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ABSTRACT 

       With no medication currently available and a clinical trial failure rate of 99.6% for 

Alzheimer’s disease (AD) , early diagnosis is crucial to prevent its progression. MCI has 

been identified as a transitional stage between healthy aging and AD, making it 

promising for early detection. In this study, we propose a machine learning (ML) based 

survival analysis approach to predict the time to AD conversion in early MCI and late 

MCI stages separately, as we found that the progression rate varies in both stages. Unlike 

typical ML classifiers, ML-based survival analysis models can provide information about 

the timing and likelihood of disease progression. We employed multiple ML survival 

models, including Random Survival Forest (RSF), Extra Survival Trees (XST), Gradient 

Boosting Survival Analysis (GB), Survival Tree (ST), Cox-net, and Cox Proportional 

Hazard (CoxPH), on 291 eMCI and 546 lMCI subjects. The study also compared 

different data modalities, such as cognitive tests, neuroimaging tests, and cerebrospinal 

fluid (CSF) biomarkers, both individually and in combination to identify the most 

influential features for the models' performance. The results show that RSF outperformed 

traditional CoxPH and other ML models used in this study. For the eMCI dataset, RSF 

trained on multimodal data achieved a C-Index of 0.96 and an IBS of 0.02. For the lMCI 

dataset, the C-Index was 0.82 and the IBS was 0.16. Additionally, the multimodal 

analysis highlighted the importance of cognitive tests, as they exhibited a statistically 

significant improvement over other modalities and multimodal data, demonstrating their 

reliability in predicting AD progression. Finally, individual survival curves were 

generated using RSF on baseline data to predict the probability of early onset of AD in 

patients. This facilitates clinical decision-making by assisting clinicians in developing 

personalized treatment strategies and implementing preventive measures to slow down or 

potentially stop the progression of AD during its early stages. 

 

Keywords: AD, Early Prediction, Machine Learning, Survival Analysis.
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CHAPTER 1: INTRODUCTION 

Alzheimer’s disease (AD) is a complex and multifaceted neurodegenerative 

disorder that has become a pressing global health concern. The staggering prevalence of 

AD and its profound impact on public health cannot be overstated. As the most common 

cause of dementia, AD affects millions of individuals worldwide, with devastating 

consequences for patients, caregivers, and society as a whole. According to the World 

Health Organization, dementia affects approximately 50 million people globally, with 

AD accounting for 60-70% of these cases. This translates to an estimated 30-35 million 

individuals living with AD worldwide [1]. The burden of this disease is expected to grow 

exponentially in the coming decades, with projections indicating that the number of 

people with dementia will nearly triple by 2050, reaching a staggering 152 million [2].  

 The prevalence of AD also highlights the urgent need for improved prevention, 

early detection, and effective treatments. Despite significant research efforts, currently, 

there is no cure for AD, and available therapies only provide temporary relief of 

symptoms or slow down the disease progression. The high failure rate of clinical trials, 

estimated at 99.6%, underscores the complexity of the disease and the challenges faced 

by researchers and healthcare professionals in developing new interventions [3]. 

Addressing the public health crisis posed by AD will require a multifaceted approach, 

including increased funding for research, improved access to diagnostic tools and support 

services, and the development of innovative strategies for prevention and treatment [4]. 

1.1 AD Pathophysiology 

Alois Alzheimer, a German psychiatrist, published the first description of the 

illness that bears his name, in 1906. He identified neurofibrillary tangles and amyloid 

plaques in the brain that resulted in progressive degeneration [5]. Extensive research has 

been conducted since its discovery to have a better understanding of the causes, 

diagnosis, and finding treatment of AD. While numerous aspects remain unexplained, 

Alzheimer's is increasingly recognized as a complicated disorder influenced by a variety 
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of causes. The main causes of AD are often said to be the aggregation of amyloid and tau 

proteins, oxidative stress, and inflammation. 

The Amyloid Precursor Protein (APP) plays an important role in the etiology of 

AD. This protein can combine and form plaques within the brain, resulting in decreased 

intercellular communication, inflammation, and brain tissue damage. Researchers 

identified beta-amyloid (Aβ) as the primary component of plaques associated with AD in 

1984 [6]. In subsequent research conducted in 1991, investigations into genetics unveiled 

that mutations within the APP gene have the potential to generate abnormal forms of 

beta-amyloid; which, in particular family groupings, may be a factor in the early 

development of AD [7]. 

Based on such findings, numerous researchers believe that the aggregation of beta-

amyloid (Aβ) initiates a chain reaction of detrimental events and functional disruptions in 

neurons, eventually leading to the onset of dementia [8]. Subsequent research provided 

further evidence supporting beta-amyloid's substantial role in the progression of AD, yet 

the precise underlying mechanisms remain unknown. As a result, the most promising 

treatment options try to prevent amyloid plaque formation. Treatment possibilities for AD 

include therapies that target beta-amyloid and its receptors. These methods include the 

use of vaccinations, and antibodies aimed against beta-Amyloid Modulators or inhibitors 

of gamma-secretase and beta-secretase, amyloid degrading proteases, microRNAs, and 

amyloid dyes are further potential therapy options [9]. 

The pathology of AD is significantly influenced by the tau protein. It typically 

participates in the organization and strength of microtubules. However, AD experiences 

abnormal deviations after translation and clumps together, forming neurofibrillary tangles 

(NFTs) [10]. The exact mechanisms by which tau protein contributes to AD are still 

being studied, but it is believed that the atypical aggregation of tau protein disrupts the 

regular functioning and signal transmission among neurons, leading to neuronal death 

and brain damage. Researchers are proposing new therapies to prevent tau protein 
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accumulation in AD, such as inhibiting aggregation, proteolysis, and tau phosphorylation, 

promoting tau clearance, and stabilizing microtubules. 

An immune system's normal response to an injury or infection is inflammation. 

However, persistent inflammation in the brain can be damaging and aid in the emergence 

of AD. Inflammatory molecules are released by activated 'microglia,' the immune cells 

residing in the brain; which can harm neurons and encourage more inflammation. 

Furthermore, inflammation can make it more difficult for the brain to eliminate waste 

products and toxins, which promotes the aggregation of amyloid and tau proteins. To 

mitigate neuronal damage, researchers are putting forward therapy options that address 

chronic inflammation [11]. 

Neurons require a lot of energy, and there is a lot of ATP requirement and 

consumption in the brain, which is met by mitochondria, a cell's ' powerhouse' [12]. 

Neuronal function is dependent on mitochondrial integrity and well-functioning 

bioenergetics. However, with AD, a variety of variables, including elevated oxidative 

stress, impaired Ca2+ homeostasis, and a disrupted mitochondrial genome, can impair 

mitochondrial function [13]. Such defects cause mitochondrial dysfunction in neurons, 

resulting in a detrimental downturn that eventually leads to neuronal dysfunction, which 

is a characteristic of AD. Moreover, abnormal amyloid-beta levels can also induce 

abnormalities in mitochondria. According to studies, the size and number of 

mitochondria in AD patients are altered; additionally, there is uneven mitochondrial 

distribution in pyramidal neurons and poor mitochondrial protein import. This evidence 

suggests the pivotal role of mitochondria in AD, and therapeutical approaches that target 

mitochondria are under consideration [14]. 

1.2 Signs & Symptoms of AD 

       One of the initial and most noticeable symptoms of AD is memory impairment, 

especially difficulty in remembering newly acquired information. People with AD might 

repetitively ask the same questions, overlook significant dates or events, and frequently 



 

4 

 

misplace belongings. Such memory deficits can disrupt everyday tasks and social 

engagements, leading to frustration and anxiety for both the individuals affected and their 

family members. As the disease starts progressing, cognitive difficulties extend beyond 

memory loss. Patients with AD may experience challenges in planning, problem-solving, 

and completing familiar tasks, such as managing finances or following a recipe. They 

may also struggle with language, finding the right words to express their thoughts or 

understanding complex conversations [6]. These cognitive deficits can lead to confusion, 

disorientation, and difficulty navigating familiar environments. In addition to cognitive 

changes, AD can also impact an individual's mood and behavior. Patients may experience 

mood swings, depression, anxiety, or apathy, which can further complicate their daily 

lives and relationships. Behavioral changes, such as agitation, aggression, or wandering, 

are also common as the disease advances, often causing distress for both the patient and 

their caregivers. As AD advances, affected individuals may struggle with fundamental 

self-care activities like bathing, dressing, and eating. They might also face challenges in 

recognizing familiar faces, a condition referred to as agnosia. In the later stages, patients 

often become entirely reliant on others for their care and may undergo substantial 

physical deterioration, including issues with walking, swallowing, and controlling bodily 

functions [15]. 

       Early symptoms of AD include cognitive decline which leads to memory impairment 

and frequent bouts of forgetfulness which eventually leads to dementia. This is followed 

by the progression of anomia which is the inability to retain and retrieve vocabulary. 

Anomia is followed by aphasia which is a language disorder that is caused by cognitive 

dysfunction in the part of the brain that controls linguistic expressions and 

comprehension. AD patients also experience semantic impairment, difficulty in problem-

solving and concentrating on a particular task, and often feel disoriented. Patients 

suffering from AD also experience neuropsychiatric symptoms which include depression, 

apathy, auditory or visual hallucinations, delusions, irritability, and psychosis. In the final 

stages of AD, the patient suffers from ataxia and eventually loses mobility completely. 
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Figure 1.1: Signs and Symptoms of AD 

1.3 Propagation of AD 

          Certain classes of neurons are more prone to the abnormalities present in AD. The 

infiltration is remarkably similar and shows minor variation from patient to patient. The 

spread follows a predictable pattern and starts in glutamatergic cells in the trans-

entorhinal region and then slowly spreads into the entorhinal cortex before it spreads into 

the hippocampus. The neuron cells that were myelinated late during the development 

phase are the first ones the disease gets into and the ones that were myelinated first are 

the most resistant to AD. The spread follows an inverse pattern of cortical myelination. 

Based on the severity of encroachment, Alzheimer's can be classified into six distinct 

stages which are also called the Braak staging system. The trans entorhinal region is the 

first area affected by the disease [16]. This region develops late and is responsible for 

navigation and perception of time. During the first stage, the tau abnormality is only seen 

in the trans-entorhinal cortex which slowly spreads into the entorhinal and hippocampus 

in the second stage. The staging system shows a strong association with cognitive 
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impairment as well. Patients in stage 1 and 2 shows no manifestation of cognitive 

symptoms and are classified as CDR (Clinical Dementia Rating). Clinically this phase 

represents the pre-clinical phase of the disease [17].   

         During this stage, the transentorhinal and entorhinal regions are significantly 

impacted, with moderate alterations observed in the hippocampal formation, temporal 

and insular pro-neocortical areas, and some subcortical nuclei. At this point, the mature 

neocortex remains free of neurofibrillary tangles. Stage 4 starts with the damage spread 

from the entorhinal region to higher-order association areas. The first symptoms of the 

disease appear at this stage as the destruction is severe enough to hinder the flow of 

information between the higher-order limbic system and the prefrontal cortex. 

Asymmetrical affliction is also seen in certain patients occasionally [18]. The asymmetry 

of the disease in the hemisphere may be present, but it goes through its typical stages. 

One hemisphere may be lagging a stage but asymmetry with a hemisphere lagging 2 or 

more stages has not been observed so far. Due to initial clinical symptoms, stages 3 and 4 

are considered the morphological counterparts of incipient Alzheimer’s. At stage 5, the 

symptoms are severe enough to hinder the patient's quality of life and that is why 

diagnosis is made usually at this stage. Although the disease may exhibit an asymmetrical 

pattern within the hemisphere, it follows its typical stages of progression. It is possible 

for one hemisphere to be slightly behind in a stage, but there have been no observations 

of a hemisphere lagging two or more stages behind. The staging system is also highly 

correlated with cognitive impairment. Stages 3 and 4 are considered to be the 

morphological equivalents of early-stage Alzheimer's due to their initial clinical 

symptoms. Diagnosis is typically made at stage 5, when the symptoms become severe 

enough to significantly impact the patient's quality of life. Stage 5 is associated with 

widespread destruction of the neocortex, especially brain-association areas and the 

infestation spread superolateral towards the motor areas in stage 6. The atrophy of the 

brain is macroscopically detectable in this stage [19]. 
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Figure 1.2: Braak Staging of AD. 

1.4 Stages of AD 

       AD (AD) is a progressive neurodegenerative disorder that can be divided into several 

stages, each with its own set of characteristics and symptoms. These stages include 

preclinical AD, mild cognitive impairment (MCI) due to AD, and AD dementia. 

1.4.1 Preclinical AD 

       Preclinical AD represents the earliest phase of the condition, marked by Alzheimer's-

related changes in the brain, such as the buildup of amyloid-beta proteins and tau tangles, 

without any evident symptoms. This stage can persist for years or even decades before 

clinical symptoms appear. The NIA-AA criteria for preclinical AD outline three stages: 

1. Stage 1: Cognitively normal individuals with abnormal amyloid markers 

2. Stage 2: Cognitively normal individuals with abnormal amyloid and injury 

markers 

3. Stage 3: Cognitively normal individuals with abnormal amyloid and injury 

markers and subtle cognitive changes 

The proportion of individuals with preclinical AD increases with age and is higher in 

APOE-ε4 carriers. Studies have shown that the risk of progression to MCI or dementia 

increases with advancing preclinical AD stage. 
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1.4.2 Mild Cognitive Impairment 

       MCI due to AD is marked by slight alterations in memory, thinking, and other 

cognitive functions that are perceptible to the individual or their loved ones but do not 

greatly disrupt daily activities. Symptoms of MCI due to AD may include: 

 Short-term memory loss 

 Difficulty planning or performing familiar tasks 

 Changes in speech 

 Disorientation to time and place 

MCI is recognized as a transitional phase between the cognitive variations associated 

with normal aging and the more severe cognitive impairment seen in AD [20]. While 

individuals with MCI may experience subtle memory lapses or other cognitive 

difficulties, these symptoms do not significantly impact daily functioning to the extent 

seen in dementia. The rate at which MCI progresses to dementia varies. Studies have 

found that between 32.7% and 70.0% of individuals with MCI due to AD develop AD 

dementia within 3.2 to 3.6 years of follow-up [21]. Research indicates that individuals 

with MCI are significantly more likely to develop AD compared to those without MCI. 

1.4.3 Alzheimer’s Disease Dementia 

       In the final stage of AD, individuals experience more pronounced cognitive and 

functional changes, such as severe memory loss, difficulty with basic activities of daily 

living, and changes in personality and behavior. Symptoms of AD dementia may include: 

 Severe memory loss 

 Difficulty with basic activities of daily living 

 Changes in personality and behavior 

 Difficulty with fine motor coordination and changes in gait 
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Individuals with severe dementia due to AD will require assistance with most normal 

activities and may experience a significant decline in cognitive and physical abilities. 

 

Figure 1.3: The three stages of AD: Preclinical AD, Prodromal AD, AD 

Dementia 

1.5 Mild Cognitive Impairment as a Critical Stage 

       MCI is a critical phase in the spectrum of cognitive decline, acting as an intermediary 

between normal aging and AD. Those with MCI exhibit cognitive changes that are more 

severe than normal age-related decline but do not yet qualify for a dementia diagnosis. 

Recognizing and understanding MCI is essential as it often precedes the onset of AD, 

offering a window of opportunity for early intervention and management. MCI is 

recognized as a transitional phase between the cognitive changes associated with normal 

aging and the more severe cognitive impairment seen in AD. While individuals with MCI 

may experience subtle memory lapses or other cognitive difficulties, these symptoms do 

not significantly impact daily functioning to the extent seen in dementia [22]. However, 

the presence of MCI indicates an increased risk of progressing to AD, making it a critical 

stage for monitoring and intervention. One of the key features of MCI is its elevated risk 
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of progression to AD. Research has shown that individuals with MCI have a significantly 

higher likelihood of developing AD compared to those without MCI. The identification 

and monitoring of individuals with MCI are crucial for early detection and intervention, 

as timely measures may help delay or mitigate the onset of AD and its associated 

symptoms. 

1.5.1 Subtypes of MCI: Early MCI (eMCI) and Late MCI (lMCI) 

       MCI can be further categorized into subtypes based on the severity and progression 

of cognitive impairment. Early MCI (eMCI) is characterized by mild cognitive deficits 

that are often subtle and may not significantly impact daily functioning. In contrast, Late 

MCI (lMCI) represents a more advanced stage of cognitive decline, with symptoms that 

are closer to those seen in early AD. Research has shown that individuals with lMCI have 

a higher likelihood of progressing to AD compared to those with eMCI. Studies have 

demonstrated varying conversion rates from MCI to AD, with lMCI showing a more 

rapid progression. Understanding the distinctions between eMCI and lMCI, as well as 

their respective conversion rates, is essential for predicting the course of cognitive 

decline and implementing appropriate interventions to support individuals at risk of 

developing AD. Research has indicated that individuals with lMCI are more likely to 

develop AD than those with eMCI. Conversion rates from MCI to AD have been found to 

vary in different studies, with lMCI showing a faster progression. It is crucial to 

comprehend the differences between eMCI and lMCI, as well as their respective 

conversion rates, in order to predict the trajectory of cognitive decline and implement 

suitable interventions for individuals at risk of developing AD. 
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Figure 1.4: AD Progression. 

 

1.6 Diagnostic Tools of AD  

  1.6.1 Neuropsychological Assessments 

       Neuro-psychometric tests are a simple and non-invasive way to detect cognitive 

impairment since they are typically brief, low-cost, and can be administered quickly, 

making them a useful tool in the therapeutic context. 

       Since 1975, Mini Mental State Exam (MMSE) developed by Folstein, has been a 

benchmark and extensively tested to asses cognitive impairment [23]. As advancements 

in research have shifted the emphasis to early identification of AD, numerous tests that 

are sensitive enough to detect AD in its early stages have been established. Nasreddine's 

Montreal Cognitive Assessment (MoCA) is a concise cognitive screening test that is 

highly sensitive and specific in diagnosing MCI [24]. In a study conducted on individuals 

with moderate AD, MMSE demonstrated 78% sensitivity, whereas MoCA achieved a 

perfect detection rate of 100%. Furthermore, research studies have shown that the Mini-

Cog, which consists of a clock drawing activity and a three-item memory test, has a high 
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level of accuracy in identifying people with probable dementia ranging from 76% to 

99%, with specificity rates ranging from 89% to 96%.  

       The AD Assessment Scale Cognitive subscale (ADAS-Cog), which was initially 

established to evaluate cognitive abilities in individuals with AD ranging from mild to 

moderate, has undergone modifications aimed at broadening its applicability in pre-

dementia research [25]. These modifications have led to various ADAS-Cog variants 

with increased sensitivity and improved accuracy in predicting cases of dementia. The 

‘Clinical Dementia Rating’ (CDR) scale, which is a diagnostic and staging test, is used to 

evaluate and categorize the extent of dementia in people with AD. Six distinct cognitive 

and functional domains are assessed by clinicians, and the sum of these domains' scores, 

or CDR-SB (Sum of the Boxes) score, has proven to have a strong predictive ability for 

identifying dementia and tracking the progression of cognitive or functional decline. 

      AD also impacts episodic memory, hence to assess episodic memory the 'Free and 

Cued Selective Reminding Test' (FCSRT), the 'California Verbal Learning Test II’ 

(CVLT-II), and the 'Wechsler Logical Memory Subtest’ is utilized. The Free and Cued 

Selective Reminding Test (FCSRT) is more predictive in identifying people with memory 

complaints who subsequently develop AD, but the California Verbal Learning Test 

(CVLT) displays increased sensitivity in detecting early-stage abnormalities in episodic 

memory. The FCSRT performs better than other tests in terms of sensitivity and 

specificity for identifying prodromal AD, according to studies. Furthermore, the FCSRT 

outperforms the Wechsler Logical Memory Delayed Recall in accurately forecasting the 

odds of cerebrospinal fluid (CSF) profile resembling AD in adults. Therefore, 

incorporating a neuro-psychometric test capable of detecting subtle cognitive 

impairments in patients becomes advantageous when constructing a screening battery to 

identify preclinical and early symptomatic AD. 
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1.6.2 Imaging Tests 

       MRI is a noninvasive imaging technique extensively used for brain and spinal cord 

imaging. The images can provide vital information about the person's cognitive health 

and detect many brain-related diseases. MRI is widely used in Alzheimer's detection and 

can detect Alzheimer's before the onset of dementia. The most commonly used is 

structural MRI which can detect changes in brain volume and structure and for this 

reason, can detect many neurological conditions. Medial temporal region brain shrinkage 

is a common observation in AD patients. Medial temporal lobe atrophy is another early 

symptom of AD and can be utilized to diagnose the disease early. The degree of brain 

atrophy in the medial temporal area, which includes the entorhinal cortex and the 

hippocampal tissue, can be assessed by structural MRI [26]. Additionally, it has been 

shown that medial temporal lobe atrophy is a reliable predictor of both the progression of 

cognitive symptoms in healthy people and the development of MCI into Alzheimer's. 

Earlier techniques of sMRI were manual in the volumetric analysis of the brain regions 

atrophied due to Alzheimer's and required a good knowledge of neuroanatomy and in 

also delineating parts of the brain. The more recent approaches use automatic methods for 

volumetry which are quick compared to manual-based volumetry and are easy compared 

to the previous manual methods. Voxel-based morphometry is an automated method for 

volumetry that makes use of specialized analysis-oriented software. By utilizing the 

voxel-based morphometry method, these software are specialized in differentiating 

between healthy and sick based on brain volume and region of interest [27]. MRI is a 

noninvasive imaging technique that is widely employed for the purpose of brain and 

spinal cord imaging. The resultant images can yield crucial insights into an individual's 

cognitive well-being and facilitate the identification of various cerebral disorders. 

Notably, MRI has found extensive application in the realm of AD detection, enabling its 

identification prior to the onset of dementia. Of particular prominence is the utilization of 

structural MRI, which is capable of detecting alterations in brain volume and structure, 

thereby rendering it highly effective in the identification of diverse neurological 

conditions. 
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Figure 1.5: Changes in the brain of normal, MCI, and AD individuals, captured 

via MRI. 

       PET scan is a widely used method and is used extensively to detect many diseases. 

Brain scans using PET can be used to detect Alzheimer's. The method is widely used in 

the diagnosis of AD due to its sensitivity to detect the disease. Alzheimer's 

neuropathology precedes cognitive symptoms, and PET can identify the illness before 

symptoms appear, but the problem with this method is its exuberantly high cost. There 

are a few tracer elements available with the help of which clinicians can diagnose certain 

neurological conditions like AD [28]. The tracer element most used for Alzheimer's 

detection is 2-fluoro-2-deoxy-d-glucose (F-FDG). This tracer element can help track the 

metabolism of glucose in the brain. Specific brain regions experience a decrease in the 

rate of brain glucose metabolism as AD progresses. The performance on cognitive tests is 

correlated with this decrease in brain glucose metabolism. The decline was observed 

years before any clinical signs associated with AD. The patient's frontal, parietotemporal, 

and posterior cingulate cortices show the most dramatic decrease. PET scans, particularly 

those employing 18F-FDG, offer a high sensitivity of up to 90% in detecting Alzheimer's 

early on its advancement. However, the specificity of the imaging technique for 

differentiating AD from other dementias is very low. According to longitudinal studies, 

FDG-PET may both pinpoint MCI patients who will later acquire AD and predict when 

healthy persons will develop MCI [29]. Certain neurotransmitter systems are also 

impaired in AD and with the help of specialized tracers, we can detect the abnormality of 
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the neurotransmitter systems in AD patients. The affected neurotransmitter systems 

include cholinergic, serotonergic, and dopaminergic systems. Postmortem study reports 

show a reduction in the level of acetylcholine (ACH). Moreover, studies suggest a 

decrease in the activity of enzymes important for ACH production and metabolism while 

a reduction in butyrylcholinesterase activity which is localized in glial cells and amyloid 

plaques indicating an increase in the prevalence of amyloid plaques. The reduction in 

ACH activity is also seen in AD patients using certain radio ligands compared with same-

age controls. MCI patients had an 8-15% drop in cortical ACH activity. Reduced ACH 

activity in MCI patients helped predict when MCI will turn into AD. Changes in 

dopaminergic as well as serotonergic systems have also been observed in AD patients 

during autopsy. Single photon emission CT(SPECT) using a tracer I-FP-CIT, showed a 

reduction in dopamine reuptake transporters in Lewy bodies dementia patients while no 

reduction in the case of AD. A multicenter clinical trial has demonstrated the 

effectiveness of I-FP-CIT SPECT in distinguishing between AD and dementia with Lewy 

bodies. Reduced levels of a 5-HT receptor were found in the hippocampus of AD patients 

after a PET scan, pointing to problems in their serotonergic systems. Some imaging 

techniques have also been developed that with the help of a tracer element, enable in vivo 

imaging of amyloid plaque. These imaging methods have been demonstrated to more 

accurately distinguish between moderate cognitive impairment in amnestic and non-

amnestic individuals than the FFDG marker. Pittsburgh compound B(PIB) was among 

the first and the most studied radio ligands for amyloid imaging. The first research to 

make use of this tracer found that 16 Alzheimer patients retained more C-PIB in cortical 

and subcortical areas than healthy controls. In MCI and AD patients, a correlation 

between C-PIB retention and episodic memory quality has also been noted. However, 

autopsy investigations are necessary to validate the in vivo link between C-PIB retention 

and amyloid burden. Alterations in C-PIB retention and CSF amyloid beta can occur in 

the initial AD stages, Before changes in functional characteristics including cognition and 

cerebral glucose metabolism. Despite the sensitivity of the C-PIB to detect AD in the 

initial stage, F-FDG is a better tracer to track disease progression. Activated microglia is 

also a histopathological feature in AD and it can be seen by using a PET tracer 1C-(R)-
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PK11195 which is a peripheral benzodiazepine receptor ligand. AD patients exhibited 

greater binding in the parietal, temporal, and hippocampus compared to healthy controls. 

Using the same PET ligand, researchers discovered low microglial activation levels in 

mild AD and MCI patients. To sum it all up, amyloid imaging using PET is more capable 

of detecting the disease in its initial stages while F-FDG is better suited to track disease 

progression while all the other tracers will help us understand the underlying 

pathophysiology of the disease. 

 

Figure 1.6: Functional changes in the brain captured via PET. 

1.6.3 Cerebrospinal Fluid Biomarkers 

       Cerebrospinal fluid analysis (CSF) is widely used to diagnose neurodegenerative 

diseases including various types of dementia. Due to the CSF's proximity to the brain, 

alterations in the brain's biochemistry can be noticed in the CSF as well. Certain 

biomarkers in the fluid can be utilized to identify AD. Two different types of biomarkers 

exist which can be used to diagnose the disease. The basic biomarkers give us valuable 

information about the overall brain health and can be used to identify certain disorders 

which can help narrow down the diagnostic process. To rule out vascular dementia and 

conditions related to the cerebrovascular system, the ratio of CSF to serum albumin 

provides information on the blood-brain barrier. The CSF to serum albumin ratio in AD 

patients is normal, except for vascular dementia cases. The inflammation status can also 

be used to exclude certain chronic inflammatory and infectious conditions. 
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       The ideal biomarkers for a disease should reflect its underlying pathology. For AD, 

some biomarkers have already been identified that have a direct connection to the disease 

and these neuropathological findings have been confirmed during an autopsy study. One 

of the most noticeable variations is the decrease in amyloid beta in cerebrospinal fluid, 

which is caused by the deposition of amyloid beta into plaques, which are not soluble and 

hence remain in the brain. With the help of C-PIB PET amyloid imaging, visualization of 

the fibrillary amyloid-beta load is possible in vivo. This reduction is also supported by 

certain studies that correlated high C PIB retention in amyloid PET ligands with low 

amyloid beta levels in CSF. Using several enzyme-linked immunosorbent tests (ELISA), 

the study found that the amyloid beta decrease in CSF was 50% lower than in age-

matched healthy old adults. Total tau (t-tau) and phosphorylated tau (p-tau) levels in CSF 

can also be used to diagnose AD. It has been found that a quick transition from mild 

cognitive impairment to a fully developed AD is associated with elevated CSF t-tau 

levels. Additionally, it has been shown that increased CSF t-tau levels also signal a quick 

transition from mild cognitive impairment to fully developed AD. Using ELISA, studies 

have shown a 300% rise in the CSF total tau levels compared to age-matched healthy 

individuals. High neuronal degeneration, which is likewise positively linked with high t-

tau levels in the CSF, is also found in Creutzfeldt-Jakob disease. The ratio of p-tau to t-

tau is a differentiating factor that is seen to be normal in Creutzfeldt–Jakob disease but 

high in AD. Certain research implies that p-tau can be used to distinguish AD from 

dementia and other neurological conditions linked with high neuronal degeneration [30].  

       All these biomarkers have been found to diagnose Alzheimer's with good specificity 

and sensitivity ranging from 80-90% but there is a substantial improvement in the 

diagnostic accuracy when two or more of these biomarkers are considered together. For 

instance, one study discovered that combining amyloid beta 42 and ttau increased the 

sensitivity of AD diagnosis from 78-84% using either biomarker alone to 86% and the 

specificity when using a single biomarker from 84-90% to 97% [31]. The CSF analysis 

can also be used to detect the disease in the prodromal stage but lacks accuracy 

considering p-tau and t-tau in detecting the disease at the preclinical phase of 

Alzheimer's. Although Amyloid beta was able to predict cognitive deterioration in a 
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healthy elderly group, the drawback to CSF analysis for AD is its highly invasive nature 

which requires a spinal tap in the lumbar region. For the time being, it cannot be utilized 

as a screening procedure for AD, but novel biomarkers are being discovered which may 

change the perception about the procedure in the future. The CSF analysis though can be 

extremely helpful in drug development and evaluating drug performance.  

 

Figure 1.7: Cerebrospinal Biomarkers in Alzheimer’s Detection. 

1.6.4 Genetic Testing 

      Although most AD cases occur sporadically without a discernible genetic cause, a 

minor proportion is due to uncommon genetic mutations that directly trigger the disease. 

In these cases, genetic testing can serve as a valuable diagnostic tool, providing 

individuals and their families with important information about their risk and potential 

disease course. The apolipoprotein E (APOE) gene is the most recognized genetic risk 

factor for late-onset AD. There are three primary variants of the APOE gene: ε2, ε3, and 

ε4. People who inherit the ε4 allele face an elevated risk of developing AD, with the risk 

increasing further for those who inherit two copies of the ε4 allele [32]. However, the 

presence of the APOE ε4 allele does not guarantee the development of Alzheimer's, nor 

does its absence ensure immunity from the disease. Besides the APOE gene, researchers 
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have identified other genes that may contribute to AD's development, including APP, 

PSEN1, and PSEN2. These genes are linked to early-onset familial AD (FAD) and can 

cause an overproduction of amyloid-beta peptides, a key feature of AD's pathology. 

Individuals with FAD typically exhibit symptoms before age 65. While genetic testing 

can offer valuable insights into an individual's risk of developing AD, it is not a definitive 

predictor. Many factors, including age, lifestyle, and other genetic and environmental 

influences, can also play a role in the development of the disease. Additionally, the 

interpretation of genetic test results can be complex and should be done in consultation 

with a qualified healthcare professional, such as a genetic counselor or a physician 

specializing in AD [33]. Despite these limitations, genetic testing can be a useful tool in 

the diagnosis and management of AD. For individuals with a strong family history of the 

disease or those experiencing early-onset cognitive symptoms, genetic testing can help 

confirm a diagnosis and guide treatment and management strategies. Furthermore, as 

research into the genetic basis of AD continues to advance, the role of genetic testing in 

the prevention and treatment of disease may become even more important. 

1.7 Challenges in AD Treatment 

1.7.1               High Failure Rate of Clinical Trials 

The development of effective treatments for AD has been a daunting challenge, 

with a staggering 99.6% failure rate in clinical trials. This high failure rate underscores 

the complexity of the disease and the difficulties faced by researchers in developing 

successful interventions. Despite significant investments and research efforts, the lack of 

progress in finding a cure for AD has been a major setback in the fight against this 

devastating condition. 

1.7.2        Current Treatment Landscape 

At present, there are limited treatment options available for individuals with AD. 

Existing therapies primarily focus on managing symptoms and slowing the progression of 

the disease, rather than addressing the underlying causes. Cholinesterase inhibitors, 
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including donepezil, rivastigmine, and galantamine, are frequently prescribed to address 

the cognitive symptoms of AD. These drugs function by boosting levels of acetylcholine, 

a neurotransmitter vital for memory and cognitive processes. Additionally, memantine is 

prescribed for moderate to severe AD, working by regulating glutamate, a 

neurotransmitter important for learning and memory. While these treatments can provide 

temporary relief and may slow the progression of AD, they do not halt or reverse the 

underlying neurodegeneration. Moreover, the benefits of these medications are often 

modest, and their effects diminish over time as the disease progresses. The limited 

efficacy of current treatments highlights the urgent need for more effective and targeted 

therapies that can address the root causes of AD. 

1.7.3 Emphasis on Early Detection and Intervention 

          Given the challenges in developing effective treatments for AD, there has been a 

growing emphasis on the importance of early detection and intervention. By identifying 

individuals at risk for AD at an early stage, it may be possible to implement preventive 

measures and slow the progression of the disease. This approach is particularly relevant 

for individuals with Mild Cognitive Impairment (MCI), as research has shown that MCI 

has a high likelihood of progressing to AD [34]. Early detection of AD can be achieved 

through various methods, including cognitive assessments, biomarker tests, and 

neuroimaging techniques. Cognitive assessments, such as the Mini-Mental State 

Examination (MMSE) and the Montreal Cognitive Assessment (MoCA), are commonly 

used to evaluate an individual's cognitive function and detect signs of cognitive decline. 

Biomarker tests, which measure the levels of specific proteins in the blood or 

cerebrospinal fluid, can provide valuable information about the underlying pathological 

processes of AD. Neuroimaging techniques, such as positron emission tomography (PET) 

scans and magnetic resonance imaging (MRI), can visualize changes in brain structure 

and function associated with AD. By combining these various diagnostic tools, it may be 

possible to identify individuals at risk for AD at an earlier stage, allowing for timely 

interventions and the implementation of preventive strategies. This approach holds 
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promise in delaying the onset and slowing the progression of AD, potentially improving 

the quality of life for those affected by this devastating condition [35]. 

1.8 Role of Machine Learning in AD Research 

       The field of AD research has witnessed significant advancements with the integration 

of machine learning (ML) techniques. ML algorithms have the potential to uncover 

complex patterns and relationships within large, multidimensional datasets, making them 

invaluable tools for predicting the onset and progression of AD. By leveraging ML, 

researchers can develop more accurate and personalized predictive models, paving the 

way for early intervention and targeted therapies [21]. Machine learning algorithms, such 

as logistic regression, support vector machines, and neural networks, have been employed 

to predict the risk of developing AD at an early stage. These techniques analyze various 

biomarkers, including neuroimaging data, cognitive assessments, and genetic 

information, to identify individuals at high risk of progressing from Mild Cognitive 

Impairment (MCI) to AD [36]. By detecting subtle changes in brain structure and 

function, ML models can provide an early warning system, enabling timely interventions 

and potentially delaying the onset of the disease. One of the key benefits of using 

machine learning in AD research is the ability to develop personalized predictive models. 

Traditional risk assessment methods often rely on population-based averages, which may 

not accurately reflect an individual's unique risk profile. ML algorithms, on the other 

hand, can incorporate a wide range of individual-level data, such as genetic factors, 

lifestyle habits, and comorbidities, to generate more precise and tailored risk predictions. 

This personalized approach allows for targeted interventions and preventive strategies, 

optimizing the allocation of healthcare resources and improving patient outcomes. 

1.9 Survival Analysis for Disease Forecasting 

       In addition to predictive modelling, machine learning techniques have also been 

applied to survival analysis in the context of AD research. Survival analysis focuses on 

estimating the time-to-event (e.g., disease onset or progression) and identifying factors 
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that influence the risk of an event occurring. This approach is particularly useful for 

studying the natural history of AD and predicting disease trajectories. Survival analysis 

employs statistical methods to analyze time-to-event data, taking into account the time at 

which an event occurs and the factors that influence the time-to-event [37]. In the context 

of AD research, survival analysis can be used to estimate the time to disease onset, 

progression from MCI to AD, or death. By incorporating covariates such as age, genetic 

factors, and biomarkers, survival analysis models can identify risk factors and predict 

individual disease trajectories. Compared to traditional methods that rely on cross-

sectional data or simple time-to-event analysis, survival analysis offers several 

advantages in the context of AD research. First, survival analysis accounts for censored 

data, which occurs when the event of interest is not observed during the study period. 

This is particularly relevant in longitudinal studies of AD, where participants may drop 

out or be lost to follow-up. Second, survival analysis allows for the incorporation of time-

varying covariates, which can change over the course of the study and influence the risk 

of the event [38]. This flexibility enables researchers to capture the dynamic nature of 

disease progression and identify time-dependent risk factors. Finally, survival analysis 

provides estimates of the cumulative incidence of an event, which can be used to inform 

healthcare planning and resource allocation. A fundamental concept in survival analysis 

is the survival function, represented as S(t), which indicates the probability that an 

individual will survive past a given time t. The survival function is defined as: 

 𝑺(𝒕) = 𝑷(𝑻 > 𝒕)𝑺(𝒕) = 𝑷(𝑻 > 𝒕) (1.1) 

where T is the random variable that represents the time until the occurrence of the event 

of interest. The survival function offers insights into the probability of survival at various 

time points, playing a crucial role in interpreting time-to-event data. Another vital 

element of survival analysis is the hazard function, denoted as λ(t). This function 

represents the instantaneous rate at which the event occurs at time t, provided the 

individual has survived until that time. The hazard function is defined as: 

 𝝀(𝒕) = 𝐥𝐢𝐦 𝒇𝟎 ∆𝒕 → 𝟎𝑷(𝒕 ≤ 𝑻 < 𝒕 + ∆𝒕 ∣ 𝐓 ≥ 𝐭)∆𝒕𝝀(𝒕)

= 𝐥𝐢𝐦 ∆𝒕 → 𝟎∆𝒕𝑷( 𝒕 ≤ 𝑻 < +∆𝒕 ∣ 𝑻 ≥ 𝒕 ) 
(1.2) 
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       The hazard function reflects the risk of an event happening at a particular time point, 

considering the individual's survival up until that moment. By analyzing the hazard 

function, researchers can identify factors that influence the risk of the event and assess 

how this risk changes over time. Survival analysis commonly involves the utilization of 

statistical models like the Cox proportional hazards model to assess time-to-event data. 

This model enables the calculation of hazard ratios, which measure the relative risk of an 

event happening across distinct groups or under different conditions. By incorporating 

covariates such as age, genetic factors, and biomarkers, the Cox model enables 

researchers to identify predictors of the event and assess their impact on the timing of the 

event. In summary, survival analysis offers a robust framework for examining time-to-

event data. and understanding the factors that influence the occurrence of events. By 

utilizing survival functions, hazard functions, and statistical models like the Cox 

proportional hazards model, researchers can gain valuable insights into disease 

progression, prognosis, and risk factors in AD and other research areas [39]. 

1.9.1 Concept of Censored and Uncensored Subjects: 

      In survival analysis, researchers often encounter two key concepts: censored and 

uncensored subjects. These concepts are crucial for understanding how survival data is 

analyzed and interpreted. Censored subjects refer to individuals in the study whose 

outcomes are not fully observed or known at the time of analysis. This could happen due 

to various reasons, such as the end of the study period, loss to follow-up, or the 

occurrence of a different event that makes further observation impossible. Censoring, 

indicated by a vertical line on the survival curve, frequently occurs in longitudinal studies 

when the endpoint of interest has not been reached for all participants. On the other hand, 

uncensored subjects are those for whom the event of interest (such as death, disease 

progression, or failure) has been observed or fully recorded during the study period. 

These individuals contribute directly to the estimation of survival probabilities and the 

construction of the survival curve. 
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1.10 Multimodal Data Integration 

1.10.1 Types of Data Used 

       The quest to understand and combat AD (AD) has led to the integration of diverse 

data modalities, each offering unique insights into the complex mechanisms underlying 

this debilitating condition. Neuropsychological tests, neuroimaging techniques, and 

cerebrospinal fluid (CSF) biomarkers are among the types of data used to create a 

comprehensive picture of AD. Neuropsychological tests, such as the Mini-Mental State 

Examination (MMSE) and the AD Assessment Scale-Cognitive (ADAS-Cog), provide 

valuable information about cognitive function and decline. These tests assess various 

aspects of cognition, including memory, attention, language, and executive function, 

allowing researchers to track changes over time and identify early signs of cognitive 

impairment. Neuroimaging techniques, including magnetic resonance imaging (MRI), 

positron emission tomography (PET), and functional MRI (fMRI), offer a window into 

the brain's structure and function. These imaging modalities enable the visualization of 

brain atrophy, white matter lesions, and alterations in brain activity, which are hallmarks 

of AD.CSF biomarkers, such as amyloid-β, tau, and phosphorylated tau, provide a direct 

measure of the biochemical changes occurring in the brain. These biomarkers are often 

used to diagnose AD and monitor disease progression, as they reflect the accumulation of 

amyloid plaques and neurofibrillary tangles, the pathological hallmarks of AD. These 

imaging modalities facilitate the observation of brain atrophy, white matter lesions, and 

alterations in brain activity, all of which are characteristic features of AD. These 

biomarkers are frequently employed for AD diagnosis and the monitoring of disease 

advancement, as they mirror the buildup of amyloid plaques and neurofibrillary tangles, 

recognized as the pathological hallmarks of AD. 

1.10.2 Importance of Combining Multiple Modalities 

       The integration of diverse data modalities is a crucial aspect of AD (AD) research, as 

it allows for a more comprehensive understanding of this complex disorder. By 
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combining various types of data, such as neuropsychological assessments, neuroimaging 

scans, and cerebrospinal fluid (CSF) biomarkers, researchers can gain valuable insights 

that may not be apparent when analyzing individual data types in isolation [40]. One of 

the primary advantages of multimodal data integration is the enhanced predictive power it 

offers. When multiple data sources are combined, researchers can develop more accurate 

models of disease progression and improve the prediction of AD risk. This is particularly 

important for identifying individuals at high risk of developing AD, as it enables early 

intervention and potentially delays disease onset. For example, by incorporating cognitive 

test scores, brain imaging data, and CSF biomarkers into a single predictive model, 

researchers can more accurately identify individuals who are likely to progress from mild 

cognitive impairment (MCI) to AD. Furthermore, integrating multiple data modalities 

offers a more thorough understanding of the underlying mechanisms driving AD. By 

analyzing the relationships between cognitive decline, brain structure and function, and 

biochemical changes, researchers can gain insights into the specific pathways and 

processes involved in disease progression. This knowledge is crucial for developing 

targeted therapeutic strategies that address the root causes of AD, rather than simply 

managing symptoms. Another benefit of multimodal data integration is the ability to 

identify novel biomarkers and risk factors for AD. By examining patterns across different 

data types, researchers may uncover previously unknown associations or identify new 

targets for intervention. For instance, the combination of genetic data, neuroimaging 

findings, and clinical assessments may reveal novel genetic variants or brain regions that 

are linked to AD risk or disease progression. Furthermore, multimodal data integration 

allows for the personalization of treatment approaches. By considering an individual's 

unique combination of risk factors, cognitive profile, and biological markers, healthcare 

providers can tailor interventions to the specific needs of each patient. This personalized 

approach to AD management has the potential to improve patient outcomes and optimize 

the use of healthcare resources. In conclusion, the importance of combining multiple data 

modalities in AD research cannot be overstated. By integrating neuropsychological, 

neuroimaging, and CSF biomarker data, researchers can enhance predictive power, gain a 

more comprehensive understanding of disease mechanisms, identify novel biomarkers 
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and risk factors, and personalize treatment approaches. As the field of AD research 

continues to evolve, the integration of multimodal data will remain a critical component 

of efforts to prevent, diagnose, and treat this devastating disorder. 

1.11 Research Objectives and Contributions 

1.11.1 Aims of the study 

       The primary aim of this study is to develop stage-specific machine learning (ML) 

survival models to predict the progression of AD (AD) in patients diagnosed with Mild 

Cognitive Impairment (MCI). Given that MCI can be categorized into early MCI (eMCI) 

and late MCI (lMCI), this study seeks to conduct separate analyses for these subtypes to 

enhance prediction accuracy and clinical relevance. This differentiated approach is 

expected to provide clinicians with more precise tools for identifying patients at high risk 

of progression to AD. In doing so, it supports the implementation of more effective and 

timely interventions tailored to the individual patient's stage of MCI.  

1.11.2 Development of Stage-Specific ML Survival Models 

       The focus is on creating ML survival models tailored to the distinct stages of MCI. 

By doing so, the models can capture unique progression patterns in eMCI and lMCI 

patients, allowing for more personalized predictions of disease progression. This 

approach aims to bridge the gap in current research, which often treats MCI as a 

homogeneous group despite the known differences between its early and late stages. 

Conducting separate analyses for eMCI and lMCI patients is crucial due to the varying 

rates of progression to AD between these groups. Research indicates that lMCI patients 

have a higher likelihood of progressing to AD compared to eMCI patients. By analyzing 

these subgroups independently, the study can develop more precise models that cater to 

the specific needs of each stage, potentially leading to better-targeted interventions. 
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1.11.3 Novel Contributions 

       This study makes several novel contributions to the field: 

1. Use of Publicly Available Datasets: Utilizing publicly available datasets ensures 

that the findings are reproducible and can be validated by other researchers. These 

datasets include diverse data types such as neuropsychological tests, 

neuroimaging results, and cerebrospinal fluid (CSF) biomarkers. 

2. Application of Cross-Validation and Techniques to Handle Data Issues: To 

enhance the reliability and generalizability of the models, the study employs 

cross-validation techniques. Additionally, methods to handle missing data and 

imbalanced datasets are implemented, addressing common challenges in medical 

data analysis. 

3. Comparison of Data Modalities and Their Combinations: The study compares 

different data modalities, such as MRI, FDG, CSF biomarkers, genetic data, and 

cognitive tests, as well as their combinations. This comprehensive approach helps 

identify which modality or combination of modalities has the highest predictive 

power for each MCI stage. 

4. Generation of Individualized Survival Curves: One of the unique aspects of this 

study is the generation of individualized survival curves. Unlike traditional 

models that provide population-level insights, these curves offer personalized 

predictions, helping clinicians tailor treatment plans to each patient’s specific risk 

profile. 

5. Stage-Specific Predictions for Better Clinical Interventions: By focusing on stage-

specific predictions, the study aims to provide clinicians with tools to identify 

high-risk patients early. This can lead to timely interventions, potentially slowing 

down or preventing the progression of AD in MCI patients. 

       In summary, this research addresses a significant gap in the existing literature by 

developing and validating ML survival models tailored to the different stages of MCI. 
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The insights gained from this study have the potential to improve clinical outcomes 

through more accurate and personalized predictions of AD progression. 
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CHAPTER 2: DATASET AND FEATURE DESCRIPTION 

 

2.1 Dataset and Feature Description 

       This study utilized data from the AD Neuroimaging Initiative (ADNI) database, 

which is a widely used resource in AD research. The ADNI database provides access to a 

wealth of clinical, imaging, and genetic data from hundreds of subjects, including 

individuals with AD, mild cognitive impairment, and healthy controls. Researchers can 

access this valuable resource through the ADNI website at adni.loni.usc.edu, where they 

can explore and analyze data to further their understanding of AD and improve diagnostic 

and treatment strategies. 

 

Figure 2.1: Types of data available on AD Neuroimaging Initiative Database. 
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2.2 Subject Selection 

       The study included a total of 837 patients diagnosed with Mild Cognitive Impairment 

(MCI). Among these patients, 291 were classified as having early MCI (eMCI) at 

baseline, while 546 were classified as having late MCI (lMCI). The decision to focus 

solely on baseline information and test results was made to train the machine learning 

models specifically for predicting the progression of AD. This approach ensured that the 

models were trained on the most relevant and representative data available at the initial 

stages of MCI diagnosis.  

 

Figure 2.2: Number of MCI subjects included in the study. 
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2.3 Features Used in the Study 

       In this study, several features were included, from various data modalities. This 

section discusses the different modalities included and their respective features: 

2.3.1. Demographic Information 

1. Age (AGE): Age of the patient at baseline. Advanced age is a known risk factor for 

AD progression. 

2. Patient Education (PTEDUCAT): Level of education attained by the patient. Higher 

education levels have been associated with a lower risk of developing AD. 

3. Patient Gender (PTGENDER): Gender of the patient. Gender differences in AD 

prevalence and progression have been observed, with women being more susceptible. 

2.3.2 Neuropsychological Tests 

1. Clinical Dementia Rating Scale Sum of Boxes (CDRSB): Assesses the severity of 

dementia symptoms, including memory loss and daily functioning. 

2. AD Assessment Scale - 11 items (ADAS11): Measures cognitive abilities such as 

memory, language, and orientation. 

3. AD Assessment Scale - 13 items (ADAS13): Similar to ADAS11, evaluates cognitive 

functions with additional items. 

4. Mini-Mental State Examination (MMSE): Screens for cognitive impairment by 

assessing memory, attention, and language skills. 

5. Rey Auditory Verbal Learning Test - Immediate Recall (RAVLT.immediate): 

Measures the ability to recall a list of words immediately after hearing them. 



 

32 

 

6. Rey Auditory Verbal Learning Test – Learning (RAVLT.Learning): Assesses the 

ability to learn new verbal information over multiple trials. 

7. Rey Auditory Verbal Learning Test – Forgetting (RAVLT.forgetting): Measures the 

rate of forgetting verbal information over a delayed period. 

8. Rey Auditory Verbal Learning Test - Percent Forgetting (RAVLT.perc.forgetting): 

Indicates the percentage of forgotten words relative to the total learned. 

9. Functional Activities Questionnaire (FAQ): Assesses the ability to perform daily 

activities independently, reflecting functional impairment. 

2.3.3. Imaging Tests 

1. FDG PET (Fluorodeoxyglucose Positron Emission Tomography): Measures brain 

glucose metabolism, which is altered in AD. 

2. MRI Volumetric Biomarkers: 

- Ventricles: Enlargement of brain ventricles is associated with brain atrophy and 

neurodegeneration. 

- Hippocampus: Reduced hippocampal volume is a hallmark of AD and correlates with 

memory decline. 

- Whole Brain Volume (WholeBrain): Total brain volume is a marker of overall brain 

health and atrophy. 

- Entorhinal: The entorhinal cortex is an early site of pathology in AD, affecting memory 

and navigation. 

- Fusiform: The fusiform gyrus is involved in facial recognition and may be affected in 

AD. 
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- Midtemporal (MidTemp): The midtemporal region is involved in memory and may 

show atrophy in AD. 

- Intracranial Volume (ICV): Represents the total volume inside the skull, which can 

affect brain structure and function. 

2.3.4. CSF Biomarkers 

1. Total Tau Protein: Elevated levels indicate neuronal damage and are associated with 

AD progression. 

2. Phosphorylated Tau Protein: Abnormal levels are indicative of tau pathology and are 

associated with cognitive decline. 

3. Amyloid Beta Protein: Elevated levels or abnormal ratios of amyloid beta proteins are 

biomarkers for amyloid plaque accumulation, a hallmark of AD. 

 

Figure 2.3: All features from different modalities that have been used in this 

study. 
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2.5 Target Variables 

       Survival analysis in this study relies on two crucial target variables: a binary event 

indicator and a time-to-event duration column. These variables play a fundamental role in 

understanding the progression of Mild Cognitive Impairment (MCI) to AD (AD). The 

binary event indicator serves to distinguish between patients with early MCI (eMCI) and 

late MCI (lMCI) who progress to AD. A value of "1" indicates progression to AD, 

signifying that the patient has converted from MCI to AD during the study period. 

Conversely, a value of "0" indicates that the patient remains in their respective MCI stage 

without converting to AD by the end of the study. Patients assigned the value of 1 are 

classified as uncensored, meaning their progression to AD has been observed or recorded. 

On the other hand, patients assigned the value of 0 are censored, indicating that their 

outcome (conversion to AD) has not been fully observed or documented during the study 

period. The time-to-event duration column provides information on the duration from the 

initial visit to the diagnosis of AD for uncensored patients. For censored patients, the 

time-to-event duration represents the period between their first and last visit that was 

documented for the study. This column allows researchers to track the progression of the 

disease over time and analyze the factors influencing the time to conversion from MCI to 

AD.  

Table 2.1: Target Variables for eMCI and lMCI datasets 
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CHAPTER 3: METHODOLOGY 

 

       Figure 3.1 shows the workflow for the entire study process. 

 

Figure 3.1: Machine learning pipeline for the prediction of AD conversion. 

3.1 Statistical Analysis  

       In this study, our primary aim was to investigate potential differences in the 

progression of Mild Cognitive Impairment (MCI) to AD (AD) between its early and 

late stages. We employed several statistical techniques to achieve this goal: 

3.1.1 Comparison between Features of eMCI and lMCI datasets 

       We initially used a t-test to identify significant differences in features between 

early and late MCI stages. This analysis helped us understand the baseline differences 

in key features between the two stages of MCI. 

3.1.2 Kaplan-Meier Estimator 

        Subsequently, we utilized the Kaplan-Meier estimator to compare the probability 

of surviving without AD over time for each stage of MCI. The Kaplan-Meier 

estimator is a non-parametric statistic used to estimate the survival function from 
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lifetime data. It calculates the probability that an individual survives beyond a certain 

time point, taking into account the duration of follow-up for censored observations. In 

our study, we used the Kaplan-Meier estimator to estimate the survival curves for 

early and late MCI patients and compare their survival probabilities over time [41]. 

3.1.3 Log-Rank Test 

        Additionally, we applied the log-rank test to formally assess if there is a statistically 

significant distinction between the survival distributions of the two stages. It helps us 

determine whether the observed differences in survival between early and late MCI 

patients are statistically significant. 

      Further details of these analyses are presented in the results and discussion section. 

Based on these findings, we divided the MCI data into two separate datasets: one 

containing patients with early MCI at baseline and the other containing patients with late 

MCI at baseline. Data preprocessing and machine learning models were trained and 

evaluated on both datasets individually. 

3.2 Data Preprocessing 

3.2.1 Imputation 

       Missing values are a common challenge in medical studies, and our datasets were no 

exception, with several features containing missing values. Deleting entire rows with 

missing values can result in the loss of valuable information. Therefore, to make the most 

of the available data and ensure that our analyses are based on complete datasets, we 

employed KNN imputation. This technique estimates the missing value in a row by 

considering the values of its closest neighboring rows, which are likely to have similar 

characteristics. We chose an optimal k value of 5 for imputing missing values, balancing 

the need for accuracy with computational efficiency. 
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Figure 3.2: Heatmap of missing values in early MCI dataset. 

 

Figure 3.3: Heatmap of missing values in late MCI dataset.     

3.2.2 Feature Encoding 

       To facilitate the accurate interpretation and utilization of categorical data by machine 

learning models, we used one-hot encoding for the categorical gender feature 
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'PTGENDER'. This transformation converts categorical data into a numerical format, 

enabling the models to effectively process this information in their calculations. 

3.2.3 Standardization 

       For features with numerical values, we applied z-score normalization. This 

standardization technique ensures that all features have a mean of zero and a standard 

deviation of one, making them comparable and preventing any one feature from 

dominating the analysis. However, we excluded MRI volumetric biomarkers from this 

step. Instead, we scaled these biomarkers by dividing them by each patient's total 

intracranial volume (ICV). This scaling approach accounts for individual differences in 

brain size, ensuring that the biomarkers are comparable among patients regardless of their 

cranial size. 

3.2.4 Target Imbalance 

       To address the imbalance in the prediction labels, we categorized patients into two 

groups based on their disease progression: those who showed progression of the disease 

(labeled '1') and those who did not (labeled '0'). The early MCI (eMCI) group exhibited a 

significant imbalance, with 268 patients who did not progress and only 23 patients who 

did progress. In contrast, the late MCI (lMCI) group had a more balanced distribution, 

with 301 non-progressive and 245 progressive patients. To mitigate this imbalance, we 

employed a method from the sklearn library to oversample the minority class 

(progressive patients), creating a more balanced dataset that would improve the 

performance of our machine learning models. Imbalanced datasets can lead to biased 

models that favor the majority class. By balancing the targets, the model can learn from a 

more representative sample of the data, leading to better generalization and performance 

on unseen data. Performance metrics like accuracy can be misleading on imbalanced 

datasets. For example, a model that always predicts the majority class could achieve high 

accuracy but would not be useful in practice. 
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Figure 3.4: Distribution of censored and uncensored individuals in eMCI and 

lMCI datasets and upsampling of the minority class in eMCI dataset. 

3.2.5 Train-Test Split 

       To ensure the robustness of our machine learning models, we split the data into 

training and testing sets using a stratified split based on the event indicator. We allocated 

70% of the data to the training set and 30% to the testing set. This stratification helped 

maintain the distribution of the target variable across both sets, ensuring that the models 

were trained and evaluated on representative samples of the data. 

 

Figure 3.5: Train-Test Split. 
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Table 3.1: Preprocessing of Features 

 

 

Figure 3.6: Preprocessing steps employed in this study.  
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3.3 Machine Learning Models For Survival Analysis 

       In this study, we utilized Python 3.10.12 and the sksurv module to apply multiple 

machine learning models. These models were chosen for their ability to handle complex 

data and their suitability for survival analysis, which is crucial for predicting time-to-

event outcomes.  

3.3.1 Ensemble Models 

       Ensemble models improve predictive performance by combining multiple decision 

trees, making them particularly effective for navigating intricate relationships within the 

data. The following ensemble models were employed in this study: 

1. Random Survival Forest:  

       RSF is an extension of the conventional Random Forest algorithm, tailored to handle 

censored data where the event of interest has not yet occurred for certain individuals. It 

constructs an ensemble of decision trees, each trained on a random subset of the data with 

random feature selection. By aggregating the individual tree predictions, RSF makes 

more accurate survival predictions. RSF is highly effective in managing high-

dimensional data and complex variable interactions, which are common in medical 

research. This model is particularly valuable for forecasting outcomes such as disease 

progression or patient survival. 

2. Extra Survival Trees (XST) 

       XST adapts the principles of survival trees to handle censored data, a frequent 

occurrence in clinical research. It constructs numerous survival trees using a random 

subset of features and data for training. This randomization minimizes overfitting and 

enhances model performance. XST is computationally efficient, making it suitable for 

analyzing large datasets with complex survival patterns. Its robustness and efficiency are 

critical for accurately modeling the survival times of patients. 
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3. Gradient Boosting Survival Analysis 

       Gradient Boosting combines the predictions of multiple base learners, typically 

simple models slightly better than random guessing. These base models, known as weak 

learners, are added in an additive manner to progressively enhance the overall model's 

performance. Unlike RSF, which fits multiple survival trees independently and averages 

their predictions, gradient boosting builds the model stage by stage, with each new model 

correcting the errors of the previous ones. This iterative approach results in a strong 

predictive model capable of capturing complex data patterns. 

3.3.2 Linear Models 

       Linear models are essential for understanding relationships between variables and 

time-to-event outcomes. The following linear model was used in this study: 

1. Cox Proportional Hazards (CoxPH) 

       The CoxPH model is a well-known statistical approach for survival analysis. It 

examines the relationship between the survival time and predictor variables without 

assuming a specific distribution for the survival times. Instead, it calculates the hazard 

function, representing the probability of the event occurring at a particular time, given 

that the individual has survived up to that point. The CoxPH model is valuable for 

identifying risk factors and understanding how different variables influence the likelihood 

of an event, such as disease progression.  

2. Cox-net 

       Cox-net is an extension of the CoxPH model that incorporates regularization 

techniques to handle high-dimensional data. This model applies penalties, such as Lasso 

(L1) or Ridge (L2), which help reduce the complexity of the model by shrinking the 

coefficients of less important variables toward zero. This regularization process prevents 

overfitting, especially in datasets with many predictors, by ensuring that the model does 
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not become too complex and overfit the training data. The Cox-net model is particularly 

beneficial for identifying the most relevant variables in predicting survival outcomes 

while controlling for the effects of less important variables. By penalizing less significant 

predictors, Cox-net effectively focuses on the most critical variables, improving the 

model's predictive power and interpretability. 

3.3.3 Survival Tree 

       The Survival Tree model is another technique for handling censored data in survival 

analysis. It uses a decision tree approach, where the data is recursively partitioned into 

subsets that are increasingly homogeneous in terms of survival times. Each split in the 

tree is based on a predictor variable that best separates the data according to survival 

outcomes. Survival Trees are particularly useful for identifying complex interactions 

between variables and capturing non-linear relationships in the data. 

3.3.4 Hyperparameter Optimization 

      A comprehensive strategy was used to deal with model overfitting and selection bias 

by including techniques such as tuning hyperparameters and using k-fold cross-

validation. Hyperparameter tuning was performed using Grid Search with cross-

validation (5 folds) on the training set, to determine the best hyperparameters. Grid 

Search CV exhaustively explores all the combinations to find the one that gives the best 

model performance. The models were then trained on the entire training set using the 

selected hyperparameters and evaluated on test sets.  

3.4 Evaluation Metrics 

3.4.1 Concordance Index (C-Index) 

       The Concordance Index, commonly referred to as the C-Index, is a pivotal 

performance metric in the realm of survival analysis. It is widely used due to its ability to 

provide a comprehensive assessment of a model’s predictive accuracy, particularly in the 

context of time-to-event data. At its core, the C-Index evaluates the model’s capability to 
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correctly rank the order of predicted event times. This ranking ability is crucial in 

survival analysis, as it directly relates to the model's effectiveness in predicting which 

individuals are more likely to experience the event (such as disease progression or failure 

of a mechanical component) sooner compared to others. Essentially, the C-Index 

measures the concordance between the predicted and actual event times. One of the 

primary advantages of the C-Index is its simplicity and interpretability. It provides a 

single numeric value that encapsulates the predictive performance of a model, making it 

an invaluable tool for comparing different models or tuning parameters. This single-

number summary allows researchers and practitioners to quickly gauge which model is 

more effective in predicting the outcome of interest. The C-Index ranges from 0 to 1. A 

value of 0.5 indicates a model with no predictive power, equivalent to random chance. In 

contrast, a C-Index of 1 signifies perfect concordance, where the model accurately ranks 

all pairs of individuals in terms of their event times. Thus, a higher C-Index score denotes 

better model performance [42]. For example, a C-Index of 0.7 suggests that the model 

correctly ranks 70% of the pairs, indicating a good level of predictive accuracy. 

Moreover, the C-Index is particularly useful because it can handle censored data, which 

is a common characteristic of survival datasets. Censored data occurs when the event of 

interest has not been observed for some individuals during the study period. The C-Index 

appropriately accounts for these cases, ensuring that the metric accurately reflects the 

model's performance even in the presence of incomplete data. 

3.4.2 Integrated Brier Score 

       The Integrated Brier Score (IBS) is a crucial metric in survival analysis, offering a 

thorough assessment of a model's predictive precision over the entire duration of the 

study. Unlike other metrics that might only provide a snapshot at a specific time point, 

the IBS captures the accuracy of predictions across the entire time spectrum, making it a 

comprehensive measure of model performance. Derived from the time-dependent Brier 

score, the IBS functions similarly to calculating the area under a curve. The Brier score 

itself measures the mean squared difference between the predicted probabilities of an 

event occurring and the actual outcomes, at various time points. By integrating these 

time-dependent Brier scores, the IBS consolidates these individual assessments into a 
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single, overarching value. This integration process essentially sums up the predictive 

errors across all time points, giving a holistic view of the model's performance. One of 

the significant advantages of the IBS is its ability to provide a single value that 

summarizes the model’s predictive accuracy. This value ranges from 0 to 1, where lower 

values indicate better predictive performance [43]. An IBS close to 0 suggests that the 

model's predictions are highly accurate and align closely with the observed outcomes. 

Conversely, a higher IBS indicates poorer predictive accuracy, reflecting larger 

discrepancies between predicted and actual event times. The utility of the IBS lies in its 

ability to account for the entire follow-up period of the study, rather than focusing on a 

single moment in time. This makes it particularly valuable in survival analysis, where the 

timing of events is crucial, and the risk of events can change over time. By evaluating the 

model's performance over the entire study duration, the IBS provides a more nuanced and 

comprehensive picture of its predictive capabilities. Furthermore, the IBS is adept at 

handling censored data, which is a common feature in survival analysis. Censored data 

refers to instances where the event of interest has not occurred for some subjects by the 

end of the study period. The IBS appropriately incorporates these cases into its 

calculations, ensuring that the metric accurately reflects the model's performance even 

when some data points are incomplete. In practical terms, the IBS can be used to compare 

different predictive models, aiding in the selection of the most accurate model for 

survival analysis. It allows researchers to evaluate how well different models perform 

across the entire time frame of interest, facilitating a more informed and nuanced 

comparison. Additionally, the IBS can be instrumental in model tuning and validation, 

helping to identify and refine the parameters that yield the most accurate predictions. 
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Figure 3.7: Machine learning workflow for eMCI and lMCI datasets. 
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CHAPTER 4: RESULTS 

 

4.1 Statistical Analysis 

       The statistical results in Table 1 show statistically significant differences between 

almost all features of eMCI and lMCI datasets. Figure 3 shows the Kaplan-Meier 

(KPM) curves for both eMCI and lMCI highlighting varying probabilities of survival 

without AD over time. In this study, the median survival time for the eMCI group is 

4.5 years, and 1.5 for the lMCI group. These results suggest that eMCI patients exhibit 

a slower disease progression, compared to the lMCI patients. The log-rank test further 

verified that the differences are statistically significant (p-value= 1.8 x 10⁻⁴). These 

results confirm the existing understanding of how the progression rates differ between 

early and late MCI patients. As a result, we divided our dataset into two separate sets, 

one for each stage of MCI. Our goal was to make more precise predictions and create 

individual survival curves that are more accurate. By adopting this approach, ML 

models are better able to capture the unique patterns associated with each stage, 

ultimately enabling more personalized interventions for better patient outcomes. 

 

Figure 4.1: Comparison of survival curves of eMCI and lMCI groups showing 

varying survival probabilities. 
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Table 4.1: Data statistics of eMCI and lMCI groups in this study. 

Features eMCI (291) lMCI(546) p-value 

Female, gender (n%) 127, (43.6%) 212, (38.8%) 0.17 

Male, gender (n%) 164, (56.3%) 334, (61.1%) 0.17 

Age 71 ± 1.2 74 ± 7.5 p < 0.05 

Education 15.8 ± 2.7 15.8 ± 2.9 0.95 

CDRSB 1.31 ± 0.75 1.66 ± 0.93 p < 0.05 

ADAS13 12.9 ± 5.4 18.9 ± 6.4 p < 0.05 

ADAS11 8.03 ± 3.5 11.6 ± 4.5 p < 0.05 

MMSE 28.2 ± 1.6 27.2 ± 1.8 p < 0.05 

RAVLT.immediate 39.2 ± 10 30.9 ± 9.2 p < 0.05 

RAVLT.learning 5.21 ± 2.4 3.4 ± 2.4 p < 0.05 

RAVLT.forgetting 4.3 ± 2.64 4.8 ± 2.3 p < 0.05 

RAVLT.perc.forgetting 47.7 ± 30.5 69 ± 31 p < 0.05 

FAQ 2.09 ± 3.2 3.9 ± 4.47 p < 0.05 

FDG-PET 6.4 ± 0.6 6 ± 0.6 p < 0.05 

Ventricles, × 10
3 35.3 ± 20 43.1 ± 24 p < 0.05 

Hippocampus, × 10
3
 7.2 ± 10 6.4 ± 11 p < 0.05 

Whole Brain, × 10
5 10.7 ± 1.1 10.1 ± 1.1 p < 0.05 

Entorhinal, × 10
3
 3.7 ± 0.68 3.3 ± 0.74 p < 0.05 

Fusiform, × 10
3
 18.7 ± 2.6 16.8 ± 2.5 p < 0.05 

Mid Temporal, × 10
3
 20.6 ± 2.6 18.9 ± 2.9 p < 0.05 

ABETA 1096 ± 450 844 ± 404 p < 0.05 

TAU 259 ± 124 314 ± 141 p < 0.05 

PTAU 24.6 ± 14 31 ± 15 p < 0.05 

4.2 Performance of Machine Learning Models 

       To determine the best algorithm for AD predictions, we used six different models on 

two separate datasets each (eMCI and lMCI). These models included RSF, XST, and GB 

from scikit-survival's ensemble module, as well as ST from scikit-survival's tree module; 

CoxPH and Coxnet from scikit-survival's linear_model module. Hyperparameter 

optimization was done using grid search with 5-fold cross-validation, to obtain the best 

hyperparameters; which are presented in Table 2. Statistical significance was defined as a 

p-value less than 0.05. This section discusses the performance of ML models trained on 

multimodal data that includes all features. A detailed version of these results can be 

found in the Supplementary Materials.  As compared to other models, RSF had the 
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highest accuracy on both datasets. All the ML models outperformed the traditional 

CoxPH model in both datasets. For eMCI group, among the ensemble-based models, RSF 

showed the best performance (C-Index= 0.96 ± 0.03, IBS= 0.02 ± 0.02), followed by 

Gradient Boosting (C-Index= 0.91 ± 0.03, IBS= 0.1 ± 0.02) and XST (C-Index= 0.89 ± 

0.02, IBS= 0.1 ± 0.02). For the lMCI group, RSF showed the best performance here as 

well (C-Index= 0.82 ± 0.06, IBS= 0.1 ± 0.02), followed by XST (C-Index= 0.78 ± 0.06, 

IBS= 0.17 ± 0.03) and then Gradient Boosting (C-Index= 0.72 ± 0.04, IBS= 0.19 ± 0.02). 

In terms of linear models, Coxnet performed better than CoxPH in both eMCI and lMCI 

datasets. Coxnet achieved C-Index= 0.84 ± 0.04 and IBS= 0.05 ± 0.02 for eMCI; and for 

lMCI, it achieved C-Index= 0.68 ± 0.07, and IBS= 0.18 ± 0.03. CoxPH was the worst-

performing model in both datasets and achieved a C-Index of 0.81 ± 0.03, and IBS of 0.2 

± 0.04 in the eMCI dataset. For lMCI dataset, CoxPH had a C-Index of 0.66 ± 0.07, and 

IBS of 0.2 ± 0.02.  Furthermore, compared to the two tree-based models included in the 

study (RSF and XST), the Survival tree model's performance was worse for both eMCI 

(C-Index= 0.84 ± 0.04, IBS= 0.19 ± 0.02) and lMCI (C-Index= 0.68 ± 0.05, IBS= 0.23 ± 

0.04).  

       In summary, RSF demonstrated superior performance in predicting conversion risk 

from eMCI and lMCI to AD outperforming other tree-based survival algorithms and 

statistical methods like CoxPH. The strong performance of RSF in our study shows that 

RSF is an effective predictor of survival outcomes in diseases such as AD. These results 

align with previous research, which has demonstrated the effectiveness of RSF in 

predicting time-to-event scenarios in both clinical and research settings [44], [36].  RSF 

possesses several key features that make it a reliable approach for disease forecasting, 

including robustness against outliers, lack of convergence issues, cross-validated 

prediction to prevent overfitting, and reliable inference of training data. Additionally, 

RSF gives a full nonparametric measure of variable importance, which helps identify the 

contribution of various factors in forecasting the survival function. 
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Table 4.2: Best performing hyperparameters obtained using Grid Search-CV 

Models eMCI lMCI 

RSF min_samples_leaf = 1, 

min_samples_split = 2, 

n_estimators=100, max_features=‘sqrt’ 

min_samples_leaf = 2, 

min_samples_split = 2, 

n_estimators=150, max_features= ‘sqrt’ 

XST n_estimators = 100, max_depth =  

None, min_sample_split=5, 

min_samples_leaf = 5 

n_estimators = 100, max_depth =  None, 

min_sample_split =2, 

min_samples_leaf= 1 

GB learning_rate = 0.0001, max_depth = 

5, 

min_samples_leaf = 5, 

min_samples_split = 5 

learning_rate = 0.001, max_depth = 5, 

min_samples_leaf = 5, 

min_samples_split = 2 

ST max_depth = 5, min_samples_leaf = 5, 

min_samples_split = 10 

max_depth = 10, min_samples_leaf = 3, 

min_samples_split = 4 

Cox-net L1_ratio = 0.0001 L1_ratio = 0.001 

CoxPH Alpha = 0.0001 Alpha = 0.0001 

4.3 Multimodal Analysis 

       The results show that the models trained on a combination of features from various 

modalities (multimodal data) performed better than the models trained on a single 

modality in both datasets. Figure 4 provides a visual summary comparing the 

performance of different feature sets. Specifically, the ML models performed better on 

the eMCI dataset than on the lMCI dataset. RSF showed the best performance on both 

datasets when using both multimodal and individual modalities. When comparing results 

from single modalities (Cognitive, Imaging, and CSF), the cognitive modality performed 

well in both datasets across all models. For the eMCI group, RSF trained on cognitive 

features achieved a C-Index of 0.95 ± 0.03 and an IBS of 0.02 ± 0.02, compared to 

Imaging features (C-Index= 0.94 ± 0.03, IBS= 0.04 ± 0.02, p<0.05) and CSF biomarkers 

(C-Index= 0.95 ± 0.03, IBS= 0.02 ± 0.02, p>0.05). However, when RSF trained on 

multimodal data was compared to using cognitive features solely, there was no 

statistically significant improvement. 

       For the lMCI group, RSF trained on cognitive features achieved a C-Index of 0.78 ± 

0.02 and an IBS of 0.17 ± 0.02, compared to Imaging features (C-Index= 0.71 ± 0.10, 
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IBS= 0.19 ± 0.02, p<0.05); and CSF biomarkers (C-Index= 0.57 ± 0.06, IBS= 0.22 ± 

0.02, p<0.05). In this case, RSF trained on merging all modalities did not yield a 

statistically significant improvement over using cognitive features alone.  

      Our results suggest that different types of data contribute differently to predicting 

survival estimates. Although RSF trained on multimodal data achieved a higher C-Index 

compared to using cognitive tests alone in both datasets, the improvement was not 

statistically significant. This suggests that cognitive tests alone are robust predictors of 

AD progression for eMCI and lMCI subjects, with the additional modalities not 

contributing significantly to overall accuracy. Additionally, when comparing models 

trained on multimodal data to models trained on CSF biomarkers alone for eMCI dataset, 

no statistical improvement was observed. This indicates that for eMCI, CSF biomarkers 

and cognitive tests alone can yield good results. Given that CSF biomarker collection is a 

painful and invasive process, hence cognitive tests should be preferred, as they also 

provide similarly effective results.  

       To further understand the key predictors of the RSF’s performance, a feature 

importance analysis using multimodal RSF models revealed that the top features differed 

between the two MCI stages. Figure 5 shows the feature importance of both datasets 

using the permutation feature importance method. The most significant features for the 

eMCI group were the CSF biomarkers, RAVLT.perc.forgetting, FAQ, and PTEDUCAT. 

In the lMCI dataset, the top contributing features were FAQ, ADAS13, ADAS 11, Mid 

temporal and CDRSB. Whereas, the model's performance was negatively impacted by 

CSF biomarkers, FDG, whole brain and MMSE. The feature importance analysis for both 

datasets showed that cognitive features ranked among the most influential predictors for 

model performance. The consistent best performance of the cognitive modality across all 

models and datasets highlights its importance as a key predictor of AD progression in 

MCI patients. Cognitive tests such as FAQ, ADAS13, and RAVLT can serve as reliable, 

non-invasive, and cost-effective alternatives for predicting AD conversion [45],[46]. 

These tests provide useful information about a patient's cognitive function and can be 

reliable predictors of disease progression and survival outcomes. 
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Figure 4.2: Performance of machine learning models in eMCI dataset. 
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Figure 4.3: Performance of machine learning models in lMCI dataset. 
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Table 4.3: Performance of machine learning models across different feature sets 

Early MCI 

MODELS Evaluation 

Metrics 
Multimodal Cognitive Imaging CSF 

RSF C-Index 0.96 ± 0.03 0.95 ± 0.03 0.94 ± 0.03 0.95 ± 0.03 

IBS 0.02 ± 0.03 0.02 ± 0.02 0.04 ± 0.02 0.02 ± 0.02 

XST C-Index 

 

0.89 ± 0.02 0.86 ± 0.05 0.81 ± 0.03 0.75 ± 0.02 

IBS 0.1 ± 0.02 0.1 ± 0.02 0.05 ± 0.02 0.03 ± 0.02 

GB C-Index 

 

0.91 ± 0.03 0.86 ± 0.04 0.85 ± 0.03 0.82 ± 0.02 

IBS 0.11 ± 0.02 0.11 ± 0.01 0.1 ± 0.02 0.1 ± 0.02 

ST C-Index 

 

0.84 ± 0.05 0.81 ± 0.06 0.77 ± 0.06 0.82 ± 0.06 

IBS 0.1 ± 0.02 0.04 ± 0.02 0.06 ± 0.03 0.03 ± 0.02 

Cox-net C-Index 

 

0.84 ± 0.04 0.64 ± 0.06 0.63 ± 0.1 0.74 ± 0.06 

IBS 0.05 ± 0.02 0.02 ± 0.02 0.04 ± 0.02 0.02 ± 0.02 

CoxPH C-Index 

 

0.81 ± 0.03 0.78 ± 0.06 0.64 ± 0.06 0.79 ± 0.04 

IBS 0.2 ± 0.04 0.1 ± 0.02 0.5 ± 0.04 0.08 ± 0.02 

Late MCI 

RSF C-Index 0.83 ± 0.05 0.78 ± 0.02 0.71 ± 0.1 0.57 ± 0.06 

IBS 0.16 ± 0.02 0.17 ± 0.02 0.19 ± 0.02 0.22 ± 0.02 

XST C-Index 

 

0.78 ± 0.06 0.75 ± 0.04 0.66 ± 0.06 0.56 ± 0.04 

IBS 0.17 ± 0.03 0.17 ± 0.03 0.19 ± 0.02 0.26 ± 0.03 

GB C-Index 

 

0.72 ± 0.04 0.70 ± 0.05 0.62 ± 0.04 0.57 ± 0.05 

IBS 0.19 ± 0.02 0.2 ± 0.02 0.2 ± 0.02 0.2 ± 0.02 

ST C-Index 

 

0.68 ± 0.05 0.61 ± 0.07 0.59 ± 0.07 0.59 ± 0.04 

IBS 0.23 ± 0.04 0.29 ± 0.04 0.3 ± 0.05 0.32 ± 0.04 
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Cox-net C-Index 

 

0.68 ± 0.07 0.65 ± 0.07 0.60 ± 0.07 0.59 ± 0.01 

IBS 0.18 ± 0.03 0.18 ± 0.03 0.21 ± 0.02 0.22 ± 0.03 

CoxPH C-Index 

 

0.66 ± 0.07 0.65 ± 0.07 0.52 ± 0.06 0.59 ± 0.07 

IBS 0.2 ± 0.04 0.2 ± 0.03 0.2 ± 0.02 0.22 ± 0.02 

 

4.4 Individual Survival Curves 

       Survival curves visually summarize the time-to-event data, showing how the survival 

probability decreases as time progresses [47]. The Kaplan-Meier estimator is a non-

parametric statistical tool that is commonly used for generating survival curves. 

However, it mainly represents survival distribution at a population level and has limited 

clinical usefulness. ML survival models can generate individual survival curves based on 

the characteristics of each subject. This capability is one of the strengths of using ML 

approaches in survival analysis, as they can provide patient-specific predictions, 

providing valuable insights into disease progression [41]. Incorporating individual 

survival curves allows clinicians to gather useful information, make informed therapeutic 

decisions, and allocate resources effectively.  We used RSF trained on multimodal data, 

obtained on the baseline visit to generate individual survival distributions for four distinct 

patient scenarios: (a) Progressive eMCI, (b) Non-progressive eMCI, (c) Progressive 

lMCI, (d) Non-progressive lMCI. A reliable model should accurately predict high 

survival rates for individuals who do not progress to AD, and low survival rates for 

progressive cases. If the survival curve is close to 0 on the y-axis, it indicates a low 

probability of survival and a high risk of progressing towards AD. In contrast, a curve 

approaching 1 suggests a high probability of survival and a lower risk. Figure 6 shows 

individual survival curves for each selected scenario. The red line represents the actual 

progression time for progressive cases and the censored time for non-progressive 

individuals. Subjects (a) and (c), who have progressive eMCI and lMCI respectively, 
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exhibit curves close to 0, indicating a high risk of AD development. Patients (b) and (c), 

who are classified as censored/non-progressive, show distinct patterns. Patient (b) was 

censored for 4 years after the initial visit, and the curve indicates a very low risk of 

developing AD over the years. Patient (d), censored for nearly 1.5 years, initially had a 

high probability of survival, but the curve shows a rise in risk after 3 years. The 

comparison between the predicted and actual survival probabilities in this study 

highlights the effectiveness of RSF in providing accurate predictions for all subjects. We 

utilized the information and test results available during the initial (baseline) visit to train 

the models. This approach aids clinicians in early-stage disease progression prediction, 

where only the test results and information from the patient’s first visit are available. This 

not only conserves financial resources but also saves valuable time. Additionally, this 

approach holds immense value as family members and clinicians can plan for the future 

based on the patient's estimated survival probability. It highlights the significance of AI 

in supporting clinical decisions and assessing patient risk. 

 

(a) Progressive eMCI subject 

 

(b) Non-Progressive eMCI subject   
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(c) Progressive lMCI subject 

 

 

(d) Non-progressive lMCI subject 

 Figure 4.4: Predicted survival estimates for subjects with progressive eMCI and lMCI as 

well as those with non-progressive eMCI and lMCI. The red line refers to the actual event 

times for progressive/uncensored patients and the actual censoring time for non-

progressive/censored patients. 

.  
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CHAPTER 5: DISCUSSION 

 

5.1 Performance of Machine learning Based Survival Models 

       The results of this study highlight the performance and effectiveness of various 

machine learning models in predicting the progression of MCI stages to AD. We utilized 

six different models on two separate datasets, representing early MCI (eMCI) and late 

MCI (lMCI) stages, to determine the most suitable algorithm for AD predictions. These 

models included RSF, XST, GB, ST, CoxPH, and Coxnet. Hyperparameter optimization 

was conducted using grid search with 5-fold cross-validation to ensure the best model 

performance. 

5.1.1 Ensemble Models 

      Among the ensemble models, the RSF consistently showed superior performance 

across both datasets. For the eMCI group, RSF achieved a C-Index of 0.96 ± 0.03 and an 

IBS of 0.02 ± 0.02, outperforming other models significantly. Gradient Boosting 

followed with a C-Index of 0.91 ± 0.03 and an IBS of 0.1 ± 0.02, while XST showed a C-

Index of 0.89 ± 0.02 and an IBS of 0.1 ± 0.02. These results indicate that RSF's ability to 

handle high-dimensional data and complex interactions between variables makes it 

particularly effective in predicting disease progression. 

       For the lMCI group, RSF also demonstrated the highest performance with a C-Index 

of 0.82 ± 0.06 and an IBS of 0.1 ± 0.02. XST and Gradient Boosting followed, with C-

Indexes of 0.78 ± 0.06 and 0.72 ± 0.04, respectively, and IBS values of 0.17 ± 0.03 and 

0.19 ± 0.02. The superior performance of RSF in both eMCI and lMCI datasets 

underscores its robustness and accuracy in survival analysis tasks. 

5.1.2 Linear Models 

       The linear models, CoxPH and Coxnet, showed varying levels of effectiveness. 

Coxnet outperformed CoxPH in both datasets, highlighting the benefits of incorporating 
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regularization techniques to handle high-dimensional data. For the eMCI group, Coxnet 

achieved a C-Index of 0.84 ± 0.04 and an IBS of 0.05 ± 0.02, whereas CoxPH recorded a 

C-Index of 0.81 ± 0.03 and an IBS of 0.2 ± 0.04. In the lMCI group, Coxnet continued to 

perform better with a C-Index of 0.68 ± 0.07 and an IBS of 0.18 ± 0.03, compared to 

CoxPH's C-Index of 0.66 ± 0.07 and an IBS of 0.2 ± 0.02. 

5.1.3 Survival Tree Models 

       The Survival Tree (ST) model, included in the study, demonstrated inferior 

performance compared to RSF and XST. For the eMCI dataset, ST had a C-Index of 0.84 

± 0.04 and an IBS of 0.19 ± 0.02. In the lMCI dataset, the C-Index was 0.68 ± 0.05 with 

an IBS of 0.23 ± 0.04. These results indicate that while ST models can be useful, they are 

generally less effective than ensemble models like RSF and XST in survival analysis. 

5.1.4 Summary and Implications 

       In summary, RSF emerged as the best-performing model for predicting the risk of 

conversion from MCI to AD in both early and late stages. It outperformed other tree-

based survival algorithms and traditional statistical methods such as CoxPH. The robust 

performance of RSF aligns with previous research, validating its effectiveness in time-to-

event prediction scenarios within both clinical and research settings. 

       RSF's reliability can be attributed to several key features. It is robust against outliers 

and does not face convergence issues, which are common in other models. The use of 

cross-validated prediction prevents overfitting, ensuring that the model generalizes well 

to unseen data. Moreover, RSF provides a comprehensive nonparametric measure of 

variable importance, enabling researchers to identify the most significant factors 

contributing to the survival function. This capability is particularly valuable in medical 

research, where understanding the influence of different variables on disease progression 

can inform treatment and intervention strategies. 
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       Overall, the findings from this study suggest that RSF is an effective and reliable tool 

for predicting survival outcomes in diseases like AD. Its superior performance across 

both eMCI and lMCI datasets underscores its potential as a valuable asset in medical 

research and clinical practice for forecasting disease progression and guiding decision-

making processes. 

5.2 Multimodal Analysis 

       The findings of this study highlight the significant role of multimodal data in 

enhancing the prediction of AD progression from MCI. Our results demonstrate that 

models trained on a combination of features from different modalities generally perform 

better than those trained on single modality datasets. This underscores the value of 

integrating diverse data types to capture the complex nature of disease progression. 

5.2.1 Performance Comparison 

       A detailed analysis of model performance reveals that all machine learning models 

performed better on the eMCI dataset compared to the lMCI dataset. This may suggest 

that early-stage MCI features are more predictive of AD progression than those observed 

in later stages. The Random Survival Forest (RSF) consistently outperformed other 

models across both datasets, showcasing its robustness and effectiveness in handling 

survival analysis in medical research. 

5.2.2 Multimodal vs. Single Modality 

       When evaluating the predictive power of single modalities (Cognitive, Imaging, and 

CSF biomarkers), cognitive features consistently ranked high in performance across all 

models and datasets. For instance, RSF trained on cognitive features achieved impressive 

results with a C-Index of 0.95 ± 0.03 and an IBS of 0.02 ± 0.02 for the eMCI group. In 

contrast, while RSF trained on multimodal data showed slightly higher C-Index values, 

the improvement over cognitive features alone were not statistically significant. This 
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suggests that cognitive tests alone are robust and reliable predictors of AD progression, 

especially in the early stages of MCI. 

5.2.3 Cognitive Features as Key Predictors 

       The feature importance analysis revealed that cognitive features were among the top 

predictors for both eMCI and lMCI groups. In the eMCI dataset, key predictors included 

CSF biomarkers, RAVLT.perc.forgetting, FAQ, and PTEDUCAT. For the lMCI dataset, 

important predictors were FAQ, ADAS13, ADAS11, Mid temporal, and CDRSB. The 

consistent performance of cognitive tests highlights their utility as non-invasive, cost-

effective, and reliable tools for predicting AD progression. These findings align with 

previous research emphasizing the importance of cognitive assessments in monitoring 

MCI and predicting its conversion to AD. 

5.2.4 Clinical Implications 

       The lack of significant improvement with the inclusion of CSF biomarkers and 

imaging features in multimodal models suggests that cognitive tests alone may be 

sufficient for predicting AD progression in MCI patients. Given the invasive nature of 

CSF biomarker collection and the cost and complexity of imaging techniques, relying on 

cognitive tests could simplify clinical practice while maintaining high predictive 

accuracy. Cognitive assessments such as FAQ, ADAS13, and RAVLT are not only easier 

to administer but also provide crucial insights into a patient's cognitive function, which is 

directly relevant to the progression of AD. 

5.3 Individual Survival Curves 

       The results of our study underscore the significant potential of the Random Survival 

Forest (RSF) model in generating individual survival curves, which can be immensely 

beneficial in clinical settings. Unlike traditional methods such as the Kaplan-Meier 

estimator, which provides a population-level survival distribution, RSF offers patient-
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specific predictions. This capability is crucial for providing tailored insights into disease 

progression, particularly in conditions like AD (AD). 

       One of the key advantages of RSF is its ability to create individualized survival 

curves based on the unique characteristics of each patient. This feature is particularly 

useful in clinical settings where personalized treatment plans are necessary. By using 

multimodal data obtained during the baseline visit, RSF can predict individual survival 

distributions with a high degree of accuracy. This allows clinicians to make informed 

therapeutic decisions and allocate resources more effectively. 

       In our study, we used RSF to generate individual survival curves for four distinct 

patient scenarios: progressive eMCI, non-progressive eMCI, progressive lMCI, and non-

progressive lMCI. The survival curves visually summarize the probability of survival 

over time, providing clear insights into the risk of progressing to AD. For example, 

subjects with progressive eMCI and lMCI showed survival curves close to zero, 

indicating a high risk of AD development. In contrast, non-progressive cases exhibited 

curves that suggested a higher probability of survival and a lower risk of progression. 

       These individualized survival curves are not just statistical tools; they have practical 

implications in clinical practice. For instance, a survival curve that shows a high 

probability of survival for a non-progressive patient can reassure both the patient and 

their family, reducing anxiety and stress. Conversely, a curve indicating a high risk of 

progression can prompt more aggressive intervention and closer monitoring, potentially 

altering the patient's treatment plan to mitigate the risk. Furthermore, the ability of RSF 

to accurately predict survival probabilities based on baseline visit data is particularly 

valuable. This approach conserves financial resources and saves time, as it relies solely 

on the information available during the initial patient visit. Early and accurate prediction 

of disease progression allows for better planning and more efficient use of healthcare 

resources.  
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       In summary, the RSF model's ability to generate individualized survival curves 

enhances its utility in clinical settings. By providing precise, patient-specific predictions, 

RSF supports more informed decision-making, better resource allocation, and improved 

patient outcomes. The incorporation of AI in generating these curves highlights the 

growing importance of machine learning in clinical practice, offering significant benefits 

in predicting and managing disease progression. 
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SUMMARY OF RESEARCH WORK 

       This project delves into AI-based forecasting of AD (AD) progression in patients 

with Mild Cognitive Impairment (MCI) using a multi-modal dataset and various machine 

learning (ML) models. Given the staggering 99.6% failure rate of clinical trials for AD, 

early diagnosis becomes imperative for effective mitigation and prevention. ML models 

provide promising tools for predicting AD onset during the MCI stage, with ML-based 

survival analysis models offering insights into both the timing and likelihood of disease 

progression. 

       In this study, we employed ML-based survival models to predict the time-to-

conversion to AD for early MCI (eMCI) and late MCI (lMCI) stages separately, 

recognizing that their progression rates differ. The models used included Random 

Survival Forest (RSF), Extra Survival Trees (XST), Gradient Boosting Survival Analysis 

(GB), Survival Tree (ST), Cox-net, and Cox Proportional Hazard (CoxPH). Our study 

involved 291 eMCI and 546 lMCI subjects. We compared various data modalities, 

including cognitive tests, neuroimaging tests, and CSF biomarkers, both individually and 

in combination, to determine which features most significantly influenced model 

performance. 

       Our results showed that RSF outperformed the traditional CoxPH and other ML 

models used in this study. For the eMCI dataset, RSF achieved a C-Index of 0.96 and an 

IBS of 0.02, while for the lMCI dataset, it achieved a C-Index of 0.82 and an IBS of 0.16. 

The multimodal analysis underscored the importance of cognitive tests, which showed a 

statistically significant improvement over other modalities, highlighting their reliability in 

predicting AD progression. Additionally, individual survival curves were generated using 

RSF on baseline data to predict the probability of early AD onset in patients. This enables 

clinicians to develop personalized treatment plans and take preventive measures, 

potentially slowing down or preventing AD progression in individuals with MCI. 
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       The dataset for this study was multi-modal and longitudinal, including demographics 

(age, gender, education), neuropsychological tests (MMSE, CDR, ADAS, RAVLT, 

FAQ), genetic tests (APOE4), imaging tests (MRI and FDG), and CSF biomarkers (TAU, 

ABETA, PTAU). Our methodology involved data preprocessing, including initial data 

cleaning, selecting patients with baseline diagnoses of eMCI and lMCI, one-hot encoding 

for categorical data, feature scaling through standardization, and handling missing values 

using KNN imputation. 

       We utilized seven ML models to predict the time to conversion to AD and the 

probability of conversion over time: Random Survival Forest, Survival Trees, Extra 

Survival Trees, Cox-PH, Cox Regression, Gradient Boosting Survival Analysis, and 

Component-wise Gradient Boosting. Hyperparameter tuning was performed using k-fold 

cross-validation, and model evaluation was conducted using the Concordance Index and 

Integrated Brier Score. Feature importance was assessed through Permutation Feature 

Importance analysis to identify key predictive features. 

       The study revealed that lMCI patients had a higher risk of developing AD over time 

compared to eMCI patients. The use of ML models to predict the time to AD conversion 

demonstrates the potential of ML in aiding clinical intervention and improving patient 

outcomes. This research highlights the ability of ML models to provide early and 

accurate predictions of disease progression, which can inform clinical decision-making 

and contribute to the development of personalized treatment plans for MCI patients. 
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CHAPTER 6: CONCLUSIONS AND FUTURE RECOMMENDATION 

       This comprehensive study uses advanced machine learning approaches to predict the 

time-to-conversion to AD in early and late MCI individuals by analyzing multiple data 

modalities. Based on statistically significant differences in the progression rates of early 

and late MCI, we built separate machine-learning models for each stage to accurately 

capture the distinct patterns in those stages for prediction. Our research demonstrates that 

the RSF model consistently outperforms traditional methods in predicting the progression 

of early and late MCI to AD.  We utilized baseline visit data from cognitive, CSF 

biomarkers, and imaging test results to train models for predicting time and individual 

survival curves. While combining various data types improves accuracy, cognitive tests 

alone are the most impactful in predicting outcomes for both early and late-stage MCI. 

This underscores the importance of cognitive tests, which are cost-effective, non-

invasive, and time-saving. This approach is highly clinically relevant, enabling healthcare 

practitioners to identify high-risk patients earlier, allowing for timely interventions, and 

providing personalized treatment plans suited to each patient’s specific needs; based on 

baseline data. The efficacy of machine learning-based survival analysis models in 

predicting disease outcomes demonstrates the potential value of AI in assisting 

clinical decisions and evaluating patient risks. A limitation of this study is its small 

sample size. Future studies may consider using larger sample sizes to validate our results 

and ensure their applicability to a wider population. 
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