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Abstract 

Particularly considering the rapidly intensifying effects of global climate change, extreme rainfall 

events provide challenging obstacles to the effective management of water resources and the 

advancement of infrastructure. It is becoming increasingly important to precisely anticipate these 

events as Pakistan struggles with growing vulnerabilities to more intense extreme weather events, 

such as the devastating floods of 2010 and 2022. To assess extreme rainfall occurrences in 

Pakistan, this study examines the effectiveness of the Maximum Product Spacing (MPS) approach 

in conjunction with the Pearson Type III distribution. This research tries to improve the accuracy 

and dependability of extreme rainfall models by examining MPS with other estimating techniques. 

Pakistan is at the forefront of the effects of climate change, with increasing susceptibilities to more 

intense extreme weather events. The study examines differences in the annual maximum rainfall 

series in the Pakistan Meteorological Department demarcated zones A and C within this 

framework. The study concluded that when the data shows minor to moderate skewness and 

kurtosis and when the samples are small, the estimates produced by the LM approach show little 

Bias. When there is significant skewness and kurtosis in the data and a small to moderate sample 

size, the MPS approach is an acceptable substitute that yields accurate estimates. When data from 

characteristic values are low, and sample sizes are big, the MLE approach offers benefits. The 

superior performance of MPS is attributed to its ability to minimum the value of RMSE and Bias 

in all stations of zone A and C. It provides better estimates for the behavior of the tail of the 

distribution, which is significant for extreme value analysis. These findings provide useful 

guidance that the MPS method is reliable when fitted with the PE3 distribution, especially for 

extreme values. 

Keywords: Maximum Product spacing, L-Moments, Maximum Likelihood, sectorial effects.  



16  

Chapter 1 

 

1. Introduction 

Climate change, a phenomenon defined by long-term changes in regional or global climate 

patterns, is one reason extreme weather events, such as temperature extremes and changes in 

precipitation patterns, have become more frequent. The frequency and severity of extreme weather 

events have grown, as has ocean acidification; ecosystems are changing; sea levels are rising 

because of melting polar ice; and threats to agriculture and food security are just a few of the 

significant repercussions of these changes. To reduce these catastrophic events, addressing climate 

change necessitates collective effort [1]. 

Hydrological research requires accurate estimation of the frequency of extreme rainfall events to 

manage water resources, identify risks, and construct infrastructure. To quantify extreme rainfall 

events at specific places using yearly maximum rainfall series data, at-site frequency analysis is 

an essential tool in this field. Furthermore, it offers a method for estimating the likelihood that 

extreme rainfall events may transpire at certain places based on yearly maximum rainfall series 

data, which includes the annual maximum rain intensity observed. Certain techniques can be used 

to estimate the parameters of probability distributions that describe intense rainfall. One well-

known method for effectively capturing the characteristics of severe occurrences is Maximum 

Product Spacing (MPS), which is also quite simple to implement. For extreme value situations, 

MPS offers trustworthy parameter estimations [2]. 

Hydrological studies require precise estimation of extreme rainfall events for efficient water 

resource management, infrastructure design, and risk assessment. Using annual maximum rainfall 
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series data, at-site frequency analysis is a crucial tool in this field because it allows one to quantify 

extreme rainfall events at specific locations and determine the likelihood of these events occurring 

based on the highest observed rainfall intensity per year. Extreme rainfall is described by 

probability distributions with parameters that can be estimated using various techniques. A popular 

method for recording the features of extreme events is Maximum Product Spacing (MPS). It is 

easy to use and highly successful [3].  

To provide reliable parameter estimates for extreme value analysis, MPS maximizes the product 

of the spacing between ordered observations. MPS increases the product of space between ordered 

observations and has robust parameter estimations that are useful in extreme value analysis.  

Extreme rainfall intensity modeling can be effectively accomplished by combining MPS with the 

Pearson Type III distribution. As skewed data are typical in extreme rainfall occurrences, the 

Pearson Type III distribution is adaptable and can describe them. Because of its improved fit to 

observed data, this combination can improve the accuracy of at-site frequency analysis. The 

reliability of frequency analysis results is impacted by the chosen estimation method, which 

impacts crucial decisions related to infrastructure design and water resource management. 

Consequently, thoroughly examining this methodology's practical usefulness and accuracy is 

necessary [4]. 

This study uses yearly maximum rainfall series data to assess if Maximum Product Spacing is a 

suitable estimation approach for at-site frequency analysis. This research aims to enhance the 

precision and dependability of modeling extreme rainfall events by evaluating the effectiveness of 

MPS in estimating the Pearson Type III distribution parameters and contrasting it with other 

widely utilized techniques [5]. 
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1.1 Flood Patterns in Pakistan: 

Climate change's projected effects on sensitive ecosystems have made it a major worldwide worry 

for the last 20 years. Water resources, agriculture, and disaster management are all directly 

impacted by changes in rainfall. Pakistan's vulnerability to natural catastrophes, such as cyclones, 

floods, droughts, heavy rains, and earthquakes, is highlighted in reports published by the Task 

Force on Climate Change (2010). One-third of the people of Pakistan now experiences numerous 

disasters regularly because of variations in rainfall, storms, floods, and droughts. These 

occurrences are now more common and powerful in recent decades [6]. 

 

The devastating Flood of 2010: 

The greatest flood in over eight decades, for instance, struck Pakistan in July 2010 after intense 

monsoon rains across Khyber Pakhtunkhwa, Sindh, Punjab, and portions of Balochistan. An 

estimated 2,000 people are thought to have died in this calamity, which also damaged or destroyed 

over 700,000 dwellings. This event saw 274 mm (about 10.79 in) of rainfall in Peshawar in 24 

hours, exceeding the previous record set in April 2009. On the other hand, from 1998 to 2001, 

Pakistan's central and southern regions experienced severe droughts [7]. 

 

The Devastating Flood of 2022: 

Extreme flooding struck Pakistan in the summer of 2022, causing massive destruction. Large areas 

of land were submerged by intense rains, resulting in the deaths of over 1,730 people and the 

displacement of over 33 million others. The total damage caused exceeded USD 14.9 billion, and 
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the economic losses were estimated to be around USD 15.2 billion [8]. The Maximum Product 

Spacing estimate method is used in this work to match the Pearson Type III distribution and 

evaluate fluctuations in the yearly maximum rainfall series. 

Pakistan's river systems are vital to the nation's agricultural output and way of life, but they are 

becoming more vulnerable to extreme weather events like floods and droughts due to climate 

change. The disastrous floods of 2010 and 2022 are proof of their terrible effects. Analyzing and 

comprehending fluctuations in annual maximum rainfall series is vital given the urgent need for 

efficient catastrophe management and adaptation techniques. This knowledge can improve 

forecasting abilities and guide resilient water resource management strategies. The present study 

aims to bridge this knowledge gap by utilizing the Maximum Product Spacing estimation method 

to examine variations in the annual maximum rainfall series. This analysis will aid in the 

development of tailored adaptation and mitigation strategies as well as a better understanding of 

the impacts of climate change on Pakistan's water resources [9]. 

1.2 Geography of Pakistan: 

Pakistan's wide range of landforms and unpredictable rainfall patterns are hallmarks of its 

geographical variety. Pakistan experiences a variety of rainfall levels throughout the year, ranging 

from the vast desert regions like the Thar Desert in the southeast to the arid plateaus of the 

Balochistan Plateau in the southwest, the fertile plains of the Punjab region irrigated by the Indus 

River, and the towering ranges of mountain of the Himalayas, Karakoram, and Hindu Kush in the 

north (Ghazi et al., 2011). Depending on the area and monsoon patterns, Pakistan's annual rainfall 

varies greatly (Khan et al., 2022). Every year, the nation receives 50 to 300 millimeters (about 



20  

11.81 in) of rainfall. Rainfall is essential to maintaining agricultural output and livelihoods, 

particularly for people residing along river basins [10]. 

Seasonal variations and regional topography are two elements that affect the geographical 

distribution of rainfall. Rainfall amounts vary around the nation, mostly due to the monsoon rains, 

which mostly fall in the summer. Pakistan's largest river, the Indus, is a perfect illustration of this 

unpredictability. Significant precipitation, frequently enhanced by glacier melt, falls on the upper 

reaches of the Indus basin in the northern mountainous regions, where orographic effects and 

melting are common. In contrast, there is less rainfall in the lower ranges, especially in the 

provinces of Sindh and Punjab [11]. 

Annual precipitation in Pakistan varies from about 100 millimeters (about 3.94 in) in the desert 

regions of Balochistan to more than 1,000 millimeters in locations like Azad Kashmir and the 

northern mountainous regions. Particularly during dry seasons when rainfall is rare, these patterns 

of rainfall impact water resource availability, essential for domestic consumption, industry, and 

agriculture. 

 

1.3 Pakistan Meteorological Department: 

The research employs secondary data obtained from the Pakistan Meteorological Department 

(PMD) to guarantee thorough coverage. Using the Maximum Product Spacing (MPS) approach 

and the Pearson Type-3 (PE3) distribution model, the analysis focuses on the Annual Maximum 

Rainfall Series (AMRS) using this data. Through a thorough analysis of precipitation patterns and 

their statistical properties, this method contributes to a better understanding of climatic variability 
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and trends. The work intends to enhance the resilience and adaptive capacity of water resource 

management policies in Pakistan by integrating AMRS data and modern statistical methodologies, 

thereby contributing significant insights into precipitation patterns.[12]. 

  

Study Rationale: 

Pakistan's location and topography provide a wide variety of weather conditions all year round. 

Pakistan experiences a variety of climates, some of which are: Pakistan's summers are hot and dry, 

with frequently over 40°C temperatures, particularly in the southern parts [13].  

 

1.5 Preference of PE3 as a model: 

Examining the frequency of rainfall becomes particularly important during the monsoon season, 

which typically lasts from June to September and contributes significantly to Pakistan's annual 

precipitation. Experts can improve their capacity to predict the likelihood and severity of floods 

by closely examining rainfall data during this period. A probability distribution function used in 

rainfall frequency analysis is the PE3 (Pearson Type III) Distribution. Current studies suggest that 

PE3 might be a good choice for predicting the frequency of extreme rainfall events in some parts 

of Pakistan, particularly for high return periods. In comparison, distributions like the Generalized 

Extreme Value (GEV) and Generalized Normal (GNO) may be better suited for shorter return 

periods [14].  
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1.6 Preference of MPS as an estimation method: 

A less well-established general estimating technique for extreme rainfall analysis is maximum 

product spacing. To address the tails of the rainfall frequency analysis and distribution of extreme 

events, it is important to space products as much as possible. The power of MPS lies in its capacity 

to examine a distribution's extreme values or tails. This capability is especially apparent in large 

datasets when the tails are heavily packed with data points and are crucial for comprehending 

uncommon occurrences [15]. By maintaining a consistent spacing distribution throughout the data 

range, MPS improves its capacity to record extremely high rainfall frequency analysis values.  

Even with this, the traditional approach, Maximum Likelihood Estimation (MLE), may have 

difficulties with the tails, giving priority to fitting the central mass of the data and jeopardizing the 

accuracy of extreme value estimations, particularly in big datasets where outliers are more 

prevalent. It is important to recognize that MPS has several limits, even if it exhibits resilience to 

outliers, reducing their impact in comparison to MLE. Although MLE is a less well-established 

method and has less experience than MPS, it is still effective for a variety of applications, even if 

MPS has higher computational requirements [16]. 
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Pakistan's Rainfall-Rich Regions: 

 

Fig 1.1: Map showing the climatic zones of Pakistan 

 

 

 

Stations of 

Zone A 

 

 

Astor, Gilgit, Skardu, 

Muzaffarabad, Chitral, 

Gupis, Drosh, Bunji, 

Balakot, GhariDupatta, 

Kakul 

 

Stations of 

Zone C 
Quetta, Kalat and 

Dalbaddin 

 

Fig 1.2 Selected zones of Pakistan 
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According to OCHA following are the affected vulnerable areas of Punjab, KPK, and 

Balochistan.  

 

Fig 1.3: Vulnerable area of Pakistan by OCHA 

The detailed analysis is given below in graphs in Fig 1.3, 1.4 and 1.5. 

 

Fig 1.4: Estimated affected population in vulnerable stations of Punjab (K) 
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Fig 1.5: Estimated affected population in vulnerable stations of KPK (K) 

 

 

Fig 1.6: Estimated affected population in vulnerable stations of Balochistan (K) 
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1.6 Problem Statement: 

The absence of reliable methodology may impede the ability to make accurate forecasts in the 

analysis of the annual maximum rainfall using the maximum product estimate method and the 

Pearson type III distribution. Current methods may need to account for important variables, 

resulting in inaccurate assessments of heavy precipitation occurrences. Closing this gap will help 

communities and infrastructure become more resilient to the effects of extreme weather. Therefore, 

creating a thorough framework that best incorporates these techniques is imperative to guarantee 

more accurate evaluations of the annual maximum rainfall.  

 

1.7 Motivation: 

This research aims to improve policy development at the National Disaster Management Authority 

(NDMA) and the Pakistan Meteorological Department (PMD). Precisely predicting the return 

period of extreme rainfall events in zones A and C is essential. This capacity for prediction allows 

for proactive preparedness for future events, protecting millions of priceless lives and human 

property. Authorities can put safety and security measures in place for communities against future 

disasters and reduce risks using accurate forecasts.  

 

1.8 Objectives: 

The study aims to achieve the following objectives: 

 Evaluate the performance of Maximum Product Spacing in estimating the parameters of 

the Pearson Type III distribution for extreme rainfall events. 
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 Compare the results obtained using Maximum Product Spacing with other commonly used 

estimation methods. 

 Assess the goodness-of-fit of the Pearson Type III distribution to the observed annual 

maximum rainfall series data. 

 events. Provide insights into the practical implications of using Maximum Product Spacing 

on the accuracy of at-site frequency analysis for extreme rainfall 

 

1.9 Relevance to national needs: 

Particularly in the context of hydrological studies and flood management, the Annual 

Maximum Rainfall (AMRS) data utilizing Pearson Type III (PE3) distribution on 

Maximum Product Spacing (MPS) is highly relevant to national demands. Analyzing 

AMRS data with PE3 distribution helps accurately model extreme rainfall events. 

Understanding the distribution and frequency of maximum rainfall is essential for 

designing effective flood defense systems, such as drainage systems, levees, and dams.  

By improving the accuracy of early warning systems for extreme weather, this analysis 

helps to minimize the loss of life and property by facilitating prompt evacuations and 

preparations. 

Data also facilitates better disaster recovery planning, aiding the speedy reconstruction 

and rehabilitation of communities following severe weather occurrences.  

 

1.10 Content organization of thesis: 

The remaining content of the thesis is organized below in the following order: 
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 In Chapter 2, we delve into the literature review, examining previous studies addressing 

similar problems. We discuss the several factors' data analysts have used in the past and 

elucidate the goals of the applied theories. 

 Chapter 3 elaborates on the proposed methodology, providing a comprehensive discussion 

alongside the illustration of the available dataset and the study area. 

 Chapter 4 elaborates on the performed analysis of annual maximum rainfall data. 

 Chapter 5 presents the study's results, describes work that can be carried out in the 

Future, and forecasts and summarizes our research's results.  
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Chapter 2 

 

2 Literature review 

 

2.1 Previous Research: 

There is a variety of literature on the analysis of the annual maximum rainfall using estimate 

techniques like maximum likelihood and L-moments. Still, there needs to be more information 

regarding the maximum product spacing utilizing at-site analysis. The investigations by Khan et 

al. [17] serve as benchmark studies for the start of this study project. The objective is to use relevant 

models to generate appropriate estimates that the relevant officials can use to influence planning 

and policymaking concerning agricultural management and water resources. Below is a summary 

of a few of the published studies:  

In many applications, extreme values, especially annual maxima, are modeled using extreme value 

analysis. Another use of extreme value analysis, namely the Pearson Type-3 (PE3) distribution for 

modeling extreme values, is Khan et al. The impact of several estimate techniques (maximum 

product of spacing, maximum likelihood estimation, and L-moments) on fitting the PE3 

distribution to extreme values. In addition to offering suggestions for fitting the PE3 distribution 

to extreme values based on sample size and form properties of the data, extreme value analysis 

aids in comprehending the features of extreme events [18]. 

Kim et al. estimated extreme rainfall events under nonstationary settings, considering how 

urbanization and climate change affect hydrological data. Based on nonstationary generalized 

extreme value (NS-GEV) distributions, it suggests a nonstationary population index flood (NS-
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PIF) method that considers the nonstationary statistical characteristics at each location. To estimate 

extreme rainfall occurrences in South Korea, the NS-PIF method is assessed and contrasted with 

current approaches. Government officials may find the study's findings helpful in putting 

preventative measures and future advances into practice [19]. 

Hussain et al. performed a regional frequency analysis of Sindh, Pakistan's Annual Maximum 

Monthly Rainfall Totals (AMMRT), and suggested a linear regression model to calculate rainfall 

quantiles for ungauged locations. The analysis discovers that there is no serial correlation and no 

discordant sites in the data set at the specified sites, which is random. The quantiles and parameters 

of three distributions (GNO, PE3, and GPA) are computed once they satisfy the goodness-of-fit 

requirement. It is discovered that the constructed regression model which considers the site 

elevation is adequate for explaining the variation in rainfall. To get better results, the study 

recommends adding more data and site features and stresses the significance of employing formal 

tests for confirming regression estimates [20].  

Qin et al. also aimed to research guiding national or international coastal engineers, managers, and 

planners in attaining consistent outcomes from extreme value evaluations. It contrasts the POT 

approach with the BM method for measuring extreme still water levels, emphasizing the need for 

indirect methods and problems with underestimating. The essential procedures, including 

parameter estimation and detrending approaches, for calculating extreme water level probability 

using the BM and POT methods are highlighted in the article. The theoretical distributions of GEV 

and GPD, which are frequently employed in extreme value investigations, are covered, along with 

a description of the functions and formulas needed. The POT approach is preferred for more 

accurate estimations of extreme still water levels, and a 1-year moving average is suggested for 

detrending [21].  
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Nawaz et al. primary emphasis is on applying L-moment analysis to regional rainfall frequency 

analysis in seven different northern Punjab, Pakistan locales. After the data series from these seven 

sites were examined, numerous important conclusions were made. First, there was no evidence of 

serial correlation, and the data were shown to be independent, uniformly distributed, and random. 

The area also appeared uniform, with not one of the seven locations showing discrepancies. There 

were several goodness-of-fit tests used to evaluate the suitability of various probability 

distributions for quantile estimation. The L-moment Ratio diagrams, the Z DIST statistic, and the 

Mean Absolute Deviation Index were all examined in these experiments. According to the 

findings, the best distributions to use when estimating quantiles were the Pearson Type III (PE3), 

Generalized Normal (GNO), and Generalized Extreme Value (GEV) [22].  

Shahzadi et al. aimed to calculate the regional quantiles of rainfall at 23 distinct Pakistani sites. 

The L-moment-based index flood regional frequency analysis is used to carry out this estimation. 

The molds of independence, stationarity, and identical distribution are tested using a variety of 

techniques to guarantee the analysis's validity. Three separate regions are identified within the 

research area, mostly due to the features of highly elevated locations that experience heavier 

rainfall. GEV (Generalized Extreme Value), GNO (Generalized Normal), and GLO are the 

probability distributions that are most appropriate for calculating regional quantiles within these 

regions (Generalized Logistic). More precisely, it is found that GNO is the most reliable option 

for estimating regional quantiles for longer return times, while GEV works better at shorter return 

periods. Measures such as relative root mean square error, relative absolute Bias, and relative Bias 

are used to assess the accuracy of these regional estimations (RMSE). The study uses the regional 

L-moments algorithm described by Hosking and Wallis in 1997 to estimate the regional frequency 

distributions [23]. 
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 2.2 Classical Methods: 

Forestieri et al. also noticed two important aspects: the necessity of accurate precipitation forecasts, 

especially for hydraulic engineering decision-making, and the increasing influence of extreme 

rainfall events because of climate change. In this study, we utilize regional frequency analysis 

(RFA) to analyze precipitation data that we have gathered from multiple rainfall stations located 

throughout Sicily, Italy. There is variation in the length of rainfall in these statistics. The RFA 

methodology classifies stations with similar precipitation patterns by using principal component 

analysis (PCA) and k-means clustering algorithms. We evaluate three probability distributions 

(LN3, GEV, TCEV) for their applicability in modeling extreme rainfall, and we use L-moments 

to estimate regional parameters. We utilize criteria such as relative Bias and relative root-mean-

square error to assess the accuracy of growth curves (RMSE). Our results show that the LN3 

distribution performs better than the others over longer return times. Considering this, this study 

offers an updated reference for gauging extreme precipitation levels in Sicily, which is essential 

for creating depth–duration–frequency (DDF) curves. [24]. 

Rajeevan et al., using a dataset that covers 104 years of gridded daily rainfall data and the NOAA 

Extended Reconstructed SST (ERSST) Version 2 dataset, investigate the changes and patterns of 

extreme rainfall events in India. A strong relationship has been found by the researchers between 

the equatorial Indian Ocean's sea surface temperatures (SST) and the frequency of very heavy 

rainfall (VHR) episodes in central India. The study indicates an increase in the frequency of VHR 

episodes and the corresponding flood danger in central India in the context of continuing global 

warming. From 1901 to 2004, there was an increase in the number of VHR events, according to 

the data. This increase was especially noticeable after the mid-1970s. Geographically, the west 
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coast, northeastern India, and central India are the areas where the monsoon season's intense 

rainfall events are concentrated. [25]. 
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Chapter 3 

 

3. Methodology 

In this chapter, we have discussed the methodology used to perform this research. 

Figure 3.1 gives the overall outline. The details of each step of the methodology are 

given in the following sections.  

 

 

 

Fig 3.1: Flowchart of methodology steps 
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3.1 At-site Analysis: 

To achieve the research goals, at-site frequency analysis is used to look at rainfall data directly at 

a particular spot. To comprehend the distinct patterns, intensities, and behaviors of rainfall 

occurrences at that location, this method entails studying annual or daily precipitation data. It also 

entails researching a range of environmental factors, including soil properties, water quality, and 

air quality, all of which are essential to comprehending the specific effects of heavy rainfall in 

each area. At-site analysis, which focuses on the individual characteristics of a given area, offers 

crucial insights for site-specific decision-making and management. This allows for precise and 

efficient planning and mitigation techniques that are customized to the site's particular 

requirements.  

 

 

 

 

 

 

 

 

 

Fig 3.2: Methodology steps for at-site frequency analysis 

 

Screening of data 

 

Descriptive Analysis 

Model Selection and 

Parameter Estimation 

Frequency Analysis and Risk 

Assessment 



36  

3.2 Initial screening of data: 

Initial screening is done to check whether the given data is suitable for at-site frequency analysis 

of rainfall. According to Hosking and Wallis (1997) and [26], useful information can be obtained 

by comparing MPS on AMRS with available evidence of estimation methods. 

3.3 Statistical Analysis: 

Three different types of data (annual rainfall, yearly daily maximum rainfall, and annual monthly 

maximum rainfall) are subjected to descriptive statistical analysis. Organization and 

summarization of large-scale data are the focus of descriptive statistics. The raw data is presented 

via tables, graphs, and numbers (Ott and Longnecker, 2010). Using rainfall data, we conducted 

descriptive statistical analyses to investigate its skewness, peakedness, central tendency (mean, 

median, and mode), variability (standard deviation), and symmetry (kurtosis) [27]. The following 

lists the numerous statistical moments that were employed in this investigation:  

First moment (mean): 

 ӯ =  Ʃ 𝑦𝑖 /𝑛                                 3.1 

 

Second moment (variance): 

        𝑆 2 =  Ʃ (𝑦𝑖 −  ӯ) 2/

 𝑛 –  1 

                                 3.2 
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Third moment (skewness): 

                                             g =  n Ʃ (yi −  ӯ) 3/ (n −

 1)(n −  2)s 3 

                                      3.3 

 

Fourth moment (kurtosis): 

Ɣ2 = [(µ4)(µ2)2] − 3                                       3.4 

 

3.4 Descriptive analysis: 

To analyze the data, extreme value analysis will be used for our results since data contains the 

annual maximum value of precipitation. Therefore, we will adopt the block maxima approach to 

check the positive and negative trend of maximum values. The generalized extreme value 

distribution model described below will be used to verify the results above. In addition, statistical 

tests will be performed to ascertain which model best fits our data. The maximum likelihood 

(MLE), maximum product spacing (MPS), and L-moment (LM) approaches are some of these 

assessments. In this evaluation, the data's location, scale, and form are considered when estimating 

Bias and the root mean square error (RMSE).  

 

3.5 Model of Estimation: 

Pearson type III distribution (PE3) 

The Pearson type III distribution (PE3) is one of the seven varieties of probability distributions 

that Pearson proposed. To be mostly applied in survival analysis in biostatistics. As a parent model 
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of the regular Gamma distribution, this distribution is sometimes called the three-parameter 

generalized Gamma distribution. It is one of the distributions that is most likely to describe skewed 

or asymmetric data. The distribution of Pearson type III has two exceptional situations. When the 

shape parameter of the first example becomes zero, it reduces to a normal distribution with all its 

characteristics. The second instance of Pearson type III pertains to a reduction in the exponential 

distribution when the shape parameter is set to two. It is a widely used distribution for forecasting 

and modeling hydrology. Not only are extreme events, such as strong floods and excess rainfall, 

typically not symmetrical around their means, but the logarithm makes things much easier to 

understand when the underlying variable is used.  

 

Generalized Extreme Value Distribution: 

To simulate a random variable's extreme values (high or low), statisticians employ the Generalized 

Extreme Value (GEV) distribution, a probability distribution [28]. It is typically utilized in fields 

where severe events are of interest, like hydrology, meteorology, finance, and environmental 

research. The probability density function (pdf) of the GEV distribution is given by: 

𝑓(𝑥) = 𝜎1[1 + 𝜉(𝜎𝑥 − 𝜇)] − 1/𝜉 − 1exp{−[1 + 𝜉(𝜎𝑥 − 𝜇)] − 1/𝜉} 3.5 

Where: 

 x is the random variable. 

 μ is the location parameter, which shifts the distribution along the x-axis. 

 σ is the scale parameter, which controls the spread or variability of the distribution. 

 ξ is the shape parameter. It determines the shape of the distribution: 

 When 𝜉 >0, the distribution is right-skewed (Type II extreme value distribution). 
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 When 𝜉 <0, the distribution is left-skewed (Type III extreme value distribution). 

 

When =0, when modeling the maximum (or minimum) of a collection of samples from a random 

variable, the distribution becomes the Gumbel distribution. Gumbel, Frechet, and Weibull are the 

three extreme value distribution types included in the GEV distribution. The type of selection is 

based on the shape parameter's value.  

Because it describes the tail behavior of distributions, the GEV distribution is helpful for modeling 

extreme events. It is frequently used in risk assessment, insurance, and environmental research to 

analyze uncommon but severe catastrophes, including floods, droughts, extremely elevated 

temperatures, or financial market crises.  

 

3.6 Method of estimation: 

L-Moment: 

Statistical measurements called "L-moments" are employed in hydrology, meteorology, and 

related domains to analyze data distributions. They have some benefits over more conventional 

moments like the mean, variance, skewness, and kurtosis, especially when analyzing data with 

heavy tails or skewed distributions. A distribution's probability-weighted moments (PWMs) are 

the source of the L-moments.  

Three L-moments exist:  

1. L1 (mean): Equivalent to the mean of the distribution. 

2. L2 (variance): Equivalent to half the variance of the distribution. 
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3. L3 (skewness): Measures the asymmetry of the distribution. 

4. L4 (kurtosis): Measures the tail heaviness of the distribution. 

The Generalized Pareto Distribution (GPD) and the Generalized Extreme Value (GEV) 

distribution, which are frequently used in the modeling of extreme events like floods and droughts, 

are two examples of distributions for which L-moments are frequently used to estimate parameters.  

The advantage of L-moments is superior to regular moments because they are typically more 

resilient and unaffected by outliers. This property makes them especially helpful for studying data 

with skewed distributions or heavy tails. Furthermore, L-moments are useful for practical 

applications since they may be promptly estimated from data without necessitating an 

understanding of the underlying distribution.  

Maximum Likelihood: 

The statistical technique known as Maximum Likelihood Estimation (MLE) is flexible and can be 

used with small, big, or moderate-sized data sets. MLE is determined not by the data quantity but 

by its distributional assumptions, regardless of its size. MLE can estimate parameters for tiny data 

sets, however, because of possible limits in precision and accuracy, care should be used. For 

moderate-sized data sets, MLE usually yields more trustworthy estimates by balancing 

computational viability and accuracy. On the other hand, MLE scales well and converges to true 

parameter values with a large sample size. Therefore, it is still effective for large data sets, even 

with computing difficulties [29]. MLE is frequently utilized for parameter estimation in a variety 

of domains, providing flexibility and dependability for a range of data sizes. 

 Mathematically, the formula for MLE can be expressed as: 
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θ^MLE = argmaxθ(L(θ ∣ x)) 3.6 

Where, 

 θ^MLE represents the maximum likelihood estimate of the parameter vector θ. 

 L (θ∣x) denotes the likelihood function, the joint probability density function (pdf) of the 

observed data x given the parameter vector θ. 

 

Maximum product spacing: 

Irrespective of the underlying distributional shape—normal, skewed, or otherwise the Maximum 

Product Spacing (MPS) approach is especially well-suited for examining data sets that display 

severe events. However, it works particularly well for distributions with constrained support, 

which might be difficult for more conventional techniques like Maximum Likelihood Estimation 

(MLE). Even with small sample sizes, MPS is robust in terms of sample size and can produce 

accurate parameter estimates and confidence ranges. This means that it can be used in a variety of 

contexts, such as the analysis of annual maximum rainfall in hydrology or severe temperature 

occurrences in climatology, as well as small-scale research with sparse data sets and larger-scale 

analyses with abundant data sets.  

This can be calculated as: 

θ^MPS = argmaxθ(∑i = 1n + 1log(F(X(i); θ) − F(X(i − 1); θ))) 3.7 

Where, 

 θ^ MPS is the estimated parameter value obtained using MPS. 
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 F(X (i );θ) represents the cumulative probability of the i-th ordered data point based on the 

parameter θ. 

 X(i) denotes the i-th ordered data point. 

 n is the sample size. 

The essence of MPS is summed up in this formula, which maximizes the product of spacing 

between order statistics to estimate parameters with accuracy. This makes MPS a useful tool in a 

variety of statistical investigations, particularly when working with extreme occurrences or small 

data sets.  
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Chapter 4 

 

4 Results and Discussions 

 

We implemented the proposed methodology of At-site frequency analysis based on Maximum 

product spacing, Maximum Likelihood, and L-moments using the step-by-step processes that are 

shown in Figure. In this section, the results are presented in the same sequence, along with their 

statistical reasoning and discussion. 

4.1 Study Area and Available Data  

In terms of latitude, Pakistan sits between 23 degrees 35 minutes and 37 degrees 05 minutes north 

and between 60 degrees 50 minutes and 77 degrees 50 minutes east. Its boundaries meet the 

Hindukush Mountains in the north, and it stretches from the Arabian Sea in the south to the Pamirs 

in the northwest [30]. Pakistan's terrain demonstrates dramatic temperature variations over time, 

which characterize the country's climate during the many seasons. Pakistan saw a rise in 

precipitation from 223.41 mm (about 8.8 in) in 2021 to 442.88 mm in 2022 

(https://tradingeconomics.com/pakistan/precipitation). Pakistan saw 282.50 mm (about 11.12 in) 

of precipitation on average between 1901 and 2022; the country's record low was 181.50 mm 

(about 7.15 in) in 2018, and its highest point was 442.88 mm in 2022.  

https://tradingeconomics.com/pakistan/precipitation
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Fig 4.1 Rainfall record from 2011-2022 

 

Pakistan has four different seasons, which are as follows: 

1) Winter (December to March) 

2) Summer (April to June) 

3) Monsson season (July to September) 

4) Post Monsoon season (October to November) 

There are restrictions in detecting rainfall trends because the distribution of rainfall lacks a distinct 

altitudinal trend. To address this, a thorough dataset from 14 stations spread over the nation for 36 

years (1980–2015) from east to west and from the far north to the far south was used. The five 
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microclimatic zones that PMD separated these stations into are designated as A, B, C, D, and E in 

Figure 4.2, along with their corresponding latitudinal extend 

(https://www.researchgate.net/figure/Map-of-Pakistan-Showing-different-climate-zones-of-

Pakistan-along-with-their-latitude-and_fig1_276060366). To provide an extensive picture of the 

nation's climate, stations were chosen according to their latitudinal position, height above sea level, 

duration of recording period, data completeness, and record dependability [31].  

 

4.2 Zone A 

Zone A comprises stations with cold climates and high mountains in northern Pakistan. These 

stations are Chitral, Gilgit, Muzaffarabad, Said-u-Sharif, Skardu, Astor, Dir, Chilas Parachinar, 

and Kakul. They are mostly hill stations located between 34 N and 38 N in the Himalaya, 

Hindukush, and Koh-e-Sufaid mountain ranges, as described in the table below [32]. 

 

4.3 Zone C  

The climate is cold in winter and hot in summer. Most of them are mountainous stations with high 

elevations from the mean sea level and cover an area between 27 N to 32 N and 64 E to 70 E, as 

described in the table below. Stations included in this zone are Quetta, Zhob, Kalat and Khuzdar 

[33]. 

https://www.researchgate.net/figure/Map-of-Pakistan-Showing-different-climate-zones-of-Pakistan-along-with-their-latitude-and_fig1_276060366
https://www.researchgate.net/figure/Map-of-Pakistan-Showing-different-climate-zones-of-Pakistan-along-with-their-latitude-and_fig1_276060366
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Fig 4.2: Map of Pakistan Showing different climate zones of Pakistan along with their latitude 

and longitude. 
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Table 4.1 Geographical stations of Zone A 

 

ZONE C 

Table 4.2 Geographical stations of Zone C 

Sr.NO Sites Longitude Latitude 

1 QUETTA 66.99° 30.18° 

2 KALAT 66.59° 29.03° 

3 DALBANDIN 64.42° 28.88° 
 

4.4 Empirical Analysis: 

The performance of three estimation methods, L-Moments, Maximum Product Spacing, and 

Maximum Likelihood has been tested using Pearson type III distribution. Annual maximum 

rainfall series data (AMRS) of zones A and C is used for fitting distribution on Pearson type III. 

PMD (Pakistan Meteorological Department) has divided the rainfall stations of Pakistan into five 

zones [34]. Zone A and C are selected based on trends and tendencies of scale and shape 

characteristics based on their skewness and kurtosis values. None of the established studies so far, 

Sr.No Sites Longitude (E) Latitude (N) 

1 GILGIT 74.31° 35.92° 

2 SKARDU 75.63° 35.30° 

3 ASTORE 74.84° 35.36° 

4 MUZAFFARABAD 73.47° 34.36° 

5 CHITRAL 71.77° 35.77° 

6 GUPIS 74.51° 35.97° 

7 DROSH 71.80° 35.57° 

8 BUNJI 74.38° 35.38° 

9 BALAKOT 73.35° 34.54° 

10 GHARIDUPATTA 73.61° 34.22° 

11 KAKUL 73.16° 34.21° 
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to the best of the authors' knowledge, performed the at-site frequency analysis using AMRS using 

Pearson type III distribution of zones A and C. 

To observe the general trends and tendencies of AMRS at each site, a few descriptive measures 

are calculated and presented in Table 4.3. The information reveals that for the sites of Zone A, the 

sample size is fixed; that is 36 years (1980-2015) of data is used for descriptive analysis. The shape 

of the data series for stations of zone A is positively skewed, with the value of skewness ranging 

from 0.36 to 1.37 and leptokurtic behavior as kurtosis values are showing more spread ranging 

from 0.002 to 3.24. These descriptive statistics indicate that the trends and tendencies of AMRS at 

zone A stations differ significantly, particularly in distribution shape. Consequently, this data is 

well-suited for evaluating the effectiveness of various estimation methods for fitting the PE3 

distribution. 

Table 4.3: Descriptive statistics of AMRS of Zone A.  

S. 
No. 

Site Name Min Max Mean Standard 
Deviation 

Skewness Kurtosis 

1 GILGIT 13.08 
 

37.15 
 

21.37 
 

5.19 
 

0.854 
 

0.943 
 

2 SKARDU 13.20 36.28 21.05 
 

5.82 
 

0.798 
 

0.002 
 

3 ASTORE 13.82 
 

55.23 
 

26.21 
 

8.39 
 

1.338 
 

2.882 
 

4 MUZAFFARABAD 30.55 
 

153.98 
 

74.463 
 

31.43 
 

1.091 
 

0.718 
 

5 CHITRAL 18.69 
 

51.67 
 

29.67 
 

7.60 
 

0.829 
 

0.529 
 

6 GUPIS 16.55 
 

44.84 
 

27.65 
 

6.32 
 

0.365 
 

0.181 
 

7 DROSH 28.48 
 

79.38 
 

47.17 
 

12.40 
 

0.752 
 

0.213 
 

8 BUNJI 16.24 
 

78.97 
 

33.46 
 

12.73 
 

1.378 
 

3.242 
 

9 BALAKOT 30.55 153.98 74.46 31.43 1.091 0.718 
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10 GHARIDUPATTA 32.15 
 

184.27 
 

75.72 
 

35.78 
 

1.121 
 

1.188 
 

11 KAKUL 32.15 
 

184.27 
 

75.72 
 

35.78 
 

1.121 
 

1.188 
 

 Average  23.23 96.36 
 

46.08 
 

17.53 
 

0.976 
 

1.07 
 

Note: Here, n is the number of observations, Min and Max are the minimum and maximum 

values in the data series, and Skewness and Kurtosis are moment’s measures of skewness of 

kurtosis. 

Table 4.4: Descriptive statistics of AMRS of Zone C.  

S. 
No. 

SITES Min Max Mean Standard 
Deviation 

Skewness Kurtosis 

1 QUETTA 4.74 
 

28.52 
 

15.08 
 

6.15 
 

0.801 
 

-0.099 
 

2 KALAT 5.37 
 

61.30 
 

15.99 
 

11.85 
 

2.286 
 

6.239 
 

3 DALBANDIN 4.57 
 

32.04 
 

12.70 
 

7.87 
 

1.224 
 

0.356 
 

 Average  4.89 
 

40.62 
 

14.59 
 

8.62 
 

1.43 
 

2.16 
 

 

Notes: Here is the number of observations, Min and Max are the minimum and maximum values 

in the data series, and Skewness and Kurtosis are moment’s measures of kurtosis's skewness. 

The shape of the data series for stations of zone C is positively skewed, with a skewness value 

ranging from 0.801 to 2.28. Leptokurtic behavior is also evident, as kurtosis values show more 

spread, ranging from -0.099 to 6.239.  
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4.5 Time series plots: 

The time series graphs show trends and variations over time. They are drawn for the descriptive 

analysis of all 14 zone A and C stations under the study from Fig 4.3 to 4.16. The time of 36 years 

is plotted on the x-axis, and annual maximum rainfall values are plotted on the y-axis. The mean 

line is drawn to see the trends fluctuating across the mean. 

In the time series graphs of zone A for Astor, the peak value of 56mm (about 2.2 in) occurred in 

1991. The average value is 26.5mm (about 1.04 in), as shown in Figure 4.3. Chitral showed a peak 

value of 53.5mm (about 2.11 in) in 1998 with an average value of 29.55mm (about 1.16 in), as 

shown in Fig 4.4. Gilgit showed a peak value of 37mm (about 1.46 in) occurred in 1993 with an 

average value of 22mm (about 0.87 in) as shown in Fig 4.5. Muzaffarabad showed a peak value 

of 155mm (about 6.1 in) in 2002 with an average value of 74mm (about 2.91 in), as shown in Fig 

4.6. Skardu showed a peak value of 37mm (about 1.46 in) in 1992 with an average value of 22mm 

(about 0.87 in), as shown in Fig 4.7. Kakul showed a peak value of 180mm (about 7.09 in) in 2001 

with an average value of 75mm (about 2.95 in), as shown in Fig 4.8. Gupis showed a peak value 

of 45mm (about 1.77 in) in 1994 with an average value of 27.5mm (about 1.08 in), as shown in 

Fig 4.9. Drosh showed a peak value of 79.5mm (about 3.13 in) in 2008 with an average value of 

47mm (about 1.85 in), as shown in Fig 4.10. Bunji showed a peak value of 79.5mm (about 3.13 

in) in 2001 with an average value of 32mm (about 1.26 in), as shown in Fig 4.11. Balakot showed 

a peak value of 54mm (about 2.13 in) in 2002 with an average value of 74mm (about 2.91 in), as 

shown in Fig 4.12. GhariDupatta showed a peak value of 180mm (about 7.09 in) in 2002 with an 

average value of 75mm (about 2.95 in), as shown in Fig 4.13. 
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For zone C, the time series graph for Quetta showed a peak value of 28mm (about 1.1 in) in 2008 

with an average value of 15mm (about 0.59 in), as shown in Fig 4.14. Kalat showed a peak value 

of 61.5mm (about 2.42 in) in 2012 with an average value of 17.5mm (about 0.69 in), as shown in 

Fig 4.15. Dalbaddin showed a peak value of 33mm (about 1.3 in) in 1986 with an average value 

of 12.5mm (about 0.49 in), as shown in Fig 4.16.  

 

Fig 4.3: Time series plot of the data for the site of Astor 
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Fig 4.4: Time series plot of the data for the site of Chitral 

 

 

Fig 4.5: Time series plot of the data for the site of Gilgit 
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Fig 4.6: Time series plot of the data for the site of Muzaffarabad 

 

Fig 4.7: Time series plot of the data for the site of Skardu 
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Fig 4.8: Time series plot of the data for the site of Kakul 

 

Fig 4.9: Time series plot of the data for the site of Gupis 
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Fig 4.10: Time series plot of the data for the site of Drosh 

 

Fig 4.11: Time series plot of the data for the site of Bunji 

 



56  

 

Fig 4.12: Time series plot of the data for the site of Balakot 

 

Fig 4.13: Time series plot of the data for the site of GhariDupatta 
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For Zone C: 

 

Fig 4.14: Time series plot of the data for the site of Quetta 

 

 

Fig 4.15: Time series plot of the data for the site of Kalat 
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Fig 4.16: Time series plot of the data for the site of Dalbaddin 
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Table 4.5 Values of Bias and RMSE of the parameters estimated through LM, MLE and MPS for 

Zone A 

 
ESTIMATION METHODS LM MLE MPS 

 SITES 

 

PARAME

TER 

LOCATION 

(Mu) 

SCALE 

(Sigma

) 

SHAPE 

(Gamm

a) 

LOCA

TION 

SCAL

E 

SHAP

E 

LOCATIO

N 

SCAL

E 

SHAP

E 

1 ASTORE ESTIMAT

E 

26.21 
 

8.36 
 

1.24 
 

26.21 
 

8.22 
 

1.13 
 

26.52 
 

8.97 
 

1.10 
 

 RMSE 1.34 
 

1.42 
 

0.48 
 

1.34 
 

1.46 
 

0.45 
 

1.56 
 

1.62 
 

0.39 
 

 BIAS 0.0033 
 

0.0428 
 

0.0287 
 

0.027
0 
 

0.10
72 
 

0.116
6 
 

0.2783 
 

0.69
54 
 

0.035
0 
 

2 CHITRAL ESTIMAT

E 

29.68 
 

7.82 
 

1.02 
 

29.68 
 

7.99 
 

1.33 
 

29.95 8.46 
 

1.22 
 

 RMSE 1.27 
 
 

1.17 
 

0.44 
 

1.37 
 

1.66 
 

0.42 1.43 
 

1.58 0.38 
 

 BIAS 0.0381 0.0260 0.0283 0.003
8 
 

0.29
46 
 

0.137
3 
 

0.3097 
 

0.68
19 

0.033
9 
 

3 GILGIT ESTIMA

TE 

21.37 
 

5.26 
 

0.91 
 

21.37 
 

5.21 1.02 
 

21.52 
 

5.63 0.94 
 

  RMSE 0.87 
 

0.81 
 

0.48 
 

0.85 0.91 0.46 
 

0.98 
 

0.96 
 

0.44 
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  BIAS 0.01
69 
 

0.049
4 
 

0.0
472 
 

0.003
2 
 

0.050
8 
 

0.094
0 
 

0.142
0 
 

0.46
39 
 

0.0441 
 

4 MUZAFFARABAD ESTIMATE 74.4
6 
 

32.40 
 

1.4
4 
 

74.46 31.48 
 

1.31 
 

75.51 
 

33.5
4 
 

1.24 
 

  RMSE 5.36 5.85 0.4
8 
 

5.38 6.68 0.43 
 

6.08 
 

6.45 
 

0.39 
 

  BIAS 0.21
34 
 

0.084
2 
 

0.0
333 

0.054
7 
 

1.575
7 
 

0.183
0 
 

1.294
9 
 

2.63
85 

0.0287 
 

5 SKARDU ESTIMATE 21.0
5 
 

6.05 
 

1.1
5 
 

21.05 6.36 
 

1.55 
 

21.27 6.59 
 

1.42 
 

  RMSE 1.02 
 

0.97 
 

0.4
6 
 

1.09 
 

1.39 
 

0.36 
 

1.17 1.35 
 

0.36 
 

  BIAS 0.01
86 

0.011
9 
 

0.0
511 
 

0.023
0 
 

0.375
2 

0.177
1 
 

0.324
4 

0.59
54 

0.0496 
 

6 KAKUL ESTIMATE 75.7
2 

37.03 
 

1.4
0 
 

75.48 
 

44.32 
 

2.05 
 

77.47 
 

41.7
6 
 

1.73 
 

  RMSE 6.15 
 

6.52 0.4
8 
 

7.62 
 

11.08 0.34 7.25 9.05 0.31 
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  BIAS 0.31
08 

0.419
0 

0.0
387 

0.403
0 

4.302
9 

0.228
8 

1.979
6 

3.88
13 

0.0810 

7 GUPIS ESTIAMT

E 

27.6
5 
 

6.41 
 

0.2
4 
 

27.65 
 
 

6.28 
 
 

0.50 
 
 

27.77 
 

6.89 
 
 

0.52 
 
 

  RMSE 1.07 
 

0.81 0.4
6 
 

1.04 
 
 

0.86 
 
 

0.51 
 
 

1.16 
 

1.02 
 
 

0.49 
 

  BIAS 0.03
87 
 

0.021
0 
 

0.0
071 
 
 

0.009
4 
 
 

0.028
0 
 
 

0.064
1 
 

0.100
4 
 
 

0.49
93 

0.0085 
 

8 DROSH ESTIMAT

E 

47.1
8 
 

12.73 
 

0.9
5 
 

47.18 
 

12.80 
 

1.17 
 

47.55 
 

13.6
1 
 

1.07 
 

  RMSE 2.14 1.99 
 
 

0.4
7 
 
 

2.17 
 
 

2.45 
 

0.48 
 

2.42 
 
 

2.45 
 
 

0.40 
 

  BIAS 0.07
32 
 

0.162
2 
 

0.0
331 
 

0.009
3 
 

0.337
7 
 
 

0.109
6 

0.341
3 
 

1.04
09 
 

0.0213 
 

9 BUNJI ESTIMAT

E 

33.4
6 
 

12.72 
 

1.2
1 
 

33.46 
 

12.85 1.35 
 
 

33.98 
 
 

13.8
4 
 
 

1.31 
 
 

  RMSE 2.08 2.11 
 

0.4
7 
 

2.30 
 
 

2.75 
 

0.40 2.36 2.67 
 

0.39 
 
 

  BIAS 5.21
35 
 

0.119
8 
 
 

0.0
172 
 
 

0.057
2 
 
 

0.625
8 
 

0.178
6 
 
 

0.642
4 
 

1.23
80 
 

0.0416 
 
 

1

0 

BALAKOT ESTIMAT

E 

74.4
6 
 

32.40 
 
 

1.4
4 
 

74.46 
 

31.48 
 

1.31 
 
 

75.51 
 
 

33.5
4 
 
 

1.24 
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The major findings of the study of zone A are: 

1. For the site of Astor, with a fixed sample size, high skewness value, and low kurtosis value, 

the estimates of location parameters show that the MLE method shows the smaller value 

for RMSE, and the LM method gives the lowest value for Bias. For the scale parameter, 

LM gives the smallest value for Bias and RMSE. For the shape parameter, MPS gives the 

lowest value for RMSE, and LM gives the lowest value for Bias. 

 

2. For the site of Skardu, with a fixed sample size, moderate skewness, and low kurtosis in 

the estimates of the location parameter, the LM method shows the lowest value for both 

  RMSE 5.40 6.004 0.4

9 

5.30 6.46 0.43 5.98 6.24 

 

0.39 

  BIAS 0.07
56 

0.241
1 

0.0
330 

0.078
2 

1.102

9 

0.142

7 

1.297
6 

2.95
64 

0.0451

5 

1

1 

GHARIDUPATT

A 

ESTIMAT

E 

75.7

2 

37.03 1.4

0 

75.48 44.32 2.05 77.47 41.7

6 

1.73 

  RMSE 6.10 6.46 0.4

8 

7.58 11.21 0.33 7.29 9.01 0.31 

  BIAS 0.36
51 

0.405

4 

0.0
456 

0.105

0 

4.582

1 

0.257

7 

1.861

7 

3.77
28 

0.0855 
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Bias and RMSE. For the scale parameter, LM shows the lowest value for both RMSE and 

Bias. While for the shape parameter, MPS shows the lowest value for both RMSE and Bias. 

 

3. For the Gilgit site, which has a fixed sample size with moderate skewness and low kurtosis 

value, the estimates of the location parameter MLE show the lowest value for both Bias 

and RMSE. For the scale parameter, LM shows the lowest value for both Bias and RMSE. 

While for the shape parameter, MPS shows the lowest value for both RMSE and Bias. 

 

4. For the site of Muzaffarabad, which has a fixed sample size with high skewness and low 

kurtosis value, the estimates of the location parameter show that the LM method shows the 

smaller value for RMSE, and the MLE method gives the lowest value for Bias. For the 

scale parameter, LM shows the lowest value for both Bias and RMSE. While for the shape 

parameter, MPS shows the lowest value for both RMSE and Bias. 

 

5. For the Gupis site, which has a fixed sample size with no skewness and low kurtosis value 

in the estimates of location parameters, the MLE method shows a smaller value for both 

RMSE and Bias. For the scale parameter, LM shows the lowest value for both Bias and 

RMSE. For the shape parameter, LM shows the lowest value for both RMSE and Bias. 

 

6. For the site of Chitral, which has a fixed sample size with moderate skewness and low 

kurtosis value in the estimates of the location parameter, the LM method shows the lowest 

value for RMSE, and MLE shows the lowest value for Bias. For the scale parameter, LM 
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shows the lowest value for both RMSE and Bias. For the shape parameter, MPS shows the 

lowest value for RMSE, and LM shows the lowest value for Bias. 

 

7. For the site of Drosh, which has a fixed sample size with moderate skewness and low 

kurtosis in the estimates of location parameters, the LM method shows the lowest value for 

RMSE, and MLE shows the lowest value for Bias. For the scale parameter, the LM method 

shows the lowest value of both RMSE and Bias. For the shape parameter, MPS shows the 

lowest value for both RMSE and Bias. 

 

8. For the site of Bunji, which has a fixed sample size with high skewness and high kurtosis 

value in the estimates of location parameters, LM shows the lowest value for RMSE, and 

MLE shows the lowest value for Bias. For the scale parameter, LM shows the lowest value 

for both RMSE and Bias. For the shape parameter, MPS shows the lowest value for RMSE, 

and LM shows the lowest value for Bias. 

 

9. For the site of Balakot, which has a fixed sample size with high skewness and low kurtosis 

value in the estimates of location parameters, MLE shows the lowest value for RMSE, and 

LM shows the lowest value for Bias. For the scale parameter, LM shows the lowest value 

for both RMSE and Bias. For the shape parameter, MPS shows the lowest value for RMSE, 

and LM shows the lowest value for Bias. 

 

10. For the site of GhariDupatta, which has a fixed sample size with high skewness and low 

kurtosis value in the estimates of location parameters, LM shows the lowest value for 
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RMSE, and MLE shows the lowest value for Bias. For scale parameters, LM shows the 

lowest value for both RMSE and Bias. For the shape parameter, MPS shows the lowest 

value for RMSE, and LM shows the lowest value for Bias. 

 

11. For the site of Kakul, which has a fixed sample size with high skewness and low kurtosis 

value in the estimates of location parameters, LM shows the lowest values for RMSE and 

Bias. For scale parameters, LM shows the lowest values for both RMSE and Bias. For the 

shape parameter, MPS shows the lowest value for RMSE, and LM shows the lowest value 

for Bias. 

 

Table 4.6 Choice of estimation method for zone A based on distributional shape characteristic 

for PE3 Distribution considering Bias 

Sr.No Site Name Skewness Kurtosis Distributional shape Shape 

1 GILGIT 0.85 

 

0.94 

 

Slightly heavier tail and moderate positive 
skewness 

MPS 

2 SKARDU 0.80 

 

0.002 

 

Slightly heavier tail and moderate positive 
skewness 

MPS 

3 ASTORE 1.33 

 

2.88 

 

Significantly heavier tail and Significant 
positive skewness 

LM 

4 MUZAFFARABAD 1.10 

 

0.72 

 

Significantly heavier tail and moderate 
positive skewness 

MPS 

5 CHITRAL 0.83 

 

0.53 

 

Significantly heavier tail and moderate 
positive skewness 

LM 

6 GUPIS 0.36 

 

0.18 Slightly heavier tail and Slight positive 
skewness 

LM 

7 DROSH 0.75 0.21 Slightly heavier tail and Significant positive 
skewness 

MPS 
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8 BUNJI 1.38 

 

3.24 

 

Significantly heavier tail and Significant 
positive skewness 

LM 

9 BALAKOT 1.09 

 

0.71 

 

Slightly heavier tail and Significant positive 
skewness 

LM 

10 GHARIDUPATTA 1.12 

 

1.19 

 

Slightly heavier tail and Significant positive 
skewness 

LM 

11 KAKUL 1.12 

 

1.19 Slightly heavier tail and Significant positive 
skewness 

LM 

 

Table 4.7 Choice of estimation method for zone A based on distributional shape characteristic 

for PE3 Distribution considering RMSE 

Sr.No Site Name Skewness Kurtosis Distributional shape Shape 

1 GILGIT 0.85 

 

0.94 

 

Slightly heavier tail and moderate 

positive skewness 

MPS 

2 SKARDU 0.80 

 

0.002 

 

Slightly heavier tail and moderate 

positive skewness 

MPS 

3 ASTORE 1.33 

 

2.88 

 

Significantly heavier tail and Significant 

positive skewness 

MPS 

4 MUZAFFARABAD 1.10 

 

0.72 

 

Significantly heavier tail and moderate 

positive skewness 

MPS 

5 CHITRAL 0.83 

 

0.53 

 

Significantly heavier tail and moderate 

positive skewness 

MPS 
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6 GUPIS 

 

0.36 

 

0.18 

 

Slightly heavier tail and Slight positive 

skewness 

 

LM 

7 DROSH 

 

0.75 0.21 Slightly heavier tail and Significant 

positive skewness 

MPS 

8 BUNJI 1.38 3.24 Significantly heavier tail and Significant 

positive skewness 

MPS 

9 BALAKOT 1.09 0.71 Slightly heavier tail and Significant 

positive skewness 

MPS 

10 GHARIDUPATTA 1.12 1.19 Slightly heavier tail and Significant 

positive skewness 

MPS 

11 KAKUL 1.12 1.19 Slightly heavier tail and Significant 

positive skewness 

MPS 

 

The major findings of the study of zone C are: 

1. The Quetta site has a fixed sample size with moderate skewness and low kurtosis value in 

the estimates of the location parameter. MLE shows the lowest value for RMSE, and LM 

shows the lowest value for Bias. For scale parameters, MPS shows the lowest value for 

RMSE, and MLE shows the lowest value for Bias. MPS shows the lowest value for the 

shape parameter for RMSE and Bias. 
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2. The Dalbaddin site, with a fixed sample size, high skewness, and low kurtosis value in the 

estimates of location parameter LM, shows the lowest values for RMSE and Bias. For scale 

parameters, MLE shows the lowest value for RMSE, and LM shows the lowest for Bias. 

For shape parameters, MLE shows the lowest value for RMSE, and LM shows the lowest 

for Bias. 

Table 4.8 Choice of estimation method for zone C based on distributional shape characteristic for 

PE3 Distribution considering Bias 

SR. 

NO 

SITES Skewness Kurtosis Distributional shape Shape 

1 QUETTA 0.80 

 

-0.10 

 

Slightly heavier tail and moderate 
positive skewness 

MPS 

2 DALBADDIN 1.22 

 

0.35 

 

Slightly heavier tail and significant 
positive skewness 

LM 

 Table 4.9 Choice of estimation method for zone C based on distributional shape characteristic 

for PE3 Distribution considering RMSE 

SR. 

NO 

SITES Skewness Kurtosis Distributional shape Shape 

1 QUETTA 0.80 

  

-0.10 

  

Slightly heavier tail and moderate 

positive skewness 

MPS 

2 DALBADDIN 1.22 

  

0.35 

  

Slightly heavier tail and significant 

positive skewness 

MLE 

 

The estimates of the PE3 distribution parameters, along with their RMSE and Bias for MLE, LM, 

and MPS, are generated using R language in R Studio. Additionally, SPSS and Minitab were used 

for statistical analysis. The results are presented in Tables 4.3 and 4.4. 
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Table 4.10 Values of Bias and RMSE of the parameters estimated through LM, 

MLE and MPS for Zone C 

ESTIMATION 

METHODS 

LM MLE MPS 

SITES PARAMET

ER 

LOCATI

ON 

SCAL

E 

SHAP

E 

LOCATI

ON 

SCAL

E 

SHAP

E 

LOCATI

ON 

SCAL

E 

SHAP

E 

QUETTA ESTIMATE 15.08 

 
6.36 

 
1.20 

 
15.08 

 
6.07 

 
0.95 

 
15.21 

 
6.51 

 
0.87 

 

RMSE 1.06 1.06 

 
0.47 

 
1.01 

 
1.04 0.46 

 
1.08 

 
1.03 0.43 

 

BIAS 0.0127 

 
0.06
22 

 

0.026
2 

 

0.0591 

 
0.03
47 

0.059
1 

 

0.1537 

 
0.50
43 

 

0.012
9 

 

DALBAND

IN 

ESTIMATE 12.71 
 

8.45 
 

2.13 
 
 

12.86 

 
 

8.62 

 
 

2.08 
 

13.06 

 
8.49 

 
1.93 

 
 

 

 RMSE 1.37 
 

1.92 
 
 

0.51 
 
 

1.41 1.89 0.23 
 
 

1.53 

 
 

2.03 

 
 

0.30 

 BIAS 0.0629 0.01
72 

 

0.013
5 
 

0.0803 

 
0.36
97 

 

0.109
0 
 

0.4819 

 
 

0.88
69 

 
 

0.086
8 
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Chapter 5 

 

5 Summary and conclusion: 

This study investigated the Annual Maximum Rainfall Series (AMRS) of 14 stations in Pakistan's 

Zones A and C.  

 Evaluate the efficiency of Pearson Type III distribution parameter estimation for extreme 

rainfall occurrences using Maximum Product Spacing.  

 Compare its results to those of other popular estimating techniques.  

 Assess the degree to which the recorded annual maximum rainfall series fits the Pearson 

Type III distribution.  

 Explain how the accuracy of the at-site frequency analysis for extreme rainfall occurrences 

is affected when Maximum Product Spacing is used.  

This study uses at-site frequency analysis and the Maximum Product Spacing (MPS) estimation 

approach to determine the best-fit distributions. Three estimating methods are assessed: Three 

methods are used to estimate probability: 1) Maximum Likelihood Estimation (MLE), 2) L-

Moments (LM), and 3) Maximum Product Spacing (MPS) for fixed sample sizes and PE3 

distribution shape features. The literature on MPS application is scarce despite the well-established 

nature of the MLE and LM approaches [35].  

When empirical studies of real data are used, the results show clear trends: MPS works better with 

bigger samples and severe skewness and kurtosis, while LM performs well with smaller sample 

numbers and mild skewness and kurtosis. Especially, MPS shows consistency and effectiveness 

in determining the PE3 distribution's shape parameter. On the other hand, MLE yields fewer 

desirable outcomes for modest to small sample sizes. For low-bias estimates with smaller samples 
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and intermediate data features, the study suggests LM, whereas MPS offers a good substitute, 

particularly for highly skewed and kurtotic data. For large sample sizes with few form features, 

MLE is still applicable. These results provide useful guidance for fitting the PE3 distribution to 

extreme values. Further refining of the model can be achieved by experimenting with different 

probability distributions, sample sizes, and parameter adjustments.  

 6 Limitations: 

An additional phase that must be covered in this research is estimating annual maximum rainfall-

extreme events for sites not gauged. There has been a problem with statistical hydrology. This 

study is restricted to the analysis of real data from ungauged sites.  

This study's estimated methodology is restricted to 36 years of actual observed data from a small 

number of stations of Pakistan. With good prediction, it is simple to examine all Pakistani stations 

when true AMRS data is available.  
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