

A Framework for Clone Detection in

UML Models

By:

Ayesha Irshad

(Registration No: MS-SE-20-328534)

Supervisor

Dr. Farooque Azam

 DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

July 23, 2024

A Framework for Clone Detection in

UML Models

By

Ayesha Irshad

(Registration No:0000328534)

A thesis submitted to the National University of Science and Technology,

 Islamabad

in partial fulfillment of the requirements for the degree of

Master of Sciences in Software Engineering

Thesis Supervisor:

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

 COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

 ISLAMABAD

July 23, 2024

i

Dedicated to my beloved Parents for their endless

support and prayers, and to my Husband who always

motivated and inspired me with unwavering support.

ii

ACKNOWLEDGEMENTS

First, I would like to praise and honor the Almighty Allah, the most beneficent and the most merciful,

for granting me the ability, courage, knowledge, and skills required to undertake and accomplish this

task successfully. No doubt, He has facilitated my journey, and I am unable to achieve anything

without His blessings.

I would also like to appreciate the sincere efforts of my supervisor Dr. Farooque Azam for guiding

me throughout the journey of my MS thesis. Furthermore, I am also grateful to him for teaching us the

courses of Model Driven Software Engineering (MDSE) and Software Development and Architecture

(SDA). He professionally taught us both subjects in depth and from that; I developed my interest in

continuing my research in the field of model-driven software engineering.

 I would also like to express my gratitude to my Guidance Committee Members Dr. Wasi Haider

Butt, and Dr. Mehwish Naseer for providing guidance and assistance to further improve my work

with their valuable recommendations. I would like to express my sincere gratitude to Muhammad

Waseem Anwar for his assistance and cooperation throughout the journey of my thesis in achieving

my research objectives. Without his unwavering support, the completion of this dissertation would not

have been possible. I appreciate his patience and support throughout the whole thesis.

I am deeply grateful to my beloved parents for raising me and being available whenever I needed them

and for their unwavering support throughout every aspect of my life.

Finally, I would also like to extend my heartfelt gratitude to my husband and my family for their

steadfast support and cooperation through the research journey.

iii

ABSTRACT

Clone detection in software engineering has a fundamental role in ensuring the quality and

maintainability of software systems. Developers often reuse several components of code in their

software and code review to identify clones or refactoring of copied code is often neglected resulting

in code clones. These cloned components can cause several consistency, bug propagation,

maintainability, and quality issues. UML models are the essential artifacts usually in the initial phases

of the process of software development, to specify and visualize the software design. These models

serve as a blueprint to guide throughout all the phases of software development. Therefore, if there are

clones in these UML models they will induce clones in further stages of software development as well.

Therefore, these clones will propagate and amplify the clone-related issues from the basic to the final

stages of software development. For this reason, it is equally essential to identify, track, and remove

the duplicates in UML models as in code. Furthermore, a key goal of Model Driven Software

Engineering (MDSE) is to generate code from models such as UML modes. Consequently, increasing

the importance of Model clone detection.

This study focuses on the application of Natural Language Processing (NLP) to detect clones within

UML models. Initially, a UML model is created and clones are induced in the diagram. The model is

exported in Extensible Markup Language (XML) format to represent the model in textual form. In the

next step, the XML code is parsed to extract the relevant features of the model for clone detection

purposes. Since the XML code of UML diagrams carries a lot of structural information that is

irrelevant for clone detection and is also not balanced. Therefore, the extracted features are further

preprocessed to represent them in a suitable format. Furthermore, the extracted data is labeled to

represent clone and nonclone pairs. Moreover, for the detection of clones Natural Language processing

techniques are used since the naming and representation of properties of elements of UML models are

mostly in textual format. Therefore, NLP techniques can efficiently detect clones in UML Models.

The proposed framework is applied to several case studies. These case studies validate the

effectiveness of our approach in model clone detection.

Keywords: MDSE (Model Driven Software Engineering), UML (Unified modeling language), State

Machine (SM), NLP (Natural Language Processing), Extensible Markup Language (XML)

iv

TABLE OF CONTENTS

DECLARATION .. i

ACKNOWLEDGEMENTS ... ii

ABSTRACT .. iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES... vi

LIST OF TABLES.. vii

CHAPTER 1: INTRODUCTION .. 1

1.1 BACKGROUND STUDY .. 1

 1.1.1 Clones in UML Models: ... 1
 1.1.2 Unified Modeling Language (UML):.. 1

 1.1.3 Model-Driven Software Engineering (MDSE):2

 1.1.4 Clone Detection in UML Models:... 3

1.2 PROPOSED METHODOLOGY: .. 3

1.3 RESEARCH CONTRIBUTION: ... 4
1.4 THESIS ORGANIZATION: ... 4

CHAPTER 2: LITERATURE REVIEW .. 6

2.1 SOFTWARE CLONES: ... 6

2.2 CLONE DETECTION TECHNIQUES AND APPROACHES: ... 8
2.3 RESEARCH GAP: ... 9

CHAPTER 3: PROPOSED METHODOLOGY .. 11

3.1 CLONES IN UML STATE MACHINE .. 11

 3.1.1 Clone sources in UML State Machine: ... 11
 3.1.2 UML Model Clone Definitions ... 12

3.2 PROPOSED METHODOLOGY: ... 13

CHAPTER 4: IMPLEMENTATION.. 17

4.1. CASE STUDY 1: ATM SYSTEM .. 18
4.2. CASE STUDY 2: ELEVATOR .. 20

4.3. CASE STUDY 3: TELEPHONE LINE .. 22

4.4. CASE STUDY 4: ROOM RESERVATION SYSTEM ... 23

4.5. CASE STUDY 5: STUDENT PORTAL .. 24
4.6. CASE STUDY 6: ONLINE SHOPPING .. 25

4.7. CASE STUDY 7: AUTO CRASH PREVENTION SYSTEM (ACPS) .. 26

4.8. CASE STUDY 8: ARBITER ... 28

4.9. CASE STUDY 9: HEATING SYSTEM .. 29
4.10. CASE STUDY 10: REMOTELY PILOTED AIRCRAFT (RPA) .. 30

4.11. CASE STUDY 11: POPCORN MACHINE .. 32

v

4.12. CASE STUDY 12: TRAFFIC LIGHTS ... 33
4.13. IMPLEMENTATION OF UMCD FOR CLONE DETECTION IN THE ATM SYSTEM CASE STUDY. 35

CHAPTER 5 .. 41

VALIDATION... 41

5.1 CASE STUDY .. 41
 5.1.1 Application of UML Model Clone Detection (UMCD) Framework: ... 41

CHAPTER 6 .. 44

6.1 THREATS TO VALIDITY .. 41

DISCUSSION .. 44

CHAPTER 7 .. 46

CONCLUSION AND FUTURE WORK .. 46

REFERENCES

vi

TABLE OF FIGURES

Figure 1. Flow of research .. 4
Figure 2. Thesis organization .. 5
Figure 3. Simplified Workflow of UMCD .. 14
Figure 4. Proposed Workflow ... 15
Figure 5. ATM System State Machine .. 19
Figure 6. Elevator .. 21
Figure 7. Telephone line ... 22
Figure 8. Room Reservation System... 23
Figure 9. Student Portal .. 24
Figure 10. Online shopping ... 26
Figure 11. Automatic Crash Prevention System ... 28
Figure 12. Arbiter.. 29
Figure 13. Heating System .. 30
Figure 14. Remotely Piloted Aircraft (RPA) .. 32
Figure 15. Popcorn machine ... 33
Figure 16. Traffic Lights ... 34
Figure 17. Tree Representation of ATM System .. 35
Figure 18. XMI representation of ATM System State-Machine ... 36
Figure 19. Parsed XMI code of ATM Case Study .. 36
Figure 20. Parsed XMI code after further pre-processing... 37
Figure 21. Labeled Data .. 38
Figure 22. Highlighting clones in the Data ... 38
Figure 23. Clone Type 1 Results ... 39
Figure 24. Clone Type 2 Results ... 39
Figure 25. Clone Type 3 Results ... 40
Figure 26. UMCD Results from ATM case study .. 42
Figure 27. Performance results of UMCD on Other case studies ... 43

vii

LIST OF TABLES

Table 1. UML diagram Categories ... 2

Table 2. Overview of Model Clone Detection Techniques .. 9

Table 3. UML Model clone definition .. 12

Table 4. List of Case Studies .. 17

Table 5. Results of UMCD on ATM Case Study.. 42

1

CHAPTER 1

INTRODUCTION

This chapter presents an introduction to the research work. It emphasizes the background study, research

technique, problem definition, research contribution, and thesis organization.

6.1 Background study

1.1.1 Clones in UML Models:

In the software engineering domain, the identification of duplicate fragments of code is fundamental to

ensure the quality and maintainability of software. Due to the heavy workload and short deadlines for

software projects developers often reuse several software components. These reused components result

in clones. It is important to review and refactor reused software components to avoid duplication and

maintenance issues in later steps [1]. Before developing a software system its functionality is modeled

to get a clear overview of the system requirements and expected functionality. Therefore, UML models

are the key artifacts in the software development life cycle to specify and visualize the software design

[2]. These models serve as a blueprint to guide through all the software development phases. Therefore,

it becomes an essential requirement to identify and remove clones from UML models, as these clones

will propagate to further stages of software development making it more difficult to remove or refactor

them. Therefore, these clones will propagate and amplify the clone-related issues throughout the

software development lifecycle. For this reason, it becomes equally important to detect, track, and

remove the clones in UML models as in code [3].

1.1.2 Unified Modeling Language (UML):

Before actual coding and development of software, modeling is a crucial component of software projects

and assists in the development of software projects of large, medium as well as of small scale. Software

modeling plays a significant part in guiding the development process of software, therefore it acts as a

blueprint and a roadmap just like the role played by models in construction projects or the development

of some mechanical equipment. Using a model can ensure the successful development of a software

project by ensuring that the design matches the requirements and that the required functionality is

complete and correct. Models also help to determine if the model depicts requirements for resilience,

flexibility and other non-functional attributes. Several studies reveal that complex software projects have

a substantial probability of failure and are more likely to meet the cost and budget criteria. Modeling the

2

requirements prior to coding helps to visualize the design and if it will be able to meet the required

criteria of cost, time, and other resources.

UML models support us in working at a higher abstraction level. UML models allow software

developers to focus on different aspects of a prototype by hiding details and allowing the developers to

view the big picture and analyze the behavior and requirements of a software system more efficiently.

UML 2.0 provides a facility to get comprehensive insights into software in its practical environment,

and can easily view links to other apps or, to other sites. Therefore, OMG's Unified Modeling Language

(UML) aids the software developers to visually analyze the design and structure of software systems, to

identify if it meets all of the requirements of the software.

Thirteen different kinds of diagrams, classified into three groups are defined in UML 2.0: out of which,

6 diagram categories characterize, static application structure; 3 represent general behavior types; and 4

represent possible interactions among elements of application [33]. UML diagram types are given in

the following table 1.

Table 1. UML diagram Categories

Diagram Category Diagram types

Structure Diagrams Class Diagram, Object Diagram, Component Diagram,

Composite Structure Diagram, Package Diagram, Deployment

Diagram

Behavior Diagrams Use Case Diagram, Activity Diagram, State Machine Diagram

Interaction Diagrams Sequence Diagram, Communication Diagram, Timing Diagram,

Interaction Overview Diagram

1.1.3 Model-Driven Software Engineering (MDSE):

It is a specific branch of software engineering, which emphasizes the use of models as important

components throughout the entire development process. In MDSE, models are employed to specify the

software system being developed. Automatic model transformations are then used to do various

operations on the models, including code generation, model integration, and deconstruction [3]. MDSE

also aims to automatically generate executable software code from models directly.

UML serves as the basis for Model Driven Architecture (MDA) of Object Management Group (OMG).

Depending on the preference of the developer, they can either create platform-specific or platform-

independent models. The MDA approach effectively utilizes both variations. Initially, Each MDA model

or application is fundamentally grounded on a Platform-Independent Model (PIM). PIM accurately

depicts its behavioral and functional aspects but does not encompass practical elements. The PIM is then

used to generate Platform-Specific Models (PSMs) in UML by utilizing MDA tools for development

that adhere to the standardized mapping guidelines of OMG. Each PSM corresponds to a specific target

platform selected by the developer. The conversion process is largely automated, but it is not a magical

process. The developer is required to annotate the initial Platform-Independent Model (PIM) before

3

generating a PSM, to create a more specific PIM that is still independent of any particular platform. This

annotated PIM includes more data about the desired semantics and guides the tool to make appropriate

choices during the conversion process. Since there is resemblance between middleware systems of some

certain genre component-based, or messaging-based, therefore, this information from PSM can be

incorporated into a PIM without any modifications. However, the developers will have to precisely

adjust the generated PSMs, especially in the early phases of MDA and as the tools and the algorithms

evolve this requirement of adjusting and fine-tuning the PSMs decreases [33].

The OMG establishes the MDA as a new paradigm for designing software systems, focusing on the role

of models as significant artifacts in the software development process. MDA models are defined in UML

[2]. Furthermore, a fundamental purpose of MDSE is to produce code from models such as UML models

[4]. Consequently, enhancing the significance of model clone identification.

1.1.4 Clone Detection in UML Models:

Since UML models are the primary artifacts in the software development life cycle, therefore, it becomes

equally essential to detect and remove clones in UML models. If these clones are left unresolved, they

can result in bug propagation and if modification is required in the design then all the cloned model

fragments will also require modification. If clones are not properly tracked, identified, or refactored it

will result in huge maintenance expenses also making the process more time-consuming. Therefore,

detecting clones in UML models becomes a necessary part of the software design process.

Several researchers have modified and applied the code clone detection approaches for the detection of

model clones. Such as clone detection approaches based on, text such as code, tokens, tree

representations, metric representation and comparison, semantic-based and some researchers used

hybrid approaches, etc. Still, there is a need for continuous improvement in Model clone detection

approaches for more accurate identification of clone pairs since, models have a lot of structural

information that is not necessary for the process of clone detection, extraction of relevant features itself

is a complex task.

6.2 Proposed Methodology:
The research approach involves several phases. Figure 1 depicts the flow and phases of this research.

The process of research starts with a literature review that’s a crucial step for a comprehensive overview

of the existing studies in model clone detection. This literature review helps in identifying research gaps

in the existing studies. This literature study provides a basis for comprehending the amount of

information that already exists in these fields, therefore, identifying the research problem. Subsequently,

the identified problems are resolved by proposing a solution based on natural language processing. The

proposed solution is thoroughly explained, emphasizing its key components and outlining the required

steps for implementation. The suggested approach is described, and then the specifics of its execution

are given. The next step is the implementation of the proposed solution. Implementation includes all the

technical elements, resources, and frameworks that will be applied throughout the implementation

procedure, guaranteeing transparency and stability. The proposed solution is validated by using several

case studies.

4

Figure 1. Flow of research

By the use of this approach, this research seeks to close the known research gaps, increase knowledge

of NLP techniques, and contribute to the fields of clone detection in UML Models.

6.3 Research contribution:
 For the identification of clones in UML models, specifically in UML state machines, 12 case

studies of UML state machines are created using Eclipse Papyrus, which is a robust, open source

Model-Based Engineering tool.

 The state machine models of 12 case studies are used as a data set for validation of the proposed

approach for clone detection in UML models.

 For extracting required relevant features from complex XML code of UML models, the code is

parsed by using a Python IDE, Pycharm. The relevant features are extracted and further processed

to represent data extracted data in tabular format.

 Furthermore, the clones are manually labeled to calculate the accuracy of the proposed framework.

 Clones are identified in the diagram by using Techniques of natural language processing (NLP)

since a lot of information in UML diagrams is in textual form. Therefore, we can effectively apply

clone detection techniques to identify similarities between the elements of the UML diagrams.

6.4 Thesis Organization:
The overview of the UML model clones and the proposed approach are both briefly described in Chapter

1, which serves as an introduction to this research. Figure 2. presents a clear organization of the thesis.

In Chapter 2, a thorough literature analysis is conducted to look at the previous work of various scholars

in the fields of clone detection in UML models. Chapter 3 provides a detailed explanation of the

methodology used in the research and discusses the suggested way to address the identified problem.

Chapter 4 details the implementation specifics, including both the practical and technical aspects of the

development process. In Chapter 5, validation of the proposed framework is presented. The proposed

framework is validated using several case studies. A complete description of the case studies is also

presented in the chapter. Discussion, as well as any limitations encountered throughout the study, are

covered in detail in Chapter 6. The thesis is concluded in Chapter 7 with general conclusions based on

the findings and suggestions for more research in the area.

5

Figure 2. Thesis organization

6

CHAPTER 2

LITERATURE REVIEW

Chapter 2 conducts an extensive literature review and comprises three major sections. The first section,

2.1, thoroughly explores the field of software clones especially clones in UML models. Section 2.2,

presents several clone detection techniques and approaches discussed in the previous research offering

a critical evaluation of previous studies' techniques, results, and research methods, while the research

gap is discussed in section 2.3.

2.1 Software clones:

In the software engineering domain, the identification of clones is an important research area. Due to

heavy workloads and short deadlines, software developers often reuse several code fragments to

accelerate software development. The significance of code review and refactoring is often neglected.

This induces clones in the software that make the system more vulnerable to security and maintenance

issues as these clones can rapidly escalate bug propagation. Since, if there is a bug in one code segment

and that code segment is duplicated somewhere else in the program, it becomes crucial to inspect every

duplicated code fragment for that bug [5]. Subsequently, the maintenance cost rises and the process is

time-consuming as well [6] [7].

In the literature, four different types of code clones are discussed:

 Type-1 code-clones known as exact clones are duplicated components of a program with some

minor changes in comments, layout, and whitespaces.

 Type-2 code-clones known as renamed clones are components of the program that are alike but

some unique identifiers such as variables, functions, or other program elements are renamed along-

with some variations in comments, identifiers, types, literals, and layouts.

 A type-3 code-clones also called gapped clones or near-miss clones include some modification in

code such as the addition or removal of code or rearrangement of code segments.

 A type-4 code-clones also called Semantic clones have multiple segments of code with similar

functionality, but varying syntactic variants are used for implementation [8] [9].

For the development of software projects using models is the best practice for clear overview and

guidance throughout the process of software development. Therefore, models are integral to the

development of software systems. Models for larger projects can be complex and may contain duplicated

model fragments [3]. Since models are developed during the initial stages to guide through the process

7

of software development. If the duplicated model fragments are not removed these model clones will

propagate throughout the software development phases and identifying and removing bugs will become

more costly and time-consuming. Therefore, it is equally important to identify duplications in models

as in code [18]. Since there is no explicit or standard definition of model clones, several researchers

have provided their own definitions of model clones as code clones [19] [20]. Four model clone types

have been discussed in the literature.

 Type 1 Model-clones: also referred to as exact model clones or identical model clones are exact

duplicates ignoring the layout and visual aspects.

 Type 2 Model-clones: also called renamed or modified model clones have changes in elements or

attribute names and changes in layout and visual aspects are ignored.

 Type 3 Model-clones: also named near-miss model clones allow renaming, additions, or removals

of parts while ignoring the changes in layout and visual aspects.

 Type 4 Model-clones: also named semantic model clones are significantly different in structure

but are semantically similar.

The researcher in [21], defined model clones as, Type-1 or exact model clones as duplicate model

features with only differences in visual aspects such as presentation, and layout. For example, in UML

sequence diagrams interaction elements may share the same "name," "receive Event," "send Event," and

"message Sort" attributes but differ in presentation elements like fonts, sizes, positions, or colors. Type-

2 also named as renamed model clones, model fragments might display variations in element or attribute

names and also differ in, layout, format, or visual aspects. E.g., in sequence diagrams, two lifeline

elements involved in alike conversations may have distinct names, xmi-id attributes, and changes in

font, size, position, etc. These lifelines are classified as renamed clones if they engage in a set of

messages that are similar within a particular conversation. Type-3 known as near-miss model clones are

model elements that exhibit minor discrepancies or alterations such as the addition or deletion of

elements such as variations of interaction elements in sequence diagrams, beyond differences in attribute

names and visual variations already noted in Types 1 and 2. The acceptable degree of variance is

adjustable based on a configurable threshold.

Another study [24] presented the following definition of model clones: Sort 1 (exact clones): Application

segments that are alike apart from differences in whitespace and comments. Sort 2 (parameterized clones

or renamed clones): Software segments that are similar in structure and syntactic methods, apart from

variations in literals, identifiers, types, formatting, and comments. Sort 3 (gapped clones of near-miss

clones): Copied software fragments with additional variations such as additions or deletions of

declarations, along with alterations in types, literals, identifiers, and formatting. Sort 4 (semantic clones):

Fragments of a software code/model that perform the same functions but do not share a textual similarity.

Similarly, several other studies provided their own definitions of model clones and modified them

according to the type of models such as UML models or Simulink models; furthermore, they also altered

the definitions as per the attributes of their specific models used in the research such as sequence diagram

or class diagram or any other type of model. All the different types of models have varying

characteristics. Therefore, the definition of clones in those models differs accordingly.

8

2.2 Clone detection techniques and approaches:

Several studies have proposed different approaches for uncovering different types of code clones [8]

[10]. Some studies used text-based approaches that can efficiently identify exact clones [11] [12]. Some

Researchers used Token-based approaches that can identify renamed clones more efficiently [13]. Tree-

based approaches are proposed by some studies that have high efficiency in detecting Near Miss clones

[14]. Metric-based approaches are used for clone detection in several studies and these approaches can

identify near-miss clones with more precision [15]. Some studies proposed semantic, Hybrid approaches

for the clone detection process to detect type-4 clones efficiently with better precision along with other

categories of code clones [16] [17].

An approach to identify type-3 clones in UML sequence diagrams is proposed in [21]. It addresses the

lack of research on duplication or clone detection in the dynamic functionality of interactive models and

systems. The paper in [22] describes static dependencies between entities in the process of

manufacturing by using UML class diagrams, emphasizing the significance of fault detection and

consistency checks. A suffix tree-based approach is proposed in [23] to identify duplication in UML

sequence diagrams. They verified their approach on six industrial case studies with 100% precision and

92% recall. An approach for clone detection in behavioral models is proposed in [24]. They use the

Nicad tool for identifying duplicates in sequence diagrams. A similarity detection algorithm is proposed

in [25] based on XML parsing by using a DOM parser. They verified their proposed approach to UML

class diagrams by using the case study of the library management system. In [26] a technique for

identifying clones based on tree comparison is proposed. After parsing the XML code of UML class

diagrams, subtrees are compared to report similarity as model clones. A case study of Enrollment and

teaching packages is used to verify the approach.

Another research proposes Similacode which utilizes Natural Language Processing (NLP) techniques,

vector space models, and similarity metrics to detect the similarity in code. They have demonstrated the

successful detection of duplicated code in the Python programming language.[27] Another study

proposes a text similarity algorithm that is based on matching semantics and discusses the significance

of NLP techniques such as algorithms for textual similarity. It has applications in an extensive variety

of fields such as in optimizing search engines and detecting plagiarism in textual data etc. [28]. A BERT

model is introduced in another study that can efficiently identify semantic sentence similarity. The study

demonstrates the application of a fine-tuned model to reduce neuron count in neural networks.

Therefore, it decreases the time and storage required for creating training data for deep learning models

[29].

The SSCD, a clone detection technique that employs a nearest-neighbor strategy based on BERT, is

introduced in another study; it addresses the inadequacy of performing pairwise comparisons in larger

datasets of code. Additionally, SSCD aims to optimize recall of near-miss and clones and semantic

clones [30]. Another research applied CodeBERT on multiple datasets to assess its performance in the

area of clone detection. The study demonstrates that this approach can efficiently identify exact clones

and semantic clones with high recall [31]. Therefore, model clone detection is a continuously evolving

field requiring innovative approaches to detect duplicated model fragments more precisely.

9

Table 2. Overview of Model Clone Detection Techniques

Paper Database Year Technique Target

[3] ACM 2010 Matching Algorithm UML Models/ Class diagram,

Activity diagram

[23] IET Software 2010 Suffix Tree UML Models/Sequence

Diagrams

[43] Springer 2011 Pattern-based Simulink Models

[19] IEEE 2012 Nicad Simulink Models

[26] IEEE 2012 Tree Pruning and tree

Matching

UML Class diagram

[39] ACM 2014 Text-Based Similarity Model Clone/Class diagram

[20] Springer 2015 Matching Algorithm UML Models/ Class

Diagram, Activity diagram

[21] IEEE 2016 NiCad UML Models/Sequence

Diagrams

[40] IEEE 2017 Reachability graphs UML Activity Diagrams

[41] IEEE 2018 Control-Flow based

modeling

UML Models/ Class diagram

[42] Springer 2019 eScan and conQAT UML Models/class diagram

[8] ACM 2019 Token Based Similarity UML Models/class diagram

Researchers continue to discover advanced tools and techniques to boost clone detection capabilities in

various domains.

A brief overview of model clone detection techniques from literature is shown in table 2. It shows the

different approaches used for model clone detection and their targeted models such as Simulink or UML

models etc.

2.3 Research Gap:
Although comprehensive research has been conducted in the domain of model clone detection, there

remains a significant gap in the literature concerning clone detection specifically within UML state

machines. The existing methodologies and tools designed for other forms of model clone detection are

often not directly applicable to the semantic and structural specifics of UML state machines,

emphasizing the need for targeted research in this field.

10

Clones in UML State Machine diagrams can lead to redundancy, maintenance challenges, and

difficulties in understanding the intended behavior of the system. Detecting and addressing clones in

State Machine diagrams is important for maintaining the clarity, efficiency, and correctness of the

diagram. Therefore, addressing this gap will also enhance the robustness and effectiveness of model-

driven engineering practices, especially in complex software systems where behavioral duplications are

frequent yet challenging to detect.

11

CHAPTER 3

PROPOSED METHODOLOGY

In this project, the emphasis is on the identification of Model clones in UML state machine diagrams.

This section defines clones in UML state machines, discusses possible clone sources, and the proposed

methodology to identify the model clones of type-1, type-2, and type-3 clones.

3.1 Clones in UML State Machine
UML state machines are one of the important primary artifacts in the software development process and

are used to model the dynamic behavior of a system, especially how an object in a system transitions

from one state to another in response to some event or trigger. They help in understanding system

functionalities and play a crucial in the development process, especially in complex systems such as

Automated Teller Machines (ATM), business process management and workflow systems, Interactive

applications, including mobile and web apps, and many others. Identifying clones in UML state

machines will improve maintainability, reduce redundancy, and help maintain consistency across

different parts of the UML state machine model.

3.1.1 Clone sources in UML State Machine:

A state machine is composed of several components such as states, transitions, events, triggers, actions,

initial states (starting point of a system), final states (indicate the completion or termination of a process),

constraints, and conditions. Where a state represents a specific mode or behavior of a system that can

change based on some external or internal event or trigger. Events are external stimuli or inputs that

trigger state transitions that cause the system to change its state. Transitions represent the change from

one state to another in response to an event or condition. Actions represent behavior or activities

performed when a state transition occurs.

Pertaining to UML State Machine diagrams, model clones refer to similar or identical segments of the

diagram that represent the same behavior or state transitions. Clones in UML state machines can occur

in several possible ways such as in

 States: If two or more states of a state machine are identical that is have identical or nearly similar

names, initial activities, and outgoing transitions therefore representing similar behavior.

 Transitions: Transitions between the states that perform similar action and have similar names

and triggers or constraints associated with them.

 Constraints: Similar constraints and constraint values associated with the transition.

 Actions: Actions or activities associated with states or transitions that are repeated across different

portions of the diagram.

12

 Parallel Structures: Sections of the diagram that have similar structures, representing the same

sequence of states and transitions.

 Similar Triggers: Transitions that have similar triggering events but lead to different states.

Detecting these clones' state machine diagrams can assist in simplifying the design, reducing

redundancy, and ensuring that the diagram represents the intended system behavior more precisely. This

is particularly essential for complex systems where state machine diagrams are used to model intricate

state transitions and interactions.

3.1.2 UML Model Clone Definitions

As in other UML models, there are four possible types of Model clones in UML state Machines. The

definitions of Clones in UML state machines are given in Table 1.

Table 3. UML Model clone definition

Clone Type Definition Example

Type 1 (Exact

Clones)

For the same element type i.e., Region, State, Transition,

or Choice if they have identical names and other

parameters of the element i.e., they are identical model

fragments then they will be classified as Model clone

type 1.

Type 2 (Renamed

Clones)

If the element type is the same i.e., State, Transition

choice, etc., but there are minor changes in names or

representation of the element such that names are

different but have the same meaning. While other

parameters of the element remain unchanged. Such clone

pairs will be classified as model clone type 2.

Type 3 (Near Miss

Clone)

If the element type is the same i.e., State, Transition

choice, etc., and there are modifications in the name or

attributes of the elements, such as the addition or removal

of some statement then it will be near miss model clone

then such similarity in the model elements will be

classified as model clone 3.

13

Type 4 (Semantic

Clones)

For the same element types, model elements or model

fragments that are functionally similar but are

significantly structurally different and are implemented

using different syntactic variants. Such clone pairs will

be classified as model clone type 4.

3.2 Proposed methodology:

In this thesis, a framework for clone detection in UML models is proposed, UMCD (UML Model clone

detection). This framework aims to detect clones of type1, type2, and type3 in UML state machine

diagrams. The simplified flow of work is presented in Figure 3. Initially, a State machine model is

created in Eclipse Papyrus. State machine diagrams are used for behavioral representation of the

software systems. By representing different stages of the software system using states and transitions

based on events. The state machine model is then saved in standardized XMI format by using the built-

in services of the Eclipse papyrus. XML (eXtensible Markup Language) is a multipurpose, flexible, and

extensively supported markup language that allows information to be structured in a format that is

readable by both humans and machines. When applied to UML diagrams, XML provides several

benefits such as a structured representation of complex UML diagrams, and XML format can be easily

parsed and processed. It also provides a platform-independent and human-readable format for storing

UML diagrams.

In the next step, XML code is parsed to remove the irrelevant code i.e., XML-specific code and other

structural details generated by the tool along with diagram details. Parsing the XML code of UML

models serves as the foundational step in preparing the model for further processing and utilization in a

software development environment. By parsing the XML code, the required features of the state machine

diagram that are relevant to the clone detection process are extracted and stored in a .csv file. Features

are stored in tabular format for better representation and understanding. The extracted data is further

preprocessed to make the data more suitable for clone detection. Preprocessing of data includes

removing null values, converting data in lowercase, removing unnecessary data columns that do not play

any significant role in the clone detection process, replacing complex IDs with simpler IDs, Since, UML

assigns complex IDs to model elements that make them difficult to comprehend and manipulate. The

extracted data is then labeled manually. Our approach aim to detect clones of type-1, type-2, and type-

3 only so the data is labeled as

14

Figure 3. Simplified Workflow of UMCD

Clone-1, Clone-2, Clone-3, and nonclone accordingly. Furthermore, our approach makes use of natural

language (NLP) techniques to identify clones. We choose to use NLP techniques for model clone

detection in UML state machines since UML models comprise of numerous textual data such as in the

naming of model elements, comments, constraints, and several other attributes. NLP can help identify

not only exact duplicates but also semantically similar elements across different parts of the UML

diagrams. Furthermore, NLP provides several effective techniques to transform text in a format where

similarity between different text strings can be easily computed. The detailed workflow of the proposed

framework is presented in Figure 4. After extracting features from the XMI code of the state machine,

similarity is calculated between the model elements such that elements of the same type are extracted.

For elements of the same type such as a state is compared to other states for similarity and a transition

is compared with another transition to compute similarity. If two or more states, transitions, or any other

model elements are exactly duplicated then the element is labeled as clone type 1 since these model

elements are exact replicas of each other. Use the sentence transformer model to build embeddings of

extracted data.

For the detection of clones of Type 2 Model clones, we used a TF-IDF vectorizer. The Term Frequency-

Inverse Document Frequency (TF-IDF) vectorizer assesses the significance of a word within a document

in relation to a collection or corpus. This significance scales with the frequency of the word in the

document, adjusted by its frequency across the corpus. TF-IDF is frequently used in text mining and

information retrieval to convert text into numerical representations that can be utilized to train ML

algorithms for prediction. Therefore, by using TF-IDF vectorizer the elements/segments of extracted

data are converted into vectors. The text in each row is transformed into a TF-IDF vector representing

the importance of each term in the context of the diagram. The TF-IDF calculation will consider how

15

important a term such as a name or an attribute value of a model element is compared to its frequency

across other elements of the model. Then similarity between vectors is measured

Figure 4. Proposed Workflow

using cosine similarity. It measure is used to determine how similar two statements are, based on the

angle between their corresponding vector representations. If the similarity score is high, it indicates

potential clones. Furthermore, a threshold is defined, if the similarity score is within the limits of the

defined threshold, that pair is categorized as model clone type-2.

For model clones of type-3 another approach of NLP i.e., sentence transformer is used. The detection of

type-3 model clones is more complex than type-1 and type-2 model clones. Therefore, sentence

transformer is used since they are designed to capture the meaning of the text at a deeper level than

simple word counts or term frequencies. They use models pre-trained on large datasets to generate

embeddings that reflect the semantic content of text. This ability allows them to detect clones that are

not textually identical but are semantically similar. A sentence transformer is a type of model used in

natural language processing (NLP) that transforms sentences into meaningful, fixed-size numerical

representations or vectors. These models are based on transformer architectures, a type of deep learning.

Our framework uses sentence-transformers/all-MiniLM-L6-v2 model to create embeddings of the data.

It is a compact and efficient transformer-based model developed by the Sentence Transformers library,

which is based on the original MiniLM architecture. This model is designed specifically for generating

semantically meaningful embeddings for sentences and paragraphs in a variety of languages. After

16

creating the embeddings of the extracted features of the state-machine model, cosine similarity between

the embeddings is calculated to extract the similar statements. A threshold limit is applied to check the

similarity between statements based on how closely two statements are linked i.e., check semantic

similarity. If the embeddings fall into the defined threshold limit they are categorized as model clone

type-3. After extracting the clones by using UMCD, the results are then compared to the manually

assigned labels, and the accuracy of the proposed framework is calculated.

17

CHAPTER 4

IMPLEMENTATION

For the identification of clones in UML diagrams, our approach considers the detection of clones in

UML state machines. As discussed in Chapter 3. State machine diagrams are of significant importance

in the domain of software engineering, providing a clear, structured way to model and manage the

dynamic behavior of systems. The diagram is created in the papyrus tool. Any other modeling tool can

be used for creating a state machine diagram. A date set of state machines is created for clone detection

in UML state machines. XMI code of state machines is used for extracting diagram features. Most of

the tools used for creating UML models automatically generate XMI code for the diagram. The XMI

code is then parsed to remove irrelevant data i.e., the XML-specific data or structural details of the

model and to extract only relevant data and features essential for clone detection. Furthermore, relevant

features are extracted from XMI code such as states, transitions, activities, constraints, etc. The extracted

features are then represented in tabular format. Extracted data is further preprocessed to remove

unnecessary columns, replace complex IDs with simpler ones, represent data in the same format such as

in lowercase, and remove null values.

Table 4. List of Case Studies

Sr. Case Study Title
1. ATM System

2. Elevator

3. Telephone Line System

4. Room reservation System

5. Student Portal

6. Online System

7. Auto Crash Prevention System (ACPS)

8. Arbiter

9. Heating System

10. Remotely Piloted Aircraft (RPA)

11. Popcorn Machine

12. Traffic lights System

18

Extracted data is then manually labeled to represent clone1, clone2, clone3, and non-clones as per

definitions given in Table 2. Since our approach only focuses on the identification of model clones of

types 1, 2, and 3. Our framework proposes an approach based on NLP for the identification of these

clones. State machine diagrams of 12 case studies are used for model clone detection. Table 3. Presents

the list of case studies used in this research for validation of the proposed framework.

4.1. Case Study 1:

ATM System:

The ATM case study characterizes the detailed working of the Automated Teller Machine (ATM)

machine.

The behavior of the ATM case study is as follows:

 ATM remains idle initially, when the user inserts his card (insert card state) the system checks if

the card is valid or not.

 If the card is valid, the system asks the user to enter the PIN (Give PIN). If the pin is valid a menu

“Select-Service” appears on the screen and the user selects the services represented as states in the

state machine i.e., Cash-Withdraw, Balance-Inquiry, Transfer-Funds, Generate ATM card, Bill

payment, change pin or quit.

 If the user selects Cash-Withdraw system asks the user to insert the amount, if the amount is valid

cash is ejected (eject cash), a receipt is printed (Print-receipt) and then the card is ejected (eject

card). If the user selects ‘Balance-Inquiry’ the user's account balance is displayed as ‘View-

Balance’ and a receipt is printed (Print-Receipt), if the user has no more functions card is ejected

(eject card).

 If the user selects ‘Transfer-Funds’ system asks the user to ‘Enter-Receiver-Account’ and then

insert the amount, if the amount is valid cash is transferred (transfer cash) a receipt is printed (Print-

receipt) and then the card is ejected (eject card).

 If the user selects ‘Generate ATM card’ the system asks the user to input user credentials and

Account number. If provided data is valid card is generated, otherwise the request is denied.

 If the user selects ‘change pin’ the system asks the user to enter ‘previous pin’ and ‘Enter New

pin’ if both meet the system requirements new pin is generated otherwise the request is denied.

 If the user selects the ‘Bill Payment’ option, the system asks the user to select bill type, and mode

of payment and enter the bill amount if the data is valid, and the user has a sufficient account

balance the transaction is completed otherwise the transaction is terminated.

The UML state machine of the ATM system is given in Figure 5.

19

Figure 5. ATM System State Machine

20

4.2. Case Study 2:

Elevator:

The implementation of a modern elevator system characterizes the elevator design used for moving

people and possessions across various levels of a building. The elevator has a load limit. Therefore, to

determine the total load use a weight sensor.

The behavioral requirements of an elevator are as follows:

 The initial State is an “IDLE” state.

 The person presses the button to open the elevator. The weight is calculated as someone enters the

elevator.

 If the weight is greater than the maximum allowed weight then it returns to the “IDLE” state and

the alarm rings.

 Otherwise, the elevator will move toward checking the chosen floor.

 The elevator selects to move up or down as per the target floor choice by the person.

 Subsequently, the elevator keeps checking if it is the desired floor until it, reaches it after that it

moves back to the initial state (IDLE).

The UML state Machine diagram of the Elevator case study is given in Figure 6.

21

Figure 6. Elevator

22

4.3. Case Study 3:

Telephone line:

The Telephone line case study characterizes the behavior of a telephone system representing all stages

of a call connection.

The behavior of the telephone line case study is as follows:

 The initial state of the system is idle.

 As soon as the user picks up the receiver from the hook, a dial tone rings and allows the entering

of digits of the phone number.

 If the number is not dialed in the given time interval it moves to the time out state and than to the

idle state else it checks for connection.

 If call is connected it starts ringing, it user is busy, the system moves to busy state and a busy

message is played. Else if call is rejected it again shows busy status.

 If the dialed number is not valid a recorded message is played else system tries to connect a call &

routes it to its destination.

 If the call is answered, the conversation begins and continues until the call is hanged up.

 Finally, phone call is disconnected and it returns to idle state.

The state machine diagram of the Telephone line vase study is given in Figure 7.

Figure 7. Telephone line

23

4.4. Case Study 4:

Room Reservation System:

A room reservation system is used for booking a room in a hotel. A person can reserve a room in the

hotel based on its availability and if it matches the customer's requirements.

The case study has the following behavior:

 The user creates an account and logs in to the system.

 A list of available rooms is displayed in “Display-Rooms”.

 A person chooses the room as per his requirement “Choose-Room”. After choosing the room

availability of the desired room is checked if not available he is redirected to the “Choose-Room”

state. If available he is asked to enter the required reservation details “Input-Reservation-Details”.

 Further payment code ‘Generate Payment Code’ is displayed for the user to make payment ‘Make-

Payment’ after the payment is validated an ‘invoice’ is generated.

 After successful payment, booking confirmation is sent to the user ‘Confirm-Reservation’.

The State Machine of the Room Reservation system is given in Figure 8.

Figure 8. Room Reservation System

24

4.5. Case Study 5:

Student Portal:

A student portal is an online platform that provides students with access to a variety of academic and

administrative activities such as viewing timetables, test assessments, new assignments, etc.

Following are the behavioral specifications of the student interface of the student portal.

 As the system starts login page displays (Login Dialog).

 After login credentials are entered their validity is tested if they are incorrect user is returned to

the login page to enter the credentials again. Else if, the password is correct password expiry is

checked if it is expired user is again returned to the login page to update the password.

 If the password is valid, the system enters the ‘authorized’ state and the ‘Student profile’ is

displayed.

 From the profile students can user to edit data by entering ‘User Details’ and return to student

profile for other operations.

 Student can take the test by entering ‘Test-Assessment-Window’ and enter ‘Test-Results-Window’

after he/she finishes the test or time is over ‘timeout’.

 Students can also choose to get test results by entering ‘Test-Results-Window’ directly from

‘Student-Profile’.

 After the session expires system will redirect to ‘Login-Dialog’ System will exit by entering the

finish state.

Figure 9. Presents the state machine diagram of the student portal case study.

Figure 9. Student Portal

25

4.6. Case Study 6:

Online shopping

An online shopping website provides their users an easy access to view, choose and purchase items of

their choice from comfort of their home.

The behavioral features of online-shopping case study are as follows:

 Initially after opening, the app/website one logs in to the system (Login) if already registered.

 If not registered then chose to register to the system first (Register) and then login to the system.

 After successful login one may want to search new products or view cart.

 If one choses to search some product (Search Products) he either founds the required product or

not if the product is not found one can chose to search again or exit the system else if product is

found net state is view product (View Item).

 If it is the desired product one can decide to add it to the cart (Add to cart) else search again by

returning to the ‘search products’ state. After adding the product to the cart one can search for

more products or choose to view the cart.

 After that one can search for more products or choose to remove items from the cart and can again

decide to ‘search products’, ‘view cart’, or checkout from the system.

The following state machine diagram represents the case study of the online shopping system.

26

Figure 10. Online shopping

4.7. Case Study 7:

Auto Crash Prevention System (ACPS):

An Auto-crash prevention system is an intelligent technology that is designed to avoid or minimize the

severity of a vehicle accident.

The behavioral requirements of an auto-crash prevention system are given below:

 Initially, the system is in an “IDLE” state.

 As the vehicle is moving or activated system ACP system goes to “Start” state.

27

 On the positive edge of the clock the ACPS transitions to a “Driving-Safely” state. In the next

clock cycle, the system checks the activation of the obstacle detection modules i.e., camera and

radar system.

 As the radar activates, the system transitions to an “Emitting-waves” state. The received signals

from the radar are sent to the main controller continuously as per defined clock cycles.

 If the radar module detects the presence of some obstacle, the system changes to the “Obstacle-

Detected” state.

 As the camera module is activated, the system goes to the “Take-Pictures” state. And the data is

transferred to the controller.

 From the “Obstacle-Detected” state, the system then enters the “Obstacle-Detection-Module” state

for estimating the distance between the vehicle and the obstacle.

 The system enters the “Imminent-Collision-Strategy-composite” state, in case of a distance less

than 5 meters. In this case, the system transfers to the “Notification” state, and generates an alarm

then goes to the “Warning” state. Subsequently, moves to an “Emergency-Stop” state by applying

the emergency breaks.

 The ACPS goes to “Near-Collision-Avoidance-Strategy-composite-state” if the estimated distance

is above 5 meters and less than 10 meters. In this case, the system goes to the “warning” state and

notifies the system to assert a “normal-brakes” signal.

 The ACPS transfers to the “Changing-Lane-Strategy-composite-state”, in case of distance above

10 meters and less than 20 meters. Then the system chooses from two available options “auto” or

“manual” turn. On activation of the “deviation-sensor,” the system goes to the “Auto-Turn” state,

and “lane-change-alarm” is activated to inform the driver about auto lane change and then goes to

the “Lane-Changed-Successfully” state. In the second case, the driver manually chooses to switch

lanes and then the system goes to the “Lane-Changed-Successfully” state.

State-Machine of the ACPS system [38] is given in Figure 11:

28

Figure 11. Automatic Crash Prevention System

4.8. Case Study 8:

Arbiter:

The arbiter is the control unit that regulates access to the shared resource such as bus, memory, or any

other resource. It determines which master gets access at any given time based on a predefined protocol

or priority scheme. In this case study the design of an arbiter, as one-hot coding style state machine with

7 possible states is presented [38]. The states of the arbiter include “Master-1”, “Master-2”, “Master-3”,

“Idle”, “Idle-1”, “Idle-2” and “Idle-3”. Each of the master devices can request for the assignment of

resources such as for bus grant. All the masters can make the request simultaneously as well. The arbiter

determines the priority for the bus grant by using the Round-Robin policy. Once a “Master” gains access

to the bus, it can carry out specific transactions for a specified time limit and then release the bus for

processing requests from other master devices.

29

The following are the behavioral requirements of an arbiter state machine:

 Initially, the state machine is in an “Idle” state. The system waits for the master devices to request

for bus grant.

 The system goes to the “Idle” state on “reset”.

 The arbiter used a Round-robin policy to assign buses to the master devices. This technique

maintains a pointer or counter that cycles through the list of masters sequentially. If all the master

devices request bus grants simultaneously, then the arbiter will assign the arbiter to the “Master-

1” device.

 When “Master-1” completes its task, it transitions to the “Idle-1” state signaling the completion

status.

 From the “Idle-1” state, the arbiter then assigns the bus to “Master-2” and the process continues

sequentially, in the order of “Master-2”, “Master-3”, and then again to “Master-1” if it requests for

the bus again.

State-Machine is given in Figure 12.

Figure 12. Arbiter

4.9. Case Study 9:

Heating System:

 A heating system maintains the temperature at a specific temperature b heating or cooling operations

as per requirements.

30

Behavioral requirements of the heating system case study are as follows.

 Initially when turned on the system is in idle state.

 If the temperature is too cold i.e., the temperature is lower than the desired temperature.

 System enters the ‘Heating’ state that composes of ‘initializing’ state that transitions to ‘Active’

state when ‘ready’.

 When temperature is as per desired system is set to idle state. If the temperature becomes too hot,

the system transitions to ‘Cooling’ state or once can chose to shut down the system.

 Else if the temperature is too hot i.e., the temperature is higher than the desired temperature.

 System enters the ‘Cooling’ state. When the temperature is as per the desired temperature, the

system is set to idle state. If the temperature becomes too cold then the system transitions to a

‘Heating’ state or one can choose to shut down the system.

 System can also transition to final state i.e., ‘Shutdown’ from ‘idle’ state.

The state machine diagram of the heating system is given in Figure 13.

Figure 13. Heating System

4.10. Case Study 10:

Remotely Piloted Aircraft (RPA):

The RPV also called a drone, is a remotely controlled aircraft. RPA system can be preprogrammed to

fly autonomously as per flight plans. It is equipped with intricate dynamic automation systems. This

model of the RPA system while considering different safety restrictions is showcased in this case study

[38].

The simplified behavioral requirements of an RPA system are given below:

31

 In the beginning, the initial state of the drone is “Flying”. The fault detection system comprises of

several sensors and continuously monitors the Engine and GPS systems for possible failures.

 The fault monitor continuously receives values from sensors and identifies if there is any fault. If

the sensors detects any failure then the system moves to either “Engine-Failure” state or “GPS-

failure” state based on values from the sensors).

 If the system encounters engine malfunctioning and moves to “Engine-Failure” state, the clock

cycle is activated and the RPA is directed to emergency.

 If the system sends a termination command i.e., “Termination-Command-Received” state, the

system enters the “Flight-Termination-Initiated” state and then transitions to the “Manually-Land-

Aircraft” state.

 If the system encounters GPS failure, if GPS auto restores successfully restores GPS, normal flight

of the RPA system continues. Otherwise, it is directed to move to the “Flight-Back-To-Station”

state and then to the “Reached-Back-To-Station” state. In case the aircraft does not reach the

station in the estimated time, the system transitions to the “Aircraft-Lost” state.

 Fault monitoring system of the RPA continuously monitors other faults factor as well such as:

“Termination-Command-Received”, “2.4 GHz-Link-Failure”, “Soft-Geofence-Breach” and

“Data-link-failure” states via associated sensors.

The state machine of the RPA system case study is given in Figure 14.

32

Figure 14. Remotely Piloted Aircraft (RPA)

4.11. Case Study 11:

Popcorn machine:

A popcorn maker is a kitchen appliance designed to pop popcorn kernels into fluffy, edible popcorn.

The popcorn case study has the following behavior:

 At first, the popcorn maker is in an idle mode.

 Once the popcorn maker is switched on it enters the Running mode state machine switches to the

“ready” state then it transitions to the ‘On’ state as it starts (making popcorn).

 When the time is up it enters the ‘Done state’.

 After it transitions to the off switch, the running state is exited and the machine enters the ‘Off’

state.

33

The state machine of the popcorn machine is given in Figure 15.

Figure 15. Popcorn machine

4.12. Case Study 12:

Traffic Lights:

The case study of Traffic lights characterizes the control unit activities of a traffic light system for

maintaining the proper flow of traffic on North-South Road (N-S) and East-West Road (E-W). The N-

S road is the central road with a high traffic rate, therefore more time is allotted to the N-S road that is

green light stays ‘ON’ for a greater time-period. For E-W traffic, an electromagnetic sensor is installed

in the road surface to sense the vehicle's presence. If the E-W sensor detects any vehicle it checks for an

N-S traffic light. As soon as the time allowed for the green light reaches its limit. The yellow light for

both N-S and E-W is turned on and then the green light of the E-W road is turned “ON”. In the case of

an emergency vehicle, as soon as the emergency sensor is activated the traffic on both N-S and E-W

roads is stopped by turning the Red light “ON” to allow the emergency vehicle to pass. Sensors and

cameras are also installed at intersections to monitor traffic light violations [38].

State machine diagram, models following behavioral features of traffic lights control unit:

 Initially, the green light on N-S road stays “ON”.

 IF the sensor on E-W detects the presence of a vehicle, a signal is sent to the controller and the

time limit for the green light on N-S roads is checked. If its limit is reached yellow light is turned

on for both roads followed by a Red light on the N-S road and a Green light on the E-W road to

allow the traffic on the E-W road to pass.

 After the sensor on the E-W road is deactivated, the Green light on the N-S road is turned “ON”.

34

 Upon controller reset, the Greenlight time for N-S will be set to zero.

 If there is an emergency vehicle, the sensor is activated, and “Greenlight” will turn “Yellow” and

then to “Red” to allow the emergency vehicle to pass.

 After the emergency vehicle has passed the signal from the E-W sensor is monitored if the vehicle

is present the Green light is turned “ON” for the E-W road and the N-S light stays red until the

time limit for E-W is reached.

 A camera continuously monitors traffic light violations. It captures a picture of the vehicle in case

of a violation and saves the record for further action for traffic rule violation at the traffic signal.

The state machine of the case study of the traffic light control unit is given in Figure 16.

Figure 16. Traffic Lights

35

4.13. Implementation of UMCD for Clone detection in the ATM System case study.

The case study comprises a UML state machine of an ATM that describes the behavior of an ATM

machine as shown in Figure 6. The state machine is developed in the Eclipse Papyrus tool and is

exported in XMI format b using the built-in facilities of the Papyrus tool. The tree representation to

visualize the hierarchy of the ATM state machine showing states, transitions, and their relation and

dependency is shown below in Figure 17. and a section of the XMI code of the ATM System State-

machine is given in Figure 18.

Since the XMI code of the state machine textually represents the diagram. Therefore, we can easily

access the relevant features of the UML model. Since the XMI code of the ATM system contains a lot

of XML-specific information that is irrelevant for identifying model clones. It also contains a lot of

structural details about the state-machine diagram that plays no significant role in the clone detection

process.

Figure 17. Tree Representation of ATM System

Therefore, it is important to extract only relevant features and information from the XMI code of the

model. For this purpose, we used ‘xml.etree.ElementTree’ library for parsing XML documents in

Python. It is a Python module used for XML data processing. It is a simple and effective way of

manipulating XML documents such as parsing to extract relevant features by navigating through the

XML tree structure.

36

Figure 18. XMI representation of ATM System State-Machine

Relevant features for the model clone detection in UML state machine diagram such as Owned

attributes, owned operations, sub vertexes, states, pseudo states, activities, constraints, IDs, transitions,

source and target states etc., are extracted and saved in a file. The output of XMI parsing is shown in

Figure. 19.

Figure 19. Parsed XMI code of ATM Case Study

37

The parsed XML code of the ATM state machine is further preprocessed and the following tasks are

performed:

 Complex IDs like “xmi:id="_oVDSwJjnEe6NHdZbcPR96Q" are difficult to understand and

comprehend, so it makes it difficult to process them, therefore, they are replaced with simplified

IDs like “ID_33” Thus replacing them with simple IDs makes it easier to comprehend and process.

 Removing Null values to avoid complications in further steps.

 Removing any unnecessary columns that do not play any role in the clone detection process.

 If necessary representing text in the same format such as separating concatenated words and

representing text in lowercase.

 Represent text in a suitable format, in this case, the extracted data is represented in a tabular form

for easier understanding and application of the proposed approach.

Figure 20. Shows the output after performing preprocessing steps.

Figure 20. Parsed XMI code after further pre-processing

After the feature extraction and preprocessing, the next step is labeling. The extracted data of ATM state

machines are then thoroughly analyzed as per the definition of clones in UML state machines as defined

in Table 2. Moreover, clones are manually assigned labels such as clone1, clone2, clone3, and nonclone

respectively as shown in Figure 21. Furthermore, Figure 22. Highlights clone pairs off all three types of

clones in ATM state machine for easier understanding.

Subsequently, the clone detection approach is employed to the data for the identifying clones. The results

of type-1 model clones are displayed in Figure 23. Type-2 model clone outcomes are presented in Figure

24 and Figure 25 presents the out of type-3 Model clones.

38

Figure 21. Labeled Data

Figure 22. Highlighting clones in the Data

39

Figure 23. Clone Type 1 Results

Figure 24. Clone Type 2 Results

40

Figure 25. Clone Type 3 Results

41

CHAPTER 5

VALIDATION

The validity of the proposed approach is demonstrated using several case studies. A case study of an

ATM is demonstrated below to validate the proposed approach. To exemplify the key outcomes and

insights of the UMCD an ATM state machine model is used in the following case study.

5.1 Case Study
ATM remains idle initially, when the user inserts his card (insert card state) the system checks if the

card is valid or not, if the card is valid system asks the user to enter PIN (Give Pin). If the pin is valid a

menu “Select-Service” appears on the screen and the user selects the services represented as states in

the state machine i.e., Cash-Withdraw, Balance-Inquiry, Transfer-Funds, Generate ATM card, Bill

payment, change pin or quit. If the user selects Cash-Withdraw system asks the user to insert the amount,

if the amount is valid cash is ejected (eject cash), and a receipt is printed (Print-receipt) and then the

card is ejected (eject card). If the user selects ‘Balance-Inquiry’ the user's account balance is displayed

as ‘View-Balance’ and a receipt is printed (Print-Receipt), if the user has no more functions card is

ejected (eject card). If the user selects ‘Transfer-Funds’ the system asks the user to ‘Enter-Receiver-

Account’ and then insert the amount. If the amount is valid cash is transferred (transfer cash), a receipt

is printed (Print-receipt) and then the card is ejected (eject card) if the user selects ‘Generate ATM card’

the system asks the user to input user credentials and Account number. If provided data is valid card is

generated otherwise the request is denied. If the user selects ‘change pin’ the system asks the user to

enter ‘previous pin’ and ‘Enter New pin’ if both meet the system requirements new pin is generated

otherwise the request is denied. If the user selects the ‘Bill Payment’ option, the system asks the user to

select bill type, and mode of payment and enter the bill amount if the data is valid, and the user has

sufficient account balance the transaction is completed otherwise the transaction is terminated.

5.1.1 Application of UML Model Clone Detection (UMCD) framework:

Following is the output of applying our proposed framework:

 Nine useful features are extracted from the XMI code of the ATM state machine. Such as element

type, element name, element ID, source state, target State, constraint, constraint value, trigger, and

state activity.

42

 In the preprocessing step, only relevant features are considered such as element type, name,

constraints, and activity, and irrelevant columns are dropped.

 184 elements are derived from the ATM state machine model.

 Out of those 184 elements, 28 element pairs are labeled as clone 1, 22 element pairs are labeled

clone type 2, 25 element pairs are labeled as clone type 3, and the remaining 34 elements are

labeled non-clone.

The performance of our proposed approach is calculated by using a confusion matrix, UMCD

identified type-1 clones with 100% accuracy, clones of type 2 with 97.8% accuracy, and clones of type

3 with 92% accuracy for the case study of ATM with an overall accuracy of 96.6% as shown in the

following table 2.

Table 5. Results of UMCD on ATM Case Study

The results of application of UMCD framework on ATM case study are also displayed in Figure 26.

Figure 26. UMCD Results from ATM case study

Clone

Type

Total

Clones

Correctly

identified

Falsely

Identified

Accuracy

(%)

Type 1 28 28 0 100

Type 2 22 20 2 97.8

Type 3 25 18 7 92

Total clones 75 66 9 96.6

43

The framework is also validated by applying to several other case studies. Figure 27 shows the results

of UMCD on three case studies i.e., ATM machine, Telephone line system, and online shopping. The

figure shows that our proposed framework yielded satisfactory results.

Figure 27. Performance results of UMCD on Other case studies

44

CHAPTER 6

DISCUSSION

Clone detection in software engineering is critical to assuring the quality and maintainability of software

systems. Developers frequently reuse several code components in their products and fail to conduct code

reviews to detect clones or refactor copied code. This produces code clones. These cloned components

can lead to quality, consistency, maintainability, and bug propagation issues. UML diagrams such as

class diagrams, activity diagrams, state machines, etc., are the core artifacts of the process of software

development, used to specify and represent software design.

These models serve as a blueprint for navigating all aspects of the process of software development.

Consequently, if there are clones in these UML models, they will also induce clones in later software

development stages. Consequently, these clones will propagate and intensify the clone-related issues. In

this research, a framework, UML Model Clone Detection (UMCD) is proposed for model clone

detection. The proposed framework utilizes Natural language processing techniques to identify clones

of types 1, 2, and 3 in UML state machine diagrams. No significant research has been conducted on

identifying clones in UML state machine diagrams in previous research studies.

A state machine is used to describe a system’s behavior in the form of states, triggers, transitions, etc. It

provides a well-organized way to demonstrate and analyze the transitions between several states of a

system in response to triggers, events, or inputs. Advanced NLP techniques make it easier to identify

duplications in UML models since models contain a lot of textual information therefore making it easier

to semantically analyze the text and apply textual similarity measures of natural language processing

(NLP). Model clones are detected in UML State Machines and compared with assigned labels to identify

if a clone pair is correctly identified by UMCD or not.

There are several reasons for the choice of using sentence transformers for our approach of clone

detection in UML models, especially when compared to other NLP models like BERT or GPT which

are more commonly used. First, Sentence transformers are optimized specifically for the assessment of

semantic similarity, which is essential to the process of identification of clones in text or models.

Whereas BERT or GPT, which are general-purpose language models are not specifically designed for

semantic similarity but for a wide range of NLP tasks, sentence transformers have been fine-tuned on

datasets focused on sentence or paragraph-level semantic similarity tasks. Thus, enhancing their ability

to comprehend and compare meanings in text. Therefore, sentence transformers are more efficient for

our framework for model clone detection where semantic equivalence is crucial. Furthermore, Sentence

transformers also provide several efficient ways to compute embeddings for comparing similarity. They

generate embeddings that are directly useful for cosine similarity calculations without the need for

45

further processing or pooling strategies that may be required by other complex models. Moreover, in

systems where several UML models have to be analyzed quickly and effectively, this Direct Approach

reduces the complexity of computation and speeds it up significantly.

Research shows that sentence transformers generally perform better on tasks involving the comparison

of textual semantic content. In addition, The sentence transformers library offers an extensive array of

pre-trained t and tools and models that facilitate easy integration and application.

Our framework successfully demonstrates the application of the sentence transformer models in

identifying renamed clones and near-miss clones. Our UMCD framework was capable of detecting exact

clones, renamed clones as well as near-miss clones in complex UML state-machine models.

6.1. Threats to validity

The proposed approach of clone detection in UML models has some threats to validity. Since the UML

state machines are graphical by nature. As our technique makes use of XMI representation of the state

machines, transforming these diagrams into textual descriptions for applying NLP techniques may lead

to loss of information. Another threat to validity is that the results obtained from a specific set of UML

state machines might not generalize to other domains or types of state machines. The proposed approach

might not handle all variations in UML state machine designs.

46

CHAPTER 7

CONCLUSION AND FUTURE WORK

Clone detection in UML models is indeed an active research area within the broader fields of software

engineering and model-driven development. As software systems become increasingly complex,

maintaining the quality, consistency, and efficiency of UML models becomes crucial. Clone detection

aims to identify duplicated or similar components within these models, enabling better software design

and maintenance practices. Clone detection in UML models has several valuable applications across

numerous phases of the software development lifecycle. It has significant a role in the design,

development as well as maintenance phase of a software system in a cost and time-effective way.

Identifying clones in UML models helps in maintaining and evolving software systems efficiently. By

removing duplicated or redundant components, developers can focus on making changes to a single

representation, reducing the risk of introducing errors. It also improves the quality of UML models by

ensuring that design elements are unique, discrete, and concise.

UML models are used as a basis for generating code as they provide a roadmap to the implementation

and development of software systems. Therefore, detecting and removing clones in UML models as per

requirement can generate cleaner, more efficient, and maintainable code by eliminating redundant code

patterns before they are translated into programming languages. Identifying clones in UML models can

guide refactoring efforts by highlighting areas where design patterns can be applied or where common

components can be consolidated for better maintainability.

Based on the significance of clone detection in UML models, researchers are continuously exploring

and developing techniques, algorithms, and tools for detecting clones in UML models. Several

researchers are investigating the application of graph-based methods, deep learning approaches, and

machine learning algorithms to detect clones in UML diagrams. This approach uses the power of

machine learning to automatically identify complex patterns and relationships in models. Researchers

are working on techniques to improve the efficiency and scalability of clone detection algorithms,

making them applicable to large-scale software systems. Some also aim to integrate clone detection tools

directly into popular UML modeling and development environments, providing developers with real-

time feedback and automated clone detection features. In conclusion, clone detection in UML models

remains an active and evolving research area, driven by the need to improve software design practices,

ensure maintainability, and enhance the overall quality of complex software systems.

Our proposed approach UML Model Clone Detection (UMCD) focuses on model clone detection in

UML state machines. They are versatile modeling tools that have a wide range of uses across various

domains, including software engineering, control systems, embedded systems, and more. In the domain

47

of software engineering, they are extensively used to model the behavior of complex systems. They help

developers visualize how a system's behavior changes in response to different events, inputs, and

conditions. Our approach uses advanced NLP concepts such as Sentence Transformers and TF-IDF. By

utilizing Sentence Transformers, we effectively capture semantic similarities between sentences, while

TF-IDF allows us to assess the relevance of terms within the documents. Together, these techniques

enhance the accuracy and efficiency of our proposed framework.

Our future efforts will focus on improving the efficiency of the UMCD framework and enhancing the

accuracy of the proposed framework by incorporating machine-learning approaches along with NLP.

We also aim to identify clones in Object Constraint Language (OCL) properties associated with state-

machine elements in the future. Further, we aim to enhance the system to incorporate the identification

of Type 4 clones in UML state-machine models. Furthermore, in the future, we also aim to Identify if a

clone is intentional and needed or if it is not needed and may cause bug propagation, quality, or

maintenance issues later on. Therefore, to devise a technique to remove or refactor the unwanted clones

as per requirement.

REFERENCES

[1] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam and B. Maqbool. 2019. A Systematic Review on

Code Clone Detection," in IEEE Access, vol. 7, pp. 86121-86144, 2019, doi:

10.1109/ACCESS.2019.2918202.

[2] Booch, G., Jacobson, I., & Rumbaugh, J. 1999. The unified modeling language user guide.

Reading: Addison-Wesley.

[3] Harald Störrle, 2010. Towards clone detection in UML domain models, ACM, 2010 ECSA 2010,

August 23-26, 2010, Copenhagen, Denmark.

[4] Franzago, M., Di Ruscio, D., Malavolta, I., & Muccini, H. 2017. Collaborative model-driven

software engineering: a classification framework and a research map. IEEE Transactions on

Software Engineering, 44(12), 1146-1175

[5] Baker, Brenda S. 1995. On finding duplication and near-duplication in large software systems. In

Reverse Engineering, 1995. Proceedings of 2nd Working Conference on, pp. 86-95. IEEE.

[6] Chou, A. Yang, J. Chelf, B. Hallem, S. Engler, D.R. 2001. An empirical study of operating system

errors. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, Banff, AB,

Canada, 21–24 October 2001; pp. 73–88.

[7] Li, Z. Lu, S. Myagmar, S. Zhou, Y. 2006. CP-Miner: Finding copy-paste and related bugs in

operating system code. IEEE Trans. Software. Eng. 2006, 32, 289–302.

[8] Qurat Ul Ain, Farooque Azam, Muhammad Waseem Anwar, and Ayesha Kiran. 2019. A Model-

driven Approach for Token-Based Code Clone Detection Techniques - An Introduction to

UMLCCD. 8th ICEIT 2019. Association for Computing Machinery, New York, NY, USA, 312–

317. https://doi.org/10.1145/3318396.3318440

[9] Roy, Chanchal Kumar, and James R. Cordy. 2017. A survey on software clone detection research.

Queen’s School of Computing TR 541, no. 115 (2007): 64-68.

[10] Vislavski, Tijana, Gordana Rakic, Nicolás Cardozo, and Zoran Budimac. 2018. LICCA: A tool for

cross-language clone detection. In 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering s(SANER), pp. 512-516. IEEE, 2018.

[11] Y Nakamura, Yuta, Eunjong Choi, Norihiro Yoshida, Shusuke Haruna, and Katsuro Inoue. 2016.

Towards detection and analysis of interlanguage clones for multilingual web applications. In

Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International

Conference on, vol. 3, pp. 17-18. IEEE, 2016.

[12] Jadon, Shruti. 2016. Code clone detection using machine learning technique: Support vector

machine. In Computing, Communication, and Automation (ICCCA), 2016 International

Conference on, pp. 399-303. IEEE, 2016.

[13] Wang, Pengcheng, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K. Roy. 2018.

CCAligner: a token-based large-gap clone detector. In Proceedings of the 40th International

Conference on Software Engineering, pp. 1066-1077. ACM, 2018.

[14] Yang, Yanming, Zhilei Ren, Xin Chen, and He Jiang. 2018. Structural Function Based Code Clone

Detection Using a New Hybrid Technique. In 2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC), pp. 286- 291. IEEE, 2018.

[15] Svajlenko, Jeffrey, and Chanchal K. Roy. 2017. Cloneworks: A fast and flexible large-scale near-

miss clone detection tool. In Proceedings of the 39th International Conference on Software

Engineering Companion, pp. 177-179. IEEE Press, 2017.

[16] Sargsyan, Sevak, Sh Kurmangaleev, A. Belevantsev, and Arutyun Avetisyan. 2016. Scalable and

accurate detection of code clones. In Programming and Computer Software 42, no. 1 (2016): 27-

33.

[17] Singh, Gurpreet. 2017. To enhance the code clone detection algorithm by using the hybrid

approach for detection of code clones. In Intelligent Computing and Control Systems (ICICCS),

2017 International Conference on, pp. 192-198.

[18] Nam H. Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M. Al-Kofahi, and Tien N. Nguyen.

2009. Complete and accurate clone detection in graph-based models. In Proceedings of 31st ICSE

'09. IEEE Computer Society, USA, 276–286. https://doi.org/10.1109/ICSE.2009.5070528

[19] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson. 2012. Models are code too:

Near-miss clone detection for Simulink models, 28th IEEE International Conference on Software

Maintenance (ICSM), Trento, Italy, 2012, pp. 295–304

[20] Störrle, H. 2015. Effective and Efficient Model Clone Detection. In: De Nicola, R., Hennicker, R.

(eds) Software, Services, and Systems. Lecture Notes in Computer Science, vol 8950. Springer,

Cham. https://doi.org/10.1007/978-3-319-15545-6_25

[21] Manar H. Alalfi, Elizabeth P. Antony, James R. Cordy. 2016. An Approach to Clone Detection in

Sequence Diagrams and Its Application to Security Analysis, Software & Systems Modeling,

2016. https://doi.org/10.1007/s10270-016-0557-6

[22] Mohammad Azangoo, Amirhosein Taherkordi, Jan Olaf Blech. 2020. Digital Twins for

Manufacturing Using UML and Behavioral Specifications, 2020 25th IEEE conference.

[23] H. Liu, Z. Niu Z. Ma W. Shao. 2011. Suffix tree-based approach to detecting duplications in

sequence diagrams, IET Software., 2011, Vol. 5, Iss. 4, pp. 385–397

[24] E. P. Antony, M. H. Alalfi and J. R. Cordy. 2013. An approach to clone detection in behavioral

models, 2013 20th Working Conference on Reverse Engineering (WCRE), Koblenz, Germany,

2013, pp. 472-476

[25] Sandeep Kumar Nain, Manila. 2017. Detecting Similarities and Clones Using UML Diagrams,

2017 IJEDR, Volume 5, Issue 1, ISSN: 2321-9939

[26] D. Rattan, R. Bhatia and M. Singh. 2012. Model clone detection based on tree comparison, 2012

Annual IEEE India Conference (INDICON), Kochi, India, 2012, pp. 1041-1046

[27] D. Vallejo-Huanga, J. Morocho and J. Salgado. 2023. SimilaCode: Programming Source Code

Similarity Detection System Based on NLP, 2023 15th International Congress on Advanced

Applied Informatics Winter (IIAI-AAI-Winter), Bali, Indonesia, 2023, pp. 171-178

[28] S. Mhatre, S. Satre, M. Hajare, A. Hire, A. Itankar and S. Patil. 2023. Text Comparison Based on

Semantic Similarity, 2023 3rd International Conference on Intelligent Technologies (CONIT),

Hubli, India, 2023, pp. 1-5, doi: 10.1109/CONIT59222.2023.10205616.

[29] V. V. Mayil and T. R. Jeyalakshmi. 2023. Pretrained Sentence Embedding and Semantic Sentence

Similarity Language Model for Text Classification in NLP, 2023 3rd International Conference on

Artificial Intelligence and Signal Processing (AISP), VIJAYAWADA, India, 2023, pp. 1-5

[30] Muslim Chochlov, Gul Aftab Ahmed, James Vincent Patten, Guoxian Lu, Wei Hou, David Gregg,

Jim Buckley. 2023. Using A Nearest-Neighbor, BERT-Based Approach for Scalable Clone

Detection, ARXIV-CS.SE, 2023.

[31] S. Arshad, S. Abid and S. Shamail. 2022. CodeBERT for Code Clone Detection: A Replication

Study, 2022 IEEE 16th International Workshop on Software Clones (IWSC), Limassol, Cyprus,

2022, pp. 39-45

[32] U. Kelte, J. Wehren, and J. Niere. 2005. A generic difference algorithm for UML models”

Proceedings of SE 2005, Essen, Germany, pp. 105-116.

[33] https://www.uml.org/what-is-uml.htm

[34] M. A. Mahima, N. C. Patel, S. Ravichandran, N. Aishwarya and S. Maradithaya. 2021. A Text-

Based Hybrid Approach for Multiple Emotion Detection Using Contextual and Semantic

Analysis," 2021 International Conference on Innovative Computing, Intelligent Communication

and Smart Electrical Systems (ICSES), Chennai, India, 2021

[35] M. Alodadi and V. P. Janeja. 2015. Similarity in Patient Support Forums Using TF-IDF and Cosine

Similarity Metrics, 2015 International Conference on Healthcare Informatics, Dallas, TX, USA,

2015, pp. 521-522

[36] P. P. Gokul, B. K. Akhil, and K. K. M. Shiva. 2017. Sentence similarity detection in Malayalam

language using cosine similarity, 2017 2nd IEEE International Conference on Recent Trends in

Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 2017

[37] A. Desku, B. Raufi, A. Luma and B. Selimi. 2021. Cosine Similarity through Control Flow Graphs

For Secure Software Engineering," 2021 International Conference on Engineering and Emerging

Technologies (ICEET), Istanbul, Turkey, 2021

[38] M. W. Anwar, M. Rashid, F. Azam, A. Naeem, M. Kashif and W. H. Butt, "A Unified Model-

Based Framework for the Simplified Execution of Static and Dynamic Assertion-Based

Verification," in IEEE Access, vol. 8, pp. 104407-104431, 2020

[39] Satwinder Singh and Raminder Kaur. 2014. Clone detection in UML class models using class

metrics. SIGSOFT Softw. Eng. Notes 39, 3 (May 2014), 1–3.

[40] Martin Beckmann, Vanessa N. Michalke, Andreas Vogelsang, and Aaron Schlutter. 2017.

Removal of redundant elements within UML activity diagrams. In Proceedings of the ACM/IEEE

20th International Conference on Model Driven Engineering Languages and Systems (MODELS

'17). IEEE Press, 334–343. https://doi.org/10.1109/MODELS.2017.7

[41] H. Jnanamurthy, F. Henskens, D. Paul and M. Wallis, "Clone Detection in Model-Based

Development Using Formal Methods to Enhance Performance in Software Development," 2018

3rd International Conference for Convergence in Technology (I2CT), Pune, India, 2018, pp. 1-8,

doi: 10.1109/I2CT.2018.8529446.

[42] Strüber, D., Acreţoaie, V. & Plöger, J. Model clone detection for rule-based model transformation

languages. Softw Syst Model 18, 995–1016 (2019). https://doi.org/10.1007/s10270-017-0625-6

[43] Al-Batran, B., Schätz, B., Hummel, B. (2011). Semantic Clone Detection for Model-Based

Development of Embedded Systems. In: Whittle, J., Clark, T., Kühne, T. (eds) Model Driven

Engineering Languages and Systems. MODELS 2011. Lecture Notes in Computer Science, vol

6981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24485-8_19

https://doi.org/10.1109/MODELS.2017.7
https://doi.org/10.1007/s10270-017-0625-6

