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Preface

The primary purpose of this book is to show the great value that Fourier
series methods provide in solving difficult problems in nonlinear partial dif-
ferential equations. We illustrate these methods in three different cases.

Probably the most important of these three cases are the results that we
present for the stationary Navier-Stokes equations. In particular, we show
how to obtain the best possible results for periodic solutions of the stationary
Navier-Stokes equations when the driving force is nonlinear. We also present
the basic theorem for the distribution solutions of said equations. The ideas
for this material come from a paper published by the author in the Journal
of Differential Equations.

Also, we show how to obtain classical solutions to the stationary Navier-
Stokes equations by applying the Calderon-Zygmund Ca-theory developed
for multiple Fourier series earlier in the book. This technique using the
Calderon-Zygmund Ca-theory does not appear to be in any other text deal-
ing with this subject and is based on a paper that appeared in the Transac-
tions of the AMS.

The second case we consider handles nonlinear reaction-diffusion systems
and uses a technique involving multiple Fourier series to strongly improve
on a theorem previously introduced by Brezis and Nirenberg. The idea for
doing this comes from a recent (2009) paper published by the author in the
Indiana University Math Journal. Reaction-diffusion systems are important
in many areas of applied mathematics including mathematical biology. The
main reason we were able to improve on the results of Brezis and Nirenberg
is because the use of multiple Fourier series enables one to make sharper
estimates and thus obtain a better compactness lemma. The second theorem
we present in this area involves a conventional result involving weak solutions
to the reaction-diffusion system.

The third case we consider is in the area of quasilinear elliptic partial
differential equations and resonance theory. We deal with an elliptic operator
of the form

Qu = −
N∑

i,j=1

Di[a
ij(x, u)Dju] +

N∑

j=1

bj(x, u,Du)Dju

and establish a resonance result based on the work of Defigueredo and Gossez
in a Journal of Differential Equations paper and on the work of the author in
a Transactions of the AMS manuscript. The resonance result obtained is the

vii
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best possible and is proved via a Galerkin type argument that illustrates once
again the power of Fourier analysis in handling tough problems in nonlinear
PDE. The second and third theorems that we present give necessary and
sufficient conditions for the solution of certain other equations at a resonance
involving the above operator Qu.

Another aim of this book is to establish the connection between multiple
Fourier series and number theory. We present an N -dimensional, N ≥ 2,
number theoretic result, which gives a necessary and sufficient condition
that

C(ξ1)× · · · × C(ξN )

be a set of uniqueness for a class of distributions on the N -torus, TN . The
ideas behind this result come from a paper published in the Journal of
Functional Analysis.

Here, C(ξj) is the familiar symmetric Cantor set on [−π, π] depending

on the real number ξj where 0 < ξj < 1/2. The condition is that each ξ−1
j

be an algebraic integer called a Pisot number. What is important about this
result is that the considered class of distributions, labeled A(TN ), does not
necessarily have Fourier coefficients that go to zero as the spherical norm
|m| = (m2

1 + · · ·+m2
N )1/2 →∞ but as min(|m1| , ..., |mN |)→∞. This gives

rise to a wider class of distributions; when it appeared, it was the first result
of this nature in the mathematical literature.

As a corollary to the result just mentioned, we have the following:
Let p and q be positive relatively-prime integers with p < 2q. Then a

necessary and sufficient condition that

C(
p1

q1
)× · · · × C(

pN

qN
)

be a set of uniqueness for the class A(TN ) is that pj = 1 for j = 1, ..., N.
An additional aim of this book is to present the periodic Cα-theory

of Calderon and Zygmund. We deal with a Calderon-Zygmund kernel of
spherical-harmonic type, called K∗ (x), and show that it has a principal-

valued Fourier coefficient K̂∗ (m). We set f̃ = f ∗ K∗ and show that the
following very important theorem prevails:

f ∈ Cα (TN ) , 0 < α < 1,⇒ f̃ ∈ Cα (TN ) .

We also give an application of this theorem to a periodic boundary value
problem involving the Laplace operator and later use it to obtain the regu-
larity result mentioned above for the stationary Navier-Stokes equations.

Another aim of this book is to present the recent (2006) article in
the Proceedings of the AMS, which extends Fatou’s famous work on anti-
derivatives and nontangential limits to higher dimensions. The big question
answered is “How does an individual handle a concept that depends on the
one-dimensional notion of the anti-derivative in dimension N ≥ 2?” Our
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answer to the question is

“Generalize the notion of the Lebesgue point set and show

that the concepts are the same in one-dimension.”

Chapter 1 of the book deals with four different summability methods
used in the study of multiple Fourier series, namely the methods of (i) it-
erated Fejer, (ii) Bochner-Riesz, (iii) Abel, and (iv) Gauss-Weierstrass. The
iterated Fejer method in §2 gives a global uniform approximation for con-
tinuous periodic functions as well as a global Lp approximation theorem.
In §3, the classical Bochner theorem for pointwise Bochner-Riesz summabil-
ity of multiple Fourier series is established. To understand the proof of this
theorem, a knowledge of various Bessel identities and estimates is essential.
This Bessel background material is presented in §1 and §2 of Appendix A.

Several Abel summability theorems, which are important in the study of
harmonic functions including the nontangential result discussed above, are
also presented in Chapter 1, §4. In §5 of Chapter 1, the Gauss-Weierstrass
summability method, which is fundamental in the study of the heat equa-
tion, is developed; it includes a theorem necessary for a subsequent number
theoretic result appearing later in the book.

Chapter 2 is devoted to the study of conjugate multiple Fourier series
where the conjugacy is defined by means of periodic Calderon-Zygmund ker-
nels that are of spherical harmonic type. In particular, the periodic Calderon-
Zygmund kernel, K∗(x), is defined, and it is proved that its principal-valued

Fourier coefficient K̂∗(m) exists. The conjugate function of f is designated

by f̃ , and it is shown that if things are good,
̂̃
f (m) = K̂∗(m)f̂(m), which is

similar to the one-dimensional situation. The main result established is the
following: If f ∈ Cα (TN ), then f̃ ∈ Cα (TN ) . This Cα- theorem is presented
in complete detail in §4 of Chapter 2 and is based on a paper published by
Calderon and Zygmund in the Studia Mathematica.

In §5 of Chapter 2, an application of this Cα- result to a periodic bound-
ary value problem involves the Laplace operator. Also, a Tauberian conver-
gence theorem for conjugate multiple Fourier series motivated by an interest-
ing one-dimensional result of Hardy and Littlewood is given in §3 of Chapter
2. The Tauberian background material is developed in Appendix B.

Chapter 3 contains the details of the solution to a one hundred year old
problem, namely

Establish the two-dimensional analogue of Cantor’s famous

uniqueness theorem dealing with the convergence

of one-dimensional trigonometric series.

The solution depends upon an elegant paper published by Roger Cooke
in the Proceedings of the AMS establishing the two-dimensional Cantor-
Lebesgue lemma joined with a manuscript of the author that appeared in
the Annals of Mathematics.
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Chapter 3 also contains the N-dimensional number theoretic theorem
discussed above giving a necessary and sufficient condition that

C(ξ1)× · · · × C(ξN )

be a set of uniqueness for the class of distributions A(TN ) on the N-torus.
In addition, Chapter 3 contains the recent (2004) article about fractal sets
called generalized carpets that are not Cartesian product sets but are sets of
uniqueness for a smaller class of distributions on the N-torus labeled B(TN ).
These fractal results come from a paper published in the Proceedings of the
AMS.

The analogous problem to Cantor’s uniqueness theorem for a series of
two-dimensional surface spherical harmonics on S2 is still open and is pre-
sented in complete detail in Chapter 3, §2. This problem has been open now
for 140 years. The background material in spherical harmonics, which plays
an important role throughout this monograph, is presented in Appendix A,
§3.

The material in Chapter 4 is motivated by Schoenberg’s theorem in-
volving positive definite functions on S2 and surface spherical harmonics
published in the Duke Journal of Math. It turns out that part of Schoen-
berg’s theorem is highly useful in studying the kissing problem, k(3), in
discrete geometry, as Musin’s 2006 result shows. Here, k(3) is the largest
number of white billiard balls that can simultaneously kiss (touch) a black
billiard ball and represents a problem going back to Isaac Newton’s time in
1694.

Chapter 4 presents Schoenberg’s theorem on SN−1, then on TN , and
finally on SN1−1 × TN . The proof on SN1−1 × TN makes use of a number of
different concepts that occur in this monograph.

Chapter 5 presents five theorems dealing with periodic solutions of non-
linear partial differential equations. As mentioned earlier, the methods em-
ployed illustrate the huge power of Fourier analysis in solving seemingly
impenetrable problems in a nonlinear analysis. Chapter 5, §1 presents, in
particular, periodic solutions in the space variables to a system of nonlinear
reaction-diffusion equations of the form





∂uj

∂t −∆uj = fj(x, t, u1, ..., uJ ) in TN × (0, T )

uj(x, 0) = 0

j = 1, ..., N.
Two theorems are established with respect to this nonlinear parabolic

system. The first theorem deals with one-sided conditions placed on the fj,
and the second deals with two-sided conditions on the fj. As discussed above,
the first theorem strongly improves (for periodic solutions) on a one-sided
classical theorem previously established by Brezis and Nirenberg.

In §2 of Chapter 5, we deal with the equation

Qu = f (x, u)
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where Qu is the partial differential operator discussed above. We set

F± (x) = lim sup
s→±∞

f (x, s) /s,

and show that if ∫

TN

F+ (x) dx < 0 and

∫

TN

F− (x) dx < 0

and certain other conditions are met, then a distribution solution u ∈
W 1,2 (TN ) of Qu = f (x, u) exists. We also show that this is the best possible
result.

In §2 of Chapter 5, we also handle the equation

Qu = g (u)− h (x)

and define

lim
s→∞

g (s) = g (∞) and lim
s→−∞

g (s) = g (−∞) .

We show that if certain other assumptions are met, then the condition

(2π)N g (∞) <

∫

TN

h (x) dx < (2π)N g (−∞)

is both necessary and sufficient that a distribution solution u ∈ W 1,2 (TN )
of Qu = g (u)− h (x) exists.

In §1 of Chapter 6, we handle the stationary Navier-Stokes equations
with a nonlinear driving force:

−ν∆v (x) + (v (x) · ∇)v (x) +∇p (x) = f (x,v (x))

(∇ · v) (x) = 0

where ν is a positive constant, and v and f are vector-valued functions.
In particular, f = (f1, ..., fN ) : TN ×RN → RN . We set

Ej(f) = {x ∈ TN : lim sup|sj |→∞ fj (x, s) /sj < 0

uniformly for sk ∈ R,k 6= j, k = 1, ..., N}
and show that if certain other assumptions are met, then

|Ej(f)| > 0 for j = 1, ..., N,

is a sufficient condition for the pair (v, p) to be a distribution solution of
the stationary Navier-Stokes equations with vj∈W 1,2 (TN ) and p ∈ L1 (TN ).
Here, |Ej(f)| represents the Lebesgue measure of Ej(f). We also demonstrate
that this is the best possible result.

Another theorem that we establish in §1 of Chapter 6 handles the situ-
ation when

fj (x, s) = gj (sj)− hj (x) .



xii PREFACE

In particular, we prove that if certain other conditions are met, then

(2π)N gj (∞) <

∫

TN

hj (x) dx < (2π)N gj (−∞)

for j = 1, ...N, is both a necessary and sufficient condition that the pair
(v, p) be a distribution solution of the stationary Navier-Stokes equations
with vj∈W 1,2 (TN ) and p ∈ L1 (TN ).

In §2 of Chapter 6, we deal with the classical solutions of the stationary
Navier-Stokes equations. The main tool for proving the theorem involved is
the Cα-theory of Calderon and Zygmund established earlier in Chapter 2.

Given f ∈ [C(TN )]N , we will say the pair (v,p) is a periodic classical
solution of the stationary Navier-Stokes system provided:

v ∈
[
C2 (TN )

]N
and p ∈ C1 (TN )

and

−ν∆v (x) + (v (x) · ∇)v (x) +∇p (x) = f (x) ∀x ∈ TN

(∇ · v) (x) = 0 ∀x ∈ TN .

To obtain the classical solutions of the Navier-Stokes system, we require
slightly more for the driving force f than periodic continuity. In particular,
we say f1 ∈ Cα (TN ), 0 < α < 1, provided the following holds:

(i) f1 ∈ C (TN ) ;
(ii) ∃ c1 > 0 s. t. |f1 (x)− f1 (y)| ≤ c1 |x− y| α ∀x, y ∈ RN .

Working in dimension N = 2 or 3, we show in §2 of Chapter 6 that if

fj ∈ Cα (TN ) , 0 < α < 1 for j = 1, ...N ,

then there is a pair (v, p) which is a periodic classical solution of the sta-
tionary Navier-Stokes system with vj ∈ C2+α (TN ) and p ∈ C1+α (TN ).

I have lectured on the mathematics developed in this book at various
mathematical seminars at the University of California, Riverside, where I
have been a professor for the last 45 years. Also, I would like to thank my
colleague James Stafney for the many discussions that we have had about
spherical harmonics and related matters.

I had the good fortune to write my doctoral thesis with Antoni Zyg-
mund at the University of Chicago. Also, I did post-doctoral work with Arne
Beurling at the Institute for Advanced Study and with Salomon Bochner
from Princeton University. My subsequent mathematical work was backed
by Marston Morse from the Institute for Advanced Study. I am indebted to
these four outstanding mathematicians.

Victor L. Shapiro
Riverside, California
January, 2010
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CHAPTER 1

Summability of Multiple Fourier Series

1. Introduction

We shall operate in real N -dimensional Euclidean space, RN , N ≥ 1,
and use the following notation:

x = (x1, ..., xN ) y = (y1, ..., yN )

αx+ βy = (αx1 + βy1, ..., αxN + βyN )

x · y = x1y1 + ...+ xNyN , |x| = (x · x) 1
2 .

With TN , the N -dimensional torus,

TN = {x : −π ≤ xj < π, j = 1, ..., N} ,
we shall say f ∈ Lp(TN ), 1 ≤ p < ∞, provided f is a real-valued (unless
explicitly stated otherwise) Lebesgue measurable function defined on RN of
period 2π in each variable such that

∫

TN

|f |p dx <∞.

A similar definition prevails for f ∈ L∞(TN ).
With m as an integral lattice point in RN and ΛN representing the set

of all such points, we shall designate the series
∑

m∈ΛN

f̂(m)eim·x

by S[f ] and call it the Fourier series of f where

f̂(m) = (2π)−N

∫

TN

e−im·xf(x)dx.

In this chapter, we study the relationship between f and its Fourier series
S[f ].

To begin, we let ∆ = ∂2/∂x2
1+· · ·+∂2/∂x2

N be the usual Laplace operator

and observe that ∆eim·x = − |m|2 eim·x. Consequently, from an eigenvalue
point of view, it is natural to ask, “In what manner does the series

(1.1)

∞∑

n=0


 ∑

|m|2=n

f̂(m)eim·x




1



2 1. SUMMABILITY OF MULTIPLE FOURIER SERIES

approximate f?” Bearing in mind the classical counter-examples of both
Fejer and Lebesgue concerning the convergence of one-dimensional Fourier
series, [Zy1, Chapter 8], we see that the answer to the previous question
should involve some spherical summability method of the series given in
(1.1).

The two most natural methods involving spherical summability are those
of Bochner-Riesz and Abel. In particular, we say that S[f ] is Bochner-Riesz
summable of order α, henceforth designated by (B −R,α) to f(x) if

(1.2) lim
R→∞

∑

|m|≤R

f̂(m)eim·x(1− |m|2 /R2)α = f(x).

Bochner-Riesz summability plays the same role for multiple Fourier series
that Cesaro summability plays for one-dimensional Fourier series. In §3
of this chapter, we shall establish a fundamental result for Bochner-Riesz
summability of Fourier series.

S[f ] is Abel summable to f(x), this means that the

(1.3) lim
t→0

∑

m∈ΛN

f̂(m)eim·x−|m|t = f(x).

The reason for calling this method of summability Abel summability is mo-
tivated by the fact that the series

∑

m∈ΛN

f̂(m)eim·x−|m|t

is harmonic in RN+1
+ , i.e., in the variables (x,t) for t > 0.

We shall discuss Abel summability in detail in §4 of this chapter. Also,
in Chapter 2, we shall deal with the Abel summability of conjugate multiple
Fourier series. But first, it turns out that we can get some very good global
results connecting f and S[f ] by iterating well-known one-dimensional re-
sults involving the Fejer kernel, and we will now show this iteration.

2. Iterated Fejer Summability of Fourier Series

We leave Dn(t) as the well-known one-dimensional Dirichlet kernel

(2.1) Dn(t) =
n∑

j=−n

eijt =
sin(n+ 1

2 )t

sin(t/2)
,

and Kn(t) as the well-known one-dimensional Fejer kernel [Ru1, p. 199],

(2.2) Kn(t) =
1

n+ 1

n∑

j=0

Dj(t) =
1

n+ 1

1− cos(n+ 1)t

1− cos t
.



2. ITERATED FEJER SUMMABILITY OF FOURIER SERIES 3

We also observe from [Ru1, p. 199] that Kn(t) has the following three prop-
erties:

(2.3)

(a) Kn(t) ≥ 0 ∀t ∈ R,

(b) 1
2π

∫ π
−π Kn(t)dt = 1,

(c) Kn(t) ≤ 1
n+1

2
1−cos δ if 0 < δ ≤ |t| ≤ π.

It follows from (2.1) and (2.2) that

(2.4) Kn(t) =
n∑

j=−n

eijt(1− |j|
n+ 1

),

and we shall refer to

(2.5) K♦
n (x) = Kn(x1) · · ·Kn(xN )

as the iterated N -dimensional Fejer kernel.
For f ∈ L1(TN ) with S[f ] as its Fourier series, we shall prove three

global theorems involving K♦
n (x) and the iterated Fejer summability of S[f ].

In particular, we call σ♦
n(f, x) the iterated Fejer partial sum of S[f ] where

m = (m1, ...,mN ) and

(2.6) σ♦
n(f, x) =

n∑

m1=−n

· · ·
n∑

mN=−n

f̂(m)eim·x(1− |m1|
n+ 1

) · · · (1− |mN |
n+ 1

).

With f ∈ C(TN ) signifying that f is a real-valued continuous function
defined on RN of period 2π in each variable and with B(x, r) designating
the open N-ball with a center x and radius r, the first theorem we shall prove
is the following:

Theorem 2.1. Let f ∈ C(TN ) and suppose σ♦
n(f, x) is defined as in (2.6).

Then
lim

n→∞
σ♦

n(f, x) = f(x) uniformly for x ∈ TN .

Proof of Theorem 2.1. We observe from (2.3)-(2.6) that

(2.7) σ♦
n(f, x)− f(x) = (2π)−N

∫

TN

[f(x− y)− f(x)]K♦
n (y)dy.

Let ε > 0 be given. Choose δ > 0 so that |f(x− y)− f(x)| <ε for y ∈
B(0, δ) uniformly for x ∈ TN . Now it is clear that Cu(0, δ

N ) ⊂ B(0, δ) where

Cu(0, δ
N ) is the open N-cube with center 0 and a half-side δ/N. So

(2.8) |f(x− y)− f(x)| <ε for y ∈ Cu(0, δ
N

) uniformly for x ∈ TN .

Designating P+
1,δ as the rectangular parallelopiped

P+
1,δ = {x : δ ≤ x1 ≤ π, -π ≤ xj ≤ π, j = 2, ..., N.} ,
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we see from (2.3) that limn→∞

∫
P+

1,δ/N

∣∣K♦
n (y)

∣∣ dy = 0. Since TN\Cu(0, δ
N ) is

covered by a finite number of parallelopipeds similar to P+
1,δ/N , we conclude

that

lim
n→∞

∫

TN\Cu(0, δ
N

)

∣∣∣K♦
n (y)

∣∣∣ dy = 0.

Since f(x) is uniformly bounded on RN , we also see from this last limit
that n0 can be chosen so large that

(2.9) (2π)−N

∫

TN\Cu(0, δ
N

)
|f(x− y)− f(x)|

∣∣∣K♦
n (y)

∣∣∣ dy ≤ ε for n ≥ n0

uniformly for x ∈ TN .
Next, returning to (2.8), we obtain from (2.3)(b) that

∫

Cu(0, δ
N

)
|f(x− y)− f(x)|

∣∣∣K♦
n (y)

∣∣∣ dy ≤ ε

∫

TN

∣∣∣K♦
n (y)

∣∣∣ dy

≤ ε (2π)N ∀n

uniformly for x ∈ TN .
Hence, (2.7) and this last fact joined with (2.9) shows that

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣ ≤ 2ε for n ≥ n0 uniformly for x ∈ TN ,

which gives the conclusion to the theorem. �

The second summability theorem that we obtain using the N -
dimensional iterated Fejer kernel is the following:

Theorem 2.2. Let f ∈ Lp(TN ), 1 ≤ p < ∞ and suppose σ♦
n(f, x) is

defined as in (2.6). Then

lim
n→∞

∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣
p
dx = 0.

Proof of Theorem 2.2. We prove this for the case 1 < p < ∞, with a
similar proof prevailing for the case p = 1. From (2.7) with p−1 + p′−1 = 1,
we see that
∣∣∣σ♦

n(f, x)− f(x)
∣∣∣ ≤ (2π)−N

∫

TN

|f(x− y)− f(x)|
∣∣∣K♦

n (y)
∣∣∣
p−1+p′−1

dy,

and hence from Holder’s inequality and (2.3)(b) that
(2.10)∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣
p
dx ≤

∫

TN

∣∣∣K♦
n (y)

∣∣∣ [
∫

TN

|f(x− y)− f(x)|p dx]dy.
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Now f ∈ Lp(TN ) and is also periodic of period 2π in each variable. Therefore,
it follows that given ε > 0, ∃δ > 0,

∫

TN

|f(x− y)− f(x)|p dx ≤ ε(2π)−N for y ∈ B(0, δ).

Consequently, we obtain from (2.10) that
∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣
p
dx ≤

∫

TN−B(0,δ)

∣∣∣K♦
n (y)

∣∣∣ [
∫

TN

|f(x− y)− f(x)|p dx]dy + ε

But f ∈ Lp(TN ) implies that the inner integral on the right-hand side of the
above inequality is uniformly bounded. Therefore, since Cu(0, δ

N ) ⊂ B(0, δ),
we infer from the limit above (2.9) and the above inequality that

lim sup
n→∞

∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣
p
dx ≤ ε.

Since ε >0 is arbitrary, this gives the conclusion to the theorem. �

Theorem 2.2 has three important corollaries, the first of which is the
following:

Corollary 2.3.
{
eim·x

}
m∈ΛN

, the trigonometric system, is a complete or-

thogonal system for L1(TN ), i.e., if f,g∈ L1(TN ) and f̂(m) = ĝ(m) for
every integral lattice point m, then f(x)=g(x) a.e. in TN .

Proof of Corollary 2.3. Since f, g ∈ L1(TN ) and f̂(m) = ĝ(m) for every
integral lattice point m, it implies that σ♦

n(f, x) = σ♦
n(g, x) ∀x ∈ TN and

∀n. Consequently, it follows from Theorem 2.2 that
∫

TN

|f(x)− g(x)| dx = 0,

which establishes the corollary. �

The next corollary that we shall prove is called the Riemann-Lebesgue
lemma and is the following:

Corollary 2.4 If f ∈ L1(TN ), then lim |m|→∞f̂(m) = 0.

Proof of Corollary 2.4. Let ε > 0 be given. Using Theorem 2.2, choose
an n sufficiently large so that

∫
TN

∣∣σ♦
n(f, x)− f(x)

∣∣ dx < ε. Then, it follows
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from the definition of f̂(m) given above (1.1) that

∣∣∣f̂(m)
∣∣∣ ≤ (2π)−N{

∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣ dx+

∣∣∣∣
∫

TN

e−im·xσ♦
n(f, x) dx

∣∣∣∣},

≤ ε + (2π)−N

∣∣∣∣
∫

TN

e−im·xσ♦
n(f, x) dx

∣∣∣∣ .

Since σ♦
n(f, x) is a fixed trigonometric polynomial, it follows that there is a

positive number s0 such that the integral in the second inequality is zero for

|m| ≥ s0. We conclude that
∣∣∣f̂(m)

∣∣∣ ≤ ε for |m| ≥ s0, which establishes the

corollary. �

The third corollary that we can obtain from Theorem 2.2 is called Par-
sevaal’s theorem and is the following:

Corollary 2.5. If f ∈ L2(TN ), then

lim
n→∞

(2π)N
n∑

m1=−n

· · ·
n∑

mN=−n

∣∣∣f̂(m)
∣∣∣
2

= ‖f‖2L2 .

Proof of Corollary 2.5. From Theorem 2.2, we see that

lim
n→∞

∥∥∥σ♦
n

∥∥∥
2

L2
= ‖f‖2L2 .

Also, we have that
{∥∥σ♦

n

∥∥2

L2

}∞

n=1
is an increasing sequence, and the proof

follows easily from this last observation. �

The third summability theorem that we get using the N -dimensional
iterated Fejer kernel is the following:

Theorem 2.6. Let f ∈ L∞(TN ) and suppose σ♦
n(f, x) is defined as in

(2.6). Then σ♦
n(f, x)→ f(x) in the weak* L∞-topology, i.e.,

lim
n→∞

∫

TN

σ♦
n(f, x) h(x)dx =

∫

TN

f(x) h(x)dx ∀h ∈ L1(TN ).

Proof of Theorem 2.6. Let h be a given function in L1(TN ). Then it
follows from Theorem 2.2 that

(2.11) lim
n→∞

∫

TN

∣∣∣σ♦
n(h, x) − h(x)

∣∣∣ dx = 0.

Next, we set

In = (2π)−N

∫

TN

σ♦
n(f, x)h(x)dx,
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and observe from (2.6) that

In =

n∑

m1=−n

· · ·
n∑

mN=−n

f̂(m)ĥ(−m)(1− |m1|
n+ 1

) · · · (1− |mN |
n+ 1

)

=

n∑

m1=−n

· · ·
n∑

mN=−n

f̂(−m)ĥ(m)(1 − |m1|
n+ 1

) · · · (1− |mN |
n+ 1

).

Consequently,
∫

TN

σ♦
n(f, x)h(x)dx =

∫

TN

σ♦
n(h, x)f(x)dx.

But then
∫

TN

[σ♦
n(f, x)− f(x)]h(x)dx =

∫

TN

[σ♦
n(h, x)− h(x)]f(x)dx.

Hence,
∣∣∣∣
∫

TN

[σ♦
n(f, x)− f(x)]h(x)dx

∣∣∣∣ ≤ ‖f‖L∞(TN )

∫

TN

∣∣∣σ♦
n(h, x) − h(x)

∣∣∣ dx,

and the conclusion to the theorem follows immediately from the limit in
(2.11). �

Exercises.

1. With Dn(t) =
∑n

j=−n e
ijt, use the well-known formula for geometric

progressions and prove that

Dn(t) =
sin(n + 1

2 )t

sin(t/2)
.

2. With Kn(t) = 1
n+1

∑n
j=0Dj(t), use the familiar formula 1 − cosφ =

2 sin2(φ/2) and prove that

Kn(t) =
1

n+ 1

1− cos(n+ 1)t

1− cos t
.

3. Prove that Kn(t) has the following properties:

(a) Kn(t) ≥ 0 ∀t ∈ R,

(b) 1
2π

∫ π
−π Kn(t)dt = 1,

(c) Kn(t) ≤ 1
n+1

2
1−cos δ if 0 < δ ≤ |t| ≤ π.

4. Complete the proof of Corollary 2.5.
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3. Bochner-Riesz Summability of Fourier Series

As we observed in the introduction to this chapter, ∆eim·x = − |m|2 eim·x

where ∆ is the usual Laplace operator. Hence, from an eigenvalue point of
view, since the eigenfunctions with the same eigenvalue have their integral
lattice points lying on spheres, it is a good idea to study multiple Fourier se-
ries using spherical techniques. One of the most effective spherical technique
is the method of Bochner-Riesz summation, defined previously in (1.2). With
B(x, r) representing the open N -ball with center x and radius r, the first
theorem for this method of summation that we shall prove is the following
due to Bochner [Boc1]:

Theorem 3.1. Let f ∈ L1(TN ) and set

(3.1) σα
R(f, x) =

∑

|m|≤R

f̂(m)eim·x(1− |m|2 /R2)α.

Suppose that |B(0, ρ)|−1 ∫
B(0,ρ) |f(x0 + x)− f(x0)| dx→ 0 as ρ→ 0. Then

lim
R→∞

σα
R(f, x0) = f(x0) for α > (N − 1)/2.

We refer to σα
R(f, x) on the left-hand side of (3.1) as the R-th Bochner-

Riesz mean of order α. Also, |B(0, ρ)| designates the volume of the N -ball
of radius ρ, which we shall now compute.

In order to make this computation, we introduce the N -dimensional
spherical coordinate notation

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3

...

xN−1 = r sin θ1 sin θ2 · · · sin θN−2 cosφ

xN = r sin θ1 sin θ2 · · · sin θN−2 sinφ

where 0 ≤ r < ρ, 0 ≤ θj ≤ π for j = 1, . . . , N − 2, and 0 ≤ φ < 2π.
We label the Jacobian of this transformation, JN (r, θ1, . . . , θN−2, φ). For

example,

J3(r, θ1, φ) = r2

∣∣∣∣∣∣

cos θ1 − sin θ1 0
sin θ1 cosφ cos θ1 cosφ − sin θ1 sinφ
sin θ1 sinφ cos θ1 sinφ sin θ1 cosφ

∣∣∣∣∣∣
,

and an easy computation shows that J3(r, θ1, φ) = r2 sin θ1.
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In a similar manner, we see that J4(r, θ1, θ2, φ)/r3 is going to be the
determinant of the following array:

cos θ1 − sin θ1 0 0
sin θ1 cos θ2 cos θ1 cos θ2 − sin θ1 sin θ2 0

sin θ1 sin θ2 cosφ cos θ1 sin θ2 cosφ sin θ1 cos θ2 cosφ − sin θ1 sin θ2 sinφ
sin θ1 sin θ2 sinφ cos θ1 sin θ2 sinφ sin θ1 cos θ2 sinφ sin θ1 sin θ2 cosφ.

Expanding this determinant using the first row, we observe that

J4(r, θ1, θ2, φ)/r3 = cos2 θ1 sin2 θ1J3(r, θ2, φ)/r2 + sin4 θ1J3(r, θ2, φ)/r2

= sin2 θ1J3(r, θ2, φ)/r2

= sin2 θ1 sin θ2.

Hence, J4(r, θ1, θ2, φ) = r3 sin2 θ1 sin θ2.
Continuing in this manner, we compute JN (r, θ1, . . . , θN−2, φ) using in-

duction and obtain

(3.2) JN (r, θ1, . . . , θN−2, φ) = rN−1(sin θ1)
N−2 · · · (sin θN−3)

2(sin θN−2).

Now, is well known,
(3.3)

|B(0, ρ)| =
∫ ρ

0

∫ π

0
· · ·
∫ π

0

∫ 2π

0
JN (r, θ1, . . . , θN−2, φ)dφdθ1 · · · dθN−2dr.

Also, it is easy to see that

|B(0, ρ)| =
∫ ρ

0
rN−1 |SN−1| dr = ρN |SN−1| /N,

where SN−1 is the unit (N-1)-sphere in RN and |SN−1| is its (N − 1)-
dimensional volume.

In particular, we see from (3.2) and (3.3) that

|SN−1| = 2π

∫ π

0
· · ·
∫ π

0
(sin θ1)

N−2 · · · (sin θN−2)dθ1 · · · dθN−2

= 2π

N−2∏

j=1

∫ π

0
(sin θ)jdθ.

From [Ti1, p. 56], we obtain
∫ π

0
(sin θ)jdθ = Γ(

j + 1

2
)Γ(

1

2
)/Γ(

j + 2

2
).

Consequently, it follows from this last calculation that

|SN−1| = 2π[Γ(
1

2
)]N−2/Γ(

N

2
) = 2(π)N/2/Γ(

N

2
),

and therefore that

(3.4) |B(0, ρ)| = 2(π)N/2

NΓ(N
2 )
ρN .
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|SN−1| can also be computed from the following observation:
∫

RN

e−|x|2dx = |SN−1|
∫ ∞

0
rN−1e−r2

dr

= |SN−1| 2−1

∫ ∞

0
s

N
2
−1e−sds

= |SN−1|Γ(
N

2
)/2.

Since, is well known,
∫∞
0 e−t2dt = π

1
2

2 , the left-hand side of the above equal-

ity is (π)N/2, and we obtain the same value for |SN−1| as we did before.
In order to prove Theorem 3.1, we shall need some lemmas. The first of

such lemmas is concerned with the Bochner-Riesz summability of Fourier
integrals. In particular, if g ∈ L1(RN ) and is complex-valued, we designate
the Fourier transform of g by ĝ and define it in a manner analogous to the
one used for the Fourier coefficients of a function in L1(TN ), namely,

ĝ(y) = (2π)−N

∫

RN

e−iy·xg(x)dx.

The first lemma we prove is the following:

Lemma 3.2. Let g ∈ L1(RN ) and be complex-valued. Set

(3.5) τα
R(g, x) =

∫

B(0,R)
ĝ(y)eix·y(1− |y|2 /R2)α dy.

Suppose that |B(0, ρ)|−1 ∫
B(0,ρ) |g(x0 + x)− g(x0)| dx→ 0 as ρ→ 0. Then

lim
R→∞

τα
R(g, x0) = g(x0) for α > (N − 1)/2.

Proof of Lemma 3.2. We will first prove a special case of the lemma,

namely, when g(x) = e−|x−x0|
2
. We start out by observing once again that

∫∞
0 e−s2

ds = π
1
2

2 , and from (1.12) in Appendix A that

∫ ∞

0
e−s2

cos 2ts ds =
π

1
2

2
e−t2 .

Hence,
∫∞
−∞ e−s2

e−istds = π
1
2 e−

t2

4 , and consequently

(3.6)

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
N

e−(x2
1+···+x2

N )e−ix·ydx = πN/2e−|y|2/4 for y ∈ RN .

On setting 2x = u and y = 0 in this last equation, we see that

(3.7)

∫

RN

e−|u|2/4du = πN/22N .
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We are now able to establish the lemma in the particular case when

g(x) = e−|x−x0|
2
. From (3.6), we obtain that

ĝ(y) = (2π)−N

∫

RN

e−ix·ye−|x−x0|
2

dx

= (2π)−N

∫

RN

e−iy·(x+x0)e−|x|2dx

= (2π)−Ne−iy·x0πN/2e−|y|2/4.

Hence, ĝ(y) ∈ L1(RN ), and the equality in (3.7) together with this last
value of ĝ(y) then implies that

lim
R→∞

∫

B(0,R)
ĝ(y)eiy·x0(1− |y|2 /R2)α dy = (2π)−NπN/2

∫

RN

e−|y|2/4dy

= (2π)−NπN/2πN/22N

= g(x0).

Therefore, the lemma is proved in the special case g(x) = e−|x−x0|
2
.

From what we have just established, we can prove the lemma. Without
loss of generality we can assume from the start that

(3.8) g(x0) = 0.

Otherwise, we could work with the function

h(x) = g(x)− g(x0)e
−|x−x0|

2

.

In order to prove the lemma, we will need two estimates concerning
Bessel functions that are established in Appendix A. The first estimate we
need is

(3.9) |Jν(t)| ≤ Kνt
ν for 0 < t ≤ 1 and ν > −1

2
,

and the second is

(3.10) |Jν(t)| ≤ Kνt
− 1

2 for 1 ≤ t <∞ and ν > −1,

where Kν is a positive constant. The estimates (3.9) and (3.10) correspond
respectively to (2.1) and (2.2) in Appendix A.

Continuing with the proof of the lemma, we set

(3.11) (2π)NHα
R(x) =

∫

B(0,R)
eiy·x(1− |y|2 /R2)α dy,

and observe from (3.5) and Fubini’s theorem that

τα
R(g, x0) =

∫

RN

g(x)Hα
R(x− x0)dx.

Hence,

(3.12) τα
R(g, x0) =

∫

RN

g(x+ x0)H
α
R(x)dx.
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In (1.11) in Appendix A, it is shown that

(3.13) Hα
R(x) = c(N,α)JN

2
+α(R |x|)RN

2 −α/ |x|N2 +α ,

where c(N,α) = (2π)−N ωN−22
αΓ(α+ 1) = 2αΓ(α+ 1)/(2π)N/2. We there-

fore conclude from (3.12) and (3.13) that

(3.14) τα
R(g, x0) = c(N,α)RN

∫

RN

g(x+ x0)JN
2

+α(R |x|)/(R |x|)N
2

+αdx.

Next, we set

G(r) =

∫

B(0,r)
|g(x+ x0)| dx,

and observe from (3.8) and the hypothesis of the lemma that

(3.15)

(i) G(r) = o(rN ) as r→ 0,

(ii) G(r) is uniformly bounded for 0 < r <∞,

(iii) G(r) is absolutely continuous on 0 < r <∞,

(iv) dG(r)/dr ≥ 0 a.e. on 0 < r <∞.
From the definition of G(r) above, we see from (3.14) and (3.15)(iii) and

(iv) that

(3.16) |τα
R(g, x0)| ≤ c(N,α)RN

∫ ∞

0

dG(r)

dr

∣∣∣JN
2

+α(Rr)
∣∣∣ /(Rr)N

2
+α dr.

Also, we see that the statements in (3.15) together with α > (N − 1)/2
imply that for any δ > 0,

RN/2−(α+ 1
2
)

∫ ∞

δ
r−(N

2
+α+ 1

2
)dG(r)/dr dr = o(1) as R→∞.

Hence, we obtain from (3.12) and (3.16) that

(3.17) lim sup
R→∞

|τα
R(g, x0)| /c(N,α) ≤ RN

∫ δ

0

dG(r)

dr

∣∣∣JN
2

+α(Rr)
∣∣∣

(Rr)
N
2

+α
dr.

Next, given ε > 0 and using (3.15)(i), we choose δ, with 0 < δ < 1, so
that

|G(r)| < εrN for 0 < r < δ,

and observe after an integration by parts that

lim sup
R→∞

RN/2−(α+ 1
2
)

∫ δ

R−1

r−(N
2

+α+ 1
2
)dG(r)/dr dr ≤ εα+ 1

2 + N
2

α+ 1
2 − N

2

.

So using (3.10) and this last computation, we obtain

lim sup
R→∞

RN

∫ δ

R−1

dG(r)

dr

∣∣∣JN
2

+α(Rr)
∣∣∣

(Rr)
N
2

+α
dr ≤ εKN

2
+α

α+ 1
2 + N

2

α+ 1
2 − N

2

.
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Also, using (3.9) and (3.15) (iii) and (iv), we see that

RN

∫ R−1

0

dG(r)

dr

∣∣∣JN
2

+α(Rr)
∣∣∣ /(Rr)N

2
+α dr ≤ εKN

2
+α

for R sufficiently large.
Hence, on writing the integral on the right-hand side of the inequality in

(3.17) in the form
∫ δ
0 =

∫ R−1

0 +
∫ δ
R−1 , we see from these last two inequalities

that

lim sup
R→∞

|τα
R(g, x0)| /c(N,α) ≤ εKN

2
+α(

α+ 1
2 + N

2

α+ 1
2 − N

2

+ 1).

Since ε is an arbitrary positive number, we conclude that

lim
R→∞

|τα
R(g, x0)| = 0,

which finishes the proof of the Lemma 3.2 because g(x0) = 0. �

The next lemma that we need for the proof of Theorem 3.1 is the fol-
lowing:

Lemma 3.3. Let S(x) be the trigonometric polynomial
∑

|m|≤R1
bme

im·x,

i.e., S(x)=
∑

m∈ΛN
bme

im·x where bm = 0 for |m| > R1. For R>0, set

σα
R(S, x) =

∑

|m|≤R

bme
im·x(1− |m|2 /R2)α.

Then for α > (N − 1)/2,

(3.18) σα
R(S, x) = c(N,α)RN/2−α

∫

RN

S(y)
JN

2
+α(R |x− y|)

|x− y|N2 +α
dy

where c(N,α) is the constant in (3.13).

Proof of Lemma 3.3. Define φ(t) = (1 − t2)α, 0 ≤ t ≤ 1, and φ(t) = 0
for t ≥ 1. Then since S(x) is a finite linear combination of exponentials, it
is clear that the lemma will follow if we can show that for fixed x and every
u ∈ RN ,

(3.19) eiu·x
φ(|u| /R)

c(N,α)
= RN/2−α

∫

RN

eiu·y
JN

2
+α(R |x− y|)

|x− y|N2 +α
dy.

Set g(u) = eiu·xφ(|u| /R). Then g(u) is a continuous function which is
also in L1(RN ). If ĝ(y) is also in L1(RN ), it follows from Lemma 3.2 and
the Lebesgue dominated convergence theorem that

g(u) =

∫

RN

eiu·yĝ(y)dy.
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For fixed x, (3.9) and (3.10) let

JN
2

+α(R |x− y|)/ |x− y|N2 +α ∈ L1(RN ) with respect to y.

So (3.19) will be established if we show that

ĝ(y)

c(N,α)
= RN/2−α

JN
2

+α(R |x− y|)

|x− y|N2 +α
.

But from (3.11), we see that ĝ(y) = Hα
R(x − y); this last fact follows from

the equality in (3.13). �

Proof of Theorem 3.1. We first observe from (3.9), (3.10), and (3.13)
that there is a constant K(α,R) and an η > 0 such that for fixed R,

(3.20) |Hα
R(x)| ≤ K(α,R)/(1 + |x|)N+η for x ∈ RN ,

where K(α,R) is a constant depending on α and R. Consequently, the series
∑

m∈ΛN

Hα
R(x+ 2πm) = H∗α

R (x)

is absolutely convergent, and furthermore

(3.21) lim
R1→∞

∑

|m|≤R1

Hα
R(x+ 2πm) = H∗α

R (x)

uniformly for x in a bounded domain.
Set Sj(x) = σ♦

j (f, x), which is the trigonometric polynomial defined in

(2.6). Then by (3.20), Sj(y)Hα
R(x− y) ∈ L1(RN ) with respect to y, and we

obtain from Lemma 3.3 and (3.21) that for x in a bounded domain,

σα
R(Sj , x) =

∫

RN

Sj(y)Hα
R(x− y)dy

= lim
R1→∞

∑

|m|≤R1

∫

TN

Sj(y + 2πm)Hα
R(x− y − 2πm)dy

= lim
R1→∞

∫

TN

Sj(y)(
∑

|m|≤R1

Hα
R(x− y − 2πm))dy

=

∫

TN

Sj(y)H∗α
R (x− y)dy.

By Theorem 2.2, Sj → f in L1(TN ). Also, H∗α
R ∈ C(TN ). So from this

last computation we can see by passing to the limit as j →∞, that

(3.22) σα
R(f, x) =

∫

TN

f(y)H∗α
R (x− y)dy.
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But f(y) is defined in RN by periodicity of period 2π in each variable.
So we see that

(3.23)

∫

B(0,R1+1)\B(0,R1)
|f(y)| dy = O(RN−1

1 ) as R1 →∞.

This fact in conjunction with (3.20), implies that f(y)Hα
R(x− y) ∈ L1(RN )

with respect to y.
Hence, using (3.22), we can reverse the previous calculation and obtain

(3.24) σα
R(f, x0) =

∫

RN

f(y)Hα
R(x0 − y)dy =

∫

RN

f(x+ x0)H
α
R(x)dx.

Since the theorem is obviously true if f(x) is a constant function, we can
prove the theorem, with no loss in generality, if we assume that f(x0) = 0.
Therefore, from the hypothesis of the theorem,

∫

B(0,r)
|f(x+ x0)| dx = o(rN ) as r → 0.

So using (3.15) and comparing (3.24) with (3.14), we see that locally the
same proof will apply here as it was applied in the proof of Lemma 3.2.
Consequently, to complete the proof of the theorem, we must to show that
for fixed δ > 0,

(3.25) lim
R→∞

∫

RN\B(0,δ)
f(x+ x0)H

α
R(x)dx = 0.

Using (3.13) in conjunction with the estimate in (3.12), we see that
∣∣∣∣∣

∫

RN\B(0,δ)

f(x+ x0)

λ(N,α)
Hα

R(x)dx

∣∣∣∣∣ ≤ R
(N−1)/2−α

∫

RN\B(0,δ)

|f(x+ x0)|
|x|α+(N+1)/2

dx

where λ(N,α) = c(N,α)KN
2

+α is a constant. Since α > (N − 1)/2, we see

from (3.23) that the integral on the right-hand side of this last inequality is
finite. Also we see that (N − 1)/2−α is strictly negative. Consequently, the
right-hand side of this last inequality is o(1) as R→∞.

We conclude that the limit in (3.25) is indeed valid, and we complete
the proof of Theorem 3.1. �

α = (N−1)/2 is called the critical index for Bochner-Riesz summability.
What is very interesting about Theorem 3.1 is that it fails at the critical
index for N ≥ 2, even if f = 0 in a neighborhood of x0. Bochner has shown,
in particular that with 0 < δ < 1,

(3.26)
∃ f ∈ L1(TN ), N ≥ 2,with f = 0 in B(0, δ)

such that
lim supR→∞

∣∣∣σ(N−1)/2
R (f, 0)

∣∣∣ =∞.
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To see this ingenious counter-example, we refer the reader to [Boc, p.
193] or [Sh1, pp. 57-64].

It is clear from the Riemann-Lebesgue Lemma and the form of the
Dirichlet kernel given in (2.1) that Bochner’s counter-example itself does
not hold when N = 1.

We close this section with the following corollary of Theorem 3.1:

Corollary 3.4. Suppose f ∈ L1 (TN ) . Then for α > (N − 1) /2,

lim
R→∞

σα
R (x) = f (x) for a.e. x ∈ TN .

Proof of Corollary 3.4. Since almost every x ∈ TN is in the Lebesgue
set of f (see page 22), Corollary 3.4 follows immediately from Theorem 3.1.
�

Exercises.

1. Show that Bochner’s counter-example does indeed fail in dimension
N = 1.

2. Find the third and fourth rows in the determinant corresponding to
JN(r, θ1, . . . , θN−2, φ) when N = 5.

3. By direct calculation, show that the following formula is true when
j = 3 : ∫ π

0
(sin θ)jdθ = Γ(

j + 1

2
)Γ(

1

2
)/Γ(

j + 2

2
).

4. Given that G (r) satisfies the conditions in (3.15) and that α >
(N − 1) /2, δ > 0 prove that

RN/2−(α+ 1
2
)

∫ ∞

δ
r−(N

2
+α+ 1

2
)dG(r)/dr dr = o(1) as R→∞.

4. Abel Summability of Fourier Series

The Abel summability of Fourier series was defined in (1.3) of this chap-
ter, and in this section, we shall prove three theorems regarding this method
of summation. The first theorem we establish is an N -dimensional version
of a well-known theorem in one dimension originally due to Fatou [Zy1, p.
100].

Theorem 4.1. Let f ǫL1(TN ), and for t > 0, set

At(f, x) =
∑

m∈ΛN

f̂(m)eim·x−|m|t.
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Also, set

β−(x) = lim sup
r→0

∫
B(x,r) f(y)dy

|B(x, r)| and β−(x) = lim inf
r→0

∫
B(x,r) f(y)dy

|B(x, r)| .

Then

β−(x) ≤ lim inf
t→0

At(f, x) ≤ lim sup
t→0

At(f, x) ≤ β−(x).

Of course, this theorem implies that in case β−(x) = β−(x), then the
Fourier series of f is Abel summable at x to this common value.

Proof of Theorem 4.1. To prove Theorem 4.1, we proceed in a manner
similar to the proof given in Theorem 3.1. First, let gǫL1(RN ), and set

(4.1) At(g, x) =

∫

RN

ĝ(y)eiy·x−|y|tdy for t > 0,

where ĝ(y) is the Fourier transform of g and is defined above Lemma 3.2.
Then, for t > 0, by Fubini’s theorem,

(4.2) At(g, x) = (2π)−N

∫

RN

g(u)[

∫

RN

eiy·(x−u)−|y|tdy]du.

But, for N ≥ 2,
∫

RN

eiy·(x−u)−|y|tdy = |SN−2|
∫ ∞

0
e−rtrN−1

∫ π

0
ei|x−u|r cos θ(sin θ)N−2dθ.

Consequently,

(4.3)

∫

RN

eiy·(x−u)−|y|tdy = ωN−2

∫ ∞

0
e−rtrN−1J(N−2)/2(r |x− u|)

(r |x− u|)(N−2)/2
dr,

where we have made use of the integral identity in (1.5) in Appendix A and

ωN−2 = (2π)N/2 is the constant defined below (1.11) in Appendix A.

For N = 1, the equality in (4.3) continues to hold with ω−1 = (2π)1/2.
This follows from a direct calculation that uses the well-known fact that

cos t = (π/2)1/2t1/2J−1/2(t) for t > 0.

Next, we use the integral identity (1.7) in Appendix A and conclude
from the equality in (4.3) that

∫

RN

eiy·(x−u)−|y|tdy = bN t[t
2 + |x− u|2]−(N+1)/2

where bN = (2)N/2Γ(N+1
2 )ωN−2(π)−

1
2 .

This last equality, in conjunction with (4.2), establishes the useful fact
that for t > 0,

(4.4) At(g, x) = (2π)−N bN

∫

RN

g(y)t[t2 + |x− y|2]−(N+1)/2dy.

Next, we observe that the analog of Lemma 3.2 holds for At(g, x).
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Also, we see that the analog of Lemma 3.3 holds, namely, if S (x) is a
trigonometric polynomial, then

(4.4
′
) At(S, x) = (2π)−NbN

∫

RN

S(y)t[t2 + |x− y|2]−(N+1)/2dy.

To show that this is indeed the case, we need to only establish, as in the
proof of Lemma 3.3, that

eiu·xe−|u|t/bN = (2π)−N

∫

RN

eiu·yt[t2 + |x− y|2]−(N+1)/2dy

for u ∈ RN and t > 0. This equality will follow from the fact that the Fourier
transform of eiu·xe−|u|t/bN is

(2π)−N t[t2 + |x− y|2]−(N+1)/2,

which is the statement three lines above (4.4) when u and y are interchanged.
Using the same technique that we used in the proof of Theorem 3.1 (i.e.,

see (3.25) through (3.27) in §3), to pass from Fourier integrals to Fourier

series, we obtain from (4.4
′
) that for f ∈ L1 (TN ) ,

(4.5) At(f, x) = (2π)−NbN

∫

RN

f(x+ y)t[t2 + |y|2]−(N+1)/2dy.

To prove Theorem 4.1, it is sufficient to just establish the last inequality
stated in the conclusion, namely,

(4.6) lim sup
t→0

At(f, x) ≤ β−(x).

For then the first inequality follows from a consideration of −f.
If β−(x) = ∞, (4.6) is established. So we need only consider the two

cases: (i) β−(x) is finite, or (ii) β−(x) = −∞ in establishing (4.6). It is clear
that the inequality in (4.6) will follow in both these cases if we show that
the following holds for γǫR :

(4.7) β−(x) < γ =⇒ lim sup
t→0

At(f, x) ≤ γ.

We now establish (4.7). To do this, first of all, we observe from (4.5)
that f(y) identically one implies that

(4.8) (2π)−N bN t

∫

RN

[t2 + |y|2]−(N+1)/2dy = 1 for t > 0.

Next, we set

(4.9) f[r](x) =

∫
B(0,r) f(x+ y)dy

|B(0, r)| ,

and use the hypothesis in (4.7) choose δ > 0 so that

(4.10) f[r](x) < γ for 0 < r < δ.
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Observing that f(x + y) |y|−(N+1) ǫL1(RN\B(0, δ)) with respect to y
(because for fixed x, f(x + y)ǫL1(TN ) and is periodic of period 2π in each
variable), we see that

lim
t→0

t

∫

RN\B(0,δ)
f(x+ y)[t2 + |y|2]−(N+1)/2dy = 0.

Consequently, we obtain from (4.5) that
(4.11)

lim sup
t→0

At(f, x) ≤ (2π)−NbN lim sup
t→0

∫

B(0,δ)
tf(x+ y)[t2 + |y|2]−(N+1)/2dy.

From (4.9), we next observe that the integral on the right-hand side of
this last inequality can be written as

t

∫ δ

0
[t2 + r2]−(N+1)/2 d[|B(0, r)| f[r](x)]

dr
dr.

So we conclude from (4.9) and (4.10), after performing an integration by
parts on this last integral, that
(4.12)

lim sup
t→0

At(f, x) ≤ γ(2π)−N bN lim sup
t→0

(N + 1)t

∫ δ

0
r[t2 + r2]−

N+3
2 |B(0, r)| dr.

Likewise, after integrating by parts, we see from the identity in (4.8)
that

(2π)−N bN lim
t→0

(N + 1)t

∫ δ

0
r[t2 + r2]−

N+3
2 |B(0, r)| dr = 1.

This last equality together with the inequality in (4.12) establishes the
implication in (4.7) and concludes the proof to Theorem 4.1. �

The next theorem that we establish involves the concept of nontangential
Abel summability. With x0ǫ RN and γ > 0, let Cγ(x0) stand for the cone in

RN+1
+ with vertex (x0, 0) given as follows:

(4.13) Cγ(x0) = {(x, t) : t > 0 and
t

|x− x0|
≥ γ } .

We say that the Fourier series of f , namely S[f ], is nontangentially Abel
summable at x0 to the limit l if for every γ > 0,

lim
(x,t)→((x0,0)

At(f, x) = l

where (x, t) tends to (x0, 0) within the cone Cγ(x0).
The nontangential Abel summability theorem that we shall present here

is an improvement (for N ≥ 2) over the usual one presented in books related
to this subject (e.g., see [SW, p. 62]). In order to do this, we introduce the
σ-set of f where f ∈ L1(TN ). We say x0 is in the σ-set of f provided the
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following holds: ∀ε > 0, ∃δ > 0 such that |x− x0| < δ and r < δ implies
that

(4.14)

∣∣∣∣∣

∫

B(x,r)
[f(y)− f(x0)]dy

∣∣∣∣∣ < ε(|x− x0|+ r)N .

We prove the following theorem (see [Sh4]):

Theorem 4.2. Let f ǫL1(TN ), and suppose that x0 ∈ σ-set of f. Then
S[f ] is nontangentially Abel summable at x0 to f(x0).

For N = 1, this result is the same as the result given in [Zy1, p. 61]
which is evidently due to Fatou and states that if F=

∫
f and F has a finite

derivative equal to f(x0) (henceforth referred to as the Fatou condition at
x0), then nontangential Abel summability occurs at x0. It is not difficult to
show that for N = 1, x0 ∈ σ-set of f if and only if the Fatou condition holds
for f at x0.

For N ≥ 2, this result about x0 ∈ σ-set of f has not appeared previously
in any book and is due to the author (see [Sh 4]). The usual theorem proved
is that if x0 ∈Lebesgue set of f , nontangential Abel summability occurs
at x0, [SW, p. 62]. After we prove the above theorem, we shall show x0 ∈
Lebesgue set of f implies that x0 ∈ σ-set of f . Also, we shall give an example
of an f ∈ L∞(T2) such that x0 is not in the Lebesgue set of f , but x0 is in
the σ-set of f .

Proof of Theorem 4.2. To prove the theorem, it is easy to see from the
start that we can assume that x0 = 0. Therefore, to prove the theorem, we
assume that γ > 0 and that {(xn, tn)}∞n=1 ⊂ Cγ(0) with xn → 0 and tn → 0.
The proof will be complete when we show that

(4.15) lim
n→∞

Atn(f, xn) = f(0).

Given ε > 0, it is clear that the limit in (4.15) will follow if we show that

(4.16) lim sup
n→∞

∣∣∣∣
Atn(f, xn)− f(0)

(2π)−N bN

∣∣∣∣ ≤ 2(N + 1)ε(
1

γ
+ 1)N .

It follows from (4.5) and (4.8) in the proof of Theorem 4.1 that

Atn(f, xn)− f(0)

(2π)−N bN
=

∫

RN

[f(xn + y)− f(0)]tn[t2n + |y|2]−(N+1)/2dy

where bN = (2)N/2Γ(N+1
2 )ωN−2(π)−

1
2 and ωN−2 = (2π)N/2. Hence, the

inequality in (4.16) will follow if we show that
(4.17)

lim sup
n→∞

∣∣∣∣
∫

RN

[f(xn + y)− f(0)]tn[t2n + |y|2]−(N+1)/2dy

∣∣∣∣ ≤ 2(N+1)ε(
1

γ
+1)N .
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Next, we set
(4.18)

Fn(r) =

∫

B(0,r)
[f(xn + y)− f(0)]dy =

∫ r

0
dρ

∫

S(0,ρ)
[f(xn + y)− f(0)]dS(y),

where S(0, ρ) = ∂B(0, r). Using the fact that 0 ∈ σ-set of f, we invoke (4.14)
and choose a δ > 0, so that

(4.19) |Fn(r)| < ε(|xn|+ r)N for |xn| < δ and r < δ.

Also, we observe that∫

RN\B(0,δ)
|f(xn + y)− f(0)| / |y|N+1 dy is uniformly bounded in n.

Furthermore, for |y| ≥ δ, [t2n + |y|2]−(N+1)/2 ≤ |y|−(N+1). Hence, it follows
that the inequality in (4.17) will be established if we show that
(4.20)

lim sup
n→∞

∣∣∣∣∣

∫

B(0,δ)
[f(xn + y)− f(0)]tn[t2n + |y|2]−N+1

2 dy

∣∣∣∣∣ ≤ 2(N + 1)ε(
1

γ
+ 1)N .

From (4.18), we see that Fn(r) is absolutely continuous on the interval

(0, δ) with dFn(r)
dr existing almost everywhere in (0, δ) and also in L1(0, δ).

Therefore, the integral in (4.20) is equal to

tn

∫ δ

0

dFn(r)

dr
(t2n + r2)−(N+1)/2dr.

We conclude after integrating by parts, that the inequality in (4.20) will be
established if we show

(4.21) lim sup
n→∞

∣∣∣∣tn
∫ δ

0
rFn(r)(t2n + r2)−(N+3)/2dr

∣∣∣∣ ≤ 2(γ−1 + 1)Nε.

Next, we observe that
∫ δ
0 =

∫ tn
0 +

∫ δ
tn

. We shall deal with each of these
cases separately and show

(4.22) lim sup
n→∞

∣∣∣∣tn
∫ tn

0
rFn(r)(t2n + r2)−(N+3)/2dr

∣∣∣∣ ≤ (γ−1 + 1)Nε

and

(4.23) lim sup
n→∞

∣∣∣∣tn
∫ δ

tn

rFn(r)(t2n + r2)−(N+3)/2dr

∣∣∣∣ ≤ (γ−1 + 1)Nε.

Once the inequalities in (4.22) and (4.23) are established, then the inequality
in (4.21) follows. So, to complete the proof of the theorem, it remains to show
that the inequalities in (4.22) and (4.23) are valid.

We proceed with the situation in (4.22). For this case, tn < δ, and
0 < r < tn. Also, from (4.13) with x0 = 0, |xn| ≤ γ−1tn. For this case
Consequently, we see from (4.19), that

|Fn(r)| ≤ ε(|(xn|+ r)N ≤ ε(γ−1tn + tn)N .
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Therefore,
∣∣∣∣
∫ tn

0
rFn(r)(t2n + r2)−(N+3)/2dr

∣∣∣∣ ≤ ε(γ−1 + 1)N tNn

∫ tn

0
r(t2n + r2)−

N+3
2 dr

≤ ε(γ−1 + 1)N tNn

∫ tn

0
rt−(N+3)

n dr

≤ ε(γ−1 + 1)N t−1
n /2,

and we conclude that the inequality in (4.22) does indeed hold.
So to complete the proof of the theorem, it remains to show that the

inequality in (4.23) is valid. For this case, tn < r < δ, and from (4.13) with
x0 = 0, we also see that |xn| ≤ γ−1tn ≤ γ−1r. Consequently, we infer from
(4.19) that

|Fn(r)| ≤ ε(|(xn|+ r)N ≤ ε(γ−1r + r)N .

Therefore,
∣∣∣∣
∫ δ

tn

rFn(r)(t2n + r2)−(N+3)/2dr

∣∣∣∣ ≤ ε(γ−1 + 1)N
∫ δ

tn

rN+1(t2n + r2)−
N+3

2 dr

≤ ε(γ−1 + 1)N
∫ δ

tn

rN+1r−(N+3)dr

≤ ε(γ−1 + 1)N t−1
n ,

and, we conclude that the inequality in (4.23) is indeed valid. The proof of
the theorem is therefore complete. �

Next we show that x0 ∈ Lebesgue set of f implies that x0 ∈ σ-set of f .
We recall that x 0 is in the Lebesgue set of f means that

lim
ρ→0

ρ−N

∫

B(x0,ρ)
|f(y)− f(x0)| dy = 0.

Hence, given ε > 0, there exists δ > 0 such that ρ < δ implies that∫

B(x0,ρ)
|f(y)− f(x0)| dy < ερN .

Since B(x, r) ⊂ B(x0, |x− x0| + r), we see from this last observation
that given ε > 0, |x− x0| < δ/2 and r < δ/2 implies that

∣∣∣∣∣

∫

B(x,r)
[f(y)− f(x0)]dy

∣∣∣∣∣ ≤
∫

B(x0,|x−x0|+r)
|f(y)− f(x0)| dy

< ε(|x− x0|+ r)N .

Hence, from (4.14), we infer that x0 is indeed in the σ-set of f.

Next, we give an example of an f ∈ L∞(T2) such that 0 is not in the
Lebesgue set of f , but 0 is in the σ-set of f .
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To exhibit our example, we first consider the function hn(s) defined on
the interval (n+1)−1 ≤ s ≤ n−1 ∀n ≥ 1. In order to this, we first introduce
the five points {ξn

j }4j=0 that subdivide the interval [(n+ 1)−1, n−1] into four
equal intervals, namely,

ξn
j =

1

n+ 1
+

j

4n(n+ 1)
j = 0, 1, 2, 3, 4.

For example, when n = 1, we have the following subdivision where the
first dot after 1

2 is 5
8 , the next 3

4 , and the next 7
8 :

1

2
1

So ξ10 = 1
2 , ξ

1
1 = 5

8 , ξ
1
2 = 3

4 , ξ
1
3 = 7

8 , ξ
1
4 = 1.

For the general situation, we have

1

n+ 1

1

n

where the first dot after 1
n+1 is ξn

1 = 1
n+1 + 1

4n(n+1) , the next dot ξn
2 =

1
n+1 + 2

4n(n+1) , and the next ξn
3 = 1

n+1 + 3
4n(n+1) .

We then define hn(s) to be linear in each of the intervals [ ξn
0 , ξ

n
1 ], [ξn

1 , ξ
n
3 ] ,

and [ ξn
3 , ξ

n
4 ] with hn(ξn

0 ) = hn(ξn
2 ) = hn(ξn

4 ) = 0 and hn(ξn
1 ) = 1 and

hn(ξn
3 ) = −1. In other words,

hn(s) = 4n(n+ 1)(s − ξn
0 ) for ξn

0 ≤ s ≤ ξn
1

= 4n(n+ 1)(ξn
2 − s) for ξn

1 ≤ s ≤ ξn
3

= 4n(n+ 1)(s − ξn
4 ) for ξn

3 ≤ s ≤ ξn
4 .

In particular, with 1
2 = .5, 5

8 = .625, 3
4 = .75 , and 7

8 = .875, we get the
following picture for h1(s):

10 .8 7 50 .7 50 .6 2 50 .5

1

0 .5

0

-0 .5

-1

x

y

x

y
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Next, we define g(s) on the half-open interval (0,1] as follows:

(4.24) g(s) = hn(s) for sǫ[(n + 1)−1, n−1] n = 1, 2, ...,

and then on R in the following manner:

g(s) = 0 for s = 0 and s ≥ 1,

= −g(−s) for s ≤ 0.

It is clear that g(s) is uniformly bounded in R and continuous every-
where except s = 0. However, if we define G(s)=

∫ s
0 g(t)dt for s ∈ R, we see

that G(0) = 0, that G(s) is an even function, and that

(4.25) |G(s)| ≤ [4n(n+ 1)]−1 for sǫ[(n+ 1)−1, n−1] n = 1, 2, ....

Therefore,

|G(s)|
s
≤ n+ 1

4n(n+ 1)
≤ s for sǫ[(n + 1)−1, n−1] n = 1, 2, ...,

and consequently, this last inequality plus the fact that G is an even function
implies that

(4.26)
|G(s)|
|s| ≤ |s| for 0 < |s| ≤ 1.

Since G(0) = 0, we obtain from (4.26) that the derivative of G exists
at 0 with dG

ds (0) = 0. But then from the definition of G and the fact that
g(0) = 0, we have that

(4.27)
dG

ds
(s) = g(s) ∀sǫR.

Also, we see that
∫ s

0
|g(t)| dt ≥

∞∑

k=n+1

1

2k(k + 1)
for sǫ[(n+ 1)−1, n−1] n = 1, 2, ...,

and
∞∑

k=n+1

1

k(k + 1)
≥

∞∑

k=n+2

1

k2
≥ 1

n+ 2
≥ s

3
for sǫ[(n + 1)−1, n−1]

and n = 1, 2, ....
From these last two sets of inequalities, it follows that

(4.28) s−1

∫ s

0
|g(t)| dt ≥ 6−1 for 0 < s ≤ 1.

We now define the function for our example, namely, f(x1, x2) ǫL
∞(T2)

as follows: for x ∈ T2,

(4.29)
f(x1, x2) = g(x1) for (x2

1 + x2
2)

1
2 < 2

= 0 for x ∈ T2\B(0, 2).
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We define f(x1, x2) in the rest of R2 by the periodicity of period 2π in each
variable.

Next, we let Sq(0, r) be the square of side 2r centered at 0, and observe
that Sq(0, r) ⊂ B(0, 2r). Therefore, from (4.29), we have that for 0 < r < 1,

∫

B(0,2r)
|f(x)| dx ≥

∫

Sq(0,r)
|f(x)| dx

≥
∫ r

−r
[

∫ r

−r
|f(x1, x2)| dx1]x2

≥ 4r

∫ r

0
|g(s)| ds.

Also, recalling that g(0) = 0, we have that f(0) = 0. Hence, we infer from
this last set of inequalities and the inequality in (4.28) that

r−2

∫

B(0,2r)
|f(x)− f(0)| dx ≥ 2

3
for 0 < r < 1.

Consequently,

lim inf
r→0

r−2

∫

B(0,2r)
|f(x)− f(0)| dx ≥ 2

3
,

and we conclude that 0 is not in the Lebesgue set of f.
To complete our example, it remains to show that 0 is in the σ-set of f .

To accomplish this, we set

(4.30) F (x1, x2) = G(x1) for (x1, x2)ǫR
2,

and infer from (4.27) and (4.29) that F has a total derivative at each point

of B(0, 2), and furthermore, if (x2
1 + x2

2)
1
2 < 2, then

(4.31)
∂F

∂x1
(x1, x2) = f(x1, x2) and

∂F

∂x2
(x1, x2) = 0.

We next invoke the version of Green’s theorem given in [Sh8, p. 262] and

obtain that for (x2
1 + x2

2)
1
2 < 1 and r < 1,

(4.32)

∫

∂B(x,r)
F (y1, y2)dy2 =

∫

B(x,r)
[f(y)− f(0)]dy,

where we also have made use of the fact that f(0) = 0.
Now,

∫

∂B(x,r)
F (y1, y2)dy2 = r

∫ 2π

0
F (x1 + r cos θ, x2 + r sin θ) cos θdθ

= r

∫ 2π

0
G(x1 + r cos θ) cos θdθ.
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So, from (4.32) and this last computation, we have that

(4.33)

∣∣∣∣∣

∫

B(x,r)
[f(y)− f(0)]dy

∣∣∣∣∣ ≤ r
∫ 2π

0
|G(x1 + r cos θ)| dθ.

Next, from the inequality in (4.26), we see that

(4.34) |G(x1 + r cos θ)| ≤ |x1 + r cos θ|2 for |x1 + r cos θ| < 1.

Consequently, given ε > 0 with ε < 1, we choose δ = ε
2π . Then, from

(4.33) and (4.34), we obtain that

for |x| < δ and r < δ,

∣∣∣∣∣

∫

B(x,r)
[f(y)− f(0)]dy

∣∣∣∣∣ < ε(|x|+ r)2,

and we conclude from (4.14) that 0 is indeed in the σ-set of f. Therefore, 0
is not in the Lebesgue set of f , but it is in the σ-set of f, and our example
is complete.

Next, with

(4.35) At(f, x) =
∑

m∈ΛN

f̂(m)eim·x−|m|t where t > 0,

we shall prove the following theorem that we shall need in Chapter 2.

Theorem 4.3. Let f ∈ L1(TN ) and suppose At(f, x) is defined as in
(4.35). Then

(4.36) lim
t→0

∫

TN

|At(f, x)− f(x)| dx = 0.

To prove the theorem, we will first need the following lemma, which is
sometimes known as the Poisson summation formula.

Lemma 4.4. Set

(4.37) P (x, t) =
∑

m∈ΛN

eim·x−|m|t for t > 0.

Then

(4.38) P (x, t) = bN t
∑

m∈ΛN

[t2 + |x+ 2πm|2]−(N+1)/2,

for t > 0 where bN = 2NΓ(N+1
2 )π(N−1)/2.
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Proof of Lemma 4.4. We shall call P (x, t), which is defined in (4.37), the
Poisson kernel and shall set

(4.39) P ∗(x, t) = bN t
∑

m∈ΛN

[t2 + |x+ 2πm|2]−(N+1)/2.

The proof of the lemma will be complete when we succeed in showing that

(4.40) P (x, t) = P ∗(x, t).

In order to show that the equality in (4.40) is true, we observe from (4.37)
and (4.39), for t > 0, that both functions are continuous and also periodic of
period 2π in each variable. So from Corollary 2.3 (i.e., the completeness of
the trigonometric system), to establish the equality in (4.40), it is sufficient
to show

(4.41) (2π)−N

∫

TN

P ∗(y, t)e−im∗·ydy = e−|m∗|t for t > 0 and m∗ ∈ ΛN .

From (4.39), we see that

(4.42)

∫

TN

P ∗(y, t)e−im∗ ·ydy = bN t

∫

RN

[t2 + |y|2]−(N+1)/2e−im∗·ydy.

On the other hand, from the formula four lines above (4.4), we see that the

Fourier transform of e−|u|t is

(2π)−N bN t[t
2 + |y|2]−(N+1)/2.

Therefore, from Lemma 3.2 coupled with the Lebesgue dominated conver-
gence theorem, we see that

(2π)−N bN t

∫

RN

[t2 + |y|2]−(N+1)/2e−im∗·ydy = e−|m∗|t.

So (4.42) joined with this last equality shows that the equality in (4.41) is
indeed true and completes the proof of the lemma. �

Proof of Theorem 4.3. We first observe from (4.37) and (4.38) that the
Poisson kernel, P (x, t), has the following properties:

(4.43)

(i) P (x, t) ≥ 0 for x ∈ TN and t > 0;

(ii)(2π)−N
∫
TN
P (x, t)dx = 1 for t > 0.

Also, we see that

|x+ 2πm| ≥ |2πm| − |x| for x ∈ TN and |m| ≥ 1.

Consequently, it follows from the equality in (4.38) that for 0 < δ < 1,

(4.44) sup
x∈TN−B(0,δ)

|P (x, t)| → 0 as t→ 0.
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Continuing with the proof of the theorem, we observe from (4.35) and
(4.37) that

At(f, x) = (2π)−N

∫

TN

f(x− y)P (y, t)dy for t > 0.

Hence, it follows from (4.43)(i) and(ii) that

(2π)N
∫
TN
|At(f, x)− f(x)| dx

≤
∫
TN
P (y, t)dy

∫
TN
|f(x− y)− f(x)| dx.

Let ε > 0 be given. To complete the proof of the theorem, we conclude
from this last inequality that it is sufficient to show that

(4.45) lim sup
t→0

∫

TN

P (y, t)dy

∫

TN

|f(x− y)− f(x)| dx ≤ (2π)Nε.

Since f ∈ L1(TN ) and we have a periodic of period 2π in each variable,
it follows that there is a δ with 0 < δ < 1 such that

(4.46)

∫

TN

|f(x− y)− f(x)| dx ≤ ε for |y| ≤ δ.

Also, we see that
∫

TN

|f(x− y)− f(x)| dx ≤ 2 ‖f‖L1(TN ) for y ∈ RN .

So it follows from (4.46) and this last inequality that the iterated integrals
on the left-hand side of the inequality in (4.45) are majorized by

2 ‖f‖L1(TN )

∫
TN\B(0,δ) P (y, t)dy

+ε
∫
B(0,δ) P (y, t)dy.

We conclude from (4.43)(i) and (ii) and from (4.44) that the lim sup of
this last sum as t→ 0 is less than or equal to (2π)Nε. Hence, the inequality
in (4.45) is indeed true, and the proof of the theorem is complete. �

Exercises.

1. Prove that if g ∈ L1
(
RN

)
and if g is continuous at x0, then

lim
t→0
At(g, x0) = g(x0)

where At(g, x0) is defined in (4.1).
2. Using the result established in Exercise 1 and the identity three lines

above (4.4), prove that

e−|u|t/bN = (2π)−N

∫

RN

eiu·yt[t2 + |y|2]−(N+1)/2dy

for u ∈ RN and t > 0 where bN is defined three lines above (4.4).
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3. Using the identity in (4.8), prove that

(2π)−N bN lim
t→0

(N + 1)t

∫ δ

0
r[t2 + r2]−

N+3
2 |B(0, r)| dr = 1.

4. Given f ∈ L1 (T1) . Prove that f satisfies the Fatou condition at 0 if
and only 0 ∈ σ-set of f.

5. Given f ∈ C (TN ). Using the properties of the Poisson kernel enu-
merated in (4.43) and (4.44), prove that

lim
t→0

At(f, x) = f (x) uniformly for x ∈ TN .

6. Using the mean-value theorem for harmonic functions (see Appendix
C), prove the maximum principle for harmonic functions, i.e., if Ω ⊂ RN is
an open connected set with x0 ∈ Ω, v (x0) = M, and v (x) ≤ M ∀x ∈ Ω,
then

v (x) harmonic in Ω⇒ v (x) = M ∀x ∈ Ω.

7. Solve the following boundary-value problem: Given f ∈ C (TN ) with∫
TN
fdx = 0, prove there exists a unique v (x, t) where x ∈ RN and t > 0

such that

(i) v (x, t) is harmonic in RN+1
+ ,

(ii) for t > 0, v (x, t) is periodic of period 2π
in the xj-variable for j = 1, ..., N,

(iii) limt→∞ v (x, t) = 0 uniformly for x ∈ TN ,
(iv) limt→0 v (x, t) = f (x) uniformly for x ∈ TN .

5. Gauss-Weierstrass Summability of Fourier Series

Because of its importance in dealing with problems involving solutions
to the heat equation, in this section, we present the Gauss-Weierstrass (G-W
for short) method of summability. Given f ǫL1(TN ), for t > 0, we set

Wt(f, x) =
∑

meΛN

f̂(m)eim·x−|m|2t

and say S[f] is G-W summable at x0 to f(x0) if

lim
t→0

Wt(f, x0) = f(x0).

We shall be primarily interested in nontangential G-W summability. In
particular, we say S[f] is nontangentially G-W summable at x0 to f(x0) if
for every γ > 0,

(5.1) lim
(x,t)→(x0,0)

Wt(f, x) = f(x0)

where (x, t) tends to (x0, 0) within the cone Cγ(x0). (The cone Cγ(x0) is
defined in (4.13) above.)
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We shall prove the following theorem regarding nontangential G-W
summability of S[f] and the σ-set of f . (The σ-set of f is defined in (4.14)
above.)

Theorem 5.1. Let f ǫL1(TN ), N ≥ 1, and suppose that x0 ∈ σ-set of f.
Then S[f ] is nontangentially G-W summable at x0 to f(x0).

Proof of Theorem 5.1. To prove the theorem, we first observe from
(3.6) above that for t > 0,

(5.2)

∫

RN

eiy·(x−u)−|y|2tdy = (
π

t
)N/2e−|x−u|2/4t.

Also, we observe from (3.7) that

(5.3) (4πt)−N/2

∫

RN

e−|y|2/4tdy = 1 for t > 0.

Next, let gǫL1(RN ), and set

(5.4) Wt(g, x) =

∫

RN

ĝ(y)eiy·x−|y2|tdy for t > 0,

where ĝ(y) is the Fourier transform of g and is previously defined above in
Lemma 3.2. Then, for t > 0, by Fubini’s theorem,

Wt(g, x) = (2π)−N

∫

RN

g(u)[

∫

RN

eiy·(x−u)−|y|2tdy]du.

Consequently, we see from (5.2) that

(5.5) Wt(g, x) = (4πt)−N/2

∫

RN

g(y)e−|x−y|2/4tdy.

Using the same technique to pass from Fourier integrals to Fourier series
that we used in the proof of Theorem 4.1 (i.e., see (4.4′) and (4.5) in §4),
we see from (5.5) that for f satisfying the conditions in the hypothesis of
the theorem,

(5.6) Wt(f, x) = (4πt)−N/2

∫

RN

f(x+ y)e−|y|2/4tdy.

To prove the theorem, we proceed in a manner similar to that used to
previously prove Theorem 4.2. It is easy to see from the start that we can
assume that x0 = 0. Therefore, to prove the theorem, we assume that γ > 0
and that {(xn, tn)}∞n=1 ⊂ Cγ(0) with xn → 0 and tn → 0. The proof will be
complete when we show that

(5.7) lim
n→∞

Wtn(f, xn) = f(0).

Given ε > 0, it is clear that the limit in (5.7) will follow if we show that

(5.8) lim sup
n→∞

∣∣∣∣
Wtn(f, xn)− f(0)

(4π)−N/2

∣∣∣∣ ≤ 2−1ε(
1

γ
+ 1)NηN ,
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where ηN =
∫∞
0 rN+1e−r2/4dr.

It follows from (5.3) and (5.6) that

Wtn(f, xn)− f(0)

(4π)−N/2
= t−N/2

n

∫

RN

[f(xn + y)− f(0)]e−|y|2/4tndy.

Hence, the inequality in (5.8) will follow if we show that

(5.9) lim sup
n→∞

∣∣∣∣t−N/2
n

∫

RN

[f(xn + y)− f(0)]e−|y|2/4tndy

∣∣∣∣ ≤ 2−1ε(
1

γ
+1)NηN .

Next, we set
(5.10)

Fn(r) =

∫

B(0,r)
[f(xn + y)− f(0)]dy =

∫ r

0
dρ

∫

S(0,ρ)
[f(xn + y)− f(0)]dS(y),

where S(0, ρ) = ∂B(0, r). Using the fact that 0 ∈ σ-set of f, we invoke (4.14)
and choose a δ > 0, so that

(5.11) |Fn(r)| < ε(|xn|+ r)N for |xn| < δ and r < δ.

Also, we observe that

t−N/2
n

∫

RN\B(0.δ)
|f(xn + y)− f(0)| e−|y|2/8tndy

is uniformly bounded in n. Hence, since tn → 0 as n→∞,

lim sup
n→∞

∣∣∣∣∣t
−N/2
n

∫

RN\B(0.δ)
[f(xn + y)− f(0)]e−|y|2/4tndy

∣∣∣∣∣ = 0,

and we conclude that the inequality in (5.9) will follow if we show that
(5.12)

lim sup
n→∞

∣∣∣∣∣t
−N/2
n

∫

B(0.δ)
[f(xn + y)− f(0)]e−|y|2/4tndy

∣∣∣∣∣ ≤ 2−1ε(
1

γ
+ 1)NηN .

From (5.10), we see that Fn(r) is absolutely continuous on the interval

(0, δ) with dFn(r)
dr ∈ L1(0, δ). Consequently, we see that the expression inside

the absolute value sign on the left-hand side of the inequality in (5.12) is
equal to

t−N/2
n

∫ δ

0

dFn(r)

dr
e−r2/4tndr.

We integrate by parts and see that the inequality in (5.12) will be es-
tablished if we show that

(5.13) lim sup
n→∞

∣∣∣∣t−N/2
n

∫ δ

0
Fn(r)

r

tn
e−r2/4tndr

∣∣∣∣ ≤ ε(
1

γ
+ 1)NηN .

Next, we observe that
∫ δ
0 =

∫ tn
0 +

∫ δ
tn

. We shall deal with each of these
cases separately and show

(5.14) lim sup
n→∞

∣∣∣∣tn−N/2

∫ tn

0
Fn(r)

r

tn
e−r2/4tndr

∣∣∣∣ ≤ 0
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and

(5.15) lim sup
n→∞

∣∣∣∣tn−N/2

∫ δ

tn

Fn(r)
r

tn
e−r2/4tndr

∣∣∣∣ ≤ ε(
1

γ
+ 1)NηN .

Once the inequalities in (5.14) and (5.15) are established, then the in-
equality in (5.13) follows. So to complete the proof of the theorem, it remains
to show that the inequalities in (5.14) and (5.15) are valid.

We proceed with the situation in (5.14). For this case, tn < δ, and
0 < r < tn. Also, (xn, tn) ∈ Cγ(0). Therefore, from (4.13), |xn| ≤ γ−1tn
where tn → 0. Hence, we infer from (5.11), for this case,

|Fn(r)| ≤ ε(|(xn|+ r)N ≤ ε(γ−1tn + tn)N .

Therefore,
∣∣∣∣tn−N/2

∫ tn

0
Fn(r)

r

tn
e−r2/4tndr

∣∣∣∣ ≤ ε(γ−1 + 1)N tn
N/2

∣∣∣∣
∫ tn

0

r

tn
dr

∣∣∣∣

≤ ε(γ−1 + 1)N tN/2
n tn2−1.

It is clear from this last inequality that the inequality in (5.14) is indeed
true.

So to complete the proof of the theorem, it remains to show that the
inequality in (5.15) is valid. For this case, tn < r < δ, and from (4.13), we
also see that |xn| ≤ γ−1tn ≤ γ−1r. Hence, we infer from (5.11) that

|Fn(r)| ≤ ε(|(xn|+ r)N ≤ ε(γ−1r + r)N ,

and obtain from the definition of ηN below (5.8) that
∣∣∣∣tn−N/2

∫ δ

tn

Fn(r)
r

tn
e−r2/4tndr

∣∣∣∣ ≤ ε
(γ−1 + 1)N

tntnN/2

∫ δ

tn

rN+1e−r2/4tndr

≤ ε(γ−1 + 1)N
∫ ∞

t
1
2
n

rN+1e−r2/4dr

≤ ε(γ−1 + 1)NηN .

So the inequality in (5.15) is indeed valid, and the proof of the theorem is
complete. �

In the sequel, we shall also need the following theorem regarding the
G-W summability of the Fourier series of Borel measures on TN .

Theorem 5.2. Let µ1 and µ2 be nonnegative finite Borel measures on TN ,
N ≥ 1, and set µ = µ1 − µ2. Also, define

µ̂(m) = (2π)−N

∫

TN

e−im·xdµ(x).
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Suppose µk[B(0, r0)] = 0 for k = 1, 2 and 0 < r0 < 1. Then if 0 < r1 < r0,

lim
t→0

∑

meΛN

µ̂(m)eim·x−|m|2t = 0 uniformly for x ∈ B(0, r1).

Define S[dµ] =
∑

meΛN
µ̂(m)eim·x. Then the theorem says that if the

total variation of µ in B(0, r0) is zero and if 0 < r1 < r0, the series S[dµ]
is uniformly G-W summable to zero in B(0, r1).

Proof of Theorem 5.2. For t > 0, set

(5.16) Wt(dµ, x) =
∑

meΛN

µ̂(m)eim·x−|m|2t,

and extend each µk by periodicity of period 2π in each variable to all of
RN , i.e., for E ⊂ TN , µk(E + 2πm) = µk(E) ∀m ∈ ΛN and for k = 1, 2.
Then with µ = µ1 − µ2, use the same technique that we used to obtain the
formula for Wt(f, x) in (5.6); we can show that

Wt(dµ, x) = (4πt)−N/2

∫

RN

e−|x−y|2/4tdµ(y)

= (4πt)−N/2

∫

RN\B(0,r0)
e−|x−y|2/4tdµ(y).

For x ∈ B(0, r1) and |y| ≥ r0, it follows that |x| ≤ r1 |y| /r0. Set δ =
(1− r1

r0
)2. Then δ > 0, and we see from the above that

(5.17) |Wt(dµ, x)| ≤ (4πt)−N/2

∫

RN\B(0,r0)
e−δ|y|2/4tdµ3(y),

for x ∈ B(0, r1), where µ3 = µ1 + µ2.
It is clear that

lim
t→0

(4πt)−N/2

∫

B(0,2)\B(0,r0)
e−δ|y|2/4tdµ3(y) = 0.

So we see from (5.17) that to establish the theorem, it is sufficient to show

(5.18) lim sup
t→0

t−N/2

∫

RN\B(0,2)
e−δ|y|2/4tdµ3(y) ≤ 0.

Since the number of integral lattice points in the annulus,

{y : R ≤ |y| < R+ 1} is O(RN−1),

we infer that there is a positive constant c such that
∫

B(0,R+1)\B(0,R)
dµ3(y) ≤ cRN−1 for R ≥ 1.
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Consequently,

t−N/2

∫

RN\B(0,2)
e−δ|y|2/4tdµ3(y) ≤ ct−N/2

∞∑

j=2

e−δ|j|2/4tjN−1

≤ c

∞∑

j=2

e−δ|j|2/4t(
j2

t
)N/2.

Since e−δs/4sN/2 is a decreasing function for s > s0, we see from this
last set of inequalities and the integral test for dealing with series that there
is a t0 > 0 such that

t−N/2

∫

RN\B(0,2)
e−δ|y|2/4tdµ3(y) ≤ c

∫ ∞

0
e−δ|s|2/4t(s2/t)N/2ds

for 0 < t < t0. Hence,

t−N/2

∫

RN\B(0,2)
e−δ|y|2/4tdµ3(y) ≤ ct1/2

∫ ∞

0
e−δ|s|2/4sNds

for 0 < t < t0. The lim sup inequality in (5.18) follows immediately from
this last inequality, and the proof of the theorem is complete. �

In Chapter 3, in the section on the sets of uniqueness, we will also need
the following theorem concerning the G-W summability of the Fourier series
of a Borel measure on TN .

Theorem 5.3. Let µ be a nonnegative finite Borel measure on TN , N ≥ 1,
and define

µ̂(m) = (2π)−N

∫

TN

e−im·xdµ(x).

Suppose µ[B(0, r0)] = 0 where 0 < r0 < 1. Suppose, also, that j is a
positive integer and that for t > 0, Wt(dµ, x) is defined by (5.16). Then if
0 < r1 < r0,

lim
t→0

∆jWt(dµ, x) = 0 uniformly for x ∈ B(0, r1),

where ∆j stands for the j-th iterated Laplace operator.

Proof of Theorem 5.3. Extend µ by periodicity of period 2π in each
variable to all of RN , i.e., for E ⊂ TN , µ(E + 2πm) = µ(E) ∀m ∈ ΛN .
Then, as in the proof of Theorem 5.2, we can show that

Wt(dµ, x) = (4πt)−N/2

∫

RN\B(0,r0)
e−|x−y|2/4tdµ(y).
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Now, for x ∈ B(0, r1) and |y| ≥ r0, t
−N/2e−|x−y|2/4t satisfies the heat

equation ∆u = ∂u/∂t, where ∆ is with respect to x. So, with t > 0,

(5.19) t−N/2∆je−|x−y|2/4t = ∂jt−N/2e−|x−y|2/4t/∂tj .

Consequently,

(5.20) ∆jWt(dµ, x) =

∫

RN\B(0,r0)
∂j [(4πt)−N/2e−|x−y|2/4t]/∂tj dµ(y),

for x ∈ B(0, r1).
It is easy to see that the right-hand side of the equality in (5.19) is a

finite linear combination of terms of the form

(|x− y|2k t−n)t−N/2e−|x−y|2/4t

where k = 0, ..., j and n = 1, ..., 2j.
Also, for 0 < |x| ≤ r1 and r1 < r0 ≤ |y|, we observe there is a constant

c such that

|x− y|2k ≤ c |x− y|2j for k = 0, ..., j − 1.

Likewise for 0 < t ≤ 1,

t−n ≤ t−2j for n = 1, ..., 2j − 1.

We conclude from (5.20) that to establish the theorem, it is sufficient to
show

(5.21) lim
t→0

∫

RN\B(0,r0)
|x− y|2j t−2j(t−N/2e−|x−y|2/4t) dµ(y) = 0

uniformly for x ∈ B(0, r1).
As in the proof of Theorem 5.2, we set δ = (1 − r1

r0
)2 and observe that

the integral in (5.21) is majorized by

(5.22) 4jt−2jt−N/2

∫

RN\B(0,r0)
|y|2j e−δ|y|2/4t dµ(y)

uniformly for |x| ≤ r1 and 0 < t ≤ 1.
Also, as in the proof of Theorem 5.2, we see there is a constant c1 such

that ∫

B(0,R+1)\B(0,R)
dµ(y) ≤ c1RN−1 for R ≥ 1.

Consequently, the expression in (5.22) is in turn majorized by a constant
(independent of t) multiple of

∞∑

p=2

(
p2

t
)2j+N/2e−δp2/4t + o(1),

for |x| ≤ r1 and 0 < t ≤ 1, where the o(1) comes from the part dealing with
the integral over B(0, 2)\B(0, r0).

As in the proof of Theorem 5.2, it follows from the integral test for series
that the limit of this last summation is zero as t → 0. Therefore, the limit
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of the expression in (5.22) is zero as t → 0. But then the limit in (5.21) is
also zero uniformly for x ∈ B(0, r1). �

Exercises.

1. Using the identity in (3.6), prove that for t > 0,
∫

RN

eiy·(x−u)−|y|2tdy = (
π

t
)N/2e−|x−u|2/4t.

2. Given f ∈ C (TN ), prove

lim
t→0

Wt(f, x) = f (x) uniformly for x ∈ TN ,

where Wt(f, x) is defined by (5.6).
3. Using the stong maximum principle for the heat equation [Ev, p. 55],

solve the following periodic boundary-value problem: Given f ∈ C (TN )
with

∫
TN
fdx = 0, prove there exists a unique v (x, t) where x ∈ RN and

t > 0 such that

(i) ∂v
∂t (x, t) = ∆v (x, t) ∀x ∈ RN and ∀t > 0,

(ii) for t > 0, v (x, t) is periodic of period 2π
in the xj − variable for j = 1, ..., N,

(iii) limt→∞ v (x, t) = 0 uniformly for x ∈ TN ,
(iv) limt→0 v (x, t) = f (x) uniformly for x ∈ TN .

6. Further Results and Comments

1. There is another method of summability used by by A. Beurling called
absolute Abel summability. In particular, let f ∈ L1 (TN ), N ≥ 2. Set

f (x, t) =
∑

m∈ΛN

f̂(m)eim·x−|m|t

for t > 0. Say f is absolutely Abel summable at the point x0 provided
∫ 1

0

∣∣∣∣
∂f

∂t
(x0, t)

∣∣∣∣ dt <∞.

Let Z ⊂ TN be closed in the torus topology. Say Z is of ordinary capacity
zero provided that ∫

TN

∫

TN

H0 (x− y) dµ (x) dµ (y) =∞

for every µ which is a nonnegative finite Borel measure on TN with

µ (TN ) = 1 and µ (TN\Z) = 0

where H0 (x) is the function introduced in Lemma 1.4 of Chapter 3. Moti-
vated by the work of Beurling in [Beu], the following two results connecting
absolute Abel summability and ordinary capacity were established in [LS].
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Theorem A. Let Z ⊂ TN be a closed set in the torus topology, N ≥ 2,
and let f ∈ L2 (TN ). Suppose that

(i)
∑

m∈ΛN

|m|2
∣∣∣f̂(m)

∣∣∣
2

< ∞,

(ii)

∫ 1

0

∣∣∣∣
∂f

∂t
(x0, t)

∣∣∣∣ dt = +∞ ∀x ∈ Z

Then Z is of ordinary capacity zero.

Theorem B. Let Z ⊂ TN be a closed set in the torus topology, N ≥ 2, and
suppose that Z is of ordinary capacity zero. Then there exists an f ∈ L2 (TN )

with
∑

m∈ΛN
|m|2

∣∣∣f̂(m)
∣∣∣
2
<∞ such that

∫ 1

0

∣∣∣∣
∂f

∂t
(x0, t)

∣∣∣∣ dt = +∞ ∀x ∈ Z.

2. Arne Beurling, who was one of the leading analysts during the post
World War II period, served as a codebreaker for the Swedish government
during World War II itself. In a feat of the first order of magnitude, he single-
handedly in a two-week period broke the German code that was passing
over Swedish teephone cables going from Berlin to Norway. One can read all
about this plus a biography of Beurling in a book published by the American
Mathematical Society entitled “Codebreaker” by B. Beckman [Bec].

3. To establish Bochner’s ingeneous result at the critical index N−1
2

stated in (3.26), we proceed in the following manner: Set

ΨR (x) =
∑

|m|≤R

eim·x

(
1− |m|

2

R2

)(N−1)/2

,

and establish the result stated in (3.26). It is sufficient to show

(6.1)
∃x0 ∈ TN\B (0, δ) and {Rj}∞j=1 with Rj →∞

such that limj→∞ ΨRj (x0) =∞.
To see that this is indeed the case, consider the Banach space B consisting

of all real-valued functions in L1 (TN ) that vanish a.e. in B (0, δ) . Then

σ
(N−1)/2
Rj

(f, 0) = (2π)−N
∫

TN

f (x)ΨRj (x) dx

gives rise to a set of bounded linear functionals Fj on B, i.e., Fj (f) =

σ
(N−1)/2
Rj

(f, 0). If the result stated in (3.26) is false, then supj |Fj (f)| is

finite for all f ∈ B. But then by the Banach-Seinhaus theorem, supj ‖Fj‖ is
finite. However,

‖Fj‖ = (2π)−N sup
x∈TN\B(0δ)

∣∣ΨRj (x)
∣∣ .
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So the finiteness of supj ‖Fj‖ is a contradiction to the statement in (6.1).
We conclude that to establish (3.26), it is sufficient to show that (6.1) holds.

Bochner shows that (6.1) holds via a sequence of lemmas that involve the
notion of a countable set S = {s1, s2, ...} having numbers that are linearly
independent with respect to integer coefficients (i.e., if {c1, ..., cn} is a set of
integers with c21 + · · ·+ c2n 6= 0, then

∑n
j=1 cjsj 6= 0 ). To view the statement

and proof of these lemmas, we refer the reader to [Boc1, p. 193] or [Sh1,
pp. 57-64].



CHAPTER 2

Conjugate Multiple Fourier Series

1. Introduction

In this chapter, we shall deal with conjugate multiple Fourier series where
the conjugacy is defined by means of Calderon-Zygmund kernels, which are
of spherical harmonic type.

Also, the results that we present in this chapter will take place in di-
mension N ≥ 2. In order to place this theory in its proper perspective, we
shall first review some aspects of conjugate Fourier series in one dimension,
which is defined via the Hilbert transform and the kernel x−1.

If g ∈ L1(R), then the Hilbert transform of g, g̃, is defined as follows:

g̃(x) = lim
ε→0

π−1

∫ ∞

ε
[g(x − y)− g(x+ y)]/ydy.

Now this limit exists almost everywhere [Ti2, p. 132], and if, in addition,
g̃ ∈ L1(R)∩ L2(R), then

̂̃g(x) = −i(sgnx)ĝ(x)
where sgn x = 1 if x > 0, −1 if x < 0, and 0 if x = 0.

Even if g̃ /∈ L1(R)∩ L2(R), we still obtain [Ti2, p. 147] that for α > 0,

lim
R→∞

∫ R

−R
−i (sgn y) ĝ(y)eixy(1− y

R
)α = g̃(x) for a.e. x.

To pass from Fourier integrals to Fourier series, we first see from [Zy1,
p. 73] that

(1.1)
1

2
cot

x

2
=

1

x
+

∞∑

n=−∞

′
[

1

x+ 2πn
− 1

2πn
] for x 6= 2πn.

Next, we observe that if f ∈ L1(T1), then f̃ , the conjugate function of
f, is defined to be

(1.2) f̃(x) = lim
ε→0

π−1

∫ π

ε
[f(x− y)− f(x+ y)]

1

2
cot

y

2
dy.

It is well-known [Zy1, p. 131] that this limit exists almost everywhere, and

that if f̃ ∈ Lp(T1), 1 < p ≤ ∞, then

̂̃
f(n) = −i(sgn n)f̂(n).

39
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However, even if f̃ /∈ L1(T1), we still obtain that
∑∞

−∞−i(sgn n)f̂(n)einx is

Abel summable to f̃(x) for almost every x.
We note also that if the limit in (1.2) exists, then using (1.1), it can be

shown that

lim
ε→0

∫ π

ε
[f(x−y)−f(x+y)]

1

2
cot

y

2
dy = lim

ε→0
lim

R→∞

∫ R

ε
[f(x−y)−f(x+y)]

1

y
dy.

We shall proceed in an analogous manner to develop the theory of N -
dimensional conjugate Fourier series, N ≥ 2. In particular, we focus on the
one-dimensional function

x−1 = (sgn x) |x|−1 and sgn 1 + sgn − 1 = 0.

and generalize this function to N -space by means of the kernel

(1.3) K(x) = W (x/ |x|) |x|−N for x 6= 0,

where

(1.4) W (x/ |x|) = Qn(x)/ |x|n .
Here, Qn(x) is a homogeneous real polynomial of degree n, n ≥ 1, and is also
a harmonic function, i.e., ∆Qn(x) = 0 ∀ x ∈ RN . In other words, Qn(x) is
a spherical harmonic function of degree n as is discussed in §3 of Appendix
A.

With SN−1 = ∂B(0, 1), the unit (N − 1)-sphere in RN , we observe that

(1.5)

∫

SN−1

W (ξ) dS(ξ) = 0,

where dS(ξ) is the natural volume element on SN−1.
To see how the equality in (1.5) actually occurs, we set x = rξ where

ξ ∈ SN−1, and we see from the homogeneity of Qn that Qn(rξ) = rnQn(ξ).
Using this fact in conjunction with the familiar divergence theorem and the
observation that div · ∇Qn(x) = 0 gives the equality in (1.5).

K(x) in (1.3) is a generalization of the Hilbert kernel x−1 in one dimen-
sion and is called a Calderon-Zygmund kernel of spherical harmonic type.
This generalization persists in the sense that if g(x) ∈ Lp(RN ), 1 ≤ p <∞,
then g̃(x) is defined to be the Calderon-Zygmund transform of g where

(1.6) g̃(x) = lim
ε→0

∫

RN\B(0,ε)
g(x− y)K(y)dy.

It is shown in [CZ1] or [SW, Chapter VI] that this limit exists almost
everywhere. We shall state this fact as Theorem A.

Theorem A. If g∈ Lp(RN ), 1 ≤ p < ∞, then g̃(x), which is defined by
(1.6), exists almost everywhere in RN .
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For Theorem B, which is also proved in [CZ1] or [SW, Chapter VI], we
state the following:

Theorem B. If g∈ Lp(RN ), 1 < p <∞, then g̃ ∈ Lp(RN ). Also, ∃ Ap > 0
independent of g such that

(1.7) ‖g̃‖Lp(RN ) ≤ Ap ‖g‖Lp(RN ).

It is our intention here to show that theorems similar to Theorems A
and B hold for every function f ∈ Lp(TN ), N ≥ 2, where

TN = {x : −π ≤ xj < π, j = 1, ..., N}.
In order to do this, we introduce K∗(x), the periodic analogue of K(x), as
follows:

(1.8) K∗(x) = K(x) + lim
R→∞

∑

1≤|m|≤R

[K(x+ 2πm)−K(2πm)]

for x not equal to 2π times an integral lattice point, i.e., x 6= 2πm, where
K(x) is defined by (1.3) and meets (1.4) and (1.5). Since

Qn(x+ 2πm)

|x+ 2πm|n+N
− Qn(2πm)

|2πm|n+N
=

Qn(x+ 2πm)−Qn(2πm)

|x+ 2πm|n+N

+Qn(2πm)[
1

|x+ 2πm|n+N
− 1

|2πm|n+N
],

it is easy to see from this last equality, since Qn (x) is a homogeneous poly-
nomial of degree n, that for x ∈ B(0, R0), where R0 > 10, there is a constant
c(R0) such that

(1.9) |K(x+ 2πm)−K(2πm)| ≤ c(R0)

|m|1+N
for |m| ≥ 2R0.

It follows from this last inequality that the series in (1.8) converges uniformly
and absolutely for x in any bounded domain.

Next, let m0 be any fixed integral lattice point. What we want to show
is that K∗(x+ 2πm0) = K∗(x) for xǫTN\{0}. To see that this is indeed the
case, we observe from (1.8), for x ∈ TN\{0},

(1.10)

|K∗(x+ 2πm0)−K∗(x)| ≤

limR→∞
∑

R−|m0|≤|m|≤R{|K(x+ 2πm0 + 2πm)−K(2πm)|+

|K(x+ 2πm)−K(2πm)|}.
However, the closure of TN is contained in the ball B(0, Nπ). So we infer
from (1.9) that the absolute value inside the summation sign in (1.10) is
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majorized by

(1.11) 2c(Nπ + 2π |m0|) |m|−(N+1)

for x ∈ TN and for R sufficiently large. With A(R,m0) designating the
spherical annulus at the bottom of the summation sign in (1.10), it follows
that for m ∈ A(R,m0) and for R sufficiently large, the expression in (1.11)
is in turn majorized by

2c(Nπ + 2π |m0|)(R − |m0|)
−(N+1)

.

As is well-known, the number of integral lattice points in A(R,m0) =
O(RN−1) as R → ∞. Consequently, we see that the right-hand side of the
inequality in (1.10) is majorized by

lim
R→∞

{O(RN−1)2c(Nπ + 2π |m0|)(R − |m0|)
−(N+1)} = 0.

Hence, K∗(x+ 2πm0) = K∗(x) for x ∈ TN\{0}, and we conclude K∗(x)
is a periodic function and is the N -dimensional analogue of the series in
(1.1) that is equal to 1

2 cot x
2 .

K∗(x) is called a periodic Calderon-Zygmund kernel of spherical har-
monic type.

For fǫL1(TN ), we define

(1.12) f̃(x) = lim
ε→0

(2π)−N

∫

TN\B(0,ε)
f(x− y)K∗(y)dy

at every point where this limit exists. This limit is the N-dimensional ana-
logue of the limit in (1.2), and as we shall show, exists almost everywhere.

f̃(x) is called the periodic Calderon-Zygmund transform of spherical har-
monic type.

Using the ideas in [CZ2], we shall next establish the following two theo-

rems regarding f̃(x).

Theorem 1.1. If f ∈ L1(TN ), then f̃(x), which is defined by the limit in
(1.12), exists almost everywhere in TN .

Theorem 1.2. If f ∈ Lp(TN ), 1 < p <∞, then f̃ ∈ Lp(TN ). Also, ∃C∗
p > 0

and independent of f, such that

(1.13)
∥∥∥f̃
∥∥∥

Lp(TN )
≤ C∗

p ‖f‖Lp(TN ) .

Proof of Theorem 1.1. We set

(1.14) BN = {x = (x1, ..., xN ) : |xj | ≤ 2π for j = 1, ..., N},
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and

g(x) = f(x) for xǫBN

= 0 for xǫRN\BN .

Also, we set

K∗
1 (x) = lim

R→∞

∑

1≤|m|≤R

[K(x+ 2πm)−K(2πm)] for xǫTN ,

and observe from (1.3) and (1.9) that there exists CK > 0 such that

(1.15) |K∗
1 (x)| ≤ CK for xǫTN and |K(x)| ≤ CK for xǫRN\TN .

It follows from the above that gǫL1(RN ) and that

(1.16)

∫

TN\B(0,ε)
f(x− y)K∗(y)dy =

∫

TN\B(0,ε)
g(x− y)K∗(y)dy

for xǫTN and 0 < ε < 1. Since K∗(x) = K(x) +K∗
1 (x), we see from (1.15)

that the right-hand side of the equality in (1.16) is equal to
∫

RN\B(0,ε)
g(x− y)K(y)dy +

∫

TN\B(0,ε)
g(x− y)K∗

1 (y)dy

−
∫

RN\TN

g(x− y)K(y)dy.

Hence, it follows from (1.6), (1.12), and Theorem A that f̃(x) exists
almost everywhere in TN and that

(1.17) f̃(x) = g̃(x) +

∫

TN

g(x− y)K∗
1 (y)dy −

∫

RN\TN

g(x − y)K(y)dy

for a.e. x ∈ TN . This gives the conclusion to the proof of Theorem 1.1. �

Proof of Theorem 1.2. We use the terminology and notation just devel-
oped in the proof of Theorem 1.1, and observe from the definition of BN

given in (1.14) that there is a constant γN,p independent of f such that

(1.18)

∫

BN

|f(y)| dy ≤ γN,p ‖f‖Lp(TN ).

Also, since g ∈ Lp(RN ), where g is defined below (1.14), it follows from
Theorem B that

(1.18′)

∫

RN

|g̃(x)|p dx ≤ Ap
p

∫

RN

|g(x)|p dx = 2NAp
p

∫

TN

|f(x)|p dx,

where we also have made use of the fact that f is a periodic function.
Likewise, we see from (1.15) and (1.17) above that

∣∣∣f̃(x)
∣∣∣ ≤ |g̃(x)|+ 2CK

∫

RN

|g(y)| dy
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for a.e. x ∈ TN . But then from the definition of g, (1.14), and (1.18), we
obtain from this last inequality that

∣∣∣f̃(x)
∣∣∣ ≤ |g̃(x)|+ 2CK

∫

BN

|f(y)| dy

≤ |g̃(x)|+ 2γN,pCK ‖f‖Lp(TN )

for a.e. x ∈ TN .
Applying Minkowski’s theorem, in turn, to this last inequality and also

using (1.18′) above, we conclude that

{
∫

TN

∣∣∣f̃(x)
∣∣∣
p
dx}

1
p ≤ {

∫

TN

|g̃(x)|p dx}
1
p + 2γN,p(2π)

N
p CK ‖f‖Lp(TN )

≤ 2
N
p Ap ‖f‖Lp(TN ) + 2γN,p(2π)

N
p CK ‖f‖Lp(TN ).

This proves Theorem 1.2 where C∗
p = 2

N
p Ap + 2γN,p(2π)

N
p CK . �

Next, we define the principal-valued Fourier coefficient of K∗(x) to be

(1.19) lim
ε→0

(2π)−N

∫

TN\B(0,ε)
e−im·xK∗(x)dx = K̂∗(m),

and see from (1.8) and the first inequality in (1.15) that

(1.20) (2π)N K̂∗(m) = lim
ε→0

∫

TN\B(0,ε)
e−im·xK(x)dx+

∫

TN

e−im·xK∗
1 (x)dx.

For m = 0, it is clear from (1.4) and (1.15) that the limit in (1.20) exists.
If m 6= 0, we observe there exists a constant γ(m) such that

∣∣e−im·x − 1
∣∣ ≤ γ(m) |x| for xǫTN .

So we see from (1.3) and (1.5) that the limit in (1.20) does indeed exist. In

any case, K̂∗(m) is well-defined for all integral lattice points m.
Observing that

∫
TN
e−im·xdx = 0 for m 6= 0, and that

B(0, 2π(R−N))\TN ⊂
⋃

1≤|m|≤R

(TN + 2πm)

and ⋃

1≤|m|≤R

(TN + 2πm) ⊂ B(0, 2π(R+N))\TN ,

we infer furthermore from (1.3), (1.20), and the definition of K∗
1 (x) that

(1.21) K̂∗(m) = lim
ε→0

lim
R→∞

(2π)−N

∫

B(0,R)\B(0,ε)
e−im·xK(x)dx for m 6= 0.
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If m = 0, proceeding in a similar manner, the previous argument shows
that

K̂∗(0) = − lim
R→∞

∑

1≤|m|≤R

K(2πm).

For N = 1, K̂∗(0) = 0, for N ≥ 2, K̂∗(0) may or may not be zero, [CZ2, p.

258]. However, in a number of important cases, it is true that K̂∗(0) = 0,
e.g., for N = 2 and

K(x) = x1x2/ |x|4 or K(x) = (x2
1 − x2

2)/ |x|4 or K(x) = x1/ |x|3.
This last named kernel is often referred to as the Riesz kernel.

From Theorem 1.2, we know that if f ∈ Lp(TN ), 1 < p < ∞, then

f̃ ∈ Lp(TN ). So making use of K̂∗(m) as defined in (1.19), we can establish
the following theorem:

Theorem 1.3. If f ∈ Lp(TN ), 1 < p < ∞, then
̂̃
f(m) = K̂∗(m)f̂(m)

∀m ∈ ΛN .

Proof of Theorem 1.3. If h(x) = eim·x, then from (1.12) we see that

h̃(x) = eim·x lim
ε→0

(2π)−N

∫

TN\B(0,ε)
e−im·yK∗(y)dy

= eim·xK̂∗(m).

Hence, from (1.19), we see that the theorem is true in this case. Conse-
quently, the theorem is true for any finite linear combination of exponentials,
i.e., for any trigonometric polynomial.

Given an f ∈ Lp(TN ), let σ♦
n(f, x) be the finite linear combinations of

exponentials given in (2.6) of Chapter 1. Also, let m0 ∈ ΛN . By what we
have just shown,

(1.22) lim
n→∞

(2π)−N

∫

TN

e−im0·x σ̃♦
n(f, x)dx = K̂∗(m0)f̂(m0).

Also, by Theorem 1.2,

(1.23)
∥∥∥e−im0·x[σ̃♦

n(f, ·)− f̃ ]
∥∥∥

Lp(TN )
≤ Cp

∥∥∥σ♦
n(f, ·)− f

∥∥∥
Lp(TN )

.

From Theorem 2.2 of Chapter 1, we know that the right-hand side of the
inequality in (1.23) goes to zero as n→∞. Therefore, the left-hand side of
the inequality also goes to zero. But then it follows that the limit in (1.22)
is equal to

lim
n→∞

(2π)−N

∫

TN

e−im0·xf̃(x) dx,
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and we obtain from (1.22) that
̂̃
f(m0) = K̂∗(m0)f̂(m0). This concludes the

proof of Theorem 1.3. �

We shall henceforth refer to

(1.24) S̃K(f) =
∑

m∈ΛN

K̂∗(m)f̂(m)eim·x

as the K-conjugate series of f , where K is given by (1.3).
Before proceeding to the next section in this chapter, we remark that

with K(x) given by (1.3) and (1.4), K̂∗(m) is computed in Corollary 3.2 of
Appendix A where it is shown that

(1.25) K̂∗(m) = κn,NQn(m)/ |m|n for m 6= 0,

with

(1.26) κn,N = (−i)n2−Nπ−
N
2 Γ(

n

2
)[Γ(

n+N

2
)]−1.

Also, we establish the following corollary.

Corollary 1.4. If f ∈ L1(TN ), f̂(0) = 0, and f̃(x0) exists, then

lim
R→∞

lim
ε→0

(2π)−N

∫

B(0,R)\B(0,ε)
f(x0 − y)K(y)dy = f̃(x0).

Proof of Corollary 1.4. Without loss in generality, we assume that x0 = 0.
Then by (1.12) and (1.15), we have that

(1.27) (2π)N f̃(0) = lim
ε→0

∫

TN\B(0,ε)
f(−y)K(y)dy +

∫

TN

f(−y)K∗
1 (y)dy.

Using the fact that f̂(0) = 0, we see from the definition of K∗
1 (y) that

∫

TN

f(−y)K∗
1 (y)dy = lim

R→∞

∑

1≤|m|≤R

∫

TN

f(−y)K(y + 2πm).

But f is a periodic function. So, we conclude from this last limit and (1.27)
that to establish the corollary, it is sufficient to show

lim
R→∞

[
∑

1≤|m|≤R

∫

TN+2πm
f(−y)K(y)dy −

∫

B(0,2π(R+N))\TN

f(−y)K(y)dy] = 0.

To do this, we set

TR =
⋃

1≤|m|≤R

(TN + 2πm)

and observe that this last limit can be rewritten as

(1.28) lim
R→∞

[

∫

TR

f(−y)K(y)dy −
∫

B(0,2π(R+N))\TN

f(−y)K(y)dy] = 0.
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As we have observed previously in establishing the limit in (1.21),

B(0, 2π(R−N))\TN ⊂ TR ⊂ B(0, 2π(R +N))\TN .

So we see that that the limit in (1.28) will hold if we show that

(1.29) lim
R→∞

∫

B(0,2π(R+N))\B(0,2π(R−N))
|f(−y)K(y)| dy = 0.

But the number of integral lattice points contained in the spherical an-
nulus B(0, 2π(R+N))\B(0, 2π(R−N)) is O(RN−1), and for y in this same
annulus, |K(y)| = O(R−N ). Hence,
∫

B(0,2π(R+N))\B(0,2π(R−N))
|f(−y)K(y)| dy ≤ O(RN−1) ‖f‖L1(TN )O(R−N )

as R→∞, and the limit in (1.29) is indeed valid. This concludes the proof
of Corollary 1.4. �

Exercises.

1. Given that W (x/ |x|) = Qn(x)/ |x|n for x 6= 0 where Qn(x) is a
spherical harmonic polynomial of degree n, prove that

∫

SN−1

W (ξ) dS(ξ) = 0,

where dS(ξ) is the natural volume element on SN−1.
2. Let Qn (x) be a spherical harmonic polynomial of degree 2 in dimen-

sion N = 3. Show that if x ∈ B (0, R0), where R0 > 10, then there exists
c (R0) > 0 such that

∣∣∣∣∣
Qn(x+ 2πm)−Qn(2πm)

|x+ 2πm|n+N

∣∣∣∣∣ ≤
c(R0)

|m|1+N
for |m| ≥ 2R0,

where m ∈ ΛN .
3. Let {Qj,n (x)}kj=1 be a set of spherical harmonic polynomials of degree

n. Say the set of functions is linear independent if aj ∈ R for j = 1, ..., k
and

k∑

j=1

ajQj,n(x) = 0 for |x| = 1⇒ aj = 0 for j = 1, ..., k.

Show that in dimension N = 3, there are five linearly independent spherical
harmonic polynomials of degree 2.

4. Prove that if K (x) = Qn (x) / |x|n+N for x 6= 0 where Qn (x)is a
spherical harmonic polynomial of degree n, then for m ∈ ΛN ,

lim
ε→0

∫

TN\B(0,ε)
e−im·xK(x)dx exists and is finite.
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5. Given that Theorem 1.3 is true for a finite linear combination of
exponentials, prove that

lim
n→∞

(2π)−N

∫

TN

e−im0·x σ̃♦
n(f, x)dx = K̂∗(m0)f̂(m0)

where σ♦
n(f, x) is given by (2.6) of Chapter 1.

2. Abel Summability of Conjugate Series

In this section, we shall prove a theorem regarding the Abel summability
of conjugate multiple Fourier series. In particular, when K(x) is a Calderon
-Zygmund kernel of spherical harmonic type (i.e., K(x) meets the conditions
in (1.3), (1.4), and (1.5)) and K∗(x) is its periodic analogue defined in (1.8),
we set

(2.1) S̃K(f) =
∑

m∈ΛN

K̂∗(m)f̂(m)eim·x

where f ∈ L1(TN ) and K̂∗(m) is the principal-valued Fourier coefficient of

K∗(x). Also, K̂∗(m), for m 6= 0, takes the value given in (1.25) and (1.26).
(See Corollary 3.2 of Appendix A.)

The theorem, [Sh9, p. 44], which we prove regarding the series in (2.1),
and the function f ∈ L1(TN ), which by assumption is also periodic of period
2π in each variable, is the following.

Theorem 2.1. Let f ∈ L1(TN ) and S(f) =
∑

m∈ΛN
f̂(m)eim·x be its

Fourier series. Furthermore, let K(x) be a Calderon-Zygmund kernel of
spherical harmonic type that meets the conditions in (1.3), (1.4), and (1.5).
Set

(2.2) Ãt(f, x) =
∑

1≤|m|<∞

f̂(m)K̂∗(m)eim·x−|m|t.

Then if x is in the Lebesgue set of f, i.e.,

(2.3) lim
r→0

r−N

∫

B(0,r)
|f(x+ y)− f(x)| dy = 0,

the following limit obtains

(2.4) lim
t→0

[Ãt(f, x)− lim
R→∞

(2π)−N

∫

B(0,R)\B(0,t)
f(x− y)K(y)dy] = 0.

Before proving the theorem, we observe that Ãt(f, x) above only involves

f̂(m) for m 6= 0. Also,
∫
B(0,R)−B(0,t) K(y)dy = 0. Consequently, with no loss

in generality, we can assume that f̂(0) = 0. But in this case, we see from
(1.12), (1.15), and Corollary 1.4 that if perchance the limit involving the
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integral in (2.4) does exist (separately) as R → ∞ and t → 0 and is finite,

then this limit actually is f̃(x).
Next, we use (2.4) from Appendix A and set

(2.5) Aν
n(t) =

Γ(n/2)

2N/2Γ[(N + n)/2]

∫ ∞

0
e−stJν+n(s)sν+1ds,

for t > 0 where ν = (N − 2)/2. Also, with

K (x) = Yn(x/ |x|) |x|−N for x 6= 0,

we set

(2.6) Kν,t(x) = Aν
n(t/ |x|)Yn(x/ |x|) |x|−N

and establish the following lemma.

Lemma 2.2. Let S(x) be the trigonometric polynomial
∑

1≤|m|≤R1
bme

im·x,

i.e., S(x)=
∑

m∈ΛN
bme

im·x where bm = 0 for m = 0 and for |m| > R1. For
t>0, set

(2.7) Ãt(S, x) =
∑

1≤|m|≤R1

bmK̂∗(m)eim·x−|m|t.

Then

(2.8) Ãt(S, x) = (2π)−N lim
R→∞

∫

B(0,R)
Kν,t(y)S(x− y)dy.

Proof of Lemma 2.2. Since S(x) is a finite linear combination of expo-

nentials, it is clear using (1.21) above (i.e., K̂(m) = K̂∗(m) for m 6= 0) that
to establish the lemma, it is sufficient to show

K̂(u)eiu·x−|u|t = (2π)−N lim
R→∞

∫

B(0,R)
Kν,t(y)e

iu·xe−iu·ydy

for u 6= 0. In other words, to establish the lemma, it is sufficient to show

K̂(u)e−|u|t = (2π)−N lim
R→∞

∫

B(0,R)
(−1)nKν,t(y)e

iu·ydy,

or to replace u with x so that

(2.9) K̂(x)e−|x|t = (2π)−N (−1)n lim
R→∞

∫

B(0,R)
Kν,t(y)e

ix·ydy

for x 6= 0.
In order to show that (2.9) is valid, we set

(2.10) g(x) = K̂(x)e−|x|t

and see from Theorem 3.1 in Appendix A that

K̂(x) = κn,NQn(x) |x|−n = κn,NYn(ξ)
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where x = rξ. So it is clear from (2.10) that g ∈ L1(RN ) for t > 0.
With y=|y| η where η ∈ SN−1, we next show that

(2.11) ĝ(y) = (2π)−N (−1)nKν,t(y)

by means of a computation where ν = (N − 2)/2. In this computation,

I(y, t) =

∫

RN

K̂(x)e−|x|te−ix·ydx.

So by definition,

ĝ(y) = (2π)−N I(y, t).

We will also make use of (2.5) and (2.6) above and (3.21′′), and (3.28) in
Appendix A.

I(y, t) =

∫

RN

κn,NQn(x) |x|−n e−|x|te−ix·ydx

= κn,N

∫ ∞

0
e−rtrN−1

∫

SN−1

Yn(ξ)e−ir|y|ξ·ηdS(ξ)dr

= κn,N

∫ ∞

0
e−rtrN−1(−i)n2ν+1πν+1Jν+n(|y| r)

(|y| r)ν Yn(η)dr

= K(y)(−i)nκn,N (2π)N/2

∫ ∞

0
e−rt/|y|Jν+n(r)rν+1dr

= K(y)(−i)nκn,N2NπN/2Γ(N + n)/2)Aν
n(t/ |y|)/Γ(n)/2)

= K(y)Aν
n(t/ |y|)(−1)n

= (−1)nKν,t(y),

which establishes the equality in (2.11).
From Lemma 3.2 in Chapter 1 and (2.10) and (2.11) above, we see that

(2.12) (2π)−N (−1)n lim
R→∞

∫

B(0,R)
Kν,t(y)(1−|y|2 /R2)αeix·ydy = K̂(x)e−|x|t

for α > (N − 1)/2, which is almost (2.9), which we sought as a result. What

we have to do is eliminate the factor (1− |y|2 /R2)α.
With y = sη and x = rξ where η, ξ ∈ SN−1 and (2.6), we obtain

Kν,t(y) = Aν
n(
t

s
)Yn(η)s−N

We set

(2.13) h(s) = Aν
n(
t

s
)s−1

∫

SN−1

Yn(η)eirsη·ξdS(η),

and see that the limit in (2.12) can be rewritten as

(2.14) (2π)−N (−1)n lim
R→∞

∫ R

0
h(s)(1 − s2

R2
)αds = K̂(x)e−|x|t.
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Making use of the identification of h(s) given in (2.13), we infer from
(2.7) in Appendix A that h(s) ∈ L1(0, R), ∀R > 0. Hence, if we show that

(2.15) lim
R→∞

∫

B(0,R)\B(0,1)
Kν,t(y)e

ix·ydy exists and is finite,

where x 6= 0 and t > 0, then it will follow that

lim
R→∞

∫ R

0
h(s)ds exists and is finite.

Consequently, we obtain Theorem 1.1 in Appendix B and from (2.14) above
that

(2π)−N (−1)n lim
R→∞

∫ R

0
h(s)ds = K̂(x)e−|x|t

for x 6= 0 and t > 0. But, we see from (2.13) that this last limit is the same
as the limit in (2.9), and the proof of the lemma will then be complete.

So it remains to show that the statement in (2.15) is true. To accomplish
this, we first observe from both (3.13) and Theorem 3.1 in Appendix A that

lim
R→∞

∫

B(0,R)\B(0,1)
K(y)eix·ydy exists and is finite.

Consequently, to show that the statement in (2.15) is valid, as we see
from (2.6), it is sufficient to show the following:

(2.16) lim
R→∞

∫

B(0,R)\B(0,1)
[Aν

n(t/ |y|)− 1]K(y)eix·ydy exists and is finite,

for x 6= 0 and t > 0. But, by Theorem 2.1 in Appendix A,

|Aν
n(t/ |y|)− 1| ≤ C(N,n)(

t

|y|)
1/2 for 2t ≤ |y| <∞.

Since
|K(y)| ≤ c |y|−N for |y| ≥ 1,

where c is a positive constant, it is clear that that the statement in (2.16)
is indeed valid, and the proof of the lemma is complete. �

Continuing with the preliminaries involved in the proof of Theorem 2.1,
we next establish the following lemma.

Lemma 2.3. Let f ∈ L1(TN ) and S(f) =
∑

m∈ΛN
f̂(m)eim·x be its Fourier

series. For t>0, set

Ãt(f, x) =
∑

1≤|m|<∞

f̂(m)K̂∗(m)eim·x−|m|t.

Then

(2.17) Ãt(f, x) = (2π)−N lim
R→∞

∫

B(0,R)
Kν,t(y)f(x− y)dy,
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where Kν,t(y) is defined in (2.6).

Proof of Lemma 2.3. Since Ãt(f, x) does not make use of f̂(0) and since
∫

B(0,R)
Kν,t(y)dy = 0 for R > 0,

without loss in generality, we can assume from the start that

(2.18) f̂(0) = 0.

Next, we set

(2.19) K∗
ν,t(x) = Kν,t(x) + lim

R→∞

∑

1≤|m|≤R

[Kν,t(x+ 2πm)−Kν,t(2πm)]

for x ∈ TN , and observe from (2.6) above and from (2.7) in Appendix A
that Kν,t(x) is bounded in TN\{0}. We write Kν,t(x+2πm)−Kν,t(2πm) as

[Aν
n(

t

|x+ 2πm|)−A
ν
n(

t

|2πm|)]K(x+ 2πm)

+Aν
n(

t

|2πm|)[K(x+ 2πm)−K(2πm)],

and make use of (2.8) in Appendix A as well as Theorem 2.1 in the Appendix
A. By means of the same type of argument used to show that the series
in (1.8) defining K∗(x) is uniformly and absolutely convergent for x in a
bounded domain, we obtain that the series defining K∗

ν,t(x) in (2.19) is
uniformly and absolutely convergent for x in a bounded domain.

Hence, the series in (2.19) is uniformly convergent for x ∈ TN . Also,
from (2.18) above,

∫

TN

f(x− y)Kν,t(2πm)dy = 0 for m 6= 0.

Consequently, we see that

(2.20)

∫

TN

f(x− y)K∗
ν,t(y)dy = lim

R→∞

∑

|m|≤R

∫

TN

f(x− y)Kν,t(y + 2πm)dy.

Using the same argument that we used in the proof of Corollary 1.4
above, we observe that the limit on the right-hand side of the equality in
(2.20) is the same as

lim
R→∞

∫

B(0,R)
Kν,t(y)f(x− y)dy.

Therefore, we have that

(2.21)

∫

TN

f(x− y)K∗
ν,t(y)dy = lim

R→∞

∫

B(0,R)
Kν,t(y)f(x− y)dy,

for x ∈ TN .
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To complete the proof of this lemma, we set Sj(x) = σ♦
j (f, x), which is

the trigonometric polynomial defined in (2.6) of Chapter 1. From what we
have just shown in (2.21)

∫

TN

Sj(x− y)K∗
ν,t(y)dy = lim

R→∞

∫

B(0,R)
Kν,t(y)S

j(x− y)dy,

for x ∈ TN . Therefore, from (2.8) in Lemma 2.2, we obtain

(2.22) Ãt(S
j , x) = (2π)−N

∫

TN

Sj(x− y)K∗
ν,t(y)dy,

for x ∈ TN .

Now, from the fact that Sj(x) = σ♦
j (f, x) and from Theorem 2.2 in

Chapter 1, it follows that

(2.23) lim
j→∞

∫

TN

∣∣Sj(f, x)− f(x)
∣∣ dx = 0.

Let us write

(2.24) Ãt(S
j , x) =

∑

1≤|m|<∞

Ŝj(m)K̂∗(m)eim·x−|m|t.

From (2.23) and Corollary 3.2 in Appendix A, we obtain that

∃ C > 0 such that
∣∣∣Ŝj(m)K̂∗(m)

∣∣∣ ≤ C for m ∈ ΛN and ∀j.

Also, from (2.23), limj→∞ Ŝj(m) = f̂(m) for every m ∈ ΛN . Since for

fixed t > 0,
∑

m∈ΛN
Ce−|m|t <∞, we conclude from (2.24) that

(2.25) lim
j→∞

Ãt(S
j , x) = Ãt(f, x) for x ∈ TN .

On the other hand, as we have observed, K∗
ν,t(y) is bounded in TN\{0}.

Hence, we obtain from (2.23) that

(2.26) lim
j→∞

∫

TN

Sj(x− y)K∗
ν,t(y)dy =

∫

TN

f(x− y)K∗
ν,t(y)dy,

for x ∈ TN . Statement (2.17) in the lemma now follows immediately from
(2.22), (2.25), and (2.26), and the proof of the lemma is complete. �

Proof of Theorem 2.1. With no loss in generality, we can suppose from
the start that the x that occurs in the statement of the theorem is equal to 0.
Likewise without loss in generality, we can assume f(0) = 0. So assumption
(2.3) of the theorem is replaced with the assumption that

(2.27) lim
t→0

t−N

∫

B(0,t)
|f(y)| dy = 0.
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Consequently, we see that the proof of the theorem will be complete
when we succeed in showing that

(2.28) lim
t→0

[Ãt(f, 0)− lim
R→∞

(2π)−N

∫

B(0,R)\B(0,t)
f(−y)K(y)dy] = 0.

To validate the limit in (2.28), we first show that

(2.29) lim
t→0

∫

B(0,t)
f(−y)Kν,t(y)dy = 0.

To accomplish this, we observe from (2.6) above and from (2.7) in Ap-
pendix A that

∃ C > 0 such that |Kν,t(y)| ≤ Ct−N for t > 0 and y 6= 0.

Hence, ∣∣∣∣∣

∫

B(0,t)
f(−y)Kν,t(y)dy

∣∣∣∣∣ ≤ Ct
−N

∫

B(0,t)
|f(−y)| dy,

and we conclude from the limit in (2.27) that the limit in (2.29) is indeed
true.

From the equality in (2.17) of Lemma 2.3 when x = 0 joined with the
limit in (2.29), we see that

lim
t→0

[Ãt(f, 0)− lim
R→∞

(2π)−N

∫

B(0,R)\B(0,t)
f(−y)Kν,t(y)dy] = 0.

Therefore, (2.28) will be established if we show
(2.30)

lim
t→0

lim
R→∞

[

∫

B(0,R)\B(0,t)
f(−y)Kν,t(y)dy −

∫

B(0,R)\B(0,t)
f(−y)K(y)dy] = 0.

Using (2.6) above, we see that the limit in (2.30) is the same as the
following:

(2.31) lim
t→0

lim
R→∞

∫

B(0,R)\B(0,t)
f(−y)[Aν

n(t/ |y|)− 1]K(y)dy = 0.

So the proof of the theorem will be complete if we show that the limit
in (2.31) is valid. In order to do this, let ε > 0 be given. (2.27) enables us
to choose δ > 0, so that

(2.32)

∫

B(0,t)
|f(−y)| dy ≤ εtN for 0 < t ≤ δ.

Next, we see from (2.9) in Appendix A, that

(2.33)

∣∣∣
∫
B(0,R)\B(0,t) f(−y)[Aν

n(t/ |y|)− 1]K(y)dy
∣∣∣

≤ C∗(N,n)t
1
2

∫
B(0,R)\B(0,t) |f(−y)K(y)| |y|− 1

2 dy

where C∗(N,n) is a positive constant depending only on N and n.
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Now,

∃ CK > 0 such that |K(y)| ≤ CK |y|−N for y 6= 0,

where CK is a constant depending only on K. Therefore, we can majorize
the integral on the right-hand side of the inequality in (2.33) and obtain
(2.34)

t
1
2

∫
B(0,R)\B(0,t) |f(−y)K(y)| |y|− 1

2 dy

≤ CKt
1
2

∫
B(0,R)\B(0,t) |f(−y)| |y|−(N+ 1

2
) dy.

From (3.26) in Chapter 1, we see that
∫

B(0,R)\B(0,R−1)
|f(−y)| dy = O(RN−1) as R→∞.

From this fact, it is easy to obtain that

lim
R→∞

∫

B(0,R)\B(0,δ)
|f(−y)| |y|−(N+ 1

2
) dy <∞,

where δ is given in (2.32). Consequently,

(2.35) lim
t→0

lim
R→∞

t
1
2

∫

B(0,R)\B(0,δ)
|f(−y)| |y|−(N+ 1

2
) dy = 0.

Next, we set

(2.36) I(δ, t) =

∫

B(0,δ)\B(0,t)
|f(−y)| |y|−(N+ 1

2
) dy,

and

(2.37)

F (s) =
∫
B(0,s) |f(−y)| dy

=
∫ s
0 r

N−1[
∫
SN−1

|f(−rη)| dS(η)]dr.

Now from (2.36) and (2.37), we see that

I(δ, t) =

∫ δ

t
s−(N+ 1

2
)dF (s)

= s−(N+ 1
2
)F (s)

∣∣∣
δ

t
+ (N +

1

2
)

∫ δ

t
s−(N+ 3

2
)F (s)ds.

Also, from (2.32), we have that

0 ≤ F (s) ≤ εsN for t ≤ s ≤ δ.
Consequently, we obtain from this last computation that

t
1
2 |I(δ, t)| ≤ 2ε+ (N +

1

2
)εt

1
2

∫ δ

t
s−

3
2ds

≤ (2N + 3)ε.
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We conclude from (2.36) and this last inequality that

(2.38) lim
t→0

t
1
2

∫

B(0,δ)\B(0,t)
|f(−y)| |y|−(N+ 1

2
) dy ≤ (2N + 3)ε.

Combining the limits in (2.35) and (2.38), we see that

lim
t→0

lim
R→∞

t
1
2

∫

B(0,R)\B(0,t)
|f(−y)| |y|−(N+ 1

2
) dy ≤ (2N + 3)ε.

As a consequence of this last result, we see from the inequalities in (2.33)
and (2.34) that

limt→0 limR→∞

∣∣∣
∫
B(0,R)\B(0,t) f(−y)[Aν

n(t/ |y|)− 1]K(y)dy
∣∣∣

≤ C∗(N,n)CK(2N + 3)ε.

But ε is an arbitrary positive number. Hence,

lim
t→0

lim
R→∞

∣∣∣∣∣

∫

B(0,R)\B(0,t)
f(−y)[Aν

n(t/ |y|)− 1]K(y)dy

∣∣∣∣∣ = 0.

This limit validates the equality in (2.31) and completes the proof of the
theorem. �

Exercises.

1. With Aν
n(t) defined by (2.5), use Theorem 2.1 in Appendix A to prove

that ∑

1≤|m|≤R

[Aν
n(x+ 2πm)−Aν

n(2πm)]

is uniformly and absolutely convergent for x in a bounded domain as R→∞.
2. Given f ∈ L1 (TN ), prove that

∫

TN

f(y)K∗
ν,t(y)dy = lim

R→∞

∑

|m|≤R

∫

TN

f(y)Kν,t(y + 2πm)dy

whereKν,t(y+2πm) andK∗
ν,t(y) are defined by (2.6) and (2.19), respectively.

3. Spherical Convergence of Conjugate Series

In this section, we shall prove two theorems regarding the spherical con-
vergence of the series

S̃K(f) =
∑

m∈ΛN\{0}

K̂∗(m)f̂(m)eim·x

where K̂∗(m) is described in (1.25) above. The first theorem we shall prove
is the following:
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Theorem 3.1. Suppose f ∈ L1(TN ), and K is a Calderon-Zygmund kernel
of spherical harmonic type that meets the conditions in (1.3), (1.4), and
(1.5). Suppose also that

(3.1) lim
R→∞

∑

1≤ |m|≤R

K̂∗(m)f̂(m)eim·x0 = α,

where α is a finite real number. Then

(3.2) lim
ε→0

lim
R→∞

(2π)−N

∫

B(0,R)\B(0,ε)
f(x0 − x)K(x)dx = α.

Proof of Theorem 3.1. Before actually starting the proof of this theorem,
we observe that if x0 is in the Lebesgue set of f , then there is nothing to
prove because the theorem is then an immediate corollary of Theorem 2.1
above joined with Theorem 1.2 in Appendix B.

In order to prove the theorem, we observe that without loss in generality,

we can assume from the start that x0 = 0 and that f̂(0) = 0. Also, since the
theorem is true for trigonometric polynomials (i.e., in this case, every point
is in the Lebesgue set), we can also take α = 0. So in view of (1.25), (3.1)
becomes

(3.3) lim
R→∞

∑

1≤ |m|≤R

Qn(
m

|m|)f̂(m) = 0,

where K(x) = Qn(x)/ |x| N+n and n ≥ 1.
What we have to show is that the limit in (3.3) implies that

(3.4) lim
ε→0

lim
R→∞

(2π)−N

∫

B(0,R)\B(0,ε)
f(−x)K(x)dx = 0.

In order to do this, we set

(3.5) χn,ν(t) =

∫ ∞

t
Jν+n(r)/rν+1dr

where Jν+n(r) is the familiar Bessel function of the first kind of order ν +n
and ν = (N − 2)/2.

For R > 0, we set

(3.6) S(R) =
∑

0<|m|≤R

Qn(
m

|m| )f̂(m),

and observe that for R > 1,

∑

1≤|m|≤R

Qn(
m

|m|)f̂(m)χn,ν(|m| t) =

∫ R

0
χn,ν(rt)dS(r)

= t−ν

∫ R

1
S(r)Jν+n(rt)r−(ν+1)dr

+ S(R)χn,ν(Rt).
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From the estimates (2.1) and (2.2) in Appendix A, it is clear that χn,ν(t)
is bounded on (0,∞). So it follows from (3.3), (3.6), and this last computa-
tion that for t > 0,

(3.7)

limR→∞
∑

1≤|m|≤RQn( m
|m|)f̂(m)χn,ν(|m| t)

= t−ν
∫∞
1 S(r)Jν+n(rt)r−(ν+1)dr.

Next, we set for s > 0,

(3.8) f(x, s) =
∑

m∈ΛN

f̂(m)eim·xe−|m|s.

It follows from Theorem 4.3 in Chapter 1 that

(3.9) lim
s→0

∫

B(0,R)\B(0,ε)
|f(x, s)− f(x)| = 0 for 0 < ε < R <∞.

From Appendix A (3.13) and two lines below (3.21′), we see with y = m,
that ∫

B(0,R)−B(0,ε)
e−im·xK(x)dx

= (−i)n2ν+1πν+1Qn(
m

|m|)
∫ R

ε

Jν+n(|y| r)
(|y| r)ν r−1dr.

= (−i)n(2π)N/2Qn(
m

|m|)[χn,ν(|m| ε)− χn,ν(|m|R)].

Observing that the series in (3.8) is absolutely convergent, we obtain
from this last computation that
(3.10)
(2π)−N/2

∫
B(0,R)\B(0,ε) f(−x, s)K(x)dx

= (−i)n∑m∈ΛN
f̂(m)Qn( m

|m|)e
−|m|s[χn,ν(|m| ε)− χn,ν(|m|R)].

Next, we set

(3.11) g(t) = lim
R→∞

∑

1≤|m|≤R

Qn(
m

|m|)f̂(m)χn,ν(|m| t),

and observe from (3.7) that g(t) is well-defined and finite for t > 0. Passing
to the limit as s→ 0 in (3.10), we obtain from (3.9) and (3.11) that

(3.12) (2π)−N/2

∫

B(0,R)\B(0,ε)
f(−x)K(x)dx = g(ε)− g(R).

Now from (3.7), (3.11), and the fact that S(R)→ 0 as R→∞, we have

|g(t)| ≤ ct−(ν+ 1
2
) for t > 0,
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where c is a constant. We conclude from (3.12) and this last inequality that

lim
R→∞

(2π)−N/2

∫

B(0,R)\B(0,ε)
f(−x)K(x)dx = g(ε).

It follows from (3.7), (3.11), and this last equality that the double limit
in (3.4) will be valid if we show

(3.13) lim
t→0

t−ν

∫ ∞

1
S(r)Jν+n(rt)r−(ν+1)dr = 0.

To establish the limit in (3.13), we recall that

S(r) = o(1) as r →∞.
Next, we note from the inequality in (2.1) of Appendix A, since n ≥ 1, that

|Jν+n(s)| ≤ csν+1 for 0 < s ≤ 1,

where c is a constant. Consequently,

(3.14)

∣∣∣∣∣t
−ν

∫ 1/t

1
S(r)Jν+n(rt)r−(ν+1)dr

∣∣∣∣∣ ≤ t
∫ 1/t

1
o(1)dr = o(1),

as t→ 0.
Also, from (2.2) in Appendix A, we obtain that
∣∣∣∣∣t
−ν

∫ ∞

1/t
S(r)Jν+n(rt)r−(ν+1)dr

∣∣∣∣∣ ≤ t
−(ν+ 1

2
)

∫ ∞

1/t
o(1)r−(ν+3/2)dr.

Hence,

lim
t→0

∣∣∣∣∣t
−ν

∫ ∞

1/t
S(r)Jν+n(rt)r−(ν+1)dr

∣∣∣∣∣ = 0.

We conclude from (3.14) and this last limit that the limit in (3.13) is
indeed valid. Consequently, the double limit in (3.4) holds, and the proof of
the theorem is complete. �

Next, we establish a necessary and sufficient condition for the conver-
gence of the conjugate Fourier series at x0 given that the following Tauberian
condition prevails:

(3.15) f̂(m)K̂∗(m)eim·x0 + f̂(−m)K̂∗(−m)e−im·x0 ≥ −A/ |m|N ,

∀m 6= 0, where A is a positive constant.
In particular, motivated by Hardy and Littlewood [HL], we show that

the following theorem [Sh7] is valid.

Theorem 3.2. Suppose f ∈ L1(TN ), and K is a Calderon-Zygmund
kernel of spherical harmonic type that meets the conditions in (1.3), (1.4),
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and (1.5). Suppose also that the condition (3.15) holds at the point x 0. Then
a necessary and sufficient conditon that

(3.16) lim
R→∞

∑

1≤ |m|≤R

K̂∗(m)f̂(m)eim·x0 = α,

where α is a finite real number is that

(3.17) lim
ε→0

lim
R→∞

(2π)−N

∫

B(0,R)\B(0,ε)
f(x0 − x)K(x)dx = α.

The necessary condition of the above theorem is an immediate corollary
of Theorem 3.1. Hence, we need only establish the sufficient condition of the
above theorem. In order to do this, we will first need the following Tauberian
lemma.

Lemma 3.3. Suppose that for m 6= 0, am is real-valued and that am =
O(|m|j) as |m| → ∞ for some nonnegative integer j. Suppose, furthermore,

that there exists a positive constant A such that am ≥ −A/ |m|N ∀m 6= 0.
For t > 0, set

I(t) =
∑

1≤|m|

ame
−|m|t,

and suppose also that limt→0I(t) = α, where α is finite-valued. Then

lim
R→∞

∑

1≤|m|≤R

am = α.

Proof of Lemma 3.3. To establish this lemma with no loss in generality,
we can assume from the start that A = 1. Consequently, on observing that

d2I(t)

dt2
=
∑

1≤|m|

|m|2 ame
−|m|t,

we obtain the following:

(3.18)

(i) I(t) is in C∞(0,∞);

(ii) limt→0I(t) = α;

(iii) d2I(t)/dt2 ≥ −∑1≤|m| e
−|m|t/ |m|N−2 for t > 0.

Next, we observe from the Poisson summation formula in Lemma 4.4 of
Chapter 1 that for t > 0,

(3.19)
∑

m∈Λ

e−|m|t = bN t
−N + bN t

∑

m6=0

[t2 + |2πm|2]−(N+1)/2,
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where bN is a positive constant. It follows from (3.19) and L’Hospital’s rule
that

(3.20) lim
t→0

∑

1≤|m|

e−|m|t

|m|N−2
/t−2 exists and is finite.

From (3.18)(iii) and (3.20), we consequently have that there is a positive

constant b
′

N such that

(3.21)
d2I(t)

dt2
≥ −b′N t−2 for 0 < t < 1.

But then it follows from (3.18)(i) and (ii), (3.21), and Theorem 2.1 in
Appendix B that

(3.22) lim
t→0

t
dI(t)

dt
= 0.

Since A = 1, we have by hypothesis that

(3.23) |m| am + |m|−(N−1) ≥ 0 for m 6= 0.

Also, we have from (3.19) and L’Hospital’s rule that there is a positive
constant βN such that

(3.24) lim
t→0

t
∑

1≤|m|

e−|m|t

|m|N−1
= βN .

For R>0, set

(i) S1(R) =
∑

0<|m|≤R

|m| am + |m|−(N−1),

(ii)S2(R) =
∑

0<|m|≤R

|m|−(N−1).

Then we observe from (3.24) that

(3.25) lim
t→0

t

∫ ∞

0
e−rtdS2(r) = βN .

Consequently, it follows from Theorem 2.2 in Appendix B and (3.25) that

(3.26) R−1
∑

0<|m|≤R

|m|−(N−1) → βN as R→∞.

Also since dI(t)
dt = −∑0<|m| |m| ame

−|m|t, we see from (3.22) and (3.25)

that

lim
t→0

t

∫ ∞

0
e−rtdS1(r) = βN .

Hence, it follows from (3.23), Theorem 2.2 in Appendix B, and this last limit
that

R−1
∑

0<|m|≤R

[|m| am + |m|−(N−1)]→ βN as R→∞.
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We conclude from (3.26) and this last limit that

(3.27) R−1
∑

0<|m|≤R

|m| am → 0 as R→∞.

Next, we set S3(R) =
∑

0<|m|≤R |m| am and observe that

∫ R

0

1− e−rt

r
dS3(r) =

∑

0<|m|≤R

1− e−|m|t

|m| |m| am.

Consequently, for R > 1,

∑

0<|m|≤R

[1− e−|m|t]am = R−1S3(R)[1 − e−Rt]− t
∫ R

1
S3(r)e

−rtr−1dr

+

∫ R

1
S3(r)[1− e−rt]r−2dr.

From (3.27), S3(r)r
−1 = o(1) as r → ∞. Hence, we infer from this last

computation that

(3.28) lim
t→0

∑

0<|m|≤t−1

[1− e−|m|t]am = 0.

Next, we observe that for R > 1,

∑

R<|m|

e−|m|tam = −S3(R)R−1e−Rt + t

∫ ∞

R
S3(r)e

−rtr−1dr

+

∫ ∞

R
S3(r)e

−rtr−2dr.

We conclude from this computation and (3.27) that

lim
t→0

∑

t−1<|m|

e−|m|tam = 0.

Since by hypothesis, limt→0
∑

0<|m| e
−|m|tam = α, we obtain from this

last limit that

lim
t→0

∑

0<|m|≤t−1

e−|m|tam = α,

and hence, from (3.28) that

lim
t→0

∑

0<|m|≤t−1

am = α.

This concludes the proof of the lemma. �

In order to prove Theorem 3.2, we will need two more lemmas.
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Lemma 3.4. Let f(x) and K(x) be as in the hypothesis of Theorem 3.2.
Suppose also that the double limit in (3.17) holds. Then

(3.29) lim
r→0

r−N

∫

B(0,r)
f(x0 − x) |x|N K(x)dx = 0.

Proof of Lemma 3.4. We let S(0, r) represent the (N-1)-sphere with cen-
ter 0 and radius r and we let dS(x) represent its natuural (N-1)-dimensional
volume element. Then we define almost everywhere for r > 0,

h(r) =

∫

S(0,r)
f(x0 − x)K(x)dS(x).

Then h meets the condition in the hypothesis of [Zy1, Lemma 7.23, p. 104].
Consequently, ∫ r

0
h(s)sNds = o(rN ) as r → 0.

This establishes the limit in (3.29). �

We will also need the following lemma.

Lemma 3.5. Let f(x) and K(x) be as in the hypothesis of Theorem 3.2. Sup-

pose that the limit in (3.29) also holds. Let Ãt(f, x) represent the expression
in (2.2). Then

lim
t→0

[Ãt(f, x0)− lim
R→∞

(2π)−N

∫

B(0,R)\B(0,t)
f(x0 − y)K(y)dy] = 0.

Proof of Lemma 3.5. With no loss in generality, we can assume x0 = 0.
Next, for r > 0, we set

(3.30) g(r) = (2π)−N

∫

B(0,r)
f(−x) |x|N K(x)dx

and observe by assumption that

(3.31) g(r) = o(rN ) as r → 0.

Now from (2.17), we have that

Ãt(f, 0) = (2π)−N lim
R→∞

∫

B(0,R)
Kν,t(y)f(−y)dy

where Kν,t(y) = Aν
n(t/ |y|)K(y) and ν = (N − 2)/2. Consequently, we have

from (3.30) that

(3.32) Ãt(f, 0) = lim
R→∞

∫ R

0
Aν

n(t/r)r−Ndg(r),

where Aν
n(t) is defined in (2.5).

Next, we set Aν
n(t)

′
= dAν

n(t)/dt and see from (2.5) that

Aν
n(t)

′
= −cn

∫ ∞

0
e−stJν+n(s)sν+2ds,
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where cn is a positive constant.
From the estimates in Appendix A, |Jν+n(s)| ≤ c∗ns

ν for s > 0. Hence,
it follows from this last equality that there is a positive constant c∗∗n such
that

(3.33)
∣∣∣Aν

n(t)
′
∣∣∣ ≤ c∗∗n t−(N+1) for t > 0.

Also, integrating by parts and using (3.31) and (2.7) in Appendix A
gives the following formula:
∫ t

0
Aν

n(t/r)r−Ndg(r) = Aν
n(1)t−Ng(t) +

∫ t

0
tβν

n (t/r) r−N−2g(r)dr

+N

∫ t

0
Aν

n(t/r)r−N−1g(r)dr

for t > 0 where βν
n (t) = Aν

n(t)
′
. Hence, using (3.31) and (3.33) in conjunction

with (2.7) in Appendix A, we obtain from this last formula that

lim
t→0

∫ t

0
Aν

n(t/r)r−Ndg(r) = 0.

We conclude from (3.32) that the proof of the lemma will be complete
once we show that

(3.34) lim
t→0

lim
R→∞

∫ R

t
[Aν

n(t/r)− 1]r−Ndg(r) = 0.

To establish that this last double limit is valid, we use the estimate in
Theorem 2.1 of Appendix A and see that

(3.35) |Aν
n(t/r)− 1| ≤ C∗(N,n)(t/r)

1
2 for 0 < t ≤ r <∞,

where C∗(N,n) is a positive constant. We shall show that the double limit
in (3.34) holds by proving that, given η > 0,

(3.36) lim
t→0

sup lim
R→∞

∣∣∣∣
∫ R

t
[Aν

n(t/r)− 1]r−Ndg(r)

∣∣∣∣ ≤ C∗∗(N,n)η,

where C∗∗(N,n) is a constant that depends only on N and n.
To accomplish this, using (3.31), we choose δ > 0 so that

(3.37) |g(r)| ≤ ηrN for 0 < r ≤ δ.
Then from (3.35), we have that

limR→∞

∣∣∣
∫ R
δ [Aν

n(t/r)− 1]r−Ndg(r)
∣∣∣

≤ C∗(N,n)t
1
2 limR→∞

∫
B(0,R)\B(0,δ) |f(−x)K(x)| |x|− 1

2 dx.

We see that the limit of the integral on the right-hand side of this last
inequality is finite. Consequently, the left-hand side of this last inequality is
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O(t
1
2 ) as t→ 0. We conclude that (3.36) will follow once we show

(3.38) lim
t→0

sup

∣∣∣∣
∫ δ

t
[Aν

n(t/r)− 1]r−Ndg(r)

∣∣∣∣ ≤ C∗∗(N,n)η.

Observing from (3.37) that

lim
t→0

sup
∣∣[Aν

n(t/δ)− 1]δ−Ng(δ)
∣∣ ≤ |Aν

n(0)− 1| η,

we see after integrating by parts that the estimate in (3.38) will follow if we
show

lim
t→0

sup

∣∣∣∣
∫ δ

t
g(r)r−N{N [Aν

n(t/r)− 1]r−1 + tβν
n (t/r) r−2}dr

∣∣∣∣ ≤ C∗(N,n)η

where βν
n (t) = Aν

n(t)
′
.

This last inequality, however, follows easily from (3.35), (3.37), and the
uniform boundness in (2.10) of Appendix A. �

Proof of the Sufficiency Condition of Theorem 3.2 If we can show

(3.39) lim
t→0

∑

0<|m|

K̂∗(m)f̂(m)eim·x0e−|m|t = α,

the proof will be complete.
∑

0<|m|

K̂∗(m)f̂(m)eim·x0e−|m|t

= 2−1
∑

0<|m|

[f̂(m)K̂∗(m)eim·x0 + f̂(−m)K̂∗(−m)e−im·x0 ]e−|m|t,

and also
∑

0<|m|≤R

K̂∗(m)f̂(m)eim·x0

= 2−1
∑

0<|m|≤R

[f̂(m)K̂∗(m)eim·x0 + f̂(−m)K̂∗(−m)e−im·x0 ].

Since the left-hand side of the inequality in (3.15) is real-valued, it follows
from Lemma 3.3, (3.39), and these last two equalities that

lim
R→∞

∑

0<|m|≤R

K̂∗(m)f̂(m)eim·x0 = α,

and the sufficiency condition of the theorem would be established.
To show that the limit in (3.39) is indeed valid, we proceed as follows. We

have by assumption that the double limit in (3.17) holds. Hence, by Lemma
3.4, we have that the limit in (3.29) holds. Consequently, from Lemma 3.5,
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we have that that the double limit in (3.17), which is α, is the same as the

limit of Ãt(f, x0), i.e.,

lim
t→0

Ãt(f, x0) = α.

Since Ãt(f, x) represents the expression in (2.2), this last limit is the
same as the one in (3.39). �

Exercises.

1. Prove that in dimension N ≥ 2,

lim
t→0

t2
∑

1≤|m|

e−|m|t

|m|N−2
exists and is finite.

2. Prove that if S3(R) =
∑

0<|m|≤R |m| am where R > 1, then

∑

R<|m|

e−|m|tam = −S3(R)R−1e−Rt + t

∫ ∞

R
S3(r)e

−rtr−1dr

+

∫ ∞

R
S3(r)e

−rtr−2dr.

3. With Aν
n(t) defined in (2.5) and g (r) = o

(
rN
)

as r → 0, prove that

lim
t→0

∫ t

0
Aν

n(t/r)r−Ndg(r) = 0,

where g (r) is defined in (3.30).

4. The Cα-Condition

Given f ∈ C(TN ), i.e., f ∈ C(RN ) and is periodic of period 2π in each
variable, we say f ∈ Cα(TN ), 0 < α < 1, provided there is a constant C∗

such that

(4.1) |f(x+ y)− f(x)| ≤ C∗ |y|α ∀x, y ∈ RN .

If f meets (4.1), we will also say that f is in Lip α on TN , 0 < α < 1.

It turns out that f ∈ Cα(TN ) implies that f̃ ∈ Cα(TN ) where f̃(x) is
the periodic Calderon-Zygmund transform of f of spherical harmonic type
defined in (1.12) above. This basic fact is also highly useful in demonstrating
that certain partial differential equations have classical solutions, as will be
shown in §5.

We establish that f̃ ∈ Cα(TN ) in the following theorem, which uses the
presentation given in [CZ2, pp. 262-265].
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Theorem 4.1. Let f ∈ Cα(TN ), 0 < α < 1, and suppose K(x) is a
Calderon-Zygmund kernel of spherical harmonic type that meets the condi-
tions in (1.3), (1.4), and (1.5). Set

(4.2) f̃(x) = lim
ε→0

(2π)−N

∫

TN\B(0,ε)
f(x− y)K∗(y)dy

where K∗(x) is defined in (1.8). Then the limit in (4.2) exists for every

x∈ RN , and f̃ ∈ Cα(TN ).

Proof of Theorem 4.1. It will be apparent from the proof we give below
that from the start we can assume

lim
ε→0

∫

TN\B(0,ε)
K∗(y)dy = 0.

Therefore, for x ∈ RN ,

(4.3) (2π)N f̃(x) = lim
ε→0

∫

TN\B(0,ε)
[f(x− y)− f(x)]K∗(y)dy.

Since by (1.8) and (1.15),

(4.4) K∗(y) = K(y) +K∗
1 (y)

where K∗
1 (y) is uniformly bounded for y ∈ TN and |y|αK(y) ∈ L1(TN ), we

have that the limit in (4.3) exists for every x ∈ TN . Hence, the limit in (4.2)
exists for every x ∈ TN .

It remains to show that f̃(x) ∈ Cα(TN ). As we have just observed,
∀x ∈ TN , as a function of y, [f(x− y)− f(x)]K∗(y) ∈ L1(TN ). Also we see
from (4.4) that there is a constant C1∗, independent of x, such that

|[f(x− y)− f(x)]K∗(y)| ≤ C1∗(|y|α−N + |y|α) ∀x ∈ TN .

As a consequence, for h ∈ B(0, 1/8),

(4.5)

∫

B(0,3|h|)
|[f(x− y)− f(x)]K∗(y)| dy ≤ C2∗ |h|α,

∀x ∈ TN .
From (4.3) and (4.5), we see that

(4.6) (2π)N f̃(x) =

∫

TN\B(0,3|h|)
[f(x− y)− f(x)]K∗(y)dy +A1(x, h)

where

(4.7) |A1(x, h)| ≤ C2∗ |h|α ∀x ∈ TN .

Next, we observe that

(2π)N f̃(x+ h) =

∫

TN

[f(x+ h− y)− f(x+ h)]K∗(y)dy

=

∫

TN−h
[f(x− y)− f(x+ h)]K∗(y + h)dy.
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It is clear from the boundedness of both K(x) and K∗
1 (x) in a neighborhood

of the boundary of TN , that that we can adjust this last integral and obtain
that for h ∈ B(0, 1/8),

(4.8) (2π)N f̃(x+ h) =

∫

TN

[f(x− y)− f(x+ h)]K∗(y + h)dy +A2(x, h)

where

(4.9) |A2(x, h)| ≤ C3∗ |h|α ∀x ∈ TN .

Using the Cα-condition on f in the integrand in (4.8) and observing that∫

B(0,3|h|)
|y + h|α−N dy ≤

∫

B(0,4|h|)
|y|α−N dy,

we see from (4.4) and (4.8) that

(4.10)
(2π)N f̃(x+ h) =

∫
TN\B(0,3|h|)[f(x− y)− f(x+ h)]K∗(y + h)dy

+A2(x, h) +A3(x, h)

where

(4.11) |A3(x, h)| ≤ C4∗ |h|α ∀x ∈ TN .

Next, we claim that there exists a constant C7∗ > 0 such that

(4.12)

∣∣∣∣∣

∫

TN\B(0,3|h|)
K∗(y + h)dy

∣∣∣∣∣ ≤ C7∗ ∀h ∈ B(0, 1/8).

To see that this last inequality is true, we observe from (4.4) that it is
sufficient to establish (4.12) with K∗(y + h) replaced by K(y + h) and TN

replaced by B(0, 1).
So set I(h) equal to the expression on the left-hand side of the inequality

in (4.12) with K∗(y + h) replaced by K(y + h) and TN replaced by B(0, 1),
and observe that

(4.13) I(h) =

∣∣∣∣∣

∫

B(0,1)\B(0,3|h|)
[K(y + h)−K(y)]dy

∣∣∣∣∣ .

We need to show that I(h) is uniformly bounded for |h| ≤ 1/8.
Now K(y + h)−K(y) is given by

Qn(y + h)

|y + h|n+N
− Qn(y)

|y|n+N
=

Qn(y + h)−Qn(y)

|y + h|n+N

+Qn(y)[
1

|y + h|n+N
− 1

|y|n+N
].

It is clear from the fact that Qn(y) is a homogeneous polynomial of
degree n that this last equality implies there exists a constant C5∗ such that

(4.14) |K(y + h)−K(y)| ≤ C5∗ |h| |y|−(N+1) ∀y ∈ B(0, 1)−B(0, 3 |h|)
and for |h| ≤ 1/8.
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Since

|h|
∫ ∞

|3h|
t−2dt = 1/3,

it follows from (4.14) in conjunction with the definition of I(h) given in
(4.13) that

I(h) ≤ C6∗ ∀h ∈ B(0, 1/8).

This fact establishes the inequality in (4.12), and we obtain as a conse-
quence that

|f(x)− f(x+ h)|
∣∣∣
∫
TN−B(0,3|h|)K

∗(y + h)dy
∣∣∣

≤ C∗C7∗ |h|α

∀h ∈ B(0, 1/8) and ∀x ∈ TN .
From this last inequality in conjunction with (4.6)-(4.11), we obtain that

(2π)N [f̃(x+ h)− f̃(x)] =

(4.15)

∫

TN\B(0,3|h|)
[f(x− y)− f(x)][K∗(y + h)−K∗(y)]dy +A4(x, h)

where |A4(x, h)| ≤ C8∗ |h|α ∀h ∈ B(0, 1/8) and ∀x ∈ TN .
Next, we claim that there exists a constant C9∗ such that

(4.16) |K∗(y + h)−K∗(y)| ≤ C9∗ |h| |y|−(N+1)

∀h ∈ B(0, 1/8) and ∀y ∈ TN\B(0, 3 |h|).
To establish the inequality in (4.16), we recall that K∗(y) = K(y) +

K∗
1 (y) where K∗

1 (y) is given in a previous expression above (1.15). Hence,

|K∗
1 (y + h)−K∗

1 (y)| ≤ lim
R→∞

∑

1≤|m|≤R

|K(y + h+ 2πm)−K(y + 2πm)| .

It is easy to see from a decomposition similar to that given above (4.14)
that the absolute value inside the summation sign in this last inequality is
majorized by a constant multiple of

|h| |2πm|−(N+1) for |m| ≥ 1,

when h ∈ B(0, 1/8) and y ∈ TN − B(0, 3 |h|). Consequently, there exists a
constant C10∗ such that

|K∗
1 (y + h)−K∗

1 (y)| ≤ C10∗ |h| .
Therefore, to establish the inequality in (4.16), it is sufficient to show

|K(y + h)−K(y)| ≤ C11∗ |h| |y|−(N+1)

∀h ∈ B(0, 1/8) and ∀y ∈ TN\B(0, 3 |h|). But this is essntially the inequality
already obtained in (4.14). Hence, claim (4.16) is valid.

We next return to the integral in (4.15) and observe from the claim in
(4.16) that
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∫
TN\B(0,3|h|)[f(x− y)− f(x)][K∗(y + h)−K∗(y)]dy

(4.17) ≤ C∗C9∗

∫

TN\B(0,3|h|)
|h|α |h| |y|−(N+1) dy ≤ C12∗ |h|α

∀h ∈ B(0, 1/8) and ∀x ∈ TN , where once again we used the fact that

|h|
∫ ∞

3|h|
t−2dt = 1/3.

From the equality in (4.15) in conjunction with the inequality in (4.17),
we obtain ∣∣∣(2π)N [f̃(x+ h)− f̃(x)]

∣∣∣ ≤ (C8∗ + C12∗) |h|α,

∀h ∈ B(0, 1/8) and ∀x ∈ TN . Hence, indeed f̃ ∈ Cα(TN ). �

Exercises.

1. With h = (h1, h2) where |h| ≤ 1
8 and h1, h2 are nonnegative, prove

that there exists a constant C∗ > 0 such that
∣∣∣∣∣

∫

T2\B(−h,h)
K (y + h) dy −

∫

T2−h\B(−h,h)
K (y + h) dy

∣∣∣∣∣ ≤ C∗ |h| .

5. An Application of the Cα-Condition

In this section, we show that Theorem 4.1 is very useful in obtaining a
classical solution to a periodic boundary value problem in partial differen-
tial equations. Our example is fairly elementary. For a more sophisticated
example showing how Theorem 4.1 can be used, we refer the reader to §2 of
Chapter 6 below, which deals with a classical solution to a boundary value
problem for the stationary Navier-Stokes equations.

Let f ∈ Cα(TN ), 0 < α < 1. We recall this means that f is periodic of
period 2π in each variable and satisfies

|f(x+ y)− f(x)| ≤ C∗ |y|α ∀x, y ∈ RN

where C∗ is a positive constant.
Given g ∈ C(TN ), we say u is a classical solution of the periodic bound-

ary value problem

(5.1) −∆u(x) = g(x) ∀x ∈ TN

provided the following holds:
(i) u ∈ C2(RN );
(ii) u(x) is periodic of period 2π in each variable;
(iii) −∆u(x) = g(x) ∀x ∈ TN .
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Here, ∆u is the familiar Laplace operator applied to u, namely,

∆u =
N∑

j=1

∂2u

∂x2
.

By using specific Calderon-Zygmund kernels K(x) in conjunction with
Theorem 4.1, we establish the following result concerning the boundary value
problem (5.1).

Theorem 5.1. Let f ∈ Cα(TN ), N ≥ 2, 0 < α < 1. Suppose that f̂(0) = 0.
Then there exists u ∈ C2+α(TN ), which is a classical solution of the periodic
boundary value problem

(5.2) −∆u(x) = f(x) ∀x ∈ TN .

u ∈ C2+α(TN ) means that u(x) meets conditions (i) and (ii) just below
(5.1) and, in addition,

∂2u(x)/∂xj∂xk ∈ Cα(TN ) for j, k = 1, ..., N.

To show that the condition f̂(0) = 0 is a necessary condition for the
solution of the periodic boundary value problem (5.2), we observe that if
also v ∈ C2(TN ), then it follows from Green’s second identity that

∫

∂TN

[u
∂v

∂n
− v ∂u

∂n
]ds =

∫

TN

[u∆v − v∆u]dx.

Taking v = 1 in this last equality gives the value zero to the left-hand side.

Hence,
∫
TN

∆udx = 0, which we use with (5.2), 2nd in turn implies f̂(0) = 0.

To prove Theorem 5.1, we will need the following lemma:

Lemma 5.2. Suppose g, gj , gjk ∈ C(TN ) for j,k=1, ..., N. Suppose also
that

ĝj(m) = imj ĝ(m) ∀m ∈ ΛN , j = 1, ..., N, and

ĝjk(m) = −mjmkĝ(m) ∀m ∈ ΛN , j, k = 1, ..., N.

Then g ∈ C2(TN ) and ∂2g(x)/∂xj∂xk = gjk(x) for x ∈ TN .

Proof of Lemma 5.2. To establish the lemma, it is clearly sufficient to
show

(5.3) ∂g(x)/∂x1 = g1(x) for x ∈ TN ,

for everything else will follow in a similar manner.
We let σ♦

n(g, x) designate the n-th iterated Fejer sum of g as defined in
(2.6) of Chapter 1. Also, let x∗ be a fixed but arbitrary point in TN . We are
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given that ĝ1(m) = im1ĝ(m) ∀m ∈ ΛN . Since σ♦
n(g, x) is a trigonometric

polynomial, it follows that

∂σ♦
n(g, x)/∂x1 = σ♦

n(g1, x) for x ∈ RN ,

and therefore that

σ♦
n(g, x∗1 + t, x∗2, ..., x

∗
N )− σ♦

n(g, x∗1, x
∗
2, ..., x

∗
N )

=
∫ x∗

1+t
x∗
1

σ♦
n(g1, s, x

∗
2, ..., x

∗
N )ds

for t ∈ R.
By Theorem 2.1 in Chapter 1, limn→∞σ

♦
n(g1, x) =g1(x) uniformly

for x ∈ RN . So using this uniformity, we obtain from this last equality
that

(5.4) g(x∗1 + t, x∗2, ..., x
∗
N )− g(x∗1, x∗2, ..., x∗N ) =

∫ x∗
1+t

x∗
1

g1(s, x
∗
2, ..., x

∗
N )ds

for t ∈ R.
Next, we divide both sides of the equality in (5.4) by t 6= 0, pass to the

limit as t→ 0, and conclude that

∂g(x∗)/∂x1 = g1(x
∗).

Since x∗ is an arbitrary point in TN , (5.3) is established, and the proof of
the lemma is complete. �

Proof of Theorem 5.1. Since (N−1)x2
1−x2

2−·· ·−x2
N is a homogeneous

polynomial of degree 2 and also a harmonic function, it follows that

K(x) =
(N − 1)x2

1 − x2
2 − · · · − x2

N

|x|N+2

is a Calderon-Zygmund kernel of spherical harmonic type, and therefore
from Corollary 3.2 in Appendix A that

K̂∗(m) = κ
(N − 1)m2

1 −m2
2 − · · · −m2

N

|m|2
∀m 6= 0,

where κ is a positive constant. Hence, by Theorem 4.1,

∑

m6=0

f̂(m)
(N − 1)m2

1 −m2
2 − · · · −m2

N

|m|2
eim·x

is the Fourier series of a function in Cα(TN ). Since by assumption,

∑

m6=0

f̂(m)
m2

1 +m2
2 + · · ·+m2

N

|m|2
eim·x
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is also the Fourier series of a function in Cα(TN ), we obtain by addition that
the same holds for ∑

m6=0

f̂(m)
m2

1

|m|2
eim·x.

Similarly, we see that

∑

m6=0

f̂(m)
m2

j

|m|2
eim·x

is the Fourier series of a function in Cα(TN ) for j = 1, ..., N .
Likewise, since xjxk is a spherical harmonic function for j 6= k, we

proceed in a similar manner and obtain that

(5.5) ujk ∈ Cα(TN ),

where

(5.6) S[ujk] =
∑

m6=0

f̂(m)
mjmk

|m|2
eim·x

for j, k = 1, ..., N .

Next, we invoke (iv) and (vii) of Lemma 1.4 in Chapter 3 and see
that H0,H1, ...,HN ∈ L1(TN ) where

(5.7)

(i) S[H0] =
∑

m6=0
1

|m|2
eim·x and

(ii) S[Hj] =
∑

m6=0
imj

|m|2
eim·x for j = 1, ..., N.

We set

(5.8) uj(x) = (2π)−N

∫

TN

f(x− y)Hj(y)dy for j = 0, 1, ..., N,

and obtain, since f ∈ Cα(TN ), that

(5.9) uj ∈ Cα(TN ) for j = 0, 1, ..., N.

Also, from (i) in (5.7) in conjunction with (5.8), we obtain that

(5.10) S[u0] =
∑

m6=0

f̂(m)

|m|2
eim·x,

and from (ii) in (5.7) that

(5.11) S[uj] =
∑

m6=0

imj f̂(m)

|m|2
eim·x for j = 1, ..., N.

If we temporarily think of u0 as g in Lemma 5.2, we see from (5.6),
(5.10), and (5.11) that all the conditions in the hypothesis of Lemma 5.2 are
met. Consequently, u0 ∈ C2(TN ), and

∂2u0(x)/∂xj∂xk = ujk(x) for x ∈ TN .
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But then from (5.5), we have that u0 ∈ C2+α(TN ) and from (5.6) that

−∆u0(x) = f(x) ∀x ∈ TN .

This fact establishes the theorem with u(x) = u0(x). �

Exercises.

1. With N = 2 and H1 (x) the function delinated in (5.7)(ii), given
f ∈ Cα (T2) , 0 < α < 1, proves that v1 (x) ∈ C1+α (T2), where

v1 (x) = (2π)−2
∫

T2

f (x− y)H1 (y) dy.

2. With N = 2, given f ∈ Cα (T2) , 0 < α < 1, and f̂(0) = 0, find a
vector-valued function v(x) = (v1 (x) , v2 (x)) with v1, v2 ∈ C1+α (T2) such
that

∇ · v (x) = f (x) ∀x ∈ T2.

6. An Application of the Lp-Condition

In this section, we show that Theorem 1.2 is very useful in obtaining
distribution solutions to a periodic boundary value problem in partial dif-
ferential equations. The result obtained here will prove valuable in Chapter
6 when we deal with solutions to the stationary Navier-Stokes equations.

We recall that φ ∈ C∞(TN ) means that φ ∈ C∞(RN ) and periodic of
period 2π in each variable. With 1 ≤ p < ∞, by ‖φ‖W 1,p(TN ), we mean the

following:

‖φ‖p
W 1,p(TN )

=

∫

TN


|φ|p +

N∑

j=1

∣∣∣∣
∂φ

∂xj

∣∣∣∣
p

 dx.

The space W 1,p (TN ) is the space we obtain by using the method of Cauchy
sequences to close C∞(TN ) wlth respect to the ‖·‖W 1,p(TN )-norm.

Similarly, by ‖φ‖W 2,p(TN ), we mean

‖φ‖p
W 2,p(TN )

=

∫

TN


|φ|p +

N∑

j=1

∣∣∣∣
∂φ

∂xj

∣∣∣∣
p

+
N∑

j,k=1

∣∣∣∣
∂2φ

∂xj∂xk

∣∣∣∣
p

 dx.

The space W 2,p (TN ) is the space we obtain by using the method of Cauchy
sequences to close C∞(TN ) with respect to the ‖·‖W 2,p(TN )-norm.

Given f ∈ Lp (TN ) with
∫
TN

fdx = 0, we say u is a distribution solution

of the periodic boundary value problem

(6.1) −∆u = f
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provided that u ∈ L1 (TN ) and

(6.2) −
∫

TN

u∆φdx =

∫

TN

fφdx ∀φ ∈ C∞(TN ).

With 1 < p < ∞ and using specific Calderon-Zygmund kernels in con-
junction with Theorem 1.2, we intend to prove the following theorem re-
garding distribution solutions of the boundary value problem (6.1).

Theorem 6.1. Let f ∈ Lp (TN ) , 1 < p <∞, N ≥ 2. Suppose that f̂(0) = 0.
Set

u0(x) = (2π)−N

∫

TN

f(x− y)H0(y)dy

where H0 is defined in (5.7).Then u0 ∈ W 2,p (TN ) and is a distribution
solution of the periodic boundary value problem (6.1).

To prove Theorem 6.1, we will need the following lemma.

Lemma 6.2. Suppose g ∈ Lp (TN ) , 1 < p <∞, and h ∈ L1 (TN ) . Set

v (x) =

∫

TN

h (x− y) g (y) dy.

Then v ∈ Lp (TN ), and

(6.3) ‖v‖Lp(TN ) ≤ ‖h‖L1(TN ) ‖g‖Lp(TN ) .

Proof of Lemma 6.2. Let p′ = p/ (p− 1) . Then writing |h (x− y)| =

|h (x− y)|1/p |h (x− y)|1/p′, we see that

|v (x)| ≤
∫

TN

|h (x− y)| |g (y)| dy

≤ [

∫

TN

|h (x− y)| |g (y)|p dy]1/p[

∫

TN

|h (x− y)| dy]1/p′ .

Consequently,
∫

TN

|v (x)|p dx ≤ ‖h‖p/p′

L1(TN )
‖h‖L1(TN ) ‖g‖

p
Lp(TN ) .

The inequality in (6.3) follows immediately from this last inequality. �

Proof of Theorem 6.1. Using H0,H1, ...,HN ∈ L1(TN ) as defined in
(5.7), we set

(6.4) uj(x) = (2π)−N

∫

TN

f(x− y)Hj(y)dy for j = 0, 1, ..., N,
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and obtain from Lemma 6.2, since f ∈ Lp(TN ) and Hj ∈ L1(TN ), that

(6.5) uj ∈ Lp(TN ) for j = 0, 1, ..., N.

Also, from (i) in (5.7) in conjunction with (6.4), we obtain that

(6.6) S[u0] =
∑

m6=0

f̂(m)

|m|2
eim·x,

and from (ii) in (5.7) that

(6.7) S[uj] =
∑

m6=0

imj f̂(m)

|m|2
eim·x for j = 1, ..., N.

Next, using the material in the first paragraph of the proof of Theorem
5.1 in conjunction with Theorem 1.2, we see that

∑

m6=0

f̂(m)
m2

j

|m|2
eim·x

is the Fourier series of a function in Lp(TN ) for j = 1, ..., N .
Likewise, since xjxk is a spherical harmonic function for j 6= k, we

proceed in a similar manner and use Theorem 1.2 to obtain that
∑

m6=0

f̂(m)
mjmk

|m|2
eim·x

is the Fourier series of a function in Lp(TN ) for j 6= k and j, k = 1, ..., N .
As a consequence of all this, we see that

(6.8)

(i)∃ujk ∈ Lp(TN )
with

(ii)S[ujk] = −∑m6=0 f̂(m)
mjmk

|m|2
eim·x

for j, k = 1, ..., N .
Next, we let σ♦

n(u0, x) designate the n-th iterated Fejer sum of u0 as
defined in (2.6) of Chapter 1. Since σ♦

n(u0, x) is a trigonometric polynomial,
it follows from (6.6)-(6.8) that

(6.9)

(i) ∂σ♦
n(u0,x)
∂xj

= σ♦
n(uj , x),

(ii) ∂2σ♦
n(u0,x)

∂xj∂xk
= σ♦

n(ujk, x)

for j, k = 1, ..., N .
From Theorem 2.2 in Chapter 1, we obtain that

(6.10) lim
n→∞

∥∥∥σ♦
n(uj , ·)− uj

∥∥∥
Lp(TN )

= 0

for j = 0, 1, ..., N , and

lim
n→∞

∥∥∥σ♦
n(ujk, ·)− ujk

∥∥∥
Lp(TN )

= 0
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for j, k = 1, ..., N .
We conclude from (6.9) and these last two limits that

(6.11) u0 ∈W 2,p (TN ) .

Also since σ♦
n(u0, x) is a trigonometric polynomial, we see from (6.8)(ii)

and (6.9)(ii) that

−∆σ♦
n(u0, x) = σ♦

n(f, x).

On the other hand, it is clear that
∫

TN

σ♦
n(u0, x)∆φdx =

∫

TN

∆σ♦
n(u0, x)φdx ∀φ ∈ C∞ (TN ) .

So

−
∫

TN

σ♦
n(u0, x)∆φdx =

∫

TN

σ♦
n(f, x)φdx ∀φ ∈ C∞ (TN ) .

Passing to the limit as n → ∞ on both sides of this last equation, we
obtain that

−
∫

TN

u0∆φdx =

∫

TN

fφdx ∀φ ∈ C∞ (TN ) .

This gives (6.2) with u0 replacing u. Hence, u0 is a distribution solution of
(6.1). From (6.11), we see also that u0 ∈W 2,p (TN ) .

This establishes the theorem. �

Exercises.

1. With N = 2 and σ♦
n(u0, x) as in the proof of Theorem 6.1, use Green’s

second identity to prove
∫

TN

σ♦
n(u0, x)∆φdx =

∫

TN

∆σ♦
n(u0, x)φdx ∀φ ∈ C∞ (TN ) .

2. With 1 < p < ∞, define W 4,p (T2) in a manner analogous to the
definition of W 2,p (T2). Given f ∈ Lp (T2) with

∫
TN

fdx = 0, we say v is a

distribution solution of the periodic boundary value problem

(6.12) ∆2v = f

provided that v ∈ L1 (T2) and
∫

T2

v∆2φdx =

∫

T2

fφdx ∀φ ∈ C∞(T2).

Find a distrbution solution v to the periodic boundary value problem (6.12)
with v ∈W 4,p (T2).



78 2. CONJUGATE MULTIPLE FOURIER SERIES

7. Further Results and Comments

1. Originally from Poland, Antoni Zygmund was a professor of math-
ematics at the University of Chicago from 1947 to 1980, where Alberto
Calderon was one of his Ph.D. students. Zygmund is known for founding
one of the leading schools in mathematical analysis called “The School of
Antoni Zygmund.” A listing of 179 names belonging to this school as well
as a biography of Zygmund can be found in the book “A Century of Math-
ematics, Part III,” published by the American Mathematical Society [Du].

2. Calderon-Zygmund kernels of spherical harmonic type of the form

Qk (x) / |x|N+k when Qk (x) is a homogeneous linear polynomial are gener-
ally called Riesz kernels and the corresponding principal-valued transforms
are generally called Riesz transforms. Both the periodic analogue of this case
and when Qk (x) is also a spherical harmonic polynomial of degree 2 were
considered in a 1938 paper by J. Marcinkiewicz [Mar]. Evidently, in these
two cases, he proved Theorem 1.2 stated above (see [CZ2, p. 262]).

Josef Marcinkiewicz was one of the four Ph.D. students that Zygmund
had while he was a professor at the University of Wilno (see [Du, p. 345 and
p. 349]).

3. Calderon and Zygmund, while working with local properties of solu-
tions to elliptic partial differential equations, introduced another important
concept involving pointwise L1-total differentials, [CZ3]. To define this no-
tion, let B (0, 1) ⊂ RN be the unit N -ball. Let x0 ∈ B (0, 1). u ∈ t11 (x0)
provided the following holds: u ∈ L1 (B (0, 1)) and there exists a linear
polynomial P (x) such that

lim
ρ→0

ρ−N−1

∫

B(0,ρ)
|u (x0 + x)− P (x)| dx = 0.

If P (x) = α0 +
∑N

j=1 αjxj , we set αj = uxj (x0) for j = 1, ..., N.
Once this definition is given, an obvious question arises in dimension

N = 2, namely the following: Suppose u, v ∈ L1 (B (0, 1)) and u, v ∈ t11 (x)
∀x ∈ B (0, 1) . Suppose, futhermore, the analogue of the Cauchy-Riemann
equations hold, i.e.,

ux1 (x) = vx2 (x) ∀x ∈ B (0, 1) ,

ux2 (x) = −vx1 (x) ∀x ∈ B (0, 1) .

Is it true that there exists U, V ∈ C∞ (B (0, 1)) with f (z) = U (x) + iV (x)
holomorphic in B (0, 1) where z = x1 + ix2 such that

u (x) = U (x) and v (x) = V (x) a.e. in B (0, 1)?

This fundamental question was an open problem for approximately ten
years. It was finally solved with the aid of multiple Fourier series in a man-
uscript that appeared in the Annals of Mathematics [Sh16]. We refer the
reader to this reference for the details of the solution.



CHAPTER 3

Uniqueness of Multiple Trigonometric Series

1. Uniqueness for Abel Summability

In this section, we shall deal with the best possible results involving
uniqueness questions that arise from the Abel summability of multiple
trigonometric series. A corollary to the main result presented in this sec-
tion will be a solution to a problem which was open for approximately one
hundred years: Is the analog of Cantor’s famous uniqueness theorem valid
for double trigonometric series, i.e., is it true that

(1.1) lim
R→∞

∑

|m|≤R

ame
im·x = 0 ∀x ∈ T2 =⇒ am = 0 ∀m?

In other words, the analog of Cantor’s theorem on a one-dimensional
trigonometric series for the circular convergence of double trigonometric se-
ries was the open question. Cantor’s work on one-dimensional trigonometric
series started with a number of publications beginning in 1870 (see [Da, pp.
33-34]) and eventually led to his ground-breaking development in set theory.

The answer in the affirmative to the question stated above in (1.1) follows
from the work of Shapiro [Sh2] in 1957 and Cooke [Co] in 1971. In between
these times, many famous mathematicians including the logician and an-
alyst Paul J. Cohen [Coh] had worked on trying to solve this problem on
double series. The same question replacing circular convergence with square
convergence is still open (see [AW3, p.24]). Also, the analogous problem on
S2 for spherical harmonics is still open.

In this section, we concentrate on the ideas in the reference [Sh2] men-
tioned above and, in particular, establish the following theorem (see [AW3,
p.10]) and its corollary.

Theorem 1.1. Given the trigonometric series
∑

m∈ΛN
ame

im·x where the
am are arbitrary complex numbers and N≥ 1, suppose that

(i)
∑

R−1<|m|≤R |am| = o(R) as R→∞,
(ii) limt→0

∑
m∈ΛN

ame
im·x−|m|t = 0 ∀x ∈ TN .

Then am = 0 ∀m ∈ ΛN .

Corollary 1.2. Given the trigonometric series
∑

m∈ΛN
ame

im·x where the
am are arbitrary complex numbers and N≥ 2, suppose that

(i)
∑

R−1<|m|≤R |am| = o(R) as R→∞,
79
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(ii) limt→0
∑

m∈ΛN
ame

im·x−|m|t = 0 ∀x ∈ TN\{0}.
Then am = 0 ∀m ∈ ΛN .

Before proceeding, we show that the corollary is not true in one-
dimension. Working with N = 1, we see from the equalities in (4.37) and
(4.38) of Chapter 1 that for t > 0,

(1.2) P (s, t) =

∞∑

n=−∞

eins−|n|t = b1t

∞∑

n=−∞

[t2 + (2πn+ s)2]−1 ∀s ∈ T1

where b1 is a positive constant. It is clear that limt→0 P (s, t) = 0 ∀s ∈
T1\{0}, and that limt→0 P (0, t) = ∞. Since the coefficients of the trigono-
metric series in the second term in (1.1) are an = 1 for all n, we have∑

R−1<|n|≤R |an| = 2 = o(R) as R→ ∞. Consequently, Corollary 1.2 is

false in dimension N = 1.
Next, we observe from (1.2) that for t > 0,

∂P (s, t)

∂s
=

∞∑

n=−∞

ineins−|n|t and also,

∂P (s, t)

∂s
= −b1t

∞∑

n=−∞

2(2πn+ s)[t2 + (2πn+ s)2]−2

∀s ∈ T1. Hence,

(1.3) lim
t→0

∞∑

n=−∞

ineins−|n|t = 0 for all s ∈ T1.

To show that little “o” cannot be replaced by big “O” in condition (i)
of Theorem 1.1, we set

(1.4) am = {0 for m2
2+...+m2

N 6=0

im1 for m2
2+...+m2

N=0
.

Then
∑

m∈ΛN

ame
im·x−|m|t =

∞∑

n=−∞

ineins−|n|t,

where x1 = s, and we see from (1.3) that condition (ii) in Theorem 1.1 holds
for all x ∈ TN . On the other hand, from the definition in (1.4), it is clear
that

2(R − 1) <
∑

R−1<|m|≤R

|am| ≤ 2R.

So our assertion that little “o” cannot be replaced by big “O” in condi-
tion (i) of Theorem 1.1 is substantiated, and Theorem 1.1 from this point
of view is a best possible result.

Theorem 1.1 in dimension N = 1 is due to Verblunsky and the proof in
this dimension can be found in [Zy1, p. 352]. The proof of Theorem 1.1 in
dimension N ≥ 2 requires new ideas. These new ideas are to be found in
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[Sh2], and we shall use them here in our proof of Theorem 1.1. About these
new ideas, Professor A. Beurling’s comment was “ Very skillful, indeed!”
Professor A. Zygmund said about Theorem 1.1 in dimensionN ≥ 2, “Results
of this nature come about only once in a generation.”

To prove Theorem 1.1, we need the following lemma:

Lemma 1.3. Let G∈ L1(TN ), and let S[G]=
∑

m∈ΛN
Ĝ(m)eim·x. For t > 0,

set G(x, t)=
∑

m∈ΛN
Ĝ(m)eim·x−|m|t. Suppose limt→0G(x0, t) = G(x0) exists

and is finite. Set γ∗ =lim supt→0 −
∑

m∈ΛN
|m|2 Ĝ(m)eim·x−|m|t and define

γ∗ simlarly using lim inf t→0 . Then
(a)∆∗G(x0) ≤ γ∗ and
(b)γ∗ ≤ ∆∗G(x0).

In the above lemma, ∆∗G(x0) refers to the lower generalized Laplacian
of G at x0 as defined in (2.2) of Appendix C, namely,

(1.5) ∆∗G(x0) = 2(N + 2) lim inf
r→0

G[r](x0)−G(x0)

r2

where G[r](x0) is the volume mean of G at x0 defined in (2.1) of Appendix
C. (For the one-dimensional analogue of the above result, see [Zy1, p. 353].)

Proof of Lemma 1.3. To prove the lemma, it is sufficient to prove (a),
for (b) will then follow by considering −G(x). With no loss in generality, we
can assume that x0 = 0 and G(0) = 0.

If ∆∗G(0) = −∞ or if γ∗ = +∞, (a) is already established. So we can
assume ∆∗G(0) > −∞ and γ∗ < +∞.

Suppose (a) does not hold. Then there exists an η ∈ R such that
∆∗G(0) > η > γ∗. Since we can find a periodic function λ(x) ∈ C∞(TN )
with the property that λ(0) = 0 and ∆λ(0) = η, we can assume η = 0. We
prove the lemma by showing

(1.6) ∆∗G(0) > 0 > γ∗

leads to a contradiction.
With Gt(0, t) = dG(0, t)/dt and Gtt(0, t) = dGt(0, t)/dt, and observing

from (1.6) that γ∗ < 0, we obtain that

lim sup
t→0

−Gtt(0, t) = γ∗ < 0.

Consequently,Gtt(0, t) > 0 for t sufficiently small. Therefore, for t sufficiently
small, Gt(0, t) is a strictly increasing function of t, i.e., there exists a t0 > 0
such that Gt(0, t) is a strictly increasing function of t in the interval 0 < t <
t0. Also, G(0, t)/t = Gt(0, s) where 0 < s < t by the mean-value theorem,
since G(0, t) = 0. Therefore, lim supt→0 d[G(0, t)/t]/dt < 0 is incompatible
with the fact that Gt(0, t) is a strictly increasing function of t in the interval
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0 < t < t0. Hence, lim supt→0 d[G(0, t) /t]/dt < 0 is incompatible with the
fact that γ∗ < 0. We consequently conclude from (1.6) that if we can show

(1.7) ∆∗G(0) > 0 =⇒ lim inf
t→0

−d[G(0, t)/t]/dt > 0,

we will have arrived at a contradiction.
We now establish (1.7). Observing from (2.1) in Appendix C that

|B(0, R)|G[r](0) =
∫
B(0,R)G(y)dy and from (4.5) and Theorem 4.1 of Chap-

ter 1 that

G(0, t) = (2π)−NbN

∫

RN

G(x)t[t2 + |x|2]−(N+1)/2dx,

we see that

G(0, t)

t
= α

∫ ∞

0
[t2 + r2]−(N+1)/2drNG[r](0)

= α′

∫ ∞

0
[t2 + r2]−(N+3)/2rN+1G[r](0)dr

where α and α′ are positive constants. Consequently, since G[r](0) = O(1)
as R→∞,

(1.8) −d[G(0, t)/t]/dt = βt

∫ ∞

0
[t2 + r2]−(N+5)/2rN+1G[r](0)dr,

for t > 0 where β is a positive constant.
By the assumption in (1.7), there exists η0 > 0 and δ > 0 such that

G[r](0) > η0r
2 for 0 < r < δ.

We thus obtain from (1.8) that

lim inf
t→0

−d[G(0, t)/t]/dt ≥ lim inf
t→0

βt

∫ δ

0
[t2 + r2]−(N+5)/2η0r

N+3dr

≥ βη0

∫ ∞

0
[1 + r2]−(N+5)/2rN+3dr

> 0.

This establishes (1.7), and completes the proof of the lemma. �

Proof of Theorem 1.1. From a consideration of the series
∑

m∈ΛN

(am + a−m)eim·x and
∑

m∈ΛN

i(am − a−m)eim·x,

we see from the start that it is sufficient to prove the theorem under the
additional assumption

(1.9) am = a−m ∀m ∈ ΛN .
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Next, for t > 0, we define the following functions.

(1.10)

f(x, t) =
∑

m∈ΛN
ame

im·x−|m|t

f1(x, t) = −∑|m|>0 am |m|−1 eim·x−|m|t

F (x, t) = −∑|m|>0 am |m|−2 eim·x−|m|t

f∗(x) = lim supt→0 f(x, t) and f∗(x) = lim inft→0 f(x, t),

and observe that

(1.11) lim
t→0

f1(x, t) and lim
t→0

F (x, t) exist and are finite

for x ∈ TN .
To see this, fix x ∈ TN . Then by hypothesis (ii) of the theorem, there

exists a constant K depending on x such that |f(x, t)| ≤ K for t > 0. Hence
by the mean-value theorem for 0 < t1 < t2, there exists an s such that

|f1(x, t2) - f1(x, t1) | = |f(x, s) - a0 | (t2 − t1)
where 0 < t1 < s < t2. Therefore, f1(x, t) satisfies the Cauchy criterion
for convergence and the first part of (1.11) is established. Repeating this
argument for F (x, t) establishes the second part.

Using (1.11), we define the periodic function F (x) by

(1.12) F (x) = lim
t→0

F (x, t) ∀x ∈ RN .

As is easily seen, condition (i) in the hypothesis of the theorem implies

that
∑

|m|>0 |am|2 |m|−4 < ∞. Consequently, we obtain from (1.10) and

(1.12) that F (x) ∈ L2(TN ) and

(1.13) S[F ] = −
∑

|m|>0

am |m|−2 eim·x.

Also, we observe from (1.5) and (1.6) in Appendix A that

(1.14) |B(x, r)|−1
∫

B(x,r)
eim·ydy = µNe

im·xJN/2(|m| r)(|m| r)−N/2

where µN is a constant depending on N but not on m. So with F[r](x)
designating the volume mean of F in a ball of radius r centered at x, we
obtain from (1.13) that

(1.15) F[r](x) = −µN

∑

|m|>0

am |m|−2 eim·xJN/2(|m| r)(|m| r)−N/2.

Using the Bessel estimate in (2.2) of Appendix A and condition (i) in the
hypothesis of the theorem, it is clear that the multiple series in (1.15) is
absolutely convergent.
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Next, we obtain from Lemma 1.3 and condition (ii) in the hypothesis of
the theorem that

(1.16) ∆∗F (x) ≥ −a0 and ∆∗F (x) ≤ −a0 ∀x ∈ TN .

If F (x) is continuous in all of RN , then it would follow from the inequal-

ities in (1.16) and Theorem 2.2 in Appendix C that F (x) + a0 |x|2 /2N is
harmonic in RN. As we shall see, from this latter fact it is easy to obtain
the conclusion of the theorem. So we see what we have to do is establish the
continuity of F in RN.

In order to establish this continuity, we set

(1.17) α1(t) = sup
0<r<t

sup
x∈TN

∣∣F[r](x)− F (x, r)
∣∣,

and we will show that

(1.18) lim
t→0

α1(t) = 0.

It follows from the series representations of F (x, r) in (1.10) and of
F[r](x) in (1.15) that

supx∈TN

∣∣F[r](x)− F (x, r)
∣∣

(1.19) ≤
∑

|m|>0

|am| |m|−2
∣∣∣e−|m|r − µNJN/2(|m| r)(|m| r)−N/2

∣∣∣ .

We split the sum on the right-hand side of the inequality in (1.19) into
two parts, Ar and Br. Ar will designate the sum over the lattice points
m, 1 ≤ |m| ≤ r−1, and Br will designate the sum over the lattice points
m, |m| ≥ r−1. To establish (1.18), it is sufficient to show that limr→0Ar = 0
and limr→0Br = 0.

Observing from the equality in (1.14) that

lim
r→0

µNJN/2(r)(r)
−N/2 = 1,

we see from (1.1) in Appendix A that there is a constant K such that∣∣∣e−r − µNJN/2(r)(r)
−N/2

∣∣∣ ≤ Kr for 0 < r ≤ 1.

Hence, we obtain from condition (i) in the hypothesis of the theorem and
from (1.19) that

Ar ≤ Kr
∑

1≤|m|≤r−1

|am| |m|−1 = ro(r−1) as r → 0.

Therefore, limr→0Ar = 0.
Using the fact that there exists a constant K such that

∣∣JN/2(r)
∣∣ ≤

Kr−1/2, we obtain from (1.19) and from condition (i) in the hypothesis of
the theorem that for r small

Br ≤ o(1)
∫ ∞

r−1−1
e−rss−1ds+ o(1)r−(N+1)/2

∫ ∞

r−1−1
s−(N+3)/2ds

as r → 0.
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We conclude that limr→0Br = 0, and consequently that the limit in
(1.18) is established.

The next fact that we establish concerning F (x) is the following: set

(1.20) α2(t) = sup
0<r<t

sup
|x−y|≤r,x,y∈RN

∣∣F[r](x)− F[r](y)
∣∣,

then

(1.21) lim
t→0

α2(t) = 0.

From (1.15),

µ−1
N sup|x−y|≤r,x,y∈RN

∣∣F[r](x)− F[r](y)
∣∣

≤ sup|x−y|≤r,x,y∈RN

∑
1≤|m|≤r−1{|am|

∣∣JN/2(|m| r)
∣∣ (|m| r)−N/2 |m|−2

∣∣eim·x − eim·y
∣∣}

+2
∑

r−1≤|m| |am|
∣∣JN/2(|m| r)

∣∣ (|m| r)−N/2 |m|−2

= A
′

r +B
′

r.

To establish the limit in (1.21), we have to show that A
′

r and B
′

r tend

to zero as r goes to zero. The limr→0B
′

r = 0 was already shown when we

established (1.18). For A
′

r, we observe from (2.1) in Appendix A that

2−1A
′

r ≤
∑

1≤|m|≤r−1

|am|
∣∣JN/2(|m| r)

∣∣ (|m| r)−N/2 |m|−2 |m| r

≤ O(1)r
∑

1≤|m|≤r−1

|am| |m|−1

≤ O(1)ro(r−1)

as r → 0. Consequently, limr→0A
′

r = 0, and the limit in (1.21) is established.

Next, using the fact that f(x, t) is continuous for t > 0 and periodic in
the x-variables, we see that there exists a sequence

t1 > t2 > · · · > tn · ·· → 0

such that

(1.22) sup
x∈RN

sup
tn≤t≤tn+1

|f(x, t)− f(x, tn)| ≤ 1.

Let B(x0, r0), r0 > 0 be an arbitrary but fixed open ball in RN. We
propose to show that F (x) is continuous in B(x0, r0). So, let

(1.23) E = {x ∈ B(x0, r0) : F is not continuous at x}.
We will now show that E is the empty set.
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By condition (ii) in the theorem,

lim
n→∞

|f(x, tn)| = 0 ∀x ∈ B(x0, r0).

If B(y, s) ⊂ B(x0, r0), s > 0, then by the Baire category theorem [Zy1,
p. 29 (12.3)], there exists B(y′, s′) ⊂ B(y, s), s′ > 0, and a K > 0, such that

|f(x, tn)| ≤ K ∀x ∈ B(y′, s′) and ∀n.
From (1.22), it therefore follows that

|f(x, t)| ≤ K + 1 ∀x ∈ B(y′, s′) and for 0 < t < t1.

As a consequence, employing the same technique used to establish the limits
in (1.11), we see that

lim
t→0

F (x, t) = F (x) uniformly for x ∈ B(y′, s′).

We conclude that E defined in (1.23) is a nondense (nowhere dense) set in
B(x0, r0).

Next, we note that E has no isolated points. If z0 were an isolated point
of E, then as we have observed earlier, there would exist s0 > 0 such that
F (x)+a0 |x|2 /2N would be harmonic in the punctured N -ball B(z0, 2s0)\{
z0}. Therefore, by the mean-value theorem for harmonic functions, for x ∈
B(z0, r)\{ z0}, where 0 < r < s0,

F (z0) + a0 |z0|2 /2N − F (x)− a0 |x|2 /2N
= F (z0) + a0 |z0|2 /2N − F[|z0−x|](x)

−a0

∫

B(x,|z0−x|)
|y|2 dy/ |B(x, |z0 − x|)| 2N.

As a consequence, from (1.17) and (1.20),∣∣∣F (z0) + a0 |z0|2 /2N − F (x)− a0 |x|2 /2N
∣∣∣

≤
∣∣F (z0)− F[|z0−x|](x)

∣∣

+ |a0|
∣∣∣∣∣

∫

B(x,|z0−x|)
(|z0|2 − |y|2)dy

∣∣∣∣∣ / |B(x, |z0 − x|)| 2N

≤
∣∣F (z0)− F[|z0−x|](x)

∣∣+ o(1)

≤ |F (z0)− F (z0, |z0 − x|)|+
∣∣F (z0, |z0 − x|)− F[|z0−x|](z0)

∣∣
+
∣∣F[|z0−x|](z0)− F[|z0−x|](x)

∣∣+ o(1)

≤ o(1) + α1(r) + α2(r).

Using (1.18) and (1.21), we conclude that

lim
x→z0

[F (x) + a0 |x|2 /2N ] = F (z0) + a0 |z0|2 /2.

Hence, E contains no isolated points.
Next, let E designate the closure of E. Since |f(x, t)| → 0 for x ∈ E and

since E is a perfect set, we can obtain once again from the Baire category
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theorem and (1.22) that if E is a nonempty set, there is a z0 ∈ E and an
s0 > 0 with B(z0, 2s0) ⊂ B(x0, r0) and a constant K such that

(1.24) |f(z, t)| ≤ K + 1 for z ∈ E ∩B(z0, 2s0).

Using the same techniques that were used to establish the limits in (1.11),
we see from (1.24) that

(1.25) lim
t→0

F (z, t) = F (z) uniformly for z ∈ E ∩B(z0, 2s0).

Consequently, F (z) is a continuous function when z is restricted to the closed
set E ∩B(z0, 2s0). Therefore, given an ε > 0, choose s1 so that 0 < s1 < s0
and such that

(1.26) |F (z)− F (z0)| ≤ ε for z ∈ E ∩B(z0, s1).

Next, using (1.17), (1.20), and (1.25), choose s2 so that the following
five items hold:
(1.27)

(i) α1(s) < ε for 0 < s < s2;

(ii) α2(s) < ε for 0 < s < s2;

(iii) |a0| (2 |z0|+ 3s2)s2 < ε;

(iv) |F (z, s) − F (z)| < ε for 0 < s < s2 and z ∈ E ∩B(z0, 2s0);

(v) 2s2 < s1.

We propose to show that

(1.28) |F (x)− F (z0)| < 5ε for x ∈ B(z0, s2).

If x ∈ B(z0, s2) and x ∈ E, then (1.28) holds by virtue of (1.26) and
(1.27)(v). We can therefore suppose that x ∈ B(z0, s2) and x /∈ E. Let z′

be the closest point in E (or one of the closest if more than one exists) to

x. Then |z′ − x| =s3 < s2 and F (y) + a0 |y|2 /2N is a harmonic function in
B(x, s3). Therefore,

F (x) = F[s3](x) + a0

∫

B(x,s3)
|y|2 dy/ |B(x, s3)| 2N − a0 |x|2 /2N.

Consequently,

|F (x)− F (z0)| ≤
∣∣F (x)− F (z′)

∣∣+
∣∣F (z′)− F (z0)

∣∣
≤

∣∣F[s3](x)− F (z′)
∣∣+
∣∣F (z′)− F (z0)

∣∣

+ |a0|
∣∣∣∣∣

∫

B(x,s3)
(|y|2 − |x|2)dy

∣∣∣∣∣ / |B(x, s3)| 2N.
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Hence, from (1.26) and (1.27)(iii), we obtain

(1.29) |F (x)− F (z0)| ≤
∣∣F[s3](x)− F (z′)

∣∣+ 2ε.

We can estimate the first term on the right-hand side of this last in-
equality using (1.17), (1.20), and (1.27)(i), (ii), and (iv) as follows:

∣∣F[s3](x)− F (z′)
∣∣ ≤

∣∣F[s3](x)− F[s3](z
′)
∣∣+
∣∣F[s3](z

′)− F (z′, s3)
∣∣

+
∣∣F (z′, s3)− F (z′)

∣∣
≤ α2(s3) + α1(s3) + ε

≤ 3ε.

This last part coupled with the inequality in (1.29) establishes the inequality
in (1.28).

We conclude that F is indeed continuous at z0. Therefore, E must be
the empty set and F is a continuous function in the open ball B(x0, r0). But
B(x0, r0) was an arbitrary ball contained in RN . Hence, F is a continuous
function in all of RN . As we observed earlier, this fact implies that

(1.30) F (x) + a0

∣∣x2
∣∣ /2N is a harmonic function in RN .

From (1.10) and (1.12), we see that F (x) is a periodic function of period
2π in each variable. Since F (x) is also a continuous function, we have that
it is bounded in all of RN . Hence, we have from (1.30) that the harmonic
function F (x) + a0

∣∣x2
∣∣ /2N = O(

∣∣x2
∣∣) as |x| → ∞. We conclude from well-

known properties of harmonic functions (Theorem 1.10 in Appendix C) that
the harmonic function that we are dealing with is a polynomial of at most
degree 2, i.e.,

F (x) + a0

∣∣x2
∣∣ /2N = b0 +

N∑

j=1

bjxj +

N∑

j=1

N∑

k=1

bjkxjxk,

where b0, bj , bjk are constants for j, k = 1, ..., N.
But the only way possible that the polynomial

b0 +

N∑

j=1

bjxj +

N∑

j=1

N∑

k=1

bjkxjxk − a0

∣∣x2
∣∣ /2N

can be bounded in all of RN is when it is identically constant. Therefore,

F (x) = b0 ∀x ∈ RN .

From (1.13), we see first that b0 = 0 and next that F (x) = 0 ∀x ∈ RN .
This implies that

am = 0 for |m| > 0.

From condition (ii) in the hypothesis of the theorem, we finally obtain
that a0 = 0, and the proof of the theorem is complete. �
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Next, we define several functions that will be useful in proving Corollary
1.2. Set
(1.31)

Φ(x) = (2π)N [|SN−1| (N − 2)]−1 |x|−(N−2) ∀x ∈ TN\{0} and N ≥ 3

= (2π) log |x|−1 ∀x ∈ T2\{0} and N = 2,

and extend Φ to RN\ ∪m∈ΛN
{2πm} by periodicity of period 2π in each

variable. In the above equation, |SN−1| designates the volume of the unit

(N − 1)-sphere, i.e., |SN−1| = 2πN/2/Γ(N/2).
Also, for t > 0, set

(1.32) H0(x, t) =
∑

|m|>0

|m|−2 eim·x−|m|t,

and for j = 1, ..., N, set

(1.33) Hj(x, t) =
∑

|m|>0

imj |m|−2 eim·x−|m|t.

We establish a lemma concerning the functions just introduced.

Lemma 1.4. The following facts hold for the functions defined in (1.31),
(1.32), and (1.33) where N≥ 2:

(i) limt→0Hj(x, t) = Hj(x) exists and is finite ∀x ∈ RN\∪m∈ΛN
{2πm}

and j = 0, 1, ..., N ;
(ii) lim|x|→0[H0(x)− Φ(x)] exists and is finite;

(iii) lim|x|→0[Hj(x)] + (2π)Nxj/ |SN−1| |x|N ] exists and is finite for
j = 1, ..., N ;

(iv) Hj(x) ∈ L1(TN ) for j = 0, 1, ..., N ;

(v) H0(x)− |x|2 /2N is harmonic in RN\ ∪m∈ΛN
{2πm};

(vi) Hj(x) is harmonic in RN\ ∪m∈ΛN
{2πm} for j = 1, ..., N ;

(vii) limt→0

∫
TN
|Hj(x, t)−Hj(x)| dx = 0 for j = 0, 1, ..., N.

Proof of Lemma 1.4. We first show that there exists a continuous periodic
function ψ(x) such that

(1.34)
Φ̂(m)− ψ̂(m) = |m|−2 for m 6= 0

Φ̂(0)− ψ̂(0) = 0.

Also,

(1.35)
∑

m∈ΛN

∣∣∣ψ̂(m)
∣∣∣ <∞.

Observing from Green’s second identity [Ke, p. 215] that for N ≥ 3 and
m 6= 0,
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∫
TN−B(0,ε) |x|

−(N−2) e−im·xdx

=

∫

∂[TN\B(0,ε)]
e−im·x |m|−2 ∂ |x|−(N−2) /∂n dS + o(1)

with a similar calculation holding in dimension 2 for log |x|−1, we obtain
from (1.31) that for m 6= 0,

Φ̂(m) = |m|−2

(1.36)

+bN |m|−2
N∑

j=1

∫

TN−1

e−i(m·x−mjxj)
cosmjπ

(|x|2 − x2
j + π2)N/2

dx1 · · · dx∗j · · · dxN ,

where bN is a constant depending on N but not on m, and dx∗j stands for
the deletion of dxj .

For m = 0, define γ0 = Φ̂(0). For m 6= 0, define γm to be the value of
the second expression on the right-hand side of the equality in (1.36). As a
consequence,

Φ̂(m)− γm = |m|−2 for m 6= 0

Φ̂(0) − γ0 = 0.

To show that
∑

m∈ΛN
|γm| < ∞ prevails, we observe that for m1 6= 0

and j 6= 1,∫ π
−π e

im1x1(|x|2 − x2
j + π2)−N/2dx1

= Nm−1
1

∫ π

−π

x1 sinm1x1

(|x|2 − x2
j + π2)(N+2)/2

dx1

and obtain consequently that there is a constant b′N such that for m 6= 0,
(|m|+ 1)2 |γm|

≤ b′N
N∑

j=1

(|m1|+ 1)−1 · · · (|mj|+ 1)−1∗ · · · (|mN |+ 1)−1.

Also, we observe that
[|m1|+ 1) · · · (|mN |+ 1)](N+1)/N

≤ (|m|+ 1)2(|m1|+ 1) · · · (|mj|+ 1)∗ · · · (|mN |+ 1).

These last two inequalities together imply that

∑

m∈ΛN

|γm| ≤ Nb′N
∑

m∈ΛN

[|m1|+ 1) · · · (|mN |+ 1)]−(N+1)/N <∞.

So we set

ψ(x) =
∑

m∈ΛN

γme
im·x
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and obtain from this last inequality that ψ(x) is a continuous periodic func-
tion. As a consequence

(1.37) ψ̂(m) = γm ∀m ∈ ΛN ,

and we infer from the above that the conditions set forth in (1.34) and (1.35)
prevail.

Continuing with the proof of the lemma, we next define

(1.38) H0(x) = Φ(x)− ψ(x) for x ∈ RN\ ∪m∈ΛN
{2πm}

and observe first that H0(x) ∈ L1(TN ) and next from (1.37), (1.36), and the
paragraph below it that

Ĥ0(m) = Φ̂(m)− ψ̂(m) = |m|−2 ∀m 6= 0

= 0 for m = 0.

With H0(x, t) defined as in (1.32), we consequently obtain from Theorem
4.1 in Chapter 1 and the fact that Φ(x) − ψ(x) is continuous and periodic
in RN\ ∪m∈ΛN

{2πm} that

lim
t→0

H0(x, t) = H0(x) exists and is finite for x ∈ RN\ ∪m∈ΛN
{2πm}.

Also, from Theorem 4.3 in Chapter 1,

lim
t→0

∫

TN

|H0(x, t)−H0(x) | dx = 0.

Furthermore, from (1.38), H0(x) − Φ(x) = ψ(x) for x ∈ B(0, 1)\{0}.
But, ψ is a continuous function in all of B(0, 1). Therefore,

lim
|x|→0

[H0(x)− Φ(x)] exists and is finite,

and condition (ii) in Lemma 1.4 is established.

Next, using the Poisson kernel, P (x, t) =
∑

m∈ΛN
eim·x−|m|t for t > 0,

defined in (4.37) of Chapter 1, we see from (4.38) in Chapter 1 that

lim
t→0

∑

m∈ΛN

eim·x−|m|t = 0 for x ∈ RN\ ∪m∈Λ {2πm}.

Consequently, it follows from Lemma 1.3 above that

∆∗[H0(x)− |x|2 /2N ] ≤ 0 ≤ ∆∗[H0(x)− |x|2 /2N ]

for x ∈ RN\ ∪m∈ΛN
{2πm}.

Since H0(x)−|x|2 /2N is continuous in RN\∪m∈ΛN
{2πm}, we conclude

from this last set of inequalities and Theorem 2.2 in Appendix C that

(1.39) H0(x)− |x|2 /2N is harmonic in RN\ ∪m∈ΛN
{2πm}.

If we check back and see what we have already established in this proof,
we see that we actually have established all that is stated in Lemma 1.4
pertaining to H0(x). So, to complete the proof of the lemma, it remains to
show that the statement in Lemma 1.4 for Hj(x), j = 1, ..., N is also valid.
To accomplish this, we proceed as follows.
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Since Φ(x) is harmonic in B(0, 1)\{0}, we obtain from (1.38) and (1.39)
that

(1.40) ψ(x) + |x|2 /2N is harmonic in B(0, 1)\{0}.
But ψ(x) is continuous in all of RN . Hence, from Lemma 1.5 in Appendix C,

we have that ψ(x)+ |x|2 /2N is harmonic in all of B(0, 1), and consequently
that

(1.41) ψ(x) ∈ C∞(B(0, 1)).

But then it follows from (1.31), (1.38), and (1.41) that

lim
|x|→0

[
∂H0(x)

∂xj
+ (2π)Nxj/ |SN−1| |x|N ] exists and is finite for j = 1, ..., N.

Consequently, ∂H0(x)
∂xj

∈ L1(TN ). We define

Hj(x) = ∂H0(x)/∂xj ∀x ∈ RN\ ∪m∈ΛN
{2πm},

and we see from the above that (iii), (iv), and (vi) in the lemma are now
established.

It remains to show that conditions (i) and (vii) are valid.
From Theorem 4.1 in Chapter 1, condition (i) in the lemma concerning

Hj(x) for j = 1, ..., N will be established once we show

(1.42) lim
t→0

Hj(x, t) = ∂H0(x)/∂xj ∀x ∈ RN\ ∪m∈ΛN
{2πm}

for j = 1, ..., N.
It is clear from (1.33) that the equality in (1.42) will follow once we

demonstrate that

(1.43)

∂̂H0
∂xj

(m) = imj/ |m|2 for |m| > 0

∂̂H0
∂xj

(0) = 0

for j = 1, ..., N. Also, from Theorem 4.3 in Chapter 1, condition (vii) in the
lemma will follow once we establish (1.43).

So the proof of the lemma will be complete once we demonstrate that
(1.43) is true.

(1.43) will be valid if the following two items obtain

(1.44)

(i)
∫
TN
∂H0(x)/∂xjdx = 0;

(ii)
∫
TN
e−im·x∂H0(x)/∂xj = (2π)N imj/ |m|2 for |m| > 0.

To demonstrate that (i) of (1.44) is indeed true, we define v(x) to be
the vector field in TN\{0} whose j-th component is H0(x) and whose other
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(N − 1) components are zero. Then by the divergence theorem, (i) of (1.44)
is true provided

(1.45) lim
ε→0

∫

∂[TN−B(0,ε)]
v(x) · n(x)dS(x) = 0

where n(x) is the outward pointing unit normal. But H0(x) is a periodic
function. Consequently,

∫
∂TN

v(x) · n(x)dS(x) = 0. On the other hand,
∣∣∣∣∣

∫

∂B(0,ε)
v(x) · n(x)dS(x)

∣∣∣∣∣ ≤ cε
N−1 max

|x|=ε
|H0(x)|

where c is a positive constant. From (1.31) and condition (ii) of the lemma,
we see that the right-hand side of this last inequality goes to zero as ε→ 0.
So the limit in (1.45) is established.

To complete the proof of the lemma, we have to show that (ii) of (1.44)
is true. To do this, we now let w(x) be the vector field defined in TN\{0}
whose j-th component is e−im·xH0(x) and whose other (N − 1) components
are zero. The same reasoning as the above shows that

lim
ε→0

∫

∂[TN\B(0,ε)]
w(x) · n(x)dS(x) = 0.

On the other hand, the divergence theorem gives∫
∂[TN\B(0,ε)] w(x) · n(x)dS(x)

=

∫

TN\B(0,ε)
∂[e−im·xH0(x)]/∂xjdx.

We conclude that∫

TN

e−im·x∂H0(x)/∂xjdx =

∫

TN

imjH0(x)e
−im·xdx

= (2π)N imj |m|−2 for |m| > 0

(ii) of (1.44) is established, and the proof of the lemma is complete. �

Proof of Corollary 1.2. To prove this corollary, we proceed exactly as
in the proof of Theorem 1.1 and observe, as before, that without loss in
generality, we can assume that

am = a−m ∀m ∈ ΛN .

Also, as before, we obtain that the function

(1.46) F (x) = lim
t→0

F (x, t) ∀x ∈ RN\ ∪m∈ΛN
{2πm},

where F (x, t) is given in (1.10), is well-defined.
From the proof given in Theorem 1.1, we furthermore obtain that

(1.47) F (x) + a0 |x|2 /2N is harmonic in RN\ ∪m∈ΛN
{2πm}.
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In addition, from the comments above (1.13), we see that F (x) is also
in L2(TN ). Hence, it follows from Theorems 1.3 and 1.4 in Appendix C that

F (x) + a0 |x|2 /2N = b0 log r +
N∑

j=1

bjxjr
−N + u0(x) for N = 2,

= b0r
−(N−2) +

N∑

j=1

bjxjr
−N + u0(x) for N ≥ 3,

∀x ∈ B(0, 1)−0, where u0(x) is harmonic in B(0, 1) and the bj are constants.
We next invoke Lemma 1.4 above and see from the set of equalities just

established that there are constants b∗0, b
∗
1, ..., b

∗
N , such that

lim
|x|→0

[F (x) + a0 |x|2 /2N −
N∑

j=0

b∗jHj(x)] = β,

where β is a finite number.
Using this last limit in conjunction with (v) and (vi) of Lemma 1.4, we

obtain from the periodicity of F (x), which is clear from (1.46), that the
function

(1.48) V (x) = F (x)−
N∑

j=0

b∗jHj(x)

for x ∈ RN\ ∪m∈ΛN
{2πm}, and

V (2πm) = β for m ∈ ΛN

is both periodic and continuous in RN . In addition, from (1.47), (1.48), and
(v) and (vi) of Lemma 1.4, we have that

(1.49) V (x) + (a0 + b∗0) |x|2 /2N is harmonic in RN .

Since V (x) is a periodic and continuous function, and hence bounded,
(1.49) and Theorem 1.8 in Appendix C tell us that V (x) is a polynomial of
degree at most two. But the only way a continuous periodic function can
be a polynomial of degree at most two is when it is identically a constant.
Consequently, from (1.48),

(1.50) F (x)−
N∑

j=0

b∗jHj(x) = β

for x ∈ RN\ ∪m∈ΛN
{2πm}.

We see from (1.13) that F̂ (m) = −am/ |m|2 for m 6= 0. Therefore,
Lemma 1.4 and (1.50), in turn, imply that

am + b∗0 = −
N∑

j=1

imjb
∗
j for m 6= 0.
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By condition (i) in the corollary, the left-hand side of this last equality
is o(|m|) as |m| → ∞. Consequently, we obtain that

b∗j = 0 for j = 1, ..., N,

and therefore that

am = −b∗0 for m 6= 0.

But, by condition (i) of the corollary,

∑

R−1<|m|≤R

|am| = o(R) as R→∞.

However, the number of lattice points in the annulus R − 1 < |m| ≤ R is
O(RN−1) and not o(RN−1) as R→∞. Hence, b∗0 = 0, and therefore,

am = 0 for m 6= 0.

This, along with condition (ii) of the corollary, then implies that

a0 = 0.

These last two equalities complete the proof of the corollary. �

Exercises.

1. Given f (t) =
∑∞

n=1 ane
−nt for t > 0 where

∑∞
n=1 |an| < ∞ and∑∞

n=1 an = 0, prove

lim sup
t→0

−d
2f

dt2
(t) < 0⇒ lim sup

t→0
d(
f (t)

t
)/dt ≥ 0.

2. Prove that condition (i) in the hypothesis of Theorem 1.1 implies that

∑

|m|>0

|am|2 |m|−4 <∞.

3. Using (1.5) and (1.6) in Appendix A, prove that for r > 0,

|B(x, r)|−1
∫

B(x,r)
eim·ydy = µNe

im·xJN/2(|m| r)(|m| r)−N/2

where µN is a constant depending on N but not on m.
4. Prove that, in dimension N = 3, the number of integral lattice points

contained in the spherical annulus B (0, R + 1) \B (0, R) is O
(
R2
)

and not

o
(
R2
)

as R→∞.
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2. Uniqueness for Circular Convergence

In this section, we focus on the problem that was open for approximately
one hundred years before it was solved, namely, the analogue of Cantor’s
Theorem for double trigonometric series discussed at the beginning of §1.
After we present this result, we will exhibit an analogous problem involving
Cantor’s theorem on the two-sphere S2, which is still open.

The theorem we present here, which settled this one-hundred year old
problem, is the following:

Theorem 2.1. Given the trigonometric series
∑

m∈Λ2
bme

im·x where the
bm are arbitrary complex numbers and dimension N = 2, set

SR(x) =
∑

|m|≤R

bme
im·x,

and suppose that

(2.1) lim
R→∞

SR(x) = 0 for x ∈ T2\{0}.

Then bm = 0 ∀m ∈ Λ2.

Theorem 2.1 is proved using the clever 1971 result of Roger Cooke [Co],
combined with Corollary 1.2 above, which was established in 1957 by Shapiro
[Sh2]. We present Cooke’s result in Theorem 2.2 below.

The analogue of Theorem 2.1 in dimensionN ≥ 3 was established in 1996
by Bourgain [Bou]. For a good presentation of Bourgain’s result, we refer
the reader to the expository article of Ash and Wang [AW1]. For another
expository comment about Theorem 2.1, see [Ash, p. 94].

Theorem 2.2. Given the trigonometric series
∑

m∈Λ2
bme

im·x where

bm=b−m and dimension N = 2, set Bn(x) =
∑

|m|2=n bme
im·x, and sup-

pose

(2.2) lim
n→∞

Bn(x) = 0 for a.e. x ∈ T2.

Then

(2.3) lim
n→∞

∑

|m|2=n

|bm|2 = 0.

To prove Theorem 2.2, we will need the following lemma.

Lemma 2.3. With Bn(x) defined as in Theorem 2.2, where bm = b−m,

(2.4) {
∫

T2

|Bn(x)|4 dx}1/4 ≤ {
∫

T2

|Bn(x)|2 dx}1/2.



2. UNIQUENESS FOR CIRCULAR CONVERGENCE 97

Proof of Lemma 2.3. To prove the lemma, we first observe that

(2.5) |Bn(x)|2 =
∑

|m|2=n

∑

|p|2=n

bmbpe
i(m−p)·x

and

(2.6)

∫

T2

|Bn(x)|2 dx = 4π2
∑

|m|2=n

|bm|2 .

Let Λ♦
n designate the following set of lattice points:

Λ♦
n = {q : m− p = q, |m|2 = n, |p|2 = n},

and for each q ∈ Λ♦
n , let βq designate the following number:

βq =
∑

|p|2=n,|m|2=n,m−p=q

bmbp.

Then we see from (2.5) that

|Bn(x)|2 =
∑

q∈Λ♦
n

eiq·x
∑

|p|2=n,|m|2=n,m−p=q

bmbp

=
∑

q∈Λ♦
n

βqe
iq·x.

Now, θ = (0, 0) is in Λ♦
n . Hence, we observe from this last set of equalities

that

(2.7) (4π)−2

∫

T2

|Bn(x)|4 dx = |βθ|2 +
∑

q∈Λ♦
n\{θ}

∣∣βq

∣∣2 .

Next, we claim that given q ∈ Λ♦
n\{θ}, there are at most two pair of

lattice points (m∗, p∗) and (m∗∗, p∗∗) such that m∗ − p∗ = m∗∗ − p∗∗ = q

and |m∗|2 = |p∗|2 = |m∗∗|2 = |p∗∗|2 = n.
To see that this claim is indeed valid, let C(θ, r) be the circle centered

at θ of radius r and observe

if m∗ − p∗ = q with |m∗|2 = |p∗|2 = n,

then the line segment
−−−→
p∗m∗ is a chord of the circle C(θ,

√
n) that is both

(i) parallel to
−→
θq and

(ii) of length |q| .
There is at most one other chord of the circle C(θ,

√
n) with these two

properties. Hence, the validity of the above claim is as asserted.
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It follows from this claim that
∣∣βq

∣∣2 ≤ 2
∑

|p|2=n,|m|2=n,m−p=q

|bm|2 |bp|2 for q ∈ Λ♦
n\{θ}.

Consequently, we obtain from (2.7) that

(4π)−2

∫

T2

|Bn(x)|4 dx ≤ |βθ|2 + 2
∑

q∈Λ♦
n\{θ}

∑

|p|2=n,|m|2=n,m−p=q

|bm|2 |bp|2

≤ |βθ|2 + 2
∑

|m|2=n

∑

|p|2=n

|bm|2 |bp|2

≤ 3(
∑

|m|2=n

|bm|2)2.

But then from (2.6), we see that

(4π)−2

∫

T2

|Bn(x)|4 dx ≤ 3[(4π)−2

∫

T2

|Bn(x)|2 dx]2.

The conclusion to the lemma follows from this last inequality. �

Proof of Theorem 2.2. Suppose the conclusion to the theorem is false.
Then there exists δ > 0 and a sequence {nj}∞j=1 such that

∑

|m|2=nj

|bm|2 ≥ δ for j = 1, 2, ....

Set

Aj(x) =
Bnj (x)

(
∑

|m|2=nj
|bm|2)

1
2

.

Then

(2.8) lim
j→∞

Aj(x) = 0 for a.e. x ∈ T2

and

(2.9)

∫

T2

|Aj(x)|2 dx = 4π2 for j = 1, 2, ....

However, from (2.8) combined with Egoroff’s Theorem, we see that

∃E ⊂ T2 s.t. |E| ≤ 10−4 and lim
j→∞

Aj(x) = 0 uniformly ∀x ∈ T2\E.

Consequently, we obtain from the equality in (2.9) that

(2.10) 4π2 ≤ lim sup
j→∞

∫

E
|Aj(x)|2 dx where |E| ≤ 10−4.
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But, by Holder’s inequality and Lemma 2.3,
∫

E
|Aj(x)|2 dx ≤ 10−2(

∫

E
|Aj(x)|4 dx)

1
2

≤ 10−2

∫

T2

|Aj(x)|2 dx.

Therefore, from (2.9) and (2.10), we see that

4π2 ≤ 10−24π2.

This contradiction shows the conclusion of the theorem is valid. �

Proof of Theorem 2.1. From a consideration of the series
∑

m∈Λ2

(bm + b−m)eim·x and
∑

m∈Λ2

i(bm − b−m)eim·x,

we see from the start that it is sufficient to prove the theorem under the
additional assumption

bm = b−m ∀m ∈ Λ2.

Also, we see that

SR(x) =

[R2]∑

n=0

Bn(x),

where Bn(x) =
∑

|m|2=n bme
im·x and [R2] is the largest integer ≤ R2. Con-

sequently, from (2.1) in the hypothesis of the theorem, we see, in particular,
that

lim
n→∞

Bn(x) = 0 for a.e. x ∈ T2.

Hence, we obtain from (2.3) in Theorem 2.2 that

lim
|m|→∞

|bm| = 0.

Now, the number of lattice points in the annulus determined by R − 1
and R is O(R). Therefore, we see from this last limit that

(2.11)
∑

R−1≤|m|<R

|bm| = o(1)O(R) = o(R).

Also, we see from condition (2.1) in the hypothesis of the theorem and from
Theorem 1.2 in Appendix B that

lim
t→0

∑

m∈Λ2

bme
im·xe−|m|t = 0 for x ∈ T2\{0}.

This last fact coupled with the observation in (2.11) shows that the
conditions in the hypothesis of Corollary 1.2 are met. Hence,

bm = 0 for m ∈ Λ2,
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and Theorem 2.1 is established. �

On S2, the theorem analogous to the one just established for T2, namely
Theorem 2.1, has been open for the last 135 years. There is a possibility
that it may be false, for the analogue of Theorem 2.2 is false, as we will
demonstrate.

Here is what is known so far about the uniqueness of surface spherical
harmonic expansions on S2, frequently called Laplace series. We use the
notation introduced in §3 of Appendix A and let Yn(ξ) be a surface spherical
harmonic of degree n where ξ ∈ S2. We also set

‖Yn‖L2 = {
∫

S2

|Yn(ξ)|2 dS(ξ)} 1
2 .

The following result was established in [Sh9, p. 12] using ideas similar
to those in the proofs of Theorem 1.1 and Corollary 1.2 but adapted for S2.

Theorem 2.4. Given {Yn(ξ)}∞n=0, a sequence of surface spherical har-
monics of degree n on S2, suppose that

(i) ‖Yn‖L2 = o(n
1
2 ) as n→∞ and

(ii) limr→1
∑∞

n=0 r
nYn(ξ) = 0 for ξ ∈ S2\{η∗},

where η∗ = (1, 0, 0). Then

Yn(ξ) = 0 ∀ξ ∈ S2 and ∀n.

We observe from formula (3.29) in Appendix A that

1− r2
(1− 2rη∗ · ξ + r2)3/2

=

∞∑

n=0

(2n+1)Pn(η∗ ·ξ)rn ∀ξ ∈ S2 and 0 ≤ r < 1,

where Pn(t) is the Legendre polynomial of order n. From this last equality,
we obtain that

(2.12) lim
r→1

∞∑

n=0

rn(2n + 1)Pn(η∗ · ξ) = 0 for ξ ∈ S2\{η}∗.

As we have shown in §3 of Appendix A, (2n+ 1) Pn(η∗ · ξ) = Yn(ξ) is a
surface spherical harmonic of degree n. Also, (see [Pi, p. 227]),

(2.13)

∫

S2

|Pn(η∗ · ξ)|2 dS(ξ) = 2π

∫ 1

−1
|Pn(t)|2 dt = 4π(2n+ 1)−1.
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This sequence {(2n+1)Pn(η∗ · ξ)}∞n=0 demonstrates that Theorem 2.4 is
in a certain sense a best possible result because

(a) by (2.13), it meets (i) in the theorem if “o” is replaced with “O”;

(b) by (2.12), it meets (ii) in the theorem;

(c) Pn(1) = 1 for every n shows that Pn(η∗ · ξ) is not identically zero.

We will not establish Theorem 2.4 here, but refer the reader to [Sh9, p.
12] for the proof.

The open problem for the last 135 years is the following:

Problem 2.5. Given {Yn(ξ)}∞n=0 a sequence of surface spherical harmonics
of degree n on S2, suppose that

lim
n→∞

n∑

k=0

Yk(ξ) = 0 for ξ ∈ S2\{η∗},

where η∗ = (1, 0, 0). Then

Yn(ξ) = 0 ∀ξ ∈ S2 and ∀n.
Problem 2.5 is still open because the analogue of the Cantor-Lebesgue

type theorem established by Roger Cooke on T2 (i.e., Theorem 2.2) is not
available on S2, as the following counter-example of Walter Rudin [Ru2, p.
302], demonstrates.

Proposition 2.6. Given a positive integer J, there exists {Yn(ξ)}∞n=1, a
sequence of surface spherical harmonics of degree n on S2, such that

(i) lim
n→∞

Yn(ξ) = 0 ∀ξ ∈ S2, and

(ii)
‖Yn‖L2

nJ
→ ∞ as n→∞.

Proof of Proposition 2.6. We observe for every integer n ≥ 1,

u(x1, x2, x3) = x1 Im(x2 + ix3)
n−1

is harmonic in R3 and also is a homogeneous polynomial of degree n in the
variables x1, x2, x3. Hence, it is a spherical harmonic of degree n. Therefore,
with ξ = (ξ1, ξ2, ξ3) ∈ S2,

Yn(ξ) = nJ+4ξ1 Im(ξ2 + iξ3)
n−1

is a surface spherical harmonic of degree n.
Using ξ1 = cos θ, ξ2 = sin θ cosφ, ξ3 = sin θ sinφ, we see that

(2.14) Yn(ξ) = nJ+4 cos θ(sin θ)n−1 sin(n− 1)φ,
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where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Since | sin θ| < 1 for θ 6= π/2 mod π and
cosπ/2 = 0, it follows from (2.14) that

lim
n→∞

Yn(ξ) = 0 ∀ξ ∈ S2.

To complete the proof of Proposition 2.6, it remains to show that (ii)
above holds. It follows from (2.14) that this will be accomplished once we
demonstrate that

(2.15)

∫ π

0
(cos θ)2(sin θ)2n−1dθ ≥ c/n2 for n ≥ 1,

where c is a positive constant independent of n.
Letting In designate the integral on the left-hand side of the inequality

in (2.15), we see after an integration by parts that

In =

∫ π

0
(sin θ)2n+1dθ/2n =

∫ π/2

0
(sin θ)2n+1dθ/n.

Using the fact that sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2, we obtain from this last
equality that

In ≥ π
∫ 1

0
t2n+1dt/2n for n ≥ 1,

and the inequality in (2.15) follows. �

Exercises.

1. Prove that x1 Im(x2 + ix3)
n−1 is a homogeneous polynomial of degree

n that is harmonic in R3.
2. With ξ1 = cos θ, ξ2 = sin θ cosφ, ξ3 = sin θ sinφ, find the sur-

face spherical harmonic Yn (ξ), which comes from the spherical harmonic
x1 Im(x2 + ix3)

n−1.

3. Uniqueness, Number Theory, and Fractals

One problem that Cantor was unable to solve was the following: If a
trigonometric series S on T1 converges to zero in the complement of the usual
Cantor set, is S identically zero? In this case, the answer is in the affirmative
and is the basis for a very deep result in mathematics connecting number
theory and trigonometric series [Zy2, p. 152]. It is the purpose of this section
to present a result analogous to this on TN , N ≥ 2. Also, instead of using
the convergence of trigonometric series to deal with sets of uniqueness, the
more sophisticated idea of distributions on the N -torus will be employed.
The basis for the material developed here is the paper entitled Algebraic
Integers and Distributions on the N-Torus (see [Sh5]).
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Using the notion of distributions also enables us to obtain uniqueness
results for trigonometric series of the form

∑

m∈ΛN

ame
im·x

without assuming anything about am under the spherical norm. In particu-
lar, in Theorem 3.2 below, we do not make any assumption like

lim
|m|→∞

|am| = 0.

Instead, we make assumptions of the following nature: (i) {am}m∈ΛN
is uni-

formly bounded; and (ii) limmin(|m1|,...,|mN |)→∞ am = 0.
Clearly, the norm used in (ii) is weaker than the spherical norm.
In this section, we present three theorems involving uniqueness results

for trigonometric series. The second and third theorems do use the spherical
norm. Also, the second theorem is connected with the theory of fractals.

In the sequel, with

TN = {x : −π ≤ xj < π, j = 1, ..., N},
we will need the notion of the torus topology. We observe that E ⊂ TN is
closed in the torus topology if and only if the set E∗ ⊂ RN is a closed set
in RN where

E∗ = ∪m∈ΛN
{E + 2πm}.

To define the notion of a distribution S on TN , we first need the class of
real functions D(TN ), called test functions, where

D(TN ) = {φ : φ ∈ C∞(RN ), φ is periodic of period 2π in each variable}.
As before, we define

‖φ‖2L2 =

∫

TN

|φ|2 dx,

and ∆φ to be the Laplacian of φ. So, in particular, for φ ∈ D(TN ),

(3.1)
∥∥∥∆kφ

∥∥∥
2

L2
= (2π)N

∑

m∈ΛN

|m|4k
∣∣∣φ̂(m)

∣∣∣
2

for k = 0, 1, 2, ....

With {φn}∞n=1 ⊂ D(TN ) , we say φn → 0 in D(TN ) provided the following
takes place:

lim
n→∞

∥∥∥∆kφn

∥∥∥
L2

= 0 for k = 0, 1, 2, ....

A distribution S on D(TN ), also called a periodic distribution, is a real
linear functional on D(TN ) with the following property.

Given {φn}∞n=1 ⊂ D(TN ). If

(3.2) φn → 0 in D(TN ), then lim
n→∞

S(φn) = 0.
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We’ll designate this class of distributions by D′(TN ) and set for S ∈
D′(TN ) and λ, φ ∈ D(TN ),

S(λ+ iφ) = S(λ) + iS(φ).

Ŝ(m) is then defined by the following formula:

(3.3) (2π)N Ŝ(m) = S(e−im·x) = S(cosm · x)− iS(sinm · x)
for m ∈ ΛN .

In the sequel, we will need

(3.4)
∣∣∣Ŝ(m)

∣∣∣ is uniformly bounded for m ∈ ΛN ,

and

(3.5) lim
min(|m1|,...,|mN |)→∞

∣∣∣Ŝ(m)
∣∣∣ = 0.

In particular, we define the class A(TN ) ⊂ D′(TN ) as follows:

A(TN ) = {S ∈ D′(TN ) :
∣∣∣Ŝ(m)

∣∣∣ meets (3.4) and (3.5)}.

If φ ∈ D(TN ), the set

Su♦(φ) = {x ∈ TN : φ(x) 6= 0}˜

(where ˜ designates the closure in the torus topology) will be called the
support of φ. Let G ⊂ TN be open in the torus topolgy. S = 0 in G means

φ ∈ D(TN ) and Su♦(φ) ⊂ G =⇒ S(φ) = 0.

Let E ⊂ TN be closed in the torus topology. E is called a set of unique-
ness for the class A(TN ) provided the following holds:

if S ∈ A(TN ) and S = 0 in TN\E, then S ≡ 0.

Before proceeding with the statement of the theorem, we establish the
following proposition.

Proposition 3.1. Let J≥ 2 be an integer. Suppose E j ⊂ TN is both a set
closed in the torus topology and a set of uniqueness for the class A(TN ) for
j=1,...,J. Then ∪J

j=1E j is also a set of uniqueness for the class A(TN ).

Proof of Proposition 3.1. It is clear from an induction process that the
proof of the proposition will be complete once we show that the proposition
is true for the special case J = 2.

Suppose, therefore, that the proposition is false for the case J = 2. Then
there is an S ∈ A(TN ) such that S = 0 in TN\(E1 ∪ E2) but S is not
identically zero. Consequently, there is a φ1 ∈ D(TN ) such that

Su♦(φ1) ⊂ TN\E1 and S(φ1) 6= 0.
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Since Su♦(φ1) and E1 are closed sets in the torus topology with an empty
intersection, it follows that there is a set G1 that is open in the torus topology
with E1 ⊂ G1 and G1∩ Su♦(φ1) = ∅.

Now, φ1S ∈ D
′
(TN ) where

φ1S(φ) = S(φ1φ) ∀φ ∈ D(TN ).

Also, by Proposition 3.4 in Appendix B, φ1S ∈ A(TN ).
Let φ ∈ D(TN ) be such that Su♦(φ) ⊂ TN\E2. Then there is a set

G2 with E2 ⊂ G2 that is open in the torus topology and G2∩ Su♦(φ) = ∅.
Therefore,

φ1(x)φ(x) = 0 ∀x ∈ G1 ∪G2,

and hence,
Su♦(φ1φ) ⊂ TN\(E1 ∪ E2).

But then by assumption S(φ1φ) = 0. So φ1S(φ) = 0 for every φ ∈ D(TN )
which, has its support in TN\E2. However, as we have observed, φ1S ∈
A(TN ) and by assumption E2 is a set of uniqueness for the class A(TN ). We
conclude that φ1S ≡ 0.

In particular, φ(x) ≡ 1 is a function in D(TN ). So,

0 = φ1S(1) = S(φ1),

and we have arrived at a contradiction. Therefore, the proposition is true
for the case J = 2, and the proof of the proposition is complete. �

Next, C(ξ) with 0 < ξ < 1/2 will designate the familiar Cantor set in
the half open interval [−π, π), i.e., t ∈ C(ξ) if and only if

t = 2π(1− ξ)
∞∑

k=1

εkξ
k−1 − π,

where εk = 0 or 1 and not all εk = 1. We note that if 0 < ξj < 1/2,
j = 1, ..., N, then C(ξj) ⊂ T1 is a closed set in the torus topology of T1 and

C(ξ1)× · · · × C(ξN ) ⊂ TN

is a set closed in the torus topology of TN .
An algebraic number is a complex number γ that satisfies an equation

of the form
xn + α1x

n−1 + ...+ αn = 0

where the coefficients of the equation are rational numbers. In case all the
coefficients of the equation are integers, γ is called an algebraic integer.

Following [Zy2, p.148], we say γ is an S number if the following three
properties hold:

(i) γ is a real algebraic integer;
(ii) γ > 1;
(iii) if α is a conjugate of γ, then |α| < 1.
S numbers are sometimes referred to as Pisot numbers.
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We intend to prove the following theorem [Sh5] regarding S numbers:

Theorem 3.2. Let 0 < ξj < 1/2 for j = 1, ..., N whereN ≥ 2. A necessary
and sufficient condition that C(ξ1)× · · · ×C(ξN ) be a set of uniqueness for
the class A(TN ) is that ξ−1

j be an S number for j = 1, ..., N .

As an immediate corollary to Theorem 3.2 , we have the following result:

Corollary 3.3. Suppose pj and qj are relatively prime positive integers
with pj/q j<

1
2 for j=1,...,N where N≥ 2. A necessary and sufficient condi-

tion that C(p1/q1) × · · · × C(pN/qN ) be a set of uniqueness for the class
A(TN ) is that pj = 1 for j = 1, ..., N .

Proof of the Necessary Condition of Theorem 3.2. With no loss
in generality, we can assume from the start that ξ−1

1 is not an S number.

We accomplish the proof by showing that, under the assumption that ξ−1
1 is

not an S number, there exists a trigonometric series
∑

m∈ΛN
ame

im·x with
am = a−m, which has the four properties listed below:

(3.6) |am| is uniformly bounded for m ∈ ΛN .

(3.7) lim
min(|m1|,...,|mN |)→∞

|am| = 0.

(3.8) ∃m0 ∈ ΛN such that am0 6= 0.

If x0 ∈ TN\C(ξ1)× · · · × C(ξN ), then ∃ r0 > 0 such that

(3.9) lim
t→0

∑

m∈ΛN

ame
im·xe−|m|2t = 0 uniformly for x ∈ B(x0, r0).

To see that a trigonometric series with the properties stated in (3.6)-
(3.9) will establish the necessary condition of the theorem, we first prove
that

(3.10) S(φ) = (2π)N
∑

m∈ΛN

amφ̂(−m) for φ ∈ D(TN )

defines a distribution in the class A(TN ).
To show that S ∈ D′(TN ), suppose {φn}∞n=1 ⊂ D(TN ) and φn → 0 in

D(TN ). Then

(3.11)
∑

1≤|m|

∣∣∣amφ̂n(−m)
∣∣∣ ≤ (

∑

1≤|m|

|am|2

|m|4N
)

1
2

∥∥∆Nφn

∥∥
L2 .
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From (3.6), we see that the first series on the right-hand side of the
inequality in (3.11) is finite. Since

∥∥∆Nφn

∥∥
L2 → 0, we obtain therefore from

(3.11) that

lim
n→∞

∑

1≤|m|

∣∣∣amφ̂n(−m)
∣∣∣ = 0.

Also, a0φ̂n(0)→ 0. So, S ∈ D′(TN ).

From (3.10), it follows that Ŝ(m) = am, and consequently from (3.7)
that S ∈ A(TN ).

To show that a series with properties (3.6)-(3.9) will establish the neces-
sary condition of the theorem, it remains to prove that the following holds:

(3.12) φ ∈ D(TN ) and Su♦(φ) ⊂ TN\C(ξ1)× · · · × C(ξN ) =⇒ S(φ) = 0.

To accomplish this, we set

S(x, t) =
∑

m∈ΛN

ame
im·xe−|m|2t,

and apply the Heine-Borel theorem in the torus topology. It then follows
from (3.9) and the fact that Su♦(φ) ⊂ TN\C(ξ1)× · · · × C(ξN ) is compact
in the torus topology that

lim
t→0

S(x, t) = 0 uniformly for x ∈ Su♦(φ).

But then

S(φ) = lim
t→0

∫

TN

S(x, t)φ(x)dx = lim
t→0

∫

Su♦(φ)
S(x, t)φ(x)dx = 0,

giving the assertion in (3.12).
From (3.8), we have that S is not identically zero, and the necessary

condition of the theorem is established.
To complete the proof of the necessary condition of the theorem, it

remains to show that ξ−1
1 is not an S number, which lmplies the existence

of a series
∑

m∈ΛN
ame

im·x with am = a−m that has properties (3.6)-(3.9).

With C(ξ) ⊂ T1, 0 < ξ < 1/2, we use the familiar Lebesgue-Cantor
function (see [Zy1, p. 194], [Sa, p. 101]) associated with C(ξ) to obtain a
nonnegative Borel measure ν on T1 with the property that ν[C(ξ)] = 1 and
ν[T1\C(ξ)] = 0. Also, ν is nonatomic, i.e., ν[{s}] = 0 ∀s ∈ T1. We set

(3.13) ν̂(n) = (2π)−1

∫

T1

e−insdν(s) for n = 0,±1,±2, ....

It follows from (3.13) that ν̂(n) = ν̂(−n) and also that the sequence
{ν̂(n)}∞n=−∞ is uniformly bounded. In particular, it is easy to see that this
last fact implies that there is a constant c such that

(3.14)

∣∣∣∣∣
∞∑

n=−∞

ν̂(n)einse−|n|2t

∣∣∣∣∣ ≤ ct
−1/2 ∀s ∈ T1 and for 0 < t < 1.
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From [Zy2, p. 151], we also observe that

(3.15) ξ−1is not an S number =⇒ lim
|n|→∞

ν̂(n) = 0.

To obtain the coefficients am, we let νk be the nonnegative Borel measure
associated with C(ξk) as above for k = 1, ..., N, and set

(3.16) am = ν̂1(m1) · · · ν̂N (mN ) ∀m ∈ ΛN .

It is clear that am = a−m and that the coefficients am meet (3.6). From
(3.15), it also follows that lim|m1|→∞ν̂1(m1) = 0. Hence, from (3.16) we
have that the coefficients am meet (3.7). Furthermore, it is clear from (3.13)
and (3.16) that a0 = (2π)−N . Therefore, (3.8) is also met.

So to complete the proof of the necessary condition of the theorem, it
only remains to show that

∑
m∈ΛN

ame
im·x meets (3.9). We now do this.

We are given x0 = (x01, ..., x0N ) ∈ TN\C(ξ1) × · · · × C(ξN ). Therefore
there exists at least one x0j ∈ T1\C(ξj). For simplicity of notation, let us
suppose this occurs for j = 2, i.e., x02 ∈ T1\C(ξ2). A similar proof will work
in case x01 ∈ T1\C(ξ1) or x0j ∈ T1\C(ξj) for j = 3, ..., N .

Let Ir be the open interval (−r+ x02, x02 + r). Since x02 ∈ T1\C(ξ2), it
follows from the above that there exists r0 > 0 such that ν2(Ir0) = 0. Hence,
we obtain from Theorem 5.3 in Chapter 1 that

(3.17) lim
t→0

∞∑

n=−∞

n2j ν̂2(n)einse−n2t = 0 uniformly for s ∈ Ir0/2,

for j = 1, ..., N − 1.
Next, for s ∈ T1 and for t > 0, we set

(3.18) fj(s, t) =

∞∑

n=−∞

ν̂0j(n)einse−n2t for j = 1, ..., N,

and see that the series in (3.17) is ∂jf2(s, t)/∂t
j . Consequently, it follows

from the generalized mean-value theorem and (3.17) that

(3.19) lim
t→0
|f2(s, t)| /tN−1 = 0 uniformly for s ∈ Ir0/2,

Also, we obtain from (3.18) that there exists a constant c such that

|fj(s, t)| ≤ ct−1/2 for s ∈ T1, for 0 < t < 1,

and for j = 1, ..., N.
Observing from (3.16) and (3.18) that

∑

m∈ΛN

ame
im·xe−|m|2t = f1(x1, t) · · · fN (xN , t),

we conclude that∣∣∣∣∣∣
∑

m∈ΛN

ame
im·xe−|m|2t

∣∣∣∣∣∣
≤ cN−1t(N−1)/2f2(x2, t)/t

N−1
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for x ∈ B(x0, r0/2) and for 0 < t < 1.
It follows from this last inequality and (3.19) that

lim
t→0

∑

m∈ΛN

ame
im·xe−|m|2t = 0 uniformly for x ∈ B(x0, r0/2).

So
∑

m∈ΛN
ame

im·x meets (3.9), and the proof of the necessary condition is
complete. �

To prove the sufficiency condition of Theorem 3.2, we will need the
following lemma:

Lemma 3.4. Let N ≥ 2, and let E j ⊂ T1 be closed in the one-dimensional
torus topology for j=1,..,N. Also, let {λj,k}∞k=1 be a sequence of functions in
D(T1) having the following four properties:

(i)Su♦(λj,k) ⊂ T1\Ej ;

(ii) limk→∞ λ̂j,k(0) = 1;

(iii) limk→∞ λ̂j,k(n) = 0 for n 6= 0;

(iv)∃M > 0 such that
∑∞

n=−∞

∣∣∣λ̂j,k(n)
∣∣∣ ≤M <∞,

for j = 1, ..., N and k = 1, 2, .... Furthermore, suppose S ∈ A(TN ) has the
following property:

(3.20) S = 0 in TN\E1 × · · · × EN .

Then S ≡ 0.

Proof of Lemma 3.4. To prove the lemma, for i = 1, ...N , we define

(3.21) ηi,k(x) =
N∑

j1=1

· · ·
N∑

ji=1

λj1,k(xj1) · · · λji,k(xji),

where the sum is over all i-tuples (j1,...,ji) from the numbers (1, ..., N) with
j1 < j2 < j3 < · · · < ji, and we set

(3.22) ηk(x) =

N∑

i=1

(−1)i+1ηi,k(x).

In particular, for N = 3,

ηk(x) = λ1,k(x1) + λ2,k(x2) + λ3,k(x3)− λ1,k(x1)λ2,k(x2)

−λ1,k(x1)λ3,k(x3)− λ2,k(x2)λ3,k(x3)

+λ1,k(x1)λ2,k(x2)λ3,k(x3).
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From (ii) in the hypothesis of the lemma, (3.21), and (3.22), we obtain

(3.23) lim
k→∞

η̂k(0) =

N∑

i=1

(−1)i+1

(
N
i

)
= 1.

Likewise, we have for m1 6= 0 since
∑N−1

i=0 (−1)i
(
N − 1
i

)
= 0, that

η̂k(m1, 0, ..., 0) = o(1)λ̂1,k(m1) as k →∞ uniformly for |m1| > 0,

and in general that for m1 · · ·mj0 6= 0, 1 ≤ j0 ≤ N − 1,

η̂k(m1, ...,mj0 , 0, ..., 0)

= o(1)(−1)j0+1λ̂1,k(m1) · · · λ̂j0,k(mj0) as k →∞

uniformly for |m1...mj0 | > 0 because
∑N−j0

i=0 (−1)i
(
N − j0

i

)
= 0.

On the other hand, η̂k(m1, ...,mN ) = (−1)N+1λ̂1,k(m1) · · · λ̂N,k(mN ) for
m1 · · ·mN 6= 0.

Summarizing these last two facts, we have that if m 6= 0,
(3.24)

η̂k(m) = o(1)(−1)r+1λ̂j1,k(mj1) · · · λ̂jr,k(mjr) when m1 · · ·mN = 0
with mj1 · · ·mjr 6= 0 as k →∞ uniformaly for |mj1 · · ·mjr | > 0.

η̂k(m) = (−1)N+1λ̂1,k(m1) · · · λ̂N,k(mN ) when m1 · · ·mN 6= 0.

Next, we see from the hypothesis of the lemma that E1×· · ·×EN ⊂ TN

is a closed set in the torus-topology. Also, we have that ηk ∈ D(TN ) and
from (3.21) and (3.22) that

Su♦(ηk) ⊂ TN\E1 × · · · × EN ,

for k = 1, 2, ... .
It follows from this last fact and (3.20) that

S(ηkφ) = 0 ∀φ ∈ D(TN ).

Hence the distribution ηkS ≡ 0 ∀k. But then it follows from (3.7) in Appen-
dix B that

(3.25)
∑

p∈ΛN

η̂k(p)Ŝ(m− p) = 0 ∀m ∈ ΛN and ∀k.

Also, by Proposition 3.3 in Appendix B, the series in (3.25) is absolutely
convergent.

Next, we let δj = −1 or 1 for j = 1, ..., N and define
Ik(δ1, ..., δN ;m)

(3.26) =

∞∑

p1=1

· · ·
∞∑

pN=1

η̂k(p1δ1, ..., pNδN )Ŝ[m− (p1δ1, ..., pN δN )].



3. UNIQUENESS, NUMBER THEORY, AND FRACTALS 111

So in particular for N = 2, we have Ik(1, 1;m), Ik(1,−1;m), Ik(−1, 1;m),
and Ik(−1,−1;m).

It follows from (3.24), (3.25), and (3.26), and (iv) in the hypothesis of

the lemma plus the fact that Ŝ(m) is uniformly bounded that

(3.27) −η̂k(0)Ŝ(m) =
∑

δ1=±1,...,δN=±1

Ik(δ1, ..., δN ;m) + o(1) as k →∞.

If we show that for each choice of (δ1, ..., δN ),

(3.28) lim
k→∞

Ik(δ1, ..., δN ;m) = 0,

it will then follow from (3.23) and (3.27) that Ŝ(m) = 0 for every m ∈ ΛN .
But then from Theorem 3.2 in Appendix B, we see that S ≡ 0, which is the
desired conclusion of the lemma. Therefore the proof of the lemma will be
complete once we establish (3.28).

Fix m and let ε > 0 be given. We show (3.28) holds by showing

(3.29) lim sup
k→∞

|Ik(δ1, ..., δN ;m)| ≤ ε.

With M as in condition (iv) in the hypothesis of the lemma, we use (3.5)
and choose an integer P sufficiently large so that

(3.30)
∣∣∣Ŝ(m− p)

∣∣∣ ≤ εM−N for min(|p1| , ..., |pN |) ≥ P.

Next, we introduce various sets of lattice points in the positive octant
as follows for j = 1, ..., N :

(3.31)
Qj,P = {p : 1 ≤ pj ≤ P, 1 ≤ pi <∞, P + 1 ≤ pn <∞;

i = 1, ...j − 1 and n = j + 1, ...N}.
In case j = 1 or N in (3.31), the obvious interpretation is to be given.
Also, we set

(3.32)
Q = {p : 1 ≤ pi <∞, i = 1, ..., N},

Q
′

P = {p : P + 1 ≤ pi <∞, i = 1, ..., N}.

We observe from (3.31) and (3.32) that for N ≥ 2,

(3.33) Q = ∪N
j=1Qj,P ∪Q

′

P .

By hypothesis, S ∈ A(TN ).We therefore see from the definition of A(TN )

and (3.4) that there exists a constant c such that
∣∣∣Ŝ(m− p)

∣∣∣ ≤ c ∀p. Con-

sequently, we have from (3.24) that for p ∈ Q,
∣∣∣η̂k(p1δ1, ..., pN δN )Ŝ[m− (p1δ1, ..., pN δN )]

∣∣∣

≤ c
∣∣∣λ̂1,k(p1δ1) · · · λ̂N,k(pNδN )

∣∣∣ .
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From condition (iv) in the hypothesis of the lemma, from the definition
of Qj,P in (3.31), and from this last inequality, we conclude that

(3.34)

∑
p∈Qj,P

∣∣∣η̂k(p1δ1, ..., pNδN )Ŝ[m− (p1δ1, ..., pNδN )]
∣∣∣

≤ cMN−1
∑P

pj=1

∣∣∣λ̂j,k(pjδj)
∣∣∣ ,

for j = 1, ..., N. But from condition (iii) in the lemma, we have

lim
k→∞

P∑

pj=1

∣∣∣λ̂j,k(pjδj)
∣∣∣ = 0.

So we infer from the inequality in (3.34) that

lim
k→∞

∑

p∈Qj,P

∣∣∣η̂k(p1δ1, ..., pNδN )Ŝ[m− (p1δ1, ..., pNδN )]
∣∣∣ = 0

for j = 1, ..., N. Hence from (3.26) and (3.33), it follows that

lim supk→∞ |Ik(δ1, ..., δN ;m)|

(3.35) ≤ lim sup
k→∞

∑

p∈Q
′
P

∣∣∣η̂k(p1δ1, ..., pNδN )Ŝ[m− (p1δ1, ..., pN δN )]
∣∣∣ .

Next, we see from (3.30) and (3.32) that
∣∣∣Ŝ[m− (p1δ1, ..., pNδN )]

∣∣∣ ≤ εM−N for p ∈ Q′

P

and consequently from (3.35) that

lim supk→∞ |Ik(δ1, ..., δN ;m)|
(3.36) ≤ εM−N lim sup

k→∞

∑

p∈Q
′
P

|η̂k(p1δ1, ..., pN δN )| .

But from (3.24) and (3.32),

∑

p∈Q
′
P

|η̂k(p1δ1, ..., pNδN )| =
∞∑

p1=P+1

· · ·
∞∑

pN=P+1

∣∣∣λ̂1,k(p1δ1) · · · λ̂N,k(pNδN )
∣∣∣ .

So we conclude from (3.36), condition (iv) in the hypothesis of the lemma,
and this last equality that

lim sup
k→∞

|Ik(δ1, ..., δN ;m)| ≤ ε.

This establishes the inequality in (3.29), and the proof of the lemma is
complete. �
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Proof of the Sufficiency Condition of Theorem 3.2. Let {V J
k }∞k=1 be

a sequence of J-tuples with positive integral entries, i.e., V J
k = (v1

k , ..., v
J
k )

with vj
k a positive integer for j = 1, ..., J. We say {V J

k }∞k=1 is a normal
sequence provided

lim
k→∞

∣∣b1v1
k + · · ·+ bJvJ

k

∣∣ =∞

for every J-tuple BJ = (b1 , ..., bJ ) with each entry an integer and at least
one entry different from zero.

A set E ⊂ T1 closed in the one-dimensional torus topology is called an
H(J)-set provided the following holds:

There is a normal sequence {V J
k }∞k=1 and a parallelopiped Q ⊂ TJ

where

Q = {x : −π < αj < xj < β j < π, j = 1, ..., J}
such that

s ∈ E =⇒ (sv1
k, ..., sv

J
k ) ∈ TJ\Q mod 2π in each entry for k = 1, 2, ...,

i.e., (sv1
k, ..., sv

J
k ) ∈ RJ\Q∗ where Q∗ = ∪m∈ΛJ

{Q + 2πm} and ΛJ is the

set of integral lattice points in RJ .
What we want to show is

Ej ⊂ T1 is an H(nj)-set for j = 1, ...N,
=⇒ E1 × · · · × EN is a set of uniqueness for A(TN ).

In order to do this, we first prove the following:
Given a set E ⊂ T1 that is closed in the one-dimensional torus topology

and that is also an H(J) -set, there is a sequence {λk}∞k=1 with the following
five properties:

(3.37)

(i) λk ∈ D(T1);

(ii) Su♦(λk) ⊂ T1\E;

(iii) limk→∞ λ̂k(0) = 1;

(iv) limk→∞ λ̂k(n) = 0 for n 6= 0;

(v) ∃M > 0 such that
∑∞

n=−∞

∣∣∣λ̂k(n)
∣∣∣ ≤M

where M is a finite number and k = 1, 2, ....
To establish (3.37), let {V J

k }∞k=1 be the normal sequence and Q ⊂ TJ

be the parallelopiped associated with the H(J)-set E. Also, let

Qj = (αj , βj) ⊂ T1

be the one-dimensional open interval for j = 1, ...J such that

Q = Q1 × · · ·QJ .
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Next, select numbers α′
j, β

′
j , α

′′
j , β

′′
j such that

−π < αj < α′
j < α′′

j < β′′j < β′j < β j < π, for j = 1, ..., J,

and define the functions of one real variable ηj(s) ∈ D(T1) such that

(3.38)

ηj(s) = 1 in [α′′
j , β

′′
j ]

= 0 in [−π, π]\[α′
j , β

′
j ]

and also such that
(3.39)

η̂j(0) = 1 where η̂j(n) = (2π)−1

∫ π

−π
ηj(s)e

−insds n = 0,±1,±2, ...,

for j = 1, ...J.
Next, define

(3.40) λk(s) = η1(v
1
ks) · · · ηJ(vJ

k s)

for k = 1, 2, .... Since vj
k is a positive integer and ηj(s) ∈ D(T1), it follows

that ηj(v
j
ks) ∈ D(T1). Hence, from (3.40), we obtain that λk(s) ∈ D(T1),

and (i) of (3.37) is established.
To establish (ii) of (3.37), set

Q∗
j = ∪∞n=−∞{Qj + 2πn}

and observe that

Q∗ = ∪m∈Λ{Q+ 2πm} = Q∗
1 × · · · ×Q∗

J .

Fix k and note that because E is an H(J)-set, it follows that for s ∈ E,
(sv1

k, ..., sv
J
k ) /∈ Q∗. Let s0 be a fixed point in E. Then there exists a j such

that s0v
j
k /∈ Q∗

j . For simplicity, say j = 1. Then s0v
1
k /∈ Q∗

1. Also, because Q∗
1

is a closed set, ∃ε > 0 such that for s ∈ (s0− ε, s0 + ε), sv1
k /∈ Q∗

1. But then
it follows from (3.38) that

η1(v
1
ks) = 0 for s ∈ (s0 − ε, s0 + ε).

Hence, we obtain from (3.40) that

λk(s) = 0 for s ∈ (s0 − ε, s0 + ε).

We conclude there exists a set G that is open in the torus topology of
T1 such that E ⊂ G and

λk(s) = 0 for s ∈ G.
On the other hand, Su♦(λk) ⊂ T1 is a set closed in the torus topology

of T1. So we obtain from this last equality that

Su♦(λk) ∩ E = ∅,

and (ii) in (3.37) is established.
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To establish the last three items in (3.37), we observe that

ηj(v
j
ks) =

∞∑

nj=−∞

η̂j(nj)e
injvj

ks,

for j = 1, ...J. Consequently, we see from (3.40) that

λk(s) =
∞∑

n=−∞

λ̂k(n)eins

where

(3.41) λ̂k(n) =
∑

n1v1
k+···+nJvJ

k =n

η̂1(n1) · · · η̂J(nJ)

for k = 1, 2, ... .
From (3.39) and (3.41), we obtain that

λ̂k(0) = 1 + λ̂
′

k(0)

where

(3.42) λ̂
′

k(0) =
∑

n1v1
k+···+nJvJ

k =0

η̂1(n1) · · · η̂J(nJ) for 0 < |n1|+ · · ·+ |nJ | .

Let ε > 0 be given.We will establish (iii) in (3.37) by showing

(3.43) lim sup
k→∞

∣∣∣λ̂′k(0)
∣∣∣ ≤ ε,

and therefore that limk→∞ λ̂
′

k(0) = 0.
To accomplish (3.43), we first note that there exists a constant c such

that

(3.44)

∞∑

nj=−∞

∣∣η̂j(nj)
∣∣ ≤ c for j = 1, ...J.

Also, we see there exists an integer r0 > 0 such that

(3.45)
∞∑

|nj |=r0+1

∣∣η̂j(nj)
∣∣ ≤ εc−(N−1)J−1 and for j = 1, ...J.

Next, we set

(3.46) ΛJ
r0

= {(n1, ..., nJ ) ∈ ΛJ\{0} : |nj| ≤ r0 for j = 1, ...J}.

Since ΛJ
r0

is a finite set of nonzero lattice points, we observe from the
definition of a normal sequence that there exists a positive integer k0 such
that

∣∣n1v
1
k + · · ·+ nJv

J
k

∣∣ ≥ 1 for (n1, ..., nJ ) ∈ ΛJ
r0

and k ≥ k0.
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Consequently, if k ≥ k0 and n1v
1
k + · · ·+ nJv

J
k = 0 then at least one of the

nj is such that |nj| ≥ r0 + 1. Hence, we obtain from (3.42) and (3.44) that

∣∣∣λ̂′k(0)
∣∣∣ ≤ {

∞∑

|n1|=r0+1

∞∑

n2=−∞

· · ·
∞∑

nJ=−∞

|η̂1(n1) · · · η̂J(nJ)|

+
∞∑

n1=−∞

∞∑

|n2|=r0+1

∞∑

n3=−∞

· · ·
∞∑

nJ=−∞

|η̂1(n1) · · · η̂J(nJ)|+ · · ·

+

∞∑

n1=−∞

∞∑

n2=−∞

· · ·
∞∑

nJ−1=−∞

∞∑

|nJ |=r0+1

|η̂1(n1) · · · η̂J(nJ)|}

≤ cN−1
∞∑

|n1|=r0+1

|η̂1(n1)|+ · · ·+ cN−1
∞∑

|nJ |=r0+1

|η̂J(nJ)|

for k ≥ k0.
We see from (3.45) and this last inequality that

∣∣∣λ̂′k(0)
∣∣∣ ≤ ε for k ≥ k0.

Therefore (3.43) is indeed true, and (iii) in (3.37) is established.
Next, let n∗ 6= 0 be an integer, and let ε > 0 be given. We will establish

(iv) in (3.37) by showing

(3.47) lim sup
k→∞

∣∣∣λ̂k(n
∗)
∣∣∣ ≤ ε.

where λ̂k(n
∗) is given by (3.41).

To do this, we will again use (3.44), (3.45), and (3.46) with a very similar
argument as before and choose k∗ > 0 so that

∣∣n1v
1
k + · · ·+ nJv

J
k

∣∣ ≥ |n∗|+ 1 for (n1, ..., nJ ) ∈ ΛJ
r0

and k ≥ k∗.
Consequently, if k ≥ k∗ and n1v

1
k + · · ·+ nJv

J
k = n∗ then at least one of the

nj is such that |nj| ≥ r0 + 1. Hence, we obtain from (3.41) and (3.44) that

∣∣∣λ̂k(n
∗)
∣∣∣ ≤ {

∞∑

|n1|=r0+1

∞∑

n2=−∞

· · ·
∞∑

nJ=−∞

|η̂1(n1) · · · η̂J(nJ)|

+
∞∑

n1=−∞

∞∑

|n2|=r0+1

∞∑

n3=−∞

· · ·
∞∑

nJ=−∞

|η̂1(n1) · · · η̂J(nJ)|+ · · ·

+

∞∑

n1=−∞

∞∑

n2=−∞

· · ·
∞∑

nJ−1=−∞

∞∑

|nJ |=r0+1

|η̂1(n1) · · · η̂J(nJ)|}

≤ cN−1
∞∑

|n1|=r0+1

|η̂1(n1)|+ · · ·+ cN−1
∞∑

|nJ |=r0+1

|η̂J(nJ)|

for k ≥ k∗.
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We see from (3.45) and this last inequality that
∣∣∣λ̂k(n

∗)
∣∣∣ ≤ ε for k ≥ k∗.

This last inequality shows that (3.47) is true and establishes (iv) of
(3.37).

It remains to show that (3.37)(v) is true. To do this, we observe from
(3.41) that

∞∑

n=−∞

∣∣∣λ̂k(n)
∣∣∣ ≤

∞∑

n=−∞

∣∣∣∣∣∣
∑

n1v1
k+···+nJvJ

k =n

η̂1(n1) · · · η̂J(nJ)

∣∣∣∣∣∣

≤
∞∑

n1=−∞

· · ·
∞∑

nJ=−∞

|η̂1(n1) · · · η̂J(nJ)|

≤
∞∑

n1=−∞

|η̂1(n1)| · · ·
∞∑

nJ=−∞

|η̂J(nJ)|

for k = 1, 2, .... But then it follows from (3.44) and this last inequality that

∞∑

n=−∞

∣∣∣λ̂k(n)
∣∣∣ ≤ cJ

for k = 1, 2, ..., and (3.37)(v) is established with M = cJ .
From (3.37), we see that if Ej ⊂ T1 is both closed in the one-dimensional

torus topology and an H(nj)-set for j = 1, ...N, then we have sequences
{λj,k}∞k=1 that meet the conditions (i)-(iv) in Lemma 3.4. Therefore, it fol-
lows from this lemma that the Cartesian product set E1 × · · · ×EN is a set
of uniqueness for the class A(TN ).

Summarizing, we see that we have established the following result:
(3.48)

Ej ⊂ T1 is an H(nj) − set for j = 1, ...N,
=⇒ E1 × · · · × EN is a set of uniqueness for A(TN ).

Next, let Ejl ⊂ T1 be both closed in the one-dimensional torus topology

and an H(njl)-set for l = 1, ..., γj and j = 1, ...N where njl is a positive
integer. Set

(3.49) Ej = ∪γj

l=1Ejl

for j = 1, ...N and observe that

(3.50) E1 × · · · × EN = ∪γ1
l1=1
· · · ∪γN

lN=1
E1l1 × · · · × ENlN .

But E1l1 × · · · × ENlN is a set of uniqueness for the class A(TN ) by
(3.48). Therefore, from (3.50), E1 × · · · × EN is a finite union of sets of
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uniqueness. Hence, it follows from Proposition 3.1 that

(3.51) E1 × · · · × EN is a set of uniqueness for the class A(TN ),

where Ej is given by (3.49) for j = 1, ...N.

Next, we see from [Zy2, pp. 152-3] that because ξ−1
j is an S number,

C(ξj) is a finite union of H(n)-sets, i.e.,

C(ξj) = ∪γj

l=1Ejl

where Ejl ⊂ T1 is both closed in the one-dimensional torus topology and an

H(njl)-set for l = 1, ..., γj . This last fact is true for j = 1, ...N. Therefore,
C(ξ1)× · · · ×C(ξN ) is just like E1× · · · ×EN in (3.50). Hence, we conclude
from (3.51) that

C(ξ1)× · · · × C(ξN ) is a set of uniqueness for the class A(TN ),

and the sufficiency condition of Theorem 3.2 is established. �

Proof of Corollary 3.3. To prove the necessary condition of the corollary,
we observe from the theorem just established if

C(p1/q1)× · · · × C(pN/qN ) is a set of uniqueness for the class A(TN ),

then
qj

pj
is an S number for j = 1, ..., N where qj and pj are relatively prime

positive integers with qj > 2pj. In particular,
qj

pj
is an algebraic integer.

Hence, pj = 1 for j = 1, ..., N, and the necessary condition of the corollary
is established.

To prove the sufficiency condition of the corollary, we observe that if
qj > 2 is a positive integer for j = 1, ..., N , then it is an S number. Hence,
by Theorem 3.2, C(1/q1)× · · ·×C(1/qN) is a set of uniqueness for the class
A(TN ), and the sufficiency condition of the corollary is established. �

In the theorem we just established, the sets of uniqueness for the class
A(TN ) were Cartesian product sets. Next, we introduce a strictly smaller
class B(TN ) ⊂ A(TN ), which possesses sets of uniqueness that are not Carte-
sian product sets. Some of these sets arise in the theory of fractals where they
are called carpets in two dimensions and fractal foam in three dimensions
(see [Man, p. 133]). Examples will be given at the end of this section.

We define the class B(TN ) ⊂ D′(TN ) in the following manner:

B(TN ) = {S ∈ D′(TN ) : lim
|m|→∞

Ŝ(m) = 0}.

It is clear from (3.4) and (3.5) above that B(TN ) ⊂ A(TN ). After the
proof of the next theorem, we will present a set E ⊂ TN such that E is a
set of uniqueness for B(TN ) but E is not a set of uniqueness for A(TN ).

We say E is an H#-set provided E ⊂ TN is closed in the torus topology
and the following holds: There is
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(i) a sequence {pk}∞k=1 of integral lattice points pk = (pk
1, ..., p

k
N ) with

pk
j > 0 and limk→∞p

k
j =∞ for j = 1, ...N, and

(ii) a parallelopiped Q ⊂ TN where

Q = {x : −π < αj < xj < β j < π, j = 1, ..., N},
such that

x ∈ E =⇒ (x1p
k
1 , ..., xNp

k
N) ∈ TN\Q mod 2π in each entry

for k = 1, 2, ..., i.e., (x1p
k
1, ..., xNp

k
N ) ∈ RN\Q∗ where

Q∗ = ∪m∈ΛN
{Q+ 2πm}

and ΛN is the set of integral lattice points in RN .
We intend to prove the following theorem for H#-sets [Sh3]:

Theorem 3.5. Let E ⊂ TN be closed in the torus topology and an H#-set.
Then E is a set of uniqueness for the class B(TN ).

To prove Theorem 3.5, we will need the following lemma that is similar
to Lemma 3.4 but has a much easier proof:

Lemma 3.6. Let E $ TN be closed in the torus topology. Also, let {λk}∞k=1
be a sequence of functions in D(TN ) having the following four properties:

(i) Su♦(λk) ⊂ TN\E ∀k;

(ii) limk→∞ λ̂k(0) = γ0 > 0;

(iii) limk→∞ λ̂k(m) = 0 for m ∈ ΛN , m 6= 0;

(iv) ∃M > 0 such that
∑

m∈ΛN

∣∣∣λ̂k(m)
∣∣∣ ≤M <∞ ∀k.

Suppose, furthermore, that S ∈ B(TN ) and that S = 0 in TN\E.
Then S ≡ 0.

Proof of Lemma 3.6. To prove the lemma, we observe from (i) that for
each k, the support of λk is in the open set TN\E. In addition, S = 0 in
TN\E. Consequently,

S(λkφ) = 0 ∀φ ∈ D(TN ) and ∀k.
Therefore, the distribution λkS ≡ 0 ∀k. Hence, from Proposition 3.3 in
Appendix B, we obtain that

(3.52) 0 =
∑

peΛN

λ̂k(p)Ŝ(m− p) for m ∈ ΛN and ∀k.
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Let m0 be an arbitrary but fixed integral lattice point. If we can show

(3.53) Ŝ(m0) = 0.

it will follow that Ŝ(m) = 0 for m ∈ ΛN . Theorem 3.2 in Appendix B then
tells us that

S(φ) = 0 ∀φ ∈ D(TN )

and completes the proof of the theorem.
To establish (3.53), we invoke the equality in (3.52) and see that

(3.54) −λ̂k(0)Ŝ(m0) =
∑

p 6=0

λ̂k(p)Ŝ(m0 − p) ∀k.

Let ε > 0 be given. Then because m0 is a fixed integral lattice point and
S ∈ B(TN ), we have the existence of an s0 > 1 such that

∣∣∣Ŝ(m0 − p)
∣∣∣ ≤ εγ0/M for |p| > s0.

From (iv) and (3.54), we then infer that
∣∣∣λ̂k(0)Ŝ(m0)

∣∣∣ ≤
∑

1≤|p|≤s0

∣∣∣λ̂k(p)Ŝ(m0 − p)
∣∣∣+ εγ0 ∀k.

But there are only a finite number of lattice points p involved in the
summand of this last inequality. Consequently, on passing to the limit as
k →∞, we obtain from (ii) and (iii) and this last inequality that

γ0

∣∣∣Ŝ(m0)
∣∣∣ ≤ εγ0.

Hence,
∣∣∣Ŝ(m0)

∣∣∣ ≤ ε. Since ε > 0 is arbitrary, we have that the equality in

(3.53) is indeed true. �

Proof of Theorem 3.5. Since E is closed in the torus topology and an
H#-set, it is easy to see that E is a proper subset of TN , i.e., E $ TN .
Therefore, to establish the theorem, it is sufficient to show the existence of a
sequence of functions {λk}∞k=1 in D(TN ) having properties (i)-(iv) in Lemma
3.6.

In order to do this, we choose numbers α′
j , β

′
j , α

′′
j , β

′′
j such that

−π < αj < α′
j < α′′

j < β′′j < β′j < β j < π, for j = 1, ...N,

where αj and βj are the numbers used in the definition of an H#-set and
set

Q′ = (α′
1, β

′
1)× · · · × (α′

N , β
′
N ) and Q′′ = (α′′

1, β
′′
1)× · · · × (α′′

N , β
′′
N ).

Then Q′′ $ Q′ $ Q where Q = (α1, β1)×· · ·× (αN , βN ). Also, for x ∈ E
(3.55) (pk

1x1, ..., p
k
NxN ) /∈ Q∗ ∀k,

where Q∗ = ∪m∈ΛN
{Q+ 2πm} and pk

j are positive integers for j = 1, ..., N

with pk
j →∞.
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Proceeding with the proof of the theorem, we select a function λ(x),
which is in class C∞(RN ) and periodic of period 2π in each variable with
the following properties:

(3.56)

(i) λ(x) = 1 for x ∈ Q′′;

(ii) λ(x) = 0 for x ∈ TN\Q′;

(iii) λ(x) ≥ 0 for x ∈ TN .

To obtain the sequence {λk}∞k=1 in D(TN ), which is alluded to in the

paragraph above, we let pk
j be the positive integers in (3.55) and define

(3.57) λk(x) = λ(pk
1x1, ..., p

k
NxN ) ∀x ∈ RN and ∀k.

Then, it is clear from the properties of λ(x) that for each k, λk(x) ∈D(TN ).
To verify that (i) of Lemma (3.6) holds for the sequence, we fix k and

observe from (3.55) that given x0 ∈ E, ∃s0 > 0 then

x ∈ B(x0, s0) =⇒ (pk
1x1, ..., p

k
NxN ) /∈ Q′∗

where Q′∗ = ∪m∈ΛN
{Q′+2πm}. Hence, we obtain from (3.56)(ii) and (3.57)

that there is a set G ⊂ TN open in the torus topology with E ⊂ G such that

λk(x) = 0 for x ∈ G.
Since Su♦(λk) ⊂ TN is a closed set in the torus topology, we conclude

from this last equality that Su♦(λk) ∩ E = ∅ and (i) of Lemma (3.6) is
established for the sequence {λk}∞k=1.

To show that the other parts of the lemma prevail for the sequence, we
see that λ ∈ D(TN ) implies that

λ(x) =
∑

m∈ΛN

λ̂(m)ei(m1x1+···+mNxN )

with the series converging absolutely and uniformly for x ∈ RN. Conse-
quently, it follows from (3.57) that

(3.58) λk(x) = λ̂(0) +
∑

m6=0

λ̂(m)ei(p
k
1m1x1+···+pk

NmN xN ) ∀k,

where the series converges absolutely and uniformly for x ∈ TN .
We recall that pk

j > 0. Consequently, we obtain from (3.58) that

λ̂k(0) = λ̂(0) ∀k.

Also, we see from (3.56) that λ̂(0) > 0. So (ii) of Lemma 3.6 is established
for the sequence {λk}∞k=1.

To show that (iii) of the lemma is valid, we let m0 be an arbitrary but
fixed integral lattice point with m0 6= 0. Since pk

j → ∞ for j = 1, ..., N, it
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follows that ∃k0 > 0 such that for k ≥ k0,



N∑

j=1

∣∣∣pk
jmj

∣∣∣
2




1/2

≥ min
(
pk
1 , ..., p

k
N

)
≥ |m0|+ 1

for all m 6= 0. But then we obtain from (3.58) that

λ̂k(m0) = 0 for k ≥ k0.

This establishes (iii) of Lemma 3.6 for the sequence {λk}∞k=1 .
It remains to show that (iv) of Lemma 3.6 holds for the sequence

{λk}∞k=1 . To see that this is indeed the case, we observe from (3.58) that
∑

m∈ΛN

∣∣∣λ̂k(m)
∣∣∣ ≤

∑

m∈ΛN

∣∣∣λ̂(m)
∣∣∣ ∀k,

which gives (iv) of Lemma 3.6 with M =
∑

m∈ΛN

∣∣∣λ̂(m)
∣∣∣ . So all the condi-

tions in the hypothesis of Lemma 3.6 hold for the sequence {λk}∞k=1 and the
proof of the theorem is complete. �

Next, with N ≥ 2, we present a set E ⊂ TN , which is closed in the torus
topology and is a set of uniqueness for the class B(TN ), but is not a set of
uniqueness for the class A(TN ).

With 0 < ξ < 1/2, let C(ξ) designate the familiar Cantor set on the
half-open interval [−π, π) = T1 used in the statement of Theorem 3.2. The
set E that will qualify for our example is

E = C(1/3)× C(2/5) × · · · × C(2/5).

It is clear that E is not a set of uniqueness for A(TN ) because 5/2 is not
an algebraic integer, and therefore not an S number.

To demonstrate that E is a set of uniqueness for B(TN ), we observe that
E ⊂ F where

F = C(1/3) × T1 × · · · × T1.

We will show F is a set of uniqueness for the class B(TN ), which then implies
that E is also a set of uniqueness for the class B(TN ).

What remains to show by Theorem 3.5 is that F is an H#-set. For the
set Q in the definition of an H#-set, we use

Q = (−π/3, π/3) × · · · × (−π/3, π/3).
For our sequence of integral lattice points, we take pk = (3k, ..., 3k). Then

given x = (x1, ..., xN ) ∈ F, we have to demonstrate that for each k, there
exists an integer jk with 1 ≤ jk ≤ N such that

3kxjk
/∈ (−π/3, π/3) mod 2π ∀k.

We will take jk = 1 for every k, and show that for t ∈ C(1/3),

(3.59) 3kt /∈ (−π/3, π/3) mod 2π ∀k.
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Recall that C(1/3) is the classical Cantor set on the interval [−π, π). So

(3.60) t = 2π

∞∑

j=1

2εj3
−j − π where εj = 0 or 1,

and not all εj = 1. We set s = t + π, and see that (3.59) will be satisfied
provided that

3ks− π /∈ (−π/3, π/3) mod 2π ∀k,
which is the same as

3ks /∈ (2π/3, 4π/3) mod 2π ∀k.
This last fact is the same as

3ks/2π /∈ (1/3, 2/3) mod 1 ∀k.
But this last statement is obvious from the representation given in (3.60).
Hence F is indeed an H#-set, and our example is complete.

Before giving examples of H#-sets that are not Cartesian product sets,
we will establish the following corollary (which for dimension N = 1, is
established in [Zy1, p. 318]).

Corollary 3.7. Let E⊂ TN be a set closed in the torus topology and also
an H #-set. Then, E is a set of N-dimensional Lebesgue measure zero.

Proof of Corollary 3.7. Suppose, to the contrary, that E has positive N -
dimensional Lebesgue measure. Let χE designate the characteristic function
(also called the indicator function) of E. Then

(3.61) χ̂E(0) > 0,

and from the Riemann-Lebesgue Lemma (Corollary 2.4 in Chapter 1), it
follows that

lim
|m|→∞

χ̂E(m) = 0.

For φ ∈ D(TN ), we define

(3.62) S(φ) =

∫

TN

χE(x)φ(x)dx.

Clearly, S ∈ D′(TN ), and from this last limit, we see that it is also in class
B(TN ).

Next, suppose φ ∈ D(TN ) with

Su♦(φ) ⊂ TN\E.
Then, from (3.62), it follows that S(φ) = 0. But E is a set of uniqueness for
the class B(TN ). Consequently, S ≡ 0. In particular,

χ̂E(0) = Ŝ(0) = 0.
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This contradicts the inequality in (3.61) and completes the proof to the
corollary. �

The final theorem we establish in this section, which is partially moti-
vated by [Sh6] (see also [AW2] and [AW3, p. 10]), is the following:

Theorem 3.8. Let 0 < ξj < 1/2 for j = 1, ..., N where N ≥ 2. A
necessary and sufficient condition that C(ξ1) × · · · × C(ξN ) be a set of
uniqueness for the class B(TN ) is that at least one of ξ−1

1 , ..., ξ−1
N must be

an S number.

Proof of Theorem 3.8. We establish the necessary condition first. We are
given ξ−1

1 , ..., ξ−1
N , which are N positive numbers greater than 2 and none

of which are S numbers. Will show that this implies the existence of a a
trigonometric series

∑
m∈ΛN

ame
im·x with am = a−m, which has the four

properties listed below.

(3.63) |am| is uniformly bounded for m ∈ ΛN .

(3.64) lim
|m|→∞

|am| = 0.

(3.65) ∃m0 ∈ ΛN such that am0 6= 0.

If x0 ∈ TN\C(ξ1)× · · · × C(ξN ), then ∃ r0 > 0 such that

(3.66) lim
t→0

∑

m∈ΛN

ame
im·xe−|m|2t = 0 uniformly for x ∈ B(x0, r0).

Just as in the proof of the necessary condition of Theorem 3.2 (see (3.10)-
(3.12)), the existence of a series with properties (3.63)-(3.66) will imply the
necessary condition for Theorem 3.8. In particular, (3.64) shows that we are
now dealing with the class B(TN ).

To demonstrate the existence of a series with properties (3.63)-(3.66),
we proceed as follows:

With C(ξj) ⊂ T1, 0 < ξj < 1/2, we use the familiar Lebesgue-Cantor
function (see [Zy1, p. 194], [Sa, p. 101]) associated with C(ξj) to obtain a
nonnegative Borel measure νj on T1 with the property that νj [C(ξj)] = 1
and νj[T1\C(ξj)] = 0. Also, νj is nonatomic, i.e., νj[{s}] = 0 ∀s ∈ T1. We
set

(3.67) ν̂j(n) = (2π)−1

∫

T1

e−insdνj(s) for n = 0,±1,±2, ....

It follows from (3.67) that ν̂j(n) = ν̂j(−n) and also that the sequence
{ν̂j(n)}∞n=−∞ is uniformly bounded. In particular, it is easy to see that this



3. UNIQUENESS, NUMBER THEORY, AND FRACTALS 125

last fact implies that there is a constant c such that

(3.68)

∣∣∣∣∣
∞∑

n=−∞

ν̂j(n)einse−|n|2t

∣∣∣∣∣ ≤ ct
−1/2 ∀s ∈ T1 and for 0 < t < 1.

From [Zy2, p. 151], we also observe that

(3.69) ξ−1
j is not an S number =⇒ lim

|n|→∞
ν̂j(n) = 0.

All this was for j = 1, ..., N. To obtain the coefficients am, we set

(3.70) am = ν̂1(m1) · · · ν̂N (mN ) ∀m ∈ ΛN .

It is clear from (3.67) and (3.70) that am = a−m and that the coefficients
am meet (3.63). This last fact joined with (3.69) and (3.70) shows that
the coefficients am also meet (3.64). Also, we see from (3.67) joined with
(3.70) that a0 = (2π)−N . So the coefficients am also meet (3.65). It remains
to show that the coefficients am also meet (3.66). The proof for this fact
proceeds exactly as before using (3.17)-(3.19). Hence the necessary condition
for Theorem 3.8 is established.

To show that the sufficiency condition holds, for ease of notation, we will
prove the theorem for the case N = 3. A similar proof prevails for N = 2
and for N ≥ 4.

We are given C(ξ1)×C(ξ2)×C(ξ3) where at least one of ξ−1
1 , ξ−1

2 , ξ−1
3

is an S number. Without loss of generality, we shall suppose ξ−1
1 is an S

number. Hence, it follows from [Zy2, pp. 152-3.] that C(ξ1) is a finite union

of H(J)-sets. Since the analogue of Proposition 3.1 holds for the class B(TN ),
to show that C(ξ1)×C(ξ2)×C(ξ3) is a set of uniqueness for the class B(T3),
it is sufficient to show that

E × C(ξ2)×C(ξ3) is a set of uniqueness for the class B(T3)

where E ⊂ T1 is an H(J)-set that is closed in the torus topology. This last
fact, in turn, will follow if we demonstrate that

(3.71) E × T1 × T1 is a set of uniqueness for the class B(T3)

where E ⊂ T1 is an H(J)-set closed in the torus topology and J is a positive
integer.

So once we show that (3.71) holds the proof of the sufficiency condition,
the theorem will be complete. We now do this.

Since E × T1 × T1 is a set closed in the torus topology of T3, it follows
from Lemma 3.6 that (3.71) will be established once we show the existence of
a sequence of functions {λk}∞k=1 in D(T3) with the following four properties:
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(3.72)
(i)Su♦(λk) ⊂ T3\ E × T1 × T1 ∀k;

(ii) limk→∞ λ̂k(0) = γ0 > 0;

(iii) limk→∞ λ̂k(m) = 0 for m ∈ Λ3, m 6= 0;

(iv)∃M > 0 such that
∑

m∈Λ3

∣∣∣λ̂k(m)
∣∣∣ ≤M <∞ ∀k

where Λ3 represents the set of integral lattice points in R3.
In order to obtain the sequence {λk}∞k=1, we use the fact that E ⊂ T1 is

an H(J)-set (see the definition above (3.37)) and let {V J
k }∞k=1 be the normal

sequence and Q ⊂ TJ be the parallelopiped associated with the H(J)-set
E. Also, let

Qj = (αj , βj) ⊂ T1

be the one-dimensional open interval for j = 1, ...J such that

Q = Q1 × · · ·QJ .

Next, select numbers α′
j, β

′
j , α

′′
j , β

′′
j such that

−π < αj < α′
j < α′′

j < β′′j < β′j < β j < π, for j = 1, ..., J,

and define functions of one real variable ηj(s) ∈ D(T1) such that

(3.73)

ηj(s) = 1 in [α′′
j , β

′′
j ]

= 0 in [−π, π]\[α′
j , β

′
j ]

and also such that

(3.74) η̂j(0) = 1 where η̂j(n) = (2π)−1

∫ π

−π
ηj(s)e

−insds

for n = 0,±1,±2, ..., and for j = 1, ...J. Also, set

(3.75) ηJ+1(s) = ηJ+2(s) = η1(s).

Next, with x = (x1, x2, x3), define

(3.76) λk(x) = η1(v
1
kx1) · · · ηJ(vJ

kx1)ηJ+1(3
kx2)ηJ+2(3

kx3).

for k = 1, 2, .... Since vj
k is a positive integer, it follows that λk ∈ D(T3). It

remains to show that {λk}∞k=1 meets the conditions (3.72)(i)-(iv).
To establish (i) of (372), set

Q∗
j = ∪∞n=−∞{Qj + 2πn}

and observe that

Q∗ = ∪m∈ΛJ
{Q+ 2πm} = Q∗

1 × · · · ×Q∗
J
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where ΛJ represents the set of integral lattice points in RJ .
Fix k and note that because E is an H(J)-set, it follows that for x1 ∈

E, (v1
kx1, ..., v

J
k x1) /∈ Q∗. Let x0

1 be a fixed point in E. Then there exists a

j such that vj
k x

0
1 /∈ Q∗

j . For simplicity, say j = 1. Then vj
k x

0
1 /∈ Q∗

1. Also,

because Q∗
1 is a closed set, ∃ε > 0 such that for x1 ∈ ( x0

1− ε, x0
1 + ε) , v1

kx1

/∈ Q∗
1. But then it follows from (3.73) that

η1(v
1
kx1) = 0 for x1 ∈ (x0

1 − ε, x0
1 + ε).

Hence, we obtain from (3.75) and (3.76) that

λk(x) = 0 for x1 ∈ (x0
1 − ε, x0

1 + ε) and x2, x3 ∈ T1.

We conclude there exists a set G, which is open in the torus topology of
T3 such that E × T1 × T1 ⊂ G and

λk(x) = 0 for x ∈ G.
On the other hand, Su♦(λk) ⊂ T3 is a set closed in the torus topology

of T3. So we obtain from this last equality that

Su♦(λk) ∩E × T1 × T1 = ∅,

and (i) in (3.72) is established.
To establish the last three items in (3.72), we observe from (3.74) that

(3.77) ηj(s) =

∞∑

n=−∞

η̂j(n)eins for s ∈ T1,

and that there is a constant c such that

(3.78)
∞∑

n=−∞

∣∣η̂j(n)
∣∣ ≤ c for j = 1, ..., J + 2.

It then follows from (3.76) that

(3.79) λk(x) =
∑

m∈ΛJ

λ̂k(m)eim·x

where λ̂k(m) = 0 unless there are integers pJ+1, pJ+2 such that

m2 = 3kpJ+1, m3 = 3kpJ+2,

and there is a p = (p1, .., pJ ) ∈ ΛJ such that

m1 = v1
kp1 + · · ·+ vJ

k pJ .

If this is the case, then it follows from (3.76) and (3.77) that

(3.80) λ̂k(m) = η̂J+1(pJ+1)η̂J+2(pJ+2)[
∑

v1
kp1+···+vJ

k pJ=m1

η̂1(p1) · · · η̂1(pJ)].

It is clear from (3.77) and (3.80) that

∑

m∈Λ3

∣∣∣λ̂k(m)
∣∣∣ ≤

∞∑

p1=−∞

|η̂1(p1)| · · ·
∞∑

pJ+2=−∞

∣∣η̂J+2(pJ+2)
∣∣ ≤ cJ+2,
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which establishes (3.72)(iv) with M = cJ+2.
Next, we see from (3.74) and (3.80) that

(3.81) λ̂k(0) = 1 + λ̂
′

k(0)

where

(3.82) λ̂
′

k(0) =
∑

p1v1
k+···+pJvJ

k =0

η̂1(p1) · · · η̂J(pJ) for 0 < |p1|+ · · ·+ |pJ | .

Let ε > 0 be given. We will establish (ii) in (3.72) by showing

(3.83) lim sup
k→∞

∣∣∣λ̂′k(0)
∣∣∣ ≤ ε,

and therefore that limk→∞ λ̂
′

k(0) = 0.
To accomplish (3.83), we see there exists an integer r0 > 0 such that

(3.84)

∞∑

|pj |=r0+1

∣∣η̂j(pj)
∣∣ ≤ εc−(N−1)J−1 and for j = 1, ...J

where c is the constant in (3.78). Next, we set

(3.85) ΛJ
r0

= {(p1, ..., pJ ) ∈ ΛJ\{0} : |pj| ≤ r0 for j = 1, ...J},
and use exactly the same reasoning and same computation used in the para-
graph below (3.45) to obtain the inequality in (3.83) from (3.84) and (3.85).
Since ε is an arbitrary positive number, it follows then from (3.83) that

lim
k→∞

λ̂
′

k(0) = 0.

We consequently conclude from (3.81) that

lim
k→∞

λ̂k(0) = 1,

and (ii) of (3.72) is established.
It only remains to show that (3.72) (iii) is valid. To do this, let

m∗ ∈ Λ3\{0}
be a fixed lattice point, and let ε > 0 be given. We will show that (3.72) (iii)
holds by demonstrating that

(3.86) lim sup
k→∞

∣∣∣λ̂k(m
∗)
∣∣∣ ≤ ε.

If m∗
3 6= 0, then according to the discussion in between (3.79) and (3.80),

if no integer pJ+2 exists such that m∗
3 = 3kpJ+2 , then

λ̂k(m
∗) = 0.

Obviously, since m∗
3 6= 0 is fixed, if k is sufficiently large, there is no such

integer pJ+2. Consequently,

m∗
3 6= 0 =⇒ lim

k→∞
λ̂k(m

∗) = 0.
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Similar reasoning applies when m∗
2 6= 0. So, in particular, (3.86) is estab-

lished in these two cases, and therefore we need only consider the situation
when

m∗ = (m∗
1, 0, 0) where m∗

1 6= 0.

In this case, it follows from (3.74), (3.75), and (3.80) that

(3.87) λ̂k(m
∗) =

∑

v1
kp1+···+vJ

k pJ=m∗
1

η̂1(p1) · · · η̂1(pJ)].

With ΛJ
r0

defined in (3.85), we choose k0 so that

k ≥ k0 =⇒
∣∣v1

kp1 + · · ·+ vJ
k pJ

∣∣ ≥ |m∗
1|+ 1.

Consequently, if k ≥ k0 and v1
kp1 + · · · + vJ

k pJ = m∗
1, then for at least one

pj,

|pj| ≥ r0 + 1.

Hence, we obtain from (3.78) and (3.87) that

∣∣∣λ̂k(m
∗)
∣∣∣ ≤ {

∞∑

|p1|=r0+1

∞∑

p2=−∞

· · ·
∞∑

pJ=−∞

|η̂1(p1) · · · η̂J(pJ)|

+
∞∑

p1=−∞

∞∑

|p2|=r0+1

∞∑

p3=−∞

· · ·
∞∑

pJ=−∞

|η̂1(p1) · · · η̂J(pJ)|+ · · ·

+

∞∑

p1=−∞

∞∑

p2=−∞

· · ·
∞∑

pJ−1=−∞

∞∑

|pJ |=r0+1

|η̂1(p1) · · · η̂J(pJ)|}

≤ cN−1
∞∑

|p1|=r0+1

|η̂1(p1)|+ · · ·+ cN−1
∞∑

|pJ |=r0+1

|η̂J(npJ)|

for k ≥ k0.
We infer from (3.84) and this last set of inequalities that

∣∣∣λ̂k(m
∗)
∣∣∣ ≤ ε for k ≥ k0.

This establishes (3.86), which implies that (3.72)(iii) is valid, and com-
pletes the proof of the sufficiency condition to the theorem. �

The sets of uniqueness for the class B(TN ) that we dealt with in Theorem
3.8 were all cartesian product sets. From Theorem 3.5, we also have that
H#-sets are sets of uniqueness for the class B(TN ), and what is interesting
is that there are H#-sets that are not Cartesian product sets. It turns out
that these sets, which we will discuss, also arise in the mathematical theory
of fractals. The examples presented here are from the article Fractals and
Distributions on the N-torus [Sh3].



130 3. UNIQUENESS OF MULTIPLE TRIGONOMETRIC SERIES

For ease of notation, we will work on the unit N -torus, T 1
N , which we

define as

T 1
N = {x : 0 ≤ xj < 1, j = 1, ..., N}.

If E ⊂ T 1
N is closed in the torus topology of T 1

N , we say it is an H#-set
on T 1

N provided

(i) there is a sequence {pk}∞k=1 of integral lattice points pk = (pk
1 , ..., p

k
N )

with

pk
j > 0 and limk→∞p

k
j =∞ for j = 1, ...N, and

(ii) a parallelopiped Q ⊂ T 1
N where

Q = {x : 0 < αj < xj < β j < 1, j = 1, ..., N},
such that

x ∈ E =⇒ (x1p
k
1, ..., xNp

k
N ) ∈ T 1

N\Q mod 1 in each entry,

for k = 1, 2, ....

The first example of an H#-set that is not a Cartesian product set that
we look at arises in dimension N = 3, and is referred to by Mandelbrot as
triadic fractal foam [Man, p. 133]. We define it on T̄ 1

3 , the closed unit cube
in R3, and refer to it as TFF. The H#-set of our example will then be

(3.88) E = TFF ∩ T 1
3 .

To define TFF, subdivide T̄ 1
3 into 27 closed congruent cubes by cutting

T̄ 1
3 with planes parallel to the three axes, i.e., xj = 1/3, 2/3 for j = 1, 2,

3. Each cube has a distinguished point within it, namely xj1,1, which is the
point with the smallest Euclidean norm in each cube. Each xj1,1 corresponds
to a unique triple

(3.89) xj1,1 ←→ (ε1, δ1, ζ1)

with xj1,1 = (ε1/3, δ1/3, ζ1/3) where ε1, δ1, ζ1 runs through the numbers
0, 1, 2 with one caveat: we do not allow the triple with ε1 = δ1 = ζ1 = 1 since
we are going to remove the open cube corresponding to this point. We shall
define an ordering on different triples of the nature (ε1, δ1, ζ1) 6= (ε′1, δ

′
1, ζ

′
1)

as follows:

(3.90) (ε1, δ1, ζ1) ≺ (ε′1, δ
′
1, ζ

′
1) means

(i) ε1 < ε′1 or (ii) ε1 = ε′1 and δ1 < δ′1 or (iii) ε1 = ε′1 and δ1 = δ′1 and
ζ1 < ζ ′1. This also imposes an ordering on { xj1,1} via (3.89).

Now we have 26 triples, and we count them out according to this ≺-
ordering, giving us {xj1,1}26j1=1. Thus, x1,1 = (0, 0, 0), x2,1 = (0, 0, 1/3),

x3,1 = (0, 0, 2/3), x4,1 = (0, 1/3, 0), ..., x26,1 = (2/3, 2/3, 2/3). The closed
cube, which has xj1,1 as its distinguished point, will have the label Ij1,1. We
then define I1 ⊂ T̄3 to be the closed set

I1 = ∪26
j1=1I

j1,1.
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In each of the 26 cubes, which have sides of length 1/3, we now perform the
same operation as above, obtaining (26)2 cubes, which now have sides of
length (1/3)2. Each of these last mentioned cubes has a distinguished point

xj2,2 = xj1,1 + (ε2/3
2, δ2/3

2, ζ2/3
2)

where ε2, δ2, ζ2 runs through the numbers 0, 1, 2, and we do not allow the
triple with ε2 = δ2 = ζ2 = 1. These triples have an ordering imposed
on them by (3.89), which, in turn, gives an ordering on {xj2,2} defined as
follows:

xj2,2 ≺ xj′2,2 means

(3.91) (i)xj1,1 ≺ xj′1,1 or (ii)xj1,1 = xj′1,1 and (ε2, δ2, ζ2) ≺ (ε′2, δ
′
2, ζ

′
2).

We then count out the (26)2 points according to this ordering and obtain

{xj2,2}(26)
2

j2=1 . The closed cube contains xj2,2 as its distinguished point, and

we will call it Ij2,2. We then define I2 ⊂ I1 ⊂ T̄3 to be the closed set

(3.92) I2 = ∪(26)2

j2=1I
j2,2.

In each of the (26)2 cubes that have sides of length (1/3)2, we now
perform the same operation as before obtaining (26)3 cubes with each
having sides of length (1/3)3. We get distinguished points in each of these
cubes and put an ordering on them similar to the procedure in (3.91) to

obtain {xj3,3}(26)
3

j3=1 . Next, in a procedure similar to (3.92), we get the closed

set I3 with I3 ⊂ I2 ⊂ I1 ⊂ T̄3.
Continuing in this manner, we get the decreasing sequence of closed sets

{In}∞n=1 with In+1 ⊂ In ⊂ T̄3 where each In consists of (26)n cubes each
with sides of length (1/3)n. The closed set TFF is then defined to be

(3.93) TFF = ∩∞n=1I
n.

With E defined by (3.88) where TFF is defined by (3.93), we see that
E is closed in the torus sense because every point in the boundary of T̄ 1

3

is contained in TFF. We will demonstrate that E is an H#-set by showing
that

(3.94) x ∈ E ⇒ (3kx1, 3
kx2, 3

kx3) ∈ E mod1 in each variable

for k, a positive integer, where x = (x1, x2, x3). For recall, the first open cube
removed above had sides of length 1/3 and a distinguished point (1/3, 1/3,
1/3). So if we take the Q in the definition of an H#-set to be

Q = (4/9, 5/9) × (4/9, 5/9) × (4/9, 5/9),

it will follow from (3.94) that

x ∈ E ⇒ (3kx1, 3
kx2, 3

kx3) /∈ Q mod1 in each variable.

Therefore, once (3.94) is established, it will follow that E is indeed an H#-set
.
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To show that (3.94) holds, it is clearly sufficient to show that it holds in
the special case when k=1, i.e.,

(3.95) x ∈ E ⇒ (3x1, 3x2, 3x3) ∈ E mod1 in each entry.

It follows from the definition of TFF in (3.93) that given xo ∈ TFF,

∃ {xjn,n
o }∞n=1, where each xjn,n

o is a distinguished point of one of the (26)n

cubes in In of sides (1/3)n such that
∣∣xjn,n

o − xo

∣∣→ 0 as n→∞.
Consequently, since E is closed in the torus topology, to show that (3.95)
holds, it is sufficient to show that it holds in the special case when x is a
distinguished point xjn,n.

If x = xj1,1, then it follows from the enumeration of the 26 such points
given below (3.90) that the conclusion in (3.95) holds. Hence from the above,
(3.95) will hold if we show the following:

Given xjn,n = (xjn,n
1 , xjn,n

2 , xjn,n
3 ), a distinguished point in an Ijn,n, then

(3.96) (3xjn,n
1 , 3xjn,n

2 , 3xjn,n
3 ) = xjn−1,n−1 mod 1 in each entry

for n ≧ 2 where xjn−1,n−1 is a distinguished point in an Ijn−1,n−1.
It is clear from the representation of xj2,2 given above (3.91) that

xj2,2 =

(
ε1
3

+
ε2
32
,
δ1
3

+
δ2
32
,
ζ1

3
+
ζ2

32

)

where εi, δi, ζi runs through the numbers 0, 1, 2, and we do not allow εi =
δi = ζi = 1 for i=1, 2. Exactly similar reasoning shows that

xjn,n =

(
n∑

i=1

εi

3i
,

n∑

i=1

δi

3i
,

n∑

i=1

ζi

3i

)

where now εi = δi = ζi = 1 is not allowed for i = 1, ..., n. From this last
equality, we see that

(3xjn,n
1 , 3xjn,n

2 , 3xjn,n
3 ) =

(
ε1 +

n−1∑

i=1

εi+1

3i
, δ1 +

n−1∑

i=1

δi+1

3i
, ζ1 +

n−1∑

i=1

ζi+1

3i

)
.

But ε1, δ1, and ζ1 are each nonnegative integers, and we conclude from this
last computation that (3.96) does indeed hold. Hence E defined by (3.88) is
an H#-set, and our example is complete.

Our next example of an H#-set that is not a Cartesian product set will
take place in dimension N = 2. We will call it a generalized carpet and refer
to it as GCpq where p ≥ 3 and q ≥ 3 and both are integers. The set GCpq

will be a subset of the closed unit square

T̄ 1
2 = {x = (x1, x2) : 0 ≦ xj ≦ 1, j = 1, 2}.
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In particular, when p = q = 3, GCpq is the set referred to in the literature
as the Sierpinski carpet [Man, p. 142]. Fractal sets related to GCpq are also
discussed in Falconer’s book [Fal, p. 129].

To define GCpq, subdivide T̄ 1
2 into pq closed congruent rectangles by

cutting T̄2 with lines parallel to the two axes, as follows:

x1 = 1/p, 2/p, ..., (p − 1)/p; x2 = 1/q, 2/q, ..., (q − 1)/q.

Each rectangle has a distinguished point within it, namely xj1,1, which
is the point with the smallest Euclidean norm in each rectangle. Each xj1,1

corresponds to a unique double

(3.97) xj1,1 ←→ (ε1, δ1)

with xj1,1 = (ε1/p, δ1/q) where ε1 and δ1 run through the numbers 0, 1, ...,
p− 1 and 0, 1, ..., q− 1, respectively. There is a caveat, however: the doubles
with ε1 = 1, ..., p − 2, and simultaneously δ1 = 1, ..., q − 2 are not allowed,
for the rectangles corresponding to these points will be removed, i.e., the
middle (p− 2)(q − 2) rectangles will be deleted.

For example, when p = 5 and q = 4, each of the 6 rectangles with a · in
it in the following diagram will be removed:

· · ·
· · ·

An ordering on different doubles of the nature (ε1, δ1) 6= (ε′1, δ
′
1) is then

defined as follows:

(3.98) (ε1, δ1) ≺ (ε′1, δ
′
1) means

(i) ε1 < ε′1 or (ii) ε1 = ε′1 and δ1 < δ′1.
This also imposes an ordering on { xj1,1}γj1=1 via (3.97) where γ is the

integer

γ = pq − (p − 2)(q − 2).

In particular, we see that x1,1 = (0, 0), x2,1 = (0, 1/q), x3,1 = (0, 2/q), ...,
xγ,1 = ((p − 1)/p, (q − 1)/q). We also observe that xq,1 = (0, (q − 1)/q),
xq+1,1 = (1/p, 0), and xq+2,1 = (1/p, (q − 1)/q). The closed rectangle that
has xj1,1 as its distinguished point, will have the label Ij1,1. We then define
I1 ⊂ T̄ 1

2 to be the closed set

I1 = ∪γ
j1=1I

j1,1.

In each of the γ closed rectangles, which have sides of length 1/p and
1/q, we now perform the same operation as above, obtaining γ2 closed rect-
angles, which now have sides of length (1/p)2 and (1/q)2. Each of these
last mentioned rectangles has a distinguished point within it, namely xj2,2,
where

xj2,2 = xj1,1 + (ε2/p
2, δ2/q

2),
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and where ε2 and δ2 run through the numbers 0, 1, ..., p − 1 and 0, 1, ...,
q − 1, respectively. Also, we do not allow the doubles with ε2 = 1, ..., p − 2,
and simultaneously δ2 = 1, ..., q − 2 because the corresponding rectangles
have been removed.

The doubles (ε2, δ2) 6= (ε′2, δ
′
2) have an ordering imposed upon them

by (3.98), which, in turn, imposes an ordering on the distinguished points

given by xj2,2 ≺ xj′2,2 akin to the ordering given in (3.91). We count out

the γ2 points according to this ordering and obtain {xj2,2}γ2

j2=1. The closed

rectangle of sides (1/p)2 and (1/q)2 containing xj2,2 as its distinguished
point, will be called Ij2,2. We then define I2 ⊂ I1 ⊂ T̄ 1

2 to be the closed set

I2 = ∪γ2

j2=1I
j2,2.

Continuing in this manner, we get the decreasing sequence of closed sets
{In}∞n=1 with In+1 ⊂ In ⊂ T̄ 1

2 where each In consists of γn rectangles each
with sides of length (1/p)n and (1/q)n. The set GCpq is then defined to be

(3.99) GCpq = ∩∞n=1I
n.

Next, we define E to be the set

(3.100) E = GCpq ∩ T 1
2 ,

and observe that E is closed in the torus sense because every point in the
boundary of T̄2 is contained in GCpq.

We want to show that E is an H#-set. So we take Q to be the open
rectangle

Q = (
1

p
+

1

p2
,
2

p
− 1

p2
)× (

1

q
+

1

q2
,
2

q
− 1

q2
).

We will demonstrate that

(3.101) x ∈ E ⇒ (pkx1, q
kx2) ∈ E mod1 in each variable

for k, a positive integer and with x = (x1, x2). Once (3.77) is established,
then it follows from the way that E was constructed that

x ∈ E ⇒ (pkx1, q
kx2) /∈ Q mod1 in each variable

∀k, and consequently, that E is indeed an H#-set.
To show that (3.77) holds, it is clearly sufficient to show that it holds in

the special case when k = 1, i.e.,

(3.102) x ∈ E ⇒ (px1, qx2) ∈ E mod1 in each variable.

Using the same argument that we used after (3.95), we see that to show
that E is an H#-set, it is sufficient to show that (3.102) holds for the special
case when x = xjn,n, a distinguished point in one of the closed rectangles
Ijn,n with sides (1/p)n and (1/q)n.

If x = xj1,1, then it follows from the enumeration of such points below
(3.98) that (3.102) does indeed hold. Hence, to show that E is an H#-set,
it only remains to establish the fact that (3.102) holds when x = xjn,n for
n ≧ 2. This will be accomplished if we show the following fact prevails:
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Given xjn,n = (xjn,n
1 , xjn,n

2 ) a distinguished point in an Ijn,n, then

(3.103) (pxjn,n
1 , qxjn,n

2 ) = xjn−1,n−1 mod 1 in each variable

for n ≧ 2 where xjn−1,n−1 is a distinguished point in an Ijn−1,n−1.
It is clear from the representation of xj2,2 given above that

xj2,2 =

(
ε1
p

+
ε2
p2
,
δ1
q

+
δ2
q2

)

where εi and δi run through the numbers 0, ..., p− 1, and 0, ..., q− 1, respec-
tively, and we do not allow εi = 1, ..., p−2 and simultaneously δi = 1, ..., q−2
for i=1, 2. Exactly similar reasoning shows that

(3.104) xjn,n =

(
n∑

i=1

εi
pi
,

n∑

i=1

δi

qi

)

where εi and δi are exactly as before with now i = 1, ..., n.
From (3.104), we see that

(pxjn,n
1 , qxjn,n

2 ) =

(
ε1 +

n−1∑

i=1

εi+1

pi
, δ1 +

n−1∑

i=1

δi+1

qi

)
.

But ε1 and δ1 are each nonegative integers, and we conclude from this last
equality and (3.104) that (3.103) does indeed hold. Hence, E defined by
(3.100) is an H#-set, and our example is complete.

Exercises.

1. In dimension N = 2, use the method of sequences to define the notion
E ⊂ T2 is a closed set in the torus topology where

T2 = {x : −π ≤ xj < π, j = 1, 2}.
Prove E ⊂ T2 is a closed set in the torus topology if and only if E∗ is a
closed set in R2 where

E∗ = ∪m∈Λ2{E + 2πm}.
2. With m ∈ Λ2, find a sequence [am]m∈Λ2

such that

limmin(|m1||m2|)→∞ am = 0

but lim|m|→∞ am = 0 is false.
3. In dimension N = 4, find ηk (x) where ηk (x) is defined in (3.22) and

prove that

η̂k(m) = (−1)N+1λ̂1,k(m1) · · · λ̂N,k(m4) when m1 · · ·m4 6= 0.

4. In dimension N = 3, show that with P = 8,

Q = ∪3
j=1Qj,P ∪Q

′

P

where Qj,P is defined in (3.31) and Q and Q
′

P are defined in (3.32).
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5. Let C(ξ) designate the familiar Cantor set on the half-open interval
[−π, π) = T1. Prove that in dimension N = 2, C(1/5)×C(2/5) is an H#-set.

4. Further Results and Comments

1. Zygmund proved an extension of Theorem 2.2, which is Cooke’s
elegant result. Zygmund in [Zy3] established the following theorem, which
for two dimensions is a good generalization of the classical Cantor-Lebesgue
lemma.

Theorem. Given the series
∑

m∈Λ2
bme

im·x where bm=b−m and dimen-

sion N = 2, set Bn(x) =
∑

|m|2=n bme
im·x, and suppose

lim
n→∞

Bn(x) = 0 for x ∈ E

where E ⊂ T2 and |E| > 0. Then

lim
n→∞

∑

|m|2=n

|bm|2 = 0.

2. A uniqueness theorem for harmonic functions making use of some of
the ideas in Theorem 1.1 appeared in 2002 in the American Mathematical
Monthly [Sh17]. It was the following result:

Theorem. Let u (x) be harmonic in B (0, 1) where B (0, 1) ⊂ R2 is the
unit 2-ball. Set U (r, θ) = u (r cos θ, r sin θ) and suppose

(i) lim
r→1

U (r, θ) = 0 for − π ≤ θ < π.

(ii) max
− π≤θ<π

|U (r, θ)| = o

(
1

(1− r)2
)

as r → 1.

Then u (x) is identically zero in B (0, 1).

This result is false if (i) is replaced by (i′) where
(
i′
)

lim
r→1

U (r, θ) = 0 for − π ≤ θ < 0 and 0 < θ < π,

as the familiar function P (r, θ) = 1−r2

1−2r cos θ+r2 illustrates.

Likewise, the theorem is false if (ii) is replaced by (ii′) where

(
ii′
)

max
− π≤θ<π

|U (r, θ)| = O

(
1

(1− r)2
)

as r → 1,

as the function
∂P

∂θ
(r, θ) = − 2r(1− r2) sin θ

(1− 2r cos θ + r2)2
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illustrates. It is clear that limr→1
∂P
∂θ (r, θ) = 0 ∀θ and that

lim
r→1

∂P

∂θ
(r, 1− r) = 1.

So, indeed (ii) cannot be replaced by (ii′).
For the details of the proof of the above theorem, we refer the reader to

the monthly article [Sh17].
The main thrust of the monthly article is that both Riemann and Gauss

were capable of conjecturing the above theorem but probably would not
have been capable of proving it. The main tool needed in its proof is the
Baire Category Theorem, which was not discovered until 1899, which was
33 years after the death of Riemann.





CHAPTER 4

Positive Definite Functions

1. Positive Definite Functions on SN−1

Spherical harmonic functions can be used to solve problems in discrete
geometry. In particular, Oleg Musin gave a new proof for the kissing number
k(3) for spheres using positive definite functions and spherical harmonics in
his paper [Mu], which appeared in 2006 in the journal Discrete and Com-
putational Geometry. In three dimensions, the kissing number problem is to
show that no more than twelve white billiard balls can simultaneously kiss
(touch) a black billiard ball. This problem goes back to Isaac Newton in
1694 and was not completely solved until 1953. Musin has given a new proof
that k(3) = 12, which makes strong use of part of Schoenberg’s theorem
involving surface spherical harmonics on S2.

Since Schoenberg’s theorem [Sch, p. 101] does not appear in the books
[AAR], [ABR], or [EMOT], we will present it here on SN−1, N ≥ 3, making
use of the Gegenbauer polynomials. These polynomials and the theorem on
SN−1 evidently are also useful in dealing with the higher dimensional kissing
numbers and possibly other problems in discrete geometry. For all this, we
refer the reader to the 2004 article in the Notices of the AMS by Pfender
and Ziegler, [PZ].

Let f(t) be a real-valued continuous function defined on the interval
[−1, 1]. We say f is positive definite on SN−1 if the following prevails for
every positive integer n:

(1.1)

n∑

j=1

n∑

k=1

f(ξj · ξk)bjbk ≥ 0,

for ξ1, ..., ξn ∈ SN−1 and for numbers b1, ..., bn ∈ R.
We intend to establish a theorem connecting a positive definite f on

SN−1 with its Gegenbauer-Fourier series. So for f ∈ C([−1, 1]), using Ap-
pendix A, (3.41)-(3.44), we set

(1.2) an = τ−1
n

∫ 1

−1
Cν

n(t)f(t)(1− t2)ν− 1
2dt,

where ν = (N − 2)/2 and

(1.3) τn = Cν
n(1)

Γ(1
2)Γ(ν + 1

2)

(ν + n)Γ(ν)
.

139
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In Appendix A, Theorem 3.5, we also show that the system of Gegen-
bauer polynomials, {Cν

n(t)}∞n=0, is a complete orthogonal system for

L2
µ([−1, 1])

where µ = (1− t2)ν− 1
2 . Here, we establish the following theorem for positive

definite functions on SN−1 (which is due to Schoenberg [Sch] for N = 3).

Theorem 1.1. Let f ∈ C([−1, 1]), and suppose ν = (N − 2)/2 where
N ≥ 3. Define an by the formula in (1.2). Then a necessary and sufficient
condition that f be positive definite on SN−1 is that

(i) an ≥ 0 ∀n,

(ii) f(t) = lim
n→∞

n∑

j=0

ajC
ν
j (t) uniformly for t ∈ [−1, 1].

Proof of Theorem 1.1. We first show that for each nonnegative integer
n, Cν

n(t) is a positive definite function on SN−1. To accomplish this, we let

{Yj,n(ξ)}µn,N

j=1 be an orthonormal set of surface spherical harmonics of degree

n, as in (3.8) of Appendix A. It then follows from the addition formula for
surface spherical harmonics given in (3.9) of Appendix A that

(1.4) Cν
n(ξ · η) = γN

µn,N∑

l=1

Yl,n(ξ)Yl,n(η),

where γN is a positive constant. Consequently,

M∑

j=1

M∑

k=1

Cν
n(ξj · ξk)bjbk = γN

µn,N∑

l=1

(

M∑

j=1

Yl,n(ξj)bj)
2 ≥ 0,

and we conclude from (1.1) that indeed

(1.5) Cν
n(t) is a positive definite function on SN−1,

for every n.
To establish the sufficiency condition of the theorem, we observe from

the definition given for positive definite functions in (1.1) that a finite linear
combination of positive definite functions is clearly positive definite. Since
by hypothesis (i), an ≥ 0, it follows from (1.5) that

n∑

j=0

ajC
ν
j (t) is a positive definite function.

Since the uniform limit of a sequence of positive definite functions is
positive definite, we see from hypothesis (ii) in the theorem that f(t) is also
positive definite, and the sufficiency condition of the theorem is established.
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To prove the necessary condition, we first observe that if g ∈ C([−1, 1])
and is also positive definite on SN−1, then

(1.6)

∫

SN−1

∫

SN−1

g(η · ξ)dS(η)dS(ξ) ≥ 0.

To see that this is the case, we use the definition of the Riemann integral
and take a sequence of partitions {Pn}∞n=1 of SN−1 where

Pn = {Pn
j }αn

j=1 and SN−1 = ∪αn
n=1P

n
j

and the diameter of Pn
j goes to zero as n → ∞. Also, αn → ∞. In each

Pn
j , we choose a ξj,n ∈ Pn

j . Then

∫

SN−1

g(η · ξ)dS(ξ) = lim
n→∞

αn∑

j=1

g(η · ξj,n)
∣∣Pn

j

∣∣

where
∣∣∣Pn

j

∣∣∣ designates the N − 1-volume of Pn
j . Likewise,

(1.7)

∫
SN−1

∫
SN−1

g(η · ξ)dS(η)dS(ξ) =

limn→∞
∑αn

j=1

∑αn
k=1 g(ξ

j,n · ξk,n)
∣∣∣Pn

j

∣∣∣ |Pn
k | .

Since g is a positive definite function, it follows that the double sum on
the right-hand side of the equality in (1.7) is nonnegative. Consequently, the
limit in (1.7) is nonnegative, and (1.6) is established.

Next, with f as our given positive definite function and η ∈ SN−1, we
see, after introducing a spherical coordinate system as in §3 of Chapter 1
with η as the pole, that
∫

SN−1

f(η · ξ)Cν
n(η · ξ) dS(ξ) = |SN−2|

∫ π

0
f(cos θ)Cν

n(cos θ)(sin θ)2νdθ

= |SN−2|
∫ 1

−1
f(t)Cν

n(t)(1 − t2)ν− 1
2 dt.

Consequently, we obtain from (1.2) that

(1.8) an = γ∗n

∫

SN−1

∫

SN−1

f(η · ξ)Cν
n(η · ξ)dS(η)dS(ξ),

where γ∗n is a positive constant.
However,

(1.9) f(t)Cν
n(t) is a positive definite function on SN−1.

So it follows from (1.6) and (1.8) that

(1.10) an ≥ 0 ∀n,
and condition (i) in the necessary part of the theorem is established.

To see that the statement in (1.9) is true, we observe from (1.4) that
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∑M
j=1

∑M
k=1 f(ξj · ξk)Cν

n(ξj · ξk)bjbk

= γn

µn,N∑

l=1

{
M∑

j=1

M∑

k=1

f(ξj · ξk)bjbkYl,n(ξj)Yl,n(ξk) }.

By positive definiteness, the double sum inside the braces on the right-hand
side in this last equality is nonnegative for every l. Hence, the left-hand side
is nonnegative, and the statement in (1.9) is indeed true.

Next, we see from (3.30) in Appendix A and from (1.2) and (1.3) above,
that the series

(1.11)

∞∑

n=0

anC
ν
n(1)rn = h(r)

converges uniformly for 0 ≤ r ≤ r0 where r0 < 1.
Recalling that ν = N−2

2 , from (1.2) and (1.3), we also see that

(1.12) anC
ν
n(1) = βν

(N − 2 + 2n)

N − 2

∫ 1

−1
f(t)Cν

n(t)(1− t2)ν− 1
2dt,

where βν is a positive constant. So from (3.29) in Appendix A, we obtain
that

h(r) ≤ βν ‖f‖L∞

∫ 1

−1

1− r2
(1− 2rt+ r2)N/2

(1− t2)ν− 1
2dt

for 0 < r < 1.
Since Cν

0 (t) ≡ 1, we see from Proposition 3.3 and (3.41) in Appendix A
that the integral in this last inequality is less than or equal to 2 for 0 < r < 1.
Hence,

(1.13) h(r) ≤ 2βν ‖f‖L∞ for 0 < r < 1.

But each term in the series defining h(r) in (1.11) is nonnegative. So we
conclude from (1.13) that

∞∑

n=0

anC
ν
n(1) <∞.

Next, from (3.30) in Appendix A, we have that |Cν
n(t)| ≤ Cν

n(1) for
t ∈ [−1, 1]. Consequently, it follows from this last inequality that the series

∞∑

n=0

anC
ν
n(t)

converges uniformly for t ∈ [−1, 1].
From Corollary 3.6 in Appendix A, we see furthermore that the series

converges uniformly to f(t). So,

f(t) = lim
n→∞

n∑

j=0

ajC
ν
j (t) uniformly for t ∈ [−1, 1],
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and condition (ii) in the theorem is established. �

Exercises.

1. Given ξ ∈ S2 is of the form ξ = (cos θ, sin θ cosφ, sin θ sinφ), prove
directly that P1 (t) = t is positive definite on S2.

2. Prove that

Y1 (θ, φ) = cos θ sin θ cosφ,
Y2 (θ, φ) = cos θ sin θ sinφ,
Y3 (θ, φ) = cos2 θ − (sin θ cosφ)2,
Y4 (θ, φ) = cos2 θ − (sin θ sinφ)2

constitute a set of four surface spherical harmonics of degree 2 that are
orthogonal on S2.

3. Find a nonzero surface spherical harmonics of degree 2, Y5 (θ, φ),
which is orthogonal to Yj (θ, φ) on S2. given in Exercise 2, j = 1, 2, 3, 4.
Using this new set of 5 in conjunction with Theorem 3.4 of Appendix A,
prove that P2 (t) = 1

2

(
3t2 − 1

)
is positive definite on S2.

4. Prove that
∫ 1
−1

1−r2

(1−2rt+r2)N/2 (1 − t2)ν− 1
2 dt ≤ 2 for 0 < r < 1 where

ν = N−2
2 and N ≥ 3.

5. Given f ∈ C([−1, 1]) and that f (t) is positive definite on S3, let
η∗ = (1, 0, 0, 0) and g (ξ) = f (η∗ · ξ) for ξ ∈ S3. Find a function

u (x) ∈ C∞ (B (0, 1)) ∩ C
(
B (0, 1)

)

such that

∆u (x) = 0 ∀x ∈ B (0, 1)

u (ξ) = g (ξ) ∀ξ ∈ S3,

where

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

+
∂2u

∂x2
4

,

B (0, 1) is the open unit 4-ball, and B (0, 1) is its closure.

2. Positive Definite Functions on TN

As before, we say f ∈ C(TN ) provided that f(x) is a real-valued function
in C(RN ), and f is periodic of period 2π in each variable. All the positive
definite functions that we deal with in this section will be in C(TN ). Mo-
tivated by Schoenberg’s theorem on SN−1, we shall establish an analogous
result for positive definite functions on TN .

In particular, f(x) ∈ C(TN ) will be called a positive definite function on
TN if it meets the following two conditions:

(i) f(x) = f(−x) ∀x ∈ TN ;
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(ii) ∀n ≥ 1, given x1, ..., xn ∈ TN and b1, ..., bn ∈ R,

(2.1)

n∑

j=1

n∑

k=1

f(xj − xk)bjbk ≥ 0.

If f meets condition (i) above, we will call f an even function.
We recall that

(2.2) f̂(m) = (2π)−N

∫

TN

e−im·xf(x)dx

for m ∈ ΛN where ΛN is the set of integral lattice points in RN .

Theorem 2.1. Let f be a real-valued function and suppose f ∈ C(TN ),

N ≥ 1. Define f̂(m) by the formula in (2.2). Then a necessary and sufficient
condition that f be positive definite on TN is that

(i) f̂(m) ≥ 0 for m ∈ ΛN ,

(ii) f(x) = lim
R→∞

∑

|m|≤R

f̂(m)eim·x uniformly for x ∈ TN .

This theorem is essentially due to S. Bochner (see [Ru3, p. 19]). The
proof that we give here is based on the proof of Schoenberg’s theorem given
in §1.

Proof of Theorem 2.1. We first show that for each fixed m ∈ ΛN ,
cos(m·x) is a positive definite function on TN . To see this, let x1, ..., xn ∈ TN

and b1, ..., bn ∈ R and observe that

cos[m · (xj − xk)] = cos(m · xj) cos(m · xk) + sin(m · xj) sin(m · xk).

Consequently,

n∑

j=1

n∑

k=1

cos[m · (xj − xk)]bjbk = [

n∑

j=1

bj cos(m · xj)]2 + [

n∑

j=1

bj sin(m · xj)]2

≥ 0.

So indeed cos(m · x) is positive definite on TN .
Next, we observe that if g ∈ C(TN ) is positive definite on TN , then

(2.3)

∫

TN

∫

TN

g(x − y)dxdy ≥ 0.

To see that this is the case, we use the definition of the Riemann integral
and take a sequence of partitions {Pn}∞n=1 of TN where

Pn = {Pn
j }αn

j=1 and TN = ∪αn
n=1P

n
j
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and the diameter of Pn
j goes to zero as n→∞. Also, αn →∞. In each Pn

j ,

we choose a xj,n ∈ Pn
j . Then

∫

TN

g(x− y)dx = lim
n→∞

αn∑

j=1

g(xj,n − y)
∣∣Pn

j

∣∣

where
∣∣∣Pn

j

∣∣∣ designates the N -volume of Pn
j . Likewise,

(2.4)

∫
TN

∫
TN
g(x− y)dxdy =

limn→∞
∑αn

j=1

∑αn
k=1 g(x

j,n − xk,n)
∣∣∣Pn

j

∣∣∣ |Pn
k | .

Since g is a positive definite function, it follows that the double sum on the
right-hand side of the equality in (2.4) is nonnegative. Consequently, the
limit in (2.4) is nonnegative, and we see that (2.3) is true.

To establish the sufficiency condition of the theorem, we observe from
the fact that f is a real-valued function,

f̂(−m) = f̂(m).

Consequently, it follows from (i) in the hypothesis of the theorem that

(2.5) f̂(m) = f̂(−m) ∀m ∈ ΛN .

Next, we set

(2.6) FR(x) =
∑

|m|≤R

f̂(m)eim·x,

and observe from (2.5) that also

FR(x) =
∑

|m|≤R

f̂(m)e−im·x.

Adding these last two equalities and dividing by two, we obtain that

(2.7) FR(x) =
∑

|m|≤R

f̂(m) cos(m · x) ∀R > 0.

From (ii) in the hypothesis of the theorem and (2.6), it follows that

(2.8) f(x) = lim
R→∞

FR(x) uniformly for x ∈ TN .

We have already established that cos(m · x) is positive definite. Since

f̂(m) ≥ 0, we have that

f̂(m) cos(m · x) is positive definite on TN .
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But a finite linear combination of positive definite functions is positive def-
inite. So it follows from (2.7) that

FR(x) is positive definite on TN .

This last fact joined with the statement in (2.8) establishes the sufficiency
condition of the theorem.

To establish the necessary condition of the theorem, we observe from the
formula in (2.2) and the fact that sin(m · x) is an odd function and f(x) is
an even function that

(2.9) f̂(m) = (2π)−N

∫

TN

f(x) cos(m · x)dx ∀m ∈ ΛN .

Next, we observe that

(2.10) f(x) cos(m · x) is positive definite on TN .

To establish this fact, let x1, ..., xn ∈ TN and b1, ..., bn ∈ R. Then

n∑

j=1

n∑

k=1

f(xj − xk) cos[m · (xj − xk)]bjbk

=

n∑

j=1

n∑

k=1

f(xj − xk) cos(m · xj)bj cos(m · xk)bk

+
n∑

j=1

n∑

k=1

f(xj − xk) sin(m · xj)bj sin(m · xk)bk.

Since f(x) is positive definite on TN , it follows that both of the sums on
the right-hand side of this last equality are nonnegative. Consequently, the
left-hand side is also nonnegative and (2.10) is established.

With g(x) = f(x) cos(m · x), we observe from (2.10) and (2.3) that

(2.11)

∫

TN

∫

TN

f(x− y) cos[m · (x− y)]dxdy ≥ 0 ∀m ∈ ΛN .

But because of periodicity and (2.9)
∫

TN

f(x− y) cos[m · (x− y)]dx = (2π)N f̂(m) ∀y ∈ TN .

We therefore obtain from (2.11) that

(2.12) (2π)2N f̂(m) ≥ 0 ∀m ∈ ΛN ,

and condition (i) in the conclusion of the theorem is established.
To show that condition (ii) holds, let σ♦

n(f, x) represent the iterated Fejer
partial sum of f(x) as in (2.6) of Chapter 1, i.e.,

(2.13) σ♦
n(f, x) =

n∑

m1=−n

· · ·
n∑

mN=−n

f̂(m)eim·x(1− |m1|
n+ 1

) · · · (1− |mN |
n+ 1

).
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Then

σ♦
n(f, 0) = (2π)−N

∫

TN

f(−y)K♦
n (y)dy

where K♦
n (y) is the iterated Fejer kernel given in (2.5) of Chapter 1.

Since (2π)−N
∫
TN
K♦

n (y)dy = 1 and K♦
n (y) ≥ 0, we obtain from (2.12),

(2.13), and this last equality that

(2.14) 0 ≤ σ♦
n(f, 0) ≤ ‖f‖L∞(TN ) ∀n.

Let n∗ be any fixed positive integer. It then follows from (2.13) and
(2.14) that

n∗∑

m1=−n∗

· · ·
n∗∑

mN=−n∗

f̂(m)(1 − |m1|
n+ 1

) · · · (1− |mN |
n+ 1

) ≤ ‖f‖L∞(TN ) ∀n > n∗.

Taking the limit as n→∞ of the left-hand side of this last inequality gives

n∗∑

m1=−n∗

· · ·
n∗∑

mN=−n∗

f̂(m) ≤ ‖f‖L∞(TN )

Since n∗ is an arbitrary positive integer and f̂(m) ≥ 0, we conclude that

lim
R→∞

∑

|m|≤R

f̂(m) exists and is finite.

Using f̂(m) ≥ 0 once again, we see that this last statement joined with
Corollary 2.3 in Chapter 1 gives condition (ii) in the statement of the theo-
rem. �

Exercises.

1. With f ∈ C (TN ) and f̂(m) given by (2.2), prove that if

lim
R→∞

∑

|m|≤R

f̂(m)eim·x = g (x) uniformly for x ∈ TN ,

then f (x) = g (x) ∀x ∈ TN .

2. Prove that the function t
∑

m∈ΛN
[t2 + |x+ 2πm|2]−(N+1)/2 for t > 0

and x ∈ TN is positive definite on TN .

3. Prove that the function t−N/2
∑

m∈ΛN
e−|x+2πm|2/4t for t > 0 and

x ∈ TN is positive definite on TN .
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3. Positive Definite Functions on SN1−1× TN

In this section, we shall work on the space SN1−1× TN . Here, N1 ≥ 3
will be a positive integer. Also,

ν1 =
N1 − 2

2
.

Using the methods employed in the last two sections, we intend to get an
analogous result for functions positive definite on a sphere cross a torus.

To present our result, we let I designate the closed interval on the real
line

I = [−1, 1].

We will say f(t, x) ∈ C(I × TN ) provided the following holds:

(3.1)

(i)f(t, x) is a real-valued function;

(ii)f(t, x) ∈ C(I ×RN );

(iii) ∀t ∈ I, f(t, x) is periodic of period 2π
in each component of the x-variable.

We will say f ∈ C(I × TN ) is positive definite on SN1−1× TN provided
the following two facts hold:

(3.2) ∀t ∈ I, f(t, x) = f(t,−x) for every x ∈ TN ;

(3.3) ∀n1 ≥ 1,

n1∑

k=1

n1∑

j=1

bjbkf(ξj · ξk, xj − xk) ≥ 0

for (ξj , xj) ∈ SN1−1 × TN and bj ∈ R, j = 1, ..., n1.
Next, for f ∈ C(I × TN ), we set

(3.4) f̂(n,m) = (2π)−Nτ−1
n

∫

I

∫

TN

f(t, x)(1− t2)ν1−
1
2Cν1

n (t)e−im·xdxdt,

for n ≥ 0, m ∈ ΛN , and τn is defined in (1.3) with ν replaced by ν1.
We shall establish the following theorem:

Theorem 3.1. Let f(t, x) be a real-valued function, and suppose f ∈
C(I×TN ), N ≥ 1. Define f̂(n,m) by the formula in (3.4). Then a necessary
and sufficient condition that f be positive definite on SN1−1× TN , N1 ≥ 3,
is that the following two conditions hold:

(i)f̂ (n,m) ≥ 0 for n ≥ 0 and m ∈ ΛN ;

(ii) f(t, x) = lim
n→∞

n∑

k=0

∑

|m|≤n

f̂(k,m)Cν1
k (t)eim·x

uniformly for (t, x) ∈ I × TN .
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To prove the above theorem, we will need the following lemma:

Lemma 3.2. Let f(t, x) be a real-valued function, and suppose f ∈ C(I×
TN ), N ≥ 1. Define f̂(n,m) by the formula in (3.4). Suppose also that

(3.5) f̂(n,m) = 0 for n ≥ 0 and m ∈ ΛN .

Then f(t, x) = 0 for (t, x) ∈ I ×TN .

Proof of Lemma 3.2. To prove the lemma for n, a nonnegative integer,
set

(3.6) hn(t) = (1− t2)ν1−
1
2Cν1

n (t).

Then it follows from (3.4) and (3.5) that

(3.7)

∫

TN

[

∫

I
f(t, x)hn(t)dt]e−im·xdx = 0 for n ≥ 0 and m ∈ ΛN .

For each fixed n, it is easy to see that
∫

I
f(t, x)hn(t)dt ∈ C(TN ).

But then it follows from (3.7) and Corollary 2.3 in Chapter 1 that

(3.8)

∫

I
f(t, x) hn(t)dt = 0 for x ∈ TN and n ≥ 0.

Next, because

f(t, x) ∈ C(I) for fixed x ∈ TN ,

it follows from Theorem 3.5 in Appendix A in conjunction with (3.6) and
(3.8) that f(t, x) = 0 for t ∈ I and x ∈ TN . �

Proof of Theorem 3.1. We first show for n ≥ 0 and m ∈ ΛN that

(3.9) Cν1
n (t) cos (m · x) is positive definite on SN1−1 × TN .

To see that this is the case, let (ξj , xj) ∈ SN1−1× TN for j = 1, ..., n1.
Then using (1.4) above, we see that

Cν1
n (ξj · ξk) cos[m · (xj − xk)] =

γn

µn,N∑

l=1

Yl,n(ξj)Yl,n(ξk) cos(m · xj) cos(m · xk)

+γn

µn,N∑

l=1

Yl,n(ξj)Yl,n(ξk) sin(m · xj) sin(m · xk).

where γn > 0. Consequently, for bj ∈ R, j = 1, ..., n1,
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∑n1
j=1

∑n1
k=1 bjbkC

ν1
n (ξj · ξk) cos[m · (xj − xk)] =

γN

µn,N∑

l=1

[

n1∑

j=1

Yl,n(ξj)bj cos(m · xj)]2 + γN

µn,N∑

l=1

[

n1∑

j=1

Yl,n(ξj)bj sin(m · xj)]2,

and the statement in (3.9) is established.
To establish the sufficiency condition of the theorem, we observe from

(3.4) and the fact that

f(t, x) ∈ C(I × TN ) is real-valued

that

f̂(n,−m) = f̂(n,m) ∀n ≥ 0 and ∀m ∈ ΛN .

But by assumption (i) of the theorem, f̂(n,m) is also real-valued form ∈ ΛN .
So we conclude

(3.10) f̂(n,−m) = f̂(n,m) ∀n ≥ 0 and ∀m ∈ ΛN .

Next, we set

(3.11) Fn(t, x) =

n∑

k=0

∑

|m|≤n

f̂(k,m)Cν1
k (t)eim·x

for (t, x) ∈ I× TN and obtain from (3.10) that also

Fn(t, x) =

n∑

k=0

∑

|m|≤n

f̂(k,m)Cν1
k (t)e−im·x.

As a consequence of these two different representations of Fn(t, x), it
follows that

(3.12) Fn(t, x) =

n∑

k=0

∑

|m|≤n

f̂(k,m)Cν1
k (t) cos(m · x)

for (t, x) ∈ I× TN . Since f̂(k,m) ≥ 0, we obtain from (3.9) that

f̂(k,m)Cν1
k (t) cos(m · x) is positive definite on SN1−1 × TN .

But then from (3.12), it follows that

(3.13) Fn(t, x) is positive definite on SN1−1 × TN

for every positive integer n. By assumption (ii) of the theorem,

(3.14) lim
n→∞

Fn(t, x) = f(t, x)

uniformly for (t, x) ∈ I× TN .
So from (3.13), we have that

(3.15) f(t, x) is positive definite on SN1−1 × TN

and the sufficiency condition of the theorem is established.
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To prove the necessary condition of the theorem, we first show that if
g(t, x) ∈ C(I × TN ) is a real-valued function that is positive definite on
SN1−1 × TN , then

(3.16)

∫

SN1−1×TN

[

∫

SN1−1×TN

g(ξ · η, x− y)dS(ξ)dx]dS(η)dy ≥ 0.

To see that this is the case, we use the definition of the Riemann integral
and take a sequence of partitions {Pn}∞n=1 of SN1−1 × TN where

Pn = {Pn
j }αn

j=1 and SN1−1 × TN = ∪αn
n=1P

n
j

and the diameter of Pn
j goes to zero as n → ∞. Also, αn → ∞. In each

Pn
j , we choose a ξj,n × xj,n ∈ Pn

j . Then

∫

SN1−1×TN

g(ξ · η, x− y)dS(ξ)dx = lim
n→∞

αn∑

j=1

g(ξj,n · η, xj,n − y)
∣∣Pn

j

∣∣

where
∣∣∣Pn

j

∣∣∣ designates the volume of Pn
j . Likewise,

(3.17)

∫
SN1−1×TN

[
∫
SN1−1×TN

g(ξ · η, x− y)dS(ξ)dx]dS(η)dy =

limn→∞
∑αn

j=1

∑αn
k=1 g(ξ

j,n · ξk,n, xj,n − xk,n)
∣∣∣Pn

j

∣∣∣ |Pn
k | .

Since g is a positive definite function on SN1−1× TN , it follows that the
double sum on the right-hand side of the equality in (3.17) is nonnegative.
So, the limit in (3.17) is nonnegative, and (3.16) is established.

Next, from (3.2) and (3.4), we see that

(3.18) f̂(n,m) = δn

∫

I

∫

TN

f(t, x)(1− t2)ν1−
1
2Cν1

n (t) cos(m · x)dxdt

where δn is a positive constant.
Introducing a spherical coordinate system as in §3 of Chapter 1 with η

as the pole, we also have that

∫

SN1−1

f(ξ · η, x)Cν1
n (ξ · η) dS(ξ)

= |SN1−2|
∫ π

0
f(cos θ, x)Cν1

n (cos θ)(sin θ)2ν1dθ

= ζN1

∫

I
f(t, x)Cν1

n (t)(1 − t2)ν1−
1
2dt,

where ζN1
is a positive constant.
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So from the periodicity of f in the x-variable and (3.18),
∫

TN

[

∫

SN1−1

f(ξ · η, x− y)Cν1
n (ξ · η) dS(ξ)] cos[m · (x− y)]dx

= ζN1

∫

TN

[

∫

I
f(t, x− y)Cν1

n (t)(1 − t2)ν1−
1
2dt] cos[m · (x− y)]dx

= ζN1

∫

TN

[

∫

I
f(t, x)Cν1

n (t)(1 − t2)ν1−
1
2dt] cos(m · x)dx

= ζN1
δ−1
n f̂(n,m).

Therefore,

(3.19) f̂(n,m) = γ∗n

∫

SN1−1×TN

f(ξ ·η, x−y)Cν1
n (ξ ·η) cos[m·(x−y)]dS(ξ)dx

for η ∈ SN1−1 and y ∈ TN where γ∗n is a positive constant. But then it
follows from (3.19) that

f̂(n,m) is a positive constant multiple of
(3.20)∫

SN1−1×TN

{
∫

SN1−1×TN

f(ξ ·η, x−y)Cν1
n (ξ ·η) cos[m ·(x−y)]dS(ξ)dx}dS(η)dy

for n ≥ 0 and for m ∈ ΛN .
We next claim that

(3.21) f(t, x)Cν1
n (t) cos(m · x) is positive definite on SN1−1 × TN .

For this claim, we see that the condition in (3.2) is clearly met. So it
only remains to show that the condition in (3.3) holds.

To show that this is the case, we invoke (1.4) once again and obtain

Cν1
n (ξ · η) cos[m · (x− y)]

= γn

µn,N1∑

l=1

Yl,n(ξ)Yl,n(η) cos(m · x) cos(m · y)

+γn

µn,N1∑

l=1

Yl,n(ξ)Yl,n(η) sin(m · x) sin(m · y)

where γn > 0. So, it follows from this last equality that

(3.22)

n1∑

k=1

n1∑

j=1

bjbkf(ξj · ξk, xj − xk)Cν1
n (ξj · ξk) cos[m · (xj − xk)]

= γn

µn,N1∑

l=1

[A(n1, l) +B(n1, l)],
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where

A(n1, l)

=

n1∑

k=1

n1∑

j=1

bjbkf(ξj · ξk, xj − xk)Yl,n(ξj)Yl,n(ξk) cos(m · xj) cos(m · xk)

=

n1∑

k=1

n1∑

j=1

bjYl,n(ξj) cos(m · xj)bkYl,n(ξk) cos(m · xk)f(ξj · ξk, xj − xk),

and

B(n1, l)

=

n1∑

k=1

n1∑

j=1

bjbkf(ξj · ξk, xj − xk)Yl,n(ξj)Yl,n(ξk) sin(m · xj) sin(m · xk).

=

n1∑

k=1

n1∑

j=1

bjYl,n(ξj) sin(m · xj)bkYl,n(ξk) sin(m · xk)f(ξj · ξk, xj − xk).

It is clear from the fact that f(t, x) is positive definite on SN1−1 × TN

that both

A(n1, l) ≥ 0 and B(n1, l) ≥ 0

for l = 1, ..., µn,N1
.

Therefore, the sum on the right-hand side in (3.22) is nonnegative. But
this, in turn, implies that

n1∑

k=1

n1∑

j=1

bjbkf(ξj · ξk, xj − xk)Cν1
n (ξj · ξk) cos[m · (xj − xk)] ≥ 0.

Consequently, condition (3.3) holds, and indeed f(t, x)Cν1
n (t) cos(m · x)

is positive definite on SN1−1 × TN . The claim in (3.21) is substantiated.
Next, we set

g(t, x) = f(t, x)Cν1
n (t) cos(m · x),

and observe from (3.16) and (3.21) that the double integral in (3.20) is

nonnegative. Since f̂(n,m) is a positive constant multiple of this double
integral, it follows that

(3.23) f̂(n,m) ≥ 0 for n ≥ 0 and m ∈ ΛN ,

and condition (i) in Theorem 3.1 is established.
To complete the proof of the necessary condition, it remains to show

that condition (ii) holds. In order to accomplish this, we set

(3.24) h(r, s) =

∞∑

n=0

∑

m∈ΛN

f̂(n,m)Cν1
n (1)rne−|m|s,

where 0 < r < 1 and 0 < s <∞.
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Also, we see from (1.3) and (3.4) that for fixed m,

(2π)N f̂(n,m)Cν1
n (1)

= βν1

(N1 − 2 + 2n)

N1 − 2

∫

TN

e−im·xdx

∫ 1

−1
f(t)Cν1

n (t)(1− t2)ν1−
1
2 dt

where βν1
is a positive constant. So from (3.29) in Appendix A, we obtain

that

(2π)N
∞∑

n=0

f̂(n,m)Cν1
n (1)rn

= βν1

∫

TN

e−im·xdx

∫

I
f(t, x)

1− r2
(1− 2rt+ r2)N1/2

(1− t2)ν1−
1
2 dt.

For fixed r, we treat
∫

I
f(t, x)

1− r2
(1− 2rt+ r2)N1/2

(1− t2)ν1−
1
2dt

as a function of x in C(TN ) and obtain from this last equality and (4.5) in
Chapter 1 that

h(r, s) is a constant (independent of r and s) multiple of
∫

I

1− r2
(1− 2rt+ r2)N1/2

(1− t2)ν1−
1
2dt

∫

RN

s[s2 + |x|2]−(N+1)/2f(t, x)dx,

where h(r, s) is defined in (3.24). Consequently,

(3.25) |h(r, s)| ≤ β∗ ‖f‖L∞

∫

I
(1− t2)ν1−

1
2dt,

for 0 < r < 1 and 0 < s <∞ where β∗ is a constant.
In obtaining the inequality in (3.25), we have made use of the fact (easily

checked) that
∫

RN

s[s2 + |x|2]−(N+1)/2dx = βN for 0 < s <∞,

where βN is a constant, and from (3.29) and (3.41) in Appendix A with
Cν1

0 (t) ≡ 1, that
∫

I

1− r2
(1− 2rt+ r2)N1/2

(1− t2)ν1−
1
2 dt =

∫

I
(1− t2)ν1−

1
2dt

for 0 < r < 1.
Now each of the terms in the series defining h(r, s) in (3.24) is nonneg-

ative. Hence, from (3.25), we obtain that
∞∑

n=0

∑

m∈ΛN

f̂(n,m)Cν1
n (1)rne−|m|s ≤ β# <∞,

for 0 < r < 1 and 0 < s <∞ where β# is a constant.
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Let n∗ be any fixed positive integer. Then, it follows from this last in-
equality that

(3.26)

n∗∑

n=0

∑

|m|≤n∗

f̂(n,m)Cν1
n (1)rne−|m|s ≤ β#

for 0 < r < 1 and 0 < s <∞.
Passing to the limit as r→ 1 and s→ 0, we see from (3.26) that

n∗∑

n=0

∑

|m|≤n∗

f̂(n,m)Cν1
n (1) ≤ β# <∞

for every positive integer n∗.
Using once again the fact that each term of this last series is nonnegative,

we conclude that

(3.27) lim
n→∞

n∑

k=0

∑

|m|≤n

f̂(k,m)Cν1
n (1) exists and is finite.

Next, we observe from (3.30) in Appendix A, that
∣∣∣f̂(k,m)Cν1

n (t)eim·x
∣∣∣ ≤ f̂(k,m)Cν1

n (1)

∀k ≥ 0 and ∀m ∈ ΛN and ∀(t, x) ∈ I × TN .
But then it follows from (3.27), Lemma 3.2, and this last inequality that

lim
n→∞

n∑

k=0

∑

|m|≤n

f̂(k,m)Cν1
n (t)eim·x = f(t, x)

uniformly for (t, x) ∈ I×TN . So conditon (ii) in Theorem 3.1 is established,
and the proof of the necessary condition of the theorem is complete. �

Exercises.

1. Given ξ ∈ S2 is of the form ξ = (cos θ, sin θ cosφ, sin θ sinφ) and that
P1 (t) = t, prove directly that P1 (t) cosm · x is positive definite on S2× TN

where m ∈ ΛN .
2. Given f ∈ C(I × TN ) and f̂(k,m) defined by (3.4), prove that if

lim
n→∞

n∑

k=0

∑

|m|≤n

f̂(k,m)Cν1
n (t)eim·x = g(t, x)

uniformly for (t, x) ∈ I × TN , then f(t, x) = g(t, x) for (t, x) ∈ I × TN .
3. Given f ∈ C(I × T2) and f (t, x) are positive definite on S2× T2,

let η∗ = (1, 0, 0) and g (ξ, x) = f (η∗ · ξ, x) for ξ ∈ S2. Find a function
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u (y, x, s) ∈ C∞ (B (0, 1) × T2 ×R+) with u (y, x, s) continuous in the clo-
sure of B (0, 1) × T2 ×R+ such that

Lu (y, x, s) = 0 ∀ (y, x, s) ∈ B (0, 1)× T2 ×R+

u (ξ, x, 0) = g (ξ, x) ∀(ξ, x) ∈ S2 × T2,

where

Lu =
∂2u

∂y2
1

+
∂2u

∂y2
2

+
∂2u

∂y2
3

+
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂s2
,

B (0, 1) is the open unit 3-ball, and R+ = {s : s > 0}.

4. Further Results and Comments

1. Bochner introduced a notion of generalized analyticity for complex-
valued functions in L1 (TN ), N ≥ 2. In particular, f ∈ A+

v , where v ∈ RN

and |v| = 1, provided f ∈ L1 (TN ) and

f̂(m) = 0 if m · v ≤ 0.

Set Av = A+
v ∪ A+

−v. It is clear that the class Av generalizes the notion of
analyticity to higher dimensions.

Also, Bochner introduced the notion of a strict generalized analytic class
Bv as follows: f ∈ B+

v provided (i) f ∈ A+
v and

(ii) ∃γ with 0 < γ < 1 such that f̂(m) = 0 if m · v < γ |m| .

Set Bv = B+
v ∪B+

−v.
In a similar manner, we define the class of generalized analytic measures

on TN obtaining the classes Av and Bv . So, in particular, µ ∈ A+
v provided

µ is a finite-valued complex Borel measure on TN and

µ̂(m) = 0 if m · v ≤ 0.

Also, µ ∈ B+
v provided µ ∈ A+

v and

∃γ with 0 < γ < 1 such that µ̂(m) = 0 if m · v < |m|.
Bochner (see [Boc2] or [Ru3, p.201]) obtained the following generaliza-

tion of a well-known theorem of F. and M. Riesz ([Ho, p. 47] or [Ru3, p.198])
on T1 to TN for N ≥ 2.

Theorem. Let µ ∈ Bv. Then µ is absolutely continuous on TN , i.e.,
there exists f ∈ L1 (TN ) such that if E ⊂ TN is a Borel set,

µ (E) =

∫

E
fdx.

This result is false in general if µ ∈ Av (see [Ho, p. 60]). Another proof of
Bochner’s theorem was found by Helson and Lowdenschlager [HeLo].

2. There is also another theorem of F. and M. Riesz [RR] dealing with
analytic functions in the unit disk, namely the following:
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Let f (z) be a bounded function that is analytic for |z| < 1. Suppose
limr→1 f

(
reiθ

)
= 0 for θ ∈ E where E ⊂ T1 and |E| > 0.Then f (z) is

identically zero for |z| < 1.
There is an interesting generalization of this result to TN for N ≥ 2

involving the class Bv introduced above.
For the purpose of the statement of this generalization, we will say f ∈

L∞ (TN ) vanishes at x0 provided

lim
r→0

f[r] (x0) = 0,

where f[r] (x0) = |B (0, r)|−1 ∫
B(0,r) f (x0 + x) dx.

In order to present this generalization, we have to introduce the following
one parameter subgroup Gv of TN . With v ∈ RN and |v| = 1,

Gv = {x : −π ≤ xj < π, xj ≡ tvj mod 2π, j = 1, ..., N, −∞ < t <∞} .
A set E ⊂ Gv is said to a set of positive linear measure if the following

holds: Define E∗ ⊂ R as follows:

E∗ = {t : ∃x ∈ E such that xj ≡ tvj mod 2π for j = 1, ..., N}.
Then E is said to be a set of positive linear measure provided E∗ is a set
of positive one-dimensional Lebesgue measure.

f vanishes on a subset E ⊂ Gv provided f vanishes at every point x ∈ E.
The following generalization of the F. and M. Riesz theorem holds

[Sh18].

Theorem. A necessary and sufficient condition that every f ∈ Bv,
which is in L∞(TN ) and vanishes on a subset of Gv of positive linear mea-
sure be equal to zero almost everywhere on TN , is that v be linear indepen-
dent with respect to rational coefficients.

Also, a counter-example is given that shows that the sufficiency condition
of the theorem is false in general for f ∈ Av ∩ L∞(TN ).





CHAPTER 5

Nonlinear Partial Differential Equations

1. Reaction-Diffusion Equations on the N -Torus

In this chapter, we show the power of Fourier series in several variables
in solving problems in nonlinear partial differential equations.

The techniques presented in this section come from the paper by the
author [Sh11] that appeared in the Indiana University Mathematics journal
in the year 2009.

Operating in N -dimensional Euclidean space RN , N ≥ 1, and as before,
letting TN be the N -dimensional torus

TN = {x : −π ≤ xn < π, n = 1, ..., N},
we shall deal with the following reaction-diffusion system with periodic
boundary conditions and zero initial conditions:

(1.1)





∂uj

∂t −∆uj = fj(x, t, u1, ..., uJ ) in TN × (0, T )

uj(x, 0) = 0

for j = 1, ..., J.
A system of equations of the form (1.1) is generally referred to in the

literature as a reaction-diffusion system and occurs in mathematical biology
and many other places in applied mathematics (see [Sm, pp. 208-210], [Mur,
pp. 375-379], and [EK, p. 426]).

With s = (s1, ..., sJ ) and TN × (0, T ) = Ω̃, we assume in the above that

(1.2) fj(x, t, s) is a Caratheodory function, i.e.,

fj(x, t, s) is measurable in (x, t) for s ∈RJ and continuous in s for a.e.

(x, t) ∈ Ω̃.
Also, we assume the following two conditions:

(1.3)
∀R > 0 , ∃αR(x, t) ∈ L1(Ω̃) such that

sup|sj |<R |fj(x, t, s1, ..., sJ )| ≤ αR(x, t)

for sk ∈ R, k 6= j, k = 1, ..., J for j = 1, ..., J .

(1.4)

sjfj(x, t, s)

≤ C1 |sj |2 + C2(x, t) |sj|+ C3(x, t) ∀s ∈ R

159
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and for a.e. (x, t) ∈ Ω̃ where j = 1, ..., J .

Also, C1 > 0 with C2 and C3 nonnegative functions in L2(Ω̃) and L1(Ω̃),
respectively.

g1(x) ∈ C∞(TN )will mean that g1(x) ∈ C∞(RN ) and is periodic of
period 2π in each of the variables xn for n = 1, ..., N .

Likewise, g1(x) ∈ C2(TN ) will mean that g1(x) ∈ C2(RN ) and is periodic
of period 2π in each of the variables xn for n = 1, ..., N .

We introduce the Hilbert space H1(TN )as follows: H1(TN ) is the closure
of the set of functions in C∞(TN ) under the norm generated by the following
real inner product:

< g1, h1 >H1=

∫

TN

[g1h1 +∇g1 · ∇h1]dx for g1, h1 ∈ C∞(TN ).

So if u1, v1 ∈ H1(TN ), then both u1 and v1 are in the familiar Sobolev space
W 1,2(TN ) (see [Ev, pp. 241-257] for the theory of Sobolev spaces) and

(1.5) < u1, v1 >H1=

∫

TN

[u1v1 +∇u1 · ∇v1]dx for u1, v1 ∈ H1(TN ).

In this section, we establish two theorems for reaction-diffusion systems.
The first theorem will deal with a one-sided condition placed on fj(x, t, s)
as in (1.4) above. The second theorem will deal with the two-sided condition
placed on fj(x, t, s) as in (1.98) below.

We establish the following theorem for our reaction-diffusion system
(1.1).

Theorem 1.1. Let TN × (0, T ) = Ω̃. With s = (s1, ..., sJ ), assume that
fj(x, t, s) satisfies the conditions stated in (1.2), (1.3), and (1.4). Then
there exists

u ∈ [L2(0, T ;H1(TN ))]J ∩ [L∞ (0, T ;L2(TN ))]J

with both

ujfj(x, t, u) and fj(x, t, u) ∈ L1(Ω̃) for j = 1, ..., J,

such that u=(u1, ..., uJ ) is a generalized periodic solution of the reaction-
diffusion system (1.1).

For periodic solutions, this theorem is a two-way improvement over [BN,
Th. V.1, p. 302]. In the first place, this result deals with systems. Secondly,
for J = 1, the condition in (1.4) entails a far weaker assumption than the
corresponding one made in this last named reference. In particular, this last
named reference assumes

f1(x, t, s1) ≤ C2(x, t) + C3(x, t)/s1 for s1 > 0.

On the other hand, it is assumed in (1.4) above that

f1(x, t, s1) ≤ C1s1 + C2(x, t) + C3(x, t)/s1 for s1 > 0,
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i.e., linear growth is allowed in this last inequality but not in the previ-
ous one. A similar situation prevails for s1 < 0. Everything else about the
assumptions remains the same.

Also, the techniques employed here are completely different from those
used in [BN].

Theorem 1.1 is motivated by and similar to the theorem in the author’s
manuscript [Sh11], which appeared in the Indiana University Mathematics
Journal.

u1 ∈ L2(0, T ;H1(TN )) will mean that

u1(x, t) is measureable in Ω̃ = TN × (0, T ),

and that

u1(x, t) ∈ H1(TN ) for a.e. t ∈ (0, T ).

Also, it will mean that ∇u1(x, t) is measureable in Ω̃ and that
∫ T

0
‖u1(·, t)‖2H1 dt <∞.

What is meant by the statement in the theorem that u = (u1, ..., uJ ) is a
generalized periodic solution of (1.1) under the assumption that u possesses

the properties enumerated in the theorem and fj(x, t, u) ∈ L1(Ω̃) is the
following (where E⊂ (0, T ) is a set of measure zero):

(1.6) (i)

∫ T

0

∫

TN

(−uj
∂θ

∂t
− uj∆θ) =

∫

eΩ
fj(x, t, u)θ ∀θ ∈ C̃∞

c (Ω̃),

(ii) lim
t→0

‖uj(·, t)‖L2 = 0 t ∈ (0, T )\E,
for j = 1, ..., J .

The assertion θ ∈ C̃∞
c (Ω̃) means the following:

(i) θ ∈ C∞[RN×(0, T )];

(ii) for each fixed t ∈ (0, T ), θ(x, t) ∈ C∞(TN );

(iii) ∃t1, t2 with 0 < t1 < t2 < T such that
θ(x, t) = 0 for 0 < t < t1 and t2 < t < T.

We say f1 ∈ Lp(TN ), 1 ≤ p < ∞, provided f1 is a real-valued (unless
explicitly stated otherwise) Lebesgue measurable function defined on RN of
period 2π in each variable such that

∫

TN

|f1|p dx <∞.

As before, we denote the set of integral lattice points in RN by ΛN ,
and for m ∈ ΛN , x ∈ RN, m · x will designate the usual dot product

m · x = m1x1 + · · ·+mNxN .
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For f1 ∈ L1(TN ), we set

f̂1(m) = (2π)−N

∫

TN

e−im·xf1(x)dx,

and < ·, · >L2 will designate the usual real inner product in L2(TN ). Also,

< ∇u1,∇v1 >L2=

∫

TN

[∇u1 · ∇v1]dx for u1, v1 ∈ H1(TN ).

The first lemma that we deal with is the following:

Lemma 1.2. Let g1 ∈ L2(TN ).Then

g1 ∈ H1(TN )⇐⇒
∑

m∈ΛN

|m|2 |ĝ1(m)|2 <∞.

Furthermore, if g1 ∈ H1(TN ), then

(1.7) < ∇g1,∇g1 >L2= (2π)N
∑

m∈ΛN

|m|2 |ĝ1(m)|2 .

Proof of Lemma 1.2. Given g1 ∈ H1(TN ), let {gn
1}∞n=1 be the sequence

of elements in C∞(TN ) that tends to g1 in the H1-norm. Since the Fourier

coefficients of gn
1 are O(|m|−(N+5)) as |m| → ∞, the analog of the equality

in (1.7) clearly holds for gn
1 , and we have

< ∇gn
1 ,∇gn

1 >L2= (2π)N
∑

m∈ΛN

|m|2 |ĝn
1 (m)|2 .

Passing to the limit as n→∞ on both sides of this last equality, we obtain
the finiteness of the right-hand side of (1.7). The equality in (1.7) comes
from Parsevaal’s theorem (Corollary 2.5 in Chapter 1).

To establish the lemma in the other direction, we are given g1 ∈ L2(TN )
and that the right-hand side of the equality in (1.7) is finite. We set

(1.8) gn
1 =

∑

|m|≤n

ĝ1(m)eim·x

and obtain from (1.5) that the sequence is Cauchy in the H1-norm. Hence,
there exists h1 ∈ H1(TN ) such that

lim
n→∞

‖gn
1 − h1‖H1 = 0.

On the other hand, we obtain from (1.8) and Corollary 2.5 in Chapter 1
that

lim
n→∞

‖gn
1 − g1‖L2 = 0.

But then g1 = h1 almost everywhere. Therefore, g1 ∈ H1(TN ). �
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As a matter of convenience, from now on, we shall assume that the T
that occurs in (1.1) and in the statement of the theorem has the value 2π.
Thus, from now on, we assume

(1.9) (0, T ) = (0, 2π) and Ω̃ = TN × (0, 2π).

We next recall the well-known fact that (see Corollary 2.3 in Chapter 1)

(1.10) {(2π)−(N+1)/2eikteim·x}∞k=−∞ with m ∈ ΛN is a CONS for L2(Ω̃),

i.e., a complete orthonormal system for L2(Ω̃).

We define the Fourier coefficients for f1(x, t) ∈ L2(Ω̃) with respect to
the CONS in (1.10) as follows:

(1.11) f̂1(m,k) = (2π)−N−1
∫

Ω̃
f1(x, t)e

−ikte−im·xdxdt.

Also, we set

(1.12) SMf1(x, t) =
∑

|m|≤M

M∑

k=−M

f̂1(m,k)e
ikteim·x

and observe from (1.9) that if f1 ∈ L2(Ω̃), then from Parsevaal’s theorem
(Corollary 2.5 in Chapter 1),

(1.13) lim
M→∞

‖SMf1 − f1‖L2(Ω̃) = 0.

In the next lemma, we shall study a linear periodic initial value problem
that is a variation of the nonlinear one set forth in (1.1) above when J = 1.

In particular, with f1(x, t) ∈ L2(Ω̃), we shall study the following problem:

(1.14) (i)
∂u1(x, t)

∂t
−∆u1 + u1 = f1(x, t) in TN × (0, 2π) = Ω̃,

(ii) u1(x, t) ∈ L2(0, 2π;H1(TN ))

(iii) u1(x, 0) = 0 x ∈ Ω.

Condition (ii) is the boundary value part of the problem and asserts that
we are dealing with periodic boundary values. Condition (iii) is the initial
value part.

In order to study this periodic IVP, we shall need another Hilbert space.
To do this, we introduce the pre-Hilbert space

(1.15)

C̃2(Ω̃) = {u1 ∈ C2[RN×(0, 2π)] and
for each fixed t ∈ (0, 2π), u1(x, t) ∈ C2(TN )}.

In particular, we see if

u1 (x, t) =

n∑

j=1

ξj(t)ψj(x),
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where ξj ∈ C2[0, 2π] and ψj ∈ C∞(TN ), then u1 ∈ C̃2(Ω̃).

Assuming (1.9), we endow C̃2(Ω̃) with an inner product < ·, · > eH1 de-
fined as follows:
(1.16)

< u1, v1 > eH1 =

∫ 2π

0
[< u1t, v1t >L2 + < u1, v1 >L2 + < ∇u1,∇v1 >L2 ]dt

for u1, v1 ∈ C̃2(Ω̃) where u1t = ∂u1
∂t . We complete the space C̃2(Ω̃) using the

method of Cauchy sequences, and call the resulting Hilbert space H̃1(Ω̃).

Also, if u1 and w1 are in L2(Ω̃) and
∫

Ω̃
u1
∂φ

∂t
dxdt = −

∫

Ω̃
w1φdxdt ∀φ ∈ C̃∞

c (Ω̃),

we shall refer to w1 as u1t and call it the weak derivative of u1 with respect
to t in Ω̃. A similar definition prevails for the weak derivative of u1 with
respect to xj in Ω̃.

In particular, we see that if u1(x, t) ∈ H̃1(Ω̃), then u1 ∈ L2(Ω̃) and also
that the following three conditions hold (see [Ev, pp.242, 244]):

(1.17) (i) u1(x, t) ∈W 1,2(Ω̃),

(ii) u1(x, t) ∈ L2(0, 2π;H1(TN )),

(iii) u1t(x, t) ∈ L2(Ω̃).

We say u1(x, t) is a weak solution of the initial value problem (1.14) if

u1(x, t) ∈ H̃1(Ω̃) and the following two additional conditions are met (where
E ⊂ (0, 2π) is a set of measure zero):
(1.18)

(i) limt→0 ‖u1(·, t)‖L2 = 0 t ∈ (0, 2π)\E;

(ii) < ∂u1
∂t (·, t), ψ(·) >L2 + < u1(·, t), ψ(·) >H1=< f1(·, t), ψ(·) >L2

∀ψ ∈ H1(TN ) and for a.e. t ∈ (0, 2π).
In the next lemma, we deal with weak solutions of the linear periodic

IVP (1.14).

Lemma 1.3. Suppose f1(x, t) ∈ L2( Ω̃). Then there exists u1(x,t)∈ H̃1(Ω̃)
which is a weak solution of the periodic initial value problem (1.14), i.e.,
both (1.18)(i) and (ii) hold.

The above lemma is, in a way, the analogue of [Ev, Th.5, p.356] for the
linear periodic IVP (1.14) but with a different proof.
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Proof of Lemma 1.3. We first establish Lemma 1.3 for SMf1(x, t) defined
in (1.12). To do this, we set

(1.19) u
(1)
1M (x, t) =

∑

|m|≤M

M∑

k=−M

f̂1(m,k)

ik + |m|2 + 1
eikteim·x,

(1.20) u
(2)
1M (x, t) =

∑

|m|≤M

M∑

k=−M

f̂1(m,k)

ik + |m|2 + 1
e−(|m|2+1)teim·x.

It follows from the definition of C̃2(Ω̃) in (1.15) that

(1.21) u
(j)
1M (x, t) ∈ C̃2(Ω̃) for j = 1, 2,

and we observe from (1.19), (1.20), and Parsevaal’s theorem that
∥∥∥u(1)

1M (·, t)− u(2)
1M (·, t)

∥∥∥
2

L2

= (2π)N
∑

|m|≤M

∣∣∣
∑M

k=−M

bf(m,k)

ik+|m|2+1
(eikt − e−(|m|2+1)t)

∣∣∣
2

for t ∈ (0, 2π). Consequently, we obtain that

(1.22) lim
t→0

∥∥∥u(1)
1M (·, t) − u(2)

1M (·, t)
∥∥∥

2

L2
= 0.

Defining

(1.23) u1M (x, t) = u
(1)
1M (x, t)− u(2)

1M (x, t),

we conclude from (1.21) and (1.22) that

(1.24) u1M (x, t) ∈ C̃2(Ω̃) and lim
t→0
‖u1M (·, t)‖2L2 = 0.

Next, as an easy calculation shows, we see from (1.19) and (1.20) and
from (1.24) that

∂u1M

∂t
−∆u1M + u1M = SMf1(x, t) for (x, t) ∈ Ω̃.

Consequently, (1.18) (ii) holds with respect to u1M and SMf1(x, t), and we
have that

(1.25) Lemma 1.3 holds for SMf1(x, t).

It remains to show that Lemma 1.3 holds for f1(x, t). In order to do this,
we observe from a calculation using the integral test for series that

(1.26)
∞∑

k=1

1

k2 + a2
≤ π

2
a−1 ∀a > 0,
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and also from (1.10) and Parsevaal’s theorem that

(1.27)
∑

m∈ΛN

∞∑

k=−∞

∣∣∣f̂1(m,k)
∣∣∣
2
<∞.

Next, we set

(1.28) u
(1)
1 (x, t) =

∑

m∈ΛN

∞∑

k=−∞

f̂1(m,k)

ik + |m|2 + 1
eikteim·x

and observe from (1.27) that both

∑

m∈ΛN

∞∑

k=−∞

∣∣∣∣∣
f̂1(m,k)

ik + |m|2 + 1

∣∣∣∣∣

2

<∞ and
∑

m∈ΛN

∞∑

k=−∞

∣∣∣∣∣
ikf̂1(m,k)

ik + |m|2 + 1

∣∣∣∣∣

2

<∞ .

Therefore, it follows from (1.10), (1.28), and the Riesz-Fischer theorem [Zy1,
p. 127] that both

(1.29) u
(1)
1 (x, t) and u

(1)
1t (x, t) are in L2(Ω̃)

where u
(1)
1t is the weak derivative of u

(1)
1 in L2(Ω̃).

In a similar manner, we see from (1.26) and Schwarz’s inequality that

(1.30)

∑

m∈ΛN

|m|2
∣∣∣∣∣

∞∑

k=−∞

f̂1(m,k)

ik + |m|2 + 1
eikt

∣∣∣∣∣

2

≤ (π + 1)
∑

m∈ΛN

∞∑

k=−∞

∣∣∣f̂1(m,k)
∣∣∣
2
<∞

for 0 < t < 2π.
We conclude from Lemma 1.2 and this last inequality that

u
(1)
1 (x, t) ∈ L2(0, 2π;H1(TN )).

Also, it follows from (1.26) coupled with this last fact and (1.29) that

(1.31) u
(1)
1 (x, t) ∈ H̃1(Ω̃) and lim

M→∞

∥∥∥u(1)
1M − u

(1)
1

∥∥∥
eH1

= 0

where u
(1)
M (x, t) is defined in (1.19).

Next, we set

(1.32) u
(2)
1 (x, t) =

∑

m∈ΛN

(

∞∑

k=−∞

f̂(m,k)

ik + |m|2 + 1
)e−(|m|2+1)teim·x

where the coefficient of eim·x involving the k-sum is well-defined by (126),
(127), and Schwarz’s inequality. Also, since the multiple series involved con-

verge absolutely for 0 < t < 2π, we see that u
(2)
1 (x, t) ∈ C∞[RN × (0, 2π)].

Furthermore, it is clear from Parsevaal’s theorem that

∥∥∥u(2)
1 (·, t)

∥∥∥
2

L2
= (2π)N

∑

m∈ΛN

∣∣∣∣∣
∞∑

k=−∞

f̂(m,k)

ik + |m|2 + 1

∣∣∣∣∣

2

e−2(|m|2+1)t for t ∈ (0, 2π),
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and we conclude from a calculation like that used in (1.30) along with Lemma
1.2 that

(1.33) u
(2)
1 (x, t) ∈ L2(Ω̃) ∩ L2(0, 2π;H1(TN )).

Furthermore,

∥∥∥u(2)
1t (·, t)

∥∥∥
2

L2
= (2π)N

∑

m∈ΛN

(|m|2 + 1)2

∣∣∣∣∣
∞∑

k=−∞

f̂(m,k)

ik + |m|2 + 1

∣∣∣∣∣

2

e−2(|m|2+1)t

for t ∈ (0, 2π), and we conclude from a similar calculation to that used in

(1.30) that u
(2)
1t ∈ L2(Ω̃). Hence, we obtain from (1.33) that

(1.34) u
(2)
1 (x, t) ∈ H̃1(Ω̃) and also that lim

M→∞

∥∥∥u(2)
1M − u

(2)
1

∥∥∥
eH1

= 0

where u
(2)
1M (x, t) is defined in (1.20).

Next, we set

(1.35) u1(x, t) = u
(1)
1 (x, t)− u(2)

1 (x, t),

and observe from (1.31) and (1.34) that

u1(x, t) ∈ H̃1(Ω̃).

To complete the proof to Lemma 1.3, it remains to show that (1.18)(i)
and (ii) hold for u1(x, t).

To show the former, we observe from (1.28) and (1.32) that
(1.36)
∥∥∥u(1)

1 (·, t) − u(2)
1 (·, t)

∥∥∥
2

L2
= (2π)N

∑

m∈ΛN

∣∣∣∣∣
∞∑

k=−∞

f̂1(m,k)

ik + |m|2 + 1
(eikt − e−(|m|2+1)t)

∣∣∣∣∣

2

for t ∈ (0, 2π)\E where E is of measure zero.
Using (1.26), we obtain that

∣∣∣∣∣
∞∑

k=−∞

f̂1(m,k)

ik + |m|2 + 1
(eikt − e−(|m|2+1)t)

∣∣∣∣∣

2

≤ 4(π+1)(|m|2+1)−1
∞∑

k=−∞

∣∣∣f̂1(m,k)
∣∣∣
2
,

and we conclude from (1.36) and the Lebesgue dominated convergence the-
orem applied to series that

lim
t→0

∥∥∥u(1)
1 (·, t)− u(2)

1 (·, t)
∥∥∥

2

L2
= 0 for t ∈ (0, 2π)\E.

This fact coupled with (1.35) tells us that indeed (1.18)(i) holds for u1(x, t).

To show that (1.18)(ii) holds for u1(x, t), we first observe from (1.31)
and (1.34) that for a subsequence

lim
M→∞

∥∥∥∥∥
∂u

(j)
1M

∂t
(·, t)− ∂u

(j)
1

∂t
(·, t)

∥∥∥∥∥
L2

= 0 for a.e. t ∈ (0, 2π) for j = 1, 2.



168 5. NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Hence, we see from (1.35) that for a subsequence

(1.37) lim
M→∞

∥∥∥∥
∂u1M

∂t
(·, t)− ∂u1

∂t
(·, t)

∥∥∥∥
L2

= 0 for a.e. t ∈ (0, 2π).

Likewise, we see from (1.31) and (1.34) that for a subsequence

(1.38) lim
M→∞

‖u1M (·, t)− u1(·, t)‖H1 = 0 for a.e. t ∈ (0, 2π),

and also that for a subsequence

(1.39) lim
M→∞

‖SMf1(·, t) − f1(·, t)‖L2 = 0 for a.e. t ∈ (0, 2π).

Also, we obtain from (1.25) and (1.18)(ii)

<
∂u1M

∂t
(·, t), ψ(·) >L2 + < u1M (·, t), ψ(·) >H1=< SMf1(·, t), ψ(·) >L2

∀ψ ∈ H1(TN ) and for a.e. t ∈ (0, 2π). Taking the limit of both sides of this
last equality as M → ∞ through a subsequence, we see from (1.37)-(1.39)
that (1.18)(ii) does indeed hold for u1(x, t). �

Next, we establish the following lemma, which is useful in showing that
the solution u1 in Lemma 1.3 is unique.

Lemma 1.4. Suppose ∃u1 ∈ H̃1(Ω̃) that satisfies (1.18)(i) and (ii) where

f 1 ∈ L2(Ω̃). Then

2−1
∫
TN
|u1(x, t|2 dx+

∫ t
0 < u1(·, τ ), u1(·, τ ) >H1 dτ

(1.40) =

∫ t

0
[

∫

TN

f1(x, τ )u1(x, τ )dx]dτ for a.e. t ∈ (0, 2π).

Proof of Lemma 1.4. Since by assumption u1 ∈ H̃1(Ω̃), we have from
(1.17)(ii) that

u1(x, t) ∈ H1(TN ) for t ∈ (0, 2π)\E where meas(E) = 0.

Consequently, we have from (1.18)(ii) that

<
∂u1

∂t
(·, t), u1(·, t) >L2 + < u1(·, t), u1(·, t) >H1=< f1(·, t), u1(·, t) >L2

for t∈ (0, 2π)\E1 where meas(E1) = 0. Hence, using (1.17)(ii) and (iii), we
see that

(1.41)

∫ s
r [< ∂u1

∂t (·, t), u1(·, t) >L2 + < u1(·, t), u1(·, t) >H1 ]dt

=
∫ s
r < f1(·, t), u1(·, t) >L2 dt
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for 0 < r < s < 2π. Now, it is easy to see from the fact that u1 ∈ H̃1(Ω̃)
that there exists E2 ⊂ (0, 2π) with meas(E2) = 0 such that
∫ s

r
<
∂u1

∂t
(·, t), u1(·, t) >L2 dt = 2−1

∫

TN

|u1(x, s)|2 dx−2−1

∫

TN

|u1(x, r)|2 dx

for r, s ∈ (0, 2π)\E2. Combining this fact with (1.41) and using (1.18)(i), we
see that that the equality in (1.40) does indeed hold for t ∈ (0, 2π)\E2, and
the proof of Lemma 1.4 is complete. �

Lemma 1.5. Under the assumptions of Lemma 1.3, the u1(x,t)∈ H̃1(

Ω̃) which is a weak solution of the initial value problem (1.14) is unique.
Furthermore, u1(x,t) is defined by the equality given in (1.35), i.e.,

u1=u
(1)
1 −u

(2)
1 where u

(1)
1 is given in (1.28), and u

(2)
1 in (1.32).

Proof of Lemma 1.5. Suppose both u1, v1 ∈ H̃1( Ω̃) satisfy (1.18)(i) and

(ii). Then on setting w1 = u1 − v1, we see that w1 ∈ H̃1( Ω̃) and satisfies

lim
t→0

‖w1(·, t)‖L2 = 0 t ∈ (0, 2π)\E

where meas(E) = 0 and also that

<
∂w1

∂t
(·, t), ψ(·) >L2 + < w1(·, t), ψ(·) >H1= 0 ∀ψ ∈ H1(TN )

for a.e. t ∈ (0, 2π). It follows from these two facts and (1.40) in Lemma 1.4
that

2−1

∫

TN

|w1(x, t|2 dx+
∫ t

0
< w1(·, τ ), w1(·, τ ) >H1 dτ = 0 for a.e. t ∈ (0, 2π).

But by (1.5), the second integral in this last equality is nonnegative. There-

fore, the first integal equals zero a.e. in (0, 2π). However, w1 ∈ L2(Ω̃). Hence,
∫

Ω̃
|w1(x, t|2 dxdt = 0.

We conclude that w1 = 0 a.e. in Ω̃, which tells us that u1 is indeed unique.
That u1 is given by the equality in (1.35) follows from the proof given of
Lemma 1.3. The proof to Lemma 1.5 is complete. �

Next, given v1 ∈ L2(Ω̃), we set

(1.45)

B1v1 =
∑

m∈ΛN

∑∞
k=−∞

bv1(m,k)
ik+λm

eikteim·x,

B2v1 =
∑

m∈ΛN

∑∞
k=−∞

bv1(m,k)
ik+λm

e−λmteim·x

where v̂1(m,k) is defined by (1.11) and meets (1.27) and

(1.46) λm = |m|2 + 1.
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It is clear from (1.10) and (1.27) that

Bj : L2(Ω̃)→ L2(Ω̃) for j=1,2.

The following lemma also holds:

Lemma 1.6. Bj is both a continuous and a compact map of L2(Ω̃) into

L2(Ω̃) for j=1,2.

(For the definition of a compact map, we refer the reader to [Ev, p. 503].)

Proof of Lemma 1.6. To prove the lemma, suppose {v1n}∞n=1 is a se-

quence in L2(Ω̃) with the property that

lim
n→∞

‖v1n − v1‖L2(Ω̃) = 0.

Then using the ideas set forth in the proof of Lemma 1.3, we see that

(1.47) lim
n→∞

∑

m∈ΛN

∞∑

k=−∞

|v̂1n(m,k) − v̂1(m,k)|2 = 0.

Now, it follows from (1.45) and Parsevaal’s theorem that

(1.48) ‖B1(v1n − v1)‖2L2(Ω̃)
= (2π)N+1

∑

m∈ΛN

∞∑

k=−∞

|v̂1n(m,k)− v̂1(m,k)|2

|ik + λm|2
.

But then we see from (1.47) that

(1.49) lim
n→∞

‖B1(v1n − v1)‖2L2(Ω̃)
= 0.

This establishes the continuity of the map B1.
To show the continuity of the map B2, we observe from (1.45) that

(1.50)

‖B2[v1n(·, t)− v1(·, t)]‖2L2 = (2π)N
∑

m∈ΛN

e−2λmt

∣∣∣∣∣
∞∑

k=−∞

v̂1n(m,k)− v̂1(m,k)
ik + λm

∣∣∣∣∣

2

for almost every t ∈ (0, 2π). Integrating both sides of this last equality from
0 to 2π, we see from (1.10), (1.26), and Schwarz’s inequality that there is a
constant C such that

‖B2(v1n − v1)‖2L2(Ω̃)
≤ C

∑

m∈Λ

∞∑

k=−∞

|v̂1n(m,k)− v̂1(m,k)|2 ∀n.

We conclude once again from (1.47) that

(1.51) lim
n→∞

‖B2(v1n − v1)‖2L2(Ω̃)
= 0.

This establishes the continuity of the map B2.
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To show that B1 is a compact map, suppose {v1n}∞n=1 is a sequence

in L2(Ω̃) with the property that
{
‖v1n‖L2(Ω̃)

}∞

n=1
is a uniformly bounded

sequence. Then it follows that for some subsequence {v1n}∞n=1 converges

weakly in L2(Ω̃) to a function v1 in L2(Ω̃) [Ev, p.640]. Hence, we see that the
compactness of B1 will follow (where we are now assuming the full sequence
converges weakly) if (i) and (ii) below imply that the limit in (1.49) holds
where

(i)
∑

m∈Λ

∞∑

k=−∞

|v̂1n(m,k)− v̂1(m,k)|2 ≤ C ∀n,

(ii) lim
n→∞

v̂1n(m,k) = v̂1(m,k) ∀(m,k).

We now establish that the limit in (1.49) holds given (i) and (ii). Let
ε > 0 be given. Choose M > 1 so large so that the following inequality
holds:

(2π)N+1C

(M + 1)2
<
ε

2
.

Then we see from (i), (1.46), and (1.48) that

‖B1(v1n − v1)‖2L2(Ω̃)
≤ (2π)N+1

∑

|m|≤M

M∑

k=−M

|v̂1n(m,k) − v̂1(m,k)|2

|ik + λm|2
+
ε

2
+
ε

2
.

Consequently, using (ii), we obtain that

lim sup
n→∞

‖B1(v1n − v1)‖2L2(Ω̃)
≤ ε.

Since ε is arbitrary, this establishes the fact that the limit in (1.49) is valid
and that B1 is indeed a compact map.

Using the same ideas that we have just used for B1, we can show that
B2 is a compact map; what we have to do is to show that (i) and (ii) above
imply that the limit in (1.51) holds. We now do this.

From (1.50), we see that

(1.52)

‖B2(v1n − v1)‖2L2(Ω̃)
≤ (2π)N

∑

m∈ΛN

1

2λm

∣∣∣∣∣
∞∑

k=−∞

v̂1n(m,k) − v̂1(m,k)
ik + λm

∣∣∣∣∣

2

where λm is given by (1.46). Let ε > 0 be given. Choose M so large so that
both of the following inequalities hold:

(2π)NC(π + 1)

2(M2 + 1)2
<
ε

2
;

(2π)NC

M
<
ε

2
.
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Then we obtain from Schwarz’s inequality, (i), (1.26), and (1.52) that

‖B2(v1n − v1)‖2L2(Ω̃)
≤

∑

|m|≤M

1

2λm

∣∣∣∣∣
M∑

k=−M

v̂1n(m,k)− v̂1(m,k)
ik + λm

∣∣∣∣∣

2

+
ε

2
+
ε

2
.

Consequently, using (ii), we obtain that

lim sup
n→∞

‖B2(v1n − v1)‖2L2(Ω̃)
≤ ε.

Since ε is arbitrary, this establishes the fact that the limit in (1.51) is valid
and that B2 is indeed a compact map. �

Given v = (v1,..., vJ ) ∈ [L2(Ω̃)]J , we define Bn(v) for n = 1, 2 as follows:

(1.53) Bn(v) = (Bn(v1), ...Bn(vJ )).

It is clear that Bn(v) : [L2(Ω̃)]J → [L2(Ω̃)]J . As an immediate corollary
to Lemma 1.6, we have the following:

Lemma 1.7. With Bn(v) defined by (1.53), Bn(v) is both a continuous and

a compact map of [L2(Ω̃)] J into [L2(Ω̃)] J for n=1,2.

Assuming that fj(x, t, s) is a Caratheodory function as in (1.2) satisfying
the additional condition

(1.54) ∃ K > 0 s.t. |fj(x, t, s)| ≤ K ∀s ∈ RJ and a.e. (x, t) ∈ Ω̃,

for j = 1, ..., J , we shall study weak solutions of the following nonlinear
reaction-diffusion system with periodic boundary conditions:

(1.55)





∂uj

∂t −∆uj + uj = fj(x, t, u1, ..., uJ ) in TN × (0, 2π),

uj(x, 0) = 0

for j = 1, ..., J.
In particular, we say that u = (u1, ..., uJ ) is a weak solution of (1.55)

under the assumption that fj(x, t, s) satisfies (1.54) provided the following
holds:

u(x, t) ∈ [H̃1(Ω̃)]J and the following two additional conditions are met
(where E ⊂ (0, 2π) is a set of measure zero):

(1.56) (i) lim
t→0

‖uj(·, t)‖L2 = 0 t ∈ (0, 2π)\E;

·

(ii) <
∂uj

∂t
(·, t), ψ(·) >L2 + < uj(·, t), ψ(·) >H1=< fj(·, t, u), ψ(·) >L2

∀ψ ∈ H1(TN ), for a.e. t ∈ (0, 2π), and for j = 1, ..., J.
The following lemma prevails:
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Lemma 1.8. Suppose that fj(x, t, s) is a Caratheodory function that meets

(1.54) for j = 1, ..., J. Then there exists u(x,t)∈ [H̃1( Ω̃)]J , which is a weak
solution of the reaction-diffusion system with periodic boundary conditions
given by (1.55), i.e., both (1.56)(i) and (ii) are valid.

Proof of Lemma 1.8. To establish Lemma 1.8, we first observe that be-
cause of (1.54),

f(x, t, ·) = (f1(x, t, ·), ..., fJ (x, t, ·))
is a continuous map of [L2(Ω̃)]J into [L2(Ω̃)]J .

Consequently, it follows from Lemma 6 that Bnf(x, t, ·) is a continuous

map of [L2(Ω̃)]J into [L2(Ω̃)]J for n=1,2, where Bn is defined in (1.45) for
n = 1, 2. Also, (1.54) and Lemma 1.7 imply that Bnf(x, t, ·) is a compact

map of [L2(Ω̃)]J into [L2(Ω̃)]J for n=1,2. Hence A(v) is a continuous and

compact map of [L2(Ω̃)]J into [L2(Ω̃)]J , where

(1.57) A(v) = B1f(x, t, v)− B2f(x, t, v) for v ∈ [L2(Ω̃)]J .

Next, we observe from Lemma 1.5 that given v ∈ [L2(Ω̃)]J , u = A(v) is

in [H̃1(Ω̃)]J and uj , the j-th component of u, satisfies (1.56)(i) as well as
(1, 56)(ii) with fj(·, t, u) replaced by fj(·, t, v). Hence, if it can be shown that

there is a u ∈ [L2(Ω̃)]J that is a fixed point of the map A(u), i.e., u = A(u),
then Lemma 1.8 will be established.

So to complete the proof of Lemma 1.8, it remains to show that the
continuous and compact map A(u) defined in (1.57) has a fixed point. To
do this, we invoke Schaefer’s fixed point theorem, [Ev, p. 504], and see that
for A(u) to have a fixed point, it is sufficient to show that the following set

is a bounded set in [L2(Ω̃)]J :

̥ =
{
u ∈: [L2(Ω̃)]J : u = σA(u) for some 0 < σ ≤ 1

}
.

To show that the elements of ̥ are uniformly bounded, we observe from
(1.10), (1.26), (1.48), and (1.50) that

‖Bnvj‖[L2(Ω̃)]J ≤ (π + 1)
1
2 ‖vj‖[L2(Ω̃)]J ∀vj ∈ L2(Ω̃) for n = 1, 2.

Therefore, from (1.54),

‖Bnf(x, t, v)‖[L2(Ω̃)]J ≤ (π + 1)
1
2J

1
2K(2π)(N+1)/2.

So it follows from (1.57) and and this last inequality that if u ∈ ̥, then

‖u‖[L2(Ω̃)]J ≤ 2(π + 1)
1
2J

1
2K(2π)(N+1)/2.

Hence, we see that the elements of ̥ are uniformly bounded in [L2(Ω̃)]J ,
and the proof of Lemma 1.8 is complete. �
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Proof of Theorem 1.1. Without loss in generality, we assume from the
start that T = 2π. Next, we set

(1.58) gj(x, t, s) = sj + fj(x, t, s) for j = 1, ...J,

and instead of dealing with periodic solutions of the IVP (1.1), we deal with
periodic solutions of the following IVP:

(1.59)





∂uj

∂t −∆uj + uj = gj(x, t, u1, ..., uJ ) in TN × (0, 2π),

uj(x, 0) = 0

for j = 1, ..., J.
It is clear from (1.58) that gj satisfies (1.2) and (1.3). It also satisfies

(1.4) with C1 replaced by C1 + 1. It is also clear from (1.58) that if we
solve (1.59), then we also have solved (1.1) when T = 2π. So to prove the
theorem, we see from (1.6) that we have to show the following:
(1.60)

(i)∃ u ∈ [L2(0, 2π;H1(TN )]J ∩ [L∞ (0, 2π;L2(TN ))]J

with both ujgj(x, t, u) and gj(x, t, u) ∈ L1(Ω̃)

(ii)
∫ T
0

∫
TN

(−uj
∂θ
∂t − uj∆θ + ujθ) =

∫
eΩ
gj(x, t, u)θ ∀θ ∈ C̃∞

c (Ω̃),

for j = 1, ...J

(iii) limt→0 ‖uj(·, t)‖L2 = 0 t ∈ (0, 2π)\E where E ⊂ (0, 2π)
and meas(E) = 0 for j = 1, ...J.

To show that (1.60) holds, the first step we take is to set for n ≥ 1,

gjn(x, t, s) = gj(x, t, s) if |gj(x, t, s)| ≤ n
= n if gj(x, t, s) ≥ n
= −n if gj(x, t, s) ≤ −n

for j = 1, ...J. Then gjn(x, t, s) satisfies (1.54), and we can invoke Lemma
1.8 to obtain

(1.61) u
(n)
j (x, t) ∈ H̃1(Ω̃) and u

(n)
j satisfies (1.56)(i) for j = 1, ...J.

Also,

(1.62) u
(n)
j (x, t) and gjn(x, t, s) satisfy (1.56)(ii) ∀n and j = 1, ...J.

Next, we show that the following holds:
(1.63)

∃C > 0 s.t. (i)
∥∥∥u(n)

j

∥∥∥
L2(Ω̃)

≤ C and (ii)
∥∥∥u(n)

j gjn(·, ·, u(n))
∥∥∥

L1(Ω̃)
≤ C

for j = 1, ..., J and ∀n where u(n) = (u
(n)
1 , ..., u

(n)
J ).
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To accomplish this, we use (1.61) and (1.62) in conjunction with Lemma
1.4 to obtain

(1.64)

2−1
∫
TN

∣∣∣u(n)
j (x, t

∣∣∣
2
dx+

∫ t
0 < u

(n)
j (·, τ ), u(n)

j (·, τ ) >H1 dτ

=
∫ t
0 [
∫
TN
gjn(x, τ , u(n))u

(n)
j (x, τ )dx]dτ for a.e. t ∈ (0, 2π).

Observing that for each n and j, sjgjn(x, t, s) satisfies the inequality in

(1.4) with C1 replaced by C1 + 1 for a.e. (x, t) ∈ Ω̃ and ∀s ∈ RJ , we see
from (1.64) that there are two positive constants C∗

1 and C∗
2 such that

(1.65)

∫

TN

∣∣∣u(n)
j (x, t)

∣∣∣
2
dx ≤ C∗

1

∫ t

0
[

∫

TN

∣∣∣u(n)
j (x, τ )

∣∣∣
2
dx]dτ + C∗

2 ∀n,

for j = 1, ..., J, and for a.e. t ∈ (0, 2π).
From this last inequality, in conjuction with the integral form of Gron-

wall’s inequality [Ev, p. 625], we obtain that there is a positive constant C∗∗
1

such that
(1.66)∫

TN

∣∣∣u(n)
j (x, t)

∣∣∣
2
dx ≤ C∗∗

1 ∀n and for j = 1, ..., J and for a.e. t ∈ (0, 2π).

This establishes (1.63)(i) with C = (2πC∗∗
1 )

1
2 .

To establish (1.63)(ii), we see from (1.63)(i) joined with the fact that
sjgjn(x, t, s) satisfies (1.4) that there exists a positive constant C∗∗

2 such
that

(1.67)

∫

Bjn

u
(n)
j (x, t)gjn(x, t, u(n))dxdt ≤ C∗∗

2 ∀n and for j = 1, ..., J,

where

Bjn = {(x, t) ∈ Ω̃ : u
(n)
j (x, t)gjn(x, t, u(n)) ≥ 0}.

But Ω̃ = Ajn ∪ Bjn with Ajn ∩ Bjn = ∅, and also the left-hand side of
the equality in (1.64) is nonnegative. In particular, it is nonnegative when
t = 2π. So it follows from (1.67) that

−
∫

Ajn

u
(n)
j (x, t)gjn(x, t, u(n))dxdt ≤ C∗∗

2 .

Consequently,
∫
Ω̃

∣∣∣u(n)
j (x, t)gjn(x, t, u(n))

∣∣∣ dxdt ≤ 2 C∗∗
2 ∀n and for j =

1, ..., J, and (1.63)(ii) is established.
Next, we make use of the fact that gj(x, t, s) meets the condition in (1.3)

for j = 1, ..., J, to infer that the following holds:

(1.68)
for R ≥ 1,∃αR(x, t) ∈ L1(Ω̃) s.t. if

∣∣∣u(n)
j (x, t)

∣∣∣ ≤ R,

then
∣∣gjn(x, t, u(n))

∣∣ ≤ αR(x, t) ∀n for j = 1, ..., J.



176 5. NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

We see, in particular, from this last inequality that
∣∣∣gjn(x, t, u(n))

∣∣∣ ≤ |α2(x, t)| +
∣∣∣u(n)

j (x, t)gjn(x, t, u(n))
∣∣∣

∀n, for j = 1, ..., J and for (x, t) ∈ Ω̃. So we conclude from (1.63)(ii) that
(1.69)

∃C# such that

∫

Ω̃

∣∣∣gjn(x, t, u(n))
∣∣∣ dxdt ≤ C# ∀n and for j = 1, ..., J.

We also see from (1.68) we can obtain the following:
(1.70)

{gjn(x, t, u(n))}∞n=1 is absolutely equi-integrable in L1(Ω̃) for j = 1, ..., J.

What is meant by this last statement is ∀ε > 0, ∃δ > 0 s.t. given E ⊂ Ω̃,
with meas(E) < δ, then

∫
E

∣∣gjn(x, t, u(n))
∣∣ dxdt < ε ∀n and for j = 1, ..., J.

To establish (1.70) with C as in (1.63)(ii),

(1.71) select R > 1 such that CR−1 <
ε

2
.

Next, with αR(x, t) as in (1.68), choose δ > 0, such that E ⊂ Ω̃, and

(1.72) meas(E) < δ =⇒
∫

E
|αR(x, t)| dxdt < ε

2
.

From (1.68), we see that

|gjn(x, t, un)| ≤ |αR(x, t)|+ |ujn(x, t)gjn(x, t, un)|R−1 ∀n.
The statement in (1.70) follows easily from this last inequality joined with
(1.63)(ii), (1.71), and (1.72).

Next, with C as in (1.63)(ii), we see from (1.64) that

(1.73)

∫ 2π

0
< u

(n)
j (·, t), u(n)

j (·, t) >H1 dt ≤ C ∀n and for j = 1, ..., J.

It then follows from (1.5), this last inequality, and standard Hilbert space
arguments (see [Ev, pp. 638-640]) that

∃uj ∈ L2(0, 2π;H1(TN )) s.t. (i)limn→∞

∫
Ω̃ u

(n)
j w dxdt =

∫
Ω̃ ujw dxdt,

(1.74)

(ii) lim
n→∞

∫ 2π

0
<u

(n)
j (·, t), v(·, t) >H1 dt =

∫ 2π

0
<uj(·, t), v(·, t) >H1 dt,

∀w ∈ L2(Ω̃), ∀v ∈ L2(0, 2π;H1(TN )), and for j = 1, ..., J, where we have
used the full sequence rather than a subsequence for convenience of notation.

With uj as in (1.74), we will demonstrate that

(1.75) lim
n→∞

∥∥∥u(n)
j − uj

∥∥∥
L2(Ω̃)

= 0 for j = 1, ..., J.

To establish (1.75), we use (1.10) and designate by û
(n)
j (m,k) and

ûj(m,k) the corresponding Fourier coefficients of u
(n)
j and uj , as in (1.11).
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Since both u
(n)
j and uj are in L2(Ω̃), it follows from Parsevaal’s theorem

that

(1.76)
∥∥∥u(n)

j − uj

∥∥∥
2

L2(Ω̃)
= (2π)N+1

∑

m∈ΛN

∞∑

k=−∞

∣∣∣û(n)
j (m,k)− ûj(m,k)

∣∣∣
2
.

Also, we have from (1.74)(i) that

(1.77) lim
n→∞

û
(n)
j (m,k) = ûj(m,k) ∀(m,k).

Next, from (1.61) and (1.17)(ii), we see that u
(n)
j ∈ H1(TN ) for a.e. t

and for every n. Hence, we obtain from Lemma 1.2 that
(1.78)

<u
(n)
j (·, t), u(n)

j (·, t) >H1= (2π)−N
∑

m∈ΛN

λm

∣∣∣∣
∫

TN

u
(n)
j (x, t)e−im·xdx

∣∣∣∣
2

∀n, for j = 1, ..., J, and for a.e. t ∈ (0, 2π) where

(1.79) λm = |m|2 + 1.

Also, we see from (1.73) that
∫ 2π

0

∣∣∣∣
∫

TN

u
(n)
j (x, t)e−im·xdx

∣∣∣∣
2

dt = (2π)2N+1
∞∑

k=−∞

∣∣∣û(n)
j (m,k)

∣∣∣
2
∀mǫΛN .

Consequently, we obtain from (1.73) and (178) that

(2π)N+1
∑

m∈ΛN

λm

∞∑

k=−∞

∣∣∣û(n)
j (m,k))

∣∣∣
2
≤ C ∀n and for j = 1, ..., J.

But this last inequality in conjunction with (1.77) enables us to conclude

(1.80) (2π)N+1
∑

m∈ΛN

λm

∞∑

k=−∞

∣∣∣û(n)
j (m,k)− ûj(m,k)

∣∣∣
2
≤ 4C

∀n and for j = 1, ..., J.
Continuing, we use (1.62) and (1.56)(ii) to obtain that

∫ t
r e

−ikτ{
∫
TN
e−im·x[∂u

(n)
j (x, τ )/∂τ +λmu

(n)
j (x, τ )]dx}dτ

(1.81)

=

∫ t

r
e−ikτ [

∫

TN

gjn(x, t, u(n))e−im·xdx]dτ ∀n,∀m,∀k, for j = 1, ..., J

and for 0 < r < t < 2π.
Using the fact that u

(n)
j ∈ H̃1(Ω̃), we next see that there exists E1 ⊂

(0, 2π) with meas(E1) = 0 such that

∫
TN
e−im·xdx

∫ t
r e

−ikτ∂u
(n)
j (x, τ)/∂τ dτ =

∫
TN
e−im·xu

(n)
j (x, τ)e−ikτ |τ=t

τ=r dx
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+

∫ t

r

∫

TN

ike−ikτe−im·xu
(n)
j (x, τ ) dxdτ ∀k and ∀m,

with 0 < r < t < 2π and r, t ∈ (0, 2π)\E1. Hence, we obtain from this last
equality joined with (1.81) that

(1.82)∫ t
r

∫
TN

(ik + λm)e−ikτe−im·xu
(n)
j (x, τ )dxdτ =

−
∫
TN

e−im·xu
(n)
j (x, τ)e−ikτ |τ=t

τ=r dx

+
∫ t
r e

−ikτ [
∫
TN
gjn(x, t, u(n))e−im·xdx]dτ

∀k and ∀m with 0 < r < t < 2π and r, t ∈ (0, 2π)\E1.
From (1.66), we see for a.e. r and t in (0, 2π) with r < t, that the absolute

value of the first expression on the right-hand side of (1.82) is majorized by

2 (2π)N/2 (C∗∗
1 )

1
2 . Likewise, we see from (1.69) that the absolute value of the

second expression on the right-hand side of (1.82) is majorized by C#. Hence,
we obtain from (1.82) that there exists E2 ⊂ (0, 2π) with meas(E2) = 0 such
that
(1.83)∣∣∣∣(ik + λm)

∫ t

r

∫

tn

e−ikτe−im·xu
(n)
j (x, τ )dxdτ

∣∣∣∣ ≤ 2 (2π)N/2 (C∗∗
1 )

1
2 + C#

∀k and ∀m and for 0 < r < t < 2π with r, t ∈ (0, 2π)\E2. Taking the limit
in (1.83) as r → 0 and as t→ 2π with r, t ∈ (0, 2π)\E2, we conclude that∣∣∣û(n)

j (m,k)
∣∣∣ ≤ [2 (2π)N/2 (C∗∗

1 )
1
2 + C#]/ |ik + λm| ∀k,∀m,∀n,

and for j = 1, ..., J.
This last inequality joined with the limit in (1.77), in turn, gives us

(1.84)
∣∣∣û(n)

j (m,k)− ûj(m,k)
∣∣∣
2
≤ C♦/(k2 + λ2

m)

∀k,∀m,∀n, and for j = 1, ..., J where C♦ = 4[2 (2π)N/2 (C∗∗
1 )

1
2 + C#]2.

To see that the limit in (1.75) actually prevails, from the equality in
(1.76), we see it is sufficient to show that

(1.85) lim
n→∞

lim sup
M→∞

∑

|m|≤M

∞∑

k=−∞

∣∣∣û(n)
j (m,k)− ûj(m,k)

∣∣∣
2

= 0

for j = 1, ..., J.
To establish this last fact, given ε > 0, we choose M0 to be a positive

integer so large that

M−2
0 4C <

ε

2
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where C is the constant in (1.80). Also, we observe from (1.79) that

M0 ≤ |m| =⇒ 1 ≤ λm

M2
0

.

Hence, it follows from (1.80) that

(1.86)
∑

|m|>M0

∞∑

k=−∞

∣∣∣û(n)
j (m,k)− ûj(m,k)

∣∣∣
2
≤M−2

0 4C <
ε

2

∀n and for j = 1, ..., J.
Next, let the number of integral lattice points in the following set

{m : |m| ≤M0}

be designated by M#
0 , and choose K0 to be a positive integer so large that

M#
0 K

−1
0 C♦ ≤ ε

4
,

where C♦ is the constant in (1.84). Then, using the fact that
∑∞

k=K0+1
1
k2 ≤

K−1
0 , we see from (1.79) and (1.84) that

∑

|m|≤M0

∞∑

k=K0+1

∣∣∣û(n)
j (m,k)− ûj(m,k)

∣∣∣
2
≤

∑

|m|≤M0

K−1
0 C♦ ≤M#

0 K
−1
0 C♦ ≤ ε

4

∀n and for j = 1, ..., J. Similarly,

∑

|m|≤M0

−(K0+1)∑

k=−∞

∣∣∣û(n)
j (m,k)− ûj(m,k)

∣∣∣
2
≤ ε

4

∀n and for j = 1, ..., J, and we obtain from these last two inequalities that

∑
|m|≤M0

∑∞
k=−∞

∣∣∣û(n)
j (m,k)− ûj(m,k)

∣∣∣
2

≤∑|m|≤M0

∑K0
k=−K0

∣∣∣û(n)
j (m,k)− ûj(m,k)

∣∣∣
2
+ ε

2

∀n and for j = 1, ..., J.
From (1.77), (1.86), and this last inequality, we therefore obtain that

lim
n→∞

lim sup
M→∞

∑

|m|≤M

∞∑

k=−∞

∣∣∣û(n)
j (m,k) − ûj(m,k)

∣∣∣
2
≤ ε.

But ε is an arbitrary positive number. Hence, the left-hand side of this last
inequality is zero, and the assertion in (1.85) is established. Consequently,
the limit in (1.75) also holds, and this is the key fact in the proof of the
theorem.

Continuing, from (1.64) and (1.75), we see that the following three facts
also hold:
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∃E3 ⊂ (0, 2π) with meas(E3) = 0 such that

(1.87) lim
n→∞

∫

TN

∣∣∣u(n)
j (x, t)− uj(x, t)

∣∣∣
2
dx = 0 for t ∈ (0, 2π)\E3;

(1.88) lim
n→∞

u
(n)
j (x, t) = uj(x, t) for a.e. (x, t) ∈ Ω̃;

(1.89)

∫

TN

∣∣∣u(n)
j (x, t)

∣∣∣
2
dx ≤ 2

∫ t

0
[

∫

TN

u
(n)
j (x, τ )gjn(x, τ , u(n)(x, τ ))dx]dτ

for t ∈ (0, 2π)\E3, for j = 1, ..., J and ∀n, where we have used the full
sequence rather than a subsequence for convenience of notation.

We next show that the limit in (1.60)(iii) holds, i.e.,

(1.90) lim
t→0

∫

TN

|uj(x, t)|2 dx = 0 t ∈ (0, 2π)\E3

for j = 1, ..., J.
To do this, we observe that the inequality in (1.4) holds for sjgjn(x, t, s)

with C1 replaced by C1 + 1, and therefore, from (1.89), we obtain
∫

TN

∣∣∣u(n)
j (x, t)

∣∣∣
2
dx ≤ 2

∫ t

0

∫

TN

[(C1 + 1)
∣∣∣u(n)

j (x, t)
∣∣∣
2

+ C2(x, t)
∣∣∣u(n)

j (x, t)
∣∣∣+ C3(x, t)]dxdτ

for t ∈ (0, 2π)\E3, ∀n, and for j = 1, ..., J, where C1 is a positive constant,

C2(x, t) ǫ L
2(Ω̃), and C3(x, t) ǫL

1(Ω̃). Also, C2 and C3 are nonnegative
functions. Passing to the limit on both sides of the above inequality as
n→∞ and making use of (175) and (1.90), we see that
(1.91)∫

TN
|uj(x, t)|2 dx ≤ 2

∫ t
0

∫
TN

[(C1 + 1) |uj(x, t)|2

+ C2(x, t) |uj(x, t)| +C3(x, t)]dxdτ

for t ∈ (0, 2π)\E3. But uj ∈ L2(Ω̃). Consequently, the limit as t→ 0 of the
integral on the right-hand side of the inequality in (1.91) is zero. Hence the
limit of the integral on the left-hand side of the inequality in (1.91) is zero if
t→ 0 through the values in (0, 2π)\E3, and (1.90) is completely established.

Next, using the fact that uj ∈ L2(Ω̃) for j = 1, ..., J, we designate the
value of the integral when t = 2π on the right-hand of the inequality in
(1.91) by the positive constant K∗

1 . Hence,
∫

TN

|uj(x, t)|2 dx ≤ 2K∗
1 for t ∈ (0, 2π)\E3.

Since meas(E3) = 0, we obtain that

(1.92) uj ∈ L∞(0, 2π;L2(TN ))

for j = 1, ..., J.
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We would like to show that the rest of the items in (1.60)(i) also prevail.
To do this, we use (1.63)(ii), (1.69), (1.88), and Fatou’s Lemma [Ev, p. 648]
to obtain that

(1.93) (i)

∫

Ω̃
|ujgj(x, t, u)| dxdt ≤ C and (ii)

∫

Ω̃
|gj(x, t, u)| dxdt ≤ C♯,

for j = 1, ..., J where C and C♯ are positive constants. From (1.74), we
see that uj ∈ L2(0, 2π;H1(TN )) for j = 1, ..., J. So (1.92) along with the
inequalities in (1.93) show that all the items in (1.60)(i) do indeed prevail.

Since the limits in (1.90) are the same as those in (1.60)(iii), to complete
the proof to the theorem, it remains to show that the equalities in (1.60)(ii)
hold. We now do this.

From (1.61) and (1.62), we infer that u
(n)
j ǫH̃1(Ω̃) and

∫ 2π
0 <

∂u
(n)
j

∂t (·, t), θ(·, t) >L2 dt +
∫ 2π
0 <u

(n)
j (·, t), θ(·, t) >H1 dt

(1.94) =

∫ 2π

0
< gjn(·, t, u(n)), θ(·, t) >L2 dt ∀θ ∈ C̃∞

c (Ω̃),

∀n, and for j = 1, ..., J. Now the first integral on the left-hand side of the
equality in (1.94) is equal to

∫

TN

[

∫ 2π

0

∂u
(n)
j

∂t
(x, t)θ(x, t)dt]dx.

But θ ∈ C̃∞
c (Ω̃) and u

(n)
j ∈ H̃1(Ω̃). Hence this latter integral is equal to

−
∫ 2π

0

∫

TN

u
(n)
j (x, t)

∂θ

∂t
(x, t)dxdt.

We record this fact as

(1.95)

∫ 2π

0
<
∂u

(n)
j

∂t
(·, t), θ(·, t) >L2 dt = −

∫ 2π

0

∫

TN

u
(n)
j

∂θ

∂t
dxdt.

Also, from the fact that θ ∈ C̃∞
c (Ω̃) and u

(n)
j ∈ H̃1(Ω̃), we see that

∫ 2π

0

∫

TN

∂

∂xk
u

(n)
j (x, t)

∂

∂xk
θ(x, t)dxdt = −

∫ 2π

0

∫

TN

u
(n)
j (x, t)

∂2

∂x2
k

θ(x, t)dxdt

for k = 1, ..., N. Hence, we obtain from (1.5) that

(1.96)

∫ 2π

0
<u

(n)
j (·, t), θ(·, t) >H1 dt =

∫ 2π

0

∫

TN

[−u(n)
j ∆θ + u

(n)
j θ]dxdt.

From (1.95) and (1.96) joined with (1.94), we consequently have that
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(1.97)∫ 2π
0

∫
TN

[−u(n)
j

∂θ
∂t − u

(n)
j ∆θ + u

(n)
j θ]dxdt

=
∫ 2π
0

∫
TN
gjn(x, t, u

(n)
j )θ(x, t)dxdt ∀θ ∈ C̃∞

c (Ω̃),

∀n, and for j = 1, ..., J.
Now the limit in (1.88) implies that

lim
n→∞

gjn(x, t, u
(n)
j ) = gj(x, t, u) for a.e. (x, t) ∈ Ω̃.

From the observations that θ ∈ C̃∞
c (Ω̃), that

gjn(x, t, u
(n)
j ) is absolutely equi-integrable in L1(Ω̃)

(see (1.70)), and that gj(x, t, u) ∈ L1(Ω̃) (see (1.93)(ii)), we obtain from this
last limit and Egoroff’s Theorem [Ev, p. 647] that the limit of the integral
on the right-hand side of the equality in (1.97) as n→∞ is equal to

∫ 2π

0

∫

TN

gj(x, t, u)θ(x, t)dxdt ∀θ ∈ C̃∞
c (Ω̃)

and for j = 1, ..., J.
On the other hand, from (1.75), we see that the limit of the integral on

the left-hand side of the equality in (1.97) as n→∞ is
∫ 2π

0

∫

TN

[−uj(x, t)
∂θ

∂t
(x, t)− uj(x, t)∆θ(x, t) + uj(x, t)θ(x, t)]dxdt.

Hence, we obtain that
∫ 2π
0

∫
TN

[−uj(x, t)
∂θ
∂t (x, t)− uj(x, t)∆θ(x, t) + uj(x, t)θ(x, t)]dxdt

=
∫ 2π
0

∫
TN
gj(x, t, u)θ(x, t)dxdt ∀θ ∈ C̃∞

c (Ω̃),

and for j = 1, ..., J.
But this last equality is the same as the equality in (1.60)(ii). Therefore

(1.60)(ii) is indeed true, and the proof of the theorem is complete. �

If we replace (1.4) by the two-sided condition

(1.98) |fj(x, t, s)| ≤ C1 |sj|+ C2

for a.e. (x, t) ∈ Ω̃ and ∀s ∈ R, where C1 and C2 are positive constants
and j = 1, ..., J , then we can obtain an improvement to the conclusion of
Theorem 1.1. In particular, we can show that the solution u to the reaction-

diffusion problem (1.1) under assumption (1.98) is in [H̃1(Ω̃)]J , which is
defined in (1.16) above with T = 2π. Also, we can obtain a weak solution to
the problem (1.1). In other words, we can show that



1. REACTION-DIFFUSION EQUATIONS ON THE N -TORUS 183

u(x, t) ∈ [H̃1(Ω̃)]J and the following two additional conditions are met
(where E ⊂ (0, 2π) is a set of measure zero):

(1.99) (i) lim
t→0

‖uj(·, t)‖L2 = 0 t ∈ (0, 2π)\E;

·

(ii) <
∂uj

∂t
(·, t), ψ(·) >L2 + < ∇uj(·, t),∇ψ(·) >L2=< fj(·, t, u), ψ(·) >L2

∀ψ ∈ H1(TN ), for a.e. t ∈ (0, 2π), and for j = 1, ..., J.
We do all this in the following theorem, which we shall prove:

Theorem 1.9. Let TN × (0, T ) = Ω̃. With s = (s1, ..., sJ ), assume that
fj(x, t, s) satisfies the conditions stated in (1.2) and (1.98) for j = 1, ..., J.
Then there exists

u ∈ [H̃1(Ω̃)]J ∩ [L∞ (0, T ;L2(TN ))]J

with ujfj(x, t, u) ∈ L1(Ω̃) and fj(x, t, u) ∈ L2(Ω̃) for j = 1, ..., J, such that
u = (u1, ..., uJ ) satisfies the conditions in (1.99) and is, therefore, a weak
solution of the reaction-diffusion system (1.1).

Proof of Theorem 1.9. With no loss in generality, we once again assume
that T = 2π and observe that fj(x, t, s) clearly satisfies the conditons in the
hypothesis of Theorem 1.1. So, by that theorem, we have the existence of a

(1.100) u ∈ [L2 (0, 2π;H !(TN ))]J ∩ [L∞ (0, T ;L2(TN ))]J,

which is also a generalized periodic solution of the reaction-diffusion system
(1.1).

What we have to do is show that this u ∈ [H̃1(Ω̃)]J and that it meets
condition (ii) in (1.99). We already know that it meets condition (i) in (1.99).

As in the proof of Theorem 1.1, we set

(1.101) gj(x, t, s) = sj + fj(x, t, s) for j = 1, ...J,

and

(1.102)
gjn(x, t, s) = gj(x, t, s) if |gj(x, t, s)| ≤ n

= n if gj(x, t, s) ≥ n
= −n if gj(x, t, s) ≤ −n.

Then from (1.61) and (1.62) in the proof of Theorem 1.1, we obtain

(1.103) u
(n)
j (x, t) ∈ H̃1(Ω̃) and u

(n)
j satisfies (1.56)(i) for j = 1, ...J.

Also,

(1.104) u
(n)
j (x, t) and gjn(x, t, u(n)) satisfy (1.56)(ii) ∀n and j = 1, ...J.
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Next, we observe from (1.100) that, in particular, u ∈ [L2(Ω̃)]J . Hence,
it follows from (1.98) that

(1.105) fj(x, t, u) ∈ L2(Ω̃) for j = 1, ...J,

and also from (1.101) that

(1.106) gj(x, t, u) ∈ L2(Ω̃) for j = 1, ...J.

So, we invoke Lemma 1.3 and obtain the existence of

(1.107) v = (v1, ...vJ ) ∈ [H̃1(Ω̃)]J

such that

(1.108) vj and gj(x, t, u) satisfy (1.18) (i) and (ii) for j = 1, ...J.

As a consequence of (1.104) and this last fact, we have that

<
∂u

(n)
j

∂t (·, t)− ∂vj

∂t (·, t), ψ(·) >L2 + < u
(n)
j (·, t)− vj(·, t), ψ(·) >H1

=< gjn(·, t, u(n))− gj(x, t, u), ψ(·) >L2

∀ψ ∈ H1(TN ), for a.e. t ∈ (0, 2π), and for j = 1, ..., J.

But then, invoking Lemma 1.4, we obtain

2−1
∫
TN

∣∣∣u(n)
j (x, t)− vj(x, t)

∣∣∣
2
dx

+
∫ t
0 < u

(n)
j (x, τ)−vj(x, τ ), u

(n)
j (x, τ )−vj(x, τ) >H1 dτ

(1.109)

=

∫ t

0

{∫

TN

[
gjn(x, t, u(n))− gj(x, t, u)

] [
u

(n)
j (x, τ )− vj(x, τ)

]
dx

}
dτ

for a.e. t ∈ (0, 2π) and for j = 1, ..., J.
Next, we recall certain facts from the proof of Theorem 1.1, namely from

(1.75) that the following holds:

(1.110)

(i) limn→∞

∥∥∥u(n)
j − uj

∥∥∥
L2(Ω̃)

;

(ii)limn→∞u
(n)
j (x, t) = uj(x, t) for a.e. (x, t) ∈ .Ω̃.

We observe from (1.98) and (1.101) that
∣∣∣gjn(x, t, u(n))

∣∣∣
2
≤
[∣∣∣u(n)

j

∣∣∣+ C1

∣∣∣u(n)
j

∣∣∣+ C2

]2

∀n. Hence it follows from (1.110)(i) that

{
∣∣∣gjn(x, t, u(n))

∣∣∣
2
}∞n=1 is absolutely equi-integrable in L1(Ω̃) for j = 1, ..., J.

Also, we obtain from (1.110)(ii) that

lim
n→∞

gjn(x, t, u(n)) = gj(x, t, u) for a.e.(x, t) ∈ Ω̃.
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From these last two facts joined with Egoroff’s theorem and Schwarz’s
inequality, we see that the integral on the right-hand side of the equality in
(1.109) goes to zero as n→∞. We state this as

lim
n→∞

∫ t

0

∫

TN

[
gjn(x, t, u(n))− gj(x, t, u)

] [
u

(n)
j (x, τ )− vj(x, τ )

]
dxdτ = 0

for t ∈ (0, 2π) and for j = 1, ..., J.
But then it follows from (1.109) and this last limit that

lim
n→∞

∫ t

0

∫

TN

[
u

(n)
j (x, τ )− vj(x, τ)

]2
dxdτ = 0

for a.e. t ∈ (0, 2π) and for j = 1, ..., J.
We conclude from (1.110)(i) and this last fact that

(1.111) uj(x, t) = vj(x, t) for a.e. (x, t) ∈ .Ω̃ and for j = 1, ..., J.

From this last equality and (1.107), we see that indeed

u = (u1, ...uJ ) ∈ [H̃1(Ω̃)]J .

Also, from (1.108) joined with (1.111), we obtain that

<
∂uj

∂t
(·, t), ψ(·) >L2 + < uj(·, t), ψ(·) >H1=< gj(·, t, u), ψ(·) >L2

∀ψ ∈ H1(TN ), for a.e. t ∈ (0, 2π), and for j = 1, ..., J.
But using (1.05) and (1.101), we see this last equality can be replaced

with

<
∂uj

∂t
(·, t), ψ(·) >L2 + < ∇uj(·, t),∇ψ(·) >L2=< fj(·, t, u), ψ(·) >L2

This establishes (1.99)(ii) and completes the proof of the theorem. �

Exercises.

1. Prove that H1 (T2) , which is defined in (1.5), can be generated also
by the functions in C2 (TN ) where

C2 (T2) = {φ ∈ C2
(
R2
)

: φ (x) is periodic of period 2π in each variable}.
2. Given {fn}∞n=1, a sequence of functions absolutely equi-integrable in

L1 (T2) with the property that

lim
n→∞

fn (x) = 0 for a.e. x ∈ TN ,

prove that limn→∞

∫
T2
|fn (x)| dx = 0.

3. Using the notation of this section, given Ω̃ = T2 × (0, 2π) and

f ∈ [C̃2(Ω̃)]2, find u ∈ [H̃1(Ω̃)]2 ∩ [L∞ (0, 2π;L2(T2))]
2, which satisfies the
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conditions in (1.99) where

f1 (x, t) = cos t cosx1 + sin 2t sin 3x2,

f2 (x, t) = (

∞∑

k=1

cos kt

k5
)(

∞∑

n=1

cosnx1

n8
).

4. Using the notation of this section, given Ω̃ = T2 × (0, 2π) and

f (x, t, s) ∈ [C(Ω̃×R2)]2 and meets the conditions in (1.98), find

u ∈ [H̃1(Ω̃)]2 ∩ [L∞ (0, 2π;L2(T2))]
2,

which satisfies the conditions in (1.99) where

f1 (x, t, u) = −u1 + sin t cos x1 + cos 2t sin x2

f2 (x, t, u) = u2/2 + 1 + cos x1.

2. Quasilinear Ellipticity on the N -Torus

In this section, we shall study the existence of solutions to quasilinear
elliptic partial differential equations under periodic boundary conditions.
Once again, we will see the power of Fourier analysis in handling these
difficult problems.

The material presented here comes mainly from the author’s Transaction
paper, [Sh12], and makes use of an ingenious (according to the referee of said
paper) Galerkin-type argument. It serves quite well as an introduction to
the general subject of quasilinear ellipticity.

We will use the notation introduced in the previous section of this chap-
ter except that now u will represent a function and not a vector function as
it did previously.

In particular, we will operate in N -dimensional Euclidean space RN,
N ≥ 2, and as before, let TN be the N -dimensional torus

TN = {x : −π ≤ xn < π, n = 1, ..., N} .
g(x) ∈ C∞(TN ) will mean that g(x) ∈ C∞(RN ) and is periodic of period

2π in each of the variables xn for n = 1, ..., N .
We introduce the Hilbert space H1(TN ) as follows:
H1(TN ) is the closure of the set of functions in C∞(TN ) under the norm

generated by the following real inner product

< g, h >H1=

∫

TN

[gh+Dg ·Dh]dx for g, h ∈ C∞(TN ),

where Du = (D1u, ...,DNu) and Dnu = ∂u/∂xn. (In this section, we will
use the notation Du = ∇u.)



2. QUASILINEAR ELLIPTICITY ON THE N -TORUS 187

So if u, v ∈ H1(TN ), then

(2.1) < u, v >H1=

∫

TN

[uv +Du ·Dv]dx for u, v ∈ H1(TN ).

Also, for each n, u has a weak partial derivative on TN with respect to
xn, that there is a function w ∈ L2(TN ) such that

∫

TN

uDnφdx = −
∫

TN

wφdx ∀φ ∈ C∞(TN ),

for n = 1, ..., N . We refer to w as Dnu.
This last equality could also have been written as

< u,Dnφ >L2= − < w,φ >L2

We shall consider second order, quasilinear elliptic operators Q, operat-
ing on H1(TN ) of the form

(2.2) Qu = −
N∑

i,j=1

Di[a
ij(x, u)Dju] +

N∑

j=1

bj(x, u,Du)Dju.

The coefficients of Q, namely the functions aij(x, s) and bj(x, s, p) are
assumed to be defined for (x, s) ∈ TN × R and (x, s, p) ∈ TN × R ×RN ,
respectively. Furthermore, we shall suppose the following throughout this
section.

(Q1) The coefficients aij(x, s) and bj(x, s, p) satisfy the Caratheodory
conditions: For each fixed s ∈ R and p ∈ RN , the functions aij(x, s) and
bj(x, s, p) are measureable; for a.e. x ∈ TN , the functions aij(x, s) and
bj(x, s, p) are respectively continuous in R and R×RN , i, j = 1, ..., N.

(Q2) ∃ a nonnegative function a(x) ∈ L2 (TN ) and an η > 0 such that
∣∣aij(x, s)

∣∣ ≤ a(x) + η |s|
for s ∈ R and a.e. x ∈ TN , i, j = 1, ..., N.

(Q3) The principal part of Q is symmetric, that is, aij(x, s) = aji(x, s)
for s ∈ R and a.e. x ∈ TN , i, j = 1, ..., N.

(Q4) Q is uniformly elliptic almost everywhere in TN , that is, there is a
constant η0 > 0 such that

N∑

i,j=1

aij(x, s)ξiξj ≥ η0 |ξ|2

for s ∈ R, a.e. x ∈ TN , and ξ ∈ RN ( |ξ|2 = ξ21 + · · ·+ ξ2N ).
(Q5) There is a nonnegative function b (x) ∈ L2 (TN ) and positive con-

stants η1 and η2 such that
∣∣b,j(x, s, p)

∣∣ ≤ b (x) + η1 |s|+ η2 |p|
for s ∈ R, a.e. x ∈ TN , and p ∈ RN , j = 1, ..., N.
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(Q6) For every u ∈ H1(TN ), the vector fnnction

b(x, u,Du) =
[
b1(x, u,Du), ..., bN (x, u,Du)

]

is weakly solenoidal, i.e.,

(2.3)

∫

TN




N∑

j=1

bj(x, u,Du)Djv


 dx = 0

for u, v ∈ H1(TN ).
(Q7) If {un}∞n=1 is a sequence of functions in L2 (TN ), which tends

strongly to u ∈ L2 (TN ) and {wn}∞n=1 is a sequence of vector-valued
functions in [L2 (TN )]N, which tends weakly to w ∈ [L2 (TN )]N , then
{b (x, un,wn)}∞n=1 is a sequence of vector-valued functions in [L2 (TN )]N ,
which tends weakly to b (x, u,w) ∈ [L2 (TN )]N .

By strong convergence in (Q7), we mean convergence in norm.
It is clear that there are many examples of aij(x, s) that satisfy (Q1)−

(Q4) .
Before proceeding, we give an example of a vector b (x, s, p) that meets

(Q5), (Q6), and (Q7). Define the j-th component of b (x, s, p) as follows:

b1(x, s, p) = p2 sinx1

b2(x, s, p) = −p1 sinx1 − s cos x1

bj(x, s, p) = 0 for j = 3, ..., N.

Clearly, condition (Q5) is met. If u ∈ H1(TN ) and φ ∈ C∞(TN ), then
∫
TN

[D2 (u sinx1)D1φ−D1 (u sinx1)D2φ]dx

=
∫
TN
u sinx1(D1D2φ−D2D1φ)dx = 0.

So (2.3) holds for φ, and therefore, it is easy to see from the definition of
H1(TN ) that condition (Q6) is met.

To see that condition (Q7) holds, let {un}∞n=1 be a sequence of func-
tions in L2 (TN ), which tend strongly to u ∈ L2 (TN ), and {wn}∞n=1 be a
sequence of vector-valued functions in [L2 (TN )]N, which tend weakly to w

in [L2 (TN )]N. Then,

b1(x, un,wn) = wn2 sinx1

b2(x, un,wn) = −wn1 sinx1 − un cos x1

bj(x, un,wn) = 0 for j = 3, ..., N.

It is clear that

lim
n→∞

∫

TN

bj(x, un,wn)vdx =

∫

TN

bj(x, u,w)vdx ∀v ∈ L2 (TN ),
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for j = 1, ..., N. Consequently, condition (Q7) is met. Therefore, b (x, s, p)
has met all the asserted conditions, and our example is complete.

We shall study equations of the form

(2.4) Qu = f(x)

and

(2.5) Qu = f (x, u).

For the former, we shall suppose f (x) ∈ L2 (TN ), and for the latter, we
shall suppose f (x, s) meets the following two conditions:

(f − 1) f (x, s) meets the same Caratheodory conditions that aij(x, s)
meets in (Q1) above;

(f − 2) For each r > 0, there is a ζr ∈ L2 (TN ) such that

|f (x, s)| ≤ ζr (x) for |s| ≤ r and for a.e. x ∈ TN .

To establish the first theorem in the paper, we shall also need the fol-
lowing one-sided condition on f (x, s) .

(f − 3) Given ε > 0, ∃ a nonnegative function cε (x) ∈ L2 (TN ), and a
constant s0 (ε) such that

sf (x, s) ≤ εs2 + cε (x) |s| for |s| ≥ s0 (ε) and for a.e. x ∈ TN ,

we note that (f − 3) is a generalization of the notion

lim sup
|s|→∞

f (x, s) /s ≤ 0 uniformly for x ∈ TN .

We set

(2.6) F± (x) = lim sup
s→±∞

f (x, s) /s,

and will establish the following theorem:

Theorem 2.1. Assume (Q1) − (Q7) , (f − 1) , (f − 2) , and (f − 3) . Sup-
pose

(i)

∫

TN

F+ (x) dx < 0 and (ii)

∫

TN

F− (x) dx < 0,

where F+ (x) and F− (x) are defined in (2.6). Then, there exists a distribu-
tion solution u ∈ H1(TN ) of Qu = f (x, u) on TN with f (x, u) ∈ L1(TN )
and f (x, u) u ∈ L1(TN ).

We shall prove two more theorems about the quasilinear elliptic operator
Qu in this section. The statement of these theorems can be found immedi-
ately after the proof of Theorem 2.1, which will be given next.
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To be quite explicit, what we mean by u ∈ H1(TN ) is a distribution
solution of Qu = f (x, u) on TN with f (x, u) ∈ L1(TN ) is the following:
(2.7)
∫

TN




N∑

i,j=1

aij(x, u)DjuDiφ+
N∑

j=1

φbj(x, u,Du)Dju


 dx =

∫

TN

f (x, u)φdx

∀φ ∈ C∞(TN ).
Because Q1 = 0 · 1, we see that 0 acts like an eigenvalue of Q. Also,

since Q is a generalization of −∆, 0 acts like the first eigenvalue of Q. So
Theorem 2.1 is referred to in the literature as a result at resonance (see
[DG, p.4]). Theorem 2.1 is a generalization to the quasilinear case (with a
different proof) of the result given by De Figueiredo and Gossez in [DG, p.
10].

Theorem 2.1 is in a certain sense a best possible result, i.e., if we replace
(i) above by (i′) below and keep (ii), the theorem is false. Likewise, if we
keep (i) and replace (ii) above by (ii′′) below, the theorem is false.

(i′)
∫
TN
F+ (x) dx = 0.

(ii′′)
∫
TN
F− (x) dx = 0.

To see that this is the case for (i′) , we shall suppose Theorem 2.1 holds
if (i) is replaced by (i′) and arrive at a contradiction. Set

β (s) =
{

0, s≥0
−s, s<0

and

f (x, s) = 1 + β (s) for x ∈ TN and s ∈ R.

Then, f (x, s) meets (f − 1) , (f − 2), and (f − 3) . Furthermore, it follows
from (2.6) that

F+ (x) = 0 and F− (x) = −1 for x ∈ TN .

Therefore, condition (i′) is met. Likewise, condition (ii) is met. So if Theorem
2.1 were true with (i) replaced by (i′), a distribution solution u ∈ H1(TN )
of Qu = f (x, u) on TN would exist, i.e., we would have that (2.7) holds.

On setting φ = 1 in (2.7), and observing that Di (1) = 0 for i = 1, ..., N ,
we obtain from (2.7) that

(2.8)

∫

TN




N∑

j=1

bj(x, u,Du)Dju


 dx =

∫

TN

f (x, u) dx.

Now f (x, u) = 1 + β (u (x)) for x ∈ TN . So

(2.9) f (x, u) ≥ 1 a.e. in TN .

Also, we observe from (Q6) that the left-hand side of (2.8) is zero. Therefore,
we obtain from (2.8) and (2.9) that

0 ≥ (2π)N
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is a contradiction. We conclude that Theorem 2.1 does not hold when (i)
is replaced by (i′). A similar example shows that (i) cannot be replaced by
(i′′). Theorem 2.1 is indeed a best possible result.

If we take

f (x, s) = 1 + x1 − s for x ∈ TN and s ∈ R,

then it follows that f (x, s) satisfies (f − 1) − (f − 3). Also, F+ (x) = −1
and F− (x) = −1 for x ∈ TN . So this f (x, s) is an example of a function
that will work for Theorem 2.1.

We shall use a Galerkin technique to establish Theorem 2.1. In order to
accomplish this, we observe that there is a sequence {ψk}∞k=1 of real-valued
functions in C∞(TN ) with the properties stated in (2.10) and (2.11) below.

(2.10)
(a) ψ1 = (2π)−N/2,

(b)
∫
TN

ψkψldx = δkl

where δkl is the Kronecker -delta k, l = 1, ....
Given ψ ∈ C∞(TN ) and ε > 0, ∃ constants c1, ..., cn such that

(2.11)
(a) |ψ (x)−∑n

k=1 ckψk (x)| ≤ ε,

(b) |Djψ (x)−∑n
k=1 ckDjψk (x)| ≤ ε,

uniformly for x ∈ TN and j = 1, ..., N.
To show that such a sequence with the properties enumerated in (2.10)

and (2.11) does indeed exist, we proceed as follows: First of all, we see from
Corollary 2.3 in Chapter 1 that in dimension 2

{cosm1x1 cosm2x2}∞,∞
m1=0,m2=0 ∪ {cosm1x1 sinm2x2}∞,∞

m1=0,m2=1

∪{sinm1x1 cosm2x2}∞,∞
m1=1,m2=0 ∪ {sinm1x1 sinm2x2}∞,∞

m1=1,m2=1

properly normalized gives rise to a CONS (a complete orthonormal system)
in L2(T2). Likewise, in dimension 3, we see that

{cosm1x1 cosm2x2 cosm3x3}∞,∞,∞
m1=0,m2=0,m3=0

∪{cosm1x1 cosm2x2 sinm3x3}∞,∞,∞
m1=0,m2=0,m3=1

...

∪{sinm1x1 sinm2x2 cosm3x3}∞,∞,∞
m1=1,m2=1,m3=0

∪{sinm1x1 sinm2x2 sinm3x3}∞,∞,∞
m1=1,m2=1,m3=1

(where we have in all a union of eight sequences) properly normalized gives
rise to a CONS in L2(T3).

We see that we can proceed like this in any dimension N and obtain a
union of 2N sequences of sines and cosines that will give rise to a CONS
in L2(TN ). So we have established the existence of a real-valued sequence
{ψk}∞k=1 in C∞(TN ) which is also a CONS in L2(TN ), and therefore meets
the conditions in (2.10).
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Next, we observe that any real-valued trigonometric polynomial of the
form ∑

|m|≤M

ame
im·x where am = a−m

can be written as a finite real linear combination of the elements in the
sequence {ψk}∞k=1. For example, for N = 2,

eim·x + e−im·x = 2cos (m1x1 +m2x2)

= 2 cosm1x1 cosm2x2 − 2 sinm1x1 sinm2x2.

So it is easy to see from Theorem 2.1 in Chapter 1 that conditions (2.11)(a)
and (2.11)(b) do indeed hold.

The first lemma we prove is where {ψk}∞k=1 is the sequence in (2.10) and
(2.11).

Lemma 2.2. Let F (x) be a nonnegative function in L1(TN ), and let
f (x, s) satisfy (f − 1) and (f − 2) . Suppose that

|f (x, s)| ≤ F (x) for s ∈ R and a.e. x ∈ TN .

Suppose also that Q satisfies (Q1) − (Q6) .Then if n is a given positive
integer, there is a function u = γ1ψ1 + · · ·+ γnψn such that
(2.12)∫

TN

[∑N
i,j=1 a

ij(x, u)DjuDiψk +
∑N

j=1 ψkb
j(x, u,Du)Dju+ uψkn

−1
]
dx

=
∫
TN
f (x, u)ψkdx

for k = 1, ..., n.

Proof of Lemma 2.2. This makes use of the Galerkin argument cited in
the introduction.

For each α = (α1, ..., αn) ∈ Rn, we introduce an n×n matrix A (α) with
components Akl (α) given as follows:

(2.13)

Akl (α) =
∑N

i,j=1 < Diψk, a
ij(·,∑n

q=1 αqψq)Djψl >L2

+ < ψk,
∑N

j=1 b
j(·,∑n

q=1 αqψq,D
∑n

q=1 αqψq)Djψl >L2

+ < ψk, ψl >L2 n−1.

We observe from (Q1), (Q2), and (Q5) that

(2.14) Akl (α) ∈ C (Rn) for k, l = 1, ..., n.
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Next, we observe from (2.13) that for β = (β1, ..., βn)

(2.15)

∑n
l=1Akl (α)βl =

∑n
l=1

∑N
i,j=1 < Diψk, a

ij(·,∑n
q=1 αqψq)βlDjψl >L2

+
∑n

l=1 < ψk,
∑N

j=1 b
j(·,∑n

q=1 αqψq,D
∑n

q=1 αqψq)βlDjψl >L2

+
∑n

l=1 < ψk, βlψl >L2 n−1.

Now it follows from (Q6) and the fact that Djψ
2 = 2ψDjψ that

(2.16)
n∑

j=1

< ψ, bj(·, φ,Dφ)Djψ >L2= 0

for φ,ψ ∈ C∞(TN ). Consequently, we see from (2.15) that the quadratic
form β ·A(α)β =

∑n
k,l=1Akl(α)βkβl is such that

(2.17) β ·A(α)β =
N∑

i,j=1

< Diψ, a
ij(·,

n∑

q=1

αqψq)Djψ >L2 + < ψ,ψ >L2 n−1

where ψ = β1ψ1 + · · ·+ βnψn.
It follows from (Q4) that the right-hand side of (2.17) majorizes

η0

∫

TN

|Dψ|2 dx+ < ψ,ψ >L2 n−1,

where ψ = β1ψ1 + · · · + βnψn and |Dψ|2 = |Dψ1|2 + · · · + |Dψn|2 . We
conclude therefore from (2.17) and (2.10)(b) that

β · A(α)β ≥ |β|2 n−1.

Since β is arbitrary in Rn, it follows from this last inequality that for
each α ∈ Rn, the inverse matrix [A(α)]−1 exists, and furthermore

(2.18)
∥∥[A(α)]−1

∥∥
M
≤ n ∀α ∈ Rn,

where ‖·‖M designates the usual n× n matrix norm.
Next, for each α ∈ Rn, we set

(2.19) Sk(α) =< ψk, f(·,
n∑

q=1

αqψq) >L2

for k = 1, ..., n. We observe from (f − 1) and (f − 2) that Sk(α) ∈ C(Rn).
Also, we see from the hypothesis of the lemma that there is a constant Γ1

such that

|Sk(α)| ≤ Γ1

∀ α ∈ Rn and k = 1, ..., n. We set

(2.20) S(α) = (S1(α), ..., Sn(α)),
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and conclude that

(2.21)
S is a continuous map of Rn into the closed ball of Rn

with center 0 and radius n1/2Γ1.

Next, we set G (α) = [A(α)]−1S(α) and observe from (2.14), (2.18), and
(2.21) that G (α) ∈ [C(Rn)]n and maps Rn into the closed ball of Rn with

center 0 and radius n3/2Γ1. Consequently, G is a continuous map of this
last mentioned closed ball into itself. We invoke the Brouwer fixed point
theorem (see [Ev, p. 441]) and conclude that there exists γ = (γ1, ..., γn)
such that [A(γ)]−1S(γ) = γ, i.e.,

A(γ)γ = S(γ).

We set u = γ1ψ1 + · · ·+ γnψn and obtain from (2.15), (2.19), and (2.20)
with α = β = γ that

∑n
l=1

∑N
i,j=1 < Diψk, a

ij(·,∑n
q=1 γqψq)γlDjψl >L2

+
∑n

l=1 < ψk,
∑N

j=1 b
j(·,∑n

q=1 γqψq,D
∑n

q=1 γqψq)γlDjψl >L2

+
∑n

l=1 < ψk, γlψl >L2 n−1 =< ψk, f(·,∑n
q=1 γqψq) >L2

for k = 1, ..., n. But this is (2.12) in the statement of the lemma, and the
proof of the lemma is complete. �

The next lemma we prove is the following:

Lemma 2.3. Let n be a given positive integer and f(x,s) satisfy (f-1) and
(f-2). Suppose that Q satisfies (Q1)−(Q6) and that there is a nonnegative
function F(x) in L2 (TN ) such that

(2.22) sf (x, s) ≤ F (x) |s|+ s2/2n

for a.e. x ∈ TN and ∀s ∈ R. Then there is a function u = γ1ψ1+· · ·+γnψn

such that (2.12) in Lemma 2.2 holds.

Proof of Lemma 2.3. For each positive integer M, set

fM (x, s) =





f (x,M) s ≥M
f (x, s) −M ≤ s ≤M
f (x,−M) s ≤ −M .

It follows from (f − 2) that there is a ζM (x) ∈ L2 (TN ) such that
∣∣fM (x, s)

∣∣ ≤ ζM (x) f or a.e. x ∈ TN and ∀s ∈ R.
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But then we obtain from Lemma 2.2 that there exists
{
γM

i

}n

i=1
such

that

(2.23) uM = γM
1 ψ1 + · · · + γM

n ψn

satisfies (2.12) with f replaced by fM, i.e.,

(2.24)

∑n
i,j=1 < Diψk, a

ij
(
·, uM

)
Dju

M >L2 + < ψk, u
M >L2 n−1

+
∑n

j=1 < ψk, b
j
(
·, uM ,DuM

)
Dju

M >L2

=< ψk, f
M
(
·, uM

)
>L2

for k = 1, ..., n.
Now it follows from the definition of fM (x, s) and from (2.22) that

sfM (x, s) ≤ F (x) |s|+ s2/2n

for a.e. x ∈ TN and ∀s ∈ R. Consequently,

(2.25) uM (x) fM
[
x, uM (x)

]
≤ F (x)

∣∣uM (x)
∣∣+ uM (x)2 /2n

for a.e. x ∈ TN and M = 1, 2, ....
Next, we multiply both sides of (2.24) by γM

n and sum over k = 1, ..., n.
Using (Q4), (2.16), and (2.23), we then obtain

< uM , uM >L2 n−1 ≤< uM , fM
(
·, uM

)
>L2

for each positive integer M. But then it follows from (2.25) that

< uM , uM >L2 (2n)−1 ≤<
∣∣uM

∣∣ , F >L2 .

By hypothesis F ∈ L2 (TN ), we obtain from this last inequality in con-
junction with Schwarz’s inequality that

< uM , uM >L2≤ 4n2 < F,F >L2 .

We next employ (2.10)(b) and (2.23) in conjunction with this last fact to
obtain

(γM
1 )2 + · · · + (γM

n )2 ≤ 4n2 < F,F >L2

for every positive integer M.
Since n is a fixed positive integer, we infer from this last inequality that

there is a subsequence of
{
γM

k

}∞
k=1

, which converges for each k = 1, ..., n.
For ease of notation, we shall suppose this subsequence is the full sequence
and record this fact as

(2.26) lim
M→∞

γM
k = γk, k = 1, ..., n.

We set u = γ1ψ1 + · · · + γnψn and obtain from (2.23) and (2.26) that
(2.27)

limM→∞ uM (x) = u (x) uniformly for x ∈ TN ,

limM→∞Dju
M (x) = Dju (x) uniformly for x ∈ TN and j = 1, ..., N.
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From (Q1) and this last fact, we see that

(2.28)
(a) limM→∞ aij

(
x, uM (x)

)
= aij (x, u (x)),

(b) limM→∞ bj
(
x, uM (x) ,DuM (x)

)
= bj (x, u (x),Du (x))

for a.e. x ∈ TN and i, j = 1, ..., N.
From (Q2), in conjunction with (2.27) and (2.28), we obtain that

(2.29) lim
M→∞

< Diψk, a
ij
(
·, uM

)
Dju

M >L2=< Diψk, a
ij (·, u)Dju >L2

for k = 1, ..., n.
Likewise, we see from (Q5) that

(2.30)

lim
M→∞

< ψk, b
j
(
·, uM ,DuM

)
Dju

M >L2=< ψk, b
j (·, u,Du)Dju >L2

for k = 1, ..., n.

Next, we observe from (2.23) and from (2.26) that the sequence
{
uM (x)

}∞
M=1

is uniformly bounded on TN and in C∞ (TN ) for each M. We consequently
obtain from the definition of fM (x, s) that there is an M0 such that for

fM (x, s) = f (x, s) for M ≥M0

for x ∈ TN . But then it follows from (f − 1), (f − 2), and (2.27) that

lim
M→∞

< ψk, f
M
(
·, uM

)
>L2=< ψk, f (·, u) >L2

for k = 1, ..., n.
We conclude from (2.24), and the limits in (2.27), (2.29), and (2.30)

joined with this last limit that
∑n

i,j=1 < Diψk, a
ij (·, u)Dju >L2 + < ψk, u >L2 n−1

+
∑n

j=1 < ψk, b
j (·, u,Du)Dju >L2

=< ψk, f (·, u) >L2 ,

for k = 1, ..., n. But this establishes (2.12) for u = γ1ψ1 + · · · + γnψn, and
the proof of the lemma is complete. �

Lemma 2.4. Suppose f(x,s) satisfies (f-1) and (f-2), and there is a non-
negative function F ∈ L2 (TN ) such that

(2.31) sf (x, s) ≤ F (x) |s|+ s2 for a.e. x ∈ TN and ∀s ∈ R.
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Suppose Q satisfies (Q1)-(Q6), and also for every positive integer n, there
is un = γn

1ψ1 + · · ·+ γn
nψn, which satisfies

(2.32)

∑n
i,j=1 < Diψk, a

ij (·, un)Dju
n >L2 + < ψk, u

n >L2 n−1

+
∑n

j=1 < ψk, b
j (·, un,Dun)Dju

n >L2

=< ψk, f (·, un) >L2,

for k=1,...,n. Suppose furthermore there is a constant K such that

(2.33) ‖un‖L2 ≤ K for n = 1, 2, ....

Then there is a constant K⋆ such that

(2.34) < |f (·, un)| , |un| >L2≤ K⋆ for n = 1, 2, ....

Proof of Lemma 2.4. Multiplying both sides of (2.32) by γn
k and sum-

ming over k=1,...,n, we obtain from the hypothesis of the lemma and (2.16)
that

n∑

i,j=1

< Diu
n, aij (·, un)Dju

n >L2 + < un, un >L2 n−1 =< un, f (·, un) >L2 .

Consequently, we have from (Q4) and this last fact that

(2.35) 0 ≤< un, f (·, un) >L2 .

Next, we set

(2.36)
An = {x ∈ TN : un (x) f (x, un (x)) ≥ 0},

Bn = {x ∈ TN : un (x) f (x, un (x)) < 0},
and observe from (2.31) that

∫

An

un (x) f (x, un (x)) dx ≤ ‖F‖L2 ‖un‖L2 + ‖un‖2L2

for n = 1, 2, .... Consequently, we have from (2.33) that there is a constant
K1 > 0 such that

(2.37)

∫

An

un (x) f (x, un (x)) dx ≤ K1 for n = 1, 2, ....

Also, it follows from (2.35) and (2.36) that

−
∫

Bn

un (x) f (x, un (x)) dx ≤
∫

An

un (x) f (x, un (x)) dx

Therefore, we obtain from (2.37) and this last fact
∫

Bn

|un (x)| |f (x, un (x))| dx ≤ K1.
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But this fact in conjunction with (2.36) and (2.37) gives
∫

TN

|un (x)| |f (x, un (x))| dx ≤ 2K1

for n = 1, 2, .... This last inequality is (2.34) with K⋆ = 2K1. �

Lemma 2.5. Suppose the conditions in the hypothesis of Lemma 2.4 hold.
Then the sequence

{f (x, un (x))}∞n=1

is absolutely equi-integrable.

Proof of Lemma 2.5. The precise definition of absolutely equi-integrable
was given earlier in this chapter (1.70).

To prove the lemma, let ε > 0 be given. Then choose r > 0 so that

(2.38) K⋆/r < ε/2

where K⋆ is the constant in the conclusion of Lemma 2.4. Next, using
(f − 2), choose ζr ∈ L2 (TN ) so that

(2.39) |f (x, s)| ≤ ζr (x) for a.e. x ∈ TN and |s| ≤ r.
Also, set

(2.40)
An = {x ∈ TN : |un (x)| ≤ r} ,

Bn = {x ∈ TN : |un (x)| > r} ,
and choose δ > 0, so that

(2.41) meas(E) < δ ⇒
∫

E
ζr (x) dx < ε/2.

Now, suppose meas (E) < δ with δ as in (2.41). Then it follows from
Lemma 2.4 and (2.39)-(2.41) that
∫

E
|f (x, un (x))| dx ≤

∫

E∩An

ζr (x) dx+
1

r

∫

E∩Bn

|un (x) f (x, un (x))| dx

≤ ε/2 +K⋆/r

for n = 1, 2, .... From (2.38), we see that the right-hand side of this last
inequality is < ε. Hence {f (x, un (x))}∞n=1 is absolutely equi-integrable. �

Next, with < ·, ·>H1 defined in (2.1), we establish the following lemma:

Lemma 2.6. Suppose {vn}∞n=1 is a sequence in H 1(TN ) with

‖vn‖H1 ≤ K ∀n,
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where K is a positive constant. Then there exists a subsequence
{
vnj

}∞
j=1

and v∈ H1 (TN ) such that

(2.42) lim
j→∞

∥∥vnj − v
∥∥

L2 = 0.

Proof of Lemma 2.6. Since ‖vn‖H1 ≤ K ∀n, it follows from standard
Hilbert space theory (see [Ev, p. 639]) that there exists v ∈ H1 (TN ) and a
subsequence

{
vnj

}∞
j=1

such that

(2.43) lim
j→∞

< vnj , w >H1=< v, w >H1 ∀w ∈ H1 (TN ) .

From Parsevaal’s theorem, which is Corollary 2.5 in Chapter 1, we see
that

(2.44) (2π)−N
∥∥vnj − v

∥∥2

L2 = lim
R→∞

∑

|m|≤R

∣∣v̂nj (m)− v̂ (m)
∣∣2 ∀nj,

where v̂ (m) is the Fourier coefficient of v introduced in Chapter 1 above
(1.1).

Also, it is easy to see from the uniform boundedness condition in the hy-
pothesis of the lemma and from Parsevaal’s theorem that there is a constant
K1 such that

(2.45) lim
R→∞

∑

|m|≤R

|m|2
∣∣v̂nj (m)− v̂ (m)

∣∣2 ≤ K1 ∀nj.

We see from (2.44) that the proof of the lemma will be established once
we show that the following fact holds: Given ε > 0,

(2.46) lim sup
j→∞

lim
R→∞

∑

|m|≤R

∣∣v̂nj (m)− v̂ (m)
∣∣2 ≤ ε.

To establish this last inequality, we choose R0 so large that with K1 as
in (2.45)

K1/R
2
0 ≤ ε.

Then,

lim
R→∞

∑

|m|≤R

∣∣v̂nj (m)− v̂ (m)
∣∣2 ≤

∑

|m|≤R0

∣∣v̂nj (m)− v̂ (m)
∣∣2

+
1

R2
0

∑

|m|>R0

|m|2
∣∣v̂nj (m)− v̂ (m)

∣∣2

≤
∑

|m|≤R0

∣∣v̂nj (m)− v̂ (m)
∣∣2 +K1/R

2
0

≤
∑

|m|≤R0

∣∣v̂nj (m)− v̂ (m)
∣∣2 + ε
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∀nj. From (2.43), we see that limj→∞
∑

|m|≤R0

∣∣v̂nj (m)− v̂ (m)
∣∣2 = 0.

Therefore, we obtain from this last set of inequalities that

lim sup
j→∞

lim
R→∞

∑

|m|≤R

∣∣v̂nj (m)− v̂ (m)
∣∣2 ≤ ε,

which is (2.46). �

We shall also need the following lemma:

Lemma 2.7. Suppose v ∈ H 1(TN ) and

Djv (x) = 0 for a.e. x ∈ TN,

for j=1,...,N. Then v (x) = constant for a.e. x∈ TN.

Proof of Lemma 2.7. Using the notation of Chapter 1, as in the proof
of Lemma 2.6 above, we see that if φ ∈ C∞(TN ), then it is easy to see that

D̂jφ (m) = imj φ̂ (m) ∀m ∈ ΛN

for j=1,...,N where φ̂ (m) is the Fourier coefficient of φ. It follows from the
definition of H1(TN ) that similarly

D̂jv (m) = imj v̂ (m) ∀m ∈ ΛN

for j=1,...,N. But then we obtain from the hypothesis of the lemma that

v̂ (m) = 0 ∀m ∈ ΛN\ {0}.
Consequently, it follows from Corollary 3.4 in Chapter 1 that

v (x) = v̂ (0) for a.e. x ∈ TN ,

which proves the lemma. �

Proof of Theorem 2.1. Since f satisfies (f − 1) − (f − 3), we see that
for every ε > 0, there exists a nonnegative function Fε (x) ∈ L2 (TN ) such
that

(2.47) sf (x, s) ≤ εs2 + Fε (x) |s|
for a.e. x ∈ TN and ∀s ∈ R. Consequently, it follows from Lemma 2.3 that
there is a sequence {un}∞n=1 with the following properties:

(2.48) un = γn
1ψ1 + · · ·+ γn

nψn;

(2.49)

∫
TN

[
∑N

i,j=1 a
ij(x, un)Dju

nDiψk

+
∑N

j=1 ψkb
j(x, un,Dun)Dju

n + unψkn
−1]dx

=
∫
TN
f (x, un)ψkdx
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with k = 1, ..., n where {ψk}∞k=1 is the orthonormal sequence in
(2.10)(a),(b).

We claim there is a constant K such that

(2.50) ‖un‖H1 ≤ K ∀n.
Suppose that (2.50) is false. Then there is a subsequence of {un}∞n=1,

which, for ease of notation, we take to be the full sequence with the following
properties:

(2.51a) lim
n→∞

‖un‖H1 =∞,

(2.51b) with vn =
un

‖un‖H1

, ∃v ∈ H1 such that lim
n→∞

‖vn − v‖L2 = 0,

(2.51c) lim
n→∞

vn (x) = v (x) for a.e. x ∈ TN ,

(2.51d) lim
n→∞

< w,Djv
n >L2=< w,Djv >L2 ∀w ∈ L2 (TN ) j = 1, ..., N,

where we have also made use of Lemma 2.6.
Next, we observe that Dj (un)2 = 2unDju

n and consequently obtain
from (Q6) that

∫

TN

un
N∑

j=1

bj(x, un,Dun)Dju
ndx = 0.

Using this fact in conjunction with (2.48), (2.49), and (2.51b), gives us
that

(2.52)

∫
TN

[
∑N

i,j=1 a
ij(x, un)Djv

nDiv
n + (vn)2 n−1]dx

= ‖un‖−2
H1

∫
TN
f (x, un) undx.

Now it follows from (Q4) that

N∑

i,j=1

aij(x, un)Djv
nDiv

n ≥ η0 |Dvn (x)|2

for a.e. x ∈ TN , where η0 is a positive constant. Consequently, we obtain
from (2.47) and (2.52) that for every ε > 0, there is an Fε ∈ L2 (TN ) such
that

(2.53) η0 ‖|Dvn|‖2L2 ≤ ε ‖vn‖2L2 + ‖un‖−1
H1 ‖vn‖L2 ‖Fε‖L2 .

From (2.51b) we see that ‖vn‖H1 = 1 and furthermore that ‖vn‖L2 ≤ 1. We
conclude from this last fact in conjunction with (2.51a) and (2.53) that

lim sup
n→∞

‖|Dvn|‖2L2 ≤ εη−1
0 ,
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and therefore, since ε > 0 is arbitrary, that

(2.54) lim sup
n→∞

‖|Dvn|‖2L2 = 0.

Since |Djv
n (x)| ≤ |Dvn (x)|, we obtain from this last limsup and (2.51d)

that ∫

TN

φDjvdx = 0 ∀φ ∈ C∞ (TN )

for j = 1, ..., N. Hence,

(2.55) Djv (x) = 0 for a.e. x ∈ TN and for j = 1, ..., N.

But then it follows from Lemma 2.7 that v is equal to a constant almost
everywhere in TN .

To calculate this constant, we observe from (2.1) that

‖vn‖2H1 = ‖|vn|‖2L2 + ‖|Dvn|‖2L2 .

Also, from (2.51b), we see that

(a) ‖vn‖2H1 = 1,

(b) limn→∞ ‖vn‖2L2 = ‖v‖2L2 .

We conclude from these last three equalities in conjunction with the limit
in (2.54) that

‖v‖2L2 = 1.

But v is equal to a constant almost everywhere in TN . Therefore, v =

(2π)−N/2 almost everywhere in TN , or v = − (2π)−N/2 almost everywhere
in TN .

We shall suppose

(2.56) v = (2π)−N/2 a.e. in TN

and arrive at a contradiction. A similar line of reasoning prevails in case the
other alternative holds, and we leave the details of this part to the reader.

To arrive at a contradiction, we see from (Q4) and (2.52) that

(2.57) 0 ≤
∫

TN

f (x, un)undx ∀n.

Also, from (2.47) with ε = 1, we see that

(2.58)
(vn)2 + F1 (x) vn ‖un‖−1

H1

−f (x, un) un ‖un‖−2
H1 ≥ 0 ∀n.

We set

(2.59) gn = the left-hand side of the inequality in (2.58)

and obtain from (2.57) that∫

TN

gndx ≤ ‖vn‖2L2 + ‖un‖−1
H1

∫

TN

|F1 (x) vn| dx.
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We conclude from (2.51a,b) and (2.56) in conjunction with this last inequal-
ity that

lim inf
n→∞

∫

TN

gndx ≤ 1.

This last inequality joined with (2.58), (2.59), and Fatou’s lemma [Ru2, p.
24] gives

(2.60)

∫

TN

lim inf
n→∞

gn (x) dx ≤ 1.

From (2.51b), we see that un (x) = vn (x) ‖un‖H1 . Therefore, we have
that

lim
n→∞

vn (x) = (2π)−N/2 and lim
n→∞

un (x) =∞ a.e. in TN .

Also, we have that

f (x, un) un ‖un‖−2
H1 = (vn)2 f (x, un) /un.

Consequently, from (2.6), (2.58), and (2.59), we know that

lim inf
n→∞

gn (x) ≥ (2π)−N − (2π)−N F+ (x) a.e. in TN .

But then we obtain from (2.60) that
∫

TN

F+ (x) dx ≥ 0.

This last inequality contradicts condition (i) in the hypothesis of the the-
orem. We have arrived at a contradiction. Therefore, (2.51a) is false, and
(2.50) is indeed true.

From the fact that (2.50) holds, it follows from Lemma 2.6 that there is
a subsequence of {un}∞n=1, which, for ease of notation, we take to be the full
sequence with the following properties:

(2.61a) ∃u ∈ H1 (TN ) such that lim
n→∞

‖un − u‖L2 = 0,

(2.61b) lim
n→∞

un (x) = u (x) a.e. in TN ,

(2.61c) lim
n→∞

< w,Dju
n >L2=< w,Dju >L2 ∀w ∈ L2 (TN ) j = 1, ..., N.

From (2.61b) and (Q1), we see that

lim
n→∞

aij [x, un (x)] = aij [x, u (x)] a.e. in TN .

Also, it is easy to see from (Q2) and (2.61a) that the sequence
{∣∣aij [x, un (x)]

∣∣2
}∞

n=1
is absolutely equi-integrable in L1 (TN ).

It consequently follows from Egoroff”s theorem, that

lim
n→∞

∥∥aij (·, un)− aij (·, u)
∥∥

L2 = 0.
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But this fact in conjunction with (2.50) and Schwarz’s inequality implies
that for fixed k,

lim
n→∞

N∑

i,j=1

< Diψk,
[
aij (·, un)− aij (·, u)

]
Dju

n >L2= 0.

From (2.61c), we also see that

lim
n→∞

N∑

i,j=1

∫

TN

aij (x, u)DiψkDju
ndx =

N∑

i,j=1

.

∫

TN

aij (x, u)DiψkDju dx.

So we conclude from these last two limits that
(2.62)

lim
n→∞

N∑

i,j=1

< Diψk, a
ij (·, un)Dju

n >L2=
N∑

i,j=1

.

∫

TN

aij (x, u)DiψkDju dx

for k = 1, 2, ....
Next, from (Q6) and (2.3), we obtain that

∫

TN




N∑

j=1

bj(x, un,Dun)Dj (unψk)


 dx = 0,

and consequently that
(2.63)

N∑

j=1

∫

TN

bj(x, un,Dun)ψkDju
ndx = −

N∑

j=1

∫

TN

bj(x, un,Dun)unDjψkdx.

On the other hand, from (Q5) , (2.50), and (2.61a), we see that

lim
n→∞

N∑

j=1

∫

TN

|un − u|
∣∣bj(x, un,Dun)

∣∣ dx = 0,

and consequently from (2.63), we obtain that

(2.64)

limn→∞
∑N

j=1

∫
TN
bj(x, un,Dun)ψkDju

ndx

= − limn→∞
∑N

j=1

∫
TN
bj(x, un,Dun)uDjψkdx.

However, from (2.61c), we see that {Dun}∞n=1 is a sequence of vector-

valued functions in
[
L2 (TN )

]N
, which tends weakly to Du ∈

[
L2 (TN )

]N
.

Also, from (2.61a), we see that {un}∞n=1 is a sequence of functions in L2 (TN ),
which tends strongly to u in L2 (TN ). Therefore, it follows from (Q7) that

limn→∞
∑N

j=1 < u, bj(·, un,Dun)Djψk >L2

=
∑N

j=1 < u, bj(·, u,Du)Djψk >L2 .



2. QUASILINEAR ELLIPTICITY ON THE N -TORUS 205

But since u ∈ H1 (TN ), we obtain as earlier in (2.63) that
∑N

j=1 < u, bj(·, u,Du)Djψk >L2

= −∑N
j=1

∫
TN
bj(x, u,Du)ψkDjudx.

We consequently conclude from these last two equalities joined with (2.64)
that

(2.65)

limn→∞
∑N

j=1 < ψk, b
j(·, un,Dun)Dju

n >L2

=
∑N

j=1

∫
TN
bj(x, u,Du)ψkDjudx

for k = 1, 2.
Next, we see from (2.50) and Lemma 2.5 that the sequence

{f (x, un (x))}∞n=1 is absolutely equi-integrable. Also, we see from (f − 1)
and (2.61b) that

lim
n→∞

f (x, un (x)) = f (x, u (x)) for a.e. x ∈ TN .

It consequently follows from (2.50), Lemma 2.4, and Fatou’s lemma that

(2.66a) uf (x, u) ∈ L1 (TN ),

and then from (f − 2) that

(2.66b) f (x, u) ∈ L1 (TN ).

Also, we obtain from the absolute equi-integrability above joined with Ego-
roff’s theorem that

(2.67) lim
n→∞

∫

TN

ψk (x) f (x, un) dx =

∫

TN

ψk (x) f (x, u) dx

for k = 1, 2, ....
From (2.49), (2.62), (2.65), and (2.67), we obtain

(2.68)

∑N
i,j=1 .

∫
TN
aij (x, u)DiψkDju dx

+
∑N

j=1

∫
TN
bj(x, u,Du)ψkDjudx

=
∫
TN
ψk (x) f (x, u) dx

for k = 1, ..., n.
From (Q2), we see that aij (·, u)Dju ∈ L1 (TN ). From (Q5), we see that

bj (·, u,Du)Dju ∈ L1 (TN ). From (2.66b), we have that f (·, u) ∈ L1 (TN ).
Also, it follows from (2.11) that given φ ∈ C∞ (TN ), there is a sequence
{φn}∞n=1 and there are real constants

{
cnq
}n

q=1
such that

φn = cn1ψ1 + · · · + cn1ψn
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and

limn→∞ φn (x) = φ (x),

limn→∞Djφn (x) = Djφ (x)

uniformly for x ∈ TN , j = 1, ..., N. We conclude first that (2.68) holds with
ψk replaced by φn, and next on passing to the limit as n→∞ that

∑N
i,j=1 .

∫
TN
aij (x, u)DiφDju dx

+
∑N

j=1

∫
TN
bj(x, u,Du)φDjudx

=
∫
TN
φf (x, u) dx

∀φ ∈ C∞ (TN ).
But this last equality is the same as (2.7). So indeed u is a distribution

solution of Qu = f(x, u) on TN . This fact joined with (2.66a) and (2.66b)
completes the proof of the theorem. �

We intend to prove two more theorems in this section. The first of the
two deals with Qu = f (x, u) where f (x, u) = g(u) − h (x). The second
theorem studies Qu = f (x) .

Theorem 2.8. Assume (Q1)− (Q7), where g ∈ C (R) ∩ L∞ (R) , h
∈ L2 (TN ) and that the limits lims→∞g (s) = g (∞) and lims→−∞g (s) =
g (−∞) exist. Suppose also that

(2.69) g (∞) < g (s) < g (−∞) ∀s ∈ R.

Then a necessary and sufficient condition that a distribution solution u∈
H1 (TN ) of Qu = g(u) − h (x) exists is that

(2.70) (2π)N g (∞) <

∫

TN

h (x) dx < (2π)N g (−∞).

Theorem 2.8 is also referred to in the literature as a result at resonance
and can be found in [Sh12, p. 570]. It is motivated by the work of Landesman
and Lazer [LL, p. 611], but the proof given here is different. More elliptic
resonance results can be found in [BN, Chapter IV] and in [KW].

An example of a g ∈ C (R) ∩L∞ (R) that meets the condition in (2.69)
is

g (s) = −Arc tan s ∀s ∈ R.
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Theorem 2.9. Assume (Q1)− (Q7) and let f ∈ L2 (TN ). Then a
necessary and sufficient condition that a distribution solution u ∈ H1 (TN )
of Qu = f (x) exists is that

∫

TN

f (x) dx = 0.

This result first appeared in [Sh13, p. 204].

Proof of Theorem 2.8. We first establish the necessary condition of the
theorem. Suppose then that

∑N
i,j=1 .

∫
TN
aij (x, u)DiφDju dx

+
∑N

j=1

∫
TN
bj(x, u,Du)φDjudx

=
∫
TN
φ [g (u)− h (x)] dx

∀φ ∈ C∞ (TN ), where u ∈ H1 (TN ) and that (2.69) also holds. We choose
φ = 1 in this last equality and observe that the left-hand side then becomes
zero. Consequently, ∫

TN

g (u) dx =

∫

TN

h (x) dx.

But because of (2.69),

(2π)N g (∞) <

∫

TN

g (u) dx < (2π)N g (−∞) .

We conclude that

(2π)N g (∞) <

∫

TN

h (x) dx < (2π)N g (−∞) ,

and the necessary condition of the theorem is established.
To establish the sufficiency condition, we observe that

|g (s)− h (x)| ≤ ‖g‖L∞ + |h (x)|
∀s ∈ R and ∀x ∈ TN . Since the right-hand side of this last equality is in
L2 (TN ), we see that the conditions in the hypothesis of Lemma 2.2 are met.
Hence, there exists a sequence of functions {un}∞n=1 with

un = γn
1ψ1 + · · ·+ γn

nψn,

where the {γn
k }nk=1 are real constants, such that

(2.71)

∑N
i,j=1

∫
TN
aij (x, un)DiψkDju

n dx + n−1
∫
TN

ψku
n dx

+
∑N

j=1

∫
TN
bj(x, un,Dun)ψkDju

ndx

=
∫
TN
ψk [g (un)− h (x)] dx
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for k = 1, ..., n.
We claim, as in the proof of Theorem 2.1, that there is a constant K

such that

(2.72) ‖un‖H1 ≤ K ∀n.
Suppose that (2.72) is false. Then there is a subsequence of {un}∞n=1 ,

which, for ease of notation, we take to be the full sequence such that the
properties enumerated in (2.51a)-(2.51d) hold.

Now, as in the proof of Theorem 2.1:
∫

TN

un
N∑

j=1

bj(x, un,Dun)Dju
ndx = 0.

So we obtain from (2.71) that

(2.73)

∑N
i,j=1

∫
TN
aij (x, un)Div

nDjv
n dx + n−1

∫
TN

(vn)2 dx

= ‖un‖−1
H1

∫
TN

vn [g (un)− h (x)] dx

where vn = un/ ‖un‖H1.
From (Q4), we obtain that

η0 ‖|Dvn|‖2L2 ≤
N∑

i,j=1

∫

TN

aij (x, un)Div
nDjv

n dx.

Also, from (2.51b), we see that ‖vn‖L2 ≤ 1. So we conclude from (2.73) that
there exists a constant K1 such that

η0 ‖|Dvn|‖2L2 ≤ K1 ‖un‖−1
H1 ∀n,

where η0 > 0.
Using (2.51a) in conjuction with this last inequality gives

(2.74) lim
n→∞

‖|Dvn|‖2L2 = 0.

From (2.51b), we see that

1 = ‖vn‖2L2 +

N∑

j=1

‖Djv
n‖2L2 ∀n.

So from (2.74), we obtain that limn→∞ ‖vn‖2L2 = 1, and hence from (2.51b)
that

(2.75) ‖v‖2L2 = 1.

From (2.51d) joined with (2.74), we also obtain that

< w,Djv >L2= 0 ∀w ∈ L2 (TN ) and j = 1, ..., N.

Therefore, Djv (x) = 0 almost everywhere in TN for j = 1, ..., N, and we see
from Lemma 2.7 that

v = constant almost everywhere in TN .
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It follows therefore from (2.75) that v = (2π)−N/2 almost everywhere in TN

or v = − (2π)−N/2 almost everywhere in TN .

We shall suppose

(2.76) v = (2π)−N/2 a.e. in TN ,

and arrive at a contradiction. As the reader will easily see, a similar line of
reasoning gives a contradiction in case the other alternative holds.

Suppose then that (2.76) holds. We observe from (Q4) and (2.73)

‖un‖−1
H1

∫

TN

vn [g (un)− h (x)] dx ≥ 0

and consequently that

(2.77)

∫

TN

vnh (x) dx. ≤
∫

TN

vng (un) dx.

Since un = vn ‖un‖H1, we see from (2.51a), (2.51c), and (2.76) that

(2.78) lim
n→∞

vn (x) g (un (x)) = (2π)−N/2 g (∞) a.e. in TN .

Also, since g ∈ L∞ (R), it follows from (2.51b) that the sequence
{vng (un)}∞n=1 is absolutely equi-integrable on TN . Therefore, from Egoroff’s
theorem and (2.78), we obtain

(2.79) lim
n→∞

∫

TN

vng (un) dx = (2π)N/2 g (∞).

On the other hand, from (2.51b) and the fact that h ∈ L2 (TN ), we see that

lim
n→∞

∫

TN

|(vn − v)h| dx = 0.

Consequently, from (2.73), we have

lim
n→∞

∫

TN

vnh (x) dx = (2π)−N/2
∫

TN

h (x) dx.

We conclude from (2.77) and (2.79) that
∫

TN

h (x) dx ≤ (2π)N g (∞).

But this contradicts the first inequality in (2.70), which is strict. We conclude
(2.51a) is false, and hence that the inequality in (2.72) is indeed true.

From the fact that (2.72) holds, it follows from Lemma 2.6 that there is
a subsequence of {un}∞n=1, which for ease of notation we take to be the full
sequence, and a u ∈ H1 (TN ) with the properties enumerated in (2.61a)-
(2.61c).
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Using (Q1) , (Q2) , (2.61a), (2.61b), and (2.72) exactly as in the proof of
Theorem 2.1, we obtain that
(2.80)

lim
n→∞

N∑

i,j=1

< Diψk, a
ij (·, un)Dju

n >L2=

N∑

i,j=1

.

∫

TN

aij (x, u)DiψkDju dx

for k = 1, 2, ....
Similarly, we obtain from the proof of Theorem 2.1 that

(2.81)

limn→∞
∑N

j=1

∫
TN
bj(x, un,Dun)ψkDju

ndx

= −.∑N
j=1

∫
TN
bj(x, un,Dun)uDjψkdx.

Next, from (2.61b) and the fact that g ∈ C (R), we see that

lim
n→∞

g (un (x)) = g (u (x)) a.e. in TN .

Since g is also in L∞ (R), we obtain from this last equality and the Lebesgue
dominated convergence theorem that

lim
n→∞

< ψk, g (un) >L2=< ψk, g (u) >L2 for k = 1, 2, ....

From this last fact in conjunction with (2.80), (2.81), (2.71), and (2.72), we
finally obtain that

(2.82)

∑N
i,j=1

∫
TN
aij (x, u)DiψkDju dx

+
∑N

j=1

∫
TN
bj(x, u,Du)ψkDjudx

=
∫
TN
ψk [g (u)− h (x)] dx

for k = 1, ..., n.
From (Q2), we see that aij (·, u)Dju ∈ L1 (TN ). From (Q5), we see that

bj (·, u,Du)Dju ∈ L1 (TN ). From the hypothesis of the theorem, we have
that g (u) − h (x) ∈ L1 (TN ). Also, it follows from (2.11) that given φ ∈
C∞ (TN ), there is a sequence{φn}∞n=1 and there are real constants

{
cnq
}n

q=1

such that

φn = cn1ψ1 + · · · + cn1ψn

and

limn→∞ φn (x) = φ (x) ,

limn→∞Djφn (x) = Djφ (x)
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uniformly for x ∈ TN , j = 1, ..., N. We conclude first that (2.82) holds with
ψk replaced by φn, and next on passing to the limit as n→∞ that

∑N
i,j=1 .

∫
TN
aij (x, u)DiφDju dx

+
∑N

j=1

∫
TN
bj(x, u,Du)φDjudx

=
∫
TN
φ [g (u)− h (x)] dx

∀φ ∈ C∞ (TN ). So indeed u ∈ H1 (TN ) is a distribution solution of

Qu = g (u)− h (x)

on TN . �

Proof of Theorem 2.9. We prove the necessary condition of the theorem
first. So suppose that u ∈ H1 (TN ) is a distribution solution of Qu = f (x)
where f ∈ L2 (TN ). Then

∑N
i,j=1 .

∫
TN
aij (x, u)DiφDju dx

+
∑N

j=1

∫
TN
bj(x, u,Du)φDjudx

=
∫
TN
φf (x) dx

∀φ ∈ C∞ (TN ). We take φ = 1 in this last equality and observe that Di1 = 0.
So we are left with

N∑

j=1

∫

TN

bj(x, u,Du)Djudx =

∫

TN

f (x) dx.

But from (Q6) and (2.3), we see that the left-hand side of this last equality
is zero. We conclude that ∫

TN

f (x) dx = 0,

and the necessary condition of the theorem is established.
To establish the sufficiency condition of the theorem, we introduce the

new Hilbert space H1
0 (TN ) defined as follows:

H1
0 (TN ) =

{
v ∈ H1 (TN ) :

∫

Tn

v (x) dx = 0

}
.

We observe that if φ ∈ C∞ (TN ) ∩H1
0 (TN ), then

D̂jφ (m) = imj φ̂ (m) ∀m ∈ ΛN

for j = 1, ..., N where φ̂ (m) is the Fourier coefficient of φ introduced in
Chapter 1. Also, the fact that φ ∈ H1

0 (TN ) implies that

φ̂ (0) = 0.
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From Parsevaal’s Theorem, (Corollary 2.5 in Chapter 1), we obtain from
the above that

(2π)N
∑

|m|≥1

|m|2
∣∣∣φ̂ (m)

∣∣∣
2

=

N∑

j=1

‖Djφ‖2L2

and that

(2π)N
∑

|m|≥1

∣∣∣φ̂ (m)
∣∣∣
2

= ‖φ‖2L2 .

Consequently, φ ∈ C∞ (TN ) ∩H1
0 (TN ) implies that

‖φ‖2L2 ≤
N∑

j=1

‖Djφ‖2L2 .

Since every v ∈ H1
0 (TN ) is the limit of a sequence of such φ in in the

H1-norm, we see that a similar inequality holds for v ∈ H1
0 (TN ). We record

this fact as

(2.83) v ∈ H1
0 (TN )⇒ ‖v‖2L2 ≤

N∑

j=1

‖Djv‖2L2 .

Continuing with the proof of the theorem, since the conditions in the
hypothesis of Lemma 2.2 are met, there is a sequence {un}∞n=1 with the
following properties:

un = γn
1ψ1 + · · ·+ γn

nψn,

(2.84)

∫
TN

[
∑N

i,j=1 a
ij(x, un)Dju

nDiψk

+
∑N

j=1 ψkb
j(x, un,Dun)Dju

n + unψkn
−1]dx

=
∫
TN
f (x)ψkdx,

with k = 1, ..., n where {ψk}∞k=1 is the orthonormal sequence in
(2.10)(a),(b).

Now, from (2.10)(a), ψ1 = (2π)−N/2. Putting this value in (2.84) and
observing from (Q6) that

∫

TN

[

N∑

j=1

bj(x, un,Dun)Dju
n]dx = 0,

we obtain from the hypothesis of the theorem that

(2π)−N/2
∫

TN

unn−1dx = 0.

Consequently, un ∈ H1
0 (TN ) and is of the form

(2.85) un = γn
2ψ2 + · · · + γn

nψn

∀n ≥ 2.
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Observing that Dj (un)2 = 2unDju
n, we see from (Q6) that

∫

TN

[
N∑

j=1

unbj(x, un,Dun)Dju
n]dx = 0.

So on multiplying both sides of (2.84) by γn
k and summing on k from 2 thru

n, we obtain

∫

TN

[

N∑

i,j=1

aij(x, un)Dju
nDiu

n + (un)2 n−1]dx =

∫

TN

f (x)undx.

We conclude from (Q4) and this last fact that

η0

N∑

j=1

‖Dju
n‖2L2 ≤ ‖un‖L2 ‖f‖L2

where η0 is a positive constant.
Since un ∈ H1

0 (TN ), we obtain from (2.83) and this last inequality that

η0




N∑

j=1

‖Dju
n‖2L2




1/2

≤ ‖f‖L2

∀n ≥ 2. Using (2.83) once again, we see that this in turn implies that there
is a constant K such that

(2.86) ‖un‖H1 ≤ K ∀n ≥ 2.

From the fact that this last inequality holds, it follws from Lemma 2.6
that there is a subsequence of {un}∞n=2, which, for ease of notation, we take
to be the full sequence and a u ∈ H1

0 (TN ) such that (2.61a), (2.61b), and
(2.61c) hold.

Proceeding exactly as in the proof of Theorem 2.1, we see from (2.62)
that

limn→∞
∑N

i,j=1 < Diψk, a
ij (·, un)Dju

n >L2

=
∑N

i,j=1 .
∫
TN
aij (x, u)DiψkDju dx

for k = 2, 3, ....
In a similar manner, we obtain from (2.65) that

limn→∞
∑N

j=1 < ψk, b
j(·, un,Dun)Dju

n >L2

=
∑N

j=1

∫
TN
bj(x, u,Du)ψkDjudx

for k = 2, 3, ....
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So, we obtain from these last two limits joined with (2.84) that

(2.87)

∫
TN

[
∑N

i,j=1 a
ij(x, u)DjuDiψk

+
∑N

j=1 ψkb
j(x, u,Du)Dju]dx

=
∫
TN
f (x)ψkdx,

for k = 2, 3, ....
From (Q2), we see that aij (·, u)Dju ∈ L1 (TN ). From (Q5), we see that

bj (·, u,Du)Dju ∈ L1 (TN ). From the hypothesis of the theorem, we have
that f (x) ∈ L2 (TN ) and

∫
TN
f (x) dx = 0. Also, it follows from (2.11) that

given φ ∈ C∞ (TN ), there is a sequence{φn}∞n=1 and there are real constants{
cnq
}n

q=1
such that

φn = cn1ψ1 + cn2ψ2 + · · ·+ cn1ψn

and
limn→∞ φn (x) = φ (x) ,

limn→∞Djφn (x) = Djφ (x)

uniformly for x ∈ TN , j = 1, ..., N. We conclude first that (2.87) holds with
ψk replaced by φn, and next on passing to the limit as n→∞ that

∑N
i,j=1 .

∫
TN
aij (x, u)DiφDju dx

+
∑N

j=1

∫
TN
bj(x, u,Du)φDjudx

=
∫
TN
φf (x) dx

∀φ ∈ C∞ (TN ).
So indeed u ∈ H1 (TN ) is a distribution solution of

Qu = f (x)

on TN . �

In the quasilinear elliptic resonance results that we have discussed in this
section, i.e., Theorem 2.1 and Theorem 2.8, the second order coefficients
depended on x and u, and were of the form aij(x, u). For results where the
coefficients are of the form aij(x, u,Du), we refer the reader to the author’s
research monograph published by the American Mathematical Socciety [Sh,
14].

Exercises.

1. Give an example to show that Theorem 2.1 is false if (ii) in the
theorem is replaced by (ii′′) where



3. FURTHER RESULTS AND COMMENTS 215

(
ii′′
) ∫

TN

F− (x) dx = 0.

2. Prove that if A is a real n× n matrix with the property that

β ·Aβ ≥ K |β|2 ∀β s Rn,

where K is a positive constant, then A−1 exists and
∥∥A−1

∥∥
M
≤ K−1 where

‖·‖M designates the usual n× n matrix norm.
3. Give an example of a solenoidal two-vector

b (x, s, p) =
(
b1 (x, s, p) , b2 (x, s, p)

)

on T2 that meets (Q5), (Q6), and (Q7) where b1 depends upon s but b2 does
not depend upon s.

4. Given that f (x, s) meets (f − 1) and (f − 2), suppose there exists a
u ∈ L2 (T2) such that

uf (x, u) ∈ L1 (T2).

Prove that f (x, u) ∈ L1 (T2).

3. Further Results and Comments

1. In an infinite strip in the upper half-plane, a uniqueness theorem
for solutions of the heat equation holds, which is similar to the uniqueness
theorem for harmonic functions in the unit disk described in §4 of Chapter
3. With Strα,β = R× (α, β) where α, β are nonnegative real numbers, the
following theorem holds [Sh19]:

Theorem. Let u ∈ C2 (Str0,β) with β > 0, and suppose

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) ∀ (x, t) ∈ Str0,β.

Suppose also that u ∈ L∞ (Strt0,β) ∀t0 such that 0 < t0 < β. Suppose
furthermore

(i) lim
t→0

u (x, t) = 0 ∀x ∈ R,

(ii) sup
x∈R

|u (x, t)| = o(t−1) as t→ 0.

Then u (x, t) is identically zero for (x, t) ∈ Str0,β.

This theorem is false if (i) is replaced with (i′) or if (ii) is replaced
with (ii′) where

(
i′
)
lim
t→0

u (x, t) = 0 ∀x ∈ R\ {0},
(
ii′
)

sup
x∈R

|u (x, t)| = O(t−1) as t→ 0.

The counter-example for (i′) is k (x, t) = t−
1
2 e−x2/4t.
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The counter-example for (ii′) is ∂k (x, t) /∂x = − x
2t3/2 e

−x2/4t. To see

that ∂k (x, t) /∂x is indeed a counter-example for (ii′), observe

lim
t→0

∣∣∣∣t
∂k

∂x

(
t

1
2 , t
)∣∣∣∣ = 2−1e−1/4.

2. Using Galerkin techniques and harmonic analysis, we can also obtain
results about time-periodic quasilinear parabolic boundary-value problems.

In particular, let Ω ⊂ RN be a bounded open set, N ≥ 2, and define Ω̃ =
Ω× T1 where T1 = [−π, π). Define

A = {v (x, t) ∈ C∞ (Ω×R) : v satisfies (A1) and (A2)},
where

(A1) v (x, t) = v (x, t+ 2π) ∀x ∈ Ω and ∀t ∈ R,

(A2) ∃E, a compact subset of Ω, such that v (x, t) = 0
∀x ∈ Ω\E and ∀t ∈ R.

Introduce, for u, v ∈ A, the following inner product:

< u, v > eH=< Dtu,Dtv >L2(eΩ) +

N∑

j=1

< Dju,Djv >L2(eΩ) .

The Hilbert space we obtain from A by completing A by means of Cauchy

sequences generated from the above inner product will be called H̃.

Let Q (u) = −∑N
j=1Dj{1 + [1 + ∇u · ∇u]− 1

2 }Dju and introduce the

two-form for u, v ∈ H̃:

Q (u, v) =

N∑

j=1

∫

eΩ
[1 + (1 +∇u · ∇u)− 1

2 ]DjuDjvdxdt.

With ‖u‖L2 = ‖u‖
L2(eΩ), define

λ∗1 = lim inf
‖u‖L2→∞

Q (u, u) / ‖u‖2L2 for u ∈ H̃.

Consider the problem

(3.1)
∂u

∂t
+Q (u) = g (x, t, u) + h (x, t)

where u ∈ H̃, h (x, t) ∈ L2
(
Ω̃
)
, and g (x, t, s) satisfies the following three

conditions:

(g − 1) g ∈ C
(
Ω̃×R

)

(g − 2) |g (x, t, s)| ≤ c1 |s|+ |h1 (x, t)|
(g − 3) sg (x, t, s) ≤ Γ |s|2 + |s| |h2 (x, t)|

where c1 is a positive constant, h1, h2 ∈ L2
(
Ω̃
)
, and Γ < λ∗1.
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We say u is a weak solution of the time-periodic quasilinear parabolic

boundary-value problem (3.1) provided u ∈ H̃ and
∫

eΩ
vDtudxdt+Q (u, v) =

∫

eΩ
[g (x, t, u) + h (x, t)]vdxdt ∀v ∈ H̃.

The following result about these matters was obtained by Lefton and Shapiro
in [LefS].

Theorem. With Ω̃ as above, g satisfying (g − 1), (g − 2), (g − 3), and

h ∈ L2
(
Ω̃
)
, there exists u ∈ H̃ that is a weak solution of (3.1).

This theorem is a nonresonant result because the inequality Γ < λ∗1 is
strict. Resonant results also are presented in [LefS], and other quasilinear
operator besides the Q (u) above are considered.

More results about time-periodic quasilinear parabolic differential equa-
tions are presented in [Sh14, Ch. II].

3. When Fourier series methods are combined with recent developments
in the Calculus of Variations, interesting one-sided resonant results can be
obtained for the nonlinear Schrodinger differential equation in RN, N ≥ 1,

(3.2) −∆u+ q (x)u = λ1u− αu− + g(x, u) + h.

Here, q ∈ C
(
RN

)
, q ≥ 0, and q (x) → ∞ as |x| → ∞. Also, λ1 is the

first eigenvalue associated with the Schrodinger operator, α > 0, u− (x) =
−min (u (x) , 0) , h ∈ L2

(
RN

)
, and g (x, t) ∈ C

(
RN ×R

)
.

Let C1
q

(
RN
)

=
{
u ∈ C1

(
RN
)

:
∫
RN [|∇u|2 + (1 + q) u2]dx <∞

}
and

introduce in this space the inner product

< u, v >1,q=

∫

RN

[∇u · ∇v + (1 + q)uv]dx.

Close C1
q

(
RN
)

using this inner product and the method of Cauchy se-

quences. Call the resulting Hilbert space H1
q .

For the function g appearing in (3.2), the following assumptions are
made:

(g − 1) ∃b ∈ L2
(
RN
)

such that |g (x, t)| ≤ b (x) ∀x ∈ RN and ∀t ∈ R,

(g − 2) limt→∞ g (x, t) = g+ (x) ∀x ∈ RN,

(g − 3) g (x, t) < g+ (x) ∀x ∈ RN and ∀t ∈ R.

Say u is a weak solution of the Schrodinger equation (3.2), if u ∈ H1
q and if

∫

RN

[∇u · ∇v + quv]dx =

∫

RN

[
λ1u− αu− + g(x, u) + h

]
vdx ∀v ∈ H1

q .
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Next, we introduce the solvability condition

(3.3)

∫

RN

[g+ (x)φ1 (x) + h (x)φ1 (x)]dx > 0,

where φ1 (x) is the first eigenfunction associated with the Schrodinger oper-
ator.

Combining linking theory in the variational calculus [St, p. 127] with
Fourier analytic methods, the following one-sided resonant result is obtained
in [Sh20].

Theorem. Let g ∈ C
(
RN ×R

)
satisfy (g − 1), (g − 2), and (g − 3), let

α > 0, and let h ∈ L2
(
RN

)
, N ≥ 1.Then the solvability condition (3.3) is

both a necessary and sufficient condition for obtaining a u ∈ H1
q , which is

a weak solution to the Schrodinger equation (3.2).

In [Sh20], a more general solvability condition than (3.3) is used for the
sufficiency condition in the above theorem, namely the following:

lim
t→∞

{∫

RN

[G (x, tφ1 (x)) + th (x)φ1 (x)]dx

}
= +∞,

where G (x, t) =
∫ t
0 g (x, s) ds.



CHAPTER 6

The Stationary Navier-Stokes Equations

1. Distribution Solutions

The results in this Chapter are motivated by our two manuscripts on
the stationary Navier-Stokes equations entitled, “Generalized and Classical
Solutions of the Nonlinear Stationary Navier-Stokes Equations” [Sh10] and
“One-sided Conditions for the Navier-Stokes Equations” [Sh15]. The first
paper appeared in the Transactions of the American Mathematical Society
and the second in the Journal of Differential Equations.

The main results in §1 deal with the situation when the driving force
depends on x and v in a nonlinear manner, i.e., is of the form f (x,v), and
come from the Journal of Differential Equations paper. The main theorem
in §2, motivated by the Transactions paper, establishes a regularity result
for the stationary Navier-Stokes equations when f (x) ∈ Cα (TN ) , 0 < α <
1, obtaining in two and three-dimensions a solution pair (v, p) with v ∈
C2+α (TN ) and p ∈ C1+α (TN ) .

As far as we can tell, the nonlinear results of the type mentioned above do
not appear in the standard texts dealing with the stationary Navier-Stokes
equations, i.e., they are not in the books by Ladyzhenskya [La], Temam [Te],
or Galdi [Ga]. Also, as far as we can tell, the proof of the theorem in §2 using
the Cα-Calderon-Zygmund theory likewise does not appear in the standard
texts dealing with the stationary Navier-Stokes equations.

Also, in §1, we establish the basic result for the stationary Navier-Stokes
equations under periodic boundary conditions when the driving force is

f (x) ∈ L2 (TN ).

We shall operate in real N -dimensional Euclidean space, RN, N ≥ 2,
and use the following notation:

x = (x1, ..., xN ) y = (y1, ..., yN )

αx+ βy = (αx1 + βy1, ..., αxN + βyN )

x · y = x1y1 + ...+ xNyN , |x| = (x · x) 1
2 .

With TN , the N -dimensional torus

TN = {x : −π ≤ xj < π, j = 1, ..., N},
we shall say f1 ∈ Lr(TN ), 1 ≤ r < ∞, provided f1 is a real-valued (unless
explicitly stated otherwise) Lebesgue measurable function defined on RN of

219
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period 2π in each variable such that∫

TN

|f1|r dx <∞.

φ = (φ1, ..., φN ) ∈ [C∞ (TN )]N means that φj ∈ C∞
(
RN

)
and periodic

of period 2π in each variable, j = 1, ...N.
H1(TN ) is the closure of the set of functions in C∞(TN ) under the norm

generated by the following real inner product:

< g1, h1 >H1=

∫

TN

[g1h1 +∇g1 · ∇h1]dx for g1, h1 ∈ C∞(TN ).

In particular, we see if g1 ∈ H1(TN ), then g1 is in the familiar Sobolev
space W 1,2 (TN ). By this, we mean, g1 ∈ L2 (TN ) and there are functions
w1, ..., wN ∈ L2 (TN ) such that

∫

TN

g1∂φ1/∂x
jdx = −

∫

TN

wjφ1dx ∀φ1 ∈ C∞ (TN )

for j = 1, ...N. We refer to wj as a weak partial derivative of g1, and
frequently write wj as ∂g1/∂x

j .
In this section, we will establish three resonance-type existence theorems

for periodic solutions of the stationary Navier-Stokes equations. So, we deal
with the equations

(1.1)
−ν∆v (x) + (v (x) · ∇)v (x) +∇p (x) = f (x,v (x))

(∇ · v) (x) = 0

where ν is a positive constant, and v and f are vector-valued functions.
f = (f1, ..., fN ) : TN ×RN → RN and, throughout this section, f will

meet the following two Caratheodory conditions:
(f − 1) For each fixed s = (s1, ..., sN ) ∈ RN, fj (x, s) is a real-valued

measurable function on TN , and for almost every x ∈ TN , fj (x, s) is contin-
uous on RN, j = 1, ...N.

(f − 2) For each r > 0, there is a finite-valued nonnegative function
ζr (x) ∈ L2 (TN ) such that

|fj (x, s)| ≤ ζr (x) for |sj| ≤ r, for a.e. x ∈ TN ,

and for sk ∈ R, k 6= j, j, k = 1, ...N.

We will deal with the pair (v, p) where v ∈
[
L2 (TN )

]N
and p ∈ L1 (TN ).

We say such a pair is a distribution solution of the stationary Navier-Stokes
equations (1.1) provided the components of f (x,v (x)) are in L1 (TN ) and

(1.2)

−
∫
TN

[νv ·∆φ+ v · (v · ∇)φ+ p∇ · φ]dx

=
∫
TN

[f (x,v (x)) · φ (x)]dx

∫
TN

v · ∇ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ).
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First of all, however, we will present the very basic theorem for the
stationary Navier-Stokes equations on the N -torus where the components
of f do not depend on v, i.e.,

f (x) = (f1 (x) , ..., fN (x)) .

The next three theorems we present will deal with the situation where
the components of f actually do depend on v, i.e.,

f (x,v (x)) = (f1 (x,v (x)) , ..., fN (x,v (x))) .

The first theorem we prove is the following:

Theorem 1.1. Let f (x) = (f1 (x) , ..., fN (x)) be a vector-valued function
where f j ∈ L2 (TN ) for j=1,...N. Then a necessary and sufficient condition
that there is a pair (v, p) with v j ∈ H1 (TN ) for j=1,...N and p∈ L2 (TN )
such that (v, p) is a distribution solution of the stationary Navier-Stokes
equations (1.1) is that

(⋆)

∫

TN

fj (x) dx = 0 for j=1,...N.

If λ ∈ R and the pair (v, p) is a classical solution of (1.1) with f = λv,
then it is easy to see from (1.2) that λ ≥ 0. Also, it is easy to see that the
pair (v, 0) satisfies (1.1) with f = 0v whenever v is a constant vector field.
This indicates that, in a way, zero plays the role of the first eigenvalue for the
system (1.1). The literature refers to results for elliptic equations that occur
at the first eigenvalue as results at resonance. Motivated by these facts,
and the papers of Landesman and Lazer [LL], DeFigueiredo and Gossez
[DG], and Brezis and Nirenberg [BN], we also present in this section two
best possible resonance existence theorems where the components of f are
subjected to one-sided growth conditions. The third resonance theorem is
not one-sided, but it does present a necessary and sufficient result.

We say that f satisfies the one-sided growth condition (f − 3) provided
the following holds:

(f − 3) lim sup
|sj |→∞

fj (x, s) /sj ≤ 0 uniformly for x ∈ TN ,

and sk ∈ R, k 6= j, j, k = 1, ..., N.
To be specific, by (f − 3), we mean for each fixed j, given ε > 0, there

is an s0 > 0, such that

(1.3) fj(x, s)/sj ≤ ε for s0 ≤ |sj|

for x ∈ TN and sk ∈ R, k 6= j, j, k = 1, ..., N.
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We also note for future use that (1.3) is equivalent to

(1.4)
fj (x, s) ≤ εsj for s0 ≤ sj

≥ εsj for − s0 ≥ sj.

Now, Theorem 1.2 will deal with the growth condition (f − 3) and a
more restrictive growth condition on sets of positive measure. In particular,
we define
(1.5)

Ej(f) = {x ∈ TN : lim sup|sj |→∞ fj (x, s) /sj < 0

uniformly for sk ∈ R,k 6= j, k = 1, ..., N}
for j = 1, ..., N.

Also, for each set of positive integers n and l, we set

(1.6)
Ej(f , n, l) = {x ∈ TN : fj (x, s) /sj < −n−1 for |sj| > l

and for sk ∈ R,k 6= j, k = 1, ..., N}
Explicitly, x0 ∈ Ej(f) means there is a pair of positive integers n and l

such that x0 ∈ Ej(f , n, l). Consequently,

(1.7) Ej(f) =

∞⋃

n=1

∞⋃

l=1

Ej(f , n, l).

Also, it is easy to see that if f meets (f − 1), then Ej(f , n, l) is a measurable
set. With |Ej(f)| designating the N -dimensional Lebesgue measure of Ej(f),
Theorem 1.2 will have as part of its hypothesis that |Ej(f)| > 0 for j =
1, ..., N.

We now state Theorem 1.2.

Theorem 1.2. Let f = (f1, ..., fN ) be a vector-valued function satisfying

(f − 1) , (f − 2), and (f − 3) where Ṅ ≥ 2. Suppose that

(1.8) |Ej(f)| > 0 for j = 1, ..., N,

where Ej(f) is defined by (1.5). Then there exists a pair (v,p) with

p, fj (x,v) , and vj fj (x,v) ∈ L1 (TN ) and vj∈H1 (TN )

for j = 1, ...N such that (v,p) is a distribution solution of the stationary
Navier-Stokes equations (1.1).

An example of an f that meets the hypothesis of the theorem is f =
(f1, ..., fN ) where

fj (x, s) = −sjηj (x) + ηj (x)

and ηj is a nonnegative function that is in L2 (TN ) with
∫

TN

ηj (x) dx > 0 for j = 1, ..., N.
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Clearly, there are many more such functions.
Theorem 1.2 is a best possible result, i.e., it is false if we replace condition

(1.8) by the slightly less restrictive condition “(N − 1) of the sets Ej(f) are
of positive measure and the remaining set is of measure ≥ 0.”

To see that Theorem 1.2 is false under such an assumption, we set

f1 (x, s) = −1 and fj (x, s) = −sj for j = 2, ..., N.

Then, it is clear that f = (f1, ..., fN ) satisfies (f − 1), (f − 2), and (f − 3),
that E1(f) = the empty set, and that Ej(f) = TN for j = 2, ..., N. Con-

sequently, |E1(f)| = 0, and |Ej(f)| = (2π)N for j = 2, ..., N, and the
less restrictive assumption is also met. Suppose there is a pair (v, p) with

p ∈ L1 (TN ) and v ∈
[
H1 (TN )

]N
such that the first equation in (1.2) holds

for all φ ∈ [C∞ (TN )]N . Taking φ = (1, 0, ..., 0) in the first equation in (1.2)

gives 0 on the left-hand side of the equal sign and − (2π)N on the right-

hand side of the equal sign. Since 0 6= − (2π)N , we conclude that no such
pair exists, and our assertion concerning the best possibility of Theorem 1.2
is established.

In order to state Theorem 1.3, we need to introduce two further one-sided
growth conditions.

We say f satisfies (f − 4) if the following holds:
(f − 4) There exists a finite-valued nonnegative function ζ ∈ L2 (TN )

such that

fj (x, s) ≤ ζ (x) for sj ≥ 0

≥ −ζ (x) for sj ≤ 0

for x∈ TN , s ∈ RN , and j = 1, ..., N.
To introduce the next one-sided condition, we suppose g (x, s) satisfies

(f − 1) and h = (h1, ..., hN ) is a vector-valued function with hj (x) finite-
valued and in L1 (TN ) for j = 1, ..., N. We say (g,h) satisfies (f − 5) pro-
vided the following holds:

(f − 5)

lim supsj→∞ gj (x, s) − hj (x) ≤ 0

and
lim infsj→−∞ gj (x, s)− hj (x) ≥ 0

uniformly for x ∈ TN , sk ∈ R, k 6= j, k = 1, ..., N for j = 1, ..., N.
We also set

(1.9)
E+

j (g,h) = {x ∈ TN : lim supsj→∞ gj (x, s)− hj (x) < 0

uniformly for sk ∈ R,k 6= j, k = 1, ..., N};
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(1.10)
E−

j (g,h) = {x ∈ TN : lim infsj→−∞ gj (x, s)− hj (x) > 0

uniformly for sk ∈ R,k 6= j, k = 1, ..., N};

(1.11)
E+

j (g,h, n, l) = {x ∈ TN : gj (x, s) − hj (x) < −n−1 for sj > l

and for sk ∈ R,k 6= j, k = 1, ..., N};

(1.12)
E−

j (g,h, n, l) = {x ∈ TN : gj (x, s) − hj (x) > n−1 for sj < −l

and for sk ∈ R,k 6= j, k = 1, ..., N}.
We observe that

(1.13)

E+
j (g,h) =

⋃∞
n=1

⋃∞
l=1E

+
j (g,h, n, l)

E−
j (g,h) =

⋃∞
n=1

⋃∞
l=1E

−
j (g,h, n, l)

for j = 1, ..., N.
We now state Theorem 1.3.

Theorem 1.3. Let f (x, s) = g (x, s) − h (x) be vector-valued functions
with h (x) finite-valued and in [L2 (TN )]N , N ≥ 2. Suppose that g satisfies
(f − 1) , (f − 2) , and (f − 4) and (g,h) satisfies (f − 5). Suppose further-
more that

(1.14)
∣∣∣E+

j (g,h)
∣∣∣ > 0 and

∣∣∣E−
j (g,h)

∣∣∣ > 0

for j = 1, ..., N where E+
j (g,h) and E−(g,h) are defined by (1.9) and

(1.10), respectively. Then there exists a pair (v, p) with

p, fj (x,v) , and vj fj (x,v) ∈ L1 (TN )

and vj ∈ H1 (TN ) for j = 1, ..., N such that (v, p) is a distribution solution
of the stationary Navier-Stokes equations (1.1).

An example of an f that meets the conditions in the hypothesis of The-
orem 1.3 but not Theorem 1.2 is f = (f1, ..., fN ) where

fj (x, s) = −ηj (x) sj/
(
1 + s2j

)1/2 − ηj (x) /2

and ηj is a nonnegative function that is in L2 (TN ) with
∫

TN

ηj (x) dx > 0 for j = 1, ..., N.

By modifying the counter-example used for Theorem 1.2, it is easy to
show that Theorem 1.3 is also a best possible result. In particular, we now
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show that Theorem 1.3 is false if we replace (1.14) by the following less
restrictive condition:

(1.15)

∣∣∣E+
j (g,h)

∣∣∣ > 0, j = 1, ..., N

∣∣∣E−
j (g,h)

∣∣∣ > 0, j = 2, ..., N

∣∣E−
1 (g,h)

∣∣ ≥ 0.

We take hj = 0 for j = 1, ..., N, gj (x, s) = −sj for j = 2, ..., N, and

g1 (x, s) = −1 for s1 ≥ 0

= −
(
1 + s21

)−1
for s1 ≤ 0.

Then it is clear that g meets (f − 1), (f − 2), and (f − 4), that (g,h) meets
(f − 5), and that (1.15) holds where E−

1 (g,h) = the empty set.
Suppose that there is a pair (v, p) with p in L1 (TN ) and v in H1 (TN )

that satisfies (1.2) for all φ ∈ C∞ (TN ). Taking φ = (1, 0, ..., 0) in the first
equation in (1.2) gives 0 on the left-hand side of the equal sign. Since v1 ∈
L2 (TN ), there is a set A ⊂ TN and a constant K such that |A| ≥ πN

and |v1 (x)| ≤ K for x ∈ A. Consequently, after multiplying both sides
of the equation by −1, the right-hand side of the equal sign in (1.2) is

≥ πN
(
1 +K2

)−1
. But 0 ≥ πN

(
1 +K2

)−1
is not true. So we have arrived

at a contradiction. We conclude that no such pair (v, p) exists, and our
assertion concerning the best possibility of Theorem 1.3 is established.

We will also establish the following result, which is the direct analogue
of a familiar Landesman-Lazer result [LL, p. 611]:

Theorem 1.4. Suppose that g (s) = (g1 (s1) , ..., gN (sN )) and gj (sj) ∈
C (R) for j = 1, ...N, N ≥ 2. Suppose also that the limits

(1.16) lim
t→∞

gj (t) = gj (∞) and lim
t→−∞

gj (t) = gj (−∞)

exist and are finite, and that

(1.17) gj (∞) < gj (t) < gj (−∞)

for t∈ R and j = 1, ...N. Suppose furthermore that the components of
h (x) are finite-valued and in L2 (TN ) and that f (x, s) = g (s)− h (x).Then
a necessary and sufficient condition that there exists a pair (v,p) with

p, fj (x,v) , and vj fj (x,v) ∈ L1 (TN )

and vj ∈ H1 (TN ) such that (v,p) is a distribution solution of (1.1) is that

(1.18) (2π)N gj (∞) <

∫

TN

hj (x) dx < (2π)N gj (−∞)

for j = 1, ...N.
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To establish these four theorems, we will make strong use of the theory
of multiple Fourier series. In particular, if f1 ∈ L1 (TN ) , we set

f̂1 (m) = (2π)−N
∫

TN

f1 (x) e−im·xdx ∀m ∈ ΛN

where ΛN represents the set of integral lattice points in RN, and

SR (f1, x) =
∑

|m|≤R

f̂1 (m) eim·x.

If f1 ∈ L2 (TN ), it is well-known that

lim
R→∞

∫

TN

|SR (f1, x)− f1 (x)|2 dx = 0.

Also, Parsevaal’s Theorem tells us that∫

TN

|f (x)|2 dx = (2π)N
∑

m∈ΛN

∣∣∣f̂1 (m)
∣∣∣
2
.

For f1 ∈ L1 (TN ), we will also set for t > 0,

(1.19) f1(x, t) =
∑

m∈ΛN

f̂1(m)eim·x−|m|t.

f1(x, t) is also called the Abel means of f1, and it is well-known (see Theorem
4.3 of Chapter 1) that

(1.20) lim
t→0

∫

TN

|f1(x, t)− f1 (x)| dx = 0.

Also, for t > 0, set

(1.21) H0(x, t) =
∑

|m|>0

|m|−2 eim·x−|m|t,

and for j = 1, ..., N, set

(1.22) Hj(x, t) =
∑

|m|>0

imj |m|−2 eim·x−|m|t.

We also define
(1.23)

Φ(x) = (2π)N [|SN−1| (N − 2)]−1 |x|−(N−2) ∀x ∈ TN\{0} and N ≥ 3

= (2π) log |x|−1 ∀x ∈ T2\{0} and N = 2, ,

where |SN−1| is the (N − 1)-dimensional volume of the (N − 1)-sphere,
i.e., for N = 3, |SN−1| = 4π. In particular, for general N ≥ 2, |SN−1| =

2(π)N/2/Γ(N
2 ).

A well-known lemma (see Lemma 1.4 of Chapter 3) concerning the func-
tions just introduced is the following:
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Lemma A. The following facts hold for the functions defined in (1.21),
(1.22), and (1.23) where N≥ 2:

(i) limt→0H0(x, t) = H0(x) exists and is finite and

lim
t→0

Hj(x, t) = Hj(x) exists and is finite

∀x ∈ RN\ ∪m∈ΛN
{2πm} and j = 1, ..., N ;

(ii) lim|x|→0[H0(x)− Φ(x)] exists and is finite;

(iii) lim|x|→0[Hj(x)+ (2π)Nxj/ |SN−1| |x|N ] exists and is finite for j =
1, ..., N ;

(iv) H0(x),Hj(x) ∈ L1(TN ) for j = 1, ..., N ;

(v) H0(x)− |x|2 /2N is harmonic in RN\ ∪m∈ΛN
{2πm};

(vi) Hj(x) is harmonic in RN\ ∪m∈ΛN
{2πm} for j = 1, ..., N ;

(vii) limt→0

∫
TN
|H0(x, t)−H0(x)| dx = 0 and

limt→0

∫

TN

|Hj(x, t)−Hj(x)| dx = 0

for j = 1, ..., N.
Two other well-known lemmas about multiple Fourier series are the fol-

lowing:

Lemma B. If f1 is a function in Lr(TN ), where 1 < r <∞, then
∑

|m|>0

f̂1(m)
mjmk

|m|2
eim·x

is also the Fourier series of a function in Lr(TN ) for j, k = 1, ..., N.

Lemma C. If f1 is a function in Cα(TN ), where 0 < α < 1, then
∑

|m|>0

f̂1(m)
mjmk

|m|2
eim·x

is also the Fourier series of a function in Cα(TN ) for j, k = 1, ..., N.
The statement made in Lemma C is (5.5) and (5.6) in the proof of

Theorem 5.1 in Chapter 2. Likewise, the statement made in Lemma B is
(6.8) in the proof of Theorem 6.1 in Chapter 2.

In order to study the system of stationary Navier-Stokes equations, we
will need a result about the system of stationary Stokes equations, which is
the following:

(1.24)
−ν∆v (x) +∇p (x) = h (x)

(∇ · v) (x) = 0

where ν is a positive constant, and v and h are vector-valued functions.

We will deal with the pair (v, p) where v ∈
[
L1 (TN )

]N
and p ∈ L1 (TN ).
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If h ∈
[
L1 (TN )

]N
, we say such a pair is a distribution solution of (1.24)

provided

(1.25)

−
∫
TN

[νv ·∆φ+ p∇ · φ]dx

=
∫
TN

[h (x) · φ (x)]dx

∫
TN

v · ∇ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ).
In order to obtain distribution solutions of the stationary Stokes equa-

tions, we introduce a set of functions using Lemmas A and B above. First
from Lemma A above, we observe that there is a function H0 (x) ∈ L1 (TN ),
which is periodic of period 2π in each variable and is in

C∞
(
RN\ ∪m∈ΛN

{2πm}
)

with the following Fourier series:
∑

|m|>0

|m|−2 eim·x.

Because of (ii) in Lemma A, the singularity of H0 (x) at the origin is the
same as that of Φ (x), which is defined in (1.23) above. So we observe the
following is true:

For each N ≥ 2, there exists r0 with 1 < r0 < ∞, such that H0 ∈
Lr0 (TN ).

Because of this fact and Lemma B, we consequently see that there are
functions

(1.26) uk
j ∈ Lr0 (TN ) , j, k = 1, ..., N,

which have the following Fourier coefficients:

ûk
j (m) =

[
δk
j −mjmk |m|−2

]
|m|−2 ν−1 for m 6= 0

= 0 for m = 0.

where δk
j is the usual Kronecker-δ.

Also, from (1.22) and Lemma A, we set

(1.27) qj (x, t) = −Hj (x, t)

and see there are functions

(1.28) qj ∈ L1 (TN ) , j = 1, ..., N,

which have the following Fourier coefficients:

q̂j (m) = −imj/ |m|−2 for m 6= 0

= 0 for m = 0.

Using the functions uk
j and qj, we next establish the following lemma

about distribution solutions of the Stokes equations:
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Lemma 1.5. Suppose hj ∈ L1 (TN ) and ĥj (0) = 0 for j = 1, ..., N. Set

vj (x) = (2π)−N
∫

TN

[
N∑

k=1

uk
j (x− y)hk (y)

]
dy,

p (x) = (2π)−N
∫

TN

[
N∑

k=1

qk (x− y)hk (y)

]
dy,

and v = (v1, ..., vN ). Then v ∈
[
L1 (TN )

]N
, p ∈ L1 (TN ), and the pair (v, p)

is a distribution solution of the Stokes equations given in (1.24).

Proof of Lemma 1.5. To prove the lemma, we set for t > 0,

uk
j (x, t) =

∑

m∈ΛN

ûk
j (m) eim·x−|m|t

and

vj (x, t) = (2π)−N
∫

TN

[
N∑

k=1

uk
j (x− y, t)hk (y)

]
dy.

Likewise, using (1.22) and (1.27), we set

pj (x, t) = (2π)−N
∫

TN

[
N∑

k=1

qk (x− y, t)hk (y)

]
dy

and

hj (x, t) =
∑

m∈ΛN

ĥj (m) eim·x−|m|t.

It is clear that vj (x, t), pj (x, t), and hj (x, t) are in C∞
(
RN

)
and peri-

odic of period 2π in each variable. A computation shows that

−ν∆vj (x, t) +
∂pj(x,t)

∂xj
=

∑
m∈ΛN

∑N
k=1[ν |m|2 ûk

j (m) + imj q̂k (m)]ĥk (m) eim·x−|m|t.

A further computation shows that the item in brackets above has the value
δk
j . So

−ν∆vj (x, t) +
∂pj (x, t)

∂xj
=

∑

m∈ΛN

N∑

k=1

δk
j ĥk (m) eim·x−|m|t

=
∑

m∈ΛN

ĥj (m) eim·x−|m|t

= hj (x, t).
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Likewise, we see that

N∑

j=1

∂vj (x, t)

∂xj
=
∑

m∈ΛN

N∑

k=1

[

N∑

j=1

imj û
k
j (m)]ĥk (m) eim·x−|m|t.

But the item in brackets in the above equation is zero. So, we have that

N∑

j=1

∂vj (x, t)

∂xj
= 0.

We conclude from the above computations that v (x, t) and p (x, t) are
classical solutions of the Stokes equations when in (1.24), h (x) is replaced
by h (x, t). Because they are classical solutions, it follows that they are
distribution solutions. So in particular, we have that

(1.29)

−
∫
TN

[νv (x, t) ·∆φ (x) + p (x, t)∇ · φ (x) ]dx

=
∫
TN

[h (x, t) · φ (x)]dx,

∫
TN

v (x, t) · ∇ξ (x) dx = 0,

for t > 0, φ ∈ [C∞(TN )]N , and ξ ∈ C∞(TN ).
Now from the hypothesis of the lemma, we see that vj (x) ∈ L1 (TN ) and

p (x) ∈ L1 (TN ) . So it follows from (1.19) and (1.20) above that

limt→0

∫
TN
|vj(x, t)− vj (x)| dx = 0 for j = 1, ..., N,

limt→0

∫
TN
|p(x, t)− p (x)| dx = 0.

Likewise,

lim
t→0

∫

TN

|hj(x, t)− hj (x)| dx = 0 for j = 1, ..., N.

Consequently, on taking the limit as t → 0 on both sides of the two
equations in (1.29), we obtain that

−
∫
TN

[νv (x) ·∆φ (x) + p (x)∇ · φ (x) ]dx

=
∫
TN

[h (x) · φ (x)]dx,

∫
TN

v (x) · ∇ξ (x) dx = 0,

for φ ∈ [C∞(TN )]N and ξ ∈ C∞(TN ), which concludes the proof of the
lemma. �

Next, we use a clever Galerkin technique to establish a basic lemma for
the stationary Navier-Stokes equations. But first we need some more facts
from the theory of multiple Fourier series.
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We say a real-valued, vector-valued function ψ ∈ J (TN ) if

ψ ∈ [C∞(TN )]N and ∇ · ψ (x) = 0 ∀x ∈ TN .

We claim that there is a real-valued sequence {ψn}∞n=1 with ψn ∈ J (TN )
such that

(1.30)

∫

TN

ψn · ψl dx = δn
l

n, l = 1, 2, .... Furthermore, this sequence can be chosen so that it has the
following additional property: given ψ ∈ J (TN ) and ε > 0, there are
constants c1, ..., cn such that

(1.31)

∣∣ψ (x)−∑n
l=1 clψ

l (x)
∣∣ < ε

∣∣∣∂ψ(x)
∂xk

−∑n
l=1 cl

∂ψl(x)
∂xk

∣∣∣ < ε

for x ∈ TN and k = 1, ..., N. Also,

(1.31 ′) ψ1 = (αN , 0, ..., 0) , ψ
2 = (0, αN , 0, ..., 0) , ...,ψ

N = (0, 0, ..., 0, αN )

where

αN = (2π)−N/2.

.
To establish this claim, we first note from (1.19) and (1.20) above that

{
eim·x

}
m∈ΛN

is a complete orthogonal system for L1 (TN ).

By complete, we mean the following: given f1 ∈ L1 (TN ), then

f̂1 (m) = 0 ∀m ∈ ΛN ⇒ f1 = 0 for a.e. x ∈ TN .

Also, we note that if g1 ∈ C∞ (TN ), then given ε > 0, ∃ R0 > 0 such that
∣∣∣∣∣∣
g1 (x)−

∑

|m|≤R

ĝ1 (m) eim·x

∣∣∣∣∣∣
≤ ε,

∣∣∣∣∣∣
∂g1 (x)

∂xk
−
∑

|m|≤R

imkĝ1 (m) eim·x

∣∣∣∣∣∣
≤ ε

for R ≥ R0, for x ∈ TN , and k = 1, ..., N. This follows from the fact that

ĝ1 (m) = O
(
|m|−4N

)
as |m| → ∞.

We can replace the orthogonal system
{
eim·x

}
m∈ΛN

in the above by the

real orthogonal system

{cosm · x}m∈Λ♦
N∪{0}

⋃
{sinm · x}m∈Λ♦

N
,
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where

Λ♦
N = {m ∈ Λ+

N : m1 > 0, m1 = 0 and m2 > 0,
m1 = m2 = 0 and m3 > 0, . . . ,

m1 = m2 = · · · = mN−1 = 0 and mN > 0}
and

Λ+
N = {m ∈ ΛN : mj ≥ 0, j = 1, ..., N} .

In other words, if we define for f1 ∈ L1 (TN ),

f̂ c
1 (m) =

2

(2π)N

∫

TN

f1 (x) cosm · xdx,

f̂ s
1 (m) =

2

(2π)N

∫

TN

f1 (x) sinm · xdx,

then

f̂ c
1 (m) = 0 for m ∈ Λ♦

N ∪ {0} and f̂ s
1 (m) = 0 for m ∈ Λ♦

N

implies that f1 (x) = 0 for a.e. x ∈ TN .
Likewise, if g1 ∈ C∞ (TN ) with ĝc

1 (0) = 0, then given ε > 0, ∃ R0 > 0
such that∣∣∣∣∣∣∣

g1 (x)−
∑

|m|≤R,m∈Λ♦
N

[ĝc
1 (m) cosm · x+ ĝs

1 (m) sinm · x]

∣∣∣∣∣∣∣
≤ ε,

∣∣∣∣∣∣∣
∂g1 (x)

∂xk
−

∑

|m|≤R,m∈Λ♦
N

mk[ĝ
s
1 (m) cosm · x− ĝc

1 (m) sinm · x]

∣∣∣∣∣∣∣
≤ ε

for R ≥ R0, for x ∈ TN , and k = 1, ..., N.
To get the sequence {ψn}∞n=1 for N = 2, we proceed as follows. We first

set

Jo (TN ) =

{
f ∈ J (TN ) :

∫

TN

fj (x) dx = 0 j = 1, ..., N

}

and observe that

(1.32) (f1, f2) ∈ Jo (T2)⇒ f̂1 (m) = 0 ∀m2 = 0.

This follows from the fact that

∂f1 (x)

∂x1
+
∂f2 (x)

∂x2
= 0 ∀x ∈ TN

implies that

im1f̂1 (m) + im2f̂2 (m) = 0 ∀m ∈ ΛN .

Next, we observe that using (1.32),
{(

im2e
im·x

|m| ,
−im1e

im·x

|m|

)}

m∈Λ2\{0}

is a complete orthogonal system for Jo (T2).
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Likewise, as above, it follows that
{(

m2 cosm · x
|m| ,

−m1 cosm · x
|m|

)}

m∈Λ♦
2

⋃{(
m2 sinm · x
|m| ,

−m1 sinm · x
|m|

)}

m∈Λ♦
2

is a real complete orthogonal system for Jo (T2).
From this last observation, it is easy to see that the claims asserted in

(1.30) and (1.31) are true for J (T2).
To validate these claims for J (T3), we use (see Exercise 5 below) the

following real complete orthogonal system for Jo (T3):
{(

m2 cosm · x
|m| ,

−m1 cosm · x
|m| , 0

)}

m∈Λ♦
3

⋃{(−m3 cosm · x
|m| , 0,

m1 cosm · x
|m|

)}

m∈Λ♦
3

⋃{(
0,
m3 cosm · x
|m| ,

−m2 cosm · x
|m|

)}

m∈Λ♦
3

⋃{(
m2 sinm · x
|m| ,

−m1 sinm · x
|m| , 0

)}

m∈Λ♦
3

⋃{(−m3 sinm · x
|m| , 0,

m1 sinm · x
|m|

)}

m∈Λ♦
3

⋃{(
0,
m3 sinm · x
|m| ,

−m2 sinm · x
|m|

)}

m∈Λ♦
3

.

A similar situation prevails for Jo (TN ), N ≥ 4. So, the claims asserted in
(1.30) and (1.31) are true for J (TN ).

Using (1.30) and (1.31), we will prove a basic lemma for the stationary
Navier-Stokes equations. But first we introduce more notation.

For v,w ∈ [H1 (TN )]N and φ ∈ [C∞ (TN )] N, we set

(1.33)

[v,w] =
∫
TN

[∑N
k=1

∂v(x)
∂xk
· ∂w(x)

∂xk

]
dx

(v,w) =
∫
TN

v ·w dx

{φ ,v,w} =
∫
TN
φ · (v · ∇)w dx,

and observe that if ∇ · v =0, then

(1.34) {φ ,v,w} = −{w ,v,φ}.
We will need the following lemma in the sequel:
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Lemma 1.6. Let v ∈
[
L1 (TN )

]N
with the property that

∫

TN

vj (x) dx = 0 for j = 1, ...N.

Suppose futhermore that
∫

TN

v (x) · ∇ξ (x) dx = 0 ∀ξ ∈ C∞ (TN ).

Also, suppose that
∫

TN

v (x) ·∆ψ (x) dx = 0 ∀ψ ∈ J (TN ).

Then

vj (x) = 0 a.e. in TN ,

for j=1,...N.

Proof of Lemma 1.6. We designate the Fourier series of vj by
∑

m∈ΛN

v̂j(m)eim·x.

Writing eim·x = cos (m · x)+i sin (m · x) , we see from the second hypothesis
in the lemma that ∫

TN

v (x) · ∇eim·xdx = 0 ∀m ∈ ΛN .

Consequently,
N∑

j=1

imj v̂j(m) = 0 ∀m ∈ ΛN .

So, if we set

vj(x, t) =
∑

m∈ΛN

v̂j(m)eim·x−|m|t

for t > 0 and

v (x, t) = (v1(x, t), ..., vN (x, t)),

we see that vj(x, t) ∈ C∞ (TN ) and that

v (x, t) ∈ J (TN ) for t > 0.

Hence, it follows from the third hypothesis in the lemma that
∫

TN

v (x) ·∆v (x, t) dx = 0 ∀t > 0.

But then we obtain that

∑

m∈ΛN

|m|2 (

N∑

j=1

|v̂j(m)|2)e−|m|t = 0 ∀t > 0.
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This last fact coupled with the first hypothesis in the lemma shows that

v̂j(m) = 0 ∀m ∈ ΛN and j = 1, ..., N.

This fact in turn implies that

vj (x) = 0 a.e. in TN for j = 1, ..., N,

completing the proof to the lemma. �

With {ψn}∞n=1, the sequence in (1.30) and (1.31) above, we next prove
the following

Lemma 1.7. Let F (x) ∈ L1 (TN ) be a nonnegative function and let f (x, s)
satisfy (f − 1) and (f − 2). Suppose that

|fj (x, s)| ≤ F (x) ∀x ∈ TN and ∀s ∈ RN ,

j = 1, ..., N. Then if n is a given positive integer, there is a vector-valued
function v =γ1ψ

1 + · · · + γnψ
n such that

(1.35) ν
[
ψl,v

]
+
{
ψl,v,v

}
+
(
ψl,v

)
n−1 =

∫

TN

ψl (x) · f (x,v (x)) dx

for l = 1, .., n.

Proof of Lemma 1.7. For each α = (α1, ..., αn) ∈ Rn, we introduce the
components of an n× n matrix

(1.36) Ail (α) = ν
[
ψi,ψl

]
+

{
ψi,

n∑

k=1

αkψ
k,ψl

}
+
(
ψi,ψl

)
n−1,

i, l = 1, ..., n.
We see that A (α) gives rise to a linear transformation on Rn sending

β = (β1, ..., βn) into

A (α)β =

(
n∑

l=1

A1l (α)βl, ...,
n∑

l=1

Anl (α)βl

)

where

n∑

l=1

Ail (α) βl = ν

[
ψi,

n∑

l=1

βlψ
l

]
+

{
ψi,

n∑

k=1

αkψ
k,

n∑

l=1

βlψ
l

}

+

(
ψi,

n∑

l=1

βlψ
l

)
n−1.
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Observing from (1.34) that {ψ,w,ψ} = 0 for ψ,w ∈ J (TN ), we see from
this last equality that

β · A (α)β =

n∑

l=1

βiAil (α) βl

= ν

[
n∑

i=1

βiψ
i,

n∑

l=1

βlψ
l

]
+

(
n∑

i=1

βiψ
i,

n∑

l=1

βlψ
l

)
n−1.

From (1.30), we see that
(
ψi,ψl

)
= δi

l. Consequently, we obtain from this
last computation that

n−1 |β|2 ≤ |β| |A (α)β| ∀β ∈ Rn.

Therefore, A (α)−1 exists for α ∈ Rn and

(1.37)
∥∥[A(α)]−1

∥∥
M
≤ n ∀α ∈ Rn.

Next, for α ∈ Rn, set S (α) = (S1 (α) , ..., Sn (α)) where

(1.38) Si (α) =

∫

TN

ψi (x) · f
(
x,

n∑

l=1

αlψ
l (x)

)
dx

for i = 1, ..., n. Since f meets (f − 1) and (f − 2), it follows that S is a
continuous mapping of Rn into Rn. Also, since

|fj (x, s)| ≤ F (x) ∈ L1 (TN )

and ψi ∈ C∞ (TN ), it is clear from (1.38) that S maps Rn into a compact
subset of Rn, i.e., there is a positive integer M such that

|S (α)| ≤M ∀α ∈ Rn.

Consequently, it follows from (1.37) that
∣∣∣A (α)−1 S (α)

∣∣∣ ≤ nM ∀α ∈ Rn.

Therefore,

|α| ≤ nM ⇒
∣∣∣A (α)−1 S (α)

∣∣∣ ≤ nM.

Since A (α)−1 S (α) is clearly continuous as a function of α, it follows from
the Brower fixed point theorem that there is a γ ∈ Rn such that

A (γ)−1 S (γ) = γ.

Consequently, S (γ) = A (γ) γ. But then

(1.39) Si (γ) =

n∑

l=1

Ail (γ) γl

for i = 1, ..., n. We set

v =
n∑

l=1

γlψ
l
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and see from (1.36) and (1.39) that

Si (γ) = ν
[
ψi,v

]
+
{
ψi,v,v

}
+
(
ψi,v

)
n−1.

We conclude from (1.38) that

ν
[
ψi,v

]
+
{
ψi,v,v

}
+
(
ψi,v

)
n−1 =

∫

TN

ψi (x) · f (x,v) dx

for i = 1, ..., n. This last expression is exactly (1.35), and the proof of the
lemma is complete. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We will establish the necessary condition first.

Suppose then the pair (v, p) where v ∈
[
L2 (TN )

]N
and p ∈ L1 (TN ) satisfies

(1.2) where f (x,v (x)) is replaced by f (x) and

f (x) = (f1 (x) , ..., fN (x))

with f ∈
[
L2 (TN )

]N
.

In (1.2), take
φ (x) = ψj (x) for j = 1, ..., N

where ψj (x) is defined in (1.31´). Then it follows that the left-hand side of
of (1.2) is zero. So we obtain that∫

TN

f (x) · ψj (x) dx = 0 for j = 1, ..., N.

But we see from (1.31′) that this last fact is the same as the ⋆-condition in
the theorem, which establishes the necessary condition of the theorem.

To prove the sufficiency part of the theorem, we invoke Lemma 1.7 with
f (x, s) replaced by f (x) where f (x) meets the ⋆-condition in the theorem.
Then for each positive integer n, we obtain a vector-valued function

vn=γn
1ψ

1 + · · · + γn
nψ

n

such that

(1.40) ν
[
ψl,vn

]
+
{
ψl,vn,vn

}
+
(
ψl,vn

)
n−1 =

∫

TN

ψl (x) · f (x) dx

for l = 1, ..., n.
Next, recalling (1.31′) and (1.34) and the ⋆-condition in the theorem,

we see from (1.40) that

(1.41)
(
ψl,vn

)
n−1 = 0 for l = 1, ..., N and ∀n.

We proceed with the proof by multiplying each side of the equation in
(1.40) by γn

j and sum on j from 1 to n to obtain

ν [vn,vn] + {vn,vn,vn}+ (vn,vn)n−1 =

∫

TN

vn (x) · f (x) dx.
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Since {vn,vn,vn} = 0, we obtain from this last equation that

(1.42) ν [vn,vn] ≤
N∑

j=1

∥∥vn
j

∥∥
L2 ‖fj‖L2 .

From (1.41), we see that v̂n
j (0) = 0. So

∥∥vn
j

∥∥2

L2 ≤
N∑

k=1

∥∥∂vn
j /∂xk

∥∥2

L2 .

We conclude from (1.33) and (1.42) that there is a constant K such that

N∑

j=1

∥∥vn
j

∥∥2

H1 ≤ K ∀n.

It follows from Lemma 2.6 in Chapter 5 that there exists vj ∈ H1 (TN )
such that

(1.43)

(i) vn
j ⇀ vj in H1 (TN ),

(ii) vn
j → vj in L2 (TN ),

(iii) vn
j → vj a.e. in TN ,

(iv)
∣∣∣vn

j (x)
∣∣∣ ≤ G (x) a.e. in TN ∀n,

for j = 1, ..., N where G ∈ L2 (TN ) and where we have used the full sequence
for ease of notation:

vn ∈ J (TN ). Therefore, from (1.34) and (1.43), we see that for fixed k,

lim
n→∞

{
ψk,vn,vn

}
= − lim

n→∞

{
vn,vn,ψk

}
= −

{
v,v,ψk

}
=
{
ψk,v,v

}
.

So it follows from (1.40) and (1.43) that

(1.44) ν [ψn,v] + {ψn,v,v} =

∫

TN

ψn (x) · f (x) dx

for n = 1, 2, ..., where v ∈
[
H1 (TN )

]N
.

Also, we see from (1.41) and (1.43) that

(1.45)

∫

TN

vj (x) dx = 0 for j = 1, ..., N.

Next, we set

(1.46) hj (x) = fj (x)−
N∑

k=1

vk (x) ∂vj (x) /∂xk

for j = 1, ...N.
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Since vn ∈ J (TN ), it follows that

(1.47)

∫

TN

vn · ∇ξdx = 0 ∀ξ ∈ C∞ (TN )

and consequently that

∫

TN

N∑

k=1

vn1
k (x) ∂vn2

j (x) /∂xk dx = 0 for n1 and n2 positive integers,

and j = 1, ..., N.
But then it follows from (1.43) that

∫

TN

N∑

k=1

vk (x) ∂vj (x) /∂xk dx = 0,

and we conclude from (1.46) and the ⋆-condition in the theorem that
∫

TN

hj (x) dx = 0,

for j = 1, ...N.
Using hj , we invoke Lemma 1.5 and obtain a w = (w1, ..., wN ) with

w ∈
[
L1 (TN )

]N
and a p ∈ L1 (TN ) such that the pair (w, p) is a distribution

solution of the Stokes equations given in (1.24) with w replacing v, i.e., the
equations in (1.25) hold with w replacing v. In particular, from Lemma
1.5, we have that

(1.47 ′)

(i) wj (x) = (2π)−N ∫
TN

[∑N
k=1 u

k
j (x− y)hk (y)

]
dy,

(ii) p (x) = (2π)−N ∫
TN

[∑N
k=1 qk (x− y)hk (y)

]
dy,

for j = 1, ..., N.
We replace φ by ψ ∈ J (TN ) in the first equation in (1.25) and obtain

−
∫

TN

νw ·∆ψ dx =

∫

TN

h (x) ·ψ (x) dx.

Also, from (1.44) and (1.46), we see that

−
∫

TN

νv ·∆ψ dx =

∫

TN

h (x) ·ψ (x) dx ∀ψ ∈ J (TN ).

In addition, from (1.43), (1.47), and the second equation in (1.25) for w, we
obtain that ∫

TN

(v−w) · ∇ξdx = 0 ∀ξ ∈ C∞ (TN ) .

It is also clear from the definition of uk
j (x), (1.47 ′), and (1.45) that

∫

TN

[vj (x)− wj (x)] dx = 0 for j = 1, ..., N.



240 6. THE STATIONARY NAVIER-STOKES EQUATIONS

We conclude from these last four equations and Lemma 1.6 that

vj (x) = wj (x) a.e. for x ∈ TN

for j = 1, ..., N.
Since w satisfies the equations in (1.25), it follows from this last estab-

lished fact that

(1.48)

−
∫
TN

[νv ·∆φ+ p∇ · φ]dx

=
∫
TN

[h (x) · φ (x)]dx

∫
TN

v · ∇ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ).
Since v ∈ H1 (TN ), we obtain from the second equation in (1.48) that

N∑

k=1

∂vk/∂xk = 0 in L2 (TN ).

Consequently,

{φ,v,v} = −{v,v,φ} ∀φ ∈ [C∞ (TN )]N .

So, we conclude from (1.46) and the first equation in (1.48) that

−
∫

TN

[νv ·∆φ+ v· (v·∇φ) + p∇ · φ]dx =

∫

TN

[f (x) · φ (x)]dx

∀φ ∈ [C∞ (TN )]N .
This fact coupled with the second equation in (1.48) shows that the pair

(v,p) is a distribution solution of the stationary Navier-Stokes equations
(1.1) and completes the proof of the theorem. �

Next, we establish the following lemma:

Lemma 1.8. Let n be a given positive integer and let f (x, s) satisfy (f-1)
and (f-2). Suppose there is a nonnegative function F (x) ∈ L2 (TN ) such
that

(1.49)
fj (x, s) ≤ sj/2n+ F (x) for 0 ≤ s,

fj (x, s) ≥ sj/2n − F (x) for s ≤ 0

for s ∈ RN, x ∈ TN , and j = 1, ..., N. Then there is a vector-valued function
v (x) = γ1ψ1 + · · ·+ γnψn such that (1.35) holds.

Proof of Lemma 1.8. Let M be a positive integer. Set

t (s,j,±M) = (t1 (s,j,±M) , ..., tN (s,j,±M))
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for j = 1, ..., N where

tk (s,j,±M) = sk, k 6= j

= ±M, k = j,

for k = 1, ..., N.
Next, we set

(1.50)

fM
j (x, s) = fj (x, t (s,j,M)) M ≤ sj

= fj (x, s) |sj| ≤M

= fjx, t (s,j,−M) sj ≤ −M.

Since f meets condition (f − 2), it follows from (1.50) that there is an
FM ∈ L2 (TN ) such that

∣∣fM
j (x, s)

∣∣ ≤ FM (x)

for x ∈ TN , s ∈ RN , and j = 1, ..., N.
Since fM (x, s) also meets condition (f − 1) and (f − 2), it follows from

Lemma 1.7 that if n is a given positive integer, there is a sequence of vector-
valued functions

{
vM
}∞

M=1
such that

(1.51)

ν
[
ψl,vM

]
+
{
ψl,vM,v

M
}

+
(
ψl,vM

)
n−1 =

∫

TN

ψl (x) ·fM
(
x,vM (x)

)
dx

for l = 1, ..., n where

(1.52) vM (x) =

n∑

l=1

γM
l ψ

l (x) .

Next, we observe from (1.50) that the inequalities in (1.49) still hold if
we replace the left-side with fM

j (x, s). But then it follows that

(1.53) sjf
M
j (x, s) ≤ s2j/2n + |sj|F (x)

for x ∈ TN , s ∈ RN, and j = 1, ..., N , and M = 1, 2, .... Since
{
vM ,vM ,vM

}
= 0,

we consequently infer from (1.51) and (1.52) that

ν
[
vM ,vM

]
+
(
vM ,vM

)
n−1 =

∫

TN

vM · fM
(
x,vM (x)

)
dx.

But then it follows from (1.53) that

ν
[
vM ,vM

]
+
(
vM ,vM

)
/n ≤

(
vM ,vM

)
/2n +N

∫

TN

∣∣vM (x)
∣∣F (x) dx.

This in turn gives that

(1.54) ν
[
vM ,vM

]
+
(
vM ,vM

)
/2n ≤ N

(
vM ,vM

)1/2 ‖F‖L2
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for M = 1, 2, ....
From this last fact, we obtain that

(
vM ,vM

)1/2 ≤ 2nN ‖F‖L2

and next from (1.52) that
{
γM

l

}∞
M=1

is a uniformly bounded sequence

for l = 1, ..., n.
This in turn implies that there is a positive constant K such that∣∣vM

j (x)
∣∣ ≤ K ∀x ∈ TN

for j = 1, ..., N and M = 1, 2, .... It then follows from (1.50) that for M > K,

fM
j

(
x,vM (x)

)
= fj

(
x,vM (x)

)
∀x ∈ TN

for j = 1, ..., N.
But (1.51) and this last fact imply that vM is indeed a solution of (1.35)

for every M > K, and the proof of the lemma is complete. �

Next, for v ∈
[
H1 (TN )

]N
, we set

(1.55) ‖v‖21 = [v.v] + (v,v)

and establish the following lemma:

Lemma 1.9. Suppose that the components of f (x, s) satisfy (f-1) and
(f-2) and there is a nonnegative function F (x) ∈ L2 (TN ) such that

(1.56)
fj (x, s) ≤ sj + F (x) for 0 ≤ s,

fj (x, s) ≥ sj − F (x) for s ≤ 0

for s ∈ RN , x ∈ TN , and j = 1, ..., N. Suppose also that for every positive
integer n, there is a

vn = γn
1ψ

1 + · · ·+ γn
nψ

n

which satisfies
(1.57)

ν
[
ψl,vn

]
+
{
ψl,vn,vn

}
+
(
ψl,vn

)
n−1 =

∫

TN

ψl (x) · f (x,vn (x)) dx

for l = 1, .., n. Suppose, furthermore, there is a constant K such that

(1.58) ‖vn‖1 ≤ K ∀n.
Then there is a constant K ∗ such that

(1.59)

∫

TN

|fj (x,vn (x))|
∣∣vn

j (x)
∣∣ ≤ K∗

for j = 1, ..., N and n = 1, 2, ....
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Proof of Lemma 1.9. Multiplying both sides of (1.57) by γn
l and summing

on l from 1 to n, we obtain that

(1.60) ν [vn,vn] + (vn,vn)n−1 =

∫

TN

vn (x) · f (x,vn (x)) dx.

In particular, we obtain from this last equality that

(1.61) 0 ≤
∫

TN

vn (x) · f (x,vn (x)) dx.

Next, we note from (1.56) that

(1.62) s · f (x, s) ≤ s · s+N |s|F (x)

for x ∈ TN and s ∈ RN. Also, we introduce the sets An and Bn as follows:

An = {x ∈ TN : vn (x) · f (x,vn (x)) ≤ 0}
and

Bn = {x ∈ TN : vn (x) · f (x,vn (x)) > 0}.
From (1.55), (1.58), and (1.62), we see that there is a constant K1 such

that ∫

Bn

vn (x) · f (x,vn (x)) dx ≤ K1.

Also, from (1.61), we see that

−
∫

An

vn (x) · f (x,vn (x)) dx ≤ K1.

We conclude from these last two inequalities that

(1.63)

∫

TN

|vn (x) · f (x,vn (x))| dx ≤ 2K1

for n = 1, 2, ....
Next, we set

(1.64) Fn
j (x) = vn (x) · f (x,vn (x))− vn

j (x) fj (x,vn (x))

and

(1.65)

Cn
j =

{
x ∈ TN : vn

j (x) fj (x,vn (x)) > 0
}

Dn
j =

{
x ∈ TN : Fn

j (x) > 0
}
.

From (1.56) and (1.64), we see that

vn
j (x) fn

j (x,vn (x)) ≤
∣∣vn

j (x)
∣∣2 +

∣∣vn
j (x)

∣∣ |F (x)|
and

Fn
j (x) ≤ |vn (x)|2 −

∣∣vn
j (x)

∣∣2 + (N − 1) |vn (x)| |F (x)| .
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Consequently, we conclude from (1.58) and (1.65) that there is a constant
K2 such that

(1.66)

∫
Cn

j

∣∣∣vn
j (x) fj (x,vn (x))

∣∣∣ dx ≤ K2,

∫
Dn

j

∣∣∣Fn
j (x)

∣∣∣ dx ≤ K2.

Next, from (1.63), (1.64), and (1.66), we see that

(1.67)

∫
Cn

j

∣∣∣vn
j (x) fj (x,vn (x))− Fn

j (x)
∣∣∣ dx ≤ 2K1 + 2K2,

∫
Dn

j

∣∣∣vn
j (x) fn

j (x,vn (x))− Fn
j (x)

∣∣∣ dx ≤ 2K1 + 2K2,

for j = 1, ..., N and n = 1, 2, ... .
Also, we have for x ∈ TN\Cn

j ∩ TN\Dn
j ,

∣∣vn
j (x) fj (x,vn (x))− Fn

j (x)
∣∣ ≤ −vn

j (x) fj (x,vn (x))− Fn
j (x)

≤ −vn (x) · f (x,vn (x))

≤ |vn (x) · f (x,vn (x))| .
So, we obtain from (1.63) that

∫

TN\Cn
j ∩TN\Dn

j

∣∣vn
j (x) fn

j (x,vn (x))− Fn
j (x)

∣∣ dx ≤ 2K1.

Since

TN = Cn
j ∪

(
TN\Cn

j ∩Dn
j

)
∪
(
TN\Cn

j ∩ TN\Dn
j

)
,

we conclude from (1.67) and this last inequality that
∫

TN

∣∣vn
j (x) fn

j (x,vn (x))− Fn
j (x)

∣∣ dx ≤ 6K1 + 4K2.

Next, utilizing the fact that

2 |a| ≤ |a+ b|+ |a− b| ,
we conclude from (1.63) and this last inequality

2

∫

TN

∣∣vn
j (x) fj (x,vn (x))

∣∣ dx ≤ 8K1 + 4K2

for j = 1, ..., N and n = 1, 2, ....
This establishes (1.59) with K∗ = 4K1+2K2, and the proof of the lemma

is complete. �

Next, we establish the following lemma, which will be needed in the
proof of Theorem 1.2:
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Lemma 1.10. Suppose the conditions in the hypothesis of Lemma 1.9
hold. Then the sequence {fj (x,vn (x))}∞n=1 is absolutely equi-integrable for
j = 1, ..., N .

Proof of Lemma 1.10. For the definition of absolutely equi-integrable,
we refer the reader to below (1.70) in Chapter 5.

Proceeding with the proof of the lemma, given ε > 0, we first choose
r > 0 so that

(1.68) K∗/r < ε/2,

where K∗ is the constant given in Lemma 1.9.
Next, using (f − 2), we choose ζr (x) ∈ L2 (TN ) such that

(1.69) |fj (x, s)| ≤ ζr (x) for |sj | ≤ r
for x ∈ TN , sk ∈ R, k 6= j, k = 1, ..., N, j = 1, ..., N. Also, we set

A (n, j) =
{
x ∈ TN :

∣∣vn
j (x)

∣∣ ≤ r
}

and

B (n, j) =
{
x ∈ TN :

∣∣vn
j (x)

∣∣ > r
}
.

In addition, we choose δ > 0 so that

(1.70) E ⊂ TN and |E| ≤ δ ⇒
∫

E
|ζr (x)| dx ≤ ε/2.

Now suppose E ⊂ TN and |E| ≤ δ. Then it follows from Lemma 1.9,
(1.69), and(1.70) that

∫

E
|fj (x,vn (x))| dx ≤

∫

E∩A(n,j)
|ζr (x)| dx

+r−1

∫

E∩B(n,j)

∣∣vn
j (x) fj (x,vn (x))

∣∣ dx

≤ ε/2 +K∗/r,

for j = 1, ..., N and n = 1, 2, ....
From (1.68), we see that the right-hand side of this last inequality is

less than ε. Consequently, the sequence {fj (x,vn (x))}∞n=1 is absolutely
equi-integrable, and the proof of the lemma is complete. �

Proof of Theorem 1.2. Since f satisfies (f − 2) and (f − 3) , it is easy to
see from (1.4) that for every ε > 0, there exists F ε ∈ L2 (TN ) with F ε ≥ 0
such that

(1.71)
fj (x, s) ≤ εsj + F ε (x) for 0 ≤ sj

≥ εsj − F ε (x) for 0 ≥ sj
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for x ∈ TN , s ∈ RN , j = 1, ..., N. Consequently, it follows from Lemma 1.8
that there is a sequence {vn}∞n=1 with the following properties:

(1.72) vn=γn
1ψ

1 + · · ·+ γn
nψ

n;

(1.73)

ν
[
ψl,vn

]
+
{
ψl,vn,vn

}
+
(
ψl,vn

)
n−1

=
∫
TN
ψl (x) · f (x,vn (x)) dx

for l = 1, ..., n and n = 1, 2, ..., where
{
ψl
}∞

l=1
is the sequence of functions

in J (TN ) that satisfy (1.30) and (1.31).
We claim there is a constant K1 such that

(1.74) ‖vn‖21 ≤ K1 ∀n,
where ‖vn‖21 = [vn.vn] + (vn,vn) .

Suppose (1.74) is false. Then there is a subsequence of {‖vn‖1}∞n=1 which
tends to ∞. We consequently see from Lemma 2.6 in Chapter 5 and well-
known facts from Hilbert space theory that the following prevails:

(1.75) ∃
{
wM

}∞
M=1

such that wM = vnM with limM→∞

∥∥wM
∥∥

1
=∞;

(1.76)
with WM = wM

‖wM‖1
, ∃V ∈

[
H1 (TN )

]N
such that

limM→∞

(
WM −V,WM −V

)
= 0;

(1.77) limM→∞WM (x) = V (x) for a.e. x ∈ TN ;

(1.78) lim
M→∞

∫

TN

∂WM
j

∂xk
ξdx =

∫

TN

∂Vj

∂xk
ξdx ∀ξ ∈ C∞ (TN ),

for j, k = 1, ..., N.
It follows from (1.72) and (1.73) that

(1.79)

ν
[
WM ,WM

]
+
(
WM ,WM

)
n−1

M

=
∥∥wM

∥∥−2

1

∫
TN

wM · f
(
x,wM (x)

)
dx.

From (1.71), we see that

(1.80) wM (x) · f
(
x,wM (x)

)
≤ ε

∣∣wM (x)
∣∣2 +N

∣∣wM (x)
∣∣ F ε (x)

for x ∈ TN and ∀M. It follows therefore from (1.75) and (1.79) that

lim
M→∞

[
WM ,WM

]
≤ ε/ν,

and since ε > 0 is arbitrary that

(1.81) lim
M→∞

[
WM ,WM

]
= 0.
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This fact in conjunction with (1.78) gives us that

(1.82)
∂Vj

∂xk
(x) = 0 for a.e. x ∈ TN j, k = 1, ..., N.

From (1.76), we see that
[
WM ,WM

]
+
(
WM ,WM

)
= 1.

So we obtain from (1.81) that

(1.83) lim
M→∞

(
WM ,WM

)
= 1,

and consequently from (1.76) that (V,V) = 1. This fact in conjunction with
(1.82) tells us that

(1.84)

Vj (x) = cj for a.e. x ∈ TN j = 1, ..., N,

c21 + · · ·+ c2N = (2π)−N .

Next, since
lim

M→∞
nM =∞,

it follows from (1.79), (1.81), and (1.83) that

(1.85) lim
M→∞

−
∥∥wM

∥∥−2

1

∫

TN

wM · f
(
x,wM (x)

)
dx = 0.

We see from (1.80) with ε = 1 that

0 ≤ −wM (x) · f
(
x,wM (x)

)
+
∣∣wM (x)

∣∣2 +N
∣∣wM (x)

∣∣ F 1 (x) .

Therefore, we obtain from Fatou’s lemma, (1.76), (1.77), and (1.85) that

(1.87)

(i) lim infM→∞

[
−wM · f

(
x,wM (x)

) ∥∥wM
∥∥−2

1

]
∈ L1 (TN ) ,

(ii)
∫
TN

lim infM→∞

[
−wM · f

(
x,wM (x)

) ∥∥wM
∥∥−2

1

]
dx ≤ 0.

We next set

(1.88) aM
j (x) = −wM

j (x) fj

(
x,wM (x)

) ∥∥wM
∥∥−2

1

for j = 1, ..., N and observe from (1.71) that

sjfj (x, s) ≤ εs2 + |s|F ε (x)

for x ∈ TN and s ∈ RN . Consequently, it follows from (1.77) and (1.88)
that

(1.89) lim inf
M→∞

aM
j (x) ≥ 0 for a.e. x ∈ TN .

Since

lim inf
M→∞

[
−wM · f

(
x,wM (x)

) ∥∥wM
∥∥−2

1

]
≥

N∑

j=1

lim inf
M→∞

aM
j (x) ,
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we conclude first from (1.87)(i) and (1.89) that

lim inf
M→∞

aM
j (x) ∈ L1 (TN ) for j = 1, ..., N,

and next from (1.87)(ii) that

(1.90) lim inf
M→∞

aM
j (x) = 0 for a.e. x ∈ TN

for j = 1, ..., N.
Continuing, we see from (1.84) that at least one of the cj 6= 0. For ease

of notation, we will suppose

(1.91) c1 6= 0

and will arrive at a contradiction of (1.90) when j = 1. A similar line of
reasoning prevails in case we were dealing with other values of j.

From condition (1.8) in the hypothesis of the theorem and (1.7), we see
that there are positive integers K and l such that

(1.92) |E1 (f ,K, l)| = η 6= 0.

Also, from (1.77) and (1.84), we see that

lim
M→∞

wM
1 (x) /

∥∥wM
∥∥

1
= c1 for a.e. x ∈ E1 (f ,K, l).

Consequently, we obtain from Egoroff’s theorem and (1.92) that there is a
subset

E′
1 (f ,K, l) ⊂ E1 (f ,K, l)

and an M0 > 0 such that

(1.93)

(i) |E′
1 (f ,K, l)| ≥ η/2,

(ii)
|wM

1 (x)|
‖wM‖1

≥
∣∣ c1

2

∣∣ for x ∈ E′
1 (f ,K, l)

for M ≥M0.
Since

∥∥wM
∥∥

1
→∞, it follows from (1.91) and (1.93)(ii) that there is an

M1 > M0 such that

(1.94)
∣∣wM

1 (x)
∣∣ > l for x ∈ E′

1 (f ,K, l) and M > M1.

Now we know from (1.6) that that for x ∈ E′
1 (f ,K, l) and |s1| > l,

(1.95) −f (x, s) /s1 > K−1

for sk ∈ R, k = 2, ..., N. Also, it follows from (1.88) that for x ∈ E′
1 (f ,K, l)

and M > M1,

aM
1 (x) =

∣∣wM
1 (x)

∣∣2

‖wM‖21

[
−fj

(
x,wM (x)

)
/wM

1 (x)
]
.

So we obtain from (1.93)(ii), (1.94), and (1.95) that

aM
1 (x) ≥

∣∣∣c1
2

∣∣∣
2
K−1
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for x ∈ E′
1 (f ,K, l) and M > M1. Therefore,

lim inf
M→∞

aM
j (x) ≥

∣∣∣c1
2

∣∣∣
2
K−1 for x ∈ E′

1 (f ,K, l) .

But by (1.93)(i), |E′
1 (f ,K, l)| > 0. Likewise by (1.91),

∣∣ c1
2

∣∣2K−1 > 0. So
this last inequality is a direct contradiction to (1.90) for j = 1. We conclude
that there is no subsequence of {‖vn‖1}∞n=1, which tends to∞, and that the
inequality in (1.74) is indeed true.

Proceeding with the proof of the theorem, we see from (1.74) and Lemma
2.6 in Chapter 5 that there exists a subsequence {vnM }∞M=1 and a vector-

valued function v ∈
[
H1 (TN )

]N
such that the following holds:

(1.96)

(i) wM = vnM M = 1, 2, ...;

(ii) limM→∞wM (x) = v (x) for a.e. x ∈ TN ;

(iii) limM→∞

(
wM − v,wM − v

)
= 0;

(iv) limM→∞

∫
TN

∂wM
j

∂xk
ξdx =

∫
TN

∂vj

∂xk
ξ

for j, k = 1, ..., N and ξ ∈ C∞ (TN ).
We next use (f − 1) and (1.96)(ii) to obtain

(1.97) lim
M→∞

f
(
x,wM (x)

)
= f (x,v (x)) for a.e. x ∈ TN ,

and (1.74) in conjunction with Lemma 1.10 to obtain

(1.98)
{
f
(
x,wM (x)

)}∞
M=1

is absolutely equi-integrable.

From this last fact, we see there is a constant K2 such that
∫

TN

∣∣f
(
x,wM (x)

)∣∣ dx ≤ K2 ∀M.

Hence, it follows from (1.97) and Fatou’s lemma that

(1.99) f (x,v (x)) ∈ [L1 (TN )]N .

Consequently, we obtain from Egoroff’s theorem in conjunction with (1.97)-
(1.99) that

(1.100) lim
M→∞

∫

TN

f
(
x,wM (x)

)
· φdx =

∫

TN

f (x,v (x)) · φdx

∀φ ∈ [C∞ (TN )]N .

Next, we recall that v ∈
[
H1 (TN )

]N
and that wM = vnM ∈ J (TN ).

Therefore, we obtain from (1.96)(iv) that

(1.101) ∇ · v ∈L2 (TN ) and ∇ · v = 0.
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Using this fact in conjunction with (1.33) and (1.34) and (1.96)(iii) gives us

(1.102) lim
M→∞

{
ψl,wM ,wM

}
=
{
ψl,v,v

}
∀l.

Next, we see from (1.73) and (1.96)(i) that

ν
[
ψl,wM

]
+
{
ψl,wM,w

M
}

+
(
ψl,wM

)
n−1

=
∫
TN
ψl (x) · f

(
x,wM (x)

)
dx.

Hence, it follows from the above that

ν
[
ψl,v

]
+
{
ψl,v,v

}
=

∫

TN

ψl (x) · f (x,v (x)) dx

for l = 1, 2, .... But then from (1.31) and (1.99), we have that

(1.103) ν [ψ,v] + {ψ,v,v} =

∫

TN

ψ (x) · f (x,v (x)) dx

for ψ ∈J (TN ).
From (1.101), we have that

{ψ,v,v} = −{v,v,ψ}
for ψ ∈J (TN ). Using this fact in conjunction with (1.31′) and (1.103) gives
us that ∫

TN

fj (x,v (x)) dx = 0 for j = 1, ...N.

Likewise, we see from the fact that v ∈
[
H1 (TN )

]N
and ∇ · v =0 that

∫

TN

N∑

k=1

vk (x) ∂vj (x) /∂xkdx = 0 for j = 1, ...N.

Next, we set

hj (x) = fj (x,v (x))−
N∑

k=1

vk (x) ∂vj (x) /∂xk

for j = 1, ...N, and observe from the above that

hj ∈ L1 (TN )

and that ∫

TN

hj (x) dx = 0 for j = 1, ...N.

Using hj , we invoke Lemma 1.5 and obtain a w = (w1, ..., wN ) with

w ∈
[
L1 (TN )

]N
and a p ∈ L1 (TN ) such that the pair (w, p) is a distribution

solution of the Stokes equations given in (1.24) with w replacing v, i.e.,
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the equations in (1.25) hold with w replacing v. Also, h = (h1, ...hN ). In
particular, we have that

(1.104)

−
∫
TN

[νw ·∆φ+ p∇ · φ]dx

=
∫
TN

[h (x) · φ (x)]dx

∫
TN

w · ∇ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ).
We replace φ by ψ ∈ J (TN ) in the first equation in (1.104) and obtain

−
∫

TN

νw ·∆ψ dx =

∫

TN

h (x) ·ψ (x) dx.

From (1.103) and the definition of h, we furthermore see that

−
∫

TN

νv ·∆ψ dx =

∫

TN

h (x) ·ψ (x) dx ∀ψ ∈ J (TN ).

In addition, from (1.101) and the second equation in (1104) for w, we obtain
that ∫

TN

(v −w) · ∇ξdx = 0 ∀ξ ∈ C∞ (TN ).

Setting

γj = (2π)−N
∫

TN

vj (x) dx for j = 1, ..., N

and γ = (γ1, ..., γN ), and observing that

(1.105)

∫
TN
γ ·∆φ dx = 0 ∀φ ∈ [C∞ (TN )]N ,

∫
TN
γ · ∇ξdx = 0 ∀ξ ∈ C∞ (TN ),

it follows from these last six equations and Lemma 1.6 that

v (x)−γ = w (x) for a.e. x ∈ TN .

Next, using this last equation in conjunction with (1.104) and (1.105)
gives us that

(1.106)

−
∫
TN

[νv ·∆φ+ p∇ · φ]dx

=
∫
TN

[h (x) · φ (x)]dx

∫
TN

v · ∇ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ). Recalling from the above that

h (x) = f (x,v (x))− (v (x) · ∇)v (x),

we see that the first equation in (1.106) is actually

−
∫

TN

[νv ·∆φ− (v · ∇)v · φ+ p∇ · φ]dx =

∫

TN

[f (x,v) · φ (x)]dx.
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But using (1.34) and the second equation in (1.106), we obtain that
∫

TN

(v · ∇)v · φ dx = −
∫

TN

v · (v · ∇)φ dx.

So the first equation in (1.106) is really

−
∫

TN

[νv ·∆φ+ v · (v · ∇)φ+ p∇ · φ]dx =

∫

TN

[f (x,v) · φ (x)]dx.

This last equation is the same as the first equation in (1.2), and we
conclude that (v, p) is indeed a distribution solution of the stationary Navier-
Stokes equations (1.1).

All that remains to complete the proof of the theorem is to show that

(1.107)

∫

TN

|vj fj (x,v)| dx <∞

for j = 1, ..., N.
To establish (1.107), we use (1.74) and Lemma 1.9 to obtain the existence

of a positive constant K∗ such that
∫

TN

∣∣fj

(
x,wM (x)

)∣∣ ∣∣wM
j (x)

∣∣ dx ≤ K∗ ∀M.

But it follows from (1.96)(ii), Fatou’s lemma, and this last inequality that
∫

TN

|fj (x,v (x))| |vj (x)| dx ≤ K∗.

This gives inequality (1.107) and completes the proof of the theorem. �

Proof of Theorem 1.3. We are given that f (x, s) = g (x, s)−h (x) where

the components of g satisfy (f − 4) and h ∈
[
L2 (TN )

]N
. Consequently, we

see that

(1.108)
fj (x, s) ≤ ζ (x) + |hj (x)| for sj ≥ 0

≥ −ζ (x)− |hj (x)| for sj ≤ 0,

for x ∈ TN , s ∈ RN , j = 1, ..., N, where ζ ∈ L2 (TN ).
In particular,

fj (x, s) ≤ n−1sj + ζ (x) + |hj (x)| for sj ≥ 0

≥ n−1sj − ζ (x)− |hj (x)| for sj ≤ 0,

for n = 1, 2, .... Hence f (x, s) meets the condition (1.49) in the hypothesis
of Lemma 1.8, and we can invoke this lemma to obtain a sequence {vn}∞n=1
with the following properties:

(1.109) vn = γn
1ψ

1 + · · ·+ γn
nψ

n;
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(1.110)

ν
[
ψl,vn

]
+
{
ψl,vn,vn

}
+
(
ψl,vn

)
n−1

=
∫
TN
ψl (x) · f (x,vn (x)) dx

for l = 1, ..., n and n = 1, 2, ..., where
{
ψl
}∞

l=1
is the sequence of functions

in J (TN ) that satisfy (1.30) and (1.31).
As in the proof of Theorem 1.2, we claim that there is a constant K1

such that

(1.111) ‖vn‖21 ≤ K 1 ∀n,
where ‖vn‖21 = [vn,vn] + (vn,vn).

Suppose (1.111) is false. Then there is a subsequence of {‖vn‖1}∞n=1
which tends to ∞. We consequently see from Lemma 2.6 in Chapter 5 that
the following prevails:
(1.112)

∃
{
wM

}∞
M=1

such that wM = vnM with limM→∞

∥∥wM
∥∥

1
=∞;

(1.113)
with WM = wM

‖wM‖1
,∃V ∈

[
H1 (TN )

]N
such that

limM→∞

(
WM −V,WM −V

)
= 0;

(1.114) limM→∞WM (x) = V (x) for a.e. x ∈ TN ;

(1.115) lim
M→∞

∫

TN

∂WM
j

∂xk
ξdx =

∫

TN

∂Vj

∂xk
ξdx ∀ξ ∈ C∞ (TN )

for j, k = 1, ..., N.
Also, we see from (1.108) that

(1.116) wM · f
(
x,wM (x)

)
≤ N

∣∣wM (x)
∣∣ [ζ (x) + h (x)]

for x ∈ TN and M = 1, 2, .... We conclude from (1.110), (1.112), and (1.116)
as in the proof of Theorem 1.2 that

(1.117)
(i) limM→∞

[
WM ,WM

]
= 0,

(ii) limM→∞

(
WM ,WM

)
= 1.

From (1.115) and (1.117)(i), we see that

∂Vj (x)

∂xk
= 0 for a.e. x ∈ TN

for j, k = 1, ..., N. Hence, with cj being constants, we obtain from (1.113)
and (1.117)(ii) that

(1.118)

(i) Vj (x) = cj for a.e. x ∈ TN ,

(ii) c21 + · · ·+ c2N = (2π)−N .
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Next, we return to (1.110) and (1.113) and observe that

ν
[
WM ,WM

]
+
(
WM ,WM

)
n−1

=
∥∥wM

∥∥−1

1

∫
TN

WM (x) · f
(
x,wM (x)

)
dx.

Consequently,

(1.119)

∫

TN

WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
dx ≥ 0 ∀M.

Also, since g satisfies (f − 4), we see that

(1.120) sjgj (x, s) ≤ |sj| ζ (x)

for x ∈ TN , s ∈ RN , and J = 1, ..., N. Furthermore, from (1.108), we obtain
that

0 ≤ −WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
+N

∣∣WM (x)
∣∣ [ζ (x) + |h (x)|]

for x ∈ TN and ∀M.
So from Fatou’s lemma and (1.119), we obtain that

(1.121)

(i) lim supM→∞ WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
∈ L1 (TN ) ,

(ii)
∫
TN

lim supM→∞ WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
dx ≥ 0.

Next, we set

(1.122) bMj (x) =
wM

j (x)

‖wM‖1
[
gj

(
x,wM (x)

)
− hj (x)

]

and recall that
∥∥wM

∥∥
1
→∞ and that

lim
M→∞

wM
j (x)

‖wM‖1
= cj for a.e. x ∈ TN .

Now cj = 0 or cj > 0 or cj < 0.
If cj = 0, then it follows from (1.120) that

(1.123) lim sup
M→∞

bMj (x) ≤ 0 for a.e. x ∈ TN .

If cj > 0 or if cj < 0, then it follows from the fact that (g,h) satisfies
(f − 5) that (1.123) holds. So we conclude that the inequality in (1.123) is
valid for j = 1, ..., N.

Next, we observe from (1.122), (1.123), and the fact that

lim sup
M→∞

N∑

j=1

bMj (x) ≤
N∑

j=1

lim sup
M→∞

bMj (x)

that

(1.124) lim sup
M→∞

WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
≤ 0 for a.e. x ∈ TN .
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But then we obtain from (1.121)(ii) that
∫

TN

lim sup
M→∞

WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
dx = 0,

and consequently, from (1.124) that

lim sup
M→∞

WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
= 0 for a.e. x ∈ TN .

We conclude from (1.123) that

(1.125) lim sup
M→∞

bMj (x) = 0 for a.e. x ∈ TN

for j = 1, ..., N.
From (1.118)(ii), we see that at least one cj 6= 0. For ease of notation,

we will suppose that it is c1. Also, we will suppose that c1 is positive, with
a similar line of reasoning prevailing incase c1 is negative. So we suppose

(1.126) c1 > 0.

We will now use these last two facts to arrive at a contradiction.
By assumption, (1.14) in the hypothesis of the theorem is

∣∣E+
1 (g,h)

∣∣ > 0.

So it follows from (1.11) and (1.13) that there are positive integers K and l
such that the set E+

1 (g,h,K, l) has a positive Lebesgue measure, i.e.,

E+
1 (g,h,K, l) = {x ∈ TN : g1 (x, s)− h1 (x) < −K−1

for s1 > l and for sk ∈ R, k = 2, ..., N}
has a positive Lebesgue measure η > 0.

Since bM1 (x) =
wM

1 (x)

‖wM‖1

[
g1
(
x,wM (x)

)
− h1 (x)

]
and

lim
M→∞

wM
1 (x)

‖wM‖1
= c1 for a.e. x ∈ TN ,

it follows from Egoroff’s theorem there is an M1 > 0 and a set

E′+
1 (g,h,K, l) ⊂ E+

1 (g,h,K, l)

such that

(1.127)

(i)
∣∣E′+

1 (g,h,K, l)
∣∣ ≥ η/2,

(ii) wM
1 (x) > l for x ∈ E′+

1 (g,h,K, l),

(iii)
wM

1 (x)

‖wM‖1
> c1/2 for x ∈ E′+

1 (g,h,K, l),

(iv) − bM1 (x) > c1/2K for x ∈ E′+
1 (g,h,K, l),

for M ≥M1.
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As a consequence of (1.127)(iv), we see that

lim inf
M→∞

[
−bM1 (x)

]
≥ c1/2K for x ∈ E′+

1 (g,h,K, l).

This in turn implies that

lim sup
M→∞

bM1 (x) ≤ −c1/2K for x ∈ E′+
1 (g,h,K, l).

But from (1.127)(i), we see that E′+
1 (g,h,K, l) has a positive Lebesgue mea-

sure. Since c1 and K are both positive constants, this last inequality is a
direct contradiction to the statement in (1.125). So we conclude that the
inequality in (1.111) is indeed true.

Hence, it follows that

‖vn‖21 ≤ K 1 ∀n,
where ‖vn‖21 = [vn,vn] + (vn,vn) , and from (1.110) that

ν
[
ψl,vn

]
+
{
ψl,vn,vn

}
+
(
ψl,vn

)
n−1

=
∫
TN
ψl (x) · f (x,vn (x)) dx

for l = 1, ..., n and n = 1, 2, ..., where
{
ψl
}∞

l=1
is the sequence of functions

in J (TN ) that satisfy (1.30) and (1.31).
Using these last two facts, the rest of the proof of this theorem proceeds

exactly as it does for the proof of Theorem 1.2 from (1.96) onward. No
changes have to be made. We leave the details to the reader, and consider
the proof of this theorem complete. �

Proof of Theorem 1.4. We prove the sufficiency part of the theorem
first and set f (x, s) = g (s)− h (x). Also, we set

(1.128) ζ (x) =
N∑

j=1

|gj (∞)|+ |gj (−∞)| for x ∈ TN .

From (1.17) in the hypothesis of the theorem, we see that

−ζ (x) < gj (sj) < ζ (x)

for x ∈ TN and sj ∈ R, j = 1, ..., N.
Since fj (x, s) = gj (sj)− hj (x), we obtain from this last inquality that

fj (x, s) ≤ ζ (x) + |hj (x)| for sj ≥ 0

≥ −ζ (x)− |hj (x)| for sj ≤ 0,

for x ∈ TN and sj ∈ R, j = 1, ..., N. Consequently, the analogue of (1.108)
in the proof of Theorem 1.3 holds and the proof here proceeds along the
lines of Theorem 1.3. In particular, all the material from (1.108)-(1.121)
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remains valid. The proof of the sufficiency will be complete if we can show
that (1.121)(ii) leads to a contradiction, i.e., we have to show that

(1.129)

∫

TN

lim sup
M→∞

WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
dx ≥ 0

is false using the condition in (1.18) in the hypothesis of the theorem.
Recall from (1.112), (1.113), (1.114), and (1.118), we have that

(1.130)

(i) limM→∞

∥∥wM
∥∥

1
=∞,

(ii) WM (x) = wM (x) /
∥∥wM

∥∥
1
,

(iii) limM→∞
wM

j (x)

‖wM‖1
= cj for a.e. x ∈ TN ,

(iv) c21 + · · ·+ c2N = (2π)−N ,

(v)
∣∣WM (x)

∣∣ ≤ G (x) for a.e. x ∈ TN and ∀M
where G ∈ L2 (TN ).

Now

(1.131) WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
=

N∑

j=1

wM
j (x)

‖wM‖1
[
g
(
wM

j

)
− hj (x)

]
.

Also, from (1.17) and (1.130), we see that the limit as M → ∞ of the
expression inside the summation sign in (1.131) is

(1.132)

cj [g (∞)− hj (x)] if cj > 0

0 if cj = 0

cj [g (−∞)− hj (x)] if cj < 0

a.e. in TN . Furthermore, from (1.18), it follows that

(1.133)

∫
TN
cj [g (∞)− hj (x)] dx < 0 if cj > 0

∫
TN
cj [g (∞)− hj (x)] dx = 0 if cj = 0

∫
TN
cj [g (−∞)− hj (x)] dx < 0 if cj < 0.

We consequently obtain from (1.131)-(1.133) that
∫
TN

lim supM→∞ WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
dx

≤∑j∈AN

∫
TN

cj [g (∞)− hj (x)] dx

+
∑

j∈BN

∫
TN
cj [g (−∞)− hj (x)] dx,

.
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where

AN = {j : cj > 0 for j = 1, ..., N},
BN = {j : cj < 0 for j = 1, ..., N}.

From (1.130)(iv), at least one of AN or BN is nonempty. Hence, it follows
from (1.133) that

∫

TN

lim sup
M→∞

WM (x) ·
[
g
(
x,wM (x)

)
− h (x)

]
dx < 0.

This is a direct contradiction of the inequality in (1.129), and the proof
of the sufficiency condition of the theorem is complete.

To establish the necessary part of the theorem, we suppose that the pair
(v, p) satisfies (1.2) where

fj (x,v (x)) = gj (vj (x))− hj (x)

for j = 1, ..., N. Also, we have that vj ∈ H1 (TN ) and p ∈ L1 (TN ) for
j = 1, ..., N. Fixing j and taking φk = 0 for k 6= j and φj = 1, we obtain in
particular from (1.2) that

(1.134)

∫

TN

gj (vj (x)) dx =

∫

TN

hj (x) dx.

But then from (1.17), we see that

gj (∞) < gj (vj (x)) < gj (−∞)

a.e. in TN .

Applying this set of inequalities to the integral on the left-hand side of
the equal sign in (1.134), we obtain that

(2π)N gj (∞) <

∫

TN

hj (x) dx < (2π)N gj (−∞).

But this is precisely the statement in (1.18). The proof of the necessary part
of the theorem is established, and the proof of the theorem is complete.

Exercises.

1. Prove that if v∈
[
H1 (T3)

]3
with v̂j (0) = 0 for j = 1, 2, 3,

and
−
∫
TN

[νv ·∆φ+ v · (v · ∇)φ+ p∇ · φ]dx = 0

∫
TN

v · ∇ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ), then

vj (x) = 0 for a.e. x ∈ T3, j = 1, 2, 3.

2. Prove that with N = 4, f = (f1, ..., fN ) where

fj (x, s) = −sjηj (x) + ηj (x) for j = 1, ..., N
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and ηj is a nonnegative function, which is in L2 (TN ) with
∫

TN

ηj (x) dx > 0 for j = 1, ..., N,

meets the conditions in the hypothesis of Theorem 1.2.
3. Prove that f = (f1, ..., fN ) where

fj (x, s) = −ηj (x) sj/
(
1 + s2j

)1/2 − ηj (x) /2

and ηj is a nonnegative function, which is in L2 (TN ) with
∫

TN

ηj (x) dx > 0 for j = 1, ..., N,

meets the conditions in the hypothesis of Theorem 1.3 but not the conditions
in the hypothesis of Theorem 1.2.

4. Prove that

[ν |m|2 ûk
j (m) + imj q̂k (m)] = δj

k for m ∈ ΛN\ {0}
where ûk

j (m) is defined below (1.26) and q̂k (m) is defined below (1.28).

5. Let {φn}∞n=1 be an enumeration of the following system:
{(

im2eim·x

|m| , −im1eim·x

|m| , 0
)}

m∈Λ3\{0}

∪
{(

im3eim·x

|m| , 0, −im1eim·x

|m|

)}
m∈Λ3\{0}

∪
{(

0, im3eim·x

|m| , −im2eim·x

|m|

)}
m∈Λ3\{0}

.

Prove that if f = (f1, f2, f3) ∈ Jo (T3) and also
∫

T3

f · φndx = 0 ∀n,

then fj (x) . = 0 for x ∈ T3 and j = 1, 2, 3.

2. Classical Solutions

In this section, we deal with classical solutions of the following systems
of equations:

(2.1)
−ν∆v + (v · ∇)v +∇p = f

(∇ · v) = 0

where ν is a positive constant, v and f are vector-valued functions, and
N = 2 or N = 3.

We say f1 ∈ C(TN ), provided f1 is a real-valued function in C
(
RN

)
,

which is periodic of period 2π in each variable.
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Given f ∈ C[(TN )]N , we will say the pair (v,p) is a periodic classical
solution of the Navier-Stokes system (2.1) provided:

v ∈
[
C2 (TN )

]N
and p ∈ C1 (TN )

and

(2.2)
−ν∆v (x) + (v (x) · ∇)v (x) +∇p (x) = f (x) ∀x ∈ TN

(∇ · v) (x) = 0 ∀x ∈ TN .

To obtain classical solutions of the Navier-Stokes system, we will require
slightly more for the driving force f than periodic continuity. In particular,
we say f1 ∈ Cα (TN ) , 0 < α < 1, provided the following holds:

(i) f1 ∈ C (TN ) ;
(ii) ∃ c1 > 0 s. t. |f1 (x)− f1 (y)| ≤ c1 |x− y| α ∀x, y ∈ RN .

g1 ∈ C2+α (TN ) means g1 ∈ C2 (TN ) and each of its second partial
derivatives ∂2g1/∂xj∂xk ∈ C2+α (TN ) for j, k = 1, ..., N.

We will say f = ( f1, ... fN ) ∈ [Cα (TN )]N provided each of its com-
ponents fj ∈ Cα (TN ). In order to obtain classical solutions of the Navier-

Stokes system here in this section, we will assume that f ∈ [Cα (TN )]N .

Likewise, we will say v = ( v1, ... vN ) ∈
[
C2+α (TN )

]N
provided each of

its components vj ∈ C2+α (TN ) .
We will prove the following theorem:

Theorem 2.1. Suppose there exists an α such that f ∈ [Cα (TN )]N where
0 < α < 1, where f = ( f1, ... fN ) , and N = 2 or N = 3. Suppose also that

(2.3)

∫

TN

fj (x) dx = 0 for j = 1, ..., N.

Then there exists a pair (v,p) with v ∈
[
C2+α (TN )

]N
and p ∈ C1+α (TN )

such that the pair (v,p) is a periodic classical solution of the Navier-Stokes
equations (2.1).

To prove the theorem, we will first need the following four lemmas that
are true for N ≥ 2:

Lemma 2.2. Suppose hj ∈ Lr (TN ), 1 < r < ∞, and ĥj (0) = 0 for
j = 1, ..., N, N ≥ 2. Set

vj (x) = (2π)−N
∫

TN

[
N∑

k=1

uk
j (x− y)hk (y)

]
dy,

for j = 1, ..., N where uk
j is defined in (1.26). Then vj ∈ W 2,r (TN ) for

j = 1, ..., N.
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Lemma 2.3. Suppose hj ∈ C (TN ) and ĥj (0) = 0 for j = 1, ..., N, N ≥ 2.
Set

vj (x) = (2π)−N
∫

TN

[
N∑

k=1

uk
j (x− y)hk (y)

]
dy,

for j = 1, ..., N where uk
j is defined in (1.26). Then vj ∈ C1+α (TN ), 0 <

α < 1, for j = 1, ..., N.

Lemma 2.4. Suppose there exists an α such that h ∈ [Cα (TN )]N where

0 < α < 1, where h = ( h1, ... hN ), and where ĥj (0) = 0 for j = 1, ..., N,
N ≥ 2. Set

vj (x) = (2π)−N
∫

TN

[
N∑

k=1

uk
j (x− y)hk (y)

]
dy,

for j = 1, ..., N where uk
j is defined in (1.26). Then vj ∈ C2+α (TN ), for

j = 1, ..., N.

Lemma 2.5. Suppose there exists an α such that h ∈ [Cα (TN )]N where

0 < α < 1, where h = ( h1, ... hN ), and where ĥj (0) = 0 for j = 1, ..., N,
N ≥ 2. Set

p (x) = (2π)−N
∫

TN

[
N∑

k=1

Hk (x− y)hk (y)

]
dy,

where Hk is defined in Lemma A in §1. Then p ∈ C1+α (TN ).

Proof of Lemma 2.2. For ease of notation, we will prove the lemma for
v1 (x). A similar proof will prevail for the other values of j.

We first of all notice that

(2.4) v̂1 (m) =
N∑

k=1

ûk
1 (m) ĥk (m) for m ∈ ΛN

where

ûk
1 (m) =

[
δk
1 −m1mk |m|−2

]
|m|−2 ν−1 for m 6= 0

= 0 for m = 0.

We see from Lemma B in §1 that for each k,
∑

|m|>0

|m|2 ûk
1 (m) ĥk (m) eim·x

is the Fourier series of a function in Lr (TN ). Hence, it follows that there is

(2.5) w1 ∈ Lr (TN )
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such that

S[w1] =
∑

|m|>0

|m|2 [
N∑

k=1

ûk
1 (m) ĥk (m)]eim·x,

where S[w1] stands for the Fourier series of w1. From (2.4), we also have

S[v1] =
∑

|m|>0

[
N∑

k=1

ûk
1 (m) ĥk (m)]eim·x.

Furthermore, from (1.21) and Lemma A, we have that H0 ∈ L1(TN ) and

S[H0] =
∑

|m|>0

|m|−2 eim·x.

Consequently, it follows from these last three equalities that

v1 (x) = (2π)−N
∫

TN

H0 (x− y)w1 (y) dy

for a.e.x ∈ TN .
We conclude from (2.5) and Theorem 6.1 in Chapter 2 that

v1 ∈W 2,r (TN ).

This completes the proof of the lemma. �

Proof of Lemma 2.3. For ease of notation, we will prove the lemma for
v1 (x). A similar proof will prevail for the other values of j.

We recall that v1 ∈ C1+α (TN ) means that v1 ∈ C1 (TN ) and

∂v1
∂xj
∈ Cα (TN ) for j = 1, ...N.

We start the proof by invoking Lemma 2.2 and obtaining that v1 ∈
W 2,r (TN ) for 1 < r <∞. Hence, from the very definition of W 2,r (TN ), we
see there exists gj ∈W 1,r (TN ) such that

(2.6)

∫

TN

v1 (x)
∂ξ (x)

∂xj
dx = −

∫

TN

gj (x) ξ (x) dx ∀ξ ∈ C∞ (TN )

for j = 1, ..., N.

As in the proof of Lemma 2.2, (see (2.4)), we have

(2.7)
v̂1 (m) =

∑N
k=1 û

k
1 (m) ĥk (m) for m ∈ ΛN ,

ĝj (m) = imj [
∑N

k=1 û
k
1 (m) ĥk (m)] for m ∈ ΛN .

Next, we set

(2.8) wjk (x) = (2π)−N
∫

TN

Hj (x− y)hk (y) dy
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for j, k = 1, ..., N where Hj (x) is defined in Lemma A. It follows from the
hypothesis of the lemma and Theorem 4.1 in Appendix B that

(2.9) wjk (x) ∈ Cα (TN ) , 0 < α < 1,

for j, k = 1, ..., N.
From (2.8), we see that

(2.10) ŵjk (m) = imjĥk (m) / |m|2 for m ∈ ΛN\ {0} .

Also, it follows from the definition of ûk
1 (m) given below (1.26) and

Lemma C that

ŵjk (m) ûk
1 (m) |m|2 for m ∈ ΛN\ {0}

is the Fourier coefficient of a function in Cα (TN ). We consequently obtain
from (2.9) and (2.10)

∑

|m|>0

imj [

N∑

k=1

ĥk (m) ûk
1 (m)]eim·x

is the Fourier series of a function in Cα (TN ).
We conclude from (2.7) that

(2.11) gj ∈ Cα (TN ) for j = 1, ...N.

Next, an easy computation using the Fourier coefficients in (2.7) shows
that

v1 (x) = − (2π)−N
N∑

j=1

∫

TN

gj (x− y)Hj (y) dy

where Hj (x) is defined in Lemma A for j = 1, ..., N.
Since, in particular, Hj ∈ L1 (TN ) , we see from (2.11) that

v1 ∈ Cα (TN ).

It remains to show that v1 ∈ C1 (TN ) and that

(2.12)
∂v1 (x)

∂xj
= gj (x) for x ∈ TN

for j = 1, ...N, where gj is the function defined by (2.6).
For ease of notation, we will establish (2.12) for j = 1. A similar proof

will prevail for other values of j.
We let σ♦

n(v1, x) designate the n-th iterated Fejer sum of v1 as defined
in (2.6) of Chapter 1. Also, let x∗ be a fixed but arbitrary point in TN . We
know from (2.7) that ĝ1(m) = im1v̂1 (m) ∀m ∈ ΛN . Since σ♦

n(v1, x) is a
trigonometric polynomial, it follows that

∂σ♦
n(v1, x)/∂x1 = σ♦

n(g1, x) for x ∈ RN ,
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and therefore that

σ♦
n(v1, x

∗
1 + t, x∗2, ..., x

∗
N )− σ♦

n(v1, x
∗
1, x

∗
2, ..., x

∗
N )

=
∫ x∗

1+t
x∗
1

σ♦
n(g1, s, x

∗
2, ..., x

∗
N )ds

for t ∈ R.
Now both v1 and g1 are in Cα (TN ). So by Theorem 2.1 in Chapter 1,

limn→∞σ
♦
n(g1, x) =g1(x) uniformly for x ∈ RN . Using this uniformity, we

obtain from this last equality that

v1(x
∗
1 + t, x∗2, ..., x

∗
N )− v1(x∗1, x∗2, ..., x∗N ) =

∫ x∗
1+t

x∗
1

g1(s, x
∗
2, ..., x

∗
N )ds

for t ∈ R.
Next, we divide both sides of this last equality by t 6= 0, pass to the limit

as t→ 0, and conclude that

∂v1 (x∗)

∂x1
= g1 (x∗).

This establishes (2.12) and shows that indeed v1 ∈ C1 (TN ). Since in (2.11),
we have shown that gj ∈ Cα (TN ) , it follows from (2.12) that

v1 ∈ C1+α (TN ).

This fact concludes the proof of the lemma. �

Proof of Lemma 2.4. For ease of notation, we will prove the lemma for
v1 (x), i.e., we will show that

v1 ∈ C2+α (TN ).

A similar proof will prevail for the other values of j.
From Lemma 2.3, we know that

v1 ∈ C1+α (TN ).

Using the notation employed in the proof of Lemma 2.3, we show in
(2.12) that

(2.12)
∂v1 (x)

∂xj
= gj (x) for x ∈ TN

for j = 1, ...N, where the Fourier coefficients of gj are given by (see (2.7))

(2.13) ĝj (m) = imj |m|−2 [

N∑

k=1

|m|2 ûk
1 (m) ĥk (m)] for m ∈ ΛN\ {0}

with ĝj (0) = 0.
So the proof of this lemma will be complete if we show that

gj ∈ C1+α (TN )
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for j = 1, ..., N. In other words, we have to show that

∂gj(x)
∂xk

exists for x ∈ TN

and
∂gj(x)
∂xk

∈ Cα (TN )

for k = 1, ..., N.
Once again, for ease of notation, we will establish these last two facts

for k = 1. A similar proof will prevail for the other values of k.
So the proof of this lemma will be complete when we demonstrate that

(2.14)

(i)
∂gj(x)
∂x1

exists for x ∈ TN ,

(ii)
∂gj(x)
∂x1

∈ Cα (TN )

for j = 1, ..., N.
Now we know from the fact that hk ∈ Cα (TN ) in conjunction with

Lemma C that
N∑

k=1

|m|2 ûk
1 (m) ĥk (m) for m ∈ ΛN

is the Fourier coefficient of a function in Cα (TN ) where ûk
1 (m) is defined

below (1.26). Hence, using Lemma C once again, we obtain that

−m1mj

|m|2
N∑

k=1

|m|2 ûk
1 (m) ĥk (m) for m ∈ ΛN\ {0}

is the Fourier coefficient of a function in Cα (TN ) for j = 1, ..., N.
We set

(2.15) S [wj ] = −
∑

|m|>0

m1mj

|m|2
[

N∑

k=1

|m|2 ûk
1 (m) ĥk (m)]eim·x

and have that

(2.16) wj ∈ Cα (TN )

for j = 1, ..., N.
Also, we have from (2.13) that

(2.17) S [gj ] =
∑

|m|>0

imj

|m|2
[

N∑

k=1

|m|2 ûk
1 (m) ĥk (m)]eim·x,

and from (2.12) that

(2.18) gj ∈ Cα (TN ).

Next, we let σ♦
n(gj , x) designate the n-th iterated Fejer sum of gj as

defined in (2.6) of Chapter 1. Likewise, let σ♦
n(wj , x) designate the n-th



266 6. THE STATIONARY NAVIER-STOKES EQUATIONS

iterated Fejer sum of wj . We note from (2.15) and (2.17) that

ĝj (m) = im1ŵj (m) for m ∈ Λ\ {0}
for j = 1, ..., N. Consequently, since σ♦

n(gj , x) is a trigonometric polynomial,
we have

(2.19)
∂σ♦

n(gj , x)

∂x1
= σ♦

n(wj , x) ∀x ∈ TN .

Also, we have from (2.16) and (2.18) and Theorem 2.1 in Chapter 1 that

(2.20)
(i) limn→∞σ

♦
n(gj , x) = gj(x) uniformly for x ∈ RN,

(ii) limn→∞σ
♦
n(wj , x) = wj(x) uniformly for x ∈ RN.

Let x∗ = (x∗1, ..., x
∗
N ) be a fixed but arbitrary point in TN . It follows

from (2.19) that

σ♦
n(gj , x

∗
1 + t, x∗2, ..., x

∗
N )− σ♦

n(gj , x
∗
1, x

∗
2, ..., x

∗
N )

=
∫ x∗

1+t
x∗
1

σ♦
n(wj , s, x

∗
2, ..., x

∗
N )ds

for t ∈ R.
Using (2.20) in conjunction with this last equality, we obtain that

gj (x∗1 + t, x∗2, ..., x
∗
N )− gj (x∗1, x

∗
2, ..., x

∗
N )

=
∫ x∗

1+t
x∗
1

wj (s, x∗2, ..., x
∗
N ) ds.

Dividing both sides of this last equality by t and passing to the limit as
t→ 0, we obtain

∂gj (x∗)

∂x1
= wj (x∗).

Since x∗ is a fixed but arbitrary point in TN , we conclude that

∂gj (x)

∂x1
= wj (x) ∀x ∈ TN

for j = 1, ..., N.
Since by (2.16), wj ∈ Cα (TN ), this last equality establishes both (i) and

(ii) of (2.14), and the proof of the lemma is complete. �

Proof of Lemma 2.5. To prove the lemma, we have to show that

(2.20 ′)

(i)
∂pj(x)
∂xk

exists for x ∈ TN ,

(ii)
∂pj(x)
∂xk

∈ Cα (TN )

for k = 1, ..., N.
For ease of notation, we will do this for the special case k = 1. A similar

proof prevails for other values of k.
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Since Hk ∈ L1 (TN ), it follows from the fact that hk ∈ Cα (TN ) and the
definition of p (x) that

(2.21) p ∈ Cα (TN ).

Also, it follows from Lemma A that

(2.22) p̂ (m) =

N∑

k=1

imk

|m|2
ĥk (m) for m ∈ ΛN\ {0}

with p̂ (0) = 0.
Since hk ∈ Cα (TN ) , it follows from Lemma C that

−
N∑

k=1

m1mk

|m|2
ĥk (m) for m ∈ ΛN\ {0}

are the Fourier coefficients of a function in Cα (TN ). We designate this func-
tion by f1 (x) and have that

(2.23) f1 ∈ Cα (TN ),

and that

(2.24) S [f1] = −
∑

|m|>0

[
N∑

k=1

m1mk

|m|2
ĥk (m)]eim·x.

Also, from (2.22), we have that

(2.25) S [p] =
∑

|m|>0

[

N∑

k=1

imk

|m|2
ĥk (m)]eim·x.

We let σ♦
n(p, x) designate the n-th iterated Fejer sum of p as defined in

(2.6) of Chapter 1. Likewise, we let σ♦
n(f1, x) designate the n-th iterated

Fejer sum of f1. It follows from (2.24) and (2.25) that

∂σ♦
n(p, x)

∂x1
= σ♦

n(f1, x) ∀x ∈ TN .

Because we have (2.21) and (2.23), we proceed exactly as we did at this
point in the proof of Lemma 2.4 and obtain that

∂p(x)

∂x1
= f1(x) ∀x ∈ TN .

Since f1 ∈ Cα (TN ), this last fact establishes (2.20′) (i) and (ii) for the
special case k = 1 and completes the proof of the lemma. �

Proof of Theorem 2.1. In particular, fj ∈ C
(
RN

)
and is periodic of

period 2π in each variable for j = 1, ..., N . Therefore, fj ∈ L2 (TN ) , and
we can invoke Theorem 1.1 to obtain a pair (v, p) with vj ∈ H1 (TN ) for
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j = 1, ...N and p ∈ L2 (TN ) such that (v, p) is a distribution solution of the
stationary Navier-Stokes equations (2.1), i.e.,

(2.26)

−
∫
TN

[νv ·∆φ+ v · (v · ∇)φ+ p∇ · φ]dx

=
∫
TN

[f (x) · φ (x)]dx

∫
TN

v · ∇ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ) .
Next, as in the proof of Theorem 1.1, we set

(2.27) hj (x) = fj (x)−
N∑

k=1

vk (x) ∂vj (x) /∂xk,

and obtain from the proof Theorem 1.1 that

(2.28)

∫

TN

hj (x) dx = 0

for j = 1, ..., N.
Also, we obtain from the proof of Theorem 1.1 (see (1.47′) and (1.48))

that

(2.29)

−
∫
TN

[νv ·∆φ+ p∇ · φ]dx

=
∫
TN

[h (x) · φ (x)]dx

∫
TN

v · ∇ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ) and that

(2.30)

vj (x) = (2π)−N ∫
TN

[∑N
k=1 u

k
j (x− y)hk (y)

]
dy,

p (x) = (2π)−N ∫
TN

[∑N
k=1 qk (x− y)hk (y)

]
dy

for j = 1, ..., N.
The trick in the proof of this theorem is to show that somehow by a

bootstrap argument that

(2.30 ′) vj ∈ C2+α(TN ) for j = 1, ..., N and p ∈ C1+α(TN ).

This is the case because once (2.30′) is established, it follows from (2.26)
that

−
∫
TN

[ν∆v · φ− (v · ∇)v · φ−∇p · φ] dx

=
∫
TN

[f (x) · φ (x)]dx

∫
TN

(∑N
k=1 ∂vk/∂xk

)
ξdx = 0

for all φ ∈ [C∞ (TN )]N and ξ ∈ C∞ (TN ).
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But then it is easy to see that the statement in (2.2) holds. So, the pair
(v,p) is indeed a periodic classical solution of the Navier-Stokes equations
(2.1).

Assuming that

N = 2 or N = 3,

we now show by a bootstrap argument that (2.30′) is indeed valid.
To do this, we first observe from the fact that vj ∈ H1 (TN ) for j =

1, ..., N that

vj ∈W 1,2 (TN ).

Therefore, from the standard Sobolev inequalities in dimension 2 or di-
mension 3, we obtain that

(2.31)

vj ∈ L6 (TN ),

∂vj

∂xk
∈ L2 (TN ),

vk
∂vj

∂xk
∈ L3/2 (TN )

for j, k = 1, ..., N. Consequently, we have from (2.27) that

hj ∈ L3/2 (TN ).

But then we obtain from (2.30) and Lemma 2.2 that

(2.32)

vj ∈W 2,3/2 (TN ),

∂vj

∂xk
∈W 1,3/2 (TN ).

We apply the standard Sobolev inequalities in dimension 2 or dimension
3 to (2.32) to obtain that

(2.33)

vj ∈ Lr (TN ) ∀r > 1,

∂vj

∂xk
∈ L3 (TN ).

Using (2.27) once again, we see from (2.33) that

hj ∈ L3−ε (TN ) ∀ε > 0.

We use this last established fact in conjunction with Lemma 2.2 to obtain
that

(2.34)

vj ∈W 2,3−ε (TN ) ∀ε > 0,

∂vj

∂xk
∈W 1,3−ε (TN ) ∀ε > 0.
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We apply the standard Sobolev inequalities in dimension 2 or dimension
3 to (2.34) to obtain that

(2.35)

vj ∈ C (TN ),

∂vj

∂xk
∈ Lr (TN ) ∀r > 1.

Using (2.27) once again, we see from (2.35) that

hj ∈ Lr (TN ) ∀r > 1.

Using this last fact in conjunction with Lemma 2.2 enables us to obtain
that

vj ∈W 2,r (TN ) ∀r > 1,

∂vj

∂xk
∈W 1,r (TN ) ∀r > 1

and consequently, from the standard Sobolev inequalities in dimension 2 or
3 that

vj ∈ C (TN ) ,

∂vj

∂xk
∈ C (TN ) .

Using (2.27) once again, we see that

hj ∈ C (TN ) .

We now apply Lemma 2.3 in conjunction with this last fact and (2.25)
to obtain that

vj ∈ C1+α (TN ),

∂vj

∂xk
∈ Cα (TN ) .

Using (2.27) for the last time, we obtain from this last established fact
that

(2.36) hj ∈ Cα (TN ).

We now apply (2.30) in conjunction with (2.36) and Lemma 2.4 to obtain
that

(2.37)

vj ∈ C2+α (TN ),

∂vj

∂xk
∈ C1+α (TN ).

Next, from (1.22), (1.28), and from (1.47′)(ii) in the proof of Theorem
1.1, we see that

p (x) = − (2π)−N
∫

TN

[
3∑

k=1

Hk (x− y)hk (y)]dy.
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Consequently, we have from (2.36) and Lemma 2.5 that

p ∈ C1+α (TN ) .

This last fact, along with (2.37), shows that the assertion in (2.30′) is
indeed valid, and the proof of the theorem is complete. �

Exercises.

1. With W 1,2(T3) defined in §6 of Chapter 2, prove, using the Sobolev

inequalities for W 1,p
0 (Ω) where Ω ⊂ R3 is a bounded open set (see [Ev,

Theorem 3, p.265] ) that

u ∈W 1,2(T3)⇒ u ∈ L6 (T3) .

.
2. Suppose w1 ∈ Lr (T3) , 1 < r <∞, with ŵ1 (0) = 0. Set

v1 (x) =
∫
T3
w1 (x− y)H1 (y) dy,

u1 (x) =
∫
T3
v1 (x− y)H2 (y) dy

for x ∈ T3 where H1 and H2 are defined Lemma A of §1. Prove that

u1 ∈W 2,r(T3).

3. Suppose u1, v1 ∈ C (T3) , and

v̂1 (m) = im1û1 (m) ∀m ∈ Λ3.

Prove that ∂u1
∂x1

(x) exists for x ∈ T3 and

∂u1

∂x1
(x) = v1 (x) .

3. Further Results and Comments

1. There are a number of results which deal with removable singularities
for the stationary Navier-Stokes equations, and some of the results are even
unexpected. Consider the system

(3.1)
−ν∆v (x) + (v (x) · ∇)v (x) +∇p (x) = 0

(∇ · v) (x) = 0.

With B(x0, r), the open N -ball with center x0 and radius r, the pair
(v, p) is said to be a classical solution of (3.1) in B(x0, r), provided vj ∈
C2 [B(x0, r)] for j = 1, ..., N , p ∈ C1 [B(x0, r)], and the system of equations
(3.1) is satisfied for all x ∈ B(x0, r).

The following result (with a best possible corollary in dimension N = 2)
prevails for removable singularities in dimensions N ≥ 2 [Sh21]:
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Theorem 1. Let the pair (v, p) be a classical solution of (3.1) in
B(0, 1) \ {0} for N≥2. Suppose that

(i) ∃β > N such that |v| ∈ Lβ (B (0, 1)),

(ii) for N = 2, limr→0

∣∣r2 log r
∣∣−1 ∫

B(0,r) |v| dx = 0.

Then (v, p) can be defined at 0 so that (v, p) is a classical solution of (3.1)
in B(0,1).

It is to be observed that in dimension N = 2, the following best possible
result is an immediate corollary to Theorem 1.

Corollary 2. Let the pair (v, p) be a classical solution of (3.1) in
B(0, 1) \ {0} for N=2. Suppose that

(3.2) vj (x) = o (|log |x||) as |x| → 0 for j = 1, 2.

Then (v, p) can be defined at 0 so that (v, p) is a classical solution of (3.1)
in B(0,1).

In the paper “A Counter-example in the Theory of Planar Viscous In-
compressible Flow” published in the J. Diff. Eqns. [Sh22], it is shown that
if assumption (3.2) is replaced with

v1 (x) = O (|log |x||) and v2 (x) = o (|log |x||) as |x| → 0,

then the conclusion to Corollary 2 is false.
It is to be observed that both in Theorem 1 and in Corollary 2, no growth

condition has been put on the pressure p. If a growth condition is put on
p, then the unexpected result mentioned earlier occurs. In particular, the
following theorem prevails in dimension N = 2 [Sh23];

Theorem 3. In dimension N=2, let the pair (v, p) be a classical solution
of (3.1) in B(0, 1) \ {0}. Suppose that

(i) |v (x)| = o
(
|x|− 1

2

)
as |x| → 0,

(ii) |p (x)| = o
(
|x|−1

)
as |x| → 0.

Then (v, p) can be defined at 0 so that (v, p) is a classical solution of (3.1)
in B(0,1).

This result is unexpected when compared with a similar situation in-
volving removable singularities for harmonic functions in punctured disks.
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Theorem 3 is also best possible because in (ii) the little “o” cannot be
replaced by big “O.” All this is shown in [Sh22], described above, which
contains the proof of the following theorem:

Theorem 4. In dimension N=2, there exists a pair (v, p) which
is a classical solution of (3.1) in B(0, 1) \ {0} such that v2 (x)
and |x| p (x) are uniformly bounded in B(0, 1) \ {0} and such that

lim
|x|→0

v1 (x)

log |x| = γ where γ is a finite-valued nonzero constant.

All of the above theorems make strong use of multiple Fourier series.
Theorem 3 was motivated by an earlier paper on removable singularities

of the stationary Navier-Stokes equations by Dyer and Edmunds [DE].
2. There are some interesting results involving removable sets of capacity

zero and the stationary Navier-Stokes equations. For simplicity in discussing
these matters, we will restrict our attention to dimension N = 3.

In the sequel, Ω ⊂ R3 will be a bounded open connected set.
A closed set Z ⊂ Ω will be said to be of Newtonian capacity zero provided

the following holds:
∫

Ω

∫

Ω
|x− y|−1 dµ (x) dµ (y) =∞

for every µ that is a nonnegative finite Borel measure on Ω with µ (Ω) = 1
and µ (Ω\Z) = 0. (This is essentially the same definition that we have given
previously in §6 of Chapter 1 for ordinary capacity zero on T3.)

Designating the stationary Navier-Stokes equations with a driving force
in dimension 3 by

(3.3)

−ν∆wj +
∑N

k=1wk
∂wj

∂xk
+ ∂p

∂xj
= fj j = 1, 2, 3,

∑N
k=1

∂wj

∂xk
= 0,

it turns out that the following theorem involving capacity holds for this set
of equations in Ω:

Theorem 5. Let f, p, v, and u be respectively in [L1(Ω)]3, L2(Ω ),
[L∞(Ω)]3, and [W 1,2(Ω)]3. Also, let w=v+u and let Z⊂ Ω be a closed set
of Newtonian capacity zero. Suppose that the pair (w, p) is a distribution
solution of (3.3) in Ω\Z. Then the pair (w, p) is a distribution solution of
(3.3) in Ω.

This theorem is established in [Sh24].
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Also, this last reference, in dimension N = 3, has a statement classical
solutions of (3.1) and capacity zero.

Let Z ⊂ Ω be a closed set. Call Z an
(
L∞, L2

)
-removable set for the

stationary Navier-Stokes equations (3.1) if the following obtains:
Let v and p be in [L∞(Ω)]3 and L2(Ω) respectively. Suppose that the

pair (v, p) is a classical solution of (3.1) in Ω\Z. Then v and p can be defined
at the points of Z so that the pair (v, p) is a classical solution of (3.1) in Ω.

Theorem 6. Let N = 3, and let Z ⊂ Ω be a closed set. Then a nec-
essary and sufficient condition that Z be an

(
L∞, L2

)
-removable set for the

staionary Navier-Stokes equations (3.1) is that Z be of Newtonian capacity
zero.

For the proof of the necessary condition in Theorem 6, some ideas from
[Sh25] are needed.

For a paper treating more general type capacities and the stationary
Navier-Stokes equations, see [ShWe].

3. Theorem 2.1, involving classical solutions of the stationary Navier-
Stokes equations that, we prove in dimensions N = 2, 3, actually is true in
dimensionN = 4. The first part of the proof, however, that we have provided
for N = 2, 3 will not work for N = 4.

We do know in all three cases that the pair (v, p) is a distribution so-
lution of the equations in (2.2) with v ∈ [W 1,2 (TN )]N and p ∈ L2 (TN ).
In dimensions N = 2, 3, we then obtain from the Sobolev inequalities that
vk∂vj/∂xk ∈ L3/2 (TN ) for j, k = 1, ..., N and consequently from (2.27) and

(2.30) that v ∈ [W 2,3/2 (TN )]N . But this procedure will not work in dimen-
sion N = 4.

The best we can get in dimension N = 4 using the Sobolev inequalities
is that vk∂vj/∂xk ∈ L4/3 (TN ) and consequently from (2.27) and (2.30) that

v ∈ [W 2,4/3 (T4)]
4. But this is not good enough to carry out the rest of the

boot-strap argument. However, if we adopt the ideas in the clever paper of
Gerhardt [Ge], it can be shown directly that v ∈ [W 2,2 (T4)]

4, and this is
sufficient to carry out the rest of the boot-strap argument in the proof of
Theorem 2.1.

The main lemma in [Ge] adapted for the situation in hand is the follow-
ing:

Lemma 7. Let ε > 0 and let g ∈ L2 (T4). Then there exists a positive
constant Cε depending only on ε and g such that

∫

T4

|g| |u|2 dx ≤ ε ‖u‖2W 1,2(T4) + Cε ‖u‖2L2(T4) ∀u ∈W 1,2 (T4).
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Using an extension of this lemma and the ideas developed in Gerhardt’s
paper, we can obtain with no difficulty the following result:

Theorem 8. Let the pair (v, p) be a distribution solution of the sta-
tionary Navier-Stokes equations (2.2) where N=4, f ∈ [Cα (T4)]

4, v ∈[
W 1,2 (T4)

]4
, and p ∈ L2 (T4). Then v ∈

[
W 2,2 (T4)

]4
and p ∈W 1,2 (T4).

v ∈
[
W 2,2 (T4)

]4
is sufficient to get the boot-strap argument to work. So

indeed Theorem 2.1 is true for N = 4.





APPENDIX A

Integrals and Identities

1. Integral Identities

In this section, we establish various integral identities concerning Bessel
functions that we need. The Bessel function of the first kind of order ν is
defined as follows:

(1.1) Jν(t) =

∞∑

n=0

(−1)n( t
2)ν+2n

n!Γ(ν + n+ 1)
for t > 0 where ν > −1.

The first integral identity that we need is the following:

(1.2) Jν(t) =
tν

2ν−1Γ(ν + 1
2)Γ(1

2 )

∫ π/2

0
cos(t cos θ)(sin θ)2νdθ for t > 0

where ν > −1
2 . To establish this integral identity, we use two well-known

identities for the Gamma function, namely,

(1.3)
(i) Γ(α)Γ(β)

Γ(α+β) = 2
∫ π/2
0 (cos θ)2α−1(sin θ)2β−1dθ,

(ii) Γ(2t)Γ(1
2 ) = 22t−1Γ(t)Γ(t+ 1

2),

which can be found in [Ti1, pp. 56-57] and many other places. The second of
the above formulas is referred to as “the duplication formula for the Gamma
function.”

To show that (1.2) holds, we observe from (1.3)(i) that

Γ(ν + 1
2)Γ(n+ 1

2)

2Γ(n + ν + 1)
=

∫ π/2

0
(cos θ)2n(sin θ)2νdθ,

and hence from (1.1) and (1.3)(ii) that

Jν(t) =
tν

2ν−1Γ(ν + 1
2)

∞∑

n=0

∫ π/2

0

(−1)n( t
2)2n

Γ(n+ 1)Γ(n + 1
2)

(cos θ)2n(sin θ)2νdθ

=
tν

2ν−1Γ(ν + 1
2)

∞∑

n=0

∫ π/2

0

(−1)n(t)2n

Γ(2n + 1)Γ(1
2 )

(cos θ)2n(sin θ)2νdθ.

Using the series expansion for cos(t cos θ) in this last sum on the right vali-
dates the integral identity (1.2).

277
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The second integral identity that we need is the following:
(1.4)

Jµ+ν+1(t) =
tν+1

2νΓ(ν + 1)

∫ π/2

0
Jµ(t sin θ)(sin θ)µ+1(cos θ)2ν+1dθ for t > 0,

where µ > −1 and ν > −1.
To show that (1.4) holds, we refer to the right-hand side of the equality

in (1.4) as I(t) and see from (1.1) and (1.3)(i) that

I(t) =
tν+1

2νΓ(ν + 1)

∞∑

n=0

∫ π/2

0

(−1)n( t sin θ
2 )µ+2n

n!Γ(µ+ n+ 1)
(sin θ)µ+1(cos θ)2ν+1dθ

=
tµ+ν+1

2µ+νΓ(ν + 1)

∞∑

n=0

(−1)n( t
2 )2n

n!Γ(µ+ n+ 1)

∫ π/2

0
(sin θ)2(µ+n)+1(cos θ)2ν+1dθ

=
tµ+ν+1

2µ+ν+1

∞∑

n=0

(−1)n( t
2 )2n

n!Γ(µ+ ν + n+ 2)

=

∞∑

n=0

(−1)n( t
2 )2n+µ+ν+1

n!Γ(µ+ ν + n+ 2)
.

The last sum is Jµ+ν+1(t), and the identity (1.4) is established.
We will use both of these integral identities in a slightly different form

than presented. In particular, the one in (1.2) will be used in the form

(1.5) Jν(t) =
tν

2νΓ(ν + 1
2)Γ(1

2 )

∫ π

0
eit cos θ(sin θ)2νdθ for t > 0,

which follows from (1.2) because of the respective evenness and oddness of
cos(t cos θ) (sin θ)2ν and sin(t cos θ) (sin θ)2ν around π/2.

Likewise, the one in (1.4) will be used in the form

(1.6) Jµ+ν+1(t) =
tν−µ−1

2νΓ(ν + 1)

∫ t

0
Jµ(s)sµ+1(1− s2

t2
)νds for t > 0,

which follows from (1.4) when the variable θ in the integral is replaced by
s = t sinθ with ds = t cosθ dθ.

Next, we establish the following integral identity involving Bessel func-
tions:

(1.7)

∫ ∞

0
e−arJν(br)r

ν+1dr =
2a(2b)νΓ(ν + 3/2)

(a2 + b2)ν+3/2Γ(1/2)
for ν > −1,

where a and b are positive real numbers.
To do this, we start out by observing that for n ≥ 1,

Γ(ν + n+
3

2
) = (ν + n− 1 +

3

2
) · · · (ν +

3

2
)Γ(ν +

3

2
),
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and hence, from the familiar formula for the binomial series [Ru1, p. 201]
that

(1.8)

∞∑

n=0

(−1)nΓ(ν + n+
3

2
)
tn

n!
= Γ(ν +

3

2
)(1 + t)−(ν+ 3

2
)

for 0 < t < 1. Next, using the definition of the Gamma function, we observe
that

∫ ∞

0
e−ar(br)ν+2nrν+1dr =

1

bν+2
(
b

a
)2(ν+n+1)Γ(2ν + 2n+ 2).

Applying this equality in conjunction with the fact obtained from (1.3)(ii)
that

Γ(2ν + 2n+ 2) = 22ν+2n+1Γ(ν + n+ 1)Γ(ν + n+
3

2
)/Γ(

1

2
)

and the definition of Jν(t) in (1.1) gives us that

∫ ∞

0
e−arJν(br)rν+1dr =

∞∑

n=0

(−1)n

Γ(1
2 )n!

Γ(ν + n+
3

2
)
2ν+1

bν+2
(
b

a
)2(ν+n+1).

It is easy to see using (1.8) that the right-hand side of this last equality
is the same as the right-hand side of the equality in (1.7), and the integral
identity in (1.7) is established for 0 < b < a. By analytic continuation, it
extends to the other positive values of b.

We shall also need the following integral identity, which can be obtained
from the one in (1.7), namely

(1.9)

∫ ∞

0
e−arJν+1(r)r

ν+1dr =
2ν+1Γ(ν + 3/2)

(a2 + 1)ν+3/2Γ(1/2)

for ν > −1 and 0 < a < 1.
To establish this identity, we set b=1 in (1.7) and integrate by parts using

the familiar fact that
∫
Jν(r)rν+1dr = Jν+1(r)r

ν+1. The integral identity in
(1.9) easily follows from this.

Next, define

(1.10) Hα
R(x) = (2π)−N

∫

B(0,R)
eiy·x(1− |y|2 /R2)α dy

for α > (N − 1) /2. We shall need the following identity for Hα
R(x):

(1.11) Hα
R(x) = c(N,α)JN

2
+α(R |x|)RN

2 −α/ |x|N2 +α,

where c(N,α) = (2π)−N ωN−22
αΓ(α + 1) = 2αΓ(α+ 1)/(2π)N/2 and ωN−2

is defined below.
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To establish this identity, we see from the spherical coordinate notation
introduced in Chapter 1 that

(2π)NHα
R(x) =

∫

B(0,R)
eiy·x(1− |y|2 /R2)α dy

= |SN−2|
∫ R

0
(1− r2

R2
)αrN−1

∫ π

0
ei|x|r cos θ(sin θ)N−2dθ

= ωN−2

∫ R

0
(1− r2

R2
)αrN−1J(N−2)/2(|x| r)

(|x| r)(N−2)/2
dr

=
ωN−2

|x|N
∫ R|x|

0
(1− s2

(R |x|)2 )αsN/2J(N−2)/2(s)ds,

where we have made use of (1.5) and where

ωN−2 = |SN−2| 2(N−2)/2Γ((N − 1)/2)Γ(
1

2
) = (2π)N/2,

and |SN−2| = 2(π)(N−1)/2/Γ
(

N−1
2

)
is defined two lines above (3.4) in Chap-

ter 1.
We have tacitly assumed N ≥ 2 in this last computation. For N = 1,

we can easily see directly that the equality just established for Hα
R(x) is still

valid with ω−1 = (2π)1/2 because, as is well-known,

cos t = (π/2)1/2t1/2J− 1
2
(t) for t > 0.

Consequently, we see from this last computation and (1.6) with µ+ 1 =
N/2 and ν = α that

Hα
R(x) = c(N,α)JN

2
+α(R |x|)RN

2 −α/ |x|N2 +α ,

where c(N,α) = (2π)−N ωN−22
αΓ(α + 1) = 2αΓ(α + 1)/(2π)N/2, and the

identity in (1.11) is established.
We also need the following integral identity:

(1.12)

∫ ∞

0
e−s2

cos 2ts ds =
π

1
2

2
e−t2

for t ∈ R.
To establish this identity, we start by observing that

∫ ∞

0
e−s2

ds =
π

1
2

2

and then set ∫ ∞

0
e−s2

cos 2ts ds = I(t).

An integration by parts shows that

dI(t)

dt
= −

∫ ∞

0
e−s2

2s sin 2ts ds = −2t

∫ ∞

0
e−s2

cos 2ts ds.
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Therefore, we see that dI(t)
dt = −2tI(t) for t ∈ R and obtain from the unique-

ness theory of ODE that
∫ ∞

0
e−s2

cos 2ts ds =
π

1
2

2
e−t2,

and (1.12) is established.

2. Estimates for Bessel Functions

We will need estimates for the way Bessel functions act in a neighbor-
hood of the origin and in the neighborhood of infinity. In particular, we will
establish the following two estimates: ∃Kν > 0 such that

(2.1) |Jν(t)| ≤ Kνt
ν for 0 < t ≤ 1 and ν > −1

2
;

(2.2) |Jν(t)| ≤ Kνt
− 1

2 for 1 ≤ t <∞ and ν > −1.

The estimate in (2.1) follows immediately from the integral identity in
(1.2). To establish the estimate in (2.2), we observe, after an easy calculation
using (1.1) that for ν > −1, Jν(t) satisfies the differential equation

t2
d2y

dt2
+ t

dy

dt
+ (t2 − ν2)y = 0 for t > 0.

As a consequence of this last fact, it is easy to see that

(2.3) t2
d2[t

1
2Jν(t)]

dt2
− (ν2 − 1

4
)[t

1
2Jν(t)] + t2[t

1
2Jν(t)] = 0 for t > 0

and ν > −1. But then in [CH, pp. 331-2], it is shown that a function y(t),
which satisfies an equation of the form

d2y

dt2
+ y + ρ(t)y = 0 for t > 0,

is uniformly bounded on the interval [1,∞) provided ρ ∈ C1((0,∞)) with
|ρ(t)| < βt−1 and |dρ(t)/dt| < βt−2 on [1,∞) where β is a positive constant.
The equation in (2.3) is such an equation with ρ(t) = −(ν2 − 1

4)/t2. We

conclude that t
1
2Jν(t) is uniformly bounded for 1 ≤ t <∞, and the estimate

in (2.2) is established.
Next, with ν = (N − 2)/2, we set

(2.4) Aν
n(t) =

Γ(n/2)

2N/2Γ[(N + n)/2]

∫ ∞

0
e−stJν+n(s)sν+1ds

and obtain the following estimate for Aν
n(1/r), which we state as a theorem:
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Theorem 2.1. Let N≥ 2 and let n be any positive integer. Also, set
ν = (N − 2)/2. Then there exists a constant C(N,n) depending on N and n
such that

|Aν
n(1/r) − 1| ≤ C (N ,n) r−

1
2 for 2 ≤ r <∞.

Proof. To prove the theorem, we first take n = 1 and observe from (1.9)
that

Aν
1(t)− 1 =

1

(1 + t2)ν+3/2
− 1.

Hence, using (1.8), we see that there is a constant c depending on ν such
that

|Aν
1(t)− 1| ≤ ct for 0 < t ≤ 1/2.

So, the theorem follows in this case.
Next, we take n ≥ 2, invoke the hypergeometric representation for Aν

n(t)
given in [Wa, p. 385] and then use both the integral representation for hy-
pergeometric functions (see [Ra, p. 47] or [AAR, p. 65]) and the integral
definition of the beta function (see [Ra, p.18]) to obtain that

(2.5) Γ(1/2)Γ[(n − 1)/2][Aν
n(1/r) − 1]/Γ(n/2)

is equal to the following integral

(2.6)

∫ 1

0
tν+(n+1)/2(1− t)n−3

2 [(t+ r−2)−(ν+ n
2
+1) − t−(ν+ n

2
+1)]dt

for r > 0. The absolute value of this latter integral in turn is majorized by

c1

∫ 1/r

0
t−1/2dt + c2r

−2

∫ 1/2

1/r
t−3/2dt + c3r

−2

∫ 1

1/2
(1− t)n−3

2 dt

for r ≥ 2 where c1, c2, and c3 are constants depending on ν and n. So the
theorem follows in this case also. �

Besides the estimate for Aν
n(t) in the theorem we just established, we

shall need several more. In particular, with ν = (N − 2)/2 and N ≥ 2, we
will need the following one:

(2.7) ∃ c(ν, n) > 0 such that |Aν
n(t)| ≤ c(ν, n)t−N for t > 0.

To establish the estimate in (2.7), we observe from (2.1) and (2.2) that
for every positive integer n, Jn(t) is a bounded function on the positive real
axis. In case ν = 0, the estimate in (2.7) then follows immediately from
the integral representation of Aν

n(t) in (2.4). In case ν ≥ 1/2, we use the
estimates in (2.1) and (2.2) to obtain |Jν+n(t)|, which is majorized by a
constant multiple of tν for t > 0. Once again the estimate in (2.7) then
follows immediately from the integral representation of Aν

n(t) in (2.4).



2. ESTIMATES FOR BESSEL FUNCTIONS 283

Next, we need the following estimate for Aν
n(t):

(2.8) 0 ≤ Aν
n(t) ≤ 1 for t > 0.

In case n = 1, as we observed in the proof of Theorem 2.1, it follows
from (1.9) above that

Aν
1(t) =

1

(1 + t2)ν+3/2

and the estimate in (2.8) follows in this case.
In case n ≥ 2, we use the equality between the expressions in (2.5) and

(2.6). The first inequality in (2.8) then follows from the fact that for the
beta function

B(
1

2
,
n− 1

2
) = Γ(

1

2
)Γ(

n− 1

2
)/Γ(

n

2
).

The second inequality in (2.8) follows from the observation that

Aν
n(t)− 1 < 0.

Next, because of the inequalities in (2.8) joined with the conclusion of
Theorem 2.1, we can make the following observation about Aν

n(t):

(2.9) ∃ C∗(N,n) > 0 such that |Aν
n(t)− 1| ≤ C∗(N,n)t

1
2 for 0 < t ≤ 1,

for n ≥ 1, ν = (N − 2)/2, and N ≥ 2.

Finally, we need the fact that Aν
n(t)

′
= dAν

n(t)/dt is uniformly bounded
on the positive real-axis, i.e.,

(2.10) sup
0<t<∞

∣∣∣Aν
n(t)

′
∣∣∣ <∞,

for n ≥ 1, ν = (N − 2)/2, and N ≥ 2.
To establish the strict inequality in (2.10), we observe from (2.4) that

(2.11) Aν
n(t)

′
=

−Γ(n/2)

2N/2Γ[(N + n)/2]

∫ ∞

0
e−stJν+n(s)sν+2ds

for t > 0. So for the case n = 1, we see from (1.7) above that Aν
n(t)

′
is a

constant multiple of t/(t2 + 1)ν+5/2. Hence, the strict inequality in (2.10)
holds in this case.

For n ≥ 2, we see that the integral in (2.11) can be written as
∫ ∞

0
e−stJν+1+(n−1)(s)s

ν+1+1ds.

Consequently, from (2.4), we see that Aν
n(t)

′
is a constant multiple of

Aν+1
n−1(t). So the strict inequality in (2.10) for n ≥ 2 follows from the es-

timate in (2.8), and the strict inequality in (2.10) for all n is completely
established.

Exercises.

1. Given
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|Aν
n(1/r) − 1|

≤ −αn

∫ 1

0
tν+(n+1)/2(1− t)n−3

2 [(t+ r−2)−(ν+ n
2
+1) − t−(ν+ n

2
+1)]dt

where n ≥ 2, ν = N−2
2 , and αn is a positive constant depending only on n,

prove that for r ≥ 2
|Aν

n(1/r)− 1|
is majorized by

c1

∫ 1/r

0
t−1/2dt + c2r

−2

∫ 1/2

1/r
t−3/2dt + c3r

−2

∫ 1

1/2
(1− t)n−3

2 dt

where c1, c2, and c3 are constants depending on ν and n.

3. Surface Spherical Harmonics

In this section, we shall be interested in exploiting the connection be-
tween surface spherical harmonics and Bessel functions in order to compute
the principal-valued Fourier coefficient of the periodic Calderon-Zygmund
kernel of spherical harmonic type, K∗(x), defined in (1.8) of Chapter 2.

With n a nonnegative integer, Qn(x) is called a spherical harmonic func-
tion of degree n if the following two facts apply:

(i) Qn(x) is a homogeneous real polynomial of degree n;

(ii) Qn(x) is a harmonic function, i.e., ∆Qn(x) = 0 ∀ x ∈ RN , N ≥ 2.

With ξ = x/ |x|, Qn(ξ) is called a surface spherical harmonic of degree
n. Sometimes we will write Yn(ξ) in place of Qn(ξ), so that

(3.1) Yn(ξ) = Qn(
x

|x| ) = r−nQn(x) where x = rξ and r = |x|.

A good example of a surface spherical harmonic of degree n on S2, the
unit sphere in R3, is Pn(η∗ · ξ) where η∗ = (1, 0, 0), ξ = (ξ1, ξ2, ξ3) is any
point on S2, and Pn(t) is the Legendre polynomial of degree n.

To see this using the spherical coordinate notation introduced in §3
of Chapter 1 with θ replacing θ1, we observe that η∗ · ξ = cos θ and our
spherical harmonic function then becomes Qn(x) = rnPn(cos θ). Since Pn(t)
is an even or odd polynomial corresponding to whether n is an even or odd
number,Qn(x) is clearly a homogeneous polynomial of degree n in x1, x2, x3.
To verify that Qn(x) also satisfies Laplace’s equation, we need the familiar
differential equation that Pn(t) satisfies on the interval (−1, 1), namely,

(3.2) (1− t2)P ′′
n (t)− 2tP ′

n(t) = −n(n+ 1)Pn(t) ∀t ∈ (−1, 1),

where P ′
n(t) = dPn(t)/dt and P ′′

n (t) = d2Pn(t)/dt2. An easy calculation using
(3.2) shows that ∆rnPn(cos θ) = 0 for 0 < r < 1 and −π < θ < π, where
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in spherical coordinates, because of dependence only on r and θ, ∆ has the
form

(3.3) ∆ =
1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
for N = 3.

Hence, Qn(x) is a harmonic function, and therefore Qn(ξ) = Pn(η∗ · ξ) is
indeed a surface spherical harmonic of degree n.

The analogue of Pn(η∗ · ξ) in dimension N ≥ 4 is obtained via the
Gegenbauer polynomials, Cν

n(t), where ν = (N−2)/2. The n-th Gegenbauer
polynomial, Cν

n(t), with ν 6= 0, is defined by means of the equation (see [Ra,
pp. 276-279] or [AAR, p. 302])

(1− 2rt+ r2)−ν =

∞∑

n=0

Cν
n(t)rn, for 0 < r < 1 and − 1 ≤ t ≤ 1,

which is called the generating relation for Cν
n(t). It is clear from the well-

known generating relation for the Legendre polynomials [CH, p. 85] that ν =
1
2 in the above gives rise to the Legendre polynomials, i.e., Pn(t) = C

1
2
n (t).

Gegenbauer polynomials are also called ultraspherical polynomials.
It is shown in [Ra, p. 279] and [AAR, p.247] that the differential equation

that Cν
n(t) satisfies is

(3.4) (1− t2)Cν′′
n (t)− 2t(ν +

1

2
)Cν′

n (t) = −n(n+ 2ν)Cν
n(t) ∀t ∈ (−1, 1),

where Cν′
n (t) = dCν

n(t)/dt, which is the same as the equation in (3.2) when
ν = 1

2 .
For dimensionN ≥ 4, using the spherical coordinate notation introduced

in §3 of Chapter 1 with θ replacing θ1, we will now show that Cν
n(η∗ · ξ) is a

surface spherical harmonic of degree n on SN−1, where η∗ = (1, 0, ..., 0) and
ξ is any point on SN−1.

First, we observe as before that η∗ · ξ = cos θ. Since Cν
n(η∗ · ξ) is a

polynomial in cos θ and since Cν
n(t) is an even or odd polynomial in t cor-

responding as to whether n is an even or odd number [Ra, p. 277], it is
clear that Qn(x) = rnCν

n(cos θ) is a homogeneous polynomial of degree n in
x1, ..., xN .

Next, we see from [EMOT, p. 235], in spherical coordinate notation when
∆ depends only on r and θ, ∆ has the form

(3.5) ∆ =
1

rN−1

∂

∂r
rN−1 ∂

∂r
+

1

r2(sin θ)N−2

∂

∂θ
(sin θ)N−2 ∂

∂θ
.

Also, we see that the differential equation in (3.4), after multiplying both

sides by (1− t2)ν− 1
2 , is

d

dt
[(1− t2)ν+ 1

2
dCν

n(t)

dt
] = −n(n+ 2ν)(1 − t2)ν− 1

2Cν
n(t) ∀t ∈ (−1, 1).
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Hence, with t = cos θ and 2ν = N − 2, the equation in (3.4) becomes

(3.6)
d

dθ
(sin θ)N−2dC

ν
n(cos θ)

dθ
= −n(n+N − 2)(sin θ)N−2Cν

n(cos θ)

for θ ∈ (−π, π).
Using the form of ∆ in (3.5) in conjunction with the differential equation

in (3.6), we obtain after an easy computation that

∆rnCν
n(cos θ) = 0 for θ ∈ (−π, π).

Hence, Qn(x) is a harmonic function in RN, and therefore Cν
n(η∗ · ξ) is a

surface spherical harmonic of degree n.
Of course, what we have just shown is that for every fixed η on SN−1,

Cν
n(η · ξ) is, as a function of ξ, a surface spherical harmonic of degree n.

Before proceeding further, we discuss the notion of linear independence
for surface spherical functions. Let

{Yj,n(ξ)}kj=1

be a set of surface spherical harmonic functions of degree n. We say the set
of functions is linearly independent

if aj ∈ R for j = 1, ..., k and

k∑

j=1

ajYj,n(ξ) = 0 ∀ξ ∈ SN−1 ⇒ aj = 0 for j = 1, ..., k.

We let µn,N designate the largest number of linear independent surface
spherical harmonic functions of degree n and observe from [AAR, p. 450],
[EMOT, p.237], and [ABR, p.78] that

(3.7) µn,N = (2n +N − 2)
(n+N − 3)!

(N − 2)!n!
.

Next, we let {Yj,n(ξ)}µn,N

j=1 be an orthonormal set of surface spherical
harmonics of degree n, i.e.,

(3.8)

∫

SN−1

Yj,n(ξ)Yk,n(ξ)dS(ξ) = δj,k for j, k = 1, ..., µn,N ,

where δj,k is the Kronecker-δ. Then the well-known addition formula for
surface spherical harmonics [EMOT, p. 243] says

(3.9)
Cν

n(ξ · η)
Cν

n(1)
=
|SN−1|
µn,N

µn,N∑

j=1

Yj,n(ξ)Yj,n(η)

where ν = (N −2)/2 and |SN−1| designates the (N −1)-dimensional volume
of SN−1, computed two lines above (3.4) in Chapter 1 where it is shown that

(3.10) |SN−1| =
2(π)N/2

Γ(N
2 )

.



3. SURFACE SPHERICAL HARMONICS 287

Two other places to find the derivation of the addition formula given
in (3.8) are [Se, p. 118] and [AAR, p. 456]. We will establish a special case
of the addition formula (3.10) in Theorem 3.4 below near the end of this
section. In particular, we will establish (3.9) in the special case when N = 3
and ν = 1/2.

Because of (3.7) and (3.8), we see that if Yn(ξ) is a surface spherical

harmonic of degree n, then there exists {ak}
µn,N

k=1 such that

(3.11) Yn(η) =

µn,N∑

k=1

akYk,n(η) for η ∈ SN−1.

Hence, it follows from (3.8), (3.9), and (3.11) that

∫

SN−1

Cν
n(ξ · η)Yn(η)dS(η) =

Cν
n(1) |SN−1|
µn,N

µn,N∑

j=1

ajYj,n(ξ)

=
Cν

n(1) |SN−1|
µn,N

Yn(ξ)

for ξ ∈ SN−1. It also follows from the generating function for Gegenbauer

polynomials given above that Cν
n(1) = (N+n−3)!

n!(N−3)! . (See [EMOT, p. 236] or

[Ra, p.278]). So we conclude from (3.7), (3.10), and this last computation
that

(3.12) Yn(ξ) =
Γ(ν)(n + ν)

2πν+1

∫

SN−1

Cν
n(ξ · η)Yn(η)dS(η)

for ξ ∈ SN−1 where ν = N−2
2 .

The formula that we have just established in (3.12) is very useful in

computing the principal-valued Fourier transform K̂(y) of the Calderon-
Zygmund kernel K(x) of spherical harmonic type defined by (1.3)-(1.5) of
Chapter 2 where
(3.13)

K̂(y) = lim
R→∞

lim
ε→0

(2π)−N

∫

B(0,R)−B(0,ε)
e−iy·xK(x)dx for y ∈ RN .

In order to accomplish this computation, we need the orthogonality be-
tween surface spherical harmonics of different degrees, namely if Yj(ξ) and
Yk(ξ) are surface spherical harmonics of degrees j and k, respectively, then

(3.14)

∫

SN−1

Yj(ξ)Yk(ξ)dS(ξ) = 0 for j 6= k.

To establish (3.14), first we recall Green’s second identity [Ru1, p. 297],
which states that for u, v ǫC2[B(0, 1)],

(3.15)

∫

∂B(0,1)
[uDnv − vDnu]dS =

∫

B(0,1)
[u∆v − v∆u]dx,
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where Dnu = ∇u· n and n is the outward pointing unit normal for
∂B(0, 1) = SN−1. Next, we use the expressions in (3.1) to obtain that

(3.16) rjYj(ξ) = Qj(x)

where Qj(x) is a spherical harmonic function. On SN−1, we see from (3.16)
that for x = rξ,

DnQj(x) = jrj−1Yj(ξ) = jYj(ξ) because r = 1.

Consequently, on setting u = Qj and v = Qk, we obtain from this last
established fact, (3.15), and (3.16) that

(k − j)
∫

SN−1

Yj(ξ)Yk(ξ)dS(ξ) = 0.

Hence, (3.14) is indeed valid because for j 6= k, k − j 6= 0.

We now return to the computation of K̂(y) given in (3.13). It is clear

from (1.4) of Chapter 2 that K̂(0) = 0. For y 6= 0, we shall prove the

following theorem about K̂(y):

Theorem 3.1 Let K(x)=Qn(x)/ |x|N+n for x 6= 0 where Qn is a spherical
harmonic of degree n, n≥ 1. Then there exists a constant κn,N depending
only on n and the dimension N such that

(3.17) K̂(y) = κn,NQn(y) |y|−n for y 6= 0,

where K̂(y) is defined by the limit in (3.13).

Proof of Theorem 3.1. To prove the theorem, we invoke the following
identity from [Wa, p. 368]:

(3.18) eit cos θ = 2νΓ(ν)
∞∑

n=0

(ν + n)in
Jν+n(t)

tν
Cν

n(cos θ) for t > 0,

where ν = N−2
2 and t ∈ R.

Next, with y 6= 0 and with y = |y| ξ and x = rη where ξ, η ∈ SN−1 and
r = |x| , we observe from (3.1) that Qn(x) = rnYn(η) and hence K(x) =
Yn(η)/rN. Consequently, the integral on the right-hand side of the equality
in (3.13) can be written as

(3.19)

∫ R

ε
r−1dr

∫

SN−1

e−i|y|ξ·rηYn(η)dS(η).

Also, we see from (3.18) with t = |y| r and ξ · η = cos θ that

e−i|y|ξ·rη = 2νΓ(ν)

∞∑

k=0

(ν + k)(−i)k Jν+k(|y| r)
(|y| r)ν Cν

k (ξ · η),

where we have used the fact that Cν
k is an even or odd polynomial accordingly

as k is even or odd.
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From this last equality, we obtain that the inner integral in (3.19),

namely,
∫
SN−1

e−i|y|ξ·rηYn(η)dS(η), is equal to

(3.20) 2νΓ(ν)

∞∑

k=0

(ν + k)(−i)k Jν+k(|y| r)
(|y| r)ν

∫

SN−1

Cν
k (ξ · η)Yn(η)dS(η).

Now as we have shown earlier, for each ξ ∈ SN−1, C
ν
k (ξ · η) is a surface

spherical harmonic of degree k. Hence, it follows from the orthogonality
relationship given in (3.14) that the summation in (3.20) reduces to

(3.21) 2νΓ(ν)(ν + n)(−i)n Jν+n(|y| r)
(|y| r)ν

∫

SN−1

Cν
n(ξ · η)Yn(η)dS(η).

Next, using the special formula given by the equality in (3.12), we in
turn have that the value of the expression in (3.21) is

(3.21′) (−i)n2ν+1πν+1Jν+n(|y| r)
(|y| r)ν Yn(ξ).

Consequently,

(3.21′′)

∫

SN−1

e−i|y|ξ·rηYn(η)dS(η) = (−i)n2ν+1πν+1Jν+n(|y| r)
(|y| r)ν Yn(ξ).

So, from (3.19) and this last equality, we obtain that the integral on the
right-hand side of the equality in (3.13) can be written as

(−i)n2ν+1πν+1Yn(ξ)

∫ R

ε

Jν+n(|y| r)
(|y| r)ν r−1dr,

and therefore that

(3.22) K̂(y) = lim
R→∞

lim
ε→0

(2π)−N (−i)n2ν+1πν+1Yn(ξ)

∫ R|y|

ε|y|

Jν+n(r)

rν+1
dr.

The Bessel function estimates given in (2.1) and (2.2), since n ≥ 1, imply
that the limits on the right-hand side of the equality in (3.22) exist. So κn,N

has the value

(3.23) κn,N = (2π)−N (−i)n2ν+1πν+1

∫ ∞

0

Jν+n(r)

rν+1
dr,

and the proof of the theorem is complete. �

Using the theory of hypergeometric functions, the integral in (3.23) is
evaluated in [Wa, p. 391] and the following value is obtained:

(3.24)

∫ ∞

0

Jν+n(r)

rν+1
dr = Γ(n/2)/Γ(ν + 1 +

n

2
)2ν+1.
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From Theorem 3.1, we can get a corollary that will give us the principal-
valued Fourier coefficients of the periodic Calderon-Zygmund kernel K∗(x).
This periodic kernel K∗(x) is defined in (1.8) of Chapter 2 to be

(3.25) K∗(x) = K(x) + lim
R→∞

∑

1≤|m|≤R

[K(x+ 2πm)−K(2πm)]

where m ∈ ΛN . Also, the principal-valued Fourier coefficient of K∗(x) is
defined to be

(3.26) K̂∗(m) = lim
ε→0

(2π)−N

∫

TN−B(0,ε)
e−im·xK∗(x)dx,

and in (1.21) of Chapter 2, it is shown to have the following limit:

(3.27) K̂∗(m) = lim
R→∞

lim
ε→0

(2π)−N

∫

B(0,R)−B(0,ε)
e−im·xK(x)dx for m 6= 0.

Corollary 3.2. Let K(x)=Qn(x)/ |x|N+n for x 6= 0 where Qn is a spherical
harmonic of degree n, n≥ 1, and let K∗(x) be its periodic analogue defined in

(3.25). Also, let K̂∗(m) be its principal-valued Fourier coefficint as defined
in (3.26). Then

K̂∗(m) = K̂(m) = κn,NQn(m) |m|−n for m 6= 0

where

(3.28) κn,N = (−i)n2−Nπ−
N
2 Γ(

n

2
)[Γ(

n+N

2
)]−1.

Proof of Corollary 3.2. To prove the corollary, we observe from (3.27),
(3.13), and (3.17) as stated in Theorem 3.1 that

K̂∗(m) = K̂(m) = κn,NQn(m) |m|−n for m 6= 0.

Also, from (3.23) and (3.24) with ν = N−2
2 , we see that

κn,N = (2π)−N (−i)n2ν+1πν+1Γ(n/2)/Γ(ν + 1 +
n

2
)2ν+1

= (−i)n2−Nπ−
N
2 Γ(

n

2
)[Γ(

n+N

2
)]−1,

and the proof of the corollary is complete. �

In Appendix C, when we deal with the spherical harmonic expansion of
a harmonic function in the interior of an N -Ball of radius R, the following
proposition regarding Gegenbauer polynomials will prove very useful.
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Proposition 3.3. For N≥ 3 and ν = N−2
2 , with 0≤ r < 1 and −1 ≤ t ≤ 1,

for Gegenbauer polynomials, the following formula prevails:

(3.29)
1− r2

(1− 2rt+ r2)N/2
=

∞∑

n=0

[
N − 2 + 2n

N − 2
]Cν

n(t)rn

where the series converges unifomly for 0 ≤ r ≤ r0 < 1 and −1 ≤ t ≤ 1.

It is clear that the left-hand side of (3.29) for N = 2 and t = cos θ gives
rise to the familiar Poisson kernel for the unit disk. The formula given here
in (3.29) is going to play an analogous role for the unit N -ball. Also, since

(3.30) |Cν
n(t)| ≤ Cν

n(1) =
Γ(2ν + n)

Γ(2ν)n!
for − 1 ≤ t ≤ 1,

(see [Ra, p.278 and p. 281]), it follows that the series in (3.29) converges
uniformly for 0 ≤ r ≤ r0 < 1 and −1 ≤ t ≤ 1.

Proof of Proposition 3.3. We set ρ = (1−2rt+r2)1/2 and observe from
the generating function for the Gegenbauer polynomials (see the paragraph
below (3.3)) that

(3.31) ρ−(N−2) =
∞∑

n=0

Cν
n(t)rn, for 0 < r < 1 and − 1 ≤ t ≤ 1.

Since ∂ρ/∂r = (−t+ r)/ρ, it is easy to see that

1− r2
(1− 2rt+ r2)N/2

=
1

ρN−2
+

2r

N − 2
∂ρ−(N−2)/∂r.

The equality in (3.29) follows immediately from (3.31) and this last
formula. �

In closing this section, we want to establish a special case of the impor-
tant formula (3.9) above, namely, when N = 3 and ν = 1/2. In this case,
we will have to deal with the Legendre polynomials, {Pn(t)} ∞

n=0, and the
associated Legendre functions, {P k

n (t)} ∞, n
n=0,k=1. The associated Legendre

functions are defined as follows:

(3.32) P k
n (t) = (1− t2)k/2dkPn(t)/dtk for k = 1, ..., n.

It is well-known (see [CH, p. 327] or [Sp, pp. 145-6] or [Pi, p. 229]) that
these functions satisfy the following differential equation:

(3.33) [(1− t2)y′(t)]′ − k2y(t)

1− t2 + n(n+ 1)y(t) = 0 ∀t ∈ (−1, 1),

where ′ denotes differentiation with respect to t.
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Using the spherical coordinate notation introduced in Chapter 1, namely,

x1 = r cos θ

x2 = r sin θ cosφ

x3 = r sin θ sinφ,

we see from (3.32) that

(3.34) rnP k
n (cos θ) cos kφ and rnP k

n (cos θ) sin kφ k = 1, ..., n,

are homogeneous polynomials of degree n in the variables x1, x2, x3. To do
this, we need the observation that both cos kφ and sin kφ are homogeneous
polynomials of degree k in the variables sinφ and cosφ. This fact is easily
proved by induction.

Also, using the Laplacian expressed in the spherical coordinates r, θ, φ,
it is an easy matter using (3.33), to see that both

∆rnP k
n (cos θ) cos kφ = 0 and ∆rnP k

n (cos θ) sin kφ = 0

when 0 < r, 0 < θ < π, and 0 ≤ φ ≤ 2π (see [Sp, p. 145]). Since the set of
functions in (3.34) are homogeneous polynomials of degree n in the variables
x1, x2, x3, we conclude that each of these functions are spherical harmonics.
We will use this fact in the proof of the following theorem:

Theorem 3.4. Let S 2 ⊂ R3 be the unit sphere and let n be any positive
integer. Suppose {Y nj( ξ)}2n+1

j=1 is a set of surface spherical harmonics of

degree n which are orthonormal in L2(S 2), i.e.,
∫

S2

Ynj(ξ)Ynk(ξ)dS(ξ) = δjk j, k = 1, ..., 2n + 1.

where δjk is the Kronecker-δ. Then

Pn(ξ · η) =
4π

2n+ 1

2n+1∑

j=1

Ynj(ξ)Ynj(η) ∀ξ, η ∈ S2,

where Pn(t) is the n-th Legendre polynomial.

Proof of Theorem 3.4. To prove the theorem, we let {Y ♦
nj(ξ)}2n+1

j=1 be
another set of surface spherical harmonics of degree n which are orthonormal
in L2(S2). From (3.7), we have that the set of surface spherical harmonics
of degree n is a vector space of dimension 2n + 1. Consequently, the given
set {Ynj(ξ)}2n+1

j=1 is a basis for the surface spherical harmonics of degree n,
and we have that

(3.35) Y ♦
nj(ξ) =

2n+1∑

k=1

ajkYnk(ξ) ∀ξ ∈ S2,
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where the ajk are real constants and j = 1, ..., 2n + 1. Using the orthonor-
mality of both sets in L2(S 2), it is easy to see that

2n+1∑

k=1

aj1kaj2k = δj1j2 .

Hence, the (2n + 1) × (2n + 1) matrix O = (ajk) is an orthogonal matrix.
So an easy computation using (3.35) shows that

(3.36)
2n+1∑

j=1

Ynj(ξ)Ynj(η) =
2n+1∑

j=1

Y ♦
nj(ξ)Y

♦
nj(η).

Next, we note that if u(x) is harmonic in RN , so is v(x) = u(Ox) where
O ∈ SO(3), the set of 3×3 real orthogonal matrices of determinant one (see
[ABR, p.3]).

Consequently, it follows that {Ynj(Oξ)}2n+1
j=1 is a set of surface spherical

harmonics of degree n that is also an orthonormal set in L2(S2) for every
orthogonal matrix O. We conclude from (3.36) that
(3.37)

2n+1∑

j=1

Ynj(ξ)Ynj(η) =

2n+1∑

j=1

Ynj(Oξ)Ynj(Oη) ∀ξ, η ∈ S2 and ∀O ∈ SO(3).

Next, we observe that if ξ, η, ξ̃, η̃ ∈ S2 are four points with the property

that ξ · η = ξ̃ · η̃, then there exists an orthogonal matrix O such that

Oξ ·Oη = ξ̃ · η̃.
Using this fact in conjunction with (3.37), we see that there is a function
g(t) defined for −1 ≤ t ≤ 1, which is also in C([−1, 1]), such that

(3.38) g(ξ · η) =
2n+1∑

j=1

Ynj(ξ)Ynj(η) ∀ξ, η ∈ S2.

To obtain this function g(t), reintroduce the spherical coordinate system
above (3.34), set η∗ = (1, 0, 0), and observe that if ξ = (ξ1, ξ2, ξ3), then

ξ1 = cos θ

ξ2 = sin θ cosφ

ξ3 = sin θ sinφ.

Next, observe that if −1 ≤ t ≤ 1, there exists θt with 0 ≤ θt ≤ π such
that t = cos θt. Set ξt = (cos θt, sin θt, 0). Then ξt · η∗ = t and define

g(t) = g(ξt · η∗) =

2n+1∑

j=1

Ynj(ξt)Ynj(η
∗).
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For a given ξ and η, find ξt such that ξt · η∗ = ξ · η and O ∈ SO(3) such
that ξ = Oξt and η = Oη∗. Then g(ξ · η) = g(ξt · η∗) and hence by this last
set of equalities and (3.37),

g(ξ · η) =
2n+1∑

j=1

Ynj(ξt)Ynj(η
∗) =

2n+1∑

j=1

Ynj(Oξt)Ynj(Oη
∗) =

2n+1∑

j=1

Ynj(ξ)Ynj(η),

which gives the equality in (3.38).
We next use the spherical coordinate notation to define an orthonormal

set in L2(S 2) of surface spherical harmonics as follows:

Y ♯
nj(ξ) = bnjP

j
n(η∗ · ξ) cos jφ for j = 1, ..., n,

= bnjP
j−n
n (η∗ · ξ) sin(j − n)φ for j = n+ 1, ..., 2n,

= (
2n+ 1

4π
)1/2Pn(η∗ · ξ) for j = 2n+ 1

where the bnj are normalizing constants, the P j
n(t) are the associated Le-

gendre functions introduced in (3.32), and Pn(t) is the usual Legendre poly-
nomial of order n. To be quite precise, the bnj are constants defined so that

∫

S2

∣∣∣Y ♯
nj(ξ)

∣∣∣
2
dS(ξ) = 1 for j = 1, ..., 2n.

Observing from the spherical coordinate notation introduced above, that
ξ · η∗ = cos θ, it is easy to check from well-known facts about Legendre
polynomials (see [Ra, p. 175] ) that

∫

S2

∣∣∣Y ♯
n2n+1(ξ)

∣∣∣
2
dS(ξ) = 1.

Also, it is easy to see that {Y ♯
nj(ξ)}2n+1

j=1 constitutes an orthogonal system in

L2(S2). Consequently, it follows from (3.36) and (3.38) that

(3.39) g(ξ · η) =

2n+1∑

j=1

Y ♯
nj(ξ)Y

♯
nj(η) ∀ξ, η ∈ S2.

Next, we observe from (3.32) that P k
n (1) = 0 for k = 1, ..., n. Hence, it

follows from the definitions given above, that

Y ♯
nj(η

∗) = 0 for j = 1, ..., 2n.

But then we obtain from (3.39) and the definition of Y ♯
n2n+1(ξ) given above

that

g(ξ · η∗) =
2n+ 1

4π
Pn(η∗ · ξ)Pn(1) ∀ξ ∈ S2.

Now Pn(1) = 1, and as we observed above, for every t ∈ [−1, 1], ∃ξt ∈ S2

such that ξt · η∗ = t. So we conclude from this last equality that

g(t) =
2n+ 1

4π
Pn(t) for t ∈ [−1, 1],
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and consequently that

g(ξ · η) =
2n+ 1

4π
Pn(ξ · η) ∀ξ, η ∈ S2.

This fact coupled with (3.38) gives the conclusion of the theorem. �

In Chapter 4, we shall need some further facts about the sequence of
Gegenbauer polynomials {Cν

n(t)}∞n=0. To handle these matters, given a real-
valued measurable function f defined on the interval (-1,1), we say

f ∈ L2
µ[(−1, 1)]

where µ(t) = (1 − t2)ν− 1
2 and ν = (N − 2)/2 with N ≥ 3 provided the

following prevails:

(3.40)

∫ 1

−1
|f(t)|2 µ(t)dt <∞.

It is clear from the self-adjoint differential equation satisfied by the
Gegenbauer polynomials stated just above (3.6) that

(3.41)

∫ 1

−1
Cν

j (t)Cν
k (t)(1− t2)ν− 1

2dt = 0 for j 6= k.

Also, it is shown in [Ra, p. 278 and p. 281] that

(3.42)

∫ 1

−1
|Cν

n(t)|2 (1− t2)ν− 1
2 dt = τn ∀n,

where

(3.43) τn = Cν
n(1)

Γ(1
2)Γ(ν + 1

2)

(ν + n)Γ(ν)
.

As a consequence of all this, we set

(3.44) an = τ−1
n

∫ 1

−1
Cν

n(t)f(t)(1 − t2)ν− 1
2 dt

and observe that the an are the Gegenbauer-Fourier coefficients for f.
In the next theorem, we will show that {Cν

n(t)}∞n=0 is a complete orthog-
onal system. By this, we mean, given f ∈ L2

µ[(−1, 1)], then

(3.45) an = 0 ∀n =⇒ f(t) = 0 a.e. on (−1, 1),

where an is defined in (3.44).

Theorem 3.5. {Cν
n(t)}∞n=0 is a complete orthogonal system for L2

µ([−1, 1])

where µ = (1− t2)ν− 1
2 , ν = (N − 2)/2, and N ≥ 3.
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From Theorem 3.5, we can obtain the following corollary that will be
useful in Chapter 4.

Corollary 3.6. Let f ∈ C([−1, 1]) with an defined by (3.44). Suppose that

lim
n→∞

n∑

j=0

ajC
ν
j (t) = g(t)

uniformly for t ∈ [−1, 1]. Then

f(t) = g(t) ∀t ∈ [−1, 1].

Proof of Theorem 3.5. We are given f ∈ L2
µ[(−1, 1)] and that

∫ 1

−1
Cν

n(t)f(t)(1− t2)ν− 1
2dt = 0 ∀n.

From the Rodrigues formula for Cν
n(t) [AAR, p. 303], we see that Cν

n(t)
is a polynomial of degree n. Therefore, it follows from this last equality that

∫ 1

−1
tnf(t)(1− t2)ν− 1

2 dt = 0 ∀n.

But then

(3.46)

∫ 1

−1
P (t)f(t)(1− t2)ν− 1

2dt = 0,

for every polynomial P (t).
It follows from the Weierstrass approximation that the analogue of (3.46)

holds for every function g ∈ C([−1, 1]). Using the Lebesgue dominated con-
vergence theorem, we see that the same can then be said for every χI where
χI(t) is the characteristic (indicator) function of a subinterval I ⊂ [−1, 1].
Consequently, the same fact holds also for every simple function, and we
conclude, using the Lebesgue dominated convergence theorem once again,
that

(3.47)

∫ 1

−1
h(t)f(t)(1 − t2)ν− 1

2 dt = 0,

for every function h ∈ L∞([−1, 1]).
Next, we set

fn(t) = f(t) if |f(t)| ≤ n
= 0 if |f(t)| > n.

Then, fn ∈ L∞([−1, 1]), and it follows from (3.47) that

(3.48)

∫ 1

−1
fn(t)f(t)(1− t2)ν− 1

2 dt = 0 ∀n.
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Since |fn(t)f(t)| ≤ |f(t)|2 and

lim
n→∞

fn(t) = f(t) for t ∈ (−1, 1),

we conclude from (3.48) that
∫ 1

−1
|f(t)|2 (1− t2)ν− 1

2dt = 0.

Hence, f(t) = 0 a.e. on (−1, 1). �

Proof of Corollary 3.6. Since the series that defines g(t) converges uni-
formly for t ∈ [−1, 1], g ∈ C([−1, 1]). Also, it follows from the orthogonality
in (3.41) and the uniform convergence of this series that

an = τ−1
n

∫ 1

−1
g(t)Cν

n(t)(1− t2)ν− 1
2dt ∀n,

where we also have made use of (3.42) and (3.43).
But then it follows from (3.44) that

∫ 1

−1
[g(t)− f(t)]Cν

n(t)(1 − t2)ν− 1
2 dt = 0 ∀n,

and therefore from Theorem 3.5 that f(t) = g(t) for every t ∈ [−1, 1]. �

Exercises.

1. Given that the Jacobi polynomial P (ν− 1
2
,ν− 1

2) (t) = γn,νC
ν
n(t) where

γn,ν is a positive constant and that the Jacobi polynomial P (α,β) (t) satisfies
the differential equation [AAR, p. 297]

(
1− t2

)
P

(α,β)′′
n (t) + (β − α+ (α+ β + 2) t)P

(α,β)′
n (t)

+ n (n+ α+ β + 1)P
(α,β)
n (t) = 0,

prove that Cν
n(t) satisfies the differential equation:

(1− t2)Cν′′
n (t)− 2t(ν +

1

2
)Cν′

n (t) = −n(n+ 2ν)Cν
n(t) ∀t ∈ (−1, 1),

where Cν′
n (t) = dCν

n(t)/dt, ν = N−2
2 , and n ≥ 1.

2. Prove that, with the substitution of t = cos θ, the differential equation
for Cν

n(t) in Exercise 1 becomes

d

dθ
(sin θ)N−2 dC

ν
n(cos θ)

dθ
= −n(n+N − 2)(sin θ)N−2Cν

n(cos θ)

for θ ∈ (−π, π) .
3. With η∗ = (1, 0, ..., 0) and ξ ∈ SN−1, using the spherical coordinate

notation introduced in §3 of Chapter 1, prove that
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r3Cν
3 (η∗ · ξ)

is a homogeneous polynomial of degree 3 and is also a harmonic function in
RN , N ≥ 3, where ν = N−2

2 .

4. Set ρ =
(
1− 2rt+ r2

)
where 0 < r < 1 nd t ∈ [−1, 1]. Prove that

1− r2
(1− 2rt+ r2)N/2

=
1

ρN−2
+

2r

N − 2
∂ρ−(N−2)/∂r.

5. Using the differential equation for Cν
n(t) given in Exercise 1, prove

that ∫ 1

−1
Cν

j (t)Cν
k (t)(1− t2)ν− 1

2dt = 0 for j 6= k.



APPENDIX B

Real Analysis

1. Convergence and Summability

In this section, we shall prove various consistency theorems with respect
to convergence and summability. In particular, the first theorem will show
that the convergence of an integral to a given limit implies the Bochner-Riesz
summability of that integral to the same limit.

Theorem 1.1. Suppose h(s)∈ L1(0, n) for every positive integer n. Set

H(R)=
∫ R
0 h(s)ds for R>0, and suppose

lim
R→∞

H(R) = γ,

where γ is a finite real number. Then

(1.1) lim
R→∞

∫ R

0
(1− s2

R2
)αh(s)ds = γ,

for every α > 0.

Proof of Theorem 1.1. We first of all observe from the Lebesgue domi-
nated convergence theorem that

(1.2) lim
R→∞

∫ R

0
(1− s2

R2
)αe−s2

ds = π1/2/2.

Next, we set

h1(s) = h(s)− 2γ

π1/2
e−s2

,

and H1(R) =
∫ R
0 h1(s)ds. It is clear from the hypothesis of the theorem that

(1.3) lim
R→∞

H1(R) = 0.

If we can show that this last limit implies that

(1.4) lim
R→∞

∫ R

0
(1− s2

R2
)αh1(s)ds = 0,

then it follows from (1.2) and the definition of h1(s) that the limit in (1.1)
holds. Therefore, to complete the proof of the theorem, it suffices to show
that (1.3) implies (1.4). We now do this.

299
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First of all, we observe after integrating by parts that
∫ R

0
(1− s2

R2
)αh1(s)ds = 2α

∫ R

0
H1(s)(1−

s2

R2
)α−1 s

R2
ds.

Hence, to establish (1.4), it is enough to show

(1.5) lim
R→∞

2α

∫ R

0
H1(s)(1−

s2

R2
)α−1 s

R2
ds = 0.

To do this, given ε > 0, use (1.3) to choose R0 > 0, so that

(1.6) |H1(R)| < ε for R > R0.

It is clear that

(1.7) lim
R→∞

∫ R0

0
(1− s2

R2
)α−1 s

R2
ds = 0.

Also, (1.6) implies that

2α

∣∣∣∣
∫ R

R0

H1(s)(1−
s2

R2
)α−1 s

R2
ds

∣∣∣∣ ≤ ε for R > R0.

We conclude from (1.7) and this last inequality that

lim sup
R→∞

2α

∣∣∣∣
∫ R

0
H1(s)(1−

s2

R2
)α−1 s

R2
ds

∣∣∣∣ ≤ ε.

Since ε is an arbitrary positive number, we see that the limit in (1.5) is
indeed valid, and the proof of the theorem is complete. �

Next, we show that convergence of a multiple series to a given finite limit
implies Abel summability of the series to the same limit.

Theorem 1.2. Let ΛN designate the set of integral lattice points in RN,
N ≥ 1. Suppose (i) am = a−m for m∈ ΛN\{0}, (ii) a0=0, and (iii) ∃β > 0

such that |am| = O(|m|β) as |m| → ∞. Suppose, also,

(1.8) lim
R→∞

∑

1≤ |m|≤R

am = α where α is a finite real number.

Then,

(1.9) lim
t→0

∑

1≤ |m|<∞

ame
−|m|t = α.

Proof of Theorem 1.2. Set S(r)=
∑

0< |m|≤r am. It is clear, with no loss

in generality, we can suppose α = 0. Then, for r > 1,

S(r) =

[r2]∑

k=1

∑

|m|2=k

am,



2. TAUBERIAN LIMIT THEOREMS 301

where [r2] is the first integer less than or equal to r2. Then,

∑

0< |m|≤R

ame
−|m|t =

∫ R

0
e−rtdS(r)

= S(R)e−Rt + t

∫ R

0
e−rtS(r)dr.

Consequently,

∑

1≤ |m|<∞

ame
−|m|t = t

∫ ∞

0
e−rtS(r)dr.

Given ε > 0, choose r0 so large that |S(r)| < ε for r ≥ r0. Then,
∣∣∣∣∣∣
∑

1≤ |m|<∞

ame
−|m|t

∣∣∣∣∣∣
≤
∣∣∣∣t
∫ r0

0
e−rtS(r)dr

∣∣∣∣+ εt

∫ ∞

r0

e−rtdr,

and we conclude from this last inequality that

lim sup
t→0

∣∣∣∣∣∣
∑

1≤ |m|<∞

ame
−|m|t

∣∣∣∣∣∣
≤ ε.

Since ε is an arbitrary positive number, we obtain from this last inequal-
ity that

lim
t→0

∑

1≤ |m|<∞

ame
−|m|t = 0,

and the proof of the theorem is complete. �

2. Tauberian Limit Theorems

In this section, we deal with various limit theorems that are needed in
tauberian theory. The first one is the following, which is evidently due to
Landau, [Har, p. 176].

Theorem 2.1. Suppose f ∈ C2(0,∞). Suppose, also,

(i)limt→0f(t) = α where α is finite − valued ,

(ii)f ′′(t) ≥ −Ct−2for t > 0 where C is a positive constant .

Then

(2.1) limt→0tf
′(t) = 0.
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Proof of Theorem 2.1. The proof involves a subtle use of Taylor’s theorem
[Ru1, p. 111]. In particular, if t and t+ η are positive values with η 6= 0, it
follows from Taylor’s theorem that

f(t+ η)− f(t) = ηf ′(t) +
η2

2
f ′′[t+ θ(t, η)η]

where 0 < θ < 1. Therefore,

(2.2) f ′(t) = [f(t+ η)− f(t)]/η − η

2
f ′′(t+ θη).

Let ε > 0 be given, and choose δ so that 0 < δ < 1 and also so that

(2.3)
Cδ

2(1− δ)2 < ε.

Take η = δt. Then t+ η = (1 + δ)t, and we see from (ii) and (2.2) that

tf ′(t) ≤ f [(1 + δ)t]− f(t)

η
t+

η

2

C

t

≤ f [(1 + δ)t]− f(t)

δ
+
Cδ

2
.

We consequently obtain from (i) and (2.3) that

lim sup
t→0

tf ′(t) ≤ Cδ

2
≤ ε.

Since ε is an arbitrary positive number, we have that

(2.4) lim sup
t→0

tf ′(t) ≤ 0.

Next, we take η = −δt. Then t− η = (1− δ)t, and we see from (ii) and
(2.2) that

tf ′(t) ≥ f [(1− δ)t]− f(t)

η
t+

η

2

C

(t+ θη)2

≥ −f [(1− δ)t]− f(t)

δ
− Cδ

2(1 − δ)2 .

We consequently infer from (i) and (2.3) that

lim inf
t→0

tf ′(t) ≥ −ε.

Hence,
lim inf

t→0
tf ′(t) ≥ 0.

From this last inequality joined with the inequality in (2.4), we see that

lim
t→0

tf ′(t) = 0,

which is the limit in (2.1). �

We also need the following Tauberian theorem due to Karamata [Ka].
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Theorem 2.2. Suppose h(r) is a function defined on (0,∞) with the fol-

lowing properties: (i) h(r) is continuous on (0,∞)\E where E=
⋃∞

j=1
{rj}

and
0 < r1 < r2 < · · · < rn →∞;

(ii) h(r) is continuous from the right; (iii) h(r)=0 for 0<r<r1; (iv) h(r) is
a nondecreasing function; (v) ∃k>0 such that h(r)=O(rk) as r→∞. Set

(2.5) f(t) =

∫ ∞

0
e−rtdh(r) for t>0,

and suppose that limt→0 tf(t)=γ where γ is finite-valued. Then

lim
R→∞

h(R)

R
= γ.

Proof of Theorem 2.2. We observe from the well-known Weierstrass
theorem that if G(r) ∈ C([0, 1]), then given ε > 0, there are two polynomials
P (r) and p(r) such that p(r) ≤ G(r) ≤ P (r) for r ∈ [0, 1] and

∫ 1

0
[P (r)−G(r)]dr < ε and

∫ 1

0
[G(r)− p(r)]dr < ε.

A similar situation prevails for the function g(r) defined as follows:

(2.6)
g(r) = 0 for 0 ≤ r ≤ e−1

= r−1 for e−1 < r ≤ 1.

Then, given ε with 0 < ε < 1
10 , there are polynomials P (r) and p(r) such

that

(2.7) p(r) ≤ g(r) ≤ P (r) for r ∈ [0, 1]

and

(2.8)

∫ 1

0
[P (r)− g(r)]dr < ε and

∫ 1

0
[g(r)− p(r)]dr < ε.

We show first that (2.7) and (2.8) hold with respect to P (r). To do this,
we define the continuous function φ(r) in the following manner:

φ(r) = 0 for 0 ≤ r ≤ e−1 − δ

= e
r − (e−1 − δ)

δ
for e−1 − δ ≤ r ≤ e−1

= g(r) for e−1 < r ≤ 1,

where δ = εe−1. Since φ is a positive linear function in the interval

(e−1 − δ, e−1]

and equal to g elsewhere in the interval [0, 1], it is clear that g ≤ φ. It is also
clear that ∫ 1

0
[φ(r)− g(r)]dr = ε/2.
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We now apply the Weierstrass theorem to φ for the value ε/2 and obtain
the P (r) part of (2.7) and (2.8). A similar argument works for p(r).

Next, with P (r) and p(r) as in (2.7) and (2.8), we see the following is
true:

(2.9)
(i) limt→0 t

∫∞
0 e−rtP (e−rt)dh(r) = γ

∫ 1
0 P (r)dr;

(ii) limt→0 t
∫∞
0 e−rtp(e−rt)dh(r) = γ

∫ 1
0 p(r)dr.

Since both P (r) and p(r) are polynomials, it is enough to establish the
limit in (2.9) for the special case of the polynomial rn where n is a nonneg-
ative integer, i.e,

(2.10) lim
t→0

t

∫ ∞

0
e−rt(e−rt)ndh(r) = γ

∫ 1

0
rndr.

We observe from (2.5) that the left-hand side of the equality in (2.10) is

lim
t→0

tf [(n+ 1)t] = γ/(n+ 1).

An easy computation shows that the right-hand side of the equality in (2.10)
is also γ/(n + 1). So (2.10) is established, and hence (2.9) is also valid.

To complete the proof of the theorem, we observe from (2.7), (2.8), and
the hypothesis of the theorem that∫ ∞

0
e−rtp(e−rt)dh(r) ≤

∫ ∞

0
e−rtg(e−rt)dh(r) ≤

∫ ∞

0
e−rtP (e−rt)dh(r)

for t ∈ (0,∞)\E♦ where E♦ =
⋃∞

j=1
{r−1

j }. Hence, it follows from (2.9) and

this last set of inequalities that
(2.11)

γ
∫ 1
0 p(r)dr ≤ lim supt→0,t/∈E♦ t

∫∞
0 e−rtg(e−rt)dh(r) ≤ γ

∫ 1
0 P (r)dr.

On the other hand, we see from (2.7) that

γ

∫ 1

0
p(r)dr ≤ γ

∫ 1

0
g(r)dr ≤ γ

∫ 1

0
P (r)dr.

Therefore, from (2.8) and (2.11) joined with this last set of inequalities, we
obtain that∣∣∣lim supt→0,t/∈E♦ t

∫∞
0 e−rtg(e−rt)dh(r) − γ

∫ 1
0 g(r)dr

∣∣∣ ≤ 2γε.

But ε is an arbitrary positive number. Consequently,

lim supt→0,t/∈E♦ t
∫∞
0 e−rtg(e−rt)dh(r) = γ

∫ 1
0 g(r)dr.

In a similar manner, we obtain

lim inft→0,t/∈E♦ t
∫∞
0 e−rtg(e−rt)dh(r) = γ

∫ 1
0 g(r)dr.

From (2.6), we see that
∫ 1
0 g(r)dr = 1. So we conclude from these last

two equalities that

(2.12) limt→0,t/∈E♦ t
∫∞
0 e−rtg(e−rt)dh(r) = γ.



3. DISTRIBUTIONS ON THE N -TORUS 305

Referring back to (2.6), we see that for t ∈ (0,∞)\E♦,
∫ ∞

0
e−rtg(e−rt)dh(r) =

∫ 1/t

0
e−rtg(e−rt)dh(r)

=

∫ 1/t

0
e−rtertdh(r)

= h(1/t).

Therefore, (2.12) gives us that

lim
t→0,t/∈E♦

th(1/t) = γ.

SettingR = 1/t and observing that h is continuous from the right enables
us to conclude that

lim
R→∞

h(R)

R
= γ,

and the proof to the theorem is complete. �

3. Distributions on the N -Torus

D(TN ), called the class of test functions, is the class of real functions
defined as follows:

D(TN ) = {φ : φ ∈ C∞(RN ), φ is periodic of period 2π in each variable}.
The notion that

φn → 0 in D(TN ) for {φn}∞n=1 ⊂ D(TN )

is defined below (3.1) in Chapter 3.
S is called a distribution on TN if it is a real linear functional on D(TN )

that meets the following condition:

(3.0) φn → 0 in D(TN ) =⇒ S(φn)→ 0.

The class of distributions on the N -torus will be designated by D′(TN ).
S ∈ D′(TN ) is defined initially as a real linear functional on D(TN ). We
extend the definition of S by setting S(λ + iφ) = S (λ) + iS(φ) for λ, φ ∈
D(TN ). We then define Ŝ(m) as follows:

(2π)N Ŝ(m) = S(e−im·x) = S(cosm · x)− iS(sinm · x)
for m ∈ ΛN .

The following theorem concerning Ŝ(m) will be proved here.

Theorem 3.1. Given S ∈ D′(TN ). There exists a positive integer J such
that

(3.1)
∑

1≤|m|

∣∣∣Ŝ(m)
∣∣∣
2
/ |m|4J <∞.
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Proof of Theorem 3.1. With no loss in generality, we can suppose from

the start that Ŝ(0) = 0. So, suppose that the conclusion to the theorem is
false, i.e.,

(3.2)
∑

1≤|m|

∣∣∣Ŝ(m)
∣∣∣
2
/ |m|4n =∞ for n = 1, 2, ....

We say that φ ∈ D(TN ) is a trigonometric polynomial if there exists an
r0 > 0 such that

φ̂(m) = 0 for |m| > r0.

Also, we observe from the fact that S is a linear functional on D(TN ) that
if φ is a trigonometric polynomial, then

S(φ) = (2π)N
∑

1≤|m|

Ŝ(m)φ̂(−m).

It consequently follows from (3.2) and elementary Hilbert space the-
ory that there exists a sequence of trigonometric polynomials {φn}∞n=1 with

φ̂n(0) = 0 ∀n such that

(3.3)

∣∣∣∣∣∣
∑

1≤|m|

Ŝ(m) φ̂n(−m)/ |m|2n

∣∣∣∣∣∣
≥ n ‖φn‖L2 for n = 1, 2, ....

We set

(3.4) ψn(x) =
∑

1≤|m|

φ̂n(m)eim·x/ |m|2n n ‖φn‖L2 ,

and observe that ψn ∈ D(TN ) is a trigonometric polynomial. Also, from
(3.3), we have that

(3.5) |S(ψn)| ≥ (2π)N for n = 1, 2, ....

On the other hand, we see from (3.4) that
∥∥∥∆kψn

∥∥∥
2

L2
= (2π)N

∑

1≤|m|

∣∣∣φ̂n(m)
∣∣∣
2
/ |m|4(n−k) n2 ‖φn‖2L2

for k, n = 1, 2, .... Consequently, for each fixed k,

lim
n→∞

∥∥∥∆kψn

∥∥∥
2

L2
= 0.

We conclude that ψn → 0 in D(TN ). But then

lim
n→∞

S(ψn) = 0.
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This last limit is a direct contradiction to the inequalities in (3.5). Hence,
the assumption in (3.2) must be false, and there must exist a positive integer
J such that the inequality in (3.1) is true. �

The next theorem we prove is the following:

Theorem 3.2. Suppose S ∈ D′(TN ) and φ ∈ D(TN ). Then

(3.6) S(φ) = (2π)N
∑

m∈ΛN

Ŝ(m)φ̂(−m)

where the series in (3.6) is absolutely convergent.

Proof of Theorem 3.2. With no loss in generality, we can suppose from

the start, once again, that Ŝ(0) = 0. Next, let J be the positive integer that
appears in (3.1) of Theorem 3.1 above. Then given φ ∈ D(TN ), it is clear
from the definition of D(TN ) given above that

∑

m∈ΛN

∣∣∣φ̂(m)
∣∣∣
2
|m|4J <∞.

Therefore, by Schwarz’s inequality,

(
∑

1≤|m|

∣∣∣Ŝ(m)φ̂(−m)
∣∣∣)2 ≤

∑

1≤|m|

∣∣∣Ŝ(m)
∣∣∣
2
/ |m|4J

∑

1≤|m|

∣∣∣φ̂(m)
∣∣∣
2
|m|4J ,

and it follows that the series given in (3.6) is absolutely convergent.
Next, set

φn(x) =
∑

|m|2≤n

φ̂(m)eim·x.

Then because φn(x) ∈ D(TN ) is a trigonometric polynomial,

S(φn) = (2π)N
∑

1≤|m|2≤n

Ŝ(m)φ̂(−m).

Also, it is clear that φn → φ in D(TN ) as n→∞. Consequently,

lim
n→∞

S(φn) = S(φ),

and it follows that

lim
n→∞

(2π)N
∑

1≤|m|2≤n

Ŝ(m)φ̂(−m) = S(φ),

which proves the theorem. �

For λ, φ ∈ D(TN ) and S ∈ D′(TN ), we define

λS(φ) = S(λφ),
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and observe that λS ∈ D′(TN ), i.e., λS is a real linear functional that meets
(3.0) above.

Next, we establish the following proposition:

Proposition 3.3. Given λ ∈ D(TN ) and S ∈ D′(TN ),

(3.7) λ̂S(m) =
∑

peΛN

λ̂(p)Ŝ(m− p) for m ∈ ΛN ,

where the series in (3.7) is absolutely convergent.

Proof of Proposition 3.3. To establish (3.7), we see that λ̂S(m) =
(2π)−NS(λe−im·x). Also, we define λn(x) to be the trigonometric polyno-
mial

(3.8) λn(x) =
∑

|p|2≤n

λ̂(p)eim·x.

So λ̂n(p) = λ̂(p) for |p|2 ≤ n and = 0 otherwise. It is clear that λn → λ in
D(TN ). Consequently,

(3.9) lim
n→∞

S(λne
−im·x) = S(λe−im·x).

Now,

λn(x)e−im·x =
∑

|p|2≤n

λ̂(p)e−i(m−p)·x.

So, with m fixed in ΛN , for n > |m|2 ,
(2π)−NS(λne

−im·x) =
∑

|p|2≤|m|2

λ̂(p)Ŝ(m− p) +
∑

|m|2+1≤|p|2≤n

λ̂(p)Ŝ(m− p).

Let J be the positive integer from Theorem 3.1. Then because λ ∈
D(TN ), it follows that

∑

p∈ΛN

∣∣∣λ̂(p)
∣∣∣
2
|m− p|4J <∞.

Then we obtain from Schwarz’s inequality that the series in (3.7) is abso-
lutely convergent.

Also, we see from this last equality that

(2π)−N lim
n→∞

S(λne
−im·x) = lim

n→∞

∑

|p|2≤n

λ̂(p)Ŝ(m− p).

But then from (3.9), it follows that

(2π)−NS(λe−im·x) = lim
n→∞

∑

|p|2≤n

λ̂(p)Ŝ(m− p),
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which establishes the proposition. �

In §3 of Chapter 3, we introduce the class A(TN ) ⊂ D′(TN ) as follows:

A(TN ) = {S ∈ D′(TN ) :
∣∣∣Ŝ(m)

∣∣∣ meets (3.4) and (3.5) in Chapter 3}.

In particular, we have S ∈ A(TN ) means that

(3.10)

(i)∃c > 0 such that
∣∣∣Ŝ(m)

∣∣∣ ≤ c ∀m ∈ ΛN ,

(ii) limmin(|m1|,...,|mN |)→∞

∣∣∣Ŝ(m)
∣∣∣ = 0.

Also, in §3 of Chapter 3, we define the class B(TN ) ⊂ A(TN ) by replacing
(ii)(3.10) with

lim
|m|→∞

∣∣∣Ŝ(m)
∣∣∣ = 0.

In Chapter 3, we will need the following proposition:

Proposition 3.4. Given λ ∈ D(TN ) and S ∈ A(TN ). Then λS ∈ A(TN ).
If, furthermore, S ∈ B(TN ), then λS ∈ B(TN ).

Proof of Proposition 3.4. It is sufficient just to prove the first part of the
above proposition, since the second part follows in a very similar manner.

From the fact that λ ∈ D(TN ), it follows that
∑

p∈ΛN

∣∣∣λ̂(p)
∣∣∣ < ∞.

Consequently, we have from (3.7) and from (3.10)(i) that
∣∣∣λ̂S(m)

∣∣∣ ≤ c
∑

p∈ΛN

∣∣∣λ̂(p)
∣∣∣ ∀m ∈ ΛN .

So to complete the proof of the proposition, it remains to show that

(3.11) lim
min(|m1|,...,|mN |)→∞

∣∣∣λ̂S(m)
∣∣∣ = 0.

We will establish (3.11) by showing that given ε > 0,

(3.12) lim supmin(|m1|,...,|mN |)→∞

∣∣∣λ̂S(m)
∣∣∣ ≤ ε.

Since
∑

p∈ΛN

∣∣∣λ̂(p)
∣∣∣ <∞, choose r0 > 0 so that

∑

|p|>r0

∣∣∣λ̂(p)
∣∣∣ ≤ εc−1.
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Then it follows from (3.7), (3.10)(i), and this last inequality that

∣∣∣λ̂S(m)
∣∣∣ ≤ ε+

∣∣∣∣∣∣
∑

|p|≤r0

λ̂(p)Ŝ(m− p)

∣∣∣∣∣∣
.

Now the number of p ∈ ΛN such that |p| ≤ r0 is finite. Therefore, from
(3.10)(ii) and this last inequality, we see that

lim supmin(|m1|,...,|mN |)→∞

∣∣∣λ̂S(m)
∣∣∣ ≤ ε.

This establishes (3.12), and the proof of the proposition is complete. �

Exercises.

1. Suppose S ∈ D′(TN ) and
∑

1≤|m|

∣∣∣Ŝ(m)
∣∣∣
2
/ |m|12 =∞.

Prove there exists a trigonometric polynomial φ such that∣∣∣∣∣∣
∑

1≤|m|

Ŝ(m)φ̂(−m).

|m|6

∣∣∣∣∣∣
≥ 6 ‖φ‖L2 .

2. Let λ ∈ D(TN ) and S ∈ D′(TN ). Define

S1 (φ) = S (λφ) for φ ∈ D(TN ).

Prove S1 ∈ D′(TN ).

4. Hj (x) and the Cα-Condition

In Chapter 6, we will need a theorem connecting the functions Hj (x),
j = 1, ..., N, previously introduced in Chapter 3 (see Lemma 1.4) with func-
tions u ∈ Cα (TN ) , 0 < α < 1. So here withN ≥ 2, we establish the following
result:

Theorem 4.1. Suppose f ∈ C (TN ). Set

uj (x) = (2π)−N
∫

TN

Hj (x− y) f (y) dy for j = 1, ..., N.

Then uj (x) ∈ Cα (TN ) , 0 < α < 1.

Proof of Theorem 4.1. For ease of notation, we will assume that j = 1
and show that

u1 (x) ∈ Cα (TN ) , 0 < α < 1.

A similar proof will prevail for the other values of j.
In order to accomplish this last fact, we will demonstrate the following:
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there exists a positive constant c1 such that given x, x′ ∈ RN with
∣∣x− x′

∣∣ ≤ 10−1,

then

(4.1)
∣∣u1 (x)− u1

(
x′
)∣∣ ≤ c1

∣∣x− x′
∣∣ log

∣∣x− x′
∣∣−1

where c1 depends only on N and ‖f‖L∞(TN ).

To establish (4.1), using the periodicity of f and H1, we observe that

u1 (x)− u1

(
x′
)

= v1 (z)− v1 (0)

where z = x− x′,

v1 (z) = (2π)−N
∫

TN

H1 (z − y) f1 (y) dy,

and

f1 (y) = f
(
y + x′

)
for ∀y ∈ RN .

Since ‖f‖L∞(TN ) = ‖f1‖L∞(TN ), we see that to establish (4.1), it is suffi-

cient to show that (4.1) holds for the special case when x́ = 0 and |x| ≤ 10−1.
So the proof of the theorem will be complete when we show the following:

(4.2) ∃c1 > 0 such that |u1 (x)− u1 (0)| ≤ c1 |x| log |x|−1

for |x| ≤ 10−1 where c1 depends only on N and ‖f‖L∞(TN ).

Using the fact that H1 (x) is harmonic in RN\ ∪m∈ΛN
{2πm}, we see

that it is sufficient to establish the inequality in (4.2) when u1 is replaced
by w1 where

(4.3) w1 (x) = (2π)−N
∫

B(0, 1
2)
H1 (x− y) f (y) dy

and c1 depends only on N and ‖f‖L∞(TN ).

Also, we observe from Lemma 1.4 in Chapter 3 that there is a function
η1 (x), which is harmonic in B(0, 1) such that

η1 (x) = H1(x) + (2π)Nx1/ |SN−1| |x|N for x ∈ B(0, 1)\ {0} .
So using this η1 (x) in conjunction with (4.3), we see that the inequality

in (4.2) will be established if we can show

(4.4) ∃c1 > 0 such that |W1 (x)−W1 (0)| ≤ c1 |x| log |x|−1

for |x| ≤ 10−1 where c1 depends only on N and ‖f‖L∞(B(0, 1
2))

and

(4.5) W1 (x) =

∫

B(0, 1
2)

(x1 − y1) |x− y|−N f (y) dy.

To show that (4.4) is valid, we write

B(0, 1/2) = A|x| ∪B|x|
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where

A|x| = B(0, 2 |x|) and B|x| = B (0, 1/2) \B(0, 2 |x|).
Then
(4.6)

W1 (x)−W1 (0) = [

∫

A|x|

+

∫

B|x|

][(x1 − y1) |x− y|−N + y1 |y|−N ]f (y) dy.

Now,
∣∣∣
∫
A|x|

[(x1 − y1) |x− y|−N + y1 |y|−N ]f (y) dy
∣∣∣

≤ 2 ‖f‖L∞(B(0, 1
2))
∫
B(0,3|x|) |y|

−(N−1) dy.

Since ∫

B(0,3|x|)
|y|−(N−1) dy = γN |x| ,

where γN is a positive constant depending only on N, it follows from this
last inequality and (4.6) that the inequality in (4.4) will be valid provided
we show

(4.7) ∃γ∗N > 0 such that

∫

B|x|

|g (y)− g (y − x)| dy ≤ γ∗N |x| log |x|−1

for |x| ≤ 10−1 where γ∗N depends only on N and

(4.8) g (y) = y1/ |y|N .
From the mean-value theorem, for y ∈ B(0, 1/2) with |y| ≥ 2 |x| and

|x| ≤ 10−1, we have ∃θ with 0 < θ < 1 such that

g (y)− g (y − x) =

N∑

j=1

∂g

∂yj
(y − θx)xj .

But from (4.8), we see that
∣∣∣∣
∂g

∂yj
(y)

∣∣∣∣ ≤ δj |y|−N for j = 1, ..., N

where δj is a constant depending only on N. Since |y − θx| ≥ |y| /2, we
conclude that

|g (y)− g (y − x)| ≤ δ∗N |x| |y|−N

for y ∈ B(0, 1/2) with |y| ≥ 2 |x| and |x| ≤ 10−1 where δ∗N is a constant
depending only on N.

Consequently,
∫

B|x|

|g (y)− g (y − x)| dy ≤ δ∗N |x| δ∗∗N
∫ 1/2

2|x|
r−1dr

for |x| ≤ 10−1 where δ∗∗N is another constant depending only on N.
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The inequality in (4.7) follows immediately from this last inequality, and
the proof of the theorem is complete. �

Exercises.

1. Let H1 (x) be the function previously introduced in Lemma 1.4 of
Chapter 3. Suppose that f ∈ C (T3). Define

u (x) =

∫

T3\B(0,1)
H1 (x− y) f (y) dy.

Prove that u ∈ C∞
(
B
(
0, 1

8

))
.





APPENDIX C

Harmonic and Subharmonic Functions

1. Harmonic Functions

Given Ω ⊂ RN, an open connected set, N ≥ 1, we say u (x) is harmonic
in Ω if u ∈ C2 (Ω) and furthermore

∆u (x) = 0 ∀x ∈ Ω,

where

∆u (x) =
N∑

j=1

∂uj

∂xj
(x).

The operator ∆ is called the Laplace operator.
A well-known fact about a function u harmonic in Ω is that the mean-

value theorem holds for u, namely, if for an ε > 0, B (x, ρ+ ε) ⊂ Ω, then for
ρ > 0,

1

|B (x, ρ)|

∫

B(x,ρ)
u (y) dy = u (x)

where |B (x, ρ)| stands for theN -volume of B (x, ρ). (For the numerical value
of |B (x, ρ)|, see (3.4) in Chapter 1. For the proof of the mean-value theorem
for harmonic functions, see [ABR, Chapter 1]. The proof of this theorem can
also be found in many other places.)

We shall need a number of theorems about harmonic functions that
involve spherical harmonics. With A(R1, R2) designating the annular region

(1.1) A(R1, R2) = {x : R1 < |x| < R2},
the first theorem of this nature that we prove is the following:

Theorem 1.1. Suppose {Q♦
n(x)}∞n=1 and {Q♦♦

n (x)}∞n=1 are two sequences
of spherical harmonics of degree n. Suppose, furthermore,

(1.2)

∞∑

n=0

Q♦
n(x) =

∞∑

n=0

Q♦♦
n (x) ∀x ∈ A(R1, R2),

315
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where both series converge uniformly on compact subsets of A(R1, R2), the
annular region given by (1.1). Then

Q♦
n(x) = Q♦♦

n (x) ∀x ∈ RN and ∀n.

Proof of Theorem 1.1. Write Q♦
n(x) = rnY ♦

n (ξ) and Q♦♦
n (x) = rnY ♦♦

n (ξ)
where x = rξ and ξ ∈ ∂B(0, 1). Then, because both series converge uni-
formly on ∂B(0, ρ) when ρ = (R1 + R2)/2, it follows from (1.2) above and
the orthogonality condition given in (3.14) of Appendix A and on the addi-
tion formula given in (3.9) of Appendix A that
∫

∂B(0,1)
[Q♦

n(ρξ)−Q♦♦
n (ρξ)]Cν

n(η · ξ)dS(ξ) = 0 ∀η ∈ ∂B(0, 1) and ∀n,

where Cν
n(t) is the n-th Gegenbauer polynomial discussed in Appendix A,

§3. Hence,∫

SN−1

Cν
n(ξ · η)[Y ♦

n (ξ)− Y ♦♦
n (ξ)]dS(ξ) = 0 ∀η ∈ SN−1and ∀n.

But then it follows from (3.12) in Appendix A that

Y ♦
n (η) = Y ♦♦

n (η) ∀η ∈ SN−1 and ∀n,
which completes the proof of the theorem. �

Theorem 1.2. With N≥ 2, suppose u(x) is harmonic in B(0,R), R>0.
Then ∃ {Qn(x)}∞n=0, where Qn(x) is a spherical harmonic of degree n, such
that

(1.3) u(x) =

∞∑

n=0

Qn(x) ∀x ∈ B(0, R).

Also, the series in (1.3) converges uniformly on compact subsets of B(0,R).

Proof of Theorem 1.2. For N = 2, the proof of this theorem follows
immediately from the well-known theory of holomorphic functions and the
fact that u = Re(f) in B(0, R) where f is holomorphic in B(0, R).

For the rest of the proof, we suppose that N ≥ 3. Let R1 < R. Then it
follows from Theorem 1.1 that the theorem will be established, if we show
the following:

(i) ∃ {Qn(x)}∞n=0, where Qn(x) is a spherical harmonic of degree n, such
that

(1.4) u(x) =

∞∑

n=0

Qn(x) ∀x ∈ B(0, R1);

(ii) the series in (1.4) converges uniformly on compact subsets of
B(0, R1).
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To see that (1.4) is valid, we observe that u ∈ C(∂B(0, R1)). Hence, from
the well-known technique for solving the Dirichlet problem for the closed ball
B(0, R1) (see [Ev, p. 41] or [Pi, p. 357]), we have that

(1.5) u(x) =
R2

1 − |x|2
|SN−1|R1

∫

∂B(0,R1)

u(y)

|x− y|N
dS(y) ∀x ∈ B(0, R1).

With y = R1η and x = ρξ where ξ, η ∈ SN−1, we observe from (3.29) in
Appendix A that

R2
1 − |x|2

|x− y|N
= R

−(N−2)
1

1− ( ρ
R1

)2

[1− 2 ρ
R1
ξ · η + ( ρ

R1
)2]N/2

= R
−(N−2)
1

∞∑

n=0

[
N − 2 + 2n

N − 2
]Cν

n(ξ · η)( ρ
R1

)n,

where because of the bound in (3.30) of Appendix A, the series converges
uniformly for 0 ≤ ρ ≤ R2 < R1 and ξ, η ∈ SN−1. As a consequence, we
obtain from (1.5) that

(1.6) u(ρξ) =

∞∑

n=0

N − 2 + 2n

(N − 2) |SN−1|
(
ρ

R1
)n
∫

SN−1

Cν
n(ξ · η)u(R1η)dS(η).

From the addition formula for surface spherical harmonics given in (3.9)
of Appendix A, we see that the integral on the right-hand side of (1.6)
represents a surface spherical harmonic of degree n, which we call Yn(ξ).
Also, we have from (3.30) in Appendix A that there exists a constant c such
that

(1.7) |Yn(ξ)| ≤ cn2ν−1 ∀ξ ∈ SN−1 and ∀n.
Setting

Qn(x) =
N − 2 + 2n

(N − 2) |SN−1|
(
ρ

R1
)nYn(ξ),

we have that Qn(x) is a spherical harmonic of degree n, and furthermore,
from (1.7), that the series

∑∞
n=0 Qn(x) = u(x) converges uniformly for

|x| ≤ R2 < R1. �

In Chapter 3, we shall need the following two theorems regarding point
singularities for harmonic functions. We shall state them separately for di-
mension N = 2 and dimension N ≥ 3. The two proofs will be different
because in the former case, we’ll use the theory of holomorphic functions.

Theorem 1.3. With N= 2, suppose u(x) is harmonic in B(0,1)\{0}. Sup-
pose, also, u∈ L1(B(0, 1)). Then, ∃ constants b0, b1, and b2 and a function
u0(x) harmonic in B(0,1) such that with r = |x|,
(1.8) u(x) = b0 log r + b1x1r

−2 + b2x2r
−2 + u0(x) ∀x ∈ B(0 , 1 )\{0}.
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Theorem 1.4. With N≥ 3, suppose u(x) is harmonic in B(0,1)\{0}. Sup-
pose, also, u∈ L1(B(0, 1)). Then, ∃ constants b0, b1, ..., bN and a function
u0(x) harmonic in B(0,1) such that with r = |x|,

(1.9) u(x) = b0r
−(N−2) +

N∑

j=1

bjxjr
−N + u0(x) ∀x ∈ B(0, 1)\{0}.

Proof of Theorem 1.3. Since we are going to use holomorphic function
theory to establish this theorem, for convenience, we will set x1 = x and
x2 = y, and will designate the half-open line segment {(x, 0) : 0 ≤ x < 1}
by ls. Then, for (x, 0) in the open line segment, we define

v(x, 0) = −
∫ x

1/2
uy(s, 0)ds for 0 < x < 1.

Next, we cut the unit disk, B(0,1), with the half-open line segment ls
and define

v(x, y) =

∫

Cγ

ux(s, t)dt − uy(s, t)ds for (x, y) ∈ B(0, 1)\ls,

where Cγ is any piece-wise C1 curve starting at (1/2, 0) and going to (x, y)
in B(0, 1)\ls initially through the first quadrant. Also, letting C(0, r) be the
circle with center 0 and radius r, we see from the harmonicity of u in the
punctured unit disk and from Green’s theorem that there is a constant β
such that ∫

C(0,r)
ux(s, t)dt − uy(s, t)ds =β for 0 < r < 1,

where the integration is in the counter-clockwise direction.
As a consequence of this last fact, we see that the function

v(x, y) − βθ(x, y)/2π is both single-valued and harmonic in B(0, 1)\{0},
where θ = Im(log z), i.e., x = rcosθ and y = rsinθ. But then it follows that

u(x, y)− β log r = Re(f(z)),

where f(z) is holomorphic in B(0, 1)\{0}. So, from Laurent’s theorem, we
obtain that

u(x, y)− β log r = Re(

∞∑

n=−∞

cnr
neinθ)

where
∑∞

n=0 cnr
neinθ converges absolutely and uniformly on compact sub-

sets of B(0, 1) and
∑−1

n=−∞ cnr
neinθ converges absolutely and uniformly on

compact subsets of B(0, 1)\{0}. We conclude there exists a function u0(x, y)
which is harmonic in B(0,1) such that

(1.10) u(x, y)− β log r − u0(x, y) =

∞∑

n=1

(an cosnθ + bn sinnθ)r−n,
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where the series converges uniformly on compact subsets of B(0, 1)\{0}.
We set w(x, y) = u(x, y) − β log r − u0(x, y) and let k ≥ 2 be any fixed

integer. Then
∫ 2π

0
w(r cos θ, r sin θ) cos kθdθ = πakr

−k for 0 < r < 1/2.

Since w ∈ L1[B(0, 1/2)], we obtain from this last equality after multi-
plying through by r−k and integrating from 0 to ε that

π |ak| ≤ εk−2

∫

B(0,ε)
|w(x, y)| dxdy.

But
∫
B(0,ε) |w(x, y)| dxdy → 0, as ε → 0. So we conclude from this last

inequality that ak = 0 for k ≥ 2.
A similar technique shows that bk = 0 for k ≥ 2. Hence, we obtain from

(1.10) that

u(x, y)− β log r − u0(x, y) = (a1 cos θ + b1 sin θ)r−1

for (x, y) ∈ B(0, 1)\{0}, and the proof of the theorem is complete. �

In order to prove Theorem 1.4, we shall need some lemmas.

Lemma 1.5. With N ≥ 3, suppose u(x) is harmonic in B(0, R1)\{0},
where R1 >0. Suppose, also, u∈ L∞(B(0, R1)\{0}). Then there exists a
function u0(x) that is harmonic in B(0,R1/2) such that

u(x) = u0(x) ∀x ∈ B(0, R1/2)\{0}.
What the conclusion of Lemma 1.5 states is that the singularity at the

origin is removable.

Proof of Lemma 1.5. From a consideration of the function v(x) =
u(R1x), we see from the start, without loss in generality, 2nd we can assume
that R1 = 1.

To prove the lemma, we let u0(x) be the solution to the Dirichlet problem
on B(0, 1/2) for the boundary value u(x) on ∂B(0, 1/2). We then set

w(x) = u(x)− u0(x),

and see that the lemma will be established once we show

w(x) = 0 ∀x ∈ B(0, 1/2)\{0}.
We will show

(1.11) w(x) ≤ 0 ∀x ∈ B(0, 1/2)\{0}.
Similar reasoning will show the reverse inequality

w(x) ≥ 0 ∀x ∈ B(0, 1/2)\{0}.
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To establish the inequality in (1.12), we introduce the function

Ψ(x) = |x|−(N−2) − 2N−2 ∀x ∈ RN\{0}.
Then Ψ(x) is harmonic in B(0, 1/2)\{0} and also positive in this same re-
gion.

Let x0 be a fixed but arbitrary point in B(0, 1/2)\{0}, and let ε > 0,
be given. If we can show

(1.12) w(x0) ≤ εΨ(x0),

then by letting ε → 0, we obtain w(x0) ≤ 0, and hence, the inequality in
(1.11).

To establish the inequality in (1.12), we observe that there is a positive
constant M such that

w(x) ≤M ∀x ∈ B(0, 1/2)\{0}.
Since εΨ(x) →∞, as |x| → 0, we can find r0 with |x0| > r0 > 0 such that

εΨ(x) ≥M ∀x ∈ ∂B(0, r0).

With A(r0, 1/2) the annular region defined in (1.1) above, we see that
w(x) − εΨ(x) is harmonic in A(r0, 1/2), continuous in the closed region
A(r0, 1/2), 0 for |x| = 1/2, and ≤ 0 for |x| = r0. Therefore, by the maximum
principle for harmonic functions, w(x) − εΨ(x) ≤ 0 for x ∈ A(r0, 1/2). In
particular,

w(x0)− εΨ(x0) ≤ 0.

This gives the inequality in (1.12) and establishes the lemma. �

The next lemma that we need will involve the Kelvin transformation.
In order to define this transformation, we first have to discuss inversions.
Given Ω ⊂ RN\{0} an open set, we define Ω∗, the inversion of Ω, to be

Ω∗ = { x

|x|2
, x ∈ Ω}.

It is easy to check that if Ω is an open N -ball, then so is Ω∗. Also, it is easy
to see that y ∈ Ω∗ ⇒ y

|y|2
∈ Ω and consequently that (Ω∗)∗ = Ω.

With Ω an open set as above and u ∈ C(Ω), we define K(u(x)), the
Kelvin transformation of u, as follows:

(1.13) K(u(x)) = |x|2−N u(
x

|x|2
) ∀x ∈ Ω∗.

If Qn(x) = rnYn(ξ) is a spherical harmonic of degree n, then

(1.14) K(Qn(x)) = r2−N−nYn(ξ).
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Using the spherical coordinate form of ∆ given in (3.5) of Appendix A, it is
easy to check that

r2−N−nCν
n(cos θ) is harmonic in RN\{0}.

Hence, it follows that as a function of r and ξ, r2−N−nCν
n(η ·ξ) is harmonic in

RN\{0} for every η ∈ SN−1. Using this fact in conjunction with the formula
involving the Riemann integral in (3.12) in Appendix A, we obtain that
r2−N−nYn(ξ) is harmonic in RN\{0}. Consequently, we have from (1.14)
that

(1.15) K(Qn(x)) is harmonic in RN\{0},
for every spherical harmonic Qn(x) of degree n.

The next lemma we establish is the following:

Lemma 1.6. With N≥ 3, suppose u(x) is harmonic in Ω, where Ω ⊂
RN\{0} is an open set. Then K(u(x)), the Kelvin transformation of u, is
harmonic in Ω∗.

Proof of Lemma 1.6. It follows from (1.15) that if f(x) is a harmonic
polynomial, i.e., a finite linear combination of spherical harmonics, then
K(f(x)) is harmonic in RN\{0}.

To establish the lemma, it is sufficient to show the following:
(1.16)

B(x0, 3r0) ⊂ Ω where r0 > 0⇒ K(u(x)) is harmonic in [B(x0, r0)]
∗.

Applying Theorem 1.2 above to the N -ball B(x0, 3r0), we see that there
is a sequence of harmonic polynomials {fn(x)}∞n=1 such that

lim
n→∞

fn(x) = u(x) uniformly ∀x ∈ B(x0, 2r0).

Therefore,

(1.17) lim
n→∞

K[fn(x)] = K[u(x)] uniformly ∀x ∈ [B(x0, r0)]
∗.

But as we observed above, K[fn(x)] is harmonic in [B(x0, r0)]
∗. Furthermore,

the uniform limit of harmonic functions is harmonic. So the statement in
(1.17) shows that the statement in (1.16) is indeed true, and the proof of
the lemma is complete. �

Next, we establish the folowing lemma:

Lemma 1.7. With N≥ 3 and r0>0, let Ω = {x : |x| > r0}. Suppose u(x)
is harmonic in Ω, and

(1.18) lim sup
|x|→∞

|x|N−2 |u(x)| <∞.
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Then there exists a sequence {Y n(ξ)}∞n=0 of surface spherical harmonics of
degree n such that

u(x) =
∞∑

n=0

r2−N−nYn(ξ) ∀x ∈ Ω,

where the series converges unifomly on compact subsets of Ω.

Proof of Lemma 1.7. From Lemma 1.6, we have that K[u(x)] is harmonic
in the punctured N -ball, B(0, r−1

0 )\{0}, where K[u(x)] is given by (1.13).
It follows from this formula for K[u(x)] and the lim sup in (1.18) that

lim sup
|x|→0

|K[u(x)]| <∞.

Consequently, K[u(x)] is uniformly bounded in B(0, r−1
0 /2)\{0}. Hence, by

Lemma 1.5, the singularity at the origin is removable. Therefore, by Theorem
1.2, there exists a sequence {Yn(ξ)}∞n=0 of surface spherical harmonics of
degree n such that

K[u(x)] =

∞∑

n=0

rnYn(ξ) ∀x ∈ B(0, r−1
0 )\{0},

where the series converges uniformly on compact subsets of B(0, r−1
0 )\{0}.

But then applying the Kelvin transformation K to both sides of this last
equality, we see that

(1.19) u(x) =

∞∑

n=0

K[rnYn(ξ)] ∀x ∈ Ω,

where the series converges uniformly on compact subsets of Ω.
As we have observed previously,

K[rnYn(ξ)] = r2−N−nYn(ξ).

Putting this value in the series on the right-hand side of the equality in
(1.19) for each n completes the proof of the lemma. �

The next lemma is the analogue of Theorem 1.1 for K[Qn(x)], the Kelvin
transform of a spherical harmonic.

Lemma 1.8. Suppose {Y ♦
n (ξ)}∞n=1 and {Y ♦♦

n (ξ)}∞n=1 are two sequences of
surface spherical harmonics of degree n. Suppose, in addition,

(1.20)

∞∑

n=0

r2−N−nY ♦
n (ξ) =

∞∑

n=0

r2−N−nY ♦♦
n (ξ) ∀rξ ∈ A(R1, R2),
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where both series converge uniformly on compact subsets of A(R1, R2), the
annular region given by (1.1). Then

Y ♦
n (ξ) = Y ♦♦

n (ξ) ∀ξ ∈ SN−1 and ∀n ≥ 0.

Proof of Lemma 1.8. Because both series converge uniformly on ∂B(0, ρ)
when ρ = (R1+R2)/2, it follows from (1.20) and the orthogonality condition
given in (3.14) of Appendix A that

ρ2−N−n

∫

∂B(0,1)
[Y ♦

n (ξ)− Y ♦♦
n (ξ)]Cν

n(η · ξ)dS(ξ) = 0 ∀η ∈ ∂B(0, 1)

and ∀n ≥ 0.
But then it follows from (3.12) in Appendix A that

Y ♦
n (η) = Y ♦♦

n (η) ∀η ∈ ∂B(0, 1) and ∀n ≥ 0,

which completes the proof of the lemma. �

The final lemma we need for the proof of Theorem 1.4 is the following:

Lemma 1.9. With N ≥ 3, suppose u(x) is harmonic in B(0, 1)\{0}. Then
there exists {Yn(ξ)}∞n=0, a sequence of surface spherical harmonics of degree
n, and a function u0(x), which is harmonic in B(0,1/2) such that with
x=rξ,

u(x) = u0(x)−
∞∑

n=0

r2−N−nYn(ξ) ∀x ∈ B(0, 1/2)\{0},

where the series converges uniformly on compact subsets of B(0, 1/2)\{0}.

Proof of Lemma 1.9. We select a positive R1 < 1/2, and apply Green’s
second identity in a standard manner (see [Ke, p. 215 and p. 261] or [Jo, p.

97]) in the annular region A(R1, 1/2) to the functions u(x) and |x− y|2−N

and obtain

u(x) =
(N − 2)−1

|SN−1|
[

∫

∂B(0, 1
2
)
(|x− y|2−N ∇u · n− u∇ |x− y|2−N · n)dS(y)

−
∫

∂B(0,R1)
(|x− y|2−N ∇u · n− u∇ |x− y|2−N · n)dS(y)]

∀x ∈ A(R1, 1/2) where |SN−1| is the volume of the unit (N −1)-sphere and
n is the outward pointing unit normal. We call the first expression on the
right-hand side of the above equality u0(x) and the second v(x). So

(1.21) u(x) = u0(x)− v(x)
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where u0(x) is harmonic in B(0, 1/2) and v(x) is harmonic for |x| > R1. An
easy calculation shows

lim
|x|→∞

|x|N−2 v(x) = |SN−1|−1
∫

∂B(0,R1)
∇u · n dS(y).

Therefore, it follows from Lemma 1.7 that there exists a sequence
{Yn(ξ)}∞n=0 of surface spherical harmonics of degree n such that

v(x) =

∞∑

n=0

r2−N−nYn(ξ) ∀x ∈ A(R1, 1/2)

where the series converges uniformly on compact subsets of the annulus
A(R1, 1/2). Consequently, we see from (1.21) that

(1.22) u(x) = u0(x)−
∞∑

n=0

r2−N−nYn(ξ) ∀x ∈ A(R1, 1/2).

To see that this last equality is valid in all of B(0, 1/2)\{0}, let x0 be
an arbitrary but fixed point in B(0, 1/2)\{0}, with |x0| < R1. We select an

R
′

1 > 0 with R
′

1 < |x0| < R1. Then we proceed exactly as above and obtain
a sequence of surface spherical harmonics {Y ♦

n (ξ)}∞n=0 such that

u(x) = u0(x)−
∞∑

n=0

r2−N−n
n Y ♦

n (ξ) ∀x ∈ A(R
′

1, 1/2).

But then it follows from (1.22) that

∞∑

n=0

r2−N−nYn(ξ) =

∞∑

n=0

r2−N−n
n Y ♦

n (ξ) ∀x ∈ A(R1, 1/2),

and consequently from Lemma 1.6 that

Y ♦
n (ξ) = Yn(ξ) ∀ξ ∈ SN−1.

We conclude that the equality in (1.22) holds also at x0 and therefore ∀x ∈
B(0, 1/2)\{0}.

In a similar manner, we conclude that the series in (1.22) converges
uniformly on compact subsets of B(0, 1/2)\{0}. �

Proof of Theorem 1.4. Since our given u(x) is harmonic in B(0, 1)\{0},
we invoke Lemma 1.9 and obtain a sequence of surface spherical harmonics
{Yn(ξ)}∞n=0 and a function u0(x) harmonic in B(0, 1/2) such that

(1.23) u(x)− u0(x) = −
∞∑

n=0

r2−N−nYn(ξ) ∀x ∈ B(0, 1/2)\{0},

where the series in this last equality converges uniformly on compact subsets
of B(0, 1/2)\{0}.
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With 0 < r < 1/4, we multiply both sides of (1.23) by Cν
k (ξ ·η), integrate

over SN−1, and use formulas (3.12) and (3.14) in Appendix A to obtain

(1.24) rN+k−2

∫

SN−1

[u(rξ)− u0(rξ)]C
ν
k (ξ · η)dS(ξ) = − 2πν+1

Γ(ν)(k + ν)
Yk(η)

∀η ∈ SN−1.
Taking k ≥ 2, we integrate the absolute value of both sides of (1.24)

again, this time from 0 to ε to obtain

ε |Yk(η)| ≤ cεk−1

∫

B(0,ε)
|u(x)− u0(x)| dx

∀η ∈ SN−1 where c is a constant independent of ε. Since u ∈ L1(B(0, 1))
and u0 is harmonic in B(0, 1/2), it is clear from this last inequality that

|Yk(η)| ≤ εk−2o(1) as ε→ 0 ∀η ∈ SN−1.

We conclude that Yk(η) = 0 ∀η ∈ SN−1 for k ≥ 2.
As a consequence, we obtain from (1.24) that

u(x) = u0(x)−
Y0(ξ)

rN−2
− Y1(ξ)

rN−1
∀x ∈ B(0, 1/2)\{0}.

The conclusion to the theorem follows easily from this last equality. �

We will need the following theorem in Chapter 3.

Theorem 1.10. Let u(x) be harmonic in RN , N ≥ 2. Suppose there is a
positive integer n and a constant c > 0, such that

(1.25) |u(x)| ≤ c |x|n for 1 ≤ |x| <∞.
Then u(x) is a polynomial of degree at most n.

Proof of Theorem 1.10. It follows from Theorem 1.2 above with x = rξ,
ξ ∈ SN−1, that

(1.26) u(x) =

∞∑

k=0

rkYk(ξ) ∀x ∈ RN,

where Yk(ξ) is a surface spherical harmonic of degree k and the series in
(1.26) converges uniformly on compact subsets of RN .

We let j > n be a positive integer, multiply both sides of the equality in
(1.26) by Cν

j (ξ · η), and integrate over SN−1 to obtain

rjYj(ξ) = bj

∫

SN−1

u(rη)Cν
j (ξ · η)dS(η) ∀ξ ∈ SN−1,

where bj is a constant, and we have invoked formula (3.12) in Appendix A.
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It follows from this last equality and (1.25) that for r > 1,

|Yj(ξ)| ≤ crn−jbj

∫

SN−1

∣∣Cν
j (ξ · η)

∣∣ dS(η) ∀ξ ∈ SN−1.

Letting r →∞, we see that

Yj(ξ) = 0 ∀ξ ∈ SN−1 and j > n,

and hence from (1.26) that

u(x) =

n∑

k=0

rkYk(ξ) ∀x ∈ RN.

But rkYk(ξ) is a spherical harmonic of degree k. Hence, rkYk(ξ) is a
homogeneous polynomial of degree k in the variables x1, ..., xN . So the con-
clusion to the theorem follows from this last equality. �

Exercises.

1. Let x0 ∈ R3 with x0 6= 0. Also, let S (x0, r0) be the 2-sphere, which
is the boundary of the 3-ball B (x0, r0) where 0 < r0 < |x0| . Set

[S (x0, r0)]
∗ =

{
y : y =

x

|x|2
for x ∈ S (x0, r0)

}
.

Prove that [S (x0, r0)]
∗ is also a 2-sphere.

2. With η∗ = (1, 0, ..., 0) and ξ ∈ SN−1, where SN−1 is the unit N − 1-
sphere in RN, using the spherical coordinate notation introduced in §3 of
Chapter 1, prove that for n ≥ 1,

r2−N−nCν
n(η∗ · ξ)

is a harmonic function in RN\ {0}, where N ≥ 3 and ν = N−2
2 .

2. Subharmonic Functions

Subharmonic functions in N-space are defined in a similar manner to
convex functions in 1-space. Recall that f(t) ∈ C(α, β) is convex in the
open interval (α, β) if the following is valid for every finite closed sub-interval
[α1, β1] of (α, β): Let l(t) be the line going through the two points (α1, f(α1))
and (β1, f(β1)). Then

f(t) ≤ l(t) ∀t ∈ [α1, β1].

Subharmonic functions are defined similarly. Let Ω ⊂ RN be an open set.
We say u(x) ∈ C(Ω) if u(x) is a continuous real-valued function in Ω. Then
u(x) ∈ C(Ω) is subharmonic in Ω if the following holds for every closed ball
B(x0, r) ⊂ Ω, r > 0.
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Let v(x) ∈ C(B(x0, r)) and harmonic in B(x0, r). Suppose also that
v(x) = u(x) for x ∈ ∂B(x0, r). Then

u(x) ≤ v(x) ∀x ∈ B(x0, r).

To handle the properties of subharmonic functions that are useful in
Fourier analysis, we next introduce the concept of a generalized Laplacian.

Let G(x) be a function in L1 in a neighborhood of the point x0. Then
we use the following notation for the volume mean of G at x0:

(2.1) G[r](x0) = |B(x0, r)|−1
∫

B(x0,r)
G(x)dx,

where |B(x0, r)| stands for the N -dimensional volume of B(x0, r).
We define the upper generalized Laplacian of G at x0, designated by

∆∗G(x0), in the following manner:

(2.2) ∆∗G(x0) = 2(N + 2) lim sup
r→0

G[r](x0)−G(x0)

r2
.

∆∗G(x0), the lower generalized Laplacian, is defined similarly using the
lim inf. It is easy to prove that if G is in class C2 in a neighborhood of x0,
then ∆∗G(x0) = ∆∗G(x0) = ∆G(x0) where ∆G(x0) is the usual Laplacian
of G at x0.

We want, ultimately, to show that if u(x) ∈ C(Ω) and if ∆∗u(x) ≥ 0 for
all x ∈ Ω, then u(x) is subharmonic in Ω. In order to do this, we first need
the following theorem:

Theorem 2.1. Let Ω ⊂ RN be an open set where N≥ 1. Suppose that
u∈C(Ω) and that u has property P at every x∈ Ω, where property P is
defined in (3.3) below. Then u is subharmonic in Ω.

u has property P at x means the following: ∃{rn}∞n=1 with rn > 0 ∀n
and limn→∞rn = 0 such that

(2.3) u[rn](x)− u(x) > 0 ∀n.

Proof of Theorem 2.1. Suppose to the contrary, that u is not sub-
harmonic in Ω. Then there exists a closed ball B(x0, r) ⊂ Ω, r > 0,
and v ∈ C(B(x0, r)) and harmonic in B(x0, r) with v(x) = u(x) for
x ∈ ∂B(x0, r) and there is an x∗ ∈ B(x0, r) such that

(2.4) u(x∗) > v(x∗).

Set w(x) = u(x) − v(x) and let γ = maxx∈B(x0,r)w(x). Then γ > 0

because of (2.4). Also, set M = {x ∈ B(x0, r) : w(x) = γ}. Then M is a
closed set contained in the open ball B(x0, r).

Let η designate the distance from M to ∂B(x0, r). Then η > 0. We know
there exists x∗∗ ∈M such that the distance from x∗∗ to ∂B(x0, r) is exactly
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η. Hence, every ball of the form B(x∗∗, ρ) with 0 < ρ < η contains points
not in M. Therefore,

(2.5) w[ρ](x
∗∗) < w(x∗∗) for 0 < ρ < η.

On the other hand, u has property P at x∗∗, and v
[ρ]

(x∗∗) = v(x∗∗) for
0 < ρ < η. So,

w[ρ](x
∗∗) = u[ρ](x

∗∗)− v(x∗∗) for 0 < ρ < η.

For n > n0, the rn that are involved in the definition of property P at x∗∗

are smaller than η. Consequently,

w[rn](x
∗∗) = u[rn](x

∗∗)− v(x∗∗)
> u(x∗∗)− v(x∗∗).

Therefore,

(2.6) w[rn](x
∗∗) > w(x∗∗) for n > n0.

The inequalities in (2.5) and (2.6) are mutually contradictary. Hence, u
is indeed subharmonic in Ω. �

Theorem 2.2. Let Ω ⊂ RN be an open set where N≥ 1. Suppose that
u∈C(Ω) and that

(2.7) ∆∗u(x) ≥ 0 ∀x ∈ Ω.

Then u(x) is subharmonic in Ω.

Proof of Theorem 2.2. For j, a positive integer, set

(2.8) uj(x) = u(x) + |x|2 /j.
Then it follows from the inequality in (2.7) that ∆∗uj(x) ≥ 2N/j for every
x ∈ Ω. But then we see from the definition given in (2.2) that each uj(x)
has property P for every x ∈ Ω. Hence, we obtain from Theorem 2.1 that

(2.9) uj(x) is subharmonic in Ω for every j.

Let B(x0, r) ⊂ Ω, where r > 0, and suppose v(x) is the function har-
monic in B(x0, r) that agrees with u(x) for x ∈ ∂B(x0, r) and vj(x) is the

function harmonic in B(x0, r) that agrees with uj(x) for x ∈ ∂B(x0, r).
Now the following facts are clear from (2.8) and the maximum principle for
harmonic functions:

(i) lim
j→∞

uj(x) = u(x) uniformly for x ∈ B(x0, r);

(ii) lim
j→∞

vj(x) = v(x) uniformly for x ∈ B(x0, r).

From (2.9), we have that

uj(x) ≤ vj(x) for x ∈ B(x0, r) and ∀j.
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So from (i) and (ii) above, it follows that

u(x) ≤ v(x) for x ∈ B(x0, r).

Hence, indeed, u is subharmonic in Ω. �

Exercises.

1. Suppose G (x) ∈ C2 (B (0, 1)) where B (0, 1) is the unit 3-ball in R3.
With ∆∗G(x0) defined in (2.2) above, prove

∆∗G(x0) =
∂2G

∂x2
1

(x0) +
∂2G

∂x2
2

(x0) +
∂2G

∂x2
3

(x0) for x0 ∈ B (0, 1).

2. Suppose f (t) is an increasing convex function for 0 < t <∞. Suppose
also that f (t) ∈ C2 ((0,∞)).Z Set

G (x) = f
(
x2

1 + x2
2 + 1

)
for x ∈ R2.

Prove that G (x) is a subharmonic function in R2.
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