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Abstract 

Aerosol Optical Depth (AOD) is a critical parameter in atmospheric sciences, representing the 

concentration of aerosols in a vertical column of the atmosphere. Accurate prediction of AOD is 

essential for understanding air quality, climate change, and their impacts on human health. This 

study explores the potential of machine learning techniques in predicting AOD levels over urban 

regions in Pakistan, specifically Lahore and Karachi. We employ three machine learning models: 

Support Vector Regression (SVR), Gradient-Boosting Decision Tree (GBDT), and Random Forest 

(RF), leveraging various meteorological and environmental datasets. 

The datasets are pre-processed by removing outliers, handling missing values, and standardizing 

the data points. Key input features include temperature, relative humidity, wind speed, wind 

direction, and day of the year. We validate the performance of these models using metrics such 

as the correlation coefficient (R), Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE). 

The results indicate that the SVR model, optimized using the Gray Wolf Optimizer (GWO), 

outperforms the other models with a correlation coefficient (R) of 0.64 for Lahore and 0.54 for 

Karachi. The optimized SVR model also significantly improves in MAE and RMSE, highlighting its 

robustness and accuracy in predicting AOD levels. 

This study demonstrates the efficacy of Machine Learning (ML) techniques in environmental 

monitoring, providing a reliable tool for predicting AOD. The findings suggest that, by incorporating 

higher-quality data and a broader range of input variables, further improvements can be achieved. 

The successful application of these models in Pakistan could pave the way for enhanced air 

quality management and climate research in other regions. 
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Chapter 1: Introduction 

1.1 Background 

Aerosols refer to particulate matter suspended in the air. They include crystal materials, inorganic 

materials, metals, elemental carbon, and biological substances such as pollen, spores, and 

animal excrement (Zaheer et al., 2023). These materials play a significant role in the radiative 

features of clouds and the scattering and absorption of radiation in the atmosphere. 

Consequently, the presence of aerosols in the Earth’s atmosphere significantly alters the planet’s 

radiative balance and, with it, the climate system (Lemmouchi et al., 2023). These effects extend 

to the hydrological cycle, the global surface temperature, and ecosystems (Ali et al., 2020). 

Furthermore, aerosols negatively impact human health. According to the World Health 

Organization (WHO), about 4.2 million to 7 million people die per year because of the presence 

of aerosols in the air. Finer particulate matter (such as PM2.5 and PM10) enters the human lungs 

and causes numerous heart and respiratory-related diseases, such as cardiovascular disease, 

cerebrovascular disease, and asthma. Prolonged exposure to particulate matter can lead to 

complications related to child-bearing, such as premature births, low birth weights amongst 

infants, and early gestational birth ages (Ranjan et al., 2020). Sometimes, the effects that aerosol 

particles have on human health are indirect. For example, the acidic nature of sulfate ions 

encourages the availability of metals that, when exposed to humans, can lead to higher morbidity 

and death rates (Zaheer et al., 2023). 

For these environmental and health-related issues, the study of aerosols is crucial. Studying their 

spatial variability and interactions with radiation in the atmosphere. South Asia, in particular, is 

threatened by the rising amounts of aerosols in the atmosphere due to growing populations, rapid 

urbanization, increased motorized traffic, changes in land use, and rising industrialization in and 

around urban areas. The sources of these aerosols are both natural and anthropogenic. Dust and 

sea salts (examples of natural aerosols) originate from arid regions in the south and the Indian 

Ocean. Anthropogenic aerosols are mostly from vehicular and industrial emissions (Ali et al., 

2020). 

The fundamental property of aerosols that quantifies their presence in atmospheric columns is 

aerosol optical depth (AOD). Aerosol optical depth (AOD) is an optical parameter of aerosols that 

is defined as the extinction coefficient of sunlight over a vertical column of aerosols in the 

atmosphere. Several factors influence the variation of Aerosol Optical Depth (AOD) in the 
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atmosphere, namely seasonality, topography, and environment. In Pakistan, AOD values peak in 

the summer and fall during the winter (Ali et al., 2020). 

Several remote sensing techniques have been established to monitor the variation of aerosol 

optical depth (AOD) in the atmosphere, ranging from ground-based to satellite-based techniques. 

However, these monitoring systems suffer from several limitations. Ground-based monitoring 

stations (such as NASA’s AERONET stations) can only monitor AOD levels at a certain point, 

hence providing no spatial resolution. Furthermore, factors such as extreme pollution events, bad 

weather, and equipment malfunction lead to gaps in the recorded data. Satellites offer data over 

a much wider spatial range, but suffer from low temporal resolution (for example, the MODIS 

sensors onboard NASA’s Aqua and Terra satellites each provide data for AOD levels a mere two 

times a day). 

Gapless datasets for AOD with a high temporal resolution (such as hourly) have a number of 

uses: For example: 

● They are used to monitor diurnal patterns in aerosol levels (Lipponen et al., 2022) 

● They are used to derive surface solar irradiance databases for use in the energy sector 

(Schroedter-Homscheidt & Oumbe, 2013) 

● They are used to model PM2.5 levels - another important air quality parameter (Pu & Yoo, 

2022) 

1.2 Problem Statement 

Although Pakistan possesses monitoring systems for aerosol optical depth (AOD), factors such 

as poor weather, equipment malfunctioning, and high pollution events lead to the inadequate 

monitoring of data and gaps in observations (Zaheer et al., 2023). This inhibits the country’s 

research capabilities and ability to analyze and monitor air pollution. 

1.3 Objectives 

The objectives of our project are:  

1. Train three Machine Learning (ML) models for Karachi and Lahore using the best input 

features. 

2. Compare the performances of these models using appropriate metrics. 

3. Attempt different optimization processes on our best-performing model 
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Chapter 2: Literature Review 

A literature review was conducted to assess the potential Machine Learning (ML) has in providing 

a solution to our problem. Machine Learning, a branch of Artificial Intelligence (AI), involves the 

use of data to train algorithms to recognize patterns and make predictions. Thus far, the 

application of Machine Learning (ML) in Environmental Science and Engineering (ESE) has been 

limited, but progress is being made in using ML to solve complex ESE-related problems such as 

the modelling of wastewater treatment systems, the prediction of water availability, and to identity 

toxic elements in commercially-available chemical substances (Zhong et al., 2021).  

The ability of ML algorithms to interpret large datasets and identify complex relationships makes 

them well-suited for a task such as the prediction of AOD. Already, studies have been conducted 

internationally to test the potential use of ML in providing AOD datasets.  

One study compared the capabilities of a Support Vector Machine (SVM) and a BP Neural 

Network in predicting AOD values. Both showed strong non-linear fitting abilities and that the SVM 

was more accurate. For the dataset, approximately 2000 samples were taken over a one-year 

span (Jing et al., 2017). Another study used a random forest (RF) model to predict missing AOD 

values using meteorological and topographical parameters. The random forest proved largely 

successful in its predictions (Jin et al., 2022).  

AOD prediction is not the only complex, air-related task that ML has been useful for. One study 

in China used a gradient-boosting decision tree (GBDT) to improve satellite estimations of ground 

PM2.5 levels. The model successfully improved the spatial resolution of the satellite data (T. 

Zhang et al., 2021). 

After conducting a preliminary survey of the potential uses of ML in AOD prediction, we looked 

deeper into what models would be best suited for the task.  

2.1 Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a widely used, supervised learning algorithm. This means 

that both the input data and output data are provided to the model (it is supervised) and then 

derives a relationship between the two sets of data. Once this “training” has been completed, the 

model can be used to make predictions based on new sets of data. What makes the SVR suitable 

for complex regression problems is its ability to approximate a relationship between the input and 

output datasets whilst maintaining a minimum possible error and a relative level of simplicity. This 

simplicity is achieved by focusing on making the model function as flat as possible and setting a 
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margin of tolerance (known as epsilon) within which predictions are accepted. The SVR model 

can be denoted as: 

𝑓(𝑥) =  〈𝑤 +  𝜙(𝑥)〉 + 𝑏 

where 𝑓(𝑥) is the general, non-linear regression function, 𝑤 and 𝑏 are vector and scalar weights, 

respectively, and 𝜙(𝑥) denotes the mapping of the plane within the space 𝑥 (Panahi et al., 2020). 

2.2 Gradient Boosting Decision Tree (GBDT) 

Gradient Boosting Decision Tree (GBDT) is another form of supervised learning where the input 

and output data are divided into several subsets. Simple models (decision trees) are trained on 

their given subsets of data sequentially. Each model, once trained, provides an error the next 

model in the sequence attempts to lower. This sequence is continued iteratively until the 

approximated relationship between the input and output data is optimal (i.e. gives the lowest 

possible error). What makes the GBDT suitable for our task is that it is able to solve non-linear 

regression problems that involve multiple input features. Furthermore, the GBDT has proven to 

show low sensitivity to missing data in the training sets (Huan et al., 2020). 

2.3 Random Forest (RF) 

The Random Forest (RF) algorithm is another robust technique in Machine Learning (ML) that, 

like the Gradient Boosting Decision Tree (GBDT), makes use of decision trees, but not in the 

same manner. The Random Forest (RF) algorithm builds multiple decision trees and trains each 

of them on a portion of the data. The results of all the decision trees are calculated, and the mean 

prediction of the individual decision trees is the output. Whereas the Gradient Boosting Decision 

Tree (GBDT) makes use of the decision trees’ ability to improve themselves sequentially, the 

Random Forest (RF) leverages the “collective wisdom” of the decision trees to enhance predictive 

accuracy and limit overfitting. The data subset provided to each decision tree is divided into an 

“in-bag” subset which is used for training the decision tree and an “out-of-bag” subset which is 

not involved in the training of the decision tree. The partitioning between the “in-bag” and “out-of-

bag” sets are unique to each decision tree. This helps increase the “randomness” and improves 

the internal validation of the models by a significant amount. The “out-of-bag” sample for each 

decision tree is used to evaluate its performance. The average of all the “out-of-bag” predictions 

provides a metric for the relative accuracy of the Random Forest (RF) model (He et. al, 2020).  
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2.4 Discussion 

Our review of the literature convinced us that the three most suitable Machine Learning (ML) 

models for our task were the Support Vector Regression (SVR), Gradient-Boosting Decision Tree 

(GBDT), and the Random Forest (RF).  

Support Vector Regression (SVR) possesses a strong ability to approximate non-linear 

relationships whilst maintaining a relative level of simplicity in its model function. Given that our 

problem required multiple input features, we believed SVR would be most suited for the task. 

Gradient-Boosting Decision Tree (GBDT) is able to derive generalizations on datasets that include 

missing values, which is a common issue in environmental datasets. Already the GBDT has 

proven capable in improving the spatial resolution of AOD datasets (T. Zhang et al., 2021) and 

so it became a promising candidate for our task.  

Lastly, the Random Forest (RF)’s ability to include randomness in the training of each decision 

tree provides it with a level of robustness that is suited for diverse urban environments like Lahore 

and Karachi. 

Given these strengths, we concluded that SVR, GBDT, and RF are well-suited for our task of 

predicting AOD. The next step involves developing a robust methodology for designing these 

models and collecting high-quality data to train them. This approach will help us address the 

limitations observed in previous studies and enhance the accuracy and reliability of our AOD 

predictions. 
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Chapter 3: Methodology  

The three selected Machine Learning (ML) models are based on what is known as “supervised” 

learning. That is, both the input features and the target variables are provided to the algorithms 

so that a relationship between the two sets of data can be approximated. The first task we had to 

conduct was collecting data for both our input features and our target variable. 

 

 
Figure 1: Overview of project methodology 
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3.1 Data Collection 

The European Centre for Medium-Range Weather Forecasts (ECMWF) provides global 

atmospheric datasets spanning from 1979 to the present. The fifth and latest generation of these 

datasets is ERA-5. Every 3 months, these datasets are updated (Vanella et al., 2022). The 

benefits of ERA-5 datasets are that they offer a high spatial resolution for a wide range of climate-

related variables. Furthermore, the datasets have an hourly resolution, which is precisely what is 

needed for the development of our models. Compared to previous generations, the ERA-5 offers 

an enhanced level of data accuracy. It makes use of the latest version of the ECMWF’s Integrated 

Forecast System model (known as IFS 41r2). This version provides greater temporal output as 

well as increased horizontal and vertical resolutions (1 h, 0.25°, and 137 vertical levels extending 

from the surface, respectively). Already, many studies have been conducted that demonstrate the 

overall accuracy of the ERA-5 datasets compared to other reanalysis datasets and previous 

generations (Soares et al., 2020). 

3.1.1 Global Horizontal Irradiance (GHI) 

The first input feature chosen for our model was Global Horizontal Irradiance (GHI). Several 

studies have demonstrated the inter-relation between GHI and Aerosol Optical Depth (AOD) 

(Perez et al., 2020). GHI is a parameter that quantifies the amount of shortwave radiation that 

reaches a horizontal plane on the Earth’s surface, either through the direct penetration of sunlight 

or through the diffusion of atmospheric radiation. AOD, as explained previously, measures the 

amount of sunlight that is extinguished by aerosols in the atmosphere, either by absorbing it or 

by scattering it. The relationship between GHI and AOD is therefore easy to understand. If GHI is 

the amount of sunlight being received by the Earth’s horizontal surface and AOD is the amount 

of sunlight being extinguished in the atmosphere, it is clear that the two must be inversely 

proportional. A higher AOD represents a higher concentration of aerosols, which consequently 

entails more scattering and absorption of solar light. As AOD increases, less sunlight is able to 

directly reach the Earth’s surface, which causes a drop in GHI levels (Gueymard et al., 2012). 

3.1.2 Temperature  

The second input feature selected for our models was surface temperature. The relationship 

between temperature and Aerosol Optical Depth (AOD) is more complex than that of GHI and 

AOD, mostly due to the various atmospheric processes that are involved. Typically speaking, 

higher temperatures relate to enhanced emissions of certain aerosols (such as organic 
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compounds from vegetation and particulate matter from anthropogenic sources). Therefore, in 

this case, higher temperatures mean a higher AOD level. Furthermore, high temperatures can 

accelerate chemical processes in the atmosphere that may produce secondary aerosols. These 

secondary aerosols contribute to the AOD levels. Such phenomenon has been observed in warm 

months as well as in regions experiencing heat waves (Basharat et al., 2023). It is likely that high 

temperatures are the main reason for why AOD levels peak in the summer time in cities across 

Pakistan (Nawaz et al., 2023). 

One complication, however, is that in certain cases, high aerosols can correspond to lower 

temperatures. The reason for this is due to the impact aerosols have on the Earth’s radiative 

balance. Aerosols that scatter sunlight can cause the Earth’s surface to experience a cooling 

effect. On the other hand, aerosols such as black carbon absorb sunlight and consequently 

contribute to atmospheric heating. This two-directional relationship is responsible for various 

atmospheric feedback loops, in which temperature changes impact aerosols, which in turn 

generate temperature fluctuations (Basharat et al., 2023). It is for this reason that our project 

objectives include an investigation into the input features that most heavily affect AOD levels. Our 

study hopes to find just how much of a role temperature plays in influencing AOD levels.  

3.1.3 Relative Humidity 

Statistical studies have already been conducted that show a positive relationship between relative 

humidity and AOD in Pakistan (Tariq et al., 2021; Basharat et al., 2023; Zeb et al., 2024). The 

reasons for this are multifaceted.  

Directly and indirectly, Relative Humidity (RH) influences AOD levels by manipulating the 

microphysical and optical properties of aerosols. Soot, sulphates, nitrates, organic carbon, and 

mineral dust are the major forms of aerosols present in the troposphere. All of these substances 

are relatively soluble in water. During the presence of high ambient RH, atmospheric conditions 

can induce an increase in water uptake by these aerosols, which increases their size as well as 

their residence time in the atmosphere. This uptake of water is known as aerosol hygroscopicity. 

The result is a significant increase in the scattering capabilities of the aerosols, which in turn 

increases AOD (Prasad et al., 2023).  

Another way through which RH affects AOD is cloud formation. The swelling of aerosols during 

high RH events can cause the aerosols to perform as cloud condensation nuclei (CCN). This 

enhances cloud formation and influences their radiative properties (Tariq et al., 2021). 
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The effects that RH has on AOD is dictated by the chemical composition of the aerosols. Some 

aerosols exhibit greater scattering capabilities in high RH than others. For example, sea salt is an 

aerosol that is purely hygroscopic and hence, possesses a greater scattering coefficient that 

aerosols such as dust. It is therefore important to also take note of the types of aerosols present 

when investigating the relationship between RH and AOD (Prasad et al., 2023).  

3.1.4 Wind Speed 

The relationship between Wind Speed (WS) and Aerosol Optical Depth (AOD) is not 

straightforward and hence requires elaboration. Generally speaking, influences AOD levels by 

affecting the concentration, spatial variation, and the retention of aerosols in the atmosphere. 

During dust storms, high wind speeds can cause the resuspending of dust particles and other 

particulate matter on the Earth’s surface into the atmosphere. This significantly reduces the ability 

of sunlight to breach the Earth’s lower atmosphere and hence increases AOD and reduces 

visibility. This phenomenon is particularly evident in regions that are arid and semi-arid (such as 

Iran), where soil is loose and sand can be easily lifted by the presence of high winds (Omidvar et 

al., 2022). 

In contrast to arid regions, are coastal regions which, interestingly, also display higher AOD levels 

during the presence of high wind speeds. The most likely reason for this is the presence of sea 

salts which, as explained before, are purely hygroscopic. Strong winds can transport sea salts 

suspended over water to coastal regions, where the addition of humidity can cause a swelling of 

the sea salt particles and hence, an increase in AOD (Sun et al., 2024). 

On the other hand, high wind speeds can lead to a lowering of AOD levels. This is in the event 

where winds are dispersing aerosols, reducing their concentration in certain regions, and hence 

leading to less obstruction in the path of sunlight. In such scenarios, high wind speeds help to 

improve the air quality, by diluting aerosols in the atmosphere and transporting pollutants away 

from their sources (N. Kang et al., 2020). 

3.1.5 Wind Direction 

As explained above, high wind speeds can both increase AOD levels as well as decrease them. 

A reason for this is the direction of wind speeds. The source and type of aerosols present in a 

region (as well as their subsequent transportation) is dictated by the direction in which the wind 

is blowing. For example, winds generated in urban or industrial localities can carry with them high 

concentrations of organic particulate matter, which can then increase AOD in places that the 
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winds cross (Yousefi et al., 2023). On the other hand, winds that originate in relatively cleaner 

regions (such as rural areas or coastal regions) may lack anthropogenic aerosols but may still 

carry with them natural aerosols such as sea salts and sand. These too can lead to increases in 

AOD levels (Prasad et al., 2023). 

The role of topography must also be considered when investigating the relationship between Wind 

Direction (WD) and AOD. Studies have found that mountains that block the flow of winds can 

cause a lowering in AOD levels by preventing the spread and transportation of aerosols. On the 

other hand, in basins, this blocking of winds can prevent the dispersion of aerosols, which leads 

to their accumulation and subsequently, increases in AOD (Nakata et al., 2022). 

One study in China showed that the particular matter levels in a city change by season due to the 

shifts in wind. When the winds began to flow from the south to the north, they brought with them 

anthropogenic aerosols produced from local industries, which subsequently increased AOD levels 

in the city (C. Zheng et al., 2017). 

3.1.6 Day of the Year  

Studies that investigate long-term patterns in AOD levels provide insight into the relationship 

between the variable we will refer to as Day of the Year (DOY) and Aerosol Optical Depth (AOD) 

For example, one study showed that – generally speaking – AOD levels are higher during summer 

days in urban cities in Pakistan than during winter days (Ahmed et al., 2020). 

This general trend, however, is complicated by the monsoon season. In Pakistan, the monsoon 

rains occur in late summers. The presence of rainfall dilutes aerosols in the atmosphere, causing 

a “washing out” effect that lowers AOD levels (Khalid et al., 2022). 

There is also the role that agricultural activities such as crop burning play. In Pakistan, during the 

winter time, stubble is burned to prepare crop land for the next season. This burning of biomass 

releases a wide manner of greenhouse gases and particulate matter. This in turn can lead to high 

AOD events (Tariq et al., 2023). Winter can also cause high AOD levels due to stagnant air 

conditions. The stagnant air during winters traps aerosols close to the surface, which 

consequently boosts AOD levels (Qayyum et al., 2022). 

As can be seen, the relationship between Day of the Year (DOY) and AOD is complex. For this 

reason, the second objective of our project was to assess what influence DOY has on AOD 

predictions relative to the other input features. 
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3.1.7 Time of the Day 

Temporal variations of Aerosol Optical Depth (AOD) must be considered when modelling AOD. 

This is due to the diurnal variations in aerosol levels as a consequence of changes in natural and 

human activities. In urban and industrial areas, the changes in AOD levels throughout the day are 

significant. In the early hours of the morning, humans begin their industrial operations as well as 

commute to their work places (more traffic). This significantly increases AOD levels. Furthermore, 

during the morning, there tends to be greater atmospheric stability as a result of cooler 

temperatures. The stagnation of winds can trap aerosols near the city’s surface, elevating AOD 

levels (Jiang et al., 2024). 

As the hours progress, temperatures increase and the planetary boundary layer rises. This can 

generate winds that disperse the aerosols and subsequently reduce AOD. This dilution of 

aerosols is aided by the presence of solar radiation that heats up the air and allows for a more 

vigorous mixing of air streams (Haider et al., 2017). 

The difference between morning and afternoon AOD levels can be quite significant. One study 

conducted in Eastern India found that, due to changes in aerosol loading from anthropogenic 

sources and enhancement in relative humidity, the decline in AOD levels can be as great as 20% 

(Mukherjee & Vinoj et al., 2019). We can therefore conclude that time must be considered as an 

input feature in our models.  

3.2 Validation  

In Pakistan, at 9 locations, the World Bank has placed weather masts that have recorded. ground-

based data of meteorological parameters such as temperature, relative humidity, wind speed, 

wind direction, and GHI. The resolution of these datasets is 10 minutes (Irfan et al., 2019). 

In research, ground-based observations are always considered to more accurate and “true” 

compared to satellite-based observations or data generated from reanalysis techniques. 

Therefore, we sought to validate the datasets we had acquired from ERA-5 with the datasets 

available from the World Bank. The World Bank datasets were not chosen as our input due to 

their size. The World Bank only has data available from the years 2014 to 2017. Our project 

demanded larger datasets (which we acquired from ERA-5). The datasets we acquired from ERA-

5 spanned from 2014 to 2022. The years of data that we had available from the World Bank were 

used to validate the accuracy of the corresponding years of ERA-5 data. 

 



 
22 | P a g e  

 

3.2.1 Results of validation 

The table provides metrics for the validation of Lahore’s ERA-5 datasets with the World Bank 

datasets. 

Table 1: Validation of ERA-5 datasets for Lahore 

Lahore (LHR) GHI Temperature  RH% Wind Speed  Wind 
Direction 

R 0.98 0.95 0.56 0.39 0.36 

Mean Bias 
Error (MBE) 

-14.86 -1.68 28.27 -0.05 -63.49 

Root Mean 
Square Error 

(RMSE) 

59.51 3.58 35.09 1.54 120.41 

 

 
Figure 2: Lahore GHI 

 
Figure 3: Lahore Temperature 
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Figure 4: Lahore RH 

 
Figure 5: Lahore WS 

 
Figure 6: Lahore WD 
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The same validation was performed for the datasets in Karachi and their metrics are provided 

below. 

Table 2: Validation of ERA-5 datasets for Karachi 

Karachi (KHI) GHI Temperature  RH% Wind Speed  Wind 
Direction 

R 0.52 0.92 0.83 0.79 0.54 

Mean Bias 
Error (MBE) 

-10.34 0.52 -1.08 -0.77 -23.64 

Root Mean 
Square Error 

(RMSE) 

130.57 1.97 12.60 1.43 79.29 

 

 
Figure 7: Karachi GHI 

 
Figure 8: Karachi Temperature 
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Figure 9: Karachi RH 

 
Figure 10: Karachi WS 

 
Figure 11: Karachi WD 
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3.2.1 Discussion 

The results show that certain parameters possess a higher correlation between ERA-5 data and 

World Bank data than others. These differences are not consistent between cities. For example, 

GHI in Lahore had a much greater R value (0.98) than GHI in Karachi (0.52). Some parameters, 

such as WS and WD in Lahore, had R values much lower than expected (0.39 and 0.36 

respectively). However, studies have demonstrated that even in cases where ERA-5 data displays 

a low correlation to ground data, it still can be used in the development of ML models for solving 

complex, air-related problems (Wang et al., 2023). As such, we proceeded with the data that we 

had available in the development of our models.  

3.3 AERONET Data 

For our target variable (AOD), we collected data from the AERONET stations present in Lahore 

and Karachi. These are the only two available AERONET stations in Pakistan. Their respective 

coordinates are (74.324, 31.542) and (67.030, 24.870). It is important to note that when collecting 

the data for our input features from the ERA-5 website, data extracted within a 40-km radius of 

the AERONET stations was taken. This is in line with the methodology developed by Lanzaco et 

al. (2017). Were the input features taken from a location further than 40-km away from the 

AERONET stations, then there could be no claim to spatial correspondence between our input 

features and target variable.   

The highest quality dataset available from the AERONET website was collected. This was the 

Version 3 Level 2.0 (Solar) measurements. These datasets include AOD values taken every 15 

minutes during the day time and are processed to remove influence from cloud coverage and 

other atmospheric interferences. 

3.3.1 Extrapolating AOD (550nm) 

Aerosols have distinct properties when it comes to the scattering and absorbing of sunlight. It is 

for this reason that scientists measure AOD at different wavelengths. Each wavelength provides 

unique insights into the different types of aerosols present in a region. The common reference 

wavelength for studies is AOD measured at 550nm (Kumar et al., 2022). It is for this reason that 

we chose AOD (550nm) as our target variable.  

However, AOD (550nm) is not provided by the AERONET stations. Instead, an extrapolation 

method using available AOD values had to be used to derive our own dataset for AOD (550nm). 
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The extrapolation method used was the same one Cesnulyte et al. (2014) used in their validation 

of ERA-5’s AOD datasets against AERONET datasets. The formula given is: 

𝐴𝑂𝐷550 = 𝐴𝑂𝐷500(
550

500
)−𝛼 

where 𝐴𝑂𝐷500 is the AOD values measured at 500nm (provided by AERONET) and 𝛼 is Ångström 

exponent measured between the wavelengths 440-870nm.  

3.3.2 Averaging values 

AERONET provides AOD values that are measured at intervals of 15 minutes. The objective of 

our project was to develop models that predict AOD values at an hourly resolution. The input data 

we took from ERA-5 was already available in intervals of 1 hour. To ensure consistency in time, 

we took the hourly averages of our extrapolated AOD values. 

3.4.1 Metrics 

In Machine Learning (ML), models are evaluated on the basis of certain metrics. It is these metrics 

that are interpreted and used to assess the performance and accuracy of the models. Due to the 

nature of individual metrics, no single metric can be used to assess the accuracy of a model. 

Instead, several must be used. The combination of their unique insights helps to evaluate the 

model’s predictive abilities. We chose to use the same metrics that Zaheer et al. (2023) used in 

assessing the performance of the model they had developed for AOD prediction. These were: the 

coefficient of determination (R), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 

and Mean Absolute Error (MAE).  

3.4.1 Correlation Coefficient  

The correlation coefficient, denoted as R, measures the strength and direction between the 

observed values of a dataset and the predicted values provided by the model. In Machine 

Learning (ML), the correlation coefficient indicates how well the input features predict the target 

variable. A high R value (close to 1) indicates strong efficiency whereas a low value (close to 0) 

indicates low predictive power.  
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3.4.1 Mean Absolute Error (MAE) 

MAE is the average of the absolute errors between the actual values and the predicted values. It 

is calculated as: 

𝑀𝐴𝐸 =  
1

𝑛
∑ 𝑛

𝑖=1

 | 𝑦(𝑖) − 𝑦′(𝑖)| 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

𝑦 = 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑦′ = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

Unlike MSE and RMSE, MAE does not square the errors, so it is less sensitive to outliers. This 

makes it a more robust measure in the presence of outliers. MAE provides a clear and direct 

interpretation of the average error magnitude, making it easy to understand. Using MAE alongside 

MSE and RMSE can provide complementary insights, as it balances the effects of outliers 

differently. 

3.4.3 Mean Square Error (MSE) 

MSE is the average of the squares of the errors, where the error is the difference between the 

actual value and the predicted value. It is calculated as: 

𝑀𝑆𝐸 =  
1

𝑛
∑ 𝑛

𝑖=1

 (𝑦(𝑖) − 𝑦′(𝑖))2 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

𝑦 = 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑦′ = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

By squaring the errors, MSE penalizes larger errors more than smaller ones, which helps in 

identifying models that make significant mistakes. Many ML algorithms, including linear 

regression, use MSE as a loss function to minimize during training, ensuring that the model finds 

the best fit for the data. 
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3.4.4 Root Mean Square Error (RMSE) 

RMSE is the square root of the mean squared error. It provides the standard deviation of the 

prediction errors, offering a measure of how spread out these errors are. 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
∑ 𝑛

𝑖=1

 (𝑦(𝑖) − 𝑦′(𝑖))2 

 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

𝑦 = 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑦′ = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

RMSE is expressed in the same units as the target variable, making it more interpretable in the 

context of the problem. Like MSE, RMSE penalizes larger errors more significantly, making it 

useful for applications where larger errors are particularly undesirable. RMSE provides a 

straightforward measure of average prediction error magnitude, which can be easier to interpret 

and communicate. 
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Chapter 4: Model development 

4.1 Pre-processing data 

 
Figure 12: Overview of the pre-processing of data 

4.1.1 Removing outliers and null values 

The first step in pre-processing our data was removing outliers. Outliers are those values in a 

dataset that significantly differ from the other data points. The existence of outliers in weather and 

climate-related datasets can be for a number of reasons. Extreme weather events, equipment 

malfunctioning, and errors in data processing are just a few examples. Outliers, if fed into a model, 

can skew the results and negatively impact the model’s ability to approximate a relationship 

between the input features and target variables (Boukerche et al., 2020). 

One effective method of removing outliers is the Interquartile Range (IQR) method. In this method, 

the dataset is divided into percentiles. The difference is found between the 75th percentile (known 

as Q3) and the 25th percentile (known as Q1). This difference is the interquartile range (QR). Data 

points that fall below Q1 – 1.5/QR or above Q3 + 1.5/QR are identified as outliers and are 

subsequently removed. By removing these extreme values, we improve the accuracy of our 

models’ predictions (Frery et al., 2023). 

The other data that must be removed is null values. Null values are those values that are either 

missing or are undefined. Typically, they are a result of problems faced during the time of 



 
31 | P a g e  

 

recording or during the processing of the data. To ensure the integrity of the dataset, null values 

must be removed (Mijwil et al., 2023). 

4.1.2 Turning values into float values 

The common practice in ML is to convert all data points into float values. By floating our data, we 

provide our models with the necessary granularity that is required for the computation of numerical 

values. Without first floating our data, other pre-processing techniques such as standardization 

are not possible. Another benefit of floating data is that float values were optimized for 

computational processes, especially large datasets. This allows ML models to perform complex 

computations in less time and with less memory usage. Overall, use float values boosts the 

performance as well as the accuracy of ML models, giving us better predictions and better results 

(Joshi 2024). 

4.1.3 Standardizing Datasets 

The next critical step in pre-processing data in ML is standardizing the datasets. In 

standardization, the datasets are scaled down so that mean value is 0 and the standard deviation 

is 1. This practice is based on the understanding that the variables of different datasets do not 

share the same numerical range. As a result, they will not make equal (or fair) contributions to the 

model’s training function. In some cases, not standardizing the datasets can cause the model’s 

predictions to be bias towards a certain input feature (Testas et al., 2023). For example, before 

standardizing our datasets, it was observed that our GHI input feature was making an unfairly 

large contribution to the model’s performances (on account of its large scale of values). After 

standardizing the datasets, this contribution was curtailed. 

4.2 Forward Feature Selection (FFS) 

The initial selection of our input features was based on a literature review and our understanding 

of what we believed would be the most important input features for our model. However, what we 

wished to find were the features that most significantly contribute to the predictions of our target 

variable. 

For this, Forward Feature Selection (FFS) was selected. FFS is an ML method that helps a model 

identify the input features that are most important in making predictions. It is an iterative process 

that begins with no features and then one by one, adds the features into the model. Each time, it 

assesses the contribution that the feature is making to the model’s performance. This is based on 

how much each feature helps to lower the model’s errors. The metric we used to assess the errors 
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was Mean Squared Error (MSE). The process continues until the added features stop making a 

significant improvement to the predictions. The benefit of FFS is that it aids in simplifying models 

and reduces the overfitting of data. By eliminating irrelevant features, it also boosts computational 

efficiency (Zaheer et al., 2023). 

 

Figure 13: A simple depiction of how FFS performs 

In our case, the five best input features were found to be: temperature, relative humidity, wind 

speed, wind direction, and Day of the Year (DOY). 

4.3 Splitting of training and testing sets 

For every supervised learning technique, the dataset must be divided into a training and a testing 

set. The training set is used to train the model and allow it to approximate a relationship between 

the input features and the target variable. The testing set is used to test the capabilities of the 

model in making new predictions. Standard practice is to split the data 70-80% and 20-30% 

between the training and testing sets. Such a split ensures that the models are able to generalize 

data and are robust in their predictions (N. Chen et al., 2021). 
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4.4 Results 

The results of our models based on the selected metrics are given in the tables below.  

 
Table 3: Performances of different ML models for Lahore 

Lahore (LHR) SVR RF GBDT 

R 0.5244 0.4929 0.5157 

Mean Square Error 
(MSE)  

0.055 0.060 0.059 

Mean Absolute 
Error (MAE) 

0.180 0.191 0.189 

Root Mean Square 
Error (RMSE) 

0.235 0.243 0.242 

 

 
Figure 14: Lahore’s GBDT 
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Figure 15: Lahore’s RF 

 
Figure 16: Lahore’s SVR 

Table 4: Performances of different ML models for Karachi 

Karachi (KHI) SVR RF GBDT 

R 0.4066 0.4074 0.3701 

Mean Square Error 
(MSE) 

0.018 0.017 0.017 

Mean Absolute 
Error (MAE) 

0.110 0.104 0.107 

Root Mean Square 
Error (RMSE) 

0.136 0.130 0.133 
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Figure 17: Karachi’s GBDT 

 
Figure 18: Karachi’s RF 
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Figure 19: Karachi’s SVR 

4.4 Discussion 

The results shown above display our first attempt at developing models for Lahore and Karachi. 

The performances of all our models, when compared to models available in the literature, were 

poor. For example, the model developed by Zaheer et al. (2023) had the following metrics: R = 

0.77, MSE = 0.0049, MAE = 0.06, and RMSE = 0.07.  

In the case of our models, the SVR performed best in Lahore whereas the SVR and RF in Karachi 

performed almost equally.   
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Chapter 5: Improving the SVR 

After the initial attempts made at modelling AOD, we decided to focus our efforts on improving 

the performance of our SVR models. We conducted a deeper literature review (Lanzaco et al., 

2017; N. Chen et al., 2021; Zaheer et al., 2023) into the capabilities of SVR and arrived at the 

conclusion that the SVR was the best model for us to focus our efforts on.  

5.1 Hyper-tuning 

In an SVR model, there are two main hyperparameters that influence the performance of the 

model. The first is epsilon (ε) which controls the margin of tolerance. If the epsilon is low, then 

there is a lower penalty for misclassified data points but the model’s ability to predict target 

variables is decreased. If epsilon is high, there is a larger penalty for errors but the model may 

not be able to generalize as well when given new data. The second is C which controls the trade-

off between the training error and the margin that divides our datasets. If C is too low, the margin 

will be too great and data points will be misclassified. If C is too high, the SVR’s plane will perform 

overfitting, in which it will be too specific in its classification of the training dataset and will therefore 

perform poorly on new, unseen data (Y. Wang et al., 2023). 

Due to the significance of these hyperparameters, we attempted to find the optimal values for our 

models. For this, we made use of the Grid Search function. This function tests different 

combinations of hyperparameters within a provided range and identifies which combination 

performs the best. 

Table 5: The optimum hyperparameters found by our Grid Search 

Epsilon (ε) C 

0.1 1 

 

5.2 Optimizers 

An optimizer is an algorithm used in ML to adjust the weights and biases of the models with the 

goal of improving the predictive abilities of the model. The library we were using to develop our 

models, Scikit-learn, provides the most common optimizer, the gradient descent. The gradient 

descent is an optimization algorithm that performs iterative steps to minimize the error function. 

We decided to make use of other optimizers in order to improve our SVR’s performance. 



 
38 | P a g e  

 

5.2.1 Adam 

Adam (short for Adaptive Moment Estimation) is an advanced optimization algorithm. It is widely 

used in training deep learning models due to its efficiency and ability to handle sparse gradients. 

Adam adjusts the learning rate for each parameter dynamically, making it suitable for problems 

involving multiple input parameters and large datasets. Adam includes mechanisms to correct 

biases in the estimates of the first and second moments, ensuring more reliable and accurate 

parameter updates (Ghimire et al., 2022). The library used for the Adam optimizer is Pytorch. 

5.2.2 Gray Wolf Optimizer 

The Gray Wolf Optimizer (GWO) is a nature-inspired algorithm based on the social hierarchy and 

hunting behavior of gray wolves in the wild. It was proposed by Seyedali Mirjalili in 2014 and has 

been applied successfully to various optimization problems. GWO simulates the leadership 

hierarchy of gray wolves, with four types of wolves: alpha, beta, delta, and omega. The alpha 

wolves lead the pack, followed by beta and delta wolves, with omegas being the lowest-ranking 

members. The algorithm mimics the cooperative hunting process of gray wolves, including 

tracking, encircling, and attacking prey. This process is modeled mathematically to perform 

optimization. GWO balances exploration (searching for new solutions) and exploitation (refining 

existing solutions) effectively, making it a robust optimizer (R. Liu et al., 2021). 

5.3 Results  

The tables below give the performances of SVR for both cities using the different optimizers. 

Table 6: Performance of different optimizers for Lahore's SVR model 

Lahore (LHR) SVR SVR with Adam 
Optimizer 

SVR with GWO 
Optimizer 

R 0.5244 0.545 0.64 

Mean Square Error 
(MSE) 

0.055 0.035 0.009 

Mean Absolute 
Error (MAE) 

0.180 0.11 0.04 

Root Mean Square 
Error (RMSE) 

0.235 0.187 0.094 

 



 
39 | P a g e  

 

Table 7: Performance of different optimizers for Karachi's SVR model 

Karachi (KHI) SVR SVR with Adam 
Optimizer 

SVR with GWO 
Optimizer 

R 0.4066 0.454 0.54 

Mean Square Error 
(MSE) 

0.018 0.016 0.014 

Mean Absolute 
Error (MAE) 

0.110 0.104 0.08 

Root Mean Square 
Erro (RMSE) 

0.136 0.126 0.118 

5.4 Comparison with Literature 

Table 8: Comparison of our SVR models with models from literature 

 (Jing et al., 
2020) 

(Zaheer et al., 
2023) 

Lahore Model Karachi Model 

R 0.87 0.77 0.64 0.54 

Mean Square 
Error (MSE) 

0.0009 0.0049 0.09 0.014 

Mean Absolute 
Error (MAE) 

- 0.06 0.04 0.08 

Root Mean 
Square Error 

(RMSE) 

0.03 0.07 0.094 0.118 

 

5.5 Discussion 

As can be seen from the tables above, the optimizers only marginally improved the performances 

of our SVR. Even after improvement, our models did not perform as well as models provided by 

the literature. The possible reasons for the performance of our models are discussed below. 

5.5.1 Pollution 

Both Karachi and Lahore are placed within the top 5 cities in Pakistan with poorest air quality. 

The roles of various air pollutants in influencing AOD levels is still being studied (Bilal et al., 2021) 
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but it is likely that our models’ relatively low predictive abilities are due to the influence of air 

pollutants on AOD levels. 

5.5.2 Poor quality data 

Our validation test of the ERA-5 datasets did take note of the low accuracy of certain parameters 

(such as WD and WS in Lahore). It is possible that our models’ accuracy is being affected by the 

quality of the data being used to train them. 
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Chapter 6: Conclusion & Recommendations 

6.1 Conclusion 

The findings of our project can be summarized below: 

• The forward feature selection (FFS) found the following 5 input features to be the best: 

temperature, relative humidity, wind speed, wind direction, and day of the year (DOY). 

• The best-performing model after optimization and hyper-tuning was the Support Vector 

Regression (SVR). 

• The best performing optimizer was the Gray Wolf Optimizer (GWO). 

Although our models did not achieve a desired level of accuracy, they still demonstrated the 

potential ML has in solving complex, non-linear problems in ESE (Environmental Science and 

Engineering).  

Furthermore, it must be noted that an important aspect of modelling is defining the purpose of the 

model i.e. for what application it is intended to serve. Although, when compared to the literature, 

our models do not perform as highly, that does not mean that our models are redundant. 

Schroedter-Homscheidt & Oumbe (2013) did a study that demonstrated that AOD models with as 

low a correlation as 0.45 and an RMSE as high as 0.28 could be used in the calculation of surface 

solar irradiance for use in the energy sector. Our models, in comparison, perform much better 

than these. This indicates a potential application of the models we developed. 

6.2 Recommendations 

There are two main ways that our models can be further improved. 

 

6.2.1 Training the models in cleaner cities 

As discussed previously, it is possible that the pollution in Karachi and Lahore hamper the ability 

of the models to approximate a relationship between the provided input features and the target 

variable. It is possible that a model trained in a cleaner city will do better at defining the relationship 

between the input features we provided and our target variable.  
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6.2.2 Using Different Data 

The datasets used for the input features were ERA-5. We suggest that further studies make use 

of other available datasets, particularly datasets that display a higher correlation with ground 

values. It is likely than this will significantly improve the performance of models in predicting AOD. 

6.2.3 Using Different Input Features 

Several studies have demonstrated the relationship between AOD and other meteorological 

parameters, such as rainfall (Gautum et al., 2022), as well as air pollutants such as nitrous oxides 

(Nichol et. al, 2020) and carbon monoxide (Buchholz et al., 2021). We suggest that future studies 

make use of these variables as input features and subsequently investigate their potential in 

predicting AOD. 
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