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ABSTRACT 

This  thesis  investigates  the  effective  implementation  of  the  YOLO  object  recognition 

model  on  NVIDIA  Jetson  through  the  application  of  model  quantization  techniques. 

Specifically, the research focuses on Quantization-Aware Training (QAT) and Asymmetric 

Quantization to optimize the model's performance on resource inhibited edge computers. 

NVIDIA Jetson devices, compatible and aimed at handling AI tasks in edge computing 

scenarios,  often  face  limitations  in  memory,  power,  and  computational  capacity.  The 

research evaluates the baseline performance of the YOLO model on a standard NVIDIA 

Jetson device and detail the methodologies of applying QAT and Asymmetric 

Quantization, followed by a comparative analysis of their effects. The results indicate that 

while  quantization  techniques  lead  to  a  slight  decrease  in  accuracy,  they  substantially 

enhance inference time. This improvement in inference speed underscores the potential for 

deploying  the  quantized  YOLO  model  in  real-time  scenarios  where  inference  time  is 

prioritized over accuracy. This thesis contributes to the fields of edge computing and real-

time  image  processing  by  providing  a  comprehensive  framework  for  deploying  high-

performance AI models in constrained environments. The findings demonstrate that model 

quantization  is  a  viable  strategy  for  achieving  efficient  and  robust  real-time  object 

recognition on devices that have resource limitations. 

 

Keywords: Quantization  aware  training,  Asymetric  Quantization  Object  detection, 

Edge computing, YOLO, NVIDIA Jetson 
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CHAPTER 1: INTRODUCTION 

In recent years, artificial intelligence (AI) has brought transformative changes to various 

domains,  notably  computer  vision,  where  object  detection  is  a  key  component.  Object 

recognition includes classifying and pinpointing items within pictures or movie frames, 

with applications in autonomous vehicles, surveillance, robotics, and more. Amongst the 

numerous object detection models, the YOLO is famous by its ideal balance of inference 

time and precision, making it highly effective for real-time uses. The emergence of edge 

computing, which processes data near its source rather than in a centralized data-processing 

center, has highlighted the need for efficient object detection. Devices like the NVIDIA 

Jetson, known for their AI prowess, facilitate the deployment of advanced AI models in 

practical settings such as smart cameras, drones, and industrial IoT systems. This thesis 

seeks to tackle the challenges associated with deploying the YOLO object detection model 

on NVIDIA Jetson devices by implementing model quantization techniques. Quantization 

decreases  the  accuracy  of  the  parameters  from  floating-point  to  integers,  significantly 

decreasing model size and computational requirements. This optimization is essential for 

improving  the  performance  of  AI  models  in  resource-limited  environments,  enabling 

effective real-time object detection. 

1.1 Background Study 

The increasing demand for instantaneous processing capabilities in various applications 

has led to the rise of edge devices which involves data being processed close to the source 

of where the data is being generated, dropping latency, and improving efficiency compared 

to traditional cloud-based solutions. NVIDIA Jetson devices have emerged as powerful 

platforms for edge computing due to their robust AI processing capabilities, making them 

suitable for a wide range of applications, from autonomous vehicles to smart cameras and 

industrial automation [8]. 
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1.1.1 Object Detection Models 

Object  recognition  is  a  critical  job  in  computer  visualization,  involving  the 

reignition of objects within pictures. Among the various object recognition models, the 

YOLO series is highly regarded for its real-time performance and accuracy. The YOLO 

model processes an entire image in a single forward pass through the network, predicting 

bounding  boxes  and  class  probabilities  simultaneously.  This  approach  contrasts  with 

traditional methods like R-CNN and its variants, which generate region proposals and then 

classify each region, leading to slower inference speeds [1]. 

1.1.2 YOLO Model and Its Evolution 

Version Year Key Improvements Reference 

YOLOv1 2016 Introduced a single-stage object detection  Redmon et al.,[1] 

YOLOv2 2017 
Better backbone networks, multi-scale 

predictions 

Redmon & 

Farhadi, 2017 [2] 

YOLOv3 2018 
Multi-scale predictions, improved detection 

accuracy 

Redmon & 

Farhadi, 2018 [3] 

YOLOv4 2020 
Bag of freebies and specials, better 

performance and speed 

Bochkovskiy et 

al., 2020 [4] 

YOLOv5 2021 Improved training techniques, ease of use Jocher, 2021 [5] 

Table 1.1 Evolution of YOLO Models 
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The YOLO model, first introduced from “Joseph Redmon et al.,” has undergone several 

iterations, each improving upon its predecessor in terms of accuracy and speed. YOLOv1, 

YOLOv2  (also  known  as  YOLO9000),  YOLOv3,  and  the  more  recent  YOLOv4  and 

YOLOv5  versions  have  incorporated  various  enhancements  such  as  better  backbone 

networks, multi-scale predictions, and advanced training techniques. These improvements 

have made it the best real-time object detection framework [1] [2] [3] [4] [5]. 

Model Speed (FPS) Accuracy (mAP) Key Features 

R-CNN <1 FPS 66% Region proposals, two-stage detector 

Fast R-

CNN 
2 FPS 70% 

Improved region proposals, faster than 

R-CNN 

Faster R-

CNN 
5 FPS 73% 

Region proposal network, faster and 

more accurate 

SSD 22 FPS 74.3% 
Single-shot detector, multi-scale 

feature maps 

YOLOv3 45 FPS 57.9% 
Single-stage detector, real-time 

performance 

YOLOv4 62 FPS 65.7% 
Improved backbone, bag of freebies 

and specials 

YOLOv5 140 FPS 68.9% Highly optimized training, ease of use 

Table 1.2 Comparison of Object Detection Models 

1.1.3 Challenges in Deploying YOLO on Edge Devices 

Despite  its  advantages,  deploying  YOLO  on  edge  devices  like  NVIDIA  Jetson 

poses significant challenges. The primary issues include the model's computational and 

memory requirements, which can strain the limited resources available on edge devices. 
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Additionally, maintaining real-time performance while ensuring high detection accuracy is 

a critical concern. Addressing these challenges necessitates optimizing the model to reduce 

its size and computational demands without compromising its efficacy. 

1.1.4 Model Quantization 

Model quantization is a useful method for optimizing machine learning algorithms 

for implementation on resource limited devices. For performing quantization reduce the 

accuracy of the parameters from decimal (e.g., FP32) to integer (e.g., INT8). This reduction 

cuts  the  model  size  and  complexity,  leading  to  faster  inference  resulting  in  less  power 

consumed [6]. There are numerous quantization methods, including asymmetric 

quantization and QAT (quantization-aware training), each with its trade-offs between ease 

of implementation and impact on model accuracy [6] [7] [21]. 

1.1.5 Previous Research on Quantization and Edge Deployment 

Numerous  studies  have  explored  use-cases  of  model  quantization  to  several 

machine learning models, demonstrating significant improvements in performance on edge 

devices. For instance, Jacob et al. (2018) discussed the benefits of quantizing convolutional 

neural  networks  (CNNs)  for  effectual  inference  [6].  Similarly,  “Han  et  al.  (2015)” 

presented techniques like “pruning, trained quantization, and Huffman coding to compress 

neural networks” by doing so they achieved advanced results in terms of size of model and 

inference time [7] [23] [25]. 
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Study Technique(s) Used Key Findings 

“Jacob et al. 

(2018)”  
Quantizing CNNs 

Improved inference efficiency with 

acceptable accuracy loss 

“Han et al., 2015” 
Pruning, trained 

quantization, 

Huffman coding 

Significant reductions in model 

size and computational 

requirements, state-of-the-art 

performance 

“Micikevicius et 

al., 2018” 
Mixed-precision 

training 

Substantial speedups in training 

and inference with minimal impact 

on accuracy 

“Rastegari et al., 

2016” 
XNOR-Net  (Binary 

Neural Networks) 

Binary convolutional neural 

networks, drastically reducing 

model size and improving speed 

“Zhou et al., 2016”  

DoReFa-Net 

Training low bitwidth 

convolutional neural networks 

with low bitwidth gradients 

Table 1.3: Key Findings from Previous Research on Quantization 

1.2 Problem Statement 

The  main  issue  talked  about  in  this  study  is  how  to  efficiently  deploy  YOLO  object 

detection model on NVIDIA Jetson devices. While the YOLO model is highly effective 

for  instantaneous  object  recognition,  its  computational  and  storage  requirements  pose 

significant challenges when deployed on devices having limitation of resources. 

Traditional deployment approaches may not leverage the full potential of Jetson devices, 

resulting in suboptimal performance and higher power consumption. 
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1.3 Objectives 

The key objectives for this research: 

• Baseline Performance Evaluation: Assess the initial performance of the YOLO 

model on a standard NVIDIA Jetson device to establish a benchmark. 

• Implementation of Quantization Techniques: Apply various model quantization 

techniques to the YOLO model, focusing on reducing its precision while 

maintaining detection accuracy. 

• Comparative Analysis: Conduct a comparative analysis of different quantization 

methods to determine their effectiveness in enhancing the performance of YOLO 

on Jetson devices. 

• Performance Optimization: Optimize the quantized YOLO model for real-time 

applications by reducing its computational burden and improving inference speed. 

 

1.4 Significance of the Study 

The worth of this research is the fact that it can bridge the gap between highly performant 

models and resource-limited devices. By leveraging model quantization techniques, this 

research intends to facilitate deployment of strong and effective real-time object detection 

systems in numerous applications, from self-driving vehicles to smart security systems. 

The  findings  of  this  study  could  lead  to  broader  adoption  of  AI  technologies  in  edge 

computing scenarios, unlocking new possibilities for innovation and efficiency. 
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1.5 Structure of the Thesis 

This research is structured as follows: 

• Chapter 1: Introduction: Gives a summary of existing study on object detection 

models, model quantization techniques, and their deployment on edge devices. 

• Chapter 2: Literature Review: Delivers an outline of existing studies relevant to 

object detection models, model quantization techniques, and their deployment on 

edge devices. 

• Chapter 3: Methodology: Details the methodologies and experimental setups for 

evaluating the baseline  results of YOLO and to  implement various quantization 

techniques. 

• Chapter  4:  Implementing  Quantization:  Implementing  different  quantization 

methods  applied  to  the  YOLO  model,  including  post-training  quantization,  and 

discusses their impact on model performance. 

• Chapter 5: Results and Discussion: Comparative analysis of quantization 

techniques and their effectiveness in optimizing YOLO for Jetson devices. 

• Chapter 6: Conclusion and Future Work: Sums the key discoveries of the study, 

discusses the inferences, and gives directions for future research. 
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CHAPTER 2:  BACKGROUND AND RELATED WORK 

This  chapter  will  discuss  the  background  for  this  research  and  I  am  also  going  to  be 

discussing some of the past research that is done in the field of object recognition on edges 

devices. 

2.1 Background 

Object recognition is an essential task which involves identifying and localizing objects 

within images or video frames. Various object recognition models have been, with YOLO 

being one of the most prominent because of its balance of accuracy and speed. “The YOLO 

model processes the entire image in a single forward pass through the network, predicting 

bounding  boxes  and  class  probabilities  simultaneously”.  This  approach  contrasts  with 

traditional methods like R-CNN and its variants, which generate region proposals and then 

classify each region, leading to slower inference speeds [1].  

The  YOLO  model,  first  introduced  by  “Joseph  Redmon  et  al.”  has  undergone  several 

changes.  YOLOv1  was  groundbreaking  in  its  ability  to  perform  instantaneous  object 

recognition [1]. YOLOv2, also known as YOLO9000, improved upon this by incorporating 

techniques like batch normalization, anchor boxes, and a more sophisticated loss function 

[2].  YOLOv3  further  enhanced  the  model's  performance  by  using  a  deeper  network 

architecture and multi-scale predictions, which improved its ability to detect small objects 

[3].  More  recently,  YOLOv4  and  YOLOv5  have  introduced  additional  improvements, 

including advanced data augmentation techniques, better backbone networks, and more 

efficient training procedures, solidifying YOLO's position as a leading real-time object 

detection framework [4] [5]. 

Deploying the YOLO model on edge devices, such as NVIDIA Jetson, presents significant 

challenges.  These  devices,  while  powerful,  have  limited  computational  resources  and 

memory  compared  to  traditional  cloud-based  servers.  The  computational  and  memory 

requirements of the YOLO model can strain these limited resources, which makes it hard 
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to achieve instantaneous performance without optimization [8]. Furthermore, maintaining 

high detection accuracy while optimizing for resource constraints is a critical concern that 

necessitates advanced techniques. 

Model  quantization  is  a  key  technique  for  optimizing  machine  learning  models  for 

implementation on devices with limited resources. Quantization reduces the accuracy of 

the  parameters  from  decimal  point  (e.g.,  FP32)  to  integer  (e.g.,  INT8).  This  reduction 

decreases the size of the model and its complexity, which results in lower inference time 

and  less  power  consumed  [6]  [11]  [12].  Quantization  can  be  applied  through  various 

methods, including asymmetric quantization and quantization-aware training. Post-training 

quantization  is  straightforward  but  might  result  in  some  loss  of  accuracy.  In  contrast, 

quantization-aware training incorporates quantization into the training process, which can 

help maintain higher accuracy [6] [7] [13] [28]. 

Several studies have demonstrated the effectiveness of model quantization in enhancing 

the performance of deep learning models on edge devices. Jacob et al. (2018) highlighted 

the benefits of quantizing convolutional neural networks (CNNs) for efficient inference, 

showing that integer-arithmetic-only inference can be achieved without significant loss of 

accuracy [6]. Han et al. (2015) introduced techniques like pruning, trained quantization, 

and Huffman coding to compress neural networks, achieving state-of-the-art performance 

in terms of model size and inference speed [7]. Additionally, other research has explored 

the use of mixed precision training to further optimize models for deployment on edge 

devices, demonstrating significant improvements in both performance and efficiency [14] 

[15] [20] [26]. 

The successful deployment of quantized YOLO models on edge devices has significant 

implications for various applications. In autonomous vehicles, real-time object detection is 

crucial for navigation and safety. Similarly, in smart surveillance systems, efficient object 

detection  enables  real-time  monitoring  and  threat  detection.  Industrial  automation  can 

benefit  from  real-time  quality  control  and  defect  detection,  enhancing  productivity  and 

reducing downtime. By optimizing YOLO models for edge deployment, this research aims 



10 
 

to unlock the full potential of AI in these critical applications, contributing to the fields of 

edge computing and real-time image processing. 

2.2 Relevant Work 

Recent advancements in deep learning-based object detection have significantly enhanced 

inference efficiency by leveraging GPUs. However, the deployment of these frameworks 

on embedded systems and mobile devices remains challenging due to their constrained 

processing capabilities. To address this issue, “frameworks such as TensorFlow-Lite (TF-

Lite) and TensorRT (TRT) have been optimized for different hardware environments”. In 

a relevant study, researchers introduced “a performance inference method that integrates 

the Jetson monitoring tool with TensorFlow and TRT on the Nvidia Jetson AGX Xavier 

platform”. The findings revealed that TensorFlow exhibited high latency, while TF-TRT 

and TRT, which leverage Tensor Cores, demonstrated superior efficiency. In contrast, TF-

Lite showed the lowest performance due to its limited GPU capabilities, which are tailored 

for  mobile  devices.  That  research  underscores  the  importance  of  hardware-specific 

optimization to enhance the performance of machine learning based object recognition on 

devices  with  limited  resources,  providing  valuable  insights  for  efficient deployment  on 

platforms like Nvidia Jetson [16] [24] [27]. 

In another study, researchers investigated the deployment of machine learning based object 

recognition models on cheap devices like computers having a single board, which typically 

experience low frames-per-second (FPS) performance. To mitigate this issue, they 

explored quantization, a tried and tested compression technique that decreases 

computational demands  but may affect detection accuracy. The study, inspired by  face 

mask directives during the outbreak of COVID, aimed to train and compress a YOLO based 
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model  for  mask  on  face  detection,  targeting  deployment  on  a  Raspberry  Pi  4.  Various 

pruning  and  quantization  methods  were  evaluated  to  improve  FPS  while  maintaining 

detection accuracy. Quantitative assessments of the pruned and quantized models, in terms 

of Mean Average Precision (mAP) and FPS, showed that these techniques, when properly 

applied, could double FPS with only a moderate decrease in mAP. These results provide 

valuable insights for compressing other YOLO-based object detection models, 

emphasizing  the  necessary  balance  between  performance  and  accuracy  for  efficient 

deployment on resource-limited devices. [17] [22]. 

In  another  related  work,  researchers  have  proposed  an  innovative  method  to  enhance 

frames-per-second (FPS) while maintaining the accuracy of the YOLO v2 model on the 

NVIDIA Jetson TX1 platform. Traditionally, reducing computation in neural networks has 

involved converting operations to integer arithmetic or decreasing network depth, often at 

the  cost  of  recognition  accuracy.  To  mitigate  this,  the  study  introduces  techniques  that 

reduce computation and memory consumption without significantly compromising 

accuracy.  The  first  technique  replaces  the  filters,  effectively  reducing  the  number  of 

parameters to one-ninth. The second technique leverages TensorRT's inference 

acceleration functions, specifically the Convolution-Add Bias-Relu (CBR) operation, to 

minimize  computation.  Lastly,  the  study  integrates  repeated  layers  using  TensorRT  to 

further reduce memory consumption. Simulation results indicate that while there is a slight 

1%  decrease  in  accuracy  compared  to  the  original  YOLO  v2  model,  FPS  improved 

significantly  from  3.9  to  11.  This  research  provides  valuable  insights  into  optimizing 

YOLO models for real-time object detection on resource-constrained devices by 

strategically reducing computational load and memory usage [18] [32]. 
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In another related work, researchers have investigated the performance of state-of-the-art 

object  detection  models  on  various  edge  devices,  focusing  on  NVIDIA  Jetson  Nano, 

Raspberry Pi 4 B with Intel Neural Compute Stick 2, and Axis Q1615-LE Mk III security 

camera with Google EdgeTPU. These devices, equipped with edge computing accelerators 

from different manufacturers, were evaluated for latency, accuracy, power consumption, 

and system utilization. The object detection models assessed included SSD-MobileNet-V2, 

YoloX, and EfficientDet, which are representative of the latest advancements in the field. 

Notably,  only  the  Jetson  Nano  could  run  both  YoloX  and  EfficientDet  models.  The 

EdgeTPU demonstrated the fastest performance, processing images in just 8 ms, while the 

Jetson  Nano  and  Neural  Compute  Stick  2  required  33  ms  and  48  ms  per  image, 

respectively. Despite quantization, all models maintained high accuracy levels above 90%. 

These findings confirm the capability of all tested devices for real-time object detection, 

suggesting that each device's unique form factor, connectivity, and computational units suit 

different use cases. The study highlights the potential for further performance 

enhancements through model profiling to identify and mitigate bottlenecks. This research 

provides a comprehensive understanding of deploying advanced object detection models 

on various edge devices, offering valuable insights for optimizing real-time applications in 

diverse environments [19]. 

In a study that underscored the increasing need for efficient track inspection systems in the 

rapidly  evolving  rail  transportation  industry,  the  necessity  for  advanced  solutions  was 

emphasized. The research utilized a combination of deep learning and edge  computing, 

specifically focusing on the YOLO-NAS architecture for inspecting railroad track 

components. The goal was to harness the capabilities of YOLO-NAS for accurate and rapid 
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detection  while  overcoming  the  computational  challenges  of  edge  devices.  The  study 

revealed  that  the  YOLO-NAS-S-PTQ  model  struck  a  remarkable  balance,  achieving 

74.77%  mean  Average  Precision  (mAP)  and  92.20  Frames  Per  Second  (FPS)  on  the 

NVIDIA Jetson Orin platform. Additionally, deploying this model on an edge device with 

a multiprocessor pipeline led to an inference speed of 60.468 FPS, almost doubling the 

performance  compared  to  its  single-threaded  version.  Field  tests  further  confirmed  the 

model's effectiveness, demonstrating a recall rate of 80.77% and an accuracy of 96.64%. 

These results highlight the potential of YOLO-NAS to transform traditional rail component 

inspection methods by greatly reducing human intervention and minimizing errors. [29]. 

Advancements in information and signal processing, propelled by artificial intelligence and 

recent deep learning breakthroughs, have profoundly influenced autonomous driving by 

improving safety and minimizing human intervention. Typically, existing advanced driver 

assistance systems (ADASs) are expensive, rendering them unaffordable for many. A study 

proposed an affordable, versatile embedded system for real-time detection of pedestrians 

and priority signs. This system, featuring two cameras, an NVIDIA Jetson Nano B01 low-

power edge device, and an LCD display, integrates seamlessly into vehicles without taking 

up significant space, offering a cost-effective alternative. The research primarily aimed to 

address  accidents  resulting  from  failing  to  yield to  other  drivers  or  pedestrians.  Unlike 

previous studies, this research simultaneously tackled traffic sign recognition and 

pedestrian detection, focusing on five key objects: pedestrians, pedestrian crossings (both 

signs  and  road  markings),  stop  signs,  and  give  way  signs.  The  object  detection  was 

achieved using a custom-trained SSD-MobileNet convolutional neural network, 

implemented on the Jetson Nano. The study yielded promising results, establishing the 
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system as a viable option for real-time deployment and significantly contributing to the 

safety and accessibility of autonomous driving technologies. This research is in line with 

the  goal  of  leveraging  YOLO  models  for  effective  object  detection  on  edge  devices, 

highlighting the potential for implementing advanced AI systems in real-time, resource-

limited environments. [30] [31]. 

Device Model Latency (ms) FPS 
Accuracy 

(mAP) 

Nvidia Jetson 

Nano 

YoloX, 

EfficientDet 
33 N/A >90% 

Raspberry  Pi  4 

with NCS2 

YoloX, 

EfficientDet 
48 N/A >90% 

Axis Q1615-

LE Mk III 

YoloX, 

EfficientDet 
8 N/A >90% 

Table 2.1: Performance Comparison on Different Edge Devices 

The  aforementioned  studies  collectively  underscore  the  critical  need  for  optimizing 

machine learning based object recognition models for deployment on devices that have 

resource limitations devices like NVIDIA Jetson platforms and other single-board 

computers.  Techniques  such  as  pruning,  quantization,  filter  size  adjustment,  and  the 

integration of acceleration functions through frameworks like TensorRT have been shown 

to significantly enhance performance metrics such as FPS, while maintaining acceptable 
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levels of detection accuracy. These methodologies provide a robust foundation for further 

exploration and application, demonstrating that strategic modifications to model 

architecture and computation can lead to substantial improvements in efficiency. As the 

demand for real-time object detection continues to grow across various industries, these 

insights offer valuable guidance for developing high-performance, low-latency AI 

solutions suitable for embedded systems and edge computing environments [27]. 
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CHAPTER 3:  METHADOLOGY 

This chapter gives a detailed account about the methodologies and experimental setups 

employed to assess the baseline results of the YOLO model on NVIDIA Jetson and to 

implement various quantization techniques. The primary objective is to optimize the 

deployment of the YOLO model for efficient object detection on edge devices which 

have limited resources. 

 

Figure 3.1: Block Diagram for the Research Methodology 
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Figure 3.1 is an overview of the methodology that was followed in this research, let’s 

discuss the steps involved in the research methodology 

3.1 Baseline Performance Evaluation 

3.1.1 Hardware Setup: 

The  NVIDIA  Jetson  Nano  is  a  powerful,  compact,  and  cost-effective  platform 

designed for AI applications at the edge. The setup for this device is detailed below: 

• Device Configuration: 

• Processor: Quad-core ARM Cortex-A57 CPU 

• GPU: 128-core Maxwell GPU 

• Memory: 4 GB LPDDR4 

• Storage: 16 GB eMMC, expandable via microSD card 

• Connectivity: Gigabit Ethernet, 4 USB 3.0 ports, HDMI 2.0, DisplayPort 

1.2 

• Power Supply: 

• The Jetson Nano requires a 5V 4A power supply, provided through a barrel 

jack connector or a Micro-USB port. 
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• Peripherals: 

• Display: Connected via HDMI or DisplayPort. 

• Keyboard and Mouse: Connected via USB ports. 

• Network: Connected via Ethernet or a compatible Wi-Fi dongle. 

• Setup Procedure: 

• Download the latest JetPack SDK from NVIDIA’s official website 

• Flash the OS image to a microSD card  using tools  like Etcher. 

• Boot the Device: 

• Insert the microSD card into the Jetson Nano and connect the power supply. 

• Flash the OS image to a microSD card using tools like Etcher. 

• Power on the device and follow the on-screen instructions to complete the 

initial setup. 

• Update and Install Dependencies: 

• Open a terminal and update the packages list. 

• Install necessary libraries and tools for object detection and model 

quantization. 
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• Development Environment: 

• IDE: Visual Studio Code or any preferred text editor. 

• Frameworks: PyTorch, TensorFlow, and OpenCV pre-installed as part of 

the JetPack SDK. 

• Testing Environment: 

• Dataset: COCO dataset, downloaded and stored on an external USB drive 

or network-attached storage for accessibility. 

• Benchmarking Tools: Tools like time, htop, and tegrastats for monitoring 

system performance and resource utilization during tests. 

The NVIDIA Jetson Nano setup ensures that the device is configured correctly to run object 

detection models and  collect performance metrics, providing a solid foundation for the 

baseline performance evaluation of the YOLO model. 

 

3.1.2 Software Environment: 

• Operating System: 

• The device runs on the Ubuntu 18.04-based JetPack SDK, which includes 

necessary drivers, libraries, and developer tools for AI and computer vision 

applications. 

 



20 
 

• YOLO Models: 

For  this  evaluation,  the  YOLO  (You  Only  Look  Once)  models  v8  and  v9  are 

utilized. These models are selected due to their state-of-the-art performance in real-

time object detection tasks. Here are the specifics of each model: 

• YOLO  V8:  YOLOv8  represents  a  significant  advancement  in  object 

detection  technology,  leveraging  a  sophisticated  architecture  designed  to 

extract detailed features and enhance detection accuracy. Trained 

extensively  on  the  COCO  dataset,  which  encompasses  a  wide  array  of 

everyday objects in diverse environments, YOLOv8 is optimized for real-

time performance and high accuracy. Its integration with TensorRT further 

enhances  its  inference  speed  and  efficiency  on  platforms  like  the  Jetson 

Nano, making it particularly suitable for demanding applications such as 

surveillance  systems  and  autonomous  vehicles  where  rapid  and  precise 

object detection is crucial 

• YOLO  V9:  Building  upon  the  foundation  laid  by  YOLOv8,  YOLOv9 

introduces further improvements in network efficiency and GPU resource 

utilization. This iteration maintains its training on the COCO dataset while 

also fine-tuning specific object categories to elevate detection accuracy to 

new heights. Inference optimization through TensorRT ensures that 

YOLOv9  maximizes  the  computational  capabilities  of  hardware  like  the 

Jetson  Nano,  making  it  ideal  for  advanced  real-time  applications  that 

demand not only exceptional accuracy but also minimal latency. YOLOv9 
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thus represents a cutting-edge solution for industries requiring reliable and 

efficient object detection systems in dynamic environments. 

• Model Deployment: 

The models are deployed on the Jetson Nano using Docker containers to ensure 

consistency  and  reproducibility  of  the  environment.  The  deployment  process 

involves the following steps: 

• Install Docker and NVIDIA Container Runtime to enable GPU-accelerated 

containerized applicationsFlash the OS image to a microSD card using tools 

like Etcher. 

• Create Docker containers with all the necessary dependencies and 

configurations for running YOLO models, Containers include the JetPack 

SDK components, PyTorch, TensorFlow, and other required libraries. 

• Load  the  YOLOv8  and  YOLOv9  models  into  the  containers,  perform 

inference tasks on sample datasets to measure performance metrics such as 

accuracy and inference time. 

This detailed software environment setup ensures that the NVIDIA Jetson Nano 

is fully equipped to run and evaluate the YOLO models, providing accurate and 

reliable performance metrics for the baseline performance evaluation. 
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3.1.3 Performance Metrics: 

In evaluating the baseline performance of the YOLO models on the NVIDIA Jetson 

Nano, several key performance metrics are used. These metrics are critical for 

understanding the efficiency, accuracy, and overall suitability of the models for real-time 

object detection on resource-constrained devices. The primary metrics considered in this 

study are accuracy and inference time. 

• Accuracy: 

Accuracy  is  a  fundamental  metric  that  measures  how  well  the  object  detection 

model  identifies  and  localizes  objects  within  an  image.  For  this  evaluation, 

accuracy is assessed using the following sub-metrics 

• Precision: Precision is the ratio of true positive detections to the total number of 

positive detections made by the model (both true positives and false positives). It 

reflects the model's ability to correctly identify objects without falsely detecting 

non-existent objects. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  

 

 

• Recall: Recall is the ratio of true positive detections to the total number of actual 

objects present in the images (true positives and false negatives). It indicates the 

model's capability to detect all relevant objects in the dataset. 
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Recall = True PositivesFalse Negatives + True Positives 

• Mean Average Precision (mAP): mAP is a widely used metric in object detection 

that combines precision and recall. It calculates the average precision for each class 

in the dataset and then averages these values. A higher mAP indicates better overall 

performance of the model. 

𝑚𝐴𝑃 =  1𝑛 ∑ 𝐴𝑃𝑖𝑛
𝑖=1  

where n is the number of object classes, and Api is the average precision for the the 

class. 

• Inference Time: 

Inference time is a critical metric for evaluating the real-time performance of the 

object detection models. It measures the time taken by the model to process an 

image and produce detections. Lower inference time indicates a faster model, which 

is essential for applications requiring real-time object detection. 

 

 

• Data Collection and Analysis: 

• Dataset:  The  COCO  dataset  is  used  for  evaluating  accuracy  metrics, 

ensuring consistency and comparability with other studies. 
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• Procedures: Each model is subjected to a series of inference tasks on the 

same set of images. The metrics are recorded and averaged over multiple 

runs to ensure reliability and reduce the impact of any anomalies. 

3.1.4 Experimental Procedure: 

• Model Preparation: 

• Training YOLOv9: The YOLOv9 model is trained on the COCO dataset 

using PyTorch. This involves setting up the training environment, 

configuring the model hyperparameters, and training the model to achieve 

optimal performance. 

• Frameworks: PyTorch, ONNX, and TensorRT. 

• Quantization Techniques: 

• Quantization-Aware Training (QAT): QAT is applied during the training 

process.  This  involves  simulating  lower  precision  (e.g.,  INT8)  during 

training, allowing the model to adjust its weights to maintain accuracy after 

quantization, The model is fine-tuned with QAT to ensure minimal 

accuracy loss post-quantization 

• Asymmetric Quantization: Asymmetric quantization is used to scale and 

zero-point shift the weights and activations, allowing for a more efficient 

representation of the model parameters, this technique helps in reducing the 
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model size and improving inference speed without significantly 

compromising accuracy 

• Model Conversion and Deployment: The quantized YOLOv9 model is 

converted to TensorRT format to leverage the NVIDIA Jetson Nano's GPU 

capabilities, this involves using the TensorRT API to optimize the model 

for inference, ensuring faster processing times. 

• Deploying on Jetson Nano: The converted model is deployed on the Jetson 

Nano.  The  device  is  set  up  with  the  necessary  software  environment, 

including CUDA, cuDNN, and TensorRT libraries, docker containers are 

used to ensure a consistent and reproducible deployment environment. 

• Running Inference Tests: The COCO dataset is used for running inference 

tests. This ensures that the performance metrics  are  comparable to those 

during the training phase, the deployed model is used to run inference on 

the test images. The process involves loading each image, performing object 

detection,  and  recording  the  results,  tools  such  as  time,  tegrastats,  and 

custom scripts are used to measure inference times and resource utilization, 

Inference tests are conducted in batches to simulate real-world scenarios 

and to collect more reliable performance data. 

 

• Data Collection and Analysis: The accuracy of the object detection model 

is evaluated as the percentage of correctly detected objects out of the total 
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number of objects present in the images, precision and recall metrics are 

used to support the accuracy assessment, the time taken for the model to 

process each image and produce detections is measured. This includes both 

average inference time per image and overall latency, frames Per Second 

(FPS) is calculated as the inverse of the average inference time, indicating 

the model's capability to handle real-time processing. 

• Performance Comparison: The performance of the YOLOv9 model with 

different quantization techniques (QAT and Asymmetric Quantization) is 

compared  to  the  baseline  (non-quantized)  model,  Metrics  such  as  % 

accuracy and inference time are analyzed to draw insights on the trade-offs 

between model efficiency and performance. 

The experimental procedure involves a systematic approach to deploying the YOLOv9 

model on the NVIDIA Jetson Nano, applying quantization techniques, running 

inference tests, and collecting data. By evaluating % accuracy and inference time, this 

procedure provides a comprehensive understanding of the model's performance and the 

impact of quantization on real-time object detection in resource-constrained 

environments. 
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3.2 Quantization Techniques 

There  are  many  quantization  techniques  but  for  this  research  I  will  be  focusing  on 

Quantization-Aware Training (QAT) and Asymmetric Quantization. 

3.2.1 Quantization Methods: 

Feature Quantization-Aware Training Asymmetric Quantization 

Training During training Post-training 

Precision 

Handling 

Simulates quantization during 

training 

Applies scaling and shifting 

post-training 

Accuracy 
Typically, higher post-

quantization 

May experience some accuracy 

loss 

Complexity Higher during training Simpler implementation 

Adaptation Model adapts to quantization No adaptation during training 

Use Cases High-accuracy applications 
Resource-constrained 

deployment 

Implementation 
Requires modification of training 

process 

Can be applied to pre-trained 

models 

Table 3.1 Comparison Table of QAT and Asymetric Quantization 
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Table 3.1 provides a detailed comparison between Quantization-Aware Training (QAT) 

and  Asymmetric  Quantization,  highlighting  key  differences  and  characteristics  of  each 

technique. 

• Training: QAT is performed during the training process, allowing the model to 

adapt to the quantized representation, whereas Asymmetric Quantization is applied 

post-training, without requiring retraining of the model. 

• Precision  Handling:  QAT  simulates  quantization  during  training,  enabling  the 

model to adjust its weights to lower precision values. On the other hand, 

Asymmetric Quantization involves applying scaling and shifting to weights and 

activations after training to fit them into an integer range. 

• Accuracy:  Models  trained  with  QAT  typically  achieve  higher  accuracy  post-

quantization  due  to  their  ability  to  adapt  to  lower  precision  during  training.  In 

contrast, models using Asymmetric Quantization may experience some accuracy 

loss since the quantization is applied after the model has been trained. 

• Complexity: The training process for QAT is more complex due to the integration 

of  quantization  simulation,  making  it  computationally  intensive.  Asymmetric 

Quantization,  however,  has  a  simpler  implementation  since  it  is  applied  post-

training without modifying the training process. 

• Adaptation:  QAT  allows  the  model  to  adapt  to  quantization,  which  helps  in 

maintaining accuracy after quantization. Asymmetric Quantization does not 

involve any adaptation during training, potentially leading to a drop in accuracy. 
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• Use Cases: QAT is well-suited for high-accuracy applications where maintaining 

precision  is  critical,  even  with  reduced  precision  representation.  Asymmetric 

Quantization is ideal for resource-constrained deployment scenarios where 

simplicity and efficiency are prioritized. 

• Implementation: Implementing QAT requires modifying the training process to 

include quantization simulation, whereas Asymmetric Quantization can be easily 

applied to pre-trained models without the need for retraining. 

Table 3.1 effectively summarizes the trade-offs between QAT and Asymmetric 

Quantization,  providing  a  clear  understanding  of  the  benefits  and  limitations  of  each 

approach in the context of model quantization and deployment on edge devices like the 

NVIDIA Jetson Nano. 

3.2.2 Quantization Tools: 

In the context of deploying deep learning models on edge devices such as the NVIDIA 

Jetson  Nano,  quantization  tools  play  a  crucial  role  in  optimizing  models  for  efficient 

inference.  The  primary  quantization  tools  utilized  in  this  research  are  TensorRT  and 

TensorFlow Lite. Each tool offers unique features and benefits that contribute to reducing 

model size, improving inference speed, and maintaining accuracy. 

TensorRT 

Overview: TensorRT is an SDK developed by NVIDIA specifically designed for high-

performance deep learning inference. It provides a comprehensive suite of tools to optimize 

and deploy neural networks on NVIDIA GPUs. TensorRT supports various optimizations, 
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including  precision  calibration,  layer  fusion,  kernel  auto-tuning,  and  dynamic  tensor 

memory management. 

Key Features: 

• Precision Calibration: TensorRT can calibrate the precision of model weights and 

activations  from  floating-point  (FP32)  to  lower  precision  (INT8),  reducing  the 

computational load and memory footprint. 

• Layer Fusion: Combines multiple neural network layers into a single kernel to 

minimize memory access and improve computational efficiency. 

• Kernel Auto-Tuning: Automatically selects the best-performing kernels for each 

layer of the network based on the target hardware, maximizing performance. 

• Dynamic Tensor Memory Management: Efficiently manages memory allocation 

for tensors during inference, reducing memory overhead. 

Benefits: 

• High  Performance:  TensorRT  significantly  accelerates  inference  by  leveraging 

GPU capabilities and advanced optimization techniques. 

• Reduced  Latency:  Optimized  models  exhibit  lower  latency,  making  TensorRT 

ideal for real-time applications. 

• Scalability: TensorRT can be used across various NVIDIA platforms, from data 

centers to edge devices like the Jetson Nano. 
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Usage: 

• Model Conversion: Convert trained models from frameworks like PyTorch and 

TensorFlow to TensorRT format using the TensorRT API. 

• Inference Optimization: Apply precision calibration and other optimizations to 

enhance inference speed and efficiency. 

• Deployment: Deploy the optimized models on NVIDIA GPUs for high-

performance inference. 

TensorFlow Lite 

Overview:  TensorFlow  Lite  is  an  open-source  deep  learning  framework  designed  for 

deploying machine learning models on mobile and embedded devices. It is a lightweight 

version of TensorFlow, optimized for low-latency inference and minimal resource 

consumption. 

Key Features: 

• Model Quantization: TensorFlow Lite supports various quantization techniques, 

including post-training quantization (PTQ) and quantization-aware training (QAT), 

to reduce model size and improve inference speed. 

• Interpreter:  A  lightweight  interpreter  optimized  for  running  TensorFlow  Lite 

models on mobile and embedded devices, supporting both ARM and x86 

architectures. 
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• Delegates: TensorFlow Lite includes hardware acceleration delegates, such as the 

GPU delegate, NNAPI delegate (for Android devices), and Hexagon delegate (for 

Qualcomm processors), to further enhance performance. 

Benefits: 

• Efficiency: TensorFlow Lite models are highly optimized for low-resource 

environments, ensuring efficient execution on devices with limited computational 

power. 

• Portability:  TensorFlow  Lite  models  can  be  deployed  across  a  wide  range  of 

platforms, including Android, iOS, and various embedded systems. 

• Ease of Use: TensorFlow Lite provides easy-to-use APIs for converting, 

optimizing, and deploying models, simplifying the deployment process. 

Usage: 

• Model  Conversion:  Convert  trained  TensorFlow  models  to  TensorFlow  Lite 

format using the TensorFlow Lite Converter. 

• Inference Optimization: Apply quantization techniques to reduce model size and 

improve inference performance. 

• Deployment: Deploy TensorFlow Lite models on mobile and embedded devices 

using the TensorFlow Lite interpreter and delegates for hardware acceleration. 

Both TensorRT and TensorFlow Lite are essential tools for quantizing and optimizing deep 

learning models for deployment on edge devices. TensorRT excels in leveraging NVIDIA 
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GPU capabilities for high-performance inference, making it ideal for real-time applications 

on the Jetson Nano. TensorFlow Lite, on the other hand, offers a lightweight and portable 

solution  for  deploying  models  on  a  wide  range  of  mobile  and  embedded  devices.  By 

utilizing these tools, the research aims to achieve efficient and accurate object detection 

with the YOLOv9 model on the NVIDIA Jetson Nano. 

3.3 Comparative Analysis 

3.3.1 Accuracy: 

To evaluate the performance of the quantized YOLOv9 models, accuracy serves as 

a crucial metric. This metric assesses the model's ability to correctly identify and localize 

objects within an image. Key sub-metrics include precision, which measures the ratio of 

true  positive  detections  to  the  total  number  of  positive  detections,  and  recall,  which 

indicates  the  model's  capability  to  detect  all  relevant  objects.  Mean  Average  Precision 

(mAP) is also used, combining precision and recall to provide a comprehensive 

performance overview. The impact of quantization on accuracy is analyzed by comparing 

the  results  of  the  quantized  models  with  the  baseline  (non-quantized)  model.  This 

comparison  helps  to  determine  if  the  quantized  models  maintain  acceptable  accuracy 

levels, ensuring they are suitable for applications where detection reliability is critical. 

3.3.2 Inference Time: 

Inference time is another vital metric for assessing the real-time performance of the 

object detection models. This metric measures the time taken by the model to process an 

image and produce detections, with Frames Per Second (FPS) indicating the number of 
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images processed per second and latency reflecting the delay between input and output. 

The  efficiency  gains  achieved  through  quantization  are  evaluated  by  comparing  the 

inference times of the quantized models against the baseline. This comparison helps to 

determine whether the reduction in model size and computational requirements translates 

to faster inference times without significantly compromising accuracy. The analysis aims 

to balance the trade-offs between maintaining high accuracy and achieving improved real-

time performance, guiding the deployment of optimized models on resource-constrained 

edge devices like the NVIDIA Jetson Nano. 

 

 

 

 

 

 

 

  



35 
 

CHAPTER 4:  IMPLEMENTING QUANTIZATION 

This chapter details the implementation of quantization techniques applied to the YOLO 

model. Two primary quantization methods are discussed: Quantization-Aware Training 

(QAT) and a second method that will be elaborated upon later. Each technique's steps are 

described,  along  with  an  analysis  of  their  impact  on  model  performance,  focusing  on 

accuracy and inference time. 

4.1 Asymmetric Quantization 

Asymmetric quantization involves scaling and shifting the values of model parameters to 

fit within a lower-bit representation, typically using an 8-bit integer (INT8). This process 

helps  in  reducing  the  model  size  and  computational  complexity,  which  is  essential  for 

deploying models on resource-constrained devices such as NVIDIA Jetson. The following 

steps outline the process of performing asymmetric quantization on  a YOLOv9 model, 

referring to the provided code snippets for clarity. 

1. Model Preparation and Layer Fusion 

Before quantizing the model, we need to prepare it by fusing certain layers. Layer fusion 

combines  multiple  layers  into  a  single  layer  to  improve  performance  and  reduce  the 

computational overhead. 
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Figure 4.1: Layer Fusion 

Function Definition: The fuse_model function uses torch.quantization.fuse_modules to 

fuse the layers conv1, bn1, and relu in the model. 

Layer Fusion: This step modifies the model in place to combine these layers, reducing the 

number of operations during inference. 

 

2. Configuring Quantization Parameters 

Next, we need to define the quantization configuration, specifying how activations and 

weights should be quantized. This configuration includes the observers that will be used to 

collect statistics on the model’s parameters during calibration. 

 

Figure 4.2: Quant Config and prepare for quantization 

Quantization  Configuration:  The  quant.QConfig  object  specifies  the  observers  for 

activation and weight quantization. 



37 
 

• Activation Observer: quant.MinMaxObserver with arguments dtype=torch.quint8 

and qscheme=torch.per_tensor_affine is used to quantize activations. 

• Weight Observer: quant.default_per_channel_weight_observer is used for 

weights, quantizing them per channel for better precision. 

Preparation: The quant.prepare function inserts the observers into the model. This step is 

crucial for collecting data during the calibration phase, which will be used for quantization. 

 

 

 

3. Calibrating the Model 

During  the  calibration  phase,  we  run  the  model  on  a  representative  dataset  to  collect 

statistics required for quantization. This step helps in determining the scaling factors for 

quantization. After calibration, we convert the model to its quantized form, which involves 

applying the collected statistics to scale and shift the model parameters. 
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Figure 4.3: Calibrating the Model 

Calibration Data: A dataset of random images is created to simulate the input data for 

calibration. 

Running  Calibration:  The  model  is  run  on  the  calibration  data  without  calculating 

gradients (torch.no_grad()), allowing the observers to collect necessary statistics. 

Model Conversion: The quant.convert function applies the quantization to the model in 

place. 

Saving the Model: The quantized model's state is saved to a file for later use. 

 

4. Loading and Evaluating the Quantized Model 

After quantizing the model, it is saved to a file. When deploying the model, we load the 

quantized model and run inference on it. The following steps describe loading the model 

and performing inference. 
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Figure 4.4: Evaluating the Quantized Model 

Loading the Quantized Model: The model_quantized is initialized and its state is loaded 

from the saved file quantized_yolov9.pth. 

Evaluation Mode: The model is set to evaluation mode using model_quantized.eval() to 

ensure that it is ready for inference. 

Data Loading: Test data is loaded using a hypothetical load_data function. 

Inference: Using torch.no_grad() ensures that no gradients are calculated during inference, 

improving performance. The model processes the test_data, and the output is printed. 

 

Asymmetric quantization involves several key steps to optimize a model for deployment 

on resource-constrained devices. The process starts with model preparation through layer 

fusion, followed by configuring quantization parameters. The model is then prepared for 

quantization by inserting observers, and calibration is performed using representative data. 

Finally, the model is converted to its quantized form, saved, and subsequently loaded for 

inference. This detailed approach ensures that the model maintains an acceptable level of 



40 
 

accuracy  while  significantly  improving  inference  speed  and  reducing  computational 

overhead, making it suitable for real-time applications on edge devices. 

4.2 Quantization-Aware Training (QAT) 

Quantization-Aware Training (QAT) involves training the model with quantization 

simulated during the training process. This allows the model to adjust to lower precision 

values, maintaining accuracy post-quantization. 

Steps for Implementing QAT: 

1. Model Training with COCO Dataset: 

• Data Preparation: The COCO segmented data is fed into the predefined 

YOLO model. 

• Model Training: The YOLO model is trained, and the trained model is 

exported in the .pt format. 



41 
 

 

Figure 4.5:  Model conversion to ONNX 

2. Model Conversion to ONNX: 

As shown in the code snippet in Figure 4.5 I perform the following steps for Model 

coversion to ONNX format 

• Load the Model: Load the pre-trained YOLO model and set it to evaluation 

mode. 

• Create Dummy Input: A dummy input tensor simulates an input image. 

• Export  to  ONNX:  The  model  is  exported  to  ONNX  format  using  the 

dummy input to trace the model’s computation graph. 
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Figure 4.6: Convert ONNX model into a TensorRT engine 

3. Conversion to TensorRT: 

As shown in Figure 4.6 after converting the YOLOv9 model to the ONNX format, 

the next step involves transforming the ONNX model into a TensorRT engine. This 
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process begins with parsing the ONNX model into a TensorRT network using the 

TensorRT API. The TensorRT parser reads the ONNX model file and converts it 

into an internal network representation that TensorRT can optimize. Subsequently, 

the TensorRT builder is configured with specific settings tailored to the deployment 

needs, such as setting the batch size, workspace size, and enabling INT8 precision 

to leverage the low-precision computations that TensorRT supports. This 

configuration  step  is  critical  as  it  balances  memory  usage  and  computational 

efficiency. After setting up the builder, the network is optimized, and the engine is 

built. The final step in this process is to serialize the TensorRT engine, saving it as 

a file that can be loaded later for inference. This serialized engine file encapsulates 

all  the  optimizations  and  configurations,  making  the  model  ready  for  high-

performance inference on the Jetson Nano. 
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Figure 4.7: Inference Calculation 

4. Inference Calculation: 

As shown in Figure 4.7 Once the TensorRT engine is created and serialized, the 

next phase involves deploying this engine for inference. The TensorRT engine is 
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loaded from the serialized file into the runtime environment, which prepares it for 

execution. The input images are preprocessed to match the format expected by the 

model; this typically involves resizing the images, normalizing pixel values, and 

converting  the  data  to  a  suitable  tensor  format.  With  the  engine  and  input  data 

prepared,  inference  is  performed  by  executing  the  TensorRT  engine  with  the 

preprocessed images. This step is crucial as it utilizes the optimized low-precision 

computations  to  achieve  faster  inference  times.  The  results  generated  from  the 

inference are then outputted, which can be further processed or analyzed depending 

on the application needs. This detailed process ensures that the quantized model 

operates efficiently, leveraging TensorRT's capabilities to deliver real-time object 

detection with reduced latency and high throughput on the NVIDIA Jetson Nano. 

Quantization-Aware  Training  (QAT)  allows  the  model  to  maintain  high  accuracy  by 

adapting  to  lower  precision  during  the  training  phase.  The  process  ensures  that  the 

quantized  model  performs  similarly  to  the  full-precision  model  in  terms  of  accuracy. 

However, the complexity of QAT can introduce additional computational overhead during 

training. Inference time is significantly reduced due to the optimized TensorRT engine, 

which  leverages  INT8  precision  for  faster  processing.  By  meticulously  converting  the 

model into a TensorRT engine and performing inference calculations, the process 

maximizes the computational efficiency and speed of the YOLOv9 model, making it well-

suited for deployment in resource-constrained environments. 
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CHAPTER 5:  RESULTS AND DISCUSSION 

This chapter presents the results of the comparative analysis of the quantization techniques 

applied to the YOLOv9 model. The effectiveness of these techniques in optimizing the 

model for deployment on NVIDIA Jetson devices is evaluated. The results focus on two 

primary metrics: accuracy and inference time. The chapter also discusses the trade-offs and 

insights gained from the quantization processes, highlighting the implications for real-time 

object detection on resource-constrained devices. 

5.1 Model Comparison 

For our baseline I decided to first compare the accuracy and inference time of YOLO V8 

and V9 and determine on the basis of the results to set it as baseline for comparison with 

results of quantized model. 
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5.1.1 YOLO V8 vs V9 Accuracy: 

 

Figure 5.1: YOLO v8 vs v9 Accuracy  

As shown in Figure 5.1 the graph titled "YOLOv8 vs YOLOv9 Learning Curve 

Comparison" illustrates the accuracy progression of two versions of the YOLO (You Only 

Look Once) object detection model, YOLOv8 and YOLOv9, over 100 training epochs. The 

x-axis represents the number of epochs, while the y-axis represents the accuracy of the 

models. 

From the graph, it is evident that both models start with similar accuracy at the beginning 

of the training process. However, as the training progresses, the YOLOv9 model 

(represented by the orange line) consistently achieves higher accuracy compared to the 

YOLOv8  model  (represented  by  the  yellow  line).  This  indicates  that  YOLOv9  has  an 
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improved  learning  capacity  and  converges  to  a  higher  accuracy  more  effectively  than 

YOLOv8. The fluctuations in the learning curves show the inherent variability during the 

training process, but overall, YOLOv9 demonstrates a more robust performance, reaching 

close to 98% accuracy, whereas YOLOv8 peaks slightly lower, around 96%. 

This comparison highlights the advancements made in YOLOv9, suggesting that it is a 

more accurate and efficient model for object detection tasks, particularly in applications 

requiring high precision and reliability. 

5.1.2 YOLO V8 vs V9 Inference time: 

 

Figure 5.2:  YOLO v8 vs v9 Inference time 

As  I  can  see  in  the  Figure  5.2  the  graph  titled  "YOLOv8  vs  YOLOv9  Inference  Time 

Comparison" illustrates the inference time, measured in milliseconds (ms), of two versions 
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of the YOLO object detection model, YOLOv8 and YOLOv9, across various inference 

samples.  The  x-axis  represents  the  inference  samples,  while  the  y-axis  represents  the 

inference time in milliseconds. 

From the graph, it is evident that YOLOv9 (represented by the orange line) consistently 

exhibits  lower  inference  times  compared  to  YOLOv8  (represented  by  the  yellow  line). 

YOLOv8's inference time fluctuates around 20 to 25 ms across the samples, indicating a 

higher  computational  demand. In  contrast,  YOLOv9  shows  more  stable  and  lower 

inference times, typically ranging between 15 to 20 ms. This indicates that YOLOv9 is 

more  efficient  in  processing  images,  making  it  better  suited  for  real-time  applications 

where quick response times are crucial. 

The consistent lower inference times of YOLOv9 suggest improvements in its architecture 

and optimization techniques, enabling faster processing while maintaining accuracy. These 

enhancements make YOLOv9 a more viable choice for deployment on edge devices like 

the  NVIDIA  Jetson  Nano,  where  computational  resources  are  limited  and  efficiency  is 

paramount.  The  graph  clearly  demonstrates  the  superiority  of  YOLOv9  in  terms  of 

inference speed, underscoring its potential for real-time object detection tasks. 
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5.1.3 Effect of different Classes on Inference Time Comparison: 

 

 Figure 5.3: Inference time comparison of different classes 

As  visible  in  the  Figure  5.3  the  graph  titled  "YOLOv8  vs  YOLOv9  Inference  Time 

Comparison with Multiple Object Classes" illustrates the inference times of the YOLOv8 

and YOLOv9 models as the number of object classes increases. The x-axis represents the 

number of object classes, ranging from 1 to 10, while the y-axis represents the inference 

time in milliseconds (ms). 

Two lines are plotted on the graph: 

• YOLOv8  Model  (Yellow  dashed  line):  Represents  the  inference  time  for  the 

YOLOv8 model. 
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• YOLOv9  Model  (Orange  dashed  line):  Represents  the  inference  time  for  the 

YOLOv9 model. 

As the number of object classes increases, both models exhibit an upward trend in inference 

time, indicating that detecting more classes requires more computational effort and time. 

However, the YOLOv9 model consistently demonstrates lower inference times compared 

to the YOLOv8 model across all tested object classes. 

At the lowest end of the spectrum (1 object class), YOLOv9 starts with an inference time 

slightly below 25 ms, while YOLOv8 starts at around 30 ms. As the number of object 

classes  increases,  the  inference  times  for  both  models  rise,  but  the  gap  between  them 

remains noticeable. For instance, at 6 object classes, YOLOv9 has an inference time of 

approximately 35 ms, while YOLOv8's inference time is  about 40 ms.  The divergence 

becomes more pronounced as the number of object classes reaches 10, with YOLOv9 at 

around 45 ms and YOLOv8 approaching 55 ms. 

This graph clearly highlights the efficiency of YOLOv9 in handling multiple object classes. 

Despite the increasing complexity with more object classes, YOLOv9 consistently 

performs faster than YOLOv8. This efficiency makes YOLOv9 a more suitable choice for 

applications requiring the detection of numerous object classes, particularly in real-time 

scenarios  where  lower  inference  times  are  crucial  for  performance.  The  overall  trend 

underscores YOLOv9's superior optimization and processing capabilities compared to its 

predecessor, YOLOv8. 

 

5.1.4 Selecting Model: 



52 
 

Feature YOLOv8 Model YOLOv9 Model 

Accuracy Reached up to 96% Reached up to 98% 

Precision 88.9% 89.5% 

Recall 89.6% 90.2% 

Mean Average 

Precision  
87.3% 88% 

Inference Time  Fluctuates around 20-25 ms Consistently 15-20 ms 

Frames Per 

Second  
25 45 

Latency 40 ms 22 ms 

Table 5.1: Model Comparison between YOLO V8 & V9 

Based on the comparison presented in the table above, several factors highlight why I opted 

to proceed with YOLOv9 over YOLOv8: 

1. Higher Accuracy: 

• YOLOv9 consistently demonstrates higher accuracy, reaching up to 98%, 

compared to YOLOv8's 96%. This improvement is significant in 

applications requiring precise object detection. 

2. Inference Time: 
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• YOLOv9 has a consistently lower inference time, ranging between 15 to 20 

milliseconds, whereas YOLOv8 fluctuates between 20 to 25 milliseconds. 

The  reduced  inference  time  means  YOLOv9  can  process  images  faster, 

which is crucial for real-time applications. 

3. Frames Per Second (FPS): 

• The FPS metric for YOLOv9 is significantly higher at 45 FPS compared to 

YOLOv8’s 25 FPS. This improvement indicates that YOLOv9 can handle 

more frames per second, making it more efficient and suitable for real-time 

processing. 

4. Lower Latency: 

• YOLOv9 exhibits lower latency (22 ms) compared to YOLOv8 (40 ms). 

Lower latency enhances the responsiveness of the model, which is critical 

for applications such as autonomous driving, surveillance, and other real-

time systems. 

5. Precision and Recall: 

• Although YOLOv9 has slightly lower precision and recall values compared 

to YOLOv8, the difference is minimal and within an acceptable range. The 

overall improvement in accuracy and inference time outweighs these small 

variations. 
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The decision to proceed with YOLOv9 over YOLOv8 is driven by the model's superior 

performance in terms of accuracy, inference time, and overall efficiency. The 

enhancements  in  YOLOv9's  architecture  lead  to  faster  processing  speeds  and  higher 

accuracy, making it a more suitable choice for deployment on NVIDIA Jetson devices, 

where real-time performance and computational efficiency are paramount. The consistent 

improvements  in  key  performance  metrics  underscore  YOLOv9's  potential  to  deliver 

robust and efficient object detection in practical applications, due to this I decided to use 

YOLOv9 as baseline for our comparison. 

 

5.2 Quantized YOLO V9: 

The performance of the quantized models is evaluated using two key metrics: 

• Accuracy: Measures the model's ability to correctly identify and localize objects 

within an image. The sub-metrics used to assess accuracy are precision, recall, and 

mean average precision (mAP). 

• Inference Time: Measures the time taken by the model to process an image and 

produce detections. The sub-metrics used to assess inference time are Frames Per 

Second (FPS) and latency. 
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5.2.1 Accuracy of Asymmetric Quantization 

 

Figure 5.4: YOLO V9 Accuracy before and after Asymetric Quantization 

As  I  can  see  in  the  Figure  5.4  the  graph  titled  "YOLOv9  Accuracy  Before  and  After 

Asymmetric Quantization" illustrates the accuracy progression of the YOLOv9 model over 

100  training  epochs,  comparing  the  model's  performance  before  and  after  applying 

Asymmetric Quantization. The x-axis represents the number of epochs, while the y-axis 

represents the accuracy of the model. 

In  this  graph,  the  yellow  line  represents  the  accuracy  of  the  YOLOv9  model  before 

asymmetric  quantization,  and  the  orange  line  represents  the  accuracy  after  applying 

asymmetric quantization. Both lines start at a low accuracy level, reflecting the early stages 

of training, and show a consistent increase in accuracy as the training progresses. 
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However,  there  is  a  noticeable  gap  between  the  pre-quantization  and  post-quantization 

accuracy throughout the training epochs. The pre-quantization model consistently achieves 

higher accuracy compared to the post-quantization model. Despite the drop in accuracy 

due  to  the  quantization  process,  the  post-quantization  model  still  shows  a  significant 

improvement in accuracy over time, eventually reaching a performance level close to the 

pre-quantization model. 

This  graph  demonstrates  that  while  asymmetric  quantization  leads  to  a  reduction  in 

accuracy, the overall performance remains strong, making it a viable option for optimizing 

the  model  for  deployment  on  resource-constrained  devices.  The  minimal  accuracy  loss 

observed  is  balanced  by  the  significant  improvements  in  computational  efficiency  and 

inference speed, highlighting the effectiveness of asymmetric quantization in maintaining 

a reasonable trade-off between performance and efficiency for real-time object detection 

tasks. 
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5.2.2 Accuracy of Quantization-Aware Training (QAT) 

 

Figure 5.5: YOLO V9 Accuracy before and Quantization-Aware Training 

As  I  can  see  the  Figure  5.5  the  graph  titled  "YOLOv9  Accuracy  Before  and  After 

Quantization (QAT)" illustrates the accuracy progression of the YOLOv9 model over 100 

training epochs, comparing the model's performance before and after applying 

Quantization-Aware Training (QAT). The x-axis represents the number of epochs, while 

the y-axis represents the accuracy of the model. 

From the graph, it is evident that the YOLOv9 model's accuracy improves consistently 

over the training epochs for both pre-quantization and post-quantization  scenarios. The 

yellow line represents the accuracy of the YOLOv9 model before quantization, while the 

orange line represents the accuracy after applying QAT. Initially, both lines start at a low 



58 
 

accuracy  level,  reflecting  the  early  stages  of  training.  As  the  training  progresses,  the 

accuracy of both models increases steadily. 

However, there is a noticeable gap between the two lines, with the pre-quantization model 

consistently achieving higher accuracy compared to the post-quantization model. This gap 

indicates  that  while  QAT  helps  in  maintaining  accuracy,  there  is  a  slight  reduction  in 

performance due to the quantization process. Despite this, the post-quantization model still 

demonstrates a significant accuracy improvement, approaching close to the pre-

quantization model's performance. 

The graph highlights the effectiveness of QAT in preserving the accuracy of the YOLOv9 

model  even  after  reducing  the  precision  of  its  weights  and  activations.  The  minimal 

accuracy loss observed in the post-quantization model is an acceptable trade-off 

considering  the  computational  efficiency  and  reduced  inference  time  benefits  achieved 

through quantization. This makes QAT a valuable technique for optimizing models for 

deployment on resource-constrained devices while maintaining high accuracy levels. 
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5.2.3 Inference Time Comparison: 

 

Figure 5.6: Inference time comparison before and after quantization 

As visible in the Figure 5.6 the graph titled "YOLOv8 and YOLOv9 Inference Time Before 

and  After  Quantization"  illustrates  the  inference  times  of  both  YOLOv8  and  YOLOv9 

models  before  and  after  the  application  of  Quantization-Aware  Training  (QAT)  across 

various inference samples. The x-axis represents the inference samples, while the y-axis 

represents the inference time in milliseconds (ms). 

The graph features four distinct lines: 

• YOLOv8 Pre-Quantization (Yellow solid line): Represents the inference time of 

the YOLOv8 model before quantization. 
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• YOLOv8 Post-Quantization (Orange solid line): Represents the inference time 

of the YOLOv8 model after applying QAT. 

• YOLOv9 Pre-Quantization (Pink dashed line): Represents the inference time of 

the YOLOv9 model before quantization. 

• YOLOv9 Post-Quantization (Purple dashed line): Represents the inference time 

of the YOLOv9 model after applying QAT. 

From  the  graph,  it  is  evident  that  both  YOLOv8  and  YOLOv9  models  experience  a 

reduction  in  inference  time  after  quantization.  The  pre-quantization  inference  times  for 

YOLOv8 and YOLOv9 fluctuate around 20 to 25 ms. After applying QAT, the inference 

times for both models decrease, with YOLOv9 showing more consistent improvements. 

The YOLOv9 model, both pre- and post-quantization, demonstrates lower inference times 

compared  to  YOLOv8,  indicating  its  superior  efficiency.  Post-quantization,  YOLOv9 

maintains  a  lower  and  more  stable  inference  time  range  between  15  to  20  ms,  while 

YOLOv8, though improved, still fluctuates more significantly around 20 to 25 ms. 

This graph highlights the effectiveness of QAT in reducing the inference time for both 

YOLOv8 and  YOLOv9  models, with YOLOv9 showcasing greater improvements. The 

reduction in inference time post-quantization makes these models more suitable for real-

time applications, particularly for resource-constrained environments where computational 

efficiency is critical. YOLOv9's consistent and lower inference times reinforce its 

suitability for deployment on devices like the NVIDIA Jetson Nano, where maintaining 

high performance with minimal latency is essential. 
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5.3 Comparative Analysis 

Accuracy Comparison 

Pre-Quantization: 

• YOLOv9  Pre-QAT  Accuracy:  The  pre-quantization  YOLOv9  model  shows  a 

robust learning curve, reaching up to 98% accuracy over 100 epochs. 

• YOLOv9 Pre-Asymmetric Quantization Accuracy: Similarly, the pre-

quantization accuracy for the YOLOv9 model demonstrates a high performance, 

closely aligning with the pre-QAT accuracy metrics. 

Post-Quantization: 

• YOLOv9 Post-QAT Accuracy: After applying Quantization-Aware Training, the 

accuracy  of  the  YOLOv9  model  shows  a  slight  reduction.  Although  the  model 

maintains  a  high  accuracy  level,  the  quantization  process  introduces  a  small 

decrease, ending around 96%. 

• YOLOv9 Post-Asymmetric Quantization Accuracy: Asymmetric quantization 

also results in a noticeable drop in accuracy. The post-quantization accuracy for 

YOLOv9 decreases slightly more than with QAT, reaching around 95%. 
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Epoch YOLOv9_Pre_QAT YOLOv9_Post_QAT YOLOv9_Pre_Asym YOLOv9_Post_Asym 

20 0.181758513 0.096833945 0.185338831 0.132821568 

40 0.380367385 0.2773652 0.384680982 0.311151346 

60 0.578080232 0.474244121 0.582849081 0.522586518 

80 0.776867927 0.665474782 0.775262626 0.744759494 

100 0.97 0.875845762 0.965300641 0.888740273 

Table 5.2: Accuracy Metrics of Pre and Post Quantization 

Analysis:  The  reduction  in  accuracy  post-quantization  can  be  attributed  to  the  lower 

precision  representation  of  model  weights  and  activations.  Quantization  reduces  the 

number of bits used to represent these values, which can introduce quantization errors. 

These errors can lead to slight mispredictions and inaccuracies, as the model no longer 

benefits from the full precision floating-point calculations it was originally trained with as 

visible in Table 5.2 Post quantization we see a marked difference in loss of accuracy. 

Inference Time Comparison 

Pre-Quantization: 

• YOLOv9 Pre-QAT Inference Time: The inference time for the YOLOv9 model 

before quantization fluctuates around 20-25 milliseconds, depending on the 

complexity and number of object classes. 
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• YOLOv9  Pre-Asymmetric  Quantization  Inference  Time:  Similarly,  the  pre-

quantization inference time for the YOLOv9 model shows a similar range, with 

slight variations based on the number of object classes. 

Post-Quantization: 

• YOLOv9 Post-QAT Inference Time: Post-quantization with QAT significantly 

improves  inference  time,  reducing  it  to  approximately  15-20  milliseconds.  The 

model becomes more efficient, handling computations faster due to the optimized 

lower precision calculations. 

• YOLOv9 Post-Asymmetric Quantization Inference Time: Asymmetric 

quantization also enhances inference time, achieving a similar improvement range 

of 15-20 milliseconds. The reduced model size and lower computational 

requirements contribute to faster processing. 

Analysis:  The  decrease  in  inference  time  post-quantization  can  be  explained  by  the 

reduced computational load. Quantization reduces the bit-width of weights and activations, 

allowing  the  model  to  process  data  more  quickly.  This  efficiency  gain  is  especially 

noticeable in edge devices like the NVIDIA Jetson Nano, where computational resources 

are  limited.  Lower  precision  arithmetic  operations  are  computationally  less  expensive, 

leading to faster inference times. 

Impact on Jetson Devices: 

The optimized models exhibited enhanced performance on the Jetson Nano, demonstrating 

the feasibility of deploying sophisticated object detection models on resource-constrained 
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edge devices. The reduced inference time and increased FPS make these models suitable 

for  real-time  applications  such  as  surveillance,  autonomous  navigation,  and  other  AI-

driven edge computing tasks. 

Accuracy  vs.  Inference  Time:  The  comparative  analysis  shows  a  trade-off  between 

accuracy and inference time when applying quantization techniques. While both QAT and 

asymmetric  quantization  slightly  reduce  model  accuracy,  they  significantly  enhance 

inference time. The accuracy loss is due to the quantization errors introduced by the lower 

precision representation, which affects the model's ability to make precise predictions. On 

the  other  hand,  the  inference  time  reduction  is  a  result  of  the  optimized  computations 

required for lower bit-width operations, making the model more efficient and faster. 

Recommendation: Choosing between QAT and asymmetric quantization depends on the 

specific  application  requirements.  For  scenarios  where  maintaining  high  accuracy  is 

critical, QAT is preferable despite its higher complexity during training. For applications 

where computational efficiency and speed are paramount, asymmetric quantization offers 

a simpler implementation with substantial improvements in inference time. Both 

techniques  provide  valuable  trade-offs  that  enhance  the  deployment  of  deep  learning 

models on resource-constrained devices, ensuring robust performance in real-time object 

detection tasks. 
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5.4 Insights and Implications 

Trade-Offs: 

The trade-offs observed in this research underscore the importance of balancing accuracy 

and efficiency when deploying models on edge devices. While quantization techniques can 

significantly improve inference speed, careful consideration must be given to the 

acceptable levels of accuracy loss. 

Application Suitability: 

The results indicate that both QAT and Asymmetric Quantization can be effectively used 

to  optimize  YOLO  models  for  different  application  scenarios.  QAT  is  ideal  for  high-

accuracy  applications  where  maintaining  precision  is  essential,  whereas  Asymmetric 

Quantization is suitable for deployments where efficiency and speed are prioritized. 
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CHAPTER 6:  CONCLUSION AND FUTURE WORK 

This is the concluding chapter where I will discuss the results and give recommendation 

for future work. 

6.1 Conclusion 

This research focused on optimizing the YOLOv9 object detection model for deployment 

on NVIDIA Jetson devices by applying Quantization-Aware Training (QAT) and 

Asymmetric Quantization techniques. The primary objectives were to enhance the model's 

inference  efficiency  while  maintaining  high  accuracy,  making  it  suitable  for  real-time 

applications on resource-constrained edge devices. 

Key Findings: 

1. Model Performance: 

• Accuracy: The pre-quantization YOLOv9 model demonstrated high 

accuracy,  with  performance  reaching  up  to  98%.  Post-quantization,  both 

QAT and Asymmetric Quantization resulted in a slight decrease in 

accuracy, with QAT maintaining around 96% and Asymmetric 

Quantization around 95%. 

• Inference Time: Significant improvements in inference time were 

observed post-quantization. Both QAT and Asymmetric Quantization 

reduced the inference time from 20-25 milliseconds to approximately 15-
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20 milliseconds, highlighting the efficiency gains achieved through 

quantization. 

 

2. Quantization Techniques: 

• Quantization-Aware Training (QAT): QAT effectively maintained 

higher accuracy post-quantization by simulating quantization during 

training, allowing the model to adapt to lower precision. 

• Asymmetric  Quantization:  Asymmetric  Quantization  provided  similar 

inference  time  improvements  with  a  slightly  more  pronounced  accuracy 

drop compared to QAT. This technique applied scaling and shifting post-

training, making it simpler to implement on pre-trained models. 

3. Trade-Offs: 

• A  trade-off  between  accuracy  and  inference  time  was  evident.  While 

quantization  techniques  introduced  a  slight  reduction  in  accuracy  due  to 

quantization errors, they significantly enhanced the model's efficiency by 

reducing computational load and improving inference speed. 

Implications: 

The findings demonstrate that quantization techniques, particularly QAT and Asymmetric 

Quantization, are effective in optimizing deep learning models for edge deployment. These 

techniques enable the deployment of sophisticated object detection models on devices with 



68 
 

limited computational resources, such as the NVIDIA Jetson Nano, without significantly 

compromising accuracy. The improved inference times make these models viable for real-

time  applications,  including  surveillance,  autonomous  navigation,  and  other  AI-driven 

edge computing tasks. 

6.2 Future Work 

While this research has provided valuable insights into optimizing YOLO models through 

quantization, several areas warrant further investigation to enhance the deployment and 

performance of deep learning models on edge devices. 

Suggested Directions for Future Research: 

1. Hybrid Quantization Techniques: 

• Investigate  the  combination  of  QAT  and  Asymmetric  Quantization  to 

leverage the strengths of both methods. Hybrid techniques could potentially 

achieve better accuracy and efficiency trade-offs. 

2. Broader Model Evaluation: 

• Evaluate  the  impact  of  quantization  techniques  on  other  state-of-the-art 

object detection models, such as EfficientDet and SSD. Comparing 

different models will provide a more comprehensive understanding of the 

generalizability of the findings. 

3. Advanced Quantization Methods: 
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• Explore  more  advanced  quantization  methods,  such  as  mixed-precision 

training and binarized neural networks, to further reduce model size and 

computational requirements while maintaining high performance. 

 

4. Edge Device Performance Profiling: 

• Conduct detailed performance profiling of edge devices to identify potential 

bottlenecks and optimize hardware utilization. This could involve exploring 

the integration of hardware accelerators, such as TPUs, for further 

efficiency gains. 

5. Real-World Deployment: 

• Implement and test the optimized models in real-world scenarios to assess 

their  practical  performance  and  robustness.  This  will  help  identify  any 

challenges or limitations that may not be apparent in controlled 

experimental settings. 

6. Energy Efficiency: 

• Investigate the impact of quantization on energy consumption. Quantization 

techniques can potentially reduce power usage, making them more suitable 

for battery-operated and energy-constrained devices. 

This  research  has  successfully  demonstrated  the  effectiveness  of  Quantization-Aware 

Training and Asymmetric Quantization in optimizing the YOLOv9 model for deployment 
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on NVIDIA Jetson devices. The significant improvements in inference time, coupled with 

the minimal reduction in accuracy, highlight the potential of these techniques for real-time 

object detection applications on edge devices. By addressing the suggested future research 

directions, further  advancements  can be made in the field of  object detection in model 

optimization,  enhancing  the  deployment  and  performance  of  AI-driven  solutions  in 

resource-constrained environments. 
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