun〉 [ who 〈verb-part〉 ]. . .

〈verb-part〉 ::= 〈intransitive-verb〉 | ( 〈transitive-verb〉 〈noun-part〉 )

〈article〉 ::= the | a

〈noun〉 ::= man | woman | dog | cat | computer

〈intransitive-verb〉 ::= runs | jumps | hides

〈transitive-verb〉 ::= knows | loves | chases | owns

This grammar can generate sentences such as “A dog chases the cat and the
cat hides” and “The man loves a woman who runs.” The second sentence,
for example, is generated by the derivation

〈sentence〉 =⇒ 〈simple-sentence〉
=⇒ 〈noun-part〉 〈verb-part〉
=⇒ 〈article〉 〈noun〉 〈verb-part〉
=⇒ the 〈noun〉 〈verb-part〉
=⇒ the man 〈verb-part〉
=⇒ the man 〈transitive-verb〉 〈noun-part〉
=⇒ the man loves 〈noun-part〉
=⇒ the man loves 〈article〉 〈noun〉 who 〈verb-part〉
=⇒ the man loves a 〈noun〉 who 〈verb-part〉
=⇒ the man loves a woman who 〈verb-part〉
=⇒ the man loves a woman who 〈intransitive-verb〉
=⇒ the man loves a woman who runs

BNF is most often used to specify the syntax of programming languages.
Most programming languages are not, in fact, context-free languages, and
BNF is not capable of expressing all aspects of their syntax. For example,
BNF cannot express the fact that a variable must be declared before it is
used or the fact that the number of actual parameters in a subroutine call
statement must match the number of formal parameters in the declaration
of the subroutine. So BNF is used to express the context-free aspects of the
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syntax of a programming language, and other restrictions on the syntax—
such as the rule about declaring a variable before it is used—are expressed
using informal English descriptions.

When BNF is applied to programming languages, the terminal symbols
are generally “tokens,” which are the minimal meaningful units in a pro-
gram. For example, the pair of symbols <= constitute a single token, as does
a string such as "Hello World". Every number is represented by a single
token. (The actual value of the number is stored as a so-called “attribute”
of the token, but the value plays no role in the context-free syntax of the
language.) I will use the symbol number to represent a numerical token.
Similarly, every variable name, subroutine name, or other identifier in the
program is represented by the same token, which I will denote as ident.
One final complication: Some symbols used in programs, such as “]” and
“(”, are also used with a special meaning in BNF grammars. When such a
symbol occurs as a terminal symbol, I will enclose it in double quotes. For
example, in the BNF production rule

〈array-reference〉 ::= ident “[” 〈expression〉 “]”

the “[” and “]” are terminal symbols in the language that is being de-
scribed, rather than the BNF notation for an optional item. With this
notation, here is part of a BNF grammar that describes statements in the
Java programming language:

〈statement〉 ::= 〈block-statement〉 | 〈if-statement〉 | 〈while-statement〉
| 〈assignment-statement〉 | 〈null-statement〉

〈block-statement〉 ::= { [ 〈statement〉 ]. . . }
〈if-statement〉 ::= if “(” 〈condition〉 “)” 〈statement〉 [ else 〈statement〉 ]

〈while-statement〉 ::= while “(” 〈condition〉 “)” 〈statement〉
〈assignment-statement〉 ::= 〈variable〉 = 〈expression〉 ;

〈null-statement〉 ::= ε

The non-terminals 〈condition〉, 〈variable〉, and 〈expression〉 would, of course,
have to be defined by other production rules in the grammar. Here is a set
of rules that define simple expressions, made up of numbers, identifiers,
parentheses and the arithmetic operators +, −, ∗ and /:

〈expression〉 ::= 〈term〉 [ [ + | − ] 〈term〉 ]. . .

〈term〉 ::= 〈factor〉 [ [ ∗ | / ] 〈factor〉 ]. . .

〈factor〉 ::= ident | number | “(” 〈expression〉 “)”

The first rule says that an 〈expression〉 is a sequence of one or more 〈term〉’s,
separated by plus or minus signs. The second rule defines a 〈term〉 to be a
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sequence of one or more 〈factors〉, separated by multiplication or division
operators. The last rule says that a 〈factor〉 can be either an identifier
or a number or an 〈expression〉 enclosed in parentheses. This small BNF
grammar can generate expressions such as “3 ∗ 5” and “x ∗ (x+ 1)− 3/(z +
2∗(3−x))+7”. The latter expression is made up of three terms: x∗(x+1),
3/(z +2∗ (3−x)), and 7. The first of these terms is made up of two factors,
x and (x + 1). The factor (x + 1) consists of the expression x + 1 inside a
pair of parentheses.

The nice thing about this grammar is that the precedence rules for
the operators are implicit in the grammar. For example, according to the
grammar, the expression 3 + 5 ∗ 7 is seen as 〈term〉 + 〈term〉 where the
first term is 3 and the second term is 5 ∗ 7. The 5 ∗ 7 occurs as a group,
which must be evaluated before the result is added to 3. Parentheses can
change the order of evaluation. For example, (3+5)∗ 7 is generated by the
grammar as a single 〈term〉 of the form 〈factor〉∗〈factor〉. The first 〈factor〉
is (3 + 5). When (3 + 5) ∗ 7 is evaluated, the value of (3 + 5) is computed
first and then multiplied by 7. This is an example of how a grammar that
describes the syntax of a language can also reflect its meaning.

Although this section has not introduced any really new ideas or theo-
retical results, I hope it has demonstrated how context-free grammars can
be applied in practice.

Exercises

1. One of the examples in this section was a grammar for a subset of English.
Give five more examples of sentences that can be generated from that gram-
mar. Your examples should, collectively, use all the rules of the grammar.

2. Rewrite the example BNF grammar for a subset of English as a context-free
grammar.

3. Write a single BNF production rule that is equivalent to the following context-
free grammar:

S −→ aSa

S −→ bB

B −→ bB

B −→ ε

4. Write a BNF production rule that specifies the syntax of real numbers, as
they appear in programming languages such as Java and C. Real numbers
can include a sign, a decimal point and an exponential part. Some examples
are: 17.3, .73, 23.1e67, −1.34E−12, +0.2, 100E+100
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5. Variable references in the Java programming language can be rather compli-
cated. Some examples include: x, list.next, A[7], a.b.c, S[i+1].grid[r][c].red,
. . . . Write a BNF production rule for Java variables. You can use the token
ident and the non-terminal 〈expression〉 in your rule.

6. Use BNF to express the syntax of the try. . . catch statement in the Java
programming language.

7. Give a BNF grammar for compound propositions made up of propositional
variables, parentheses, and the logical operators ∧, ∨, and ¬. Use the non-
terminal symbol 〈pv〉 to represent a propositional variable. You do not have
to give a definition of 〈pv〉.

4.3 Parsing and Parse Trees

Suppose that G is a grammar for the language L. That is, L = L(G). The
grammar G can be used to generate strings in the language L. In practice,
though, we often start with a string which might or might not be in L, and
the problem is to determine whether the string is in the language and, if
so, how it can be generated by G. The goal is to find a derivation of the
string, using the production rules of the grammar, or to show that no such
derivation exists. This is known as parsing the string. When the string is
a computer program or a sentence in a natural language, parsing the string
is an essential step in determining its meaning.

As an example that we will use throughout this section, consider the
language that consists of arithmetic expressions containing parentheses, the
binary operators + and ∗, and the variables x, y, and z. Strings in this
language include x, x+ y ∗ z, and ((x+ y)∗ y)+ z ∗ z. Here is a context-free
grammar that generates this language:

E −→ E + E

E −→ E ∗ E

E −→ (E)

E −→ x

E −→ y

E −→ z

Call the grammar described by these production rules G1. The grammar G1

says that x, y, and z are expressions, and that you can make new expressions
by adding two expressions, by multiplying two expressions, and by enclosing
an expression in parentheses. (Later, we’ll look at other grammars for the
same language—ones that turn out to have certain advantages over G1.)



192 CHAPTER 4. GRAMMARS

Consider the string x+y ∗z. To show that this string is in the language
L(G1), we can exhibit a derivation of the string from the start symbol E.
For example:

E =⇒ E + E

=⇒ E + E ∗ E

=⇒ E + y ∗ E

=⇒ x + y ∗ E

=⇒ x + y ∗ z

This derivation shows that the string x+y ∗z is in fact in L(G1). Now, this
string has many other derivations. At each step in the derivation, there can
be a lot of freedom about which rule in the grammar to apply next. Some
of this freedom is clearly not very meaningful. When faced with the string
E + E ∗ E in the above example, the order in which we replace the E’s
with the variables x, y, and z doesn’t much matter. To cut out some of this
meaningless freedom, we could agree that in each step of a derivation, the
non-terminal symbol that is replaced is the leftmost non-terminal symbol
in the string. A derivation in which this is true is called a left derivation.
The following left derivation of the string x+y∗z uses the same production
rules as the previous derivation, but it applies them in a different order:

E =⇒ E + E

=⇒ x + E

=⇒ x + E ∗ E

=⇒ x + y ∗ E

=⇒ x + y ∗ z

It shouldn’t be too hard to convince yourself that any string that has a
derivation has a left derivation (which can be obtained by changing the
order in which production rules are applied).

We have seen that the same string might have several different deriva-
tions. We might ask whether it can have several different left derivations.
The answer is that it depends on the grammar. A context-free grammar
G is said to be ambiguous if there is a string w ∈ L(G) such that w has
more than one left derivation according to the grammar G.

Our example grammar G1 is ambiguous. In fact, in addition to the left
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derivation given above, the string x+y∗z has the alternative left derivation

E =⇒ E ∗ E

=⇒ E + E ∗ E

=⇒ x + E ∗ E

=⇒ x + y ∗ E

=⇒ x + y ∗ z

In this left derivation of the string x+y ∗z, the first production rule that is
applied is E −→ E ∗E. The first E on the right-hand side eventually yields
“x + y” while the second yields “z”. In the previous left derivation, the
first production rule that was applied was E −→ E + E, with the first E
on the right yielding “x” and the second E yielding “y ∗ z”. If we think in
terms of arithmetic expressions, the two left derivations lead to two different
interpretations of the expression x + y ∗ z. In one interpretation, the x + y
is a unit that is multiplied by z. In the second interpretation, the y ∗ z is a
unit that is added to x. The second interpretation is the one that is correct
according to the usual rules of arithmetic. However, the grammar allows
either interpretation. The ambiguity of the grammar allows the string to
be parsed in two essentially different ways, and only one of the parsings
is consistent with the meaning of the string. Of course, the grammar for
English is also ambiguous. In a famous example, it’s impossible to tell
whether a “pretty girls’ camp” is meant to describe a pretty camp for girls
or a camp for pretty girls.

When dealing with artificial languages such as programming languages,
it’s better to avoid ambiguity. The grammar G1 is perfectly correct in that
it generates the correct set of strings, but in a practical situation where we
are interested in the meaning of the strings, G1 is not the right grammar
for the job. There are other grammars that generate the same language
as G1. Some of them are unambiguous grammars that better reflect the
meaning of the strings in the language. For example, the language L(G1)
is also generated by the BNF grammar

E ::= T [ + T ] . . .

T ::= F [ ∗ F ] . . .

F ::= “(” E “)” | x | y | z

This grammar can be translated into a standard context-free grammar,
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which I will call G2:

E −→ TA

A −→ +TA

A −→ ε

T −→ FB

B −→ ∗FB

B −→ ε

F −→ (E)

F −→ x

F −→ y

F −→ z

The language generated by G2 consists of all legal arithmetic expressions
made up of parentheses, the operators + and −, and the variables x, y, and
z. That is, L(G2) = L(G1). However, G2 is an unambiguous grammar.
Consider, for example, the string x+y∗z. Using the grammar G2, the only
left derivation for this string is:

E =⇒ TA

=⇒ FBA

=⇒ xBA

=⇒ xA

=⇒ x + TA

=⇒ x + FBA

=⇒ x + yBA

=⇒ x + y ∗ FBA

=⇒ x + y ∗ zBA

=⇒ x + y ∗ zA

=⇒ x + y ∗ z

There is no choice about the first step in this derivation, since the only
production rule with E on the left-hand side is E −→ TA. Similarly, the
second step is forced by the fact that there is only one rule for rewriting a
T . In the third step, we must replace an F . There are four ways to rewrite
F , but only one way to produce the x that begins the string x + y ∗ z, so
we apply the rule F −→ x. Now, we have to decide what to do with the
B in xBA. There two rules for rewriting B, B −→ ∗FB and B −→ ε.
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However, the first of these rules introduces a non-terminal, ∗, which does
not match the string we are trying to parse. So, the only choice is to apply
the production rule B −→ ε. In the next step of the derivation, we must
apply the rule A −→ +TA in order to account for the + in the string
x + y ∗ z. Similarly, each of the remaining steps in the left derivation is
forced.

The fact that G2 is an unambiguous grammar means that at each step
in a left derivation for a string w, there is only one production rule that
can be applied which will lead ultimately to a correct derivation of w.
However, G2 actually satisfies a much stronger property: at each step in
the left derivation of w, we can tell which production rule has to be applied
by looking ahead at the next symbol in w. We say that G2 is an LL(1)
grammar. (This notation means that we can read a string from Left to
right and construct a Left derivation of the string by looking ahead at most
1 character in the string.) Given an LL(1) grammar for a language, it is
fairly straightforward to write a computer program that can parse strings
in that language. If the language is a programming language, then parsing
is one of the essential steps in translating a computer program into machine
language. LL(1) grammars and parsing programs that use them are often
studied in courses in programming languages and the theory of compilers.

Not every unambiguous context-free grammar is an LL(1) grammar.
Consider, for example, the following grammar, which I will call G3:

E −→ E + T

E −→ T

T −→ T ∗ F

T −→ F

F −→ (E)

F −→ x

F −→ y

F −→ z

This grammar generates the same language as G1 and G2, and it is un-
ambiguous. However, it is not possible to construct a left derivation for
a string according to the grammar G3 by looking ahead one character in
the string at each step. The first step in any left derivation must be either
E =⇒ E + T or E =⇒ T . But how can we decide which of these is the
correct first step? Consider the strings (x + y) ∗ z and (x + y) ∗ z + z ∗ x,
which are both in the language L(G3). For the string (x + y) ∗ z, the first
step in a left derivation must be E =⇒ T , while the first step in a left
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derivation of (x + y) ∗ z + z ∗ x must be E =⇒ E + T . However, the first
seven characters of the strings are identical, so clearly looking even seven
characters ahead is not enough to tell us which production rule to apply.
In fact, similar examples show that looking ahead any given finite number
of characters is not enough.

However, there is an alternative parsing procedure that will work for G3.
This alternative method of parsing a string produces a right derivation
of the string, that is, a derivation in which at each step, the non-terminal
symbol that is replaced is the rightmost non-terminal symbol in the string.
Here, for example, is a right derivation of the string (x + y) ∗ z according
to the grammar G3:

E =⇒ T

=⇒ T ∗ F

=⇒ T ∗ z

=⇒ F ∗ z

=⇒ (E) ∗ z

=⇒ (E + T ) ∗ z

=⇒ (E + F ) ∗ z

=⇒ (E + y) ∗ z

=⇒ (T + y) ∗ z

=⇒ (F + y) ∗ z

=⇒ (x + y) ∗ z

The parsing method that produces this right derivation produces it from
“bottom to top.” That is, it begins with the string (x + y) ∗ z and works
backward to the start symbol E, generating the steps of the right derivation
in reverse order. The method works because G3 is what is called an LR(1)
grammar. That is, roughly, it is possible to read a string from Left to
right and produce a Right derivation of the string, by looking ahead at
most 1 symbol at each step. Although LL(1) grammars are easier for people
to work with, LR(1) grammars turn out to be very suitable for machine
processing, and they are used as the basis for the parsing process in many
compilers.

LR(1) parsing uses a shift/reduce algorithm. Imagine a cursor or
current position that moves through the string that is being parsed. We
can visualize the cursor as a vertical bar, so for the string (x + y) ∗ z, we
start with the configuration |(x + y) ∗ z. A shift operation simply moves
the cursor one symbol to the right. For example, a shift operation would
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convert |(x + y) ∗ z to (|x + y) ∗ z, and a second shift operation would
convert that to (x| + y) ∗ z. In a reduce operation, one or more symbols
immediately to the left of the cursor are recognized as the right-hand side
of one of the production rules in the grammar. These symbols are removed
and replaced by the left-hand side of the production rule. For example,
in the configuration (x| + y) ∗ z, the x to the left of the cursor is the
right-hand side of the production rule F −→ x, so we can apply a reduce
operation and replace the x with F , giving (F | + y) ∗ z. This first reduce
operation corresponds to the last step in the right derivation of the string,
(F + y) ∗ z =⇒ (x + y) ∗ z. Now the F can be recognized as the right-hand
side of the production rule T −→ F , so we can replace the F with T , giving
(T |+y)∗z. This corresponds to the next-to-last step in the right derivation,
(T + y) ∗ z =⇒ (F + y) ∗ z.

At this point, we have the configuration (T | + y) ∗ z. The T could be
the right-hand side of the production rule E −→ T . However, it could also
conceivably come from the rule T −→ T ∗ F . How do we know whether to
reduce the T to E at this point or to wait for a ∗F to come along so that we
can reduce T ∗ F ? We can decide by looking ahead at the next character
after the cursor. Since this character is a + rather than a ∗, we should
choose the reduce operation that replaces T with E, giving (E| + y) ∗ z.
What makes G3 an LR(1) grammar is the fact that we can always decide
what operation to apply by looking ahead at most one symbol past the
cursor.

After a few more shift and reduce operations, the configuration becomes
(E)| ∗ z, which we can reduce to T | ∗ z by applying the production rules
F −→ (E) and T −→ F . Now, faced with T | ∗ z, we must once again
decide between a shift operation and a reduce operation that applies the
rule E −→ T . In this case, since the next character is a ∗ rather than a +,
we apply the shift operation, giving T ∗|z. From there we get, in succession,
T ∗ z|, T ∗ F |, T |, and finally E|. At this point, we have reduced the entire
string (x + y) ∗ z to the start symbol of the grammar. The very last step,
the reduction of T to E corresponds to the first step of the right derivation,
E =⇒ T .

In summary, LR(1) parsing transforms a string into the start symbol
of the grammar by a sequence of shift and reduce operations. Each reduce
operation corresponds to a step in a right derivation of the string, and these
steps are generated in reverse order. Because the steps in the derivation are
generated from “bottom to top,” LR(1) parsing is a type of bottom-up
parsing . LL(1) parsing, on the other hand, generates the steps in a left
derivation from “top to bottom” and so is a type of top-down parsing .
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Although the language generated by a context-free grammar is defined
in terms of derivations, there is another way of presenting the generation of
a string that is often more useful. A parse tree displays the generation of
a string from the start symbol of a grammar as a two dimensional diagram.
Here are two parse trees that show two derivations of the string x+y*z ac-
cording to the grammar G1, which was given at the beginning of this section:

E   *   E

E

E  +  E

x y

z

E   +   E

E

E  *  Ex

y z

A parse tree is made up of terminal and non-terminal symbols, connected
by lines. The start symbol is at the top, or “root,” of the tree. Terminal
symbols are at the lowest level, or “leaves,” of the tree. (For some reason,
computer scientists traditionally draw trees with leaves at the bottom and
root at the top.) A production rule A −→ w is represented in a parse tree
by the symbol A lying above all the symbols in w, with a line joining A to
each of the symbols in w. For example, in the left parse tree above, the
root, E, is connected to the symbols E, +, and E, and this corresponds to
an application of the production rule E −→ E + E.

It is customary to draw a parse tree with the string of non-terminals in
a row across the bottom, and with the rest of the tree built on top of that
base. Thus, the two parse trees shown above might be drawn as:

x   +   y   *   z

E E E

E

E

x   +   y   *    z

E E E

E

E

Given any derivation of a string, it is possible to construct a parse tree
that shows each of the steps in that derivation. However, two different
derivations can give rise to the same parse tree, since the parse tree does
not show the order in which production rules are applied. For example, the
parse tree on the left, above, does not show whether the production rule
E −→ x is applied before or after the production rule E −→ y. However, if
we restrict our attention to left derivations, then we find that each parse tree
corresponds to a unique left derivation and vice versa. I will state this fact
as a theorem, without proof. A similar result holds for right derivations.
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Theorem 4.5. Let G be a context-free grammar. There is a one-to-one
correspondence between parse trees and left derivations based on the gram-
mar G.

Based on this theorem, we can say that a context-free grammar G is
ambiguous if and only if there is a string w ∈ L(G) which has two parse
trees.

Exercises

1. Show that each of the following grammars is ambiguous by finding a string
that has two left derivations according to the grammar:

a) S −→ SS

S −→ aSb

S −→ bSa

S −→ ε

b) S −→ ASb

S −→ ε

A −→ aA

A −→ a

2. Consider the string z+(x+y)∗x. Find a left derivation of this string according
to each of the grammars G1, G2, and G3, as given in this section.

3. Draw a parse tree for the string (x+y)∗z∗x according to each of the grammars
G1, G2, and G3, as given in this section.

4. Draw three different parse trees for the string ababbaab based on the grammar
given in part a) of exercise 1.

5. Suppose that the string abbcabac has the following parse tree, according to
some grammar G:

a    b    b    c    a    b    a    c

A

A

A

C

S

C

C

A

A A C

C

a) List five production rules that must be rules in the grammar G, given
that this is a valid parse tree.

b) Give a left derivation for the string abbcabac according to the grammar
G.

c) Give a right derivation for the string abbcabac according to the grammar
G.
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6. Show the full sequence of shift and reduce operations that are used in the
LR(1) parsing of the string x+(y)∗z according to the grammar G3, and give
the corresponding right derivation of the string.

7. This section showed how to use LL(1) and LR(1) parsing to find a derivation
of a string in the language L(G) generated by some grammar G. How is it
possible to use LL(1) or LR(1) parsing to determine for an arbitrary string w

whether w ∈ L(G) ? Give an example.

4.4 Non-context-free Languages

We have seen that there are context-free languages that are not regular.
The natural question arises, are there languages that are not context-free?
It’s easy to answer this question in the abstract: For a given alphabet Σ,
there are uncountably many languages over Σ, but there are only countably
many context-free languages over Σ. It follows that most languages are not
context-free. However, this answer is not very satisfying since it doesn’t
give us any example of a specific language that is not context-free.

As in the case of regular languages, one way to show that a given lan-
guage L is not context-free is to find some property that is shared by all
context-free languages and then to show that L does not have that prop-
erty. For regular languages, the Pumping Lemma gave us such a property.
It turns out that there is a similar Pumping Lemma for context-free lan-
guages. The proof of this lemma uses parse trees. In the proof, we will need
a way of representing abstract parse trees, without showing all the details
of the tree. The picture

A

x

represents a parse tree which has the non-terminal symbol A at its root
and the string x along the “bottom” of the tree. (That is, x is the string
made up of all the symbols at the endpoints of the tree’s branches, read
from left to right.) Note that this could be a partial parse tree—something
that could be a part of a larger tree. That is, we do not require A to be
the start symbol of the grammar and we allow x to contain both terminal
and non-terminal symbols. The string x, which is along the bottom of the
tree, is referred to as the yield of the parse tree. Sometimes, we need to
show more explicit detail in the tree. For example, the picture
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A

x

B

y z

represents a parse tree in which the yield is the string xyz. The string y is
the yield of a smaller tree, with root B, which is contained within the larger
tree. Note that any of the strings x, y, or z could be the empty string.

We will also need the concept of the height of a parse tree. The height
of a parse tree is the length of the longest path from the root of the tree to
the tip of one of its branches.

Like the version for regular languages, the Pumping Lemma for context-
free languages shows that any sufficiently long string in a context-free lan-
guage contains a pattern that can be repeated to produce new strings that
are also in the language. However, the pattern in this case is more com-
plicated. For regular languages, the pattern arises because any sufficiently
long path through a given DFA must contain a loop. For context-free lan-
guages, the pattern arises because in a sufficiently large parse tree, along a
path from the root of the tree to the tip of one of its branches, there must
be some non-terminal symbol that occurs more than once.

Theorem 4.6 (Pumping Lemma for Context-free Languages). Suppose
that L is a context-free language. Then there is an integer K such that any
string w ∈ L(G) with |w| ≥ K has the property that w can be written in the
form w = uxyzv where
• x and z are not both equal to the empty string;
• |xyz| < K; and
•For any n ∈ N, the string uxnyznv is in L.

Proof. Let G = (V, Σ, P, S) be a context-free grammar for the language
L. Let N be the number of non-terminal symbols in G, plus 1. That is,
N = |V | + 1. Consider all possible parse trees for the grammar G with
height less than or equal to N . (Include parse trees with any non-terminal
symbol as root, not just parse trees with root S.) There are only finitely
many such parse trees, and therefore there are only finitely many different
strings that are the yields of such parse trees. Let K be an integer which
is greater than the length of any such string.

Now suppose that w is any string in L whose length is greater than
or equal to K. Then any parse tree for w must have height greater than
N . (This follows since |w| ≥ K and the yield of any parse tree of height
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≤ N has length less than K.) Consider a parse tree for w of minimal size,
that is one that contains the smallest possible number of nodes. Since the
height of this parse tree is greater than N , there is at least one path from
the root of the tree to tip of a branch of the tree that has length greater
than N . Consider the longest such path. The symbol at the tip of this
path is a terminal symbol, but all the other symbols on the path are non-
terminal symbols. There are at least N such non-terminal symbols on the
path. Since the number of different non-terminal symbols is |V | and since
N = |V | + 1, some non-terminal symbol must occur twice on the path. In
fact, some non-terminal symbol must occur twice among the bottommost
N non-terminal symbols on the path. Call this symbol A. Then we see
that the parse tree for w has the form shown here:

A

x

A

y z

S

u v

The structure of this tree breaks the string w into five substrings, as shown
in the above diagram. We then have w = uxyzv. It only remains to show
that x, y, and z satisfy the three requirements stated in the theorem.

Let T refer to the entire parse tree, let T1 refer to the parse tree whose
root is the upper A in the diagram, and let T2 be the parse tree whose root
is the lower A in the diagram. Note that the height of T1 is less than or
equal to N . (This follows from two facts: The path shown in T1 from its
root to its base has length less than or equal to N , because we chose the
two occurrences of A to be among the N bottommost non-terminal symbols
along the path in T from its root to its base. We know that there is no
longer path from the root of T1 to its base, since we chose the path in T
to be the longest possible path from the root of T to its base.) Since any
parse tree with height less than or equal to N has yield of length less than
K, we see that |xyz| < K.

If we remove T1 from T and replace it with a copy of T2, the result is a
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parse tree with yield uyv, so we see that the string uyv is in the language
L. Now, suppose that both x and z are equal to the empty string. In that
case, w = uyv, so the tree we have created would be another parse tree for
w. But this tree is smaller than T , so this would contradict the fact that
T is the smallest parse tree for w. We see that x and z cannot both be the
empty string.

If we remove T2 from T and replace it with a copy of T1, the result is a
parse tree with yield ux2yz2v, so we see that ux2yz2v ∈ L. The two parse
trees that we have created look like this:

A

y

S

u v

A

x z

S

vu

A

x z

A

y

Furthermore, we can apply the process of replacing T2 with a copy of T1

to the tree on the right above to create a parse tree with yield ux3yz3v.
Continuing in this way, we see that uxnyznv ∈ L for all n ∈ N. This
completes the proof of the theorem.

Since this theorem guarantees that all context-free languages have a
certain property, it can be used to show that specific languages are not
context-free. The method is to show that the language in question does
not have the property that is guaranteed by the theorem. We give two
examples.

Corollary 4.7. Let L be the language {anbncn |n ∈ N}. Then L is not a
context-free language.

Proof. We give a proof by contradiction. Suppose that L is context-free.
Then, by the Pumping Lemma for Context-free Languages, there is an
integer K such that every string w ∈ L with |w| ≥ K can be written in
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the form w = uxyzv where x and z are not both empty, |xyz| < K, and
uxnyznv ∈ L for every n ∈ N.

Consider the string w = aKbKcK , which is in L, and write w = uxyzv,
where u, x, y, z, and v satisfy the stated conditions. Since |xyz| < K,
we see that if xyz contains an a, then it cannot contain a c. And if it
contains a c, then it cannot contain an a. It is also possible that xyz is
made up entirely of b’s. In any of these cases, the string ux2yz2v cannot be
in L, since it does not contain equal numbers of a’s, b’s, and c’s. But this
contradicts the fact that uxnyznv ∈ L for all n ∈ N. This contradiction
shows that the assumption that L is context-free is incorrect.

Corollary 4.8. Let Σ be any alphabet that contains at least two symbols.
Let L be the language over Σ defined by L = {ss | s ∈ Σ∗}. Then L is not
context-free.

Proof. Suppose, for the sake of contradiction, that L is context-free. Then,
by the Pumping Lemma for Context-free Languages, there is an integer
K such that every string w ∈ L with |w| ≥ K can be written in the form
w = uxyzv where x and z are not both empty, |xyz| < K, and uxnyznv ∈ L
for every n ∈ N.

Let a and b represent distinct symbols in Σ. Let s = aKbaKb and let
w = ss = aKbaKbaKbaKb, which is in L. Write w = uxyzv, where u, x, y,
z, and v satisfy the stated conditions.

Since |xyz| < K, x and z can, together, contain no more than one b.
If either x or y contains a b, then ux2yz2v contains exactly five b’s. But
any string in L is of the form rr for some string r and so contains an even
number of b’s. The fact that ux2yz2z contains five b’s contradicts the fact
that ux2yz2v ∈ L. So, we get a contradiction in the case where x or y
contains a b.

Now, consider the case where x and y consist entirely of a’s. Again
since |xyz| < K, we must have either that x and y are both contained in
the same group of a’s in the string aKbaKbaKbaKb, or that x is contained
in one group of a’s and y is contained in the next. In either case, it is easy
to check that the string ux2yz2v is no longer of the form rr for any string
r, which contradicts the fact that ux2yz2v ∈ L.

Since we are led to a contradiction in every case, we see that the as-
sumption that L is context-free must be incorrect.

Now that we have some examples of languages that are not context-
free, we can settle some other questions about context-free languages. In
particular, we can show that the intersection of two context-free languages
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is not necessarily context-free and that the complement of a context-free
language is not necessarily context-free.

Theorem 4.9. The intersection of two context-free languages is not nec-
essarily a context-free language.

Proof. To prove this, it is only necessary to produce an example of two
context-free languages L and M such that L ∩ M is not a context-free
languages. Consider the following languages, defined over the alphabet
Σ = {a, b, c}:

L = {anbncm |n ∈ N and m ∈ N}
M = {anbmcm |n ∈ N and m ∈ N}

Note that strings in L have equal numbers of a’s and b’s while strings in
M have equal numbers of b’s and c’s. It follows that strings in L∩M have
equal numbers of a’s, b’s, and c’s. That is,

L ∩ M = {anbncn |n ∈ N}

We know from the above theorem that L∩M is not context-free. However,
both L and M are context-free. The language L is generated by the context-
free grammar

S −→ TC

C −→ cC

C −→ ε

T −→ aT b

T −→ ε

and M is generated by a similar context-free grammar.

Corollary 4.10. The complement of a context-free language is not neces-
sarily context-free.

Proof. Suppose for the sake of contradiction that the complement of every
context-free language is context-free.

Let L and M be two context-free languages over the alphabet Σ. By our
assumption, the complements L and M are context-free. By Theorem 4.3,
it follows that L∪M is context-free. Applying our assumption once again,

we have that L ∪ M is context-free. But L ∪ M = L ∩ M , so we have that
L ∩ M is context-free.
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We have shown, based on our assumption that the complement of any
context-free language is context-free, that the intersection of any two context-
free languages is context-free. But this contradicts the previous theorem,
so we see that the assumption cannot be true. This proves the theorem.

Note that the preceding theorem and corollary say only that L ∩ M is
not context-free for some context-free languages L and M and that L is not
context-free for some context-free language L. There are, of course, many
examples of context-free languages L and M for which L∩M and L are in
fact context-free.

Even though the intersection of two context-free languages is not nec-
essarily context-free, it happens that the intersection of a context-free lan-
guage with a regular language is always context-free. I will not prove this
result, but since it is useful for showing that certain languages are or are
not context-free, I state it here without proof:

Theorem 4.11. Suppose that L is a context-free language and that M is
a regular language. Then L ∩ M is a context-free language.

For example, let L and M be the languages defined by L = {w ∈
{a, b}∗ |w = wR} and M = {w ∈ {a, b}∗ | the length of w is a multiple
of 5}. Since L is context-free and M is regular, we know that L ∩ M is
context-free. The language L ∩ M consists of every palindrome over the
alphabet {a, b} whose length is a multiple of five.

This theorem can also be used to show that certain languages are not
context-free. For example, consider the language L = {w ∈ {a, b, c}∗ |na(w)
= nb(w) = nc(w)}. (Recall that nx(w) is the number of times that the
symbol x occurs in the string w.) We can use a proof by contradiction to
show that L is not context-free. Let M be the regular language defined by
the regular expression a∗b∗c∗. It is clear that L∩M = {anbncn |n ∈ N}. If
L were context-free, then, by the previous theorem, L∩M would be context-
free. However, we know from Theorem 4.7 that L ∩ M is not context-free.
So we can conclude that L is not context-free.

Exercises

1. Show that the following languages are not context-free:
a) {anbmck |n > m > k}
b) {w ∈ {a, b, c}∗ |na(w) > nb(w) > nc(w)}
c) {www |w ∈ {a, b}∗}
d) {anbmck |n, m ∈ N and k = m ∗ n}
e) {anbm |m = n2}
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2. Show that the languages {an | n is a prime number} and {an2 |n ∈ N} are
not context-free. (In fact, it can be shown that a language over the alphabet
{a} is context-free if and only if it is regular.)

3. Show that the language {w ∈ {a, b}∗ |na(w) = nb(w) and w contains the
string baaab as a substring} is context-free.

4. Suppose that M is any finite language and that L is any context-free language.
Show that the language L rM is context-free. (Hint: Any finite language is
a regular language.)

4.5 General Grammars

At the beginning of this chapter the general idea of a grammar as a set of
rewriting or production rules was introduced. For most of the chapter, how-
ever, we have restricted our attention to context-free grammars, in which
production rules must be of the form A −→ x where A is a non-terminal
symbol. In this section, we will consider general grammars, that is, gram-
mars in which there is no such restriction on the form of production rules.
For a general grammar, a production rule has the form u −→ x, where u is
string that can contain both terminal and non-terminal symbols. For con-
venience, we will assume that u contains at least one non-terminal symbol,
although even this restriction could be lifted without changing the class of
languages that can be generated by grammars. Note that a context-free
grammar is, in fact, an example of a general grammar, since production
rules in a general grammar are allowed to be of the form A −→ x. They
just don’t have to be of this form. I will use the unmodified term grammar
to refer to general grammars.1 The definition of grammar is identical to the
definition of context-free grammar, except for the form of the production
rules:

Definition 4.4. A grammar is a 4-tuple (V, Σ, P, S), where:
1. V is a finite set of symbols. The elements of V are the non-terminal

symbols of the grammar.
2. Σ is a finite set of symbols such that V ∩Σ = ∅. The elements of Σ are

the terminal symbols of the grammar.
3. P is a set of production rules. Each rule is of the form u −→ x where u

and x are strings in (V ∪ Σ)∗ and u contains at least one symbol from
V .

1There is another special type of grammar that is intermediate between context-
free grammars and general grammars. In a so-called context-sensitive grammar, every
production rule is of the form u −→ x where |x| ≥ |u|. We will not cover context-sensitive
grammars in this text.
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4. S ∈ V . S is the start symbol of the grammar.

Suppose G is a grammar. Just as in the context-free case, the lan-
guage generated by G is denoted by L(G) and is defined as L(G) = {x ∈
Σ∗ |S =⇒∗

G x}. That is, a string x is in L(G) if and only if x is a string of
terminal symbols and there is a derivation that produces x from the start
symbol, S, in one or more steps.

The natural question is whether there are languages that can be gen-
erated by general grammars but that cannot be generated by context-free
languages. We can answer this question immediately by giving an example
of such a language. Let L be the language L = {w ∈ {a, b, c}∗ |na(w) =
nb(w) = nc(w)}. We saw at the end of the last section that L is not
context-free. However, L is generated by the following grammar:

S −→ SABC

S −→ ε

AB −→ BA

BA −→ AB

AC −→ CA

CA −→ AC

BC −→ CB

CB −→ BC

A −→ a

B −→ b

C −→ c

For this grammar, the set of non-terminals is {S, A, B, C} and the set of ter-
minal symbols is {a, b, c}. Since both terminals and non-terminal symbols
can occur on the left-hand side of a production rule in a general grammar, it
is not possible, in general, to determine which symbols are non-terminal and
which are terminal just by looking at the list of production rules. However,
I will follow the convention that uppercase letters are always non-terminal
symbols. With this convention, I can continue to specify a grammar simply
by listing production rules.

The first two rules in the above grammar make it possible to produce
the strings ε, ABC, ABCABC, ABCABCABC, and so on. Each of these
strings contains equal numbers of A’s, B’s, and C’s. The next six rules
allow the order of the non-terminal symbols in the string to be changed.
They make it possible to arrange the A’s, B’s, and C’s into any arbitrary
order. Note that these rules could not occur in a context-free grammar.
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The last three rules convert the non-terminal symbols A, B, and C into
the corresponding terminal symbols a, b, and c. Remember that all the
non-terminals must be eliminated in order to produce a string in L(G).
Here, for example, is a derivation of the string baabcc using this grammar.
In each line, the string that will be replaced on the next line is underlined.

S =⇒ SABC

=⇒ SABCABC

=⇒ ABCABC

=⇒ BACABC

=⇒ BAACBC

=⇒ BAABCC

=⇒ bAABCC

=⇒ baABCC

=⇒ baaBCC

=⇒ baabCC

=⇒ baabcC

=⇒ baabcc

We could produce any string in L in a similar way. Of course, this only
shows that L ⊆ L(G). To show that L(G) ⊆ L, we can observe that
for any string w such that S=⇒∗w, nA(w) + na(w) = nB(w) + nb(w) =
nC(w) + nc(w). This follows since the rule S =⇒ SABC produces strings
in which nA(w) = nB(w) = nC(w), and no other rule changes any of the
quantities nA(w)+na(w), nB(w)+nb(w), or nC(w)+nc(w). After applying
these rules to produce a string x ∈ L(G), we must have that nA(x), nB(x),
and nC(x) are zero. The fact that na(x) = nb(x) = nc(x) then follows from
the fact that nA(x) + na(x) = nB(x) + nb(x) = nC(x) + nc(x). That is,
x ∈ L.

Our first example of a non-context-free language was {anbncn |n ∈ N}.
This language can be generated by a general grammar similar to the pre-
vious example. However, it requires some cleverness to force the a’s, b’s,
and c’s into the correct order. To do this, instead of allowing A’s, B’s, and
C’s to transform themselves spontaneously into a’s, b’s, and c’s, we use
additional non-terminal symbols to transform them only after they are in
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the correct position. Here is a grammar that does this:

S −→ SABC

S −→ X

BA −→ AB

CA −→ AC

CB −→ BC

XA −→ aX

X −→ Y

Y B −→ bY

Y −→ Z

ZC −→ cZ

Z −→ ε

Here, the first two rules produce one of the strings X , XABC, XABCABC,
XABCABCABC, and so on. The next three rules allow A’s to move to the
left and C’s to move to the right, producing a string of the form XAnBnCn,
for some n ∈ N. The rule XA −→ aX allows the X to move through the
A’s from left to right, converting A’s to a’s as it goes. After converting the
A’s, the X can be transformed into a Y . The Y will then move through the
B’s, converting them to b’s. Then, the Y is transformed into a Z, which
is responsible for converting C’s to c’s. Finally, an application of the rule
Z −→ ε removes the Z, leaving the string anbncn.

Note that if the rule X −→ Y is applied before all the A’s have been
converted to a’s, then there is no way for the remaining A’s to be converted
to a’s or otherwise removed from the string. This means that the derivation
has entered a dead end, which can never produce a string that consists of
terminal symbols only. The only derivations that can produce strings in the
language generated by the grammar are derivations in which the X moves
past all the A’s, converting them all to a’s. At this point in the derivation,
the string is of the form anXu where u is a string consisting entirely of B’s
and C’s. At this point, the rule X −→ Y can be applied, producing the
string anY u. Then, if a string of terminal symbols is ever to be produced,
the Y must move past all the B’s, producing the string anbnY Cn. You can
see that the use of three separate non-terminals, X , Y , and Z, is essential
for forcing the symbols in anbncn into the correct order.

For one more example, consider the language {an2 |n ∈ N}. Like the
other languages we have considered in this section, this language is not
context-free. However, it can be generated by a grammar. Consider the
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grammar

S −→ DTE

T −→ BTA

T −→ ε

BA −→ AaB

Ba −→ aB

BE −→ E

DA −→ D

Da −→ aD

DE −→ ε

The first three rules produce all strings of the form DBnAnE, for n ∈ N.
Let’s consider what happens to the string DBnAnE as the remaining rules
are applied. The next two rules allow a B to move to the right until it
reaches the E. Each time the B passes an A, a new a is generated, but a B
will simply move past an a without generating any other characters. Once
the B reaches the E, the rule BE −→ E makes the B disappear. Each
B from the string DBnAnE moves past n A’s and generates n a’s. Since
there are n B’s, a total of n2 a’s are generated. Now, the only way to get
rid of the D at the beginning of the string is for it to move right through all
the A’s and a’s until it reaches the E at the end of the string. As it does
this, the rule DA −→ D eliminates all the A’s from the string, leaving the
string an2

DE. Applying the rule DE −→ ε to this gives an2

. This string
contains no non-terminal symbols and so is in the language generated by
the grammar. We see that every string of the form an2

is generated by the
above grammar. Furthermore, only strings of this form can be generated
by the grammar.

Given a fixed alphabet Σ, there are only countably many different lan-
guages over Σ that can be generated by grammars. Since there are un-
countably many different languages over Σ, we know that there are many
languages that cannot be generated by grammars. However, it is surpris-
ingly difficult to find an actual example of such a language.

As a first guess, you might suspect that just as {anbn |n ∈ N} is an
example of a language that is not regular and {anbncn |n ∈ N} is an ex-
ample of a language that is not context-free, so {anbncndn |n ∈ N} might
be an example of a language that cannot be generated by any grammar.
However, this is not the case. The same technique that was used to produce
a grammar that generates {anbncn |n ∈ N} can also be used to produce a
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grammar for {anbncndn |n ∈ N}. In fact, the technique extends to similar
languages based on any number of symbols.

Or you might guess that there is no grammar for the language {an | n
is a prime number }. Certainly, producing prime numbers doesn’t seem like
the kind of thing that we would ordinarily do with a grammar. Nevertheless,
there is a grammar that generates this language. We will not actually write
down the grammar, but we will eventually have a way to prove that it exists.

The language {an2 |n ∈ N} really doesn’t seem all that “grammatical”
either, but we produced a grammar for it above. If you think about how
this grammar works, you might get the feeling that its operation is more
like “computation” than “grammar.” This is our clue. A grammar can
be thought of as a kind of program, albeit one that is executed in a non-
deterministic fashion. It turns out that general grammars are precisely
as powerful as any other general-purpose programming language, such as
Java or C++. More exactly, a language can be generated by a grammar
if and only if there is a computer program whose output consists of a list
of strings in that language. Languages that have this property are said
to be recursively enumerable languages. (This term as used here is
not closely related to the idea of a recursive subroutine.) The languages
that can be generated by general grammars are precisely the recursively
enumerable languages.

It turns out that there are many forms of computation that are precisely
equivalent in power to grammars and to computer programs, and no one
has ever found any form of computation that is more powerful. This is one
of the great discoveries of the twentieth century, and we will investigate it
further in the next chapter.

Exercises

1. Find a derivation for the string caabcb, according to the first example grammar
in this section. Find a derivation for the string aabbcc, according to the
second example grammar in this section. Find a derivation for the string
aaaa, according to the third example grammar in this section.

2. Consider the third sample grammar from this section, which generates the

language {an2 |n ∈ N}. Is the non-terminal symbol D necessary in this gram-
mar? What if the first rule of the grammar were replaced by S −→ TE

and the last three rules were replaced by A −→ ε and E −→ ε ? Would the
resulting grammar still generate the same language? Why or why not?

3. Find a grammar that generates the language L = {w ∈ {a, b, c, d}∗ |na(w) =
nb(w) = nc(w) = nd(w)}. Let Σ be any alphabet. Argue that the language
{w ∈ Σ∗ | all symbols in Σ occur equally often in w } can be generated by a
grammar.
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4. For each of the following languages, find a grammar that generates the lan-
guage. In each case, explain how your grammar works.

a) {anbncndn |n ∈ N} b) {anbmcnm |n ∈ N and m ∈ N}
c) {ww |w ∈ {a, b}∗} d) {www |w ∈ {a, b}∗}
e) {a2

n |n ∈ N} f) {w ∈ {a, b, c}∗ |na(w) > nb(w) > nc(w)}
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Chapter 5

Turing Machines and

Computability

We saw hints at the end of the previous chapter that “computation” is
a more general concept than we might have thought. General grammars,
which at first encounter don’t seem to have much to do with algorithms or
computing, turn out to be able to do things that are similar to the tasks
carried out by computer programs. In this chapter, we will see that general
grammars are precisely equivalent to computer programs in terms of their
computational power, and that both are equivalent to a particularly simple
model of computation known as a Turing machine. We shall also see
that there are limits to what can be done by computing.

5.1 Turing Machines

Historically, the theoretical study of computing began before computers ex-
isted. One of the early models of computation was developed in the 1930s
by the British mathematician, Alan Turing, who was interested in study-
ing the theoretical abilities and limitations of computation. His model for
computation is a very simple abstract computing machine which has come
to be known as a Turing machine. While Turing machines are not appli-
cable in the same way that regular expressions, finite-state automata, and
grammars are applicable, their use as a fundamental model for computation
means that every computer scientist should be familiar with them, at least
in a general way.

A Turing machine is really not much more complicated than a finite-

215
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state automaton. Like a FSA, a Turing machine has a finite number of
possible states, and it changes from state to state as it computes. How-
ever, a Turing machine also has an infinitely long tape that it can use for
input and output. The tape extends to infinity in both directions. The
tape is divided into cells, which are in one-to-one correspondence with the
integers, Z. Each cell can either be blank or it can hold a symbol from
a specified alphabet. The Turing machine can move back and forth along
this tape, reading and writing symbols and changing state. It can read only
one cell at a time, and possibly write a new value in that cell. After doing
this, it can change state and it can move by one cell either to the left or
to the right. This is how the Turing machine computes. To use a Turing
machine, you would write some input on its tape, start the machine, and
let it compute until it halts. Whatever is written on the tape at that time
is the output of the computation.

Although the tape is infinite, only a finite number of cells can be non-
blank at any given time. If you don’t like the idea of an infinite tape, you
can think of a finite tape that can be extended to an arbitrarily large size
as the Turing machine computes: If the Turing machine gets to either end
of the tape, it will pause and wait politely until you add a new section
of tape. In other words, it’s not important that the Turing machine have
an infinite amount of memory, only that it can use as much memory as it
needs for a given computation, up to any arbitrarily large size. In this way,
a Turing machine is like a computer that can ask you to buy it a new disk
drive whenever it needs more storage space to continue a computation.1

A given Turing machine has a fixed, finite set of states. One of these
states is designated as the start state. This is the state in which the Turing
machine begins a computation. Another special state is the halt state.
The Turing machine’s computation ends when it enters its halt state. It
is possible that a computation might never end because the machine never
enters the halt state. This is analogous to an infinite loop in a computer
program.

At each step in its computation, the Turing machine reads the contents
of the tape cell where it is located. Depending on its state and the symbol

1The tape of a Turing machine can be used to store arbitrarily large amounts of
information in a straightforward way. Although we can imagine using an arbitrary
amount of memory with a computer, it’s not so easy. Computers aren’t set up to keep
track of unlimited amounts of data. If you think about how it might be done, you
probably won’t come with anything better than an infinite tape. (The problem is that
computers use integer-valued addresses to keep track of data locations. If a limit is put
on the number of bits in an address, then only a fixed, finite amount of data can be
addressed. If no limit is put on the number of bits in an address, then we are right back
to the problem of storing an arbitrarily large piece of data.)
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that it reads, the machine writes a symbol (possibly the same symbol) to
the cell, moves one cell either to the left or to the right, and (possibly)
changes its state. The output symbol, direction of motion, and new state
are determined by the current state and the input symbol. Note that either
the input symbol, the output symbol, or both, can be blank. A Turing
machine has a fixed set of rules that tell it how to compute. Each rule
specifies the output symbol, direction of motion, and new state for some
combination of current state and input symbol. The machine has a rule for
every possible combination of current state and input symbol, except that
there are no rules for what happens if the current state is the halt state. Of
course, once the machine enters the halt state, its computation is complete
and the machine simply stops.

I will use the character # to represent a blank in a way that makes
it visible. I will always use h to represent the halt state. I will indicate
the directions, left and right, with L and R, so that {L, R} is the set of
possible directions of motion. With these conventions, we can give the
formal definition of a Turing machine as follows:

Definition 5.1. A Turing machine is a 4-tuple (Q, Λ, q0, δ), where:
1. Q is a finite set of states, including the halt state, h.
2. Λ is an alphabet which includes the blank symbol, #.
3. q0 ∈ Q is the start state.
4. δ : (Qr{h})×Λ → Λ×{L, R}×Q is the transition function. The

fact that δ(q, σ) = (τ, d, r) means that when the Turing machine
is in state q and reads the symbol σ, it writes the symbol τ , moves
one cell in the direction d, and enters state r.

Even though this is the formal definition, it’s easier to work with a tran-
sition diagram representation of Turing machines. The transition diagram
for a Turing machine is similar to the transition diagram for a DFA. How-
ever, there are no “accepting” states (only a halt state). Furthermore, there
must be a way to specify the output symbol and the direction of motion for
each step of the computation. We do this by labeling arrows with notations
of the form (σ, τ, L) and (σ, τ, R), where σ and τ are symbols in the Turing
machine’s alphabet. For example,

0
q h

(a,b,L)

indicates that when the machine is in state q0 and reads an a, it writes a
b, moves left, and enters state h.
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Here, for example, is a transition diagram for a simple Turing machine
that moves to the right, changing a’s to b’s and vice versa, until it finds a
c. It leaves blanks (#’s) unchanged. When and if the machine encounters a
c, it moves to the left and halts:

0
q h

(c,c,L)

(b,a,R)

(a,b,R)

(#,#,R)

To simplify the diagrams, I will leave out any transitions that are not
relevant to the computation that I want the machine to perform. You
can assume that the action for any omitted transition is to write the same
symbol that was read, move right, and halt.

For example, shown below is a transition diagram for a Turing machine
that makes a copy of a string of a’s and b’s. To use this machine, you
would write a string of a’s and b’s on its tape, place the machine on the
first character of the string, and start the machine in its start state, q0.
When the machine halts, there will be two copies of the string on the tape,
separated by a blank. The machine will be positioned on the first character
of the leftmost copy of the string. Note that this machine uses c’s and d’s in
addition to a’s and b’s. While it is copying the input string, it temporarily
changes the a’s and b’s that it has copied to c’s and d’s, respectively. In
this way it can keep track of which characters it has already copied. After
the string has been copied, the machine changes the c’s and d’s back to a’s
and b’s before halting.
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0
q

(#,#,R)

(a,a,R)

(b,b,R)(b,b,R)

(#,#,R)

(a,a,R)

(b,b,R)(b,b,R)

(d,b,L)

(a,c,R)

(b,d,R)

(a,a,L)

(b,b,L) (b,b,L)

(a,a,R)

(a,a,R)

(#,b,L)

(#,a,L)

(#,#,L)

(a,a,L)

(#,#,R)

(c,a,L)

(#,#,L)

1
q

2
q

6
q

5
q

4
q

3
q

7
q

h

In this machine, state q0 checks whether the next character is an a, a
b, or a # (indicating the end of the string). States q1 and q2 add an a to
the end of the new string, and states q3 and q4 do the same thing with a
b. States q5 and q6 return the machine to the next character in the input
string. When the end of the input string is reached, state q7 will move the
machine back to the start of the input string, changing c’s and d’s back to
a’s and b’s as it goes. Finally, when the machine hits the # that precedes
the input string, it moves to the right and halts. This leave it back at the
first character of the input string. It would be a good idea to work through
the execution of this machine for a few sample input strings. You should
also check that it works even for an input string of length zero.

Our primary interest in Turing machines is as language processors. Sup-
pose that w is a string over an alphabet Σ. We will assume that Σ does
not contain the blank symbol. We can use w as input to a Turing ma-
chine M = (Q, Λ, q0, δ) provided that Σ ⊆ Λ. To use w as input for M ,
we will write w on M ’s tape and assume that the remainder of the tape
is blank. We place the machine on the cell containing the first character
of the string, except that if w = ε then we simply place the machine on a
completely blank tape. Then we start the machine in its initial state, q0,
and see what computation it performs. We refer to this setup as “running
M with input w.”
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When M is run with input w, it is possible that it will just keep running
forever without halting. In that case, it doesn’t make sense to ask about the
output of the computation. Suppose however that M does halt on input
w. Suppose, furthermore, that when M halts, its tape is blank except for
a string x of non-blank symbols, and that the machine is located on the
first character of x. In this case, we will say that “M halts with output x.”
Note that when we run M with input w, one of three things can happen:
(1) M might halt with some string x as output; (1) M might fail to halt; or
(3) M might halt in some configuration that doesn’t count as outputting a
string x.

The fact that a Turing machine can produce an output value allows
us for the first time to deal with computation of functions. A function
f : A → B takes an input value in the set A and produces an output value
in the set B. If the sets are sets of strings, we can now ask whether the
values of the function can be computed by a Turing machine. That is, is
there a Turing machine M such that, given any string w in the domain of
f as input, M will compute as its output the string f(w). If this is that
case, then we say that f is a Turing-computable function.

Definition 5.2. Suppose that Σ and Γ are alphabets and that f is a
function from Σ∗ to Γ∗. We say that f is Turing-computable if there
is a Turing machine M = (Q, Λ, q0, δ) such that Σ ⊆ Λ and Γ ⊆ Λ and
for each string w ∈ Σ∗, when M is run with input w, it halts with output
f(w). In this case, we say that M computes the function f .

For example, let Σ = {a} and define f : Σ∗ → Σ∗ by f(an) = a2n, for
n ∈ N. Then f is Turing-computable since it is computed by this Turing
machine:

0
q h

(#,c,R)

(a,c,L)

(c,c,R)

(#,#,L) (#,#,R)

(c,a,L)

(c,c,L)

q

1
q

2
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We can also use Turing machines to define “computable languages.”
There are actually two different notions of Turing-computability for lan-
guages. One is based on the idea of Turing-computability for functions.
Suppose that Σ is an alphabet and that L ⊆ Σ∗. The characteristic
function of L is the function χL : Σ∗ → {0, 1} defined by the fact that
χL(w) = 1 if w ∈ L and χL(w) = 0 if w 6∈ L. Note that given the function
χL, L can be obtained as the set L = {w ∈ Σ∗ |χL(w) = 1}. Given a
language L, we can ask whether the corresponding function χL is Turing-
computable. If so, then we can use a Turing machine to decide whether or
not a given string w is in L. Just run the machine with input w. It will
halt with output χL(w). If the machine halts with output 1, then w ∈ L.
If the machine halts with output 0, then w 6∈ L.

Definition 5.3. Let Σ be an alphabet and let L be a language over Σ.
We say that L is Turing-decidable if there is a Turing machine M =
(Q, Λ, q0, δ) such that Σ ⊆ Λ, {0, 1} ⊆ Λ, and for each w ∈ Σ∗, when M
is run with input w, it halts with output χL(w). (That is, it halts with
output 0 or 1, and the output is 0 if w 6∈ L and is 1 if w ∈ L.) In this case,
we say that M decides the language L.

The second notion of computability for languages is based on the inter-
esting fact that it is possible for a Turing machine to run forever, without
ever halting. Whenever we run a Turing machine M with input w, we can
ask the question, will M ever halt or will it run forever? If M halts on input
w, we will say that M “accepts” w. We can then look at all the strings
over a given alphabet that are accepted by a given Turing machine. This
leads to the notion of Turing-acceptable languages.

Definition 5.4. Let Σ be an alphabet, and let L be a language over Σ.
We say that L is Turing-acceptable if there is a Turing machine M =
(Q, Λ, q0, δ) such that Σ ⊆ Λ, and for each w ∈ Σ∗, M halts on input w if
and only if w ∈ L. In this case, we say that M accepts the language L.

It should be clear that any Turing-decidable language is Turing-acceptable.
In fact, if L is a language over an alphabet Σ, and if M is a Turing machine
that decides L, then it is easy to modify M to produce a Turing machine
that accepts L. At the point where M enters the halt state with output 0,
the new machine should enter a new state in which it simply moves to the
right forever, without ever halting. Given an input w ∈ Σ∗, the modified
machine will halt if and only if M halts with output 1, that is, if and only
if w ∈ L.



222 CHAPTER 5. TURING MACHINES AND COMPUTABILITY

Exercises

1. Let Σ = {a}. Draw a transition diagram for a Turing machine that computes
the function f : Σ∗ → Σ∗ where f(an) = a3n, for n ∈ N. Draw a transition
diagram for a Turing machine that computes the function f : Σ∗ → Σ∗ where
f(an) = a3n+1, for n ∈ N.

2. Let Σ = {a, b}. Draw a transition diagram for a Turing machine that com-
putes the function f : Σ∗ → Σ∗ where f(w) = wR.

3. Suppose that Σ, Γ, and Ξ are alphabets and that f : Σ∗ → Γ∗ and g : Γ∗ → Ξ∗

are Turing-computable functions. Show that g ◦ f is Turing-computable.

4. We have defined computability for functions f : Σ∗ → Γ∗, where Σ and Γ
are alphabets. How could Turing machines be used to define computable
functions from N to N ? (Hint: Consider the alphabet Σ = {a}.)

5. Let Σ be an alphabet and let L be a language over Σ. Show that L is Turing-
decidable if and only if its complement, L, is Turing-decidable.

6. Draw a transition diagram for a Turing machine which decides the language
{anbn |n ∈ N}. (Hint: Change the a’s and b’s to $’s in pairs.) Explain
in general terms how to make a Turing machine that decides the language
{anbncn |n ∈ N}.

7. Draw a transition diagram for a Turing machine which decides the language
{anbm |n > 0 and m is a multiple of n}. (Hint: Erase n b’s at a time.)

8. Based on your answer to the previous problem and the copying machine pre-
sented in this section, describe in general terms how you would build a Turing
machine to decide the language {ap | p is a prime number}.

9. Let g : {a}∗ → {0, 1}∗ be the function such that for each n ∈ N, g(an) is
the representation of n as a binary number. Draw a transition diagram for a
Turing machine that computes g.

5.2 Computability

At this point, it would be useful to look at increasingly complex Turing
machines, which compute increasingly complex functions and languages.
Although Turing machines are very simple devices, it turns out that they
can perform very sophisticated computations. In fact, any computation
that can be carried out by a modern digital computer—even one with an
unlimited amount of memory—can be carried out by a Turing machine.
Although it is not something that can be proved, it is widely believed that
anything that can reasonably be called “computation” can be done by a
Turing machine. This claim is known as the Church-Turing Thesis.

We do not have time to look at enough examples to convince you that
Turing machines are as powerful as computers, but the proof reduces to
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the fact that computers are actually fairly simple in their basic operation.
Everything that a computer does comes down to copying data from one
place to another, making simple comparisons between two pieces of data,
and performing some basic arithmetic operations. It’s possible for Turing
machines to do all these things. In fact, it’s possible to build a Turing ma-
chine to simulate the step-by-step operation of a given computer. Doing so
proves that the Turing machine can do any computation that the computer
could do, although it will, of course, work much, much more slowly.

We can, however, look briefly at some other models of computation and
see how they compare with Turing machines. For example, there are various
ways in which we might try to increase the power of a Turing machine. For
example, consider a two-tape Turing machine that has two tapes, with
a read/write head on each tape. In each step of its computation, a two-
tape Turing machine reads the symbols under its read/write heads on both
tapes. Based on these symbols and on its current state, it can write a new
symbol onto each tape, independently move the read/write head on each
tape one cell to the left or right, and change state.

It might seem that with two tapes available, two-tape Turing machines
might be able to do computations that are impossible for ordinary one-tape
machines. In fact, though, this is not the case. The reason, again, is simula-
tion: Given any two-tape Turing machine, it is possible to build a one-tape
Turing machine that simulates the step-by-step computation of the two-
tape machine. Let M be a two-tape Turing machine. To simulate M with
a one-tape machine, K, we must store the contents of both of M ’s tapes on
one tape, and we must keep track of the positions of both of M ’s read/write
heads. Let @ and $ be symbols that are not in the alphabet of M . The @

will be used to mark the position of a read/write head, and the $ will be
used to delimit the parts of K’s tape that represent the two tapes of M . For
example, suppose that one of M ’s tapes contains the symbols “abb##cca”
with the read/write head on the first b, and that the other tape contains
“01#111#001” with the read/write head on the final 1. This configuration
would be represented on K’s tape as “$a@bb##cca$01#111#00@1$”. To
simulate one step of M ’s computation, K must scan its entire tape, looking
for the @’s and noting the symbol to the right of each @. Based on this
information, K can update its tape and its own state to reflect M ’s new
configuration after one step of computation. Obviously, K will take more
steps than M and it will operate much more slowly, but this argument
makes it clear that one-tape Turing machines can do anything that can be
done by two-tape machines.

We needn’t stop there. We can imagine n-tape Turing machines, for
n > 2. We might allow a Turing machine to have multiple read/write
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heads that move independently on each tape. We could even allow two
or three-dimensional tapes. None of this makes any difference as far as
computational power goes, since each type of Turing machine can simulate
any of the other types.

We have used Turing machines to define Turing-acceptable languages
and Turing-decidable languages. The definitions seem to depend very much
on the peculiarities of Turing machines. But the same classes of languages
can be defined in other ways. For example, we could use programs running
on an idealized computer, with an unlimited amount of memory, to accept
or decide languages. Or we could use n-tape Turing machines. The resulting
classes of languages would be exactly the same as the Turing-acceptable and
Turing-decidable languages.

We could look at other ways of specifying languages “computationally.”
One of the most natural is to imagine a Turing machine or computer pro-
gram that runs forever and outputs an infinite list of strings over some
alphabet Σ. In the case of Turing machines, it’s convenient to think of
a two-tape Turing machine that lists the strings on its second tape. The
strings in the list form a language over Σ. A language that can be listed
in this way is said to be recursively enumerable. Note that we make no
assumption that the strings must be listed in any particular order, and we
allow the same string to appear in the output any number of times. Clearly,
a recursively enumerable language is “computable” in some sense. Perhaps
we have found a new type of computable language. But no—it turns out
that we have just found another way of describing the Turing-acceptable
languages. The following theorem makes this fact official and adds one
more way of describing the same class of languages:

Theorem 5.1. Let Σ be an alphabet and let L be a language over Σ. Then
the following are equivalent:

1. There is a Turing machine that accepts L.

2. There is a two-tape Turing machine that runs forever, making a
list of strings on its second tape, such that a string w is in the list
if and only if w ∈ L.

3. There is a Turing-computable function f : {a}∗ → Σ∗ such that L
is the range of the function f .

While I will not give a complete, formal proof of this theorem, it’s not
too hard to see why it is true. Consider a language that satisfies property 3.
We can use the fact that L is the range of a Turing-computable function, f ,
to build a two-tape Turing machine that lists L. The machine will consider
each of the strings an, for n ∈ N, in turn, and it will compute f(an) for each
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n. Once the value of f(an) has been computed, it can be copied onto the
machine’s second tape, and the machine can move on to do the same with
an+1. This machine writes all the elements of L (the range of f) onto its
second tape, so L satisfies property 2. Conversely, suppose that there is a
two-tape Turing machine, M , that lists L. Define a function g : {a}∗ → Σ∗

such that for n ∈ N, g(an) is the (n + 1)th item in the list produced by
M . Then the range of g is L, and g is Turing-computable since it can be
computed as follows: On input an, simulate the computation of M until it
has produced n+1 strings, then halt, giving the (n+1)th string as output.
This shows that property 2 implies property 3, so these properties are in
fact equivalent.

We can also check that property 2 is equivalent to property 1. Suppose
that L satisfies property 2. Consider a two-tape Turing machine, T , that
lists the elements of L. We must build a Turing machine, M , which accepts
L. We do this as follows: Given an input w ∈ Σ∗, M will simulate the
computation of T . Every time the simulated T produces a string in the
list, M compares that string to w. If they are the same, M halts. If
w ∈ L, eventually it will be produced by T , so M will eventually halt. If
w 6∈ L, then it will never turn up in the list produced by T , so M will never
halt. Thus, M accepts the language L. This shows that property 2 implies
property 1.

The fact that property 1 implies property 2 is somewhat harder to see.
First, we note that it is possible for a Turing machine to generate every
possible string in Σ∗, one-by-one, in some definite order (such as order of
increasing length, with something like alphabetical order for strings of the
same length). Now, suppose that L is Turing-acceptable and that M is
a Turing machine that accepts L. We need a two-tape Turing machine,
T that makes a list of all the elements of L. Unfortunately, the following
idea does not work: Generate each of the elements in Σ∗ in turn, and see
whether M accepts it. If so, then add it to the list on the second tape. It
looks like we have a machine that lists all the elements of L. The problem is
that the only way for T to “see whether M accepts” a string is to simulate
the computation of M . Unfortunately, as soon as we try this for any string
w that is not in L, the computation never ends! T will get stuck in the
simulation and will never even move on to the next string. To avoid this
problem, T must simulate multiple computations of M at the same time.
T can keep track of these computations in different regions of its first tape
(separated by $’s). Let the list of all strings in Σ∗ be x1, x2, x3, . . . . Then
T should operate as follows:

1. Set up the simulation of M on input x1, and simulate one step of
the computation for x1
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2. Set up the simulation of M on input x2, and simulate one step of
the computation for x1 and one step of the computation for x2.

3. Set up the simulation of M on input x3, and simulate one step of
each of the computations, for x1, x2, and x3.

. . .

n. Set up the simulation of M on input xn, and simulate one step of
each of the computations, for x1, x2, . . . , xn.

and so on. Each time one of the computations halts, T should write the
corresponding xi onto its second tape. Over the course of time, T simulates
the computation of M for each input w ∈ Σ∗ for an arbitrary number of
steps. If w ∈ L, the simulated computation will eventually end and w will
appear on T ’s second tape. On the other hand, if w 6∈ L, then the simulated
computation will never end, so w will not appear in the list. So we see that
T does in fact make a list of all the elements, and only the elements of L.
This completes an outline of the proof of the theorem.

Next, we compare Turing machines to a completely different method
of specifying languages: general grammars. Suppose G = (V, Σ, P, S) is a
general grammar and that L is the language generated by G. Then there is
a Turing machine, M , that accepts the same language, L. The alphabet for
M will be V ∪Σ∪{$,#}, where $ is a symbol that is not in V ∪Σ. Suppose
that M is started with input w, where w ∈ Σ∗. We have to design M so
that it will halt if and only if w ∈ L. The idea is to have M find each string
that can be derived from the start symbol S. The strings will be written to
M ’s tape and separated by $’s. M can begin by writing the start symbol,
S, on its tape, separated from w by a $. Then it repeats the following
process indefinitely: For each string on the tape and for each production
rule, x −→ y, of G, search the string for occurrences of x. When one is
found, add a $ to the end of the tape and copy the string to the end of
the tape, replacing the occurrence of x by y. The new string represents the
results of applying the production rule x −→ y to the string. Each time M
produces a new string, it compares that string to w. If they are equal, then
M halts. If w is in fact in L, then eventually M will produce the string w
and will halt. Conversely, if w is not in L, then M will go on producing
strings forever without ever finding w, so M will never halt. This shows
that, in fact, the language L is accepted by M .

Conversely, suppose that L is a language over an alphabet Σ, and that L
is Turing-acceptable. Then it is possible to find a grammar G that generates
L. To do this, it’s convenient to use the fact that, as discussed above, there
is a Turing-computable function f : {a}∗ → Σ such that L is the range of f .
Let M = (Q, Λ, q0, δ) be a Turing machine that computes the function f .
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We can build a grammar, G, that imitates the computations performed by
M . The idea is that most of the production rules of G will imitate steps
in the computation of M . Some additional rules are added to get things
started, to clean up, and to otherwise bridge the conceptual gap between
grammars and Turing machines.

The terminal symbols of G will be the symbols from the alphabet, Σ.
For the non-terminal symbols, we use: the states of M , every member of Λ
that is not in Σ, two special symbols < and >, and two additional symbols
S and A. (We can assume that all these symbols are distinct.) S will be
the start symbol of G. As for production rules, we begin with the following
three rules:

S −→ <q0A>

A −→ aA

A −→ ε

These rules make it possible to produce any string of the form <q0a
n>.

This is the only role that S and A play in the grammar. Once we’ve gotten
rid of S and A, strings of the remaining terminal and non-terminal symbols
represent configurations of the Turing machine M . The string will contain
exactly one of the states of M (which is, remember, one of the non-terminal
symbols of G). This tells us which state M is in. The position of the state-
symbol tells us where M is positioned on the tape: the state-symbol is
located in the string to the left of the symbol on which M is positioned.
And the special symbols < and > just represent the beginning and the end
of a portion of the tape of M . So, the initial string <q0a

n> represents a
configuration in which M is in its start state, and is positioned on the first
a in a string of n a’s. This is the starting configuration of M when it is run
with input an.

Now, we need some production rules that will allow the grammar to
simulate the computations performed by M . For each state qi and each
symbol σ ∈ Λ, we need a production rule that imitates the transition rule
δ(qi, σ) = (τ, d, qj). If d = R, that is if the machine moves to the right,
then all we need is the rule

qiσ −→ τqj

This represents that fact that M converts the σ to a τ , moves to the right,
and changes to state qj . If d = L, that is if the machine moves to the left,
then we will need several rules—one rule for each λ ∈ Λ, namely

λqiσ −→ qjλτ
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This rule says that M changes the σ to a τ , moves left, and changes to
state qj . The λ doesn’t affect the application of the rule, but is necessary
to represent the fact that M moves left.

Each application of one of these rules represents one step in the compu-
tation of M . There is one remaining requirement for correctly simulating
M . Since M ’s tape contains an infinite number of cells and we are only
representing a finite portion of that tape, we need a way to add and remove
#’s at the ends of the string. We can use the following four rules to do this:

< −→ <#

<# −→ <

> −→ #>

#> −→ >

These rules allow blank symbols to appear at the ends of the string when
they are needed to continue the computation, and to disappear from the
ends of the string whenever we like.

Now, let w be any element of L. Then w = f(an) for some n ∈ N.
We know that on input an, M halts with output w. If we translate the
computation of M into the corresponding sequence of production rules in
G, we see that for the grammar G, <q0a

n> =⇒∗ <hw>, where h is the
halt state of M . Since we already know that S =⇒∗ <q0a

n>, for every
n ∈ N, we see that in fact S =⇒∗ <hw> for each w ∈ L. We almost have
it! We want to show that S =⇒∗ w. If we can just get rid of the <, the h,
and the >, we will have that <hw> =⇒∗ w and we can then deduce that
S =⇒∗ w for each w ∈ L, as desired. We can do this by adding just a few
more rules to G. We want to let the h eliminate the <, move through the
w, and then eliminate the > along with itself. We need the rules

<h −→ h

h> −→ ε

and, for each σ ∈ Σ,

hσ −→ σh

We have constructed G so that it generates every string in L. It is not
difficult to see that the strings in L are in fact the only strings that are
generated by G. That is, L is precisely L(G).

We have now shown, somewhat informally, that a language L is Turing-
acceptable if and only if there is a grammar G that generates L. Even
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though Turing machines and grammars are very different things, they are
equivalent in terms of their ability to describe languages. We state this as
a theorem:

Theorem 5.2. A language L is recursively enumerable if and only if there
is a general grammar that generates L.

In this section, we have been talking mostly about recursively enumer-
able languages (also known as the Turing-acceptable languages). What
about the Turing-decidable languages? We already know that if a lan-
guage L is Turing-decidable, then it is Turing-acceptable. The converse is
not true (although we won’t be able to prove this until the next section).
However, suppose that L is a language over the alphabet Σ and that both
L and its complement, L = Σ∗ r L, are Turing-acceptable. Then L is
Turing-decidable.

For suppose that M is a Turing machine that accepts the language L
and that M ′ is a Turing machine that accepts L. We must show that L
is Turing-decidable. That is, we have to build a Turing machine T that
decides L. For each w ∈ Σ∗, when T is run with input w, it should halt
with output 1 if w ∈ L and with output 0 if w 6∈ L. To do this, T will
simulate the computation of both M and M ′ on input w. (It will simulate
one step in the computation of M , then one step in the computation of
M ′, then one step of M , then one step of M ′, and so on.) If and when the
simulated computation of M halts, then T will halt with output 1; since M
accepts L, this will happen if and only if w ∈ L. If and when the simulated
computation of M ′ halts, then T will halt with output 0; since M accepts
L, this will happen if and only if w 6∈ L. So, for any w ∈ Σ∗, T halts with
the desired output. This means that T does in fact decide the language L.

It is easy to prove the converse. So we see that a language is Turing-
decidable if and only if both it and its complement are Turing-acceptable.
Since Turing-acceptability can be defined using other forms of computa-
tion besides Turing machines, so can Turing-decidability. For example, a
language is Turing-decidable if and only if both it and its complement can
be generated by general grammars. We introduced the term “recursively
enumerable” as a synonym for Turing-acceptable, to get away from the as-
sociation with a particular form of computation. Similarly, we define the
term “recursive” as a synonym for Turing-decidable. That is, a language L
is said to be recursive if and only if it is Turing-decidable. We then have
the theorem:

Theorem 5.3. Let Σ be an alphabet and let L be a language over Σ. Then L
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is recursive if and only if both L and its complement, Σ∗rL, are recursively
enumerable.

Exercises

1. The language L = {am |m > 0} is the range of the function f(an) = an+1.
Design a Turing machine that computes this function, and find the grammar
that generates the language L by imitating the computation of that machine.

2. Complete the proof of Theorem 5.3 by proving the following: If L is a recur-
sive language over an alphabet Σ, then both L and Σ∗ r L are recursively
enumerable.

3. Show that a language L over an alphabet Σ is recursive if and only if there
are grammars G and H such that the language generated by G is L and the
language generated by H is Σ∗ r L.

4. This section discusses recursive languages and recursively enumerable lan-
guages. How could one define recursive subsets of N and recursively enumer-
able subsets of N?

5. Give an informal argument to show that a subset X ⊆ N is recursive if and
only if there is a computer program that prints out the elements of X in

increasing order.

5.3 The Limits of Computation

Recursively enumerable languages are languages that can be defined by
computation. We have seen that there are many different models of compu-
tation—Turing machines, two-tape Turing machines, grammars, computer
programs—but they all lead to the same class of languages. In fact, every
computational method for specifying languages that has ever been devel-
oped produces only recursively enumerable languages. There is something
about these languages—some pattern or property—that makes them “com-
putable,” and it is some intrinsic property of the languages themselves, not
some peculiarity of any given model of computation.

This is especially interesting since most languages are not recursively
enumerable. Given an alphabet Σ, there are uncountably many languages
over Σ, but only countably many of them are recursively enumerable. The
rest—the vast majority—are not recursively enumerable. What can we
say about all these non-recursively-enumerable languages? If the language
L is not recursively enumerable, then there is no algorithm for listing the
members of L. It might be possible to define L by specifying some property
that all its members satisfy, but that property can’t be computable. That
is, there can be no computer program or Turing machine that tests whether
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a given string w has the property, since if there were, then we could write
a program that lists the members of L.

So, even though almost every language is non-recursively-enumerable,
it’s difficult to find a particular language that is not recursively enumerable.
Nevertheless, in this section we will find one such language. At that same
time, we will find an example of a language that is recursively enumerable
but not recursive. And we will discover some interesting limitations to the
power of computation.

The examples that we will look at in this section involve Turing machines
that work with other Turing machines as data. For this to work, we need
a symbolic representation of Turing machines—a representation that can
be written on the tape of another Turing machine. This will let us create
two machines: First, a Turing machine that can generate Turing machines
on demand by writing their symbolic representations on its tape. We will
design a Turing machine G to do this. And second, a Turing machine that
can simulate the computation of other Turing machines whose descriptions
are written on its tape.

In order to do all this, we must put some limitations on the states
and alphabetic symbols that can be used in the Turing machines that we
consider. Clearly, given any Turing machine, we can change the names of
the states without changing the behavior of the machine. So, without any
loss of generality, we can assume that all states have names chosen from
the list: h, q, q′, q′′, q′′′, q′′′′, . . . . We assume that h is the halt state and q
is the start state. Note that there is an infinite number of possible states,
but any given Turing machine will only use finitely many states from this
list.

As for the alphabets of the Turing machines, I want to look at Turing
machines whose alphabets include the symbols 0, 1, a, and of course #.
These are the symbols that the machines will use for input and output.
The alphabets can also include other symbols. We will assume that these
auxiliary symbols are chosen from the list: a′, a′′, a′′′, a′′′′, . . . . Given a
Turing machine whose alphabet includes the symbols 0, 1, a, and #, we
can rename any other symbols in its alphabet using names from this list.
This renaming will not affect any of the behavior that we are interested in.

Now suppose we have one of these standard Turing machines—one
whose states are chosen from the list h, q, q′, q′′, q′′′, . . . , whose start
state is q, and whose symbols are chosen from the list #, 0, 1, a, a′, a′′,
a′′′, . . . . Such a machine can be completely encoded as a string of sym-
bols over the alphabet {h, q, L, R, #, 0, 1, a, ′, $}. A transition rule such as
δ(q′′, 0) = (a′′′, L, q) can be encoded as a string q′′0a′′′Lq. To encode a
complete machine, simply encode each of its transition rules in this way
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and join them together in a string, separated by $’s. We now have the
symbolic representation for Turing machines that we need.

Note that a string over the alphabet {h, q, L, R, #, 0, 1, a, ′, $} might or
might not encode a Turing machine. However, it is a simple matter to
check whether such a string is the code for a Turing machine. We can
imagine the following process: Generate all the strings over the alphabet
{h, q, L, R, #, 0, 1, a, ′, $}. Check each string to see whether it encodes a
Turing machine. If so, add the string to an output list. In this way, we
can generate a list of all strings that encode standard Turing machines. In
effect, the standard Turing machines, or at least their symbolic representa-
tions, form a recursively enumerable set. Let T0 be the machine encoded
by the first string in this list of standard Turing machines; let T1 be the
machine encoded by the second string; let T2 be the machine encoded by
the third string; and so on. The list T0, T1, T2, . . . , includes every stan-
dard Turing machine. Furthermore, given n ∈ N, we can find the symbolic
representation for Tn by generating strings in the list until we have n + 1
strings. Furthermore—and this is the essential point—we can use a Turing
machine to do all these calculations. In fact, there is a Turing machine
that, when run with input an, will halt with the string representation of
Tn written on its tape as output. The Turing machine that does this is G,
the first of the two machines that we need.

The second machine that we need will be called U . It is a so-called
Universal Turing Machine. The single Turing machine U can simulate
the computation of any standard Turing machine, T , on any input. Both
the symbolic representation of T and of the input string are written to U ’s
tape, separated by a space. As U simulates the computation of T , it will
need some way to keep track of what state T is in and of the position of T
on its (simulated) tape. It does this by writing the current state of T on
its tape, following T ’s input string, and by adding a special symbol, such
as @, to the input string to mark T ’s position. When U is first started,
it begins by adding the @ to the beginning of the input string and writing
a q after the string to represent the start state of T . It is then relatively
straightforward for U to simulate the computation of T . For each step in
the computation of T , it can determine the current state of T (which is
recorded on U ’s tape) and the symbol which T is currently reading (which
is on U ’s tape, after the @). U searches the symbolic representation of
T for the rule that tells T what to do in this situation. Using this rule,
U can update its representation of T ’s state, position, and tape to reflect
the result of applying the rule. If the new state of T is the halt state,
then U also halts. Otherwise, it goes on to simulate the next step in T ’s
computation. Note that when U is given T and an input string w as input,
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U will halt if and only if T halts on input w. (Obviously, this is a very
inefficient simulation, but we are not concerned with efficiency here.)

So, we have our two machines, G and U . After all this setup, we are
finally in a position to look at the major theorem that we have been working
towards.

Theorem 5.4. Let T0, T1, T2, . . . , be the standard Turing machines, as
described above. Let K be the language over the alphabet {a} defined by

K = {an | Tn halts when run with input an}.

Then K is a recursively enumerable language, but K is not recursive. The
complement

K = {an | Tn does not halt when run with input an}.

is a language that is not recursively enumerable.

First note that if both K and K were recursively enumerable, then K
would be recursive, by Theorem 5.3. So, once we show that K is recursively
enumerable but not recursive, it follows immediately that K cannot be
recursively enumerable. That is, the second part of the theorem follows
from the first.

To show that K is recursively enumerable, it suffices to find a Turing
machine, M , that accepts K. That is, when run with input an, for n ∈ N,
M should halt if and only if an ∈ K. We can build M from the Turing
machines G and U which were introduced above. When started with input
an, M should proceed as follows: First copy the input. Run G on the
first copy of an. This will produce a symbolic description of the Turing
machine Tn. Now run U to simulate the computation of Tn on input an.
This simulation will end if and only if Tn halts when run with input an,
that is, if and only if an ∈ K. The Turing machine M that performs the
computation we have described accepts the language K. This proves that
K is recursively enumerable.

To show that K is not recursive, we need to show that there is no Turing
machine that decides K. Let H be any Turing machine. We must show that
no matter what H does, it does not decide the language K. We must do this
without knowing anything more about H that the fact that is it a Turing
machine. To say that H decides K would mean that for any n ∈ N, when H
is run with input an, H will halt with output 1 if an ∈ K and will halt with
output 0 if an 6∈ K. To show that H does not decide K we need to show
that there is some n ∈ N such that when H is run with input an, H either
fails to halt or else halts but gives the wrong output. Note in particular
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that we only need to find one n for which H does not give the correct result.
As we try to find n, we have nothing much to work with but H itself.

To find n, we construct a Turing machine M that is a simple variation
on H . When M is run, it duplicates the behavior of H until H halts (if
it ever does). At that point, M should check H ’s output. If H has halted
with output 1, then M should go into an infinite loop, so that M never
halts in this case. Otherwise, if the output of H is not 1, then M should
halt. Now, we can assume that M is one of the standard Turing machines,
say M = Tn. (If M is not already one of these machines, it is because it
uses different names for its states and symbols. Renaming the states and
symbols will produce an equivalent machine with the same behavior as M ,
and we can replace M with this standard machine.)

We now have a Turing machine M = Tn with the following property:
Tn will halt when it is run with input an if and only if H does not halt
with output 1 when it is run with input an. By definition of K, Tn halts
on input an if and only if an ∈ K, so we have that an ∈ K if and only if H
does not halt with output 1 when it is run with input an. This means that
H does not decide the language K, because H gives incorrect output when
it is run with input an. It should give output 1 exactly when an ∈ K. In
fact, though, it gives output 1 exactly when an 6∈ K. We have found an n
for which H does not give the correct result. H does not decide K, and
since H was an arbitrary Turing machine, we see that there is no Turing
machine that decides the language K. Thus, K is not a recursive language,
as the theorem claims.

To decide the language K would be to solve the following problem:
Given a Turing machine Tn, decide whether or not Tn will halt when it is
run with input an. This problem is called the Halting Problem. We have
shown that there is no Turing machine that solves this problem. Given the
equivalence of Turing machines and computer programs, we can also say
that there is no computer program that solves the halting problem. We say
that the halting problem is computationally unsolvable.

The halting problem is just one of many problems that cannot be solved
by Turing machines or computer programs. In fact, almost any interesting
yes/no question that can be asked about Turing machines or programs is
in this class: Does this Turing machine halt for all possible inputs in Σ∗?
Given this input, will this program ever halt? Do these two programs (or
Turing machines) have the same output for each possible input? Will this
Turing machine ever halt if it is started on a blank tape? All these problems
are computationally unsolvable in the sense that there is no Turing machine
or computer program that will answer them correctly in all cases. The
existence of such problems is a real limitation on the power of computation.
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