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Preface 

My aim in writing this short book has been to introduce the 

average student, with no more than an elementary knowledge 

of physics or mathematics, to the thermal properties of metals, 

insulators and semiconductors. The reader is most likely to en¬ 

counter practical problems that are associated with the flow of 

heat and for this reason, particularly in the first chapter on ex¬ 

perimental techniques, I have laid greater emphasis on thermal 

conductivity than on thermal capacity and expansion. 

A brief outline of the background solid-state theory in 

Chapter 2 is followed in the next two chapters by the discussion 

of the thermal properties of the crystal lattice and of the elec¬ 

trons in metals. In the last chapter, the treatment of the thermo¬ 

electric effects in semiconductors leads on naturally to discus¬ 

sion of the very interesting bipolar heat conduction effect and 

of the bipolar thermomagnetic effects that are just beginning to 

find practical application. Finally, I mention the fascinating 

phenomenon of phonon-drag that will surely provide a fruitful 

field for future research. 
I wish to thank Dr. L. Jacob and Dr. B. Yates for their most 

helpful advice during the planning of the book. 

H. J. Goldsmid 

m 
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1 Thermal Properties and Their 
Measurement 

1.1. Specific Heat 

The specific heat of any material is defined as the quantity of 

heat that raises the temperature of unit mass by one degree. 

Experiments always yield the specific heat cp at constant pres¬ 

sure whereas it is the specific heat cv at constant volume that is 

of more direct interest to the theoreticians. The specific heats at 

constant pressure and constant volume are related to one 

another by the expression 

cp- cv = Pv2T/xp (1-1) 

where pv is the volume coefficient of expansion, T is the abso¬ 

lute temperature, x is the compressibility and p is the density. 

Many of the early experiments on the specific heat of solids 

were carried out using the method of mixtures. In this method a 

sample of material is heated to some temperature Ti and then 

immersed in a liquid (usually water), of known specific heat, at 

a temperature T0. Thereupon the sample and the liquid reach a 

temperature T%. The ratio of the thermal capacity (i.e. the pro¬ 

duct of specific heat and mass) of the solid to that of the liquid 

is equal to (Tz - 7o)/(7i - Tz). It is, of course, necessary to make 
corrections for heat losses to the surroundings and it is desir¬ 

able that these losses should be kept as small as possible. 

In most of the modern methods for the determination of 

specific heats, the sample is heated electrically at a known rate 

and its rate of rise of temperature is measured. The classical 
1 



THERMAL PROPERTIES AND THEIR MEASUREMENT 

instrument, which illustrates this technique, is the Nernst 

vacuum calorimeter. It was designed specifically for use at low 

temperatures where much of the theoretical interest lies. 

VACUUM 

PUMP 

Fig. 1. The Nemst vacuum calorimeter. 
(a) Schematic experimental arrangement. 
(b) Simplified temperature-time plot. 

The Nernst calorimeter is shown in one of its forms in Figure 

1(a). The sample chamber is suspended inside a heat shield, 

which is maintained at a temperature close to that at which the 

specific heat is required. Thermal contact between the sample 

and its sealed container is ensured by the presence of a small 

quantity of exchange gas. After the temperature of the sample 

has reached a value close to that of the heat shield, the space in¬ 

side the latter is evacuated. Heat transfer between the sample 

chamber and its surroundings is then due almost entirely to con- 
2 



SPECIFIC HEAT [1-1] 

duction along the fine leads to the heater and resistance thermo¬ 

meter, there being little heat radiation at low temperatures. The 

temperature of the sample chamber is recorded as a function of 

time, before, during and after a measured amount of energy is 

supplied to the heater. A schematic plot of temperature against 

time is shown in Figure 1(b). The rise of temperature of the 

sample, that would have resulted in the absence of heat transfer 

to the surroundings, is obtained by extrapolation of the plots of 

initial and final drift to the middle of the heating period. 

If the material under test is an easily-machined metal, the 

heater and resistance thermometer wires can be wound on to a 

cylindrical specimen directly, and the sample chamber shown in 

Figure 1(a) is no longer necessary. 

1.2. Expansion Coefficient 

The linear expansion coefficient /? of a body is defined as the 

increase of length per unit length when the temperature of the 

body is raised by one degree. The coefficient of cubical expan¬ 

sion or volume coefficient is three times the linear coefficient 

for an isotropic solid. 
The accurate measurement of the linear expansion coefficient 

requires a technique for the precise determination of very small 

changes of length. One of the commonest methods was devised 

by Fizeau and makes use of interference fringes between the 

plane polished face of the test specimen and a similarly pre¬ 

pared glass plate. The fringes, whose spacing depends on the 

angle between the two surfaces, move across the field of view as 

the specimen expands. The position of the glass plate is fixed by 

three screws which pass through the platform on which the 

specimen rests. The expansion coefficient of the screws can be 

determined by observing the motion of interference fringes pro¬ 

duced between the glass plate and the platform with no speci¬ 

men in place. 
3 



THERMAL PROPERTIES AND THEIR MEASUREMENT 

In a more convenient version of the interferometric apparatus 

the sample is in the form of a hollow cylinder which rests on a 

plane polished platform. Interference fringes are observed be¬ 

tween the platform and a flat glass plate that rests on top of the 

sample. In this case, the absolute expansion coefficient is deter¬ 

mined directly. 

Fig. 2. Thermal expansion apparatus based on the principle of 

the optical lever. 

Another popular technique employs the principle of the opti¬ 

cal lever. An apparatus that makes use of this principle is shown 

in Figure 2; it is intended for operation up to about 1000°K. 

The expansion of the specimen relative to quartz causes one of 

the quartz tubes to slide within the other. The relative move¬ 

ment leads to rotation of the mirror which is detected using a 

lamp and scale. The displacement of the light spot on the scale 

is R/r times the relative change in length of the specimen, R 

being the distance between the mirror and the scale, and r the 

radius of the roller on which the mirror is mounted. It will be 

appreciated that the absolute expansion coefficient of the speci¬ 

men cannot be determined by this method unless the expansion 

coefficient of the quartz is known. 

4 



EXPANSION COEFFICIENT [1.2] 
The expansion coefficient of any material becomes very small 

at low temperatures but it is in this region that some of the most 

interesting behaviour is to be found. It is, therefore, particu¬ 

larly important that ultra-sensitive techniques should be avail¬ 

able for low temperature studies. Perhaps the most sensitive 

method available at present is one in which the electrical capac¬ 

itance between the test sample and a fixed plate is measured 

using a specially designed bridge circuit. Expansion or contrac¬ 

tion of the sample alters this capacitance, the changes in which 

can be determined to a very high degree of precision. In fact, it 

is claimed that length changes as small as 10-8 cm can be de¬ 

tected and that measurements to 10-9 cm might be possible in 

the future. 

CENTRAL GLASS 

Fig. 3. Measurement of thermal expansion by G. K. White’s 
capacitance method. 

(a) Differential expansion cell. 
(b) Absolute cell. 

5 



THERMAL PROPERTIES AND THEIR MEASUREMENT 

The expansion cells used in this method are shown schematic¬ 

ally in Figure 3. In the differential cell (Figure 3(a)) the expan¬ 

sion of the specimen relative to the surrounding copper cylinder 

is observed. The expansion coefficient of copper is found using 

the ‘absolute’ cell shown in Figure 3(b), where the spacing be¬ 

tween the inner and outer cylinders changes as the copper 

expands or contracts. 

1.3. Thermal Conductivity 

The thermal conductivity k of a material is the rate at which 

heat is conducted across unit cross-sectional area when there is 

unit temperature gradient perpendicular to this area. 

Most of the really accurate measurements of thermal conduc¬ 

tivity at and below room temperature make use of the static, 

absolute method. Heat is supplied at a known rate to one end of 

the test sample and removed from the other end by a heat sink 

that is kept at a fixed temperature. The thermal conductivity is 

found in terms of the measured temperature gradient associated 

with the flow of heat. 

The dimensions of the sample and the method of determining 

the temperature gradient depend on the order of magnitude of 

the thermal conductivity. When the thermal conductivity is low 

(as it is in many electrical insulators) it is important that the 

lateral heat losses should be kept as small as possible. Thus, the 

ratio of length to cross-section area is made low and this also 

assists the experimenter by reducing the time taken to reach 

thermal equilibrium. Of course, it is difficult to measure the 

temperature gradient accurately when the length is small, since 

the thermometers cannot then be attached to the sample itself. 

In practice, for poor conductors of heat, the thermometers are 

attached to the source of heat and the sink, great care being 

taken to reduce the thermal resistance at the contacts with the 

sample to the lowest possible value. The surfaces of contact are 
6 



THERMAL CONDUCTIVITY [1.3] 
made smooth and flat and, if the sample cannot be soldered in 

place, some liquid such as glycerine is applied at the interfaces. 

The actual value of the contact resistance can be determined if 

samples of different length are employed in successive experi¬ 
ments. 

If it is at all convenient, a guard-ring should surround the 

sample; otherwise corrections must be made for heat radiation 

from the exposed surfaces. In any case, the surrounding space 

should be evacuated to pressures below about 10-5 mm Hg 

to eliminate air-conduction and convection losses. The required 

degree of vacuum can best be determined using a Pirani gauge, 

since this instrument is based on the pressure dependence of the 

thermal conductivity in a low-pressure gas. 

When the thermal conductivity is reasonably high, as it is for 

most metals, the lateral heat losses become rather less important 

than the contact resistances. It is then vital that the thermo¬ 

meters should be attached to the sample itself. Thus, a precise 

determination of the temperature gradient can be made only if 

the length of the sample is large compared with its width. 

Most solids become much better conductors of heat at low 

temperatures than at room temperature while radiation losses 

rapidly become less important as the temperature is reduced. 

Thus most of the low-temperature measurements make use of 

long rather than short samples. One piece of apparatus is illus¬ 

trated schematically in Figure 4 and has been used for semi¬ 

conductors and metals at and above liquid helium tempera¬ 

tures. Typical sample dimensions for this apparatus are length 

5 cm, and diameter one or two mm. A piece of resistance wire is 

wound around, and cemented to, one end of the sample; the 

other end of the sample is attached, via a copper bar, to the high 

pressure chamber of a Simon expansion liquifier. When 

measurements are required below 4-2°K (the boiling point of 

helium at atmospheric pressure) the chamber is filled with liquid 

helium which is allowed to boil under reduced pressure. Above 
7 



THERMAL PROPERTIES AND THEIR MEASUREMENT 

10°K liquid hydrogen is used as the coolant while above 55°K 

liquid oxygen is employed. Temperature control at some of the 

intermediate temperatures is achieved by means of the heating 

element wound on the copper bar. 

Fig. 4. H. M. Rosenberg’s low-temperature thermal 

conductivity apparatus. 

Helium-gas thermometers are used for measuring the tempera¬ 

ture gradient in the above apparatus but carbon- or germanium- 

resistance thermometers could also be employed. Thermo¬ 

couples are convenient and are usually adopted for measure¬ 

ments of temperature at and above that of liquid nitrogen 

(77°K) but, until recently, sensitive and reproducible thermo¬ 

couples for the liquid helium and liquid hydrogen temperature 
8 



THERMAL CONDUCTIVITY [1.3] 

ranges were not available. Now, however, the use of a dilute 

alloy of iron in gold as a thermoelectric material seems to have 

made possible accurate measurements with thermocouples at 

low temperatures. 

It is often difficult to make a precise absolute determination 

of the thermal conductivity of a solid at some elevated tempera¬ 

ture. This is because of the increased radiation losses from the 

exposed surfaces of the heater as the temperature is raised. 

When the dimensions of the sample are large the losses are pro¬ 

portionately less than when they are small, and the guard-ring 

principle can be applied quite easily. However, when only small 

specimens of the material are available, it is better to use a 

comparison method. Here the same quantity of heat is made 

to pass through the test sample and a standard sample, the 

thermal conductivity of which is known; the temperature 

gradients in the two materials are then compared with one 

another. 

An apparatus that has been used for ceramics up to 1000°C 

is shown in Figure 5. The samples are one-inch cubes, pressed 

together between two dense alumina blocks. Two standard 

samples (one on either side of the test sample) are employed so 

as to minimise errors due to lateral heat flow. In order to avoid 

errors due to thermal resistance at the contacts, the measuring 

thermocouples are wedged into fine holes that are drilled in all 

the samples. If there were any excessive resistance at the con¬ 

tacts, it would be difficult to provide effective shielding against 

heat losses, so sheets of silver foil (or platinum foil if above 

900°C) are interposed between the surfaces. 

The temperature gradient in the column is established first 

using the heaters A and B and then the auxiliary heaters C-G 

are utilised in preventing the lateral flow of heat. When the 

power supplies to these auxiliary heaters are correctly adjusted, 

the distribution of temperature in the column is matched by 

that in the surrounding alumina shield. 
9 
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THERMAL PROPERTIES AND THEIR MEASUREMENT 
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Fig. 5. J. Francl and W. D. Kingery’s apparatus for 
comparison of thermal conductivities. 

Although dense alumina was originally used as the standard 

material, there are a number of other substances on which 

accurate absolute measurements of the thermal conductivity 

have been made. Generally speaking it is best to use, as stan¬ 

dards, samples that have a thermal conductivity which is of the 

same order as the estimated value for the test sample. 

Although the static methods described above usually lead to 

more accurate values for the thermal conductivity than can be 

obtained using dynamic methods, they require a considerable 

time for the completion of a set of observations. Not all the 

dynamic methods are inaccurate, however, and it has been 

claimed that the errors are no more than about 4% for the 

10 



THERMAL CONDUCTIVITY [1.3] 

apparatus illustrated in Figure 6. The test sample is clamped 

between two copper blocks by means of the vertical screw. The 

bridge which carries this screw is insulated from the lower 

copper block by the methyl methacrylate walls of the apparatus. 

Fig. 6. A. V. Ioffe and A. F. Ioffe’s dynamic method for the 

measurement of thermal conductivity. 

Copper-constantan thermocouples are inserted in the copper 

blocks in the neighbourhood of the sample. If the sample is an 

electrical conductor, a thin sheet of mica is interposed between 

it and the lower block to ensure electrical insulation; thus, the 

temperature difference can be measured using the thermo¬ 

couples connected differentially as shown. 

The whole apparatus is at first brought to a uniform tempera¬ 

ture. Then the lower block is immersed in a cooling bath, and 

the temperature difference between the blocks and the absolute 

temperature of one of them are continuously recorded. If, at 
II 



THERMAL PROPERTIES AND THEIR MEASUREMENT 

some time t the temperatures of the upper and lower blocks are 

T2 and T\ respectively, 

k(T2 - TjM// = C2 dT/dt (1.2) 

where k is the thermal conductivity of the sample, A is its cross- 

section area and / is its length. C2 is the thermal capacity of the 

copper block that is assumed to be very much greater than that 

of the sample. In a practical experiment the thermal capacity of 

the sample cannot usually be neglected, but the correction to be 

applied because of this is usually quite small. The need for 

another correction arises through the heat transfer between the 

upper block and the surrounding walls; it can be calculated 

from the measured temperature difference between the upper 

and lower blocks when equilibrium has been reached. A further 

correction, for heat transfer between the two blocks through the 

air surrounding the specimen, can be determined by conducting 

an experiment with a sample that is a very poor conductor of 

heat, e.g. a block of paper. Convective heat transfer is negligible 

since the lower of the two blocks is the cooler. Finally, some 

allowance must be made for the thermal resistance of the mica 

insulation (if present) and for any other resistance between the 

sample and the blocks; the resistances at the contacts are said to 

be negligible if the surfaces are ground flat, and if gallium, an 

amalgam, glycerine or oil is interposed. 

1.4. Thermal Diffusivity 

A quantity that is closely related to the thermal conductivity is 

the thermal diffusivity kd which is defined as ;c/cp, where c is the 

specific heat and p is the density. It is a measure of the rate at 

which a disturbance in the temperature of one part of a body 

travels to any other part; it is also a measure of how little the 

disturbance is attenuated as it travels from point to point. 
12 



THERMAL DIFFUSIVITY [1.4] 

The thermal diffusivity of a material can be measured by 

Angstrom’s method, in which a sinusoidal temperature varia¬ 

tion is applied to one end of a very long bar, and the variation 

of temperature with time is observed at two points on the bar. 

If there is no exchange of heat between the surfaces of the 

sample and its surrounding enclosure, it can be shown that 

kd = co/2/2 ln2a = cd/2/2/?2 (1.3) 

where co is the angular frequency of the applied temperature 

variation, a is the ratio of the amplitudes of the temperature 

wave at the two points separated by a distance /, and /? is the 

corresponding phase difference In a. being equal to /?. When the 

surface heat losses are appreciable, In a and ft become unequal 

but the thermal diffusivity is still given by a simple expression, 

namely, 

kd = cd/2/2/J In a (1.4) 

It is possible to calculate the surface losses from the difference 
between In a and /?. 

The fact that the thermal diffusivity can be obtained so 

simply has led to the fairly widespread use of this and similar 

methods in the indirect determination of the thermal conduc¬ 

tivities of solids at high temperatures. One attractive feature is 

the elimination of the corrections for heat losses that are very 

important in conventional thermal conductivity measurements 

at high temperatures. Another advantage arises from the fact 

it does not matter if the contact between the heat source and the 

sample is poor. A disadvantage of this type of measurement is 

that the specific heat and the density must also be determined 

before the thermal conductivity can be calculated. 

The recent measurement of the thermal diffusivity of ger¬ 

manium and other electrical conductors at elevated tempera¬ 

tures, using a variable transformer controlled by a specially- 

shaped cam to generate a sinusoidal temperature wave, pro¬ 

vides evidence for the accuracy of Angstrom’s method. In fact, 
13 



THERMAL PROPERTIES AND THEIR MEASUREMENT 

it does not matter if the wave form is not quite perfect since the 

higher harmonics are very rapidly attenuated (see Equation (1.3)). 

The variations of temperature at the two points on an electric¬ 

ally conducting sample can be detected from the thermoelectric 

voltages picked up by wires attached at these points; in effect, 

the sample then acts as its own thermoelectric thermometer, so 

that there is no question of imperfect contact between thermo¬ 

meter and sample. 
It is recognised that thermal diffusivity measurements can be 

very useful at low temperatures. When the temperature is close 

to the absolute zero, the specific heat of a solid is very small and, 

therefore, difficult to measure. On the other hand, the thermal 

conductivity should be no more difficult to determine than at 

higher temperatures. Thus, if the thermal diffusivity and the 

thermal conductivity are measured, the specific heat can be 

calculated. 

1.5. Thermoelectric and Thermomagnetic Coefficients 

The thermal properties of a solid are often of importance in 

determining its suitability for any particular application. For 

example, if it is necessary that the substance should be capable 

of withstanding severe thermal shock without fracture, its 

thermal expansion coefficient should be low and its thermal 

conductivity should be high (its mechanical properties should, 

of course, also be good). The thermal conductivity is a property 

of great significance in the consideration of materials for 

thermoelectric generation or refrigeration. A good thermo¬ 

electric material should have a high ratio of electrical conduc¬ 

tivity to thermal conductivity since this minimises the irrever¬ 

sible effects due to Joule heating and beat conduction; the 

Peltier or Seebeck coefficient should, of course, be large too. 

The absolute Seebeck coefficient a of a material is defined as 

the potential gradient that arises when it is subjected to unit 

temperature gradient. The absolute Peltier coefficient n is the 
14 



THERMOELECTRIC AND THERMOMAGNETIC COEFFICIENTS [1.5] 

quantity of heat that is transported by unit quantity of elect¬ 
ricity flowing in the material. It should be noted that the Seebeck 
and Peltier effects are revealed only when one forms a junction 
between one material and another; thus, any practical experi¬ 
ment determines the difference between the Seebeck or Peltier 
coefficients of the two materials. 

There is a third thermoelectric coefficient, the Thomson co¬ 
efficient t, which is defined as the rate of reversible heat genera¬ 
tion or absorption in a length of material that is subjected to 
unit temperature difference, when unit electric current is passed. 

The Seebeck, Peltier and Thomson coefficients are related to 
one another by the thermodynamic equations 

and 
7t — cxT (1.5) 

T = T da/dr (1.6) 

Equations (1.5) and (1.6) are known as Kelvin’s laws. 
The absolute Seebeck coefficient of a given conductor can be 

determined as follows. At very low temperatures, the differen¬ 
tial Seebeck coefficient is measured for a junction between the 
conductor and a superconducting metal or alloy; since the 
differential Seebeck coefficient between any pair of super¬ 
conductors is zero, it is reasonable to assign zero absolute 
Seebeck coefficient to any superconductor. The Thomson co¬ 
efficient is then measured from these very low temperatures up 
to high temperatures. The high-temperature absolute Seebeck 
coefficient can be evaluated using Equation (1.6) in integral 
form, Tl 

«2-*i = J(r/T)dT (1.7) 
Ti 

where <*2 and a 1 are the absolute Seebeck coefficients at the high 
and low temperatures T2 and 7i respectively. This method has 
been applied to the metal lead using the superconducting com¬ 
pound NbsSn (which has a transition to the normal state at 
about 18°K), for the low temperature measurements. 

15 



THERMAL PROPERTIES AND THEIR MEASUREMENT 

The Seebeck coefficient and the thermal conductivity of an 

electrical conductor are, in general, altered when a magnetic 

field is applied (usually in the transverse direction). The change 

in Seebeck coefficient is known as the magneto-Seebeck effect 

or longitudinal Nernst effect, while the change in thermal con¬ 

ductivity is called the magneto-thermal resistance effect or 

Maggi-Righi-Leduc effect. 

When there is a flow of heat through a body in a transverse 

magnetic field, there appears, in the mutually perpendicular 

direction, a potential gradient (the Nernst effect) and a tempera¬ 

ture gradient (the Righi-Leduc effect). Similarly, when an 

electric current flows through a material, the action of a mag¬ 

netic field leads to a transverse potential gradient (the Hall 

effect) and temperature gradient (the Ettingshausen effect). The 

four transverse thermomagnetic coefficients are defined in 

Table 1. 

Table 1. Definition of the Transverse Thermomagnetic Coefficients 

Name of 
coefficient 

Experimental 
conditions 

Observed 
quantity 

Definition of 
coefficient 

Hall ix ± 0, iy = VXT = VyT = 0 Ey R = Ey/Hix 

Ettings¬ 
hausen 

ix ¥= 0, iy = VXT = wy = 0 VyT P = VyTIHix 

Nernst VxT ^ 0, ix = iy =VyT=0 Ey Q = Ey/HVxT 

Righi- 
Leduc 

VxT ^ 0, ix — iy = Wy = 0 VyT S = VyT/HVxT 

Primary flow in x-direction, magnetic field H in z-direction 
i = electric current density, w = heat flux density, E = electric field, 
VT = temperature gradient. 

Usually the thermomagnetic effects are rather small, but 

under some conditions (as will be discussed in Chapter 5) they 

can become large and, at low temperatures, the Nernst and 
16 



THERMOELECTRIC AND THERMOMAGNETIC COEFFICIENTS [1.5] 
Ettingshausen effects can be at least as effective as the Seebeck 

and Peltier effects in energy conversion devices. It should be 

noted that the Nernst and Ettingshausen coefficients are thermo¬ 

dynamically related to one another by the equation 

kP = QT (1.8) 

This equation may be compared with the Kelvin relation 
Equation (1.5). 

It will be appreciated that the experimental condition (the 

so-called ‘isothermal’ condition) for the measurement of the 

Nernst coefficient that has been given in Table 1 is very difficult 

to apply in practice. Usually one measures the ‘adiabatic’ 

Nernst coefficient Qa for which the condition VyT= 0 is re¬ 

placed by the condition wy — 0. The isothermal Nernst co¬ 

efficient Q, which is far more meaningful from the theoretical 

viewpoint, can be calculated from the adiabatic Nernst co¬ 

efficient only if the Righi-Leduc and Seebeck coefficients are 
also known since 

Q = Qa + OtS (1.9) 

Because of this inter-dependence of the various coefficients, it is 

desirable that as many of them as possible should be deter¬ 

mined in the same experiment. 

Figure 7 shows an experimental arrangement that has been 

used in work on semi-metals at liquid nitrogen temperature. 

Leads 1 and 3 are used for measuring the longitudinal electric 

field and leads 2 and 3 for determining the transverse electric 

field. Similarly the longitudinal temperature gradient is found 

from the thermocouples 1-4 and 3-6, while the transverse 

temperature gradient is found using the couples 2-5 and 3-6. 

When the primary flow is an electric current, it passes through 

the specimen via the copper heat sink and heat source. The 

heavy copper lead to the heat source (not shown in the diagram) 

is disconnected during thermal conductivity measurements, 
17 
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HIGH 

Fig. 7. Apparatus for measurement of the thermogalvano- 
magnetic coefficients. 

1, 2, 3 Chromel wires. 4, 5, 6 Alumel wires. 
7, 8 Connections for heater leads. 

9 Connection for current lead to specimen 
(heater leads and current lead not shown). 

since it would provide a substantial thermal shunt to the sample 

the high vacuum ensures near-adiabatic conditions. 
18 



Insulators, Petals and Semi¬ 
conductors 

2.1. Interatomic Bonds and the Crystal Lattice 

A solid body is generally made up of one or more crystals, in 

each of which the atoms are arranged on a more or less regular 

lattice. An amorphous solid is an exception though it does re¬ 

tain some short-range order, i.e. any group of closely neigh¬ 

bouring atoms is not arranged in a completely random way. 

The particular crystal structure favoured by an element or 

compound depends largely on the way in which the atoms are 

bound to each other. One of the simplest types of bond arises 

from the Coulomb attraction between ionized atoms with 

charges of opposite sign. The charging of the atoms in turn 

arises from the tendency for the formation of closed electric 

shells. Thus, an alkali metal such as sodium has only one elec¬ 

tron outside its closed shells, and it is easy for this electron to be 

detached; the alkali metals are said to be strongly electro¬ 

positive. Likewise, the halogens are strongly electronegative 

since there is a tendency for a neutral halogen atom to take up 

the one electron that is needed to complete its outer shell. Ionic 

binding is thus favoured in compounds between highly electro¬ 

positive and electronegative elements. The alkali halides (e.g. 

sodium chloride) form cubic crystals in which each positive or 

negative ion is surrounded by six nearest neighbours with 

charges of the opposite sign. It will be realised, of course, that 

the Coulomb attraction between ions of opposite sign must 

change to a predominantly repulsive force as the distance 
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between the ions decreases below that for the equilibrium 

position in the natural crystal. 

The binding in a non-metallic element such as diamond, or in 

a compound between two elements of similar electronegativity, 

results from the sharing between neighbouring atoms of the 

electrons in the incomplete outer shells. A carbon atom in 

diamond has four outer electrons, each of which is shared with 

another atom; thus, in a diamond-type crystal each atom has 

four nearest neighbours. The very strong bonds that arise from 

the sharing of electrons are called covalent. In a covalent 

crystal the binding electrons are found close to the lines that 

join neighbouring atoms, i.e. the bonds are directed, whereas in 

ionic crystals the outer electrons tend to form spherical clouds 

around the electronegative atoms. 

Metallic binding is likewise due to the sharing of electrons, 

but in metals all the outer electrons are shared between all the 

atoms. Here it is unnecessary that the number of nearest neigh¬ 

bours should be related to the valency of the elements, and it is 

found that many metals take up one of the two crystal struc¬ 

tures in which there is very close packing; these are the face- 

centred cubic and close-packed hexagonal structures. 

Atoms which are electrically neutral are held together by the 

rather weak van der Waals-type of bond resulting from the 

small periodic dipole moments possessed by the neutral atoms; 

it is responsible for the binding in the condensed inert gases. 

The assumption that the atoms of a crystal are arranged in a 

perfectly regular fashion is, at best, no more than a good 

approximation. For example, in a real crystal there are various 

types of point defect associated with vacancies, substitutional 

and interstitial impurities; there are also the ‘line’ defects known 

as ‘dislocations’. Even if all these defects were absent, the 

strict periodicity of the lattice would still be disturbed, at any 

temperature above the absolute zero, by the thermal vibrations 
of the atoms. 
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The atomic vibrations have a predominating influence on the 

thermal properties of solids. Thus, when a solid is heated, most 

of the energy that is supplied is used in increasing the amplitude 

of the vibrations. Because the interatomic forces do not strictly 

obey Hooke’s law, the increased amplitude of vibration as the 

temperature is raised leads, in general, to thermal expansion. 

Heat conduction in electrical insulators is due to the transfer of 

vibrational energy from atom to atom. 

The atoms do not, of course, vibrate independently of one 

another, since they are linked together by the interatomic bonds. 

It is convenient, then, to consider, not the vibrations of the indi¬ 

vidual atoms, but rather the vibrational waves that extend 

throughout the whole crystal. The periodic nature of the crystal 

lattice implies that only certain modes of vibration (the so- 

called normal modes) are permissible; these are characterised 

by specific values of wavelength and frequency. Furthermore, 

the amount of energy in each mode can only amount to an in¬ 

tegral (or zero) number of quanta; these quanta are usually 

known as ‘phonons’. 

In discussing the thermal conductivity of the lattice it is 

customary to think, not of the collective vibrations extending 

through the whole crystal, but of the ‘phonon’ wave packets 

arising from the interference between normal modes of slightly 

different frequency. The use of the term ‘phonon’ in this book 

usually implies that one of these wave packets is being con¬ 

sidered. 

2.2. The Free Electron Theory of Metals 

The free electron theory of metals was first presented by Drude 

and later developed by Lorentz and others. It was based on the 

assumption that all except the outer electrons of the atoms in the 

metal are tightly bound. The outer electrons were supposed to 

form an electron gas having properties that could be deter- 
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mined from the kinetic theory of gases. In particular, it was 

assumed that thermal energy would be distributed among the 

electrons according to the classical Maxwell-Boltzmann statis¬ 

tics, the mean energy being 3kT/2, where k is Boltzmann’s 

constant. 

The classical free electron theory had some success in ex¬ 

plaining the properties of metals. It gave a reasonable value for 

the electrical conductivity, assuming the number of free elec¬ 

trons to be equal to the number of atoms, and the electron free 

path to be of the order of the interatomic spacing. The theory 

indicated that the electrical conductivity should fall with in¬ 

creasing temperature as is found in practice (though it gave the 

wrong power-law for the temperature-dependence). A triumph 

of the classical theory was its explanation of the Wiedemann- 

Franz law which states that the ratio of the thermal conduc¬ 

tivity to the electrical conductivity is the same for all metals at a 

given temperature. 

Certain features of the classical theory, however, make it un¬ 

tenable. One of the most convincing proofs that it is invalid is 

provided by the fact that the specific heat of a metal at ordinary 

temperatures has the value 3k per atom, the same value as for 

an electrical insulator. If the electrons really behaved as a 

classical gas they should make an appreciable contribution to 

the specific heat. 

Sommerfeld showed that some of the shortcomings of the 

classical theory can be overcome if account is taken of the fact 

that a free electron gas obeys Fermi-Dirac statistics rather than 

Maxwell-Boltzmann statistics. In other words the classical 

theory must be replaced by the quantum theory. According to 

the laws of quantum statistics 

(i) electrons can have spins with quantum numbers \ or 

—} but otherwise they are indistinguishable from one 
another. 
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(ii) electrons reside in discreet energy states with character¬ 

istic values for the momentum, 

and (iii) there can be no more than one electron with a given 

spin in a given energy state (the Pauli exclusion 

principle). 

Sommerfeld showed that, in unit volume of free space, the 

number of allowed electronic states with energies lying between 

e and £ + d£ is 

g(s) de = {47r(2m)^£i//i3} d£ (2.1) 

where m is the mass of a free electron and h is Planck’s constant. 

The classical theory indicates that the energy of all electrons 

should be zero at 0°K. On the other hand, the quantum theory 

shows that, at this temperature, the n electrons merely occupy 

the states cf lowest energy. At higher temperatures the dis- 

distribution of electrons within the energy states is determined 

by the Fermi-Dirac distribution function 

/(£) = 1j1 exp ^ ^ + lj, (2.2) 

where /(e) is the probability that a state of energy s contains an 

electron. £ is called the Fermi energy and has such a value that 

J/(e)0(e)d£ = n, (2.3) 
o 

where g(e) is the density of states at energy £ given by Equation 

(2.1). 
Figure 8 shows the energy-distribution of the electrons at 

0°K and at a temperature T that is much less than £/k (the so- 

called Fermi temperature). It should be noted that £//c is of the 

order of 104 or 105°K for typical metals, though it can be very 

much smaller for semiconductors and semi-metals. It will be 

seen that the electron distribution changes but little as the 

temperature is raised and it is immediately obvious why the 

electrons make only a small contribution to the specific heat. 
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Fig. 8. Distribution of electrons with energy according to 
the free electron quantum theory. £„ is the Fermi energy at 0°K. 

If the temperature is much greater than £/£, which implies 

that the electron concentration must be very much less than 

that of the atoms in the solid, Equation (2.2) becomes 

/(e) = exp ^ - S-Z± y (kT ► 0- (2.4) 

This is the Maxwell-Boltzmann distribution function and, if the 

electron concentration is small enough for Equation (2.4) to be 

obeyed, the electron gas is said to be classical. On the other 

hand, if the temperature is much less than L,/k the electron gas 

is termed ‘degenerate’. 

One consequence of ‘degeneracy’ is that only a small pro¬ 

portion of the outer electrons in a metal contribute to the con¬ 

duction processes. The transport of charge through a solid re¬ 

quires the movement of electrons between energy states; as it 

moves from state to state an electron can change its energy in 

steps of no more than about kT. Vacant states are, thus, only 

accessible to electrons which have an energy within about kT 

of the Fermi energy. 
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Since so few electrons carry any current it is clear that their 

free path length must be much greater than that predicted by 

the classical theory. The free electron quantum theory does not 

explain why the free path length of the electrons should be large 

or why it should vary with temperature. It cannot explain the 

difference between metals and insulators, and it cannot account 

for the fact that certain electrical conductors have positive Hall 

coefficients. In order to explain these facts we introduce the 
band theory of solids. 

2.3. Energy Bands 

Since the electrons in a solid move, not in free space but in an 

array of atoms that are coupled together, it is hardly surprising 

that the free electron theory fails to account for all their pro¬ 

perties. If it is assumed that the motion of each electron can be 

considered independently of that of the other electrons (this is 

the so-called one-electron model), the effect of all the remaining 

electrons and of the atomic nuclei is to provide a periodic poten¬ 

tial that modifies the motion of the electron. Bloch showed that 

the wave equation of an electron moving in a periodic potential, 

whatever its precise form, has only certain solutions. It is 

characteristic of these solutions that they fall within certain 

bands of energy that are separated from one another by forbid¬ 

den energy gaps. 

In the simplest case the energy s of an electron is zero when 

the wavevector k is also equal to zero. Then, for a cubic crystal, 

the surfaces of constant energy in wavevector-space are spheres 

and e is proportional to k2 (in this case the wavevector may be 

replaced by the scalar wavenumber k)*. This situation is identi¬ 

cal with that which exists for an electron in ‘free’ space; 

however, the constant of proportionality may be appreciably 

*The wavenumber k is defined as 2w/A where A is the wavelength. 
25 

c 



INSULATORS, METALS AND SEMICONDUCTORS 

different because of the interaction between the electrons and 

the periodic potential. In both cases 

e = h2k2l%n2m* (2.5) 

where, for a free electron gas m* is equal to the electronic mass 

m, but otherwise m* must be regarded as an ‘effective’ mass. 

By using the ‘effective’ mass, instead of the ‘free’ electron mass 

the results of the free electron quantum theory can be adapted 

for electrons in energy bands. For example, Equation (2.1) gives 

the distribution of energy states within an energy band if m is 

replaced by m*. In general, the effective mass is defined by the 

relation 

1/m* = (4n2\h2) d2z\dk2. (2.6) 

While Equation (2.5) may be true when e is small, it cannot 

be true for large energies. It may be shown that near the top of an 

energy band the effective mass as defined by Equation (2.6) must 

become negative. In this situation, the crystal behaves as if it 

contained negatively-charged carriers of negative mass, but, in 

practice, it is usual to view the behaviour as that of positive 

carriers with positive mass. The positive carriers are known as 

‘holes’ since they may be regarded as the empty states in a 

nearly-full energy band. This feature of energy band theory 

accounts for the positive Hall coefficients that are often ob¬ 

served. 

If an energy band is either completely full or completely 

empty, the application of an electric field does not result in a 

flow of current. This is because there are either no electrons to 

carry the charge or no empty states into which electrons can 

move. Thus, the band theory differentiates between electrical 

insulators, in which all the continuous bands of energy are 

either full or empty, and electrical conductors in which at least 
one of the bands is only partly full. 
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At any temperature above 0°K, no solid is a perfect electrical 

insulator, since there must be some thermal excitation of elec¬ 

trons from the highest filled band to the nearest empty band 

across the forbidden energy gap. When the conductivity, due to 

thermal excitation across the energy gap, is appreciable, the 

solid is said to be an intrinsic semiconductor. In an intrinsic 

semiconductor the concentrations of conduction electrons and 

positive holes are equal, since each electron excited into the 

upper band leaves a hole in the lower band. 

A solid, that is a poor electrical conductor in the pure state, 

can sometimes be made to conduct electricity quite readily by 

the introduction of impurities. If the impurities tend to donate 

electrons to the upper or conduction band they are said to be 

‘donors’. Materials that contain donor impurities conduct 

electricity by means of quasi-free electrons in the conduction 

band and are known as ‘«-type’ extrinsic semiconductors. 

Impurities that take up electrons from the valence band are 

known as ‘acceptors’ and give rise to localised energy levels, 

near the upper edge of that band, in the forbidden gap. The 

electrons excited into the acceptor levels leave behind positive 

holes in the valence band. The materials in which the conduc¬ 

tion is due to these positive holes are known as ‘p-type’ semi¬ 

conductors. 

Energy diagrams for the various types of non-metallic solid 

are shown in Figure 9. It will be seen that intrinsic semi¬ 

conductors differ from insulators only in the width of the 

energy gap. 
The number of charge carriers in a semiconductor is generally 

temperature-dependent because they are thermally excited 

either from the impurity levels or across the energy gap. In a 

metal, on the other hand, the concentration of conduction 

electrons is independent of temperature. This is either because 

the valence and conduction bands overlap one another or be¬ 

cause one of the upper bands is only partly filled even at 0°K. 
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Fig. 9. Energy band diagrams for non-metallic solids. 

(a) Electrical insulator, (b) Intrinsic semiconductor, (c) w-type 
extrinsic semiconductor, (d) p-type extrinsic semiconductor. 

—, mobile electrons and holes. 0, ©, electrons and holes in 
impurity states. 

A semiconductor, then, differs from a metal in having a positive 

energy gap between a more-or-less full band and a more-or-less 

empty band. Semi-metals are materials in which there is overlap 

between the valence and conduction bands; however, the degree 

of overlap is so slight that semi-metals retain many of the 

characteristics of semiconductors. 

If the crystal lattice were perfectly periodic the electrical con¬ 

ductivity would be infinite. However, the departures from per¬ 

fect periodicity, due to either thermal vibrations or the various 
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types of defect, lead to scattering of the charge carriers. Scatter¬ 

ing by the thermal vibrations is usually predominant at high 

temperatures and results in a mean free path that decreases 

with increasing temperature. This explains the fact that the 

electrical conductivity of a metal falls as the temperature is 

raised. 
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j Properties of the Crystal Lattice 

3.1. Vibrational Spectra and the Specific Heat 

The well-known Dulong and Petit law states that the specific 

heat of any elemental solid is given by the expression 

cv = 3 Nk/A (3.1) 

where A is the atomic weight and N is Avogadro’s number. 

This law is explained by the classical theory using the equi- 

partition principle—the total energy kT being associated with 

each of the three degrees of freedom of an atom in a solid. 

Thus, the internal energy U per gram atom is equal to 3NkT 
and the specific heat Cv per gram atom, given by (dU/dT)v, is 

3Nk. Actually, Equation (3.1) is also applicable to compounds if 

A is regarded as the mean atomic weight. 

Dulong and Petit’s law holds reasonably well for most solids 

at ordinary temperatures and above, but it fails badly at low 

temperatures, since the specific heat tends towards zero as the 

temperature approaches 0°K; it is necessary to apply the prin¬ 

ciples of quantum theory to explain this behaviour. 

In general, the total number of modes of vibration (per gram 

atom) is equal to 3N. Thus, if «(v) dv is the number of modes in 

the frequency range v to v + dv, 

Vm 

j n(v)dv = 31V (3.2) 
o 

where vm is the maximum frequency. Furthermore, the lattice 

vibrations obey Bose-Einstein statistics (for which there is no 
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exclusion principle) so that the average energy in a mode at a 

frequency v is /iv/{exp(hv/kT) — 1}. The internal energy, is, 
therefore, given by 

U = 
ti(v)hv 

exp (hv/kT) — 1 
dv. (3.3) 

Thus, in order to calculate the specific heat due to the lattice 

vibrations one must know the distribution of normal modes 

with frequency (i.e. the vibrational spectrum). 

The simplest quantum theory of the specific heat was given 

by Einstein, who assumed that all the vibrational modes have 

the same frequency vE. This assumption leads to an internal 
energy, 

fhv E 
\kT 

U = 3NhvE Jexp 

and a specific heat per gram atom, 

Cv = 3Nk(hvE/kT)2 exp (hvE/kT) (3.5) 

The Einstein model explains the fact that the specific heat 

vanishes at 0°K and, because the total number of modes is 3N, 
it is consistent with the high temperature behaviour; however, 

the temperature-variation of specific heat at low temperatures 

is not explained. 

It is worth mentioning that Nernst and Lindemann modified 

Einstein’s model empirically by assuming that half the modes 

have a frequency v£ while the other half have a frequency v£/2. 

This assumption leads to quite good agreement with the experi¬ 

mental results, a fact that ought to be explained by the correct 

theory. 
Debye assumed that a crystalline solid can be represented by 

an isotropic elastic continuum. The atomic nature of a real solid 
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is taken into account by limiting the frequency to the maximum 

value given by Equation (3.2). The solid is supposed to be of some 

convenient shape, and boundary conditions are applied such 

that the standing wave associated with each vibrational mode 

has an integral number of nodal planes in any direction. The 

situation is similar to that which limits the number of standing 

wave forms that are permissible in a string that is stretched 

between two points. Thus, it is found that the number of modes 

in a given frequency range is given by 

n(v)dv = 47it/(l/y,3 + 2jv3)v2 dv (3.6) 

where V is the volume and a, and vt are the velocities of sound 

waves, with longitudinal and transverse polarization, there 

being twice as many transverse modes as longitudinal modes. 

By integrating Equation (3.6) and applying the condition (3.2), 

it is found that 

1/V + 2/a3 = (9JV/47rF)/v3 . (3.7) 

Thus, the Debye theory leads to an internal energy 

U = 
9N 

hv3 
dv 

and a specific heat per gram atom 

2, ,4 h2v hv' 
9 N 

3 
M^expl kf)iv 

V 
exp 

hv 

~kT 

Equation (3.9) can be written in the form 

C„ = 9 Nk(TldD)3FD(6DIT), 

(3.8) 

(3.9) 

(3.10) 
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where 0D, equal to hvjk, is known as the Debye temperature 

and Fd(9d/T), the Debye function, is given by 

At very low temperatures (T < 9J12), the Debye theory pre¬ 

dicts that 

Cu ~ (127r4Ar/c/5) (T/dD)3 (3.12) 

so that in this temperature range the specific heat should vary 

as the cube of the temperature. Figure 10 shows schematically 

Fig. 10. Variation with temperature of the specific heat per gram 
atom according to P. Debye’s theory. 
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how the specific heat varies with temperature according to the 

Debye theory. 

Debye’s expression for the variation with temperature of the 

specific heat agrees quite well with the experimental results, but 

the variation as T3 is observed only when the temperature is 

reduced below 0^/50 rather than 0D/12. This might be regarded 

as a trivial point suggesting some minor modification to the 

Debye vibrational spectrum. However, it must be remembered 

that even Einstein’s crude theory yielded a formula (Equation 

(3.5)) for the specific heat that is not wildly inaccurate. Thus, it is 

found that the small degree of disagreement between the experi¬ 

mental data and the Debye theory indicates a large error in the 

form of the vibrational spectrum. Debye’s assumption of an 

elastic continuum is, in fact, valid for the vibrational modes of 

very long wavelength but is not justified for the modes of short 

wavelength and high frequency. 

It is useful to compare the propagation of vibrational waves 

in different media. For the Debye continuum the velocity of 

Fig. 11. Dispersion curves for (a) the Debye continuum and (b) a 
diatomic linear chain. 
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sound (for a given polarization) is independent of the frequency. 

This corresponds to the fact that the plot of frequency v against 

wavelength q (the dispersion curve) is a straight line as shown in 

Figure 11(a). The atomic nature of a real crystal lattice affects 

the dispersion curve, particularly at the higher frequencies. 

Thus, near the upper frequency limit, the frequency changes 

only very slowly with wavenumber. If there is more than one 

atom per unit cell, one can distinguish quite different behaviour 

between the so-called acoustic and optical modes of vibration. 

In the acoustic modes, neighbouring atoms tend to be moving 

in the same direction, whereas in the optical modes they tend to 

move in opposite directions. Figure 11(b) shows the dispersion 

curves for the acoustic and optical branches of a one-dimen¬ 

sional lattice having alternate atoms of different mass. It will be 

seen that, in such a situation, the phase velocity, which is given 

by Inv/q, is quite different from the group velocity, given by 

27rdv/d<7, i.e. 2k times the slope of the dispersion curve. In a 

3-dimensional lattice which has n atoms per unit cell there will 

be 3 acoustic branches and (3n — 3) optical branches. 

Some idea of the real vibrational spectrum of a 3-dimensional 

crystal was obtained by Blackman. His analysis applied to 

hypothetical simple-cubic crystal with force constants ai and a2 
between nearest-neighbour atoms and next-nearest-neighbour 

atoms respectively, az/cti being arbitrarily chosen as 0-05. In 

Figure 12 the vibrational spectrum obtained by Blackman is 

compared with that for the Debye model. The double-peak in 

Blackman’s curve (and in many real vibrational spectra) 

explains the comparative success of the empirical Nernst- 

Lindemann theory. 
In spite of the fact that the Debye theory is now known to be 

hopelessly inadequate, it is still common practice to express 

specific heat data in terms of the Debye temperature dD. How¬ 

ever, in order to account for the departures from the Debye 

theory, it is supposed that the Debye temperature is temperature- 
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Fig. 12. Vibrational spectra for (a) the Debye continuum and 
(b) M. Blackman’s hypothetical?simple cubic crystal. 

dependent. The variation of dD with temperature for the Black¬ 

man simple-cubic lattice is shown in Figure 13. 

t 

Fig. 13. Variation with temperature of the Debye temperature 
for Blackman’s simple cubic model. 
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An analysis of specific heat data is of little use in the deter¬ 

mination of the vibrational spectrum, since, as has already been 

pointed out, the temperature-variation of the specific heat is 

very insensitive to the details of the spectrum. In recent years, 

a powerful neutron-scattering technique has been applied to the 

problem. Low-energy neutrons are particularly suitable for the 

study of vibrational spectra since they are comparable with the 

phonons in both energy and wavenumber. 

3.2. Thermal Expansion 

If the thermal vibrations of the lattice were perfectly harmonic, 

or, in other words, if the interatomic forces obeyed Hooke’s law 

exactly, there would be no change of dimensions of a body on 

raising its temperature. However, the vibrations in any real solid 

are to some extent anharmonic, and this leads to the pheno¬ 

menon of thermal expansion. 

Thermal expansion can be explained qualitatively in terms of 

the schematic plot of potential energy against interatomic 

spacing shown in Figure 14. At the absolute zero, of course, the 

lattice has the spacing that corresponds to the lowest potential 

energy. It would retain this spacing with rise of temperature if 

the potential energy plot were symmetrical about its minimum, 

but, in fact, the potential energy rises much more rapidly when 

the interatomic spacing is reduced than when it is increased. 

Thus, when the amplitude of the vibrations becomes appreci¬ 

able, it is energetically favourable for the mean interatomic 

distance to rise above its value at 0°K. 

When the displacement jc of the atoms from their spacing at 

0°K is kept small the potential energy W may be written as 

W = ax2 — bx2 (3.13) 

where the term in x3 represents the asymmetry of the potential 

energy plot and a and b are constants. Making use of the classical 
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distribution function, the average displacement x is given by 

3c = J x exp (— W/kT) dx /J exp (— W/kT) dx. (3.14) 
0 / 0 

It can be shown from Equation (3.13) that 

Jx exp (- W/kT) dx ~ (3ni/4){b(kT)ilai} (3.15) 
o 

and 

J exp (— W/kT) dx ~(te kT/a)i (3.16) 
o 

Substituting these expressions into Equation (3.14), 

3c = (3/4) (bkT/a2) (3.17) 

Equation (3.17) suggests that the linear expansion coefficient j], 
(equal to dxjdT) should be constant. 

w 

Fig. 14. Schematic variation of potential energy with interatomic 
spacing. W and x are supposed to have zero values for the 

equilibrium spacing at 0°K. 
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The use of the classical distribution function is not expected 

to be valid at very low temperatures. However, Equation (3.17) 

can be modified so as to comply with the requirements of 

quantum statistics if the classical energy kT of a vibrational 

mode is replaced by /zv/{exp (hv/kT) — 1}. This yields 

x = 3Z?/iv/4a2{exp (hv/kT) — 1}. (3.18) 

Equation (3.18) shows that the expansion coefficient should tend 

towards zero as the temperature approaches 0°K; this is in 

agreement with experiment, and complies with the third law of 

thermo dynamics. 

Griineisen observed that the ratio of the expansion coeffic¬ 

ient to the specific heat is constant for a given solid at all tempera¬ 

tures. This observation provides a test for the validity of any 

equation of state for solids. By using the assumptions that are 

implicit in his theory of the specific heat, Debye was able to 

show that 
p = - (dUo/dV) + y(U(V) (3.19) 

where p is the pressure, V is the volume and U is the internal 

energy which has the value U0 at 0°K. y is the Griineisen para¬ 

meter which is defined by the equation 

y = - d (log eD)ld (log V)= -(VieD)(ddDldV). (3.20) 

Equation (3.19) is known as the Debye equation of state. 

On differentiation, Equation (3.19) yields 

(dpldT)v = y(CJ V) (3.21) 

Also the linear expansion coefficient may be expressed as 

= (1/3 V)(dV/dT)p = -(ll3V)(dp/dT)v/(dpldV)T. (3.22) 

Thus, combining Equations (3.21) and (3.22) 

/? = X7CJ3V, (3.23) 

where x is the compressibility. If the Griineisen parameter y is 
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independent of temperature, /? is proportional to Cv in accord¬ 
ance with the Griineisen law. In typical solids y has a value of 
the order of 2. 

3.3. Lattice Thermal Conductivity 

In 1911 Eucken pointed out that the thermal conductivity of an 
electrically insulating crystal is inversely proportional to the 
absolute temperature. Since that time, the Eucken 1/Jlaw has 
been confirmed, at least approximately, for a very large number 
of crystalline solids at high temperatures. In this context, high 
temperatures are understood to be those that are greater than 
the Debye temperature (in fact, Eucken’s law seems to hold 
down to temperatures that are appreciably less than the Debye 
temperature for many materials). 

The 1/Tlaw is a clear indication that the resistance to the flow 
of heat in a solid is provided by the interaction between the 
various modes of vibration, i.e. by phonon-phonon scattering. 
As the temperature is raised, the amplitude of the vibrations 
increases and it is reasonable to suppose that this leads to en¬ 
hanced scattering. Also, it is known that hard solids like dia¬ 
mond, with high melting points, have larger thermal conduc¬ 
tivities than solids which are composed of loosely-bonded 
atoms; at a given temperature, the effective amplitude of vibra¬ 
tion is much less for the strongly-bonded diamond-like 
materials. 

Debye attempted to apply his continuum model, which had 
been so successful in explaining the behaviour of the specific 
heat, to the problem of thermal conductivity. However, he 
found that the thermal conductivity would be infinite if the 
lattice vibrations were perfectly harmonic, assuming the crystal 
to be unbounded and free from defects. Thus, anharmonicity is 
needed to explain the finite thermal conductivity, as well as the 
thermal expansion, of a real material. 
40 



LATTICE THERMAL CONDUCTIVITY [3.3] 

In general, the scattering of a phonon becomes possible only 

if it encounters a region of the crystal in which the properties 

that determine its propagation have values that differ from the 

macroscopic average. In particular, scattering can be due to 

local changes of either the density or the elastic moduli. The 

anharmonicity of the lattice vibrations implies that the elastic 

moduli are dependent on the atomic displacements and, there¬ 

fore, that they vary throughout the solid. 

A notable advance in the theory of lattice thermal conduc¬ 

tivity was made by Peierls. He showed that there are two types 

of interaction between phonons. There are the ‘normal’ pro¬ 

cesses in which the momentum of the phonons is conserved, and 

there are the so-called ‘umklapp’ processes in which momentum 

is not conserved, though energy is conserved in both types of 

process. Peierls showed that the normal processes do not lead 

directly to any thermal resistance whatsoever, and that it is the 

‘umklapp’ processes that limit the thermal conductivity; his 

theory is consistent with the observed 1 /T law of Eucken when 

t > eD. 
It can be shown that ‘umklapp’ processes occur only if two 

interacting phonons have wavenumbers that, together, exceed 

the maximum wavenumber in the phonon spectrum. Thus, for 

the Debye model, the sum of the frequencies of the two phonons 

should exceed the Debye limiting frequency vm. This implies 

that, at very low temperatures, each of the phonons should have 

a frequency of about vm/2. Now the number of such phonons is 

approximately proportional to cxp(—9D/2T), whence the 

phonon mean free path at low temperatures is proportional to 

exp (6d/2T). For a more realistic vibrational spectrum the same 

considerations apply, but it is more generally correct to set the 

phonon mean free path as proportional to exp (9D/bT) where b 

is some numerical constant. By analogy with the kinetic theory 

of gases, it can be shown that 
kl= cvpvlJ3 (3.24) 
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where kl is the lattice thermal conductivity, cvp is the specific 

heat per unit volume, v is the velocity of sound and lt 

is the mean free path of phonons. Thus, when T<4 0D, and the 

specific heat is proportional to Tz, 

kl oc T3exp (9DlbT) (3.25) 

More generally, 

kl = k0F(OdIT) (3.26) 

where F{dDjT) ~ (T/dD)3 exp (0D/bT) when T < dD 

and F(9D/T) ~ 6D/T when T > 0D. 

Dugdale and MacDonald have pointed out that the high- 

temperature lattice thermal conductivity and the expansion co¬ 

efficient should be related to one another since both quantities 

depend on departures from Hooke’s law. They showed that the 

relative magnitude of the anharmonicity in different materials 

can be represented by a dimensionless parameter equal to PyT, 

where /? and y are the linear expansion coefficient and the 

Griineisen parameter respectively. They then supposed that the 

phonon freepath length lt is approximately equal to the lattice 

constant a divided by this dimensionless parameter. Thus, 

lt * a/PyT. (3.27) 

Substituting in Equations (3.24) and (3.26) for T> 0D, 

K0 cvpvai'3PydD. (3.28) 

Furthermore, making use of the Griineisen equation (3.23) to 

eliminate p, and using the Debye relation between the velocity 

of sound, the compressibility and the Debye temperature, 

/co ^ 8(k//i)3(aVdV) (3.29) 

This equation, when combined with Equation (3.26), allows 

the lattice thermal conductivity of a crystal to be predicted, 
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and it shows that materials with high Debye temperatures 
usually have large thermal conductivities. 

Peierls’ prediction that the lattice thermal conductivity of a 

pure crystal should vary with temperature according to an expo¬ 

nential law when T0D, directed attention towards the low 

temperature region, where much of the most interesting work 

has since been carried out. It was found that the thermal 

conductivity does not rise without limit as the temperature is 

lowered, but reaches a maximum value, usually at about one- 

twentieth of the Debye temperature. At still lower temperatures 

the thermal conductivity of a pure crystal is proportional to T3. 
Bearing in mind the fact that the specific heat in this region is 

also proportional to T3, this indicates that the mean free path 

of the phonons has reached a constant value. Casinfir pointed 

out that this constant free path length is of the same order as 

the dimensions of the specimen if it is a single crystal, or of the 

grain size if the material is polycrystalline. It is clear that the 

scattering of the phonons occurs at the crystal boundaries 

under these conditions. 

It is perhaps unrealistic to extend the concept of phonons to 

amorphous solids but the above ideas can be of some use even 

for these materials. It turns out that the apparent ‘phonon’ free 

path length as derived from Equation (3.24) is of the order of 

the interatomic spacing for an amorphous substance. 

The thermal conductivity of most materials at low tempera¬ 

tures falls some way short of the value to be expected if scatter¬ 

ing of phonons were due solely to the thermal vibrations and 

the crystal boundaries. This is, of course, because of the addi¬ 

tional scattering of phonons by various imperfections in the 

lattice, which, in general, alter both the local elastic properties 

and the local density. If the disturbed region extends over a 

distance that is appreciably less than the phonon wavelength, 

the Rayleigh scattering theory is applicable and the scattering 

cross-section of each point defect varies as c6q4(A%/x + Ap/p)2, 
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where c is the linear dimension of the defect, q is the phonon 

wavenumber, Ax is the change in compressibility from the 

average value x and Ap is the change in density from the 

average value p. 
There is not much difficulty in applying the Rayleigh scatter¬ 

ing formula to calculate the thermal resistance due to ‘point’ 

defects at high temperatures. Since ‘point’ defects are particu¬ 

larly effective in scattering phonons of short wavelength, these 

phonons cannot carry much heat, and it does not really matter 

that the Rayleigh formula can be applied strictly only when 

c X, where X is the phonon wavelength. It is, however, rather 

more difficult to calculate the thermal conductivity at low 

temperatures if point-defect scattering is predominant. 

The difficulty at low temperatures arises from the fact that 

‘point’ defects scatter the long-wavelength phonons very weakly. 

Thus, at temperatures which are so low that ‘umklapp’ scatter¬ 

ing is negligible, it might seem that the crystal boundaries pro¬ 

vide the only mechanism for scattering the phonons of long 

wavelength. On the other hand, the measured thermal con¬ 

ductivities of impure crystals are size-independent and too 

small for boundary scattering to be important. The explanation 

of this paradox is to be found if the normal processes are taken 

into account. Although these processes do not lead directly to 

any thermal resistance, they redistribute momentum between 

the phonon modes. Thus, the momentum in the long-wave¬ 

length modes can be transferred to the short-wavelength modes 

by the normal processes and, once it is in the short wavelength 

modes, it can be removed effectively by ‘point’-defect scattering. 

Point defects are, of course, most effective as scatterers of 

phonons if they give rise to intense local variations of both the 

interatomic forces and the density. However, even the density 

fluctuations that arise from the differences between the atomic 

weights of the isotopes in naturally-occurring elements, can lead 

to a substantial reduction in the phonon free path length of an 
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otherwise pure crystal. For example, a substantial increase in 

the thermal conductivity of germanium on enriching the Ge74 

content at the expense of the other isotopes has been observed. 

Ordinary germanium contains five isotopes with concentrations 

ranging from about 7% to 37%; the enriched material con¬ 

tained 96% of Ge74 and less than 2% of any of the other iso- 

TEMPERATURE, 

Fig. 15. Variation with temperature of the thermal conductivity 
of a crystal of ordinary germanium compared with that of a 
crystal in which the isotope Ge74 has been considerably enriched 

(according to T. H. Geballe and G. W. Hull). 

topes. The experimental results are shown in Figure 15. It should 

be noted that, although germanium is a semiconductor, the 

electronic contribution to the thermal conductivity is negligible 

except at high temperatures. 
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Phonons can be scattered by ‘line’ defects (i.e. dislocations) 

as well as ‘point’ defects. The core of a dislocation should lead 

to Rayleigh-type scattering but, in fact, it is found that the 

scattering due to the strained region of crystal in the neighbour¬ 

hood of a dislocation is rather more important. The measure¬ 

ment of the thermal resistivity of a strained crystal can be util¬ 

ised in estimating the density of dislocations in the material. 
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Tlie Specific Heat and Thermal 
Conductivity of Metals 

4.1. Heat Capacity of the Electrons 

It has already been pointed out that the specific heat of a metal 

at high temperatures obeys the Dulong and Petit law, the elec¬ 

tronic contribution to the heat capacity being negligible. The 

conduction electrons do have an indirect effect on the specific 

heat at intermediate temperatures (T not much less than QD) 
through their influence on the vibrational spectrum, since they 

are responsible for the binding of the atoms in a metal. At very 

low temperatures, however, the electronic specific heat of a 

metal can exceed the lattice specific heat, though both contri¬ 

butions are rather small. 

The discussion in Section 2.2, shows that, at a temperature T, 
the number of electrons that occupy energy states (which would 

be empty at the absolute zero of temperature) is approximately 

proportional to kTj'C- An electron in one of these excited states 

will have increased its energy by about kT, so that the elec¬ 

tronic contribution to the internal energy is proportional to 

k2T2/C; the specific heat of the electrons is then proportional to 

T. Since the lattice specific heat at very low temperatures is pro¬ 

portional to T3, the total specific heat can be written in the form 

cv = AT3 + BT, (4.1) 

where the constants A and B depend on the lattice and the 

electrons respectively. A plot of cv/T against TA should be a 

straight line of slope A intercepting the ordinate axis at B. Such 
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a plot, therefore, allows the relative contributions to the specific 

heat of the lattice and the electrons to be found. 

The electronic specific heat may be calculated from the free- 

electron quantum theory using Equations (2.1) and (2.2). The 

mean energy per electron is 

e = ]eg(e)f(e)del]g(e)f(e)de. (4.2) 
0 / 0 

Using the ‘degenerate’ approximations, for { kT, it can be 

shown that the internal energy of the n electrons per unit 

volume is 

tis — u0 T (kT)2g(Co)> (4.3) 
6 

where u0, equal to 3«(0/5, is the internal energy at 0°K, and (0 

is the Fermi energy at the same temperature. Thus, the specific 

heat due to the electrons is 

e. = j k2Tg(C0) (4.4) 

It is not too surprising that the expression for the electronic 

specific heat contains as its only variable the density of elec¬ 
tronic states at the Fermi level. 

It is usual to express the electronic specific heat per mole as 

= yeT (4.5) 

Then, for a free-electron gas it is found that 

Je — (47i“/3^)(/4/p)(/c2mn^//i2) (4.6) 

where Alp is the volume per mole. The value of ye for a free- 

electron gas is about 10-3 J/mole deg2 whereas the experimental 

values of ye are often very much larger than this. This disagree¬ 

ment can be removed if the free-electron mass m in Equations 
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(4.6) is replaced by an effective mass m* so as to take account 

of the effect on the electrons of the crystal lattice. 

One might expect the same value of m* to be applicable for 

all the electronic properties of a metal, if the surfaces of con¬ 

stant energy in wavevector-space were spherical (see Section 

(2.3)). However, even for the monovalent alkali metals, there 

are differences between the effective masses as found from the 

specific heat and transport properties. 

The values of ye for the divalent metals can be much less than, 

or much greater than, the free-electron value. This is because 

there is a rapid variation with energy of the density of states 

near the Fermi level, and the precise value at the Fermi level is 

particularly sensitive to the electron concentration. 

The transition metals are remarkable in that the parameter 

ye displays a similar variation within each of the periods of the 

periodic table. Particularly noteworthy is the fact that very low 

values of ye are found for the metals chromium, molybdenum 

and tungsten; each has a total number of six, out of a possible 

twelve, outer electrons in the overlapping s and d bands. This 

shows that the density of electronic states has a pronounced 

minimum at the middle of the 3d, 4d and 5d bands. 

Specific heat measurements at low temperatures on the super¬ 

conducting metals have been most instructive. It is found that 

the electronic specific heat in the superconducting state is pro¬ 

portional to exp (— const./T). This is a good indication that 

there is an activation energy associated with the supercon¬ 

ducting electrons and provides strong evidence for the existence 

of an energy gap in accordance with the ‘microscopic’ theory of 

superconductivity. 

4.2. Electronic Thermal Conductivity 

As was mentioned in Section 2.2, the classical free-electron 

theory provided an explanation of the Wiedemann-Franz law, 
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but this was due to the fact that both the electrical and thermal 

conductivities were wrongly estimated by about the same factor. 

Even closer agreement with the experimentally-determined 

ratios of k to a results from the application of the quantum 

theory. 

The electronic thermal conductivity Ke can be calculated 

using an equation similar to Equation (3.24) but with the specific 

heat, velocity and free path length of the phonons replaced by 

the same properties of the electrons. The mean velocity of the 

electrons in a metal is (2£/w)* so that, using Equations (4.5) 

and (4.6) for the electronic specific heat, it is found that 

Ke = (n2l3)nk2Tlel(2mOii (4.7) 

where le is the electronic free path. The electrical conductivity 

of a metal on the free-electron quantum theory is given by 

a = nezlJ(2mC)i (4.8) 
whence 

= (n2/3)(kle)2<rT. (4.9) 

The ratio kJoT is known as the Lorenz number L and is equal 

to (n2/3)(k/e)2 for a degenerate electron gas. The value of the 

Lorenz number remains the same if the free-electron theory is 
replaced by band theory. 

Experimental values for the ratio k/gTfor a number of metals 

are given in Table 2 and in all cases there is good agreement 

with the theoretical value for the Lorenz number, 2-45 x 10* 8 

W ohm/deg2. It may surprise the reader that the agreement is so 

good, since it might be expected that the lattice vibrations 

would also contribute to the thermal conductivity. In fact, for 

nearly all metals and alloys at ordinary temperatures, the lattice 

thermal conductivity is found to be negligible. This is because 

the electronic contribution is so large, and because the scatter¬ 

ing of phonons by the conduction electrons tends to make the 
lattice contribution very small. 
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Table 2. Measured values of k/oT for various metals at 0°C. 

Metal k/ oT X 108 W ohm/deg2 

Copper 2-23 
Silver 2-31 
Gold 2-35 
Cadmium 2-42 
Zinc 2-31 
Tungsten 3-04 
Molybdenum 2-61 
Tin 2-52 
Lead 2-47 
Platinum 2-51 

At low temperatures the Wiedemann-Franz law is no longer 

strictly applicable. It will be supposed that the electronic thermal 

resistivity is given by 

We = W0 + W, (4.10) 

where Wo is the thermal resistivity due to scattering by the 

impurities and other defects and Wt is that due to scattering by 

the lattice vibrations. W0 is given in terms of the electrical resis¬ 

tivity po due to the defects (p0 is known as the residual resistivity 

since it is the resistivity at 0°K) by Equation (4.9). Thus, 

(4.11) 

On the other hand, Wt is not related in the same way to the 

electrical resistivity pt due to scattering by the lattice vibrations. 

When T<£ dD, the fact that most of the phonons have a very 

long wavelength has a marked effect on the scattering of the 

electrons. It turns out that there is very little change of momen¬ 
tum of an electron when it collides with a phonon, so that the 

electrical resistivity falls very rapidly as the temperature is 
51 



THE SPECIFIC HEAT AND THERMAL CONDUCTIVITY OF METALS 

lowered; ideally the electrical resistivity at low temperatures 

should vary as T5. However, the transfer of energy when an 

electron collides with a long-wavelength phonon, is rather more 

effective than the transfer of momentum. Thus, the electronic 

thermal resistivity does not fall so rapidly as the electrical resis¬ 

tivity with decreasing temperature, since it is energy transfer 

that is important in the heat conduction process. The low- 

temperature electronic thermal resistivity is proportional to T2 

so that Wt/pt is proportional to T~3, whereas at ordinary 

temperatures this ratio varies as T~l. 

Fig. 16. Schematic variation of Lorenz number with temperature 
for a metal in the pure and impure state. L0 is the high- 

temperature Lorenz number given by Equation (4.11). 

Figure 16 shows schematically how the Lorenz number is ex¬ 

pected to vary with temperature for a metal when it is pure and 

when it is impure. If there were no imperfections whatsoever in 

an unbounded crystal, the Lorenz number would tend towards 

zero as the temperature approached 0°K. However, for any 

real crystal, scattering of the electrons by imperfections becomes 
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predominant at the lowest temperature, so that, in accordance 

with Equation (4.11), the Lorenz number returns to the high 

temperature value L0. For a fairly pure crystal, the Lorenz 

number can have a minimum value about an order of magnitude 

less thanLo, whereas an impure sample may well retain a Lorenz 

number close to Lo at all temperatures. 

Interesting results are obtained from thermal conductivity 

measurements on superconductors, since superconducting 

electrons do not take part in the conduction of heat. Thus, the 

thermal conductivity of a pure metal becomes smaller when it 

changes from the normal to the superconducting state. On the 

other hand, the thermal conductivity of an alloy can rise on its 

transition into the superconducting state. This is because the 

lattice thermal conductivity may not be negligible in comparison 

with the electronic thermal conductivity for an alloy; thus, the 

increase in the lattice thermal conductivity, due to the reduction 

of phonon-scattering by the electrons, may more than compen¬ 

sate for the fall in the electronic thermal conductivity when the 

alloy becomes superconducting. 

53 



Thermal Effects in Semiconductors 

5.1. The Thermoelectric Effects 

It is unnecessary to derive independent expressions for the three 

thermoelectric coefficients, since they are related to one another 

by Kelvin’s laws, Equations (1.5) and (1.6). Probably it is 

simplest to explain the origin of the Peltier coefficient which, as 

defined in Section 1.5, is a measure of the energy transported 

by the charge carriers. 

To a first approximation, the differential Peltier coefficient 

between any two metals is zero since the mobile electrons all 

occupy states that have energies close to the Fermi energy £• 

The small Peltier effects actually observed between different 

metals can be explained in terms of the details of the energy 

bands, the Fermi energy and the scattering mechanisms. Here 

we are interested in the much larger Peltier effects that are ob¬ 

served when at least one of the conductors at the junction is a 

non-degenerate semiconductor. 

It will be supposed that the semiconductor is «-type and that 

it forms a junction with a metal, It is assumed that the metal has 

zero absolute thermoelectric coefficients, which implies that the 

energy states of the mobile electrons coincide, on the average, 

with the Fermi level of energy. Figure 17 is the energy diagram 

for the junction; at equilibrium the Fermi level must be the 

same in both substances. It will be seen that the Fermi energy 

C, as measured from the bottom of the conduction band, is a 

negative quantity for the semiconductor. When a positive 

current of electricity flows from right to left, each electron 
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Fig. 17. Energy diagram for a junction between a metal and an 
n-type semiconductor illustrating the origin of the Peltier effect. 

(travelling in the opposite direction) must absorb an amount of 

energy — £ at the junction in order to reach the edge of the con¬ 

duction band of the semiconductor. Moreover, in the semi¬ 

conductor, the electrons which carry the current have a certain 

mean kinetic energy i so that the total energy change at the 

junction is (e — Q*. Now the Peltier coefficient is defined as the 

mean energy transported per unit charge. Thus, for the semi¬ 

conductor 

e - C 
n = — (5.1) 

♦Here e is the average kinetic energy transported by the electrons; the 
contributions of the electrons of different energy are, therefore, weighted 
according to the amount of the current which they carry. 
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where the negative sign has been inserted in accordance with the 

usual convection. It should be noted that a similar discussion 

can be applied to a p-type semiconductor, but then the Peltier 

coefficient has a positive sign, indicating the liberation of heat 

when a positive current flows from the semiconductor to the 

metal. 

The mean kinetic energy e of the charge carriers depends on 

the precise form of the density of states distribution function 

and on the nature of the scattering processes. It is usually legiti¬ 

mate to assume thatg(e)oce*for a semiconductor, in accordance 

with Equation (2.1). Thus, if it is supposed that the mean free 

path of the charge carriers is proportional to es, where 5 is a 

constant, it can be shown that 

e = (s + 2) kT. (5.2) 

In the simplest situation, s is zero when the carriers are scattered 

by the acoustic-mode lattice vibrations, and has a value 2 when 

the scattering is due to ionized impurities. In general, the 

thermoelectric coefficients are given by 

a 
(5.3) 

where the upper and lower signs apply to «-type and p-type 
materials respectively. * 

It is worth mentioning that the Fermi energy £ of a semi¬ 

conductor is related to the concentration n of the charge carriers 
by the equation 

n — 2 (27rm*A:77/j2)* exp ('£/kT) (5.4) 

’Electrons entering an n-type semiconductor absorb energy as they climb 
up to the conduction band; when they enter a />-type semiconductor they 
give up energy as they fall into the valence band. Thus, the Peltier (and 
Seebeck) coefficients of n- and p-type materials have opposite signs. £ would 
be measured downwards from the top of the valence band for a p-type 
semiconductor. 
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Thus, a semiconductor with a high carrier concentration and, 

therefore, a high electrical conductivity, usually has low thermo¬ 

electric coefficients, whereas semiconductors with poor electrical 

conductivities tend to have high thermoelectric coefficients. 

The measurement of the Seebeck coefficient of an extrinsic 

semiconductor provides a means for determining the effective 

mass of the charge carriers, if it is combined with a measure¬ 

ment of the Hall coefficient to determine the carrier concen¬ 

tration n. If a value for the coefficient 5 can be assigned (perhaps 

from the temperature-dependence of the mobility of the charge 

carriers), Equation (5.3) allows (to be found in terms of a so that 

m* remains the only unknown quantity in Equation (5.4). The 

effective mass that is determined from Hall and Seebeck 

measurements is identical with the effective mass that is found 

from, say, cyclotron resonance experiments if the surfaces of 

constant energy are spherical and centred at the origin in wave- 

vector space. 

5.2. Conduction of Heat in Semiconductors 

In many semiconductors the carrier concentration is so small 

that the electronic component of the thermal conductivity is 

negligible. Studies of heat conduction by the lattice in such 

materials have been fruitful (particularly because of their avail¬ 

ability, in some cases, in the form of large and pure single 

crystals, as used by the transistor industry). 

Measurements on semiconductors with high carrier concen¬ 

trations are interesting in that these materials can have lattice 

and electronic components of the thermal conductivity of the 

same order of magnitude. One is then faced with the problem 

of separating the two components from one another. 

For a non-degenerate semiconductor, the electronic thermal 

conductivity is given by 

k, = (s + 2\k\efoT (5.5) 
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where a is the electrical conductivity and s is the scattering 

parameter defined in Section 5.1. Equation (5.5) is, however, not 

usually valid if the electronic thermal conductivity is appreci¬ 

able compared with the lattice conductivity, since it is then 

unlikely for the classical condition ( < —2kT to be obeyed. 

Usually the value of Ke is intermediate between that given by 

Equation (5.5) and that given by the degenerate relation (4.9); the 

precise value of the Lorenz number can be determined only by 

using the complete Fermi-Dirac statistics. If the lattice com¬ 

ponent is independent of the carrier concentration, the plot of 

the total thermal conductivity against the electrical conduc¬ 

tivity for an extrinsic semiconductor at a given temperature, 

takes the form shown in Figure 18. 

Fig. 18. Schematic plot of thermal conductivity against electrical 
conductivity for an extrinsic semiconductor at a given tempera¬ 
ture. The lattice thermal conductivity is assumed to be constant. 

Even if the scattering parameter y is not known, the lattice 

component of the thermal conductivity can be estimated by 
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extrapolation to zero electrical conductivity. Generally, how¬ 

ever, the lattice thermal conductivity will fall as the electrical 

conductivity rises, since the impurities used to dope the semi¬ 

conductor will scatter the phonons. The thermal conductivity 

of iodine-doped (n-type) and lead-doped (/>type) bismuth tellu- 

ride at a temperature of 150°K is plotted against electrical con¬ 

ductivity in Figure 19(a). After subtracting the calculated elec¬ 

tronic component from the total thermal conductivity, it is 
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found that the lattice component falls with increasing concen¬ 

tration of the doping agent. 
Figure 19(b) shows a similar plot for bismuth telluride at 

300°K. The most notable feature is the large increase of the 

Fig. 19b 

Fig. 19. Thermal conductivity plotted against electrical conduc¬ 
tivity for bismuth telluride at (a) 150°K and (b) 300°K. The 
electronic component of the thermal conductivity in the extrinsic 
region is calculated assuming the scattering parameter s to be 

equal to zero. 
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thermal conductivity when the electrical conductivity has its 

lowest values. This effect is associated with the presence of both 

electrons and holes in an intrinsic (or near-intrinsic) semi¬ 

conductor and is known as the ‘bipolar’ heat-conduction effect. 

When an electric field E and a temperature gradient VT are 

applied to a mixed semiconductor there will be electric currents 

of density in and ip, for the electrons and holes respectively, 
given by 

in = 0n(E - a„VT) 

and ip = ap{E - ccpVT) 
(5.6) 

where an and ap are the so-called partial electrical conductivities 

of the two types of carrier and a„ and ap are the partial Seebeck 

coefficients, calculated from Equation (5.3) for each energy band 

separately. Equations (5.6) show immediately that the total 

electric current density when VT=0 is (<t„ -\-Op)E, so that the 

total electrical conductivity is merely the sum of the partial 

conductivities a„ and ap. 

The Seebeck coefficient and the thermal conductivity are de¬ 

fined for zero electric current so that i„ = — ip. When this condi¬ 

tion is applied to Equation (5.6), remembering that the Seebeck 

coefficient is defined as E/VT, it is found that 

a = + anern)/(crn + ap), (5.7) 

which might have been expected. The total Seebeck coefficient 

is a weighted average of the partial coefficients for the two 

types of carrier, which, it will be recalled, are of opposite sign. 

The densities of the flows of energy due to the electrons and 

holes are given by 
xnTi„ - k„WT 

(5.8) 

and Wp = a.pTip - kpVT 

respectively, where the partial Peltier coefficients have been set 
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equal to anT and ctpT and where k„ and kp are the partial 

thermal conductivities of the electrons and holes. Thus, equating 

the overall electronic thermal conductivity Ke with — (w„ + wp)/ 

V7", it is found that 

Ke = Kn + Kp + {g„g p/(an + g p)}(ap — a.n)2 T. (5.9) 

If the semiconductor is non-degenerate (k„ + Kp) is given by 

(s+ 2)(k/e)2(an-\-Gp)T. Furthermore, (ap-ocn) is equal to 

(k/e)(eg/kTJr2s +4) since the sum of the Fermi energies for the 

electrons and holes is equal to — eg, where eg is the energy gap. 

Thus, if the concentrations of the two types of carrier are equal, 

Ke = [(s + 2) + {finfipl(ixn + np)2}(£gl kT + s + 4)2](/c/e)2oT 

(5.10) 

where n„ and np are the mobilities of the electrons and holes. 

If s1 has its usual value of zero, and if n„ and /ip are nearly 

equal, it can be seen that the Lorenz number is changed from 

2(k/e)2 for an extrinsic sample, to about (2 Jr(eg/2kT-\-2)2} 

(k/e)2 for an intrinsic one. Bismuth telluride has an energy gap 

equal to about 6kT at room temperature so that the Lorenz 

number of an intrinsic specimen is no less than about 21{k/e)2. 

It is immediately obvious why the thermal conductivity rises to 

a high value at low electrical conductivities as shown in Figure 

19(b). 

5.3. Thermomagnetic Effects in Extrinsic and Intrinsic 

Semiconductors 

When the mean free time between the collisions of the charge 

carriers increases with their energy, (s>x), the more ener¬ 

getic electrons make the greater contribution to the transport 

properties. On the other hand, if the mean free time decreases 

with increasing energy, (s <£), the less energetic carriers make 

the greater contribution. One of the effects of a magnetic field 
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is that it tends to make the contributions of the charge carriers 

of different energy more nearly equal. This means that, if .y > 

the Seebeck coefficient falls on the application of a magnetic 

field, whereas if s <•£ the Seebeck coefficient rises. The sign and 

magnitude of the magneto-Seebeck effect in an extrinsic semi¬ 

conductor is, therefore, of some use in determining the 
scattering law. 

The thermal conductivity falls when a magnetic field is 

applied, the effect being analogous to the fall in electrical con¬ 

ductivity, i.e. the magneto-resistance effect. It is sometimes 

possible to reduce the electronic thermal conductivity to neglig¬ 

ible proportions by applying a strong magnetic field, whence 

the lattice contribution kl can be determined directly. 

Since the Ettingshausen and Nernst effects are related to one 

another by Equation (1.8), it is unnecessary to discuss them inde¬ 

pendently. Thus, we consider specifically how the Ettingshausen 

effect arises, though, in practice, it is easier to measure the 

Nernst coefficient than the Ettingshausen coefficient. 

The origin of the Ettingshausen effect in an extrinsic «-type 

semiconductor is illustrated in Figure 20(a). It is supposed that 

an electric current flows from left to right so that, when a 

magnetic field is applied in the direction away from the reader, 

the Lorentz force tends to drive the electrons upwards. No net 

flow of current is, however, permissible, as an electric field (the 

Hall field) is built up and, at equilibrium, the force due to this 

field, on the average, exactly balances the Lorentz force. In 

fact, if all the electrons possessed the same energy, there would 

be no transverse flow whatsoever. In general, however, (if 

s there is a tendency for the electrons of different energy to 

behave in different ways. If, for example, the more energetic 

electrons are the more strongly scattered (s < as shown in the 

diagram) these electrons tend to drift downwards under the 

action of the Hall field, whereas the less energetic electrons tend 

to drift upwards due to the Lorentz force. Although the overall 
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Fig. 20. Origin of the Ettingshausen effect in (a) an extrinsic 
rc-type semiconductor and (b) an intrinsic conductor. In case (a) 
it is supposed that the scattering is more intense for the high 
energy electrons. The magnetic field is directed away from 

the reader. 

transverse flow of charge must remain zero, there is a flow of 

heat (in the direction of drift of the more energetic electrons) 

which continues until an equilibrium temperature gradient is 

built up. The direction of the transverse temperature gradient 

indicates whether s is greater than or less than and the ratio 

of the Nernst or Ettingshausen coefficient to the Hall coefficient 

gives the precise value of s. 

If the above discussion is applied to a p-type semiconductor 

it is found that the direction of the transverse temperature 

gradient is unaltered. It is apparent that the sign of the Nernst 

or Ettingshausen coefficient does not depend on the sign of the 
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charge carriers. On the other hand, the Righi-Leduc coefficient, 

like the Hall and Seebeck coefficients, always has the same sign 
as that of the charge carriers. 

Figure 20(b) shows the origin of the Ettingshausen effect in 

an intrinsic conductor. Although the longitudinal flows of 

electrons and holes are in opposite directions, the Lorentz force 

tends to produce transverse flows of both types of carrier in the 

same direction. It will be appreciated that equal flows of elec¬ 

trons and holes in the same transverse direction are permissible 

since they do not lead to any net current flow. The bipolar 

Ettingshausen effect tends to be much larger than the Etting¬ 

shausen effect in an extrinsic semiconductor because (1) 

the transverse motion of the charge carriers is not impeded 

by a large Hall field* and (2) the electrons and holes transport 

their ionization energy as well as their kinetic energy. Further¬ 

more, the Ettingshausen coefficient in intrinsic material remains 

more or less constant as the magnetic field rises, whereas it falls to 

zero for an extrinsic conductor in a high field. Such character¬ 

istics of the Ettingshausen effect in intrinsic conductors (partic¬ 

ularly low-energy gap semiconductors and semi-metals) make 

possible its effective use in refrigeration. 

5.4. Phonon Drag 

So far it has been assumed implicitly that the transport of 

charge and heat by the electrons and holes is independent of 

heat transport by the phonons. This assumption is usually 

perfectly valid, but in certain materials, particularly at low 

temperatures, it breaks down. The effects that arise from the 

inter-dependence of the flows of electrons and phonons are 

known as the phonon drag effects. 

♦The Hall coefficient is equal to zero in an intrinsic conductor if the 
electron and hole mobilities ft„ and ftp are equal. The Hall coefficient is 

small if ft„ ~ ^p. 
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Phonon drag has striking effects on both the thermoelectric 

and thermomagnetic coefficients. We consider here its influence 

on the Peltier coefficient in a particularly simple case, that of a 

semiconductor with a very low concentration n of charge 

carriers. 
When an electric field E is applied to the material, it provides 

momentum to the charge carriers at the rate neE. If scattering 

by impurities and other defects can be neglected, all this 

momentum is passed on to the phonons. In the absence of 

phonon drag one would assume that this momentum becomes 

lost in random thermal vibrations, but here it must be supposed 

that the phonons can retain the momentum while they travel a 

distance ld. Thus, if v is the velocity of sound waves, the 

momentum that is retained by the phonons at any given time is 

neldE/v. 

Now the electric current density i is equal to nefxE, where // 

is the carrier mobility. Furthermore, the heat flux density w due 

to the phonons is vz times their momentum. Thus the phonon- 

drag Peltier coefficient, equal to w/i, is given by 

nd = vljfi (5.11) 

The phonon-drag Peltier coefficient takes the same sign as the 

Peltier coefficient in the absence of phonon drag (which can be 

termed the electronic Peltier coefficient). 

It might be thought that the free path length ld can be calculated 

directly from the lattice thermal conductivity using Equation 

(3.24). However, the phonons that are responsible for the con¬ 

duction of heat have a short wavelength, whereas the phonons 

that interact with the charge carriers in a semiconductor have a 

long wavelength. These long-wavelength phonons can have a 

particularly large mean free path, and it is this fact that makes 

the phonon-drag effects very great in some semiconductors. For 

example, a sample of j?-type germanium has been found to have 

a phonon-drag Seebeck coefficient of more than 5 mV/deg at 
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25°K compared with a value of less than 1 mV/deg for the 

electronic Seebeck coefficient. Equation (5.11) shows that the 

phonon-drag effects should be largest for semiconductors in 

which the carrier mobility is relatively low and in which the 

mean free path of the long-wavelength phonons is very large; 

for example, a phonon-drag Seebeck effect has been observed 

up to a temperature of 700°K in conducting diamond. 

Equation (5.11) suggests that the phonon-drag thermoelectric 

coefficients should be independent of the carrier concentration, 

and this is indeed true if the carrier concentration is small. How¬ 

ever, when the carrier concentration is large, an appreciable 

proportion of the momentum that is passed on from the charge 

carriers to the phonons finds its way back to the carriers again. 

This reduces the phonon-drag coefficients, as does scattering of 

the charge carriers by impurities introduced in doping the semi¬ 

conductor. 
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Symbols 
A cross-section area, atomic weight, lattice-dependent 

constant in Equation (4.1) 

B electron-dependent constant in Equation (4.1) 

C thermal capacity 

Cv specific heat per gram atom 

E electric field 

Fd Debye function 

H magnetic field 

L Lorenz number 

L0 high-temperature Lorenz number 

N Avogadro’s number 

P Ettingshausen coefficient 

Q Nernst coefficient 

R Hall coefficient 

S Righi-Leduc coefficient 

T absolute temperature 

U internal energy per gram atom 

U0 internal energy per gram atom at 0°K 

V volume 

W potential energy 

We electronic thermal resistivity 

W0 electronic thermal resistivity due to impurity scattering 

Wt electronic thermal resistivity due to lattice scattering 

a lattice constant 

b constant in Equation (3.25) 

c specific heat, linear dimension of defect 

cp specific heat at constant pressure 

cv specific heat at constant volume 

e electronic charge 

/ Fermi-Dirac distribution function 

g density-of-states distribution function 

h Planck’s constant 

i electric current density 
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SYMBOLS 

k Boltzmann’s constant, wavenumber of electrons 
k wavevector of electrons 

kd thermal diffusivity 

/ length 

ld mean free path of long-wavelength phonons 
le mean free path of electrons 

lt mean free path of heat-conduction phonons 
m mass of free electron 

m* effective mass 

n concentration of electrons, distribution function for 

normal modes, number of atoms per unit cell 

p pressure 

q phonon wavenumber 

s scattering parameter (/e oces) 

t time 

u internal energy per unit volume 

v velocity of sound 

vt longitudinal sound velocity 

vt transverse sound velocity 

w energy flux density 

x displacement 

a Seebeck coefficient, amplitude ratio 

ai, a2 arbitrary force constants in Blackman’s model 

p linear coefficient of expansion, phase difference 

Pv volume coefficient of expansion 

y Gruneisen parameter 

ye electronic specific heat divided by absolute temperature 

e energy of electrons 

sg energy gap 

£ Fermi energy 

£0 Fermi energy at 0°K 

0D Debye temperature 

k thermal conductivity 

Ke electronic thermal conductivity 
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kl lattice thermal conductivity 

X wavelength 

p carrier mobility 

v frequency 

vE Einstein frequency 

vm maximum frequency of normal modes 

n Peltier coefficient 

nd phonon-drag Peltier coefficient 

p density, electrical resistivity 

p0 electrical resistivity due to impurity scattering 

pt electrical resistivity due to lattice scattering 

a electrical conductivity 

t Thomson coefficient 

X compressibility 

(o angular frequency 
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THETHERMAL PROPERTIES 
OF SOLIDS 
H. J. Goldsmid 

The thermal properties of solids have, in the past, 
never attracted the same attention as the electrical 
properties, probably because they are much more 
difficult to measure accurately. Now, however, they 
are becoming of increasing significance in practical 
applications, particularly of the new electronic 
materials. For example, the thermal conductivity has 
an important role in determining the resistance of 
brittle materials to thermal shock, and is a vital para¬ 
meter in controlling the efficiency of thermoelectric 
energy convertors. This book describes the various 
thermal effects arising from the atomic vibrations and 
the moving charge carriers. Particular emphasis is 
placed on the practical aspects of the subject, includ¬ 
ing the latest experimental techniques. Semiconduc¬ 
tors are specially featured since they display several 
interesting phenomena that cannot be observed in 
other materials. There is a minumum of mathematics, 
though many useful formulae are given, their physical 
significance being explained. The book will prove in¬ 
valuable to students of the pure and applied sciences, 
as well as to the practising engineer or technologist. 
A bibliography is provided for the many readers 
whose interest in the subject will be stimulated by 
this elementary treatment. 
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