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ABSTRACT 

 

 
Electromyography (EMG) signals serve as vital tools in neurological and 

neuromuscular conditions diagnosis. Various features are used as inputs for pattern 

recognition algorithms. This project intends to increase the precision and efficacy of 

prosthetic limb control, with the goal of boosting the quality of life for individuals with 

limb amputations, using a Linear Support Vector Machine technique. Specifically, we 

intend to analyze the usefulness of the distinctive feature known as Cardinality within 

diverse combinations of time-domain and frequency-domain features. In order to improve 

signal quality, the raw EMG signal is filtered and segmented. The time-domain and 

frequency-domain features are then retrieved from overlapping segments, and the most 

relevant ones are retained using exhaustive feature selection. An SVM classifier is then 

used to examine the possible impact of Cardinality on prosthetic control and 

rehabilitation outcomes. The research findings show that the efficiency of Cardinality is 

dependent on the precision of the units used. Cardinality performed best when seven 

decimal points are used. MAV stands out among time-domain features, as it generated a 

high number of combinations with Cardinality, enhancing its performance in myoelectric 

pattern recognition and BP emerges as the top-performing frequency-domain feature 

when integrated with Cardinality, surpassing other frequency-domain features and 

forming the most numerous combinations. The SVM classifier achieved classification 

accuracy of 85.58% of M1, 70.49% of M2, 77.32% of M3, 77.24% of M4, 80.82% of 

M5, 77.52% of M6, 82.94% of M7, 84.34% of M8, 84.75% of M9, 86.92% of M10 for 

the combination of Cardinality with MAV and BP. As advancements in prosthetics and 

rehabilitation technologies continue, the insights gained from this study can play a pivotal 

role in refining the precision and efficiency of Myoelectric Control systems, ultimately 

benefiting individuals with limb loss or motor impairments. 

Keywords: Electromyography Signals (EMG), Myoelectric Pattern Recognition (MPR), 

Support Vector Machine (SVM) classifier, Cardinality (Card), Mean Absolute Value 

(MAV), Band Power (BP). 
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CHAPTER: 1 
 

 

1.1 INTRODUCTUTION 

 

Electromyographic signals, or EMG signals, are the electrical impulses produced by the 

contraction of human skeletal muscle (Ashraf et al., 2020). EMG signals can be obtained via the 

electromyography technique, which includes placing electrodes on the skin's surface or directly 

into muscular tissue. The non-invasive technique involves indirectly recording muscle movement 

by placing electrodes on the skin surface, whereas the invasive technique involves directly 

recording muscle movement by inserting electrodes into the muscle tissue. 

Various factors influence the properties of an electromyogram (EMG), including its 

amplitude and spectral aspects. These characteristics include skin thickness and temperature, the 

quantity of fat between the muscle and the skin, the rate of blood circulation, and sensor 

placement. Furthermore, tiredness, the ageing process, and neuromuscular diseases can all have a 

negative impact on muscle performance and EMG patterns (Kundu & Subarram Naidu, 2021). 

 

 

Figure 1.1 provides an illustration of a seismic waveform. 
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Electromyography (EMG) signals have a variety of roles in medical, scientific, and 

clinical settings. These signals help professionals diagnose neurological and neuromuscular 

disorders, evaluate walking patterns in gait laboratories, and assist specialists with biofeedback 

and ergonomic assessments. Furthermore, EMG is a great resource in research laboratories, 

allowing for the investigation of many aspects of muscle function. It also plays an important role 

in guiding rehabilitation therapy, allowing for patient-specific interventions. This includes 

research into biomechanics, motor control, neuromuscular physiology, analysis of movement 

problems, posture evaluation, and the development of successful physical therapy regimens. 

(Raez et al., 2006). 

In rehabilitation therapies, the primary objective of limb prothesis is to emulate optimal 

performance. These prostheses are designed to not only reinstate functional capabilities but also 

replicate the visual characteristics of a missing limb for individuals who have experienced limb 

loss due to accidents or congenital limb deficiency. Such individuals are frequently susceptible to 

the potential onset of psychological distress, stemming from societal marginalization and their 

constrained ability to perform activities of daily living. According to estimations, it has been 

noted that in 2005, approximately 664,000 individuals in the United States had experienced limb 

amputations, and about 900,000 had suffered minor limb losses (“Standards for Reporting EMG 

Data,” 2014). Furthermore, it is anticipated that these statistics will undergo a twofold increase 

by the year 2050 (Hubbard & Berkoff, 1993). Global estimations have indicated a substantial 

surge in amputations due to multifactorial influences, encompassing factors such as weapon- 

related violence, accidents, population growth, acts of terrorism, natural calamities like 

earthquakes and tsunamis, and certain pathological conditions including diabetes and vascular 

ailments (Budzynski et al., 1973). It has been documented that from 1988 to 1996, approximately 

1 out of every 200 individuals in the USA encountered issues associated with amputations. 

Furthermore, hospitals carried out an average of approximately 130,000 amputation procedures 

annually (Woods & Bigland-Ritchie, 1983). 

During the seismic event that occurred in Pakistan in 2005, there were approximately 

19,700 reported injuries directly associated with the limbs. Among this cohort, a substantial 78% 

of cases necessitated limb amputations as a result of the trauma sustained (ALKNER et al., 

2000). Within the specific geographical context of Sindh, a total of 1115 limb amputations were 
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documented, with the causal factors encompassing traffic accidents, acts of terrorism, 

agricultural mishaps, underlying medical conditions, incidents of gun violence, and industrial 

accidents (Jobe et al., 1984). A gender-based analysis revealed that males exhibited a 

significantly higher susceptibility to limb injuries, with a striking ratio of 7:1 when compared to 

females. This predilection towards male subjects can be attributed, in part, to their greater 

participation in labour-intensive, mechanized work environments (Yao et al., 2000). 

This study is motivated by a desire to advance our scientific understanding and 

technological capabilities in the realm of EMG signal analysis. This research aims to augment 

the precision and efficacy of prosthetic limb control, enhancing the quality of life for amputees. 

Beyond practical applications, the study contributes to the scientific knowledge base concerning 

neuromuscular systems, fostering technological innovation in the domain of wearable devices 

and sensors. Ultimately, these endeavors aim to foster societal inclusivity and propel the frontier 

of scientific inquiry in biomechanics and rehabilitation science. The anticipation of motion 

utilizing EMG signal is particularly significant in the context of governing prosthetic limbs and 

exoskeletons. Employing pattern recognition algorithms driven by EMG features facilitates the 

intuitive control of multiple robotic or virtual joints for individuals who have experienced 

amputation (Farina et al., 2014), stroke (Lee et al., 2011), or spinal cord injuries (Liu & Zhou, 

2013). The effectiveness of this control mechanism hinges on the capabilities of EMG features to 

more accurately characterize patterns of muscular activity, underscoring their essential role in 

this application. 

In contrast to features commonly found in existing literature, cardinality consistently 

demonstrates superior accuracy in pattern recognition-based Myoelectric Control (MEC), even 

amidst variations in sampling frequency, time window length, contraction dynamics, the number 

and type of movements (individual or simultaneous), and different pattern recognition 

algorithms. Therefore, cardinality is advocated as a more effective feature for MEC in predicting 

motion volition. Cardinality, denoted as card(A) or #A, delineates the numerical count of distinct 

elements within a set. Unlike amplitude-sensitive metrics such as mean absolute value, zero 

crossings, and root mean square, cardinality remains impervious to direct current offsets induced 

by electrode impedance mismatches. This property aligns cardinality with features akin to 

wavelength and the quantification of slope changes. It is imperative to acknowledge that the 
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precision of cardinality is contingent upon the specific units employed, such as byte, word, 

double, etc. (Ortiz-Catalan, 2015). In the context of this investigation, a superior feature was 

carefully selected to form a comprehensive collection of characteristics for the segmented signal. 

This feature ensemble combines one time-domain and one frequency-domain feature, as well as 

cardinality. The goal of this feature selection is to improve the accuracy and effectiveness of 

muscle pattern identification. This upgrade has far-reaching consequences, particularly in terms 

of enhancing the control interface for devices such as prosthetics, which will provide practical 

benefits to amputees and people with motor disability. 

The selective selection of a time-domain feature and a frequency-domain feature, 

combined with cardinality, is intended to capture a comprehensive picture of the segmented 

signal's characteristics. The recognition of complicated muscle patterns becomes more strong 

and subtle as features from multiple domains are integrated. This, in turn, contributes to refining 

the control algorithms for assistive devices, ensuring a more natural and responsive interface 

between users and prosthetic limbs. The ultimate goal is to use these advanced features to help 

people who have difficulty moving around. The study aims to improve prosthetic device 

functioning and adaptability by optimising muscle pattern recognition. This equates to enhanced 

control, increased user satisfaction, and a significant improvement in quality of life for people 

who have had limbs amputated or have motor impairments. As a result, the research not only 

enhances scientific knowledge but also has a direct and positive impact on the creation of 

assistive devices, accelerating progress in the field of rehabilitation engineering. 

1.2 HISTORY 

 

The history of electromyography (EMG) dates back to the 17th century when Francesco 

Redi documented that the electric rays had specialized muscles capable of generating electricity. 

By the 18th century, scientists like Walsh observed that the muscles of eel fish could produce 

sparks of electricity. In the late 18th century, Galvani showed that electricity could make muscles 

contract (Kleissen et al., 1998). In the mid-19th century, Dubois-Raymond discovered that you 

could record electrical activity during muscle contractions. The term "electromyography" was 

introduced by Marey in 1890 when he made the first recordings of this electrical muscle activity. 

In 1922, Gasser and Erlanger used an oscilloscope to display muscle electrical signals. However, 
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due to the unpredictable nature of these signals, they could only provide limited information. 

From the 1930s to the 1950s, researchers improved their ability to detect electromyographic 

signals and started using better electrodes to study muscles (Shahid et al., 2005). Clinical use of 

surface EMG began in the 1960s, and in the early 1980s, Cram and Steger introduced a method 

for scanning various muscles using EMG devices (Cram & Kasman GS Holtz J., n.d.). 

It wasn't until the mid-1980s that electrode integration techniques advanced enough to 

allow mass production of small and lightweight EMG equipment. Today, there are many 

commercially available amplifiers for EMG signals. In the early 1980s, cables were developed 

that could capture the tiny electrical signals of interest without interference (Nikias & 

Raghuveer, 1987). Over the past 15 years, research has improved our understanding of how to 

record surface EMG effectively. Nowadays, surface electromyography is commonly used in 

clinical settings to monitor superficial muscles, while intramuscular electrodes are reserved for 

deep muscles (Kleissen et al., 1998). Among the earliest applications of electromyography 

(EMG), a pivotal role emerged with the extraction of EMG signals, acting as a fundamental input 

source for power-guided upper limb prostheses. Termed "myoelectric control," this concept finds 

its origins in the 1940s and experienced notable progress from the 1960s to the 1980s (Lundberg 

et al., 1994). In the 21st century, the landscape has evolved further, with a particular focus on 

designing and developing a varied array of powered prostheses. Contemporary research is 

distinguished by a strong emphasis on recognition-based controllers that take advantage of the 

complexities of EMG patterns. 

This area of investigation within the broader field of electromyography not only 

examines the historical evolution of myoelectric control but also highlights the contemporary 

focus on advancing prosthetic significantly to the complex study and understanding of muscle 

activity and hold potential applications in diverse medical and research contexts technologies. 

The use of EMG patterns as a foundation for recognition-based controllers is a well-established 

and well explored aspect of EMG research, significantly contributing to the continuous efforts to 

improve the functioning and usability of powered prostheses. This ongoing research holds 

promise for new innovations in technological assistance, particularly in the field of upper limb 

prosthetic control (Mathiassen et al., 1995). One of the two categories of electromyography 

(EMG) is Needle EMG, which involves using needles for the recording of muscle electrical 
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activity. True to its name, this technique is designed to capture the EMG signal arising from the 

activation of Motor Unit Action Potentials (MUAP) in the immediate vicinity of the needle, 

covering a very small area. This method proves beneficial for obtaining highly concentrated 

information from both deep and superficial muscles. The second category, known as surface 

electromyography (sEMG), operates on a different principle. This approach involves the 

detection of action potentials from motor units across a more extensive surface area of the 

muscle. Its utility lies in providing a holistic understanding of muscular contractions on a global 

scale. Surface electromyography is predominantly employed to discern MUAPs in superficial 

muscles. Contemporary applications of surface EMG incorporate specialized electrodes, such as 

2D electrode grids or linear electrode arrays (Hiraiwa et al., n.d.). These advancements not only 

facilitate the implementation of filters, including spatial filters but also empower an in-depth 

analysis of various parameters of individual MUAPs. As a result, both Needle EMG and surface 

electromyography contribute. 

 

 

Figure 1.2 demonstrates the arrangement of surface electrodes on the forearm, positioned 

to capture EMG signals during both flexion and extension movements. 

 

The close proximity of muscles to surrounding tissues poses a significant challenge in the 

domain of electromyography (EMG) signal recording. This challenge is particularly pronounced 

when employing surface electromyography (sEMG), where interference from neighbouring 

tissues has the potential to obscure crucial information. This stands in contrast to the more direct 

needle EMG method. Despite this inherent challenge, the popularity of sEMG has soared, thanks 
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to its user-friendly features that enable convenient signal recording and its non-invasive nature. 

The interference from surrounding tissues, while a notable drawback, has not deterred the 

widespread adoption of sEMG. The non-invasiveness and ease of use make sEMG an attractive 

option for a broad spectrum of users. This includes not only seasoned researchers but also 

extends to amateur operators and individuals engaged in non-medical research settings. 

The preference for sEMG can be attributed to its practical advantages, as it allows for a 

more accessible and comfortable recording experience compared to needle EMG. This 

democratization of signal recording technology has broadened the scope of EMG applications 

beyond traditional medical research, reaching fields such as sports science, human-computer 

interaction, and ergonomics. The versatility and convenience of sEMG contribute to its 

increasing relevance in various domains, making it a valuable tool for both professionals and 

enthusiasts alike. Despite the challenges posed by tissue interference, the widespread adoption of 

sEMG underscores its pivotal role in advancing our understanding of muscle activity and 

enhancing the applicability of EMG technology in diverse contexts. The widespread adoption of 

sEMG in various applications, such as fatigue assessment, biofeedback systems, and movement 

analysis, signifies its versatility. However, this versatility has brought about operational 

challenges. The absence of standardized guidelines for the use of sEMG has led to compromised 

reliability in the collected EMG signal data. This issue is underscored by the presence of 

conflicting results and factual discrepancies in research papers spanning the last two decades, 

causing a degree of perplexity among contemporary researchers (Day et al., 1989). In light of 

these challenges, there are growing concerns regarding the dependability of surface 

electromyography across different applications. While modern EMG techniques have certainly 

simplified the process of recording signals, the interpretative phase remains intricate due to the 

operational complexities associated with sEMG. Consequently, potential inconsistencies in 

findings related to EMG patterns, modalities, timing, and muscle activation rates raise questions 

about the overall reliability of sEMG in contemporary research and application. 

Contemporary electromyography (EMG) encompasses both needle EMG and surface 

EMG techniques, serving as integrated and interdependent tools for EMG signal processing. 

These two methods operate as interconnected instruments, mutually dependent in the intricate 

process of EMG signal processing. Their collective significance is particularly pronounced in 
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investigations that delve into various physiological parameters. Needle EMG, with its precise 

capabilities, holds a central role in diagnostic practices, providing detailed insights into muscular 

activity. Conversely, surface EMG is notably prevalent in fields such as ergonomics, motion 

analysis, sports medicine, occupational medicine, prosthetic control devices, and biofeedback. 

What distinguishes surface EMG is its non-invasive nature, allowing for painless and frequent 

examinations of the neuromuscular system's functionality. This characteristic makes it an 

invaluable tool for understanding and assessing muscle activity in a variety of practical 

applications. Despite the substantial role played by surface electromyography, it is observed that 

its uses and applications are often overlooked and not comprehensively covered in academic 

circles. Consequently, there is a growing focus on emphasizing the non-invasive nature of 

surface EMG, highlighting its significance and potential across various disciplines (Hallett et al., 

1975). This concerted effort aims to underscore the importance of surface electromyography in 

the contemporary understanding and utilization of EMG techniques, fostering a more holistic 

approach to its application in diverse fields. 

1.3 MOTIVATION 

 

This research is motivated by a keen interest in advancing our scientific comprehension 

and technological capabilities within the domain of Electromyography (EMG) signal analysis. 

The primary objective is to elevate the precision and effectiveness of prosthetic limb control, 

with the ultimate goal of enhancing the overall quality of life for individuals with limb 

amputations. Moreover, the study aspires to fortify the healthcare field by enabling more 

accurate diagnosis and monitoring of neuromuscular disorders, potentially facilitating early 

intervention and leading to improved patient outcomes. The implications of this study extend 

beyond the realms of prosthetics and healthcare. It holds significant promise for influencing 

human-computer interaction, ergonomics, and occupational health. By offering refined 

assessments of muscle fatigue and ergonomic stress, the research could contribute to creating 

healthier and more sustainable work environments. This has the potential to positively impact 

occupational practices and overall well-being. In addition to its practical applications, the study 

contributes to the scientific understanding of neuromuscular systems, laying the groundwork for 

technological innovation in wearable devices and sensors. Insights gained from this research may 

fuel advancements in the design and implementation of technologies that seamlessly integrate 
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with the human body, enhancing the capabilities of assistive devices and health monitoring 

systems. Ultimately, the overarching goal of these research endeavors is to foster societal 

inclusivity by addressing the unique needs of individuals with limb amputations and 

neuromuscular disorders. Simultaneously, the study seeks to push the frontier of scientific 

inquiry in the interdisciplinary fields of biomechanics and rehabilitation science, aiming to 

unlock new possibilities for enhancing human mobility, well-being, and overall quality of life. 

1.4 OBJECTIVE 

 

The study aims to conduct a comprehensive comparative analysis of various EMG 

features commonly utilized in EMG signal classification. Specifically, it seeks to explore the 

impact of a time-domain feature, Cardinality, on classification accuracy using an SVM classifier. 

Cardinality's performance depends on the precision of the units used. In this study, Cardinality 

performs best with seven decimal points. Features play a pivotal role in characterizing the unique 

patterns within EMG signals that are indicative of different muscle activities. In the context of 

this investigation, a standout feature is meticulously chosen to constitute a set of features for the 

segmented signal. This set encompasses not only a time-domain feature but also a frequency- 

domain feature, complemented by the consideration of cardinality. The primary objective of this 

feature selection is to amplify the precision in recognizing intricate muscle patterns. The 

overarching aim is to provide substantial benefits to amputees and individuals facing motor 

impairments, facilitating more seamless and intuitive control over advanced devices, particularly 

prosthetics. This research holds the potential to significantly advance the field, fostering 

advancements in assistive technology and ultimately improving the quality of life for those with 

limb loss or motor challenges. 

1.5 STRUCTURE OF THESIS 

 

The thesis is thoughtfully structured into four insightful chapters, each contributing to a 

comprehensive understanding of electromyography (EMG) signals. In the inaugural chapter, a 

retrospective examination of the history of EMG signals sets the stage, providing valuable 

context for the subsequent exploration. Additionally, the chapter outlines the overarching 

objectives of the thesis work, offering a roadmap for the ensuing research journey. 
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Chapter 2 serves as the cornerstone, offering an in-depth exploration of fundamental 

concepts essential for grasping the intricacies of electromyography signal generation. 

Commencing with an exploration of the contraction mechanism of smooth muscles and the 

integral role of motor units within, Cerebellum, the neuromuscular system responsible for 

orchestrating muscle movements, this chapter lays the groundwork for the thesis's primary focus. 

The discussion shifts towards the development of power-based prostheses, highlighting the 

significance of surface myoelectric signals derived from surface electromyography (sEMG) as a 

substantial and efficient input system. Within this context, the technical application known as 

myoelectric control takes centre stage, with a detailed examination of its principles. Furthermore, 

the chapter delves into the technical aspects of EMG signal filtration, segmentation into disjoint 

and overlapping segments, and the critical aspects of feature extraction and selection—a core 

subject of the thesis. 

Chapter 3 unveils the methodology employed in the thesis, providing insights into the 

process of obtaining datasets, the application of filters to remove unwanted signals from the 

EMG signal, the intricacies of signal segmentation, and the extraction of time-domain and 

frequency-domain features from both disjoint and overlapping segments of the EMG signal. A 

noteworthy feature of this chapter is the application of an exhaustive feature selection technique, 

exploring all conceivable combinations of Cardinality with the 10 time-domain features and 5 

frequency-domain features. 

The conclusive chapter, Chapter 4, serves as the culmination of the research endeavour, 

where all findings are systematically summarized, presented, and discussed. This final section 

offers a platform for synthesizing the results, reflecting on their implications, and engaging in a 

comprehensive discussion. Through this structured approach, the thesis not only contributes to 

the existing body of knowledge but also lays the groundwork for potential future research 

avenues in the dynamic field of electromyography. In summarizing the chapter’s findings, it is 

evident that the Mean Absolute Value extracted from the time-domain feature demonstrated a 

notable propensity for forming diverse combinations with Cardinality. Simultaneously, within 

the realm of frequency-domain features, Band Power emerged as a key player, showcasing a 

substantial association with Cardinality. The synergy of these three features in combination 

yielded favorable outcomes, underscoring their synergistic impact on the overall result. 
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CHAPTER: 2 

 

 
2.1 FUNDAMENTAL CONCEPTS 

 

Electromyography (EMG) involves recording the electrical activity generated by muscle 

contractions. This is valuable because EMG is closely linked to torque, making it a useful tool 

for assessing muscle tension in various physical examinations (Viitasalo & Komi, 1977). EMG 

signals have a complex nature. For better understanding of the EMG signals, it is essential to 

gain insights into the origin and characteristics of the EMG signal. The neuromuscular 

component plays a pivotal role in facilitating voluntary bodily movements, wherein the 

contraction and relaxation of muscles are initiated through the orchestrated functioning of 

specialized nervous system cells known as neurons. 

Neurons are responsible for generating a minute electrical potential difference at the 

surface of muscle cells, serving as the trigger for the initiation of the muscle contraction process. 

This electrical alteration subsequently triggers the activation of motor neurons, which are 

specialized nerve cells with the responsibility of regulating muscle activity. This activation leads 

to a specific electric pattern denoted as depolarization, signifying a modification in the electric 

charge within the neuron. The waveform generated in the course of this process is then conveyed 

to the terminus of the neuron, which is identified as the Postsynaptic Neuron, called Action 

Potential or sometimes simply abbreviated as AP. The term "Postsynaptic Neuron" designates 

the neuron that receives and responds to these electrical signals, ultimately culminating in the 

initiation of muscle contraction. An action potential is initiated within a muscle fiber when its 

internal membrane potential increases by approximately 40 mV from its resting level, typically 

around -90 mV relative to the surrounding extracellular fluid. This initiation can occur either at 

the neuromuscular junction, when the muscle is stimulated by a motor nerve fiber, or at the point 

opposite to the cathode when direct electrical stimulation is applied. The resulting action 

potential then propagates bidirectionally along the muscle fiber, a process that shares 

fundamental similarities with the mechanisms observed in nerve fibers, the process of action 

potential propagation in muscle fibers closely resembles that observed in nerve fibers although 

there are some subtle distinctions (Huxley, 1974). 
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2.1.1 THE CONTRACTILE MECHANISM 

 

The physiological dynamics of muscle contraction hinge on the interplay between two 

fundamental variables: length and tension. Within the realm of physiology, it is crucial to 

distinguish between muscle shortening and contraction, as tension can be generated within a 

muscle without any concomitant change in its length. This phenomenon is exemplified when one 

holds a stationary dumbbell or cradles a peacefully sleeping child. Upon the cessation of muscle 

contraction, a subsequent phase of muscle relaxation ensues, characterized by the return of 

muscle fibers to a low-tension state. The muscular system in mammals encompasses three 

distinct types of muscles: skeletal, cardiac, and smooth. Skeletal muscles, firmly attached to 

bones, confer structural integrity and strength to the body. The cardiac muscles form the walls of 

the heart, facilitating the rhythmic pumping of blood through the vasculature. Smooth muscles, 

found in diverse anatomical locations such as blood vessels, the gastrointestinal tract, 

bronchioles, uterus, and bladder, play a pivotal role in various physiological functions. 

To further dissect the complexity of muscle contraction within the human body, it is 

instructive to consider the specialization of muscle subtypes. Broadly speaking, muscle fibers fall 

into two major categories: striated muscle fibers and smooth muscle fibers. Striated muscle 

fibers, distinguished by the presence of actin and myosin filaments orchestrating contraction, 

exhibit an organized structure with repeating sarcomeres, resulting in a distinctive striated 

microscopic appearance. Cardiac muscle tissue, an involuntary striated muscle fiber, falls under 

the intricate control of the autonomic nervous system (ANS). In contrast, skeletal muscle tissue, 

a voluntary striated muscle fiber, is subject to conscious control. Smooth muscle fibers, in 

contrast, lack the characteristic sarcomeric organization but utilize actin and myosin contraction 

to achieve functions such as the constriction of blood vessels and the propulsion of contents 

within hollow organs. These fibers operate involuntarily, responding to reflexes and the 

regulatory signals of the body's autonomic nervous system (ANS). The intricate and specialized 

nature of muscle contraction thus underscores the multifaceted orchestration of physiological 

processes within the human body (Gash et al., 2023). 

In our bodies, the contraction of smooth muscle cells is mainly controlled by two things: 

receptors and mechanical stretching, which activate the proteins responsible for muscle 
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contraction. Another way to trigger contraction is by changing the electrical charge on the cell's 

surface. This can happen when the cells receive signals or when they get stretched. For the 

muscle to contract, a special enzyme called myosin light chain kinase (MLC kinase) has to add a 

phosphate group to a part of the myosin protein. This phosphorylation process is like a switch 

that allows myosin to connect with another protein called actin, initiating the contraction. All of 

this requires energy, which comes from a molecule called ATP that cells use for various 

activities. So, the main factor that determines the activity of smooth muscle is whether the 

myosin protein is phosphorylated or not. This phosphorylation is a highly regulated process, 

meaning it's carefully controlled by the body (Webb, 2003). Interestingly, some smooth muscle 

cells can maintain a low level of myosin phosphorylation even when there are no external signals 

telling them to contract. This low-level activity keeps the muscles in a state of partial 

contraction, known as smooth muscle tone. The intensity of this tone can be adjusted as needed 

by changing the level of myosin phosphorylation. This ability to fine-tune muscle tone is 

important for various functions in our bodies (Webb, 2003). 

 

 

 

Figure 2.1.1 depicts the physiological processes involved in the muscle's contractile mechanism. 
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2.1.2 MYOFILAMENTS 

 

Myofilaments are the individual proteins responsible for initiating muscle contraction. Within the 

intricate architecture of muscle fibers, sarcomeres emerge as the contractile structures formed by 

the overlapping presence of actin and myosin myofilaments. The myosin filaments, characterized 

by their thickness and straight alignment, are arranged in parallel, featuring a central shaft and 

globular heads at each end. On the other hand, actin, the thinner filaments composed of two 

elongated protein strands, is positioned between myosin filaments and connected at the Z line of 

sarcomeres. The regulatory components governing the interaction between actin and myosin 

include tropomyosin, a rope-like protein covering myosin-binding sites on actin, and troponin, a 

complex with three subunits: Troponin C (TnC), which binds calcium ions (Ca2+), Troponin I 

(TnI), inhibiting actin and myosin binding, and Troponin T (TnT), connecting other troponins to 

tropomyosin. This intricate molecular arrangement underscores the sophisticated control 

mechanisms underlying muscle contraction. 

 

Figure 2.1.2 shows the structure of the thin filament, actin, and the thick filament, myosin, is 

notable for the presence of a globular head on myosin. The actin filament features yellow dots 

representing myosin-binding sites, which are normally covered by tropomyosin in a state of rest. 

Troponins, housing calcium-binding sites, play a crucial role. In the presence of calcium, 

troponins induce a conformational change in the troponin–tropomyosin complex, uncovering 

the myosin-binding sites on actin. This exposure allows myosin to bind to actin, and when 

coupled with the presence of ATP energy, initiates muscle contraction. 

https://www.lecturio.com/concepts/types-of-muscle-tissue/
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2.1.3 EMG SIGNAL GENERATION 

 

The electromyography signal is the electrical output generated by an active muscle and is 

detectable by placing an electrode or electrodes on the skin above the targeted muscle. When a 

muscle contracts, ions move across the muscle fiber membrane, constituting an electrical current 

(I) measured in Amperes (electric charge per second). These electrical currents modify the 

electrical potential in the surrounding tissue. The voltage, representing the difference in electrical 

potential between two points, is measured in Volts (V). The voltage detected on the skin surface 

is influenced by the resistance or impedance, measured in Ohms (Ω), posed by the surrounding 

muscle, subcutaneous tissue, and skin to the electric current flow. The time-varying distribution 

of voltage on the skin surface due to the muscle's electrical activity is termed the surface 

electromyography (sEMG) signal. This signal offers insights into muscle contraction. 

Importantly, it's essential to recognize that measuring the electrical activity via sEMG doesn't 

equate to gauging the tension developed within the muscle, as the EMG signal precedes 

mechanical muscle activity. Moreover, it's plausible for electrical and mechanical muscle 

activities to unfold independently of each other (McManus et al., 2020). Electricity is 

fundamentally centered around the concept of charge and its movement. The notion of charge 

originated from experimental observations, notably from Benjamin Franklin's investigation. 

Franklin's experiment involved rubbing a glass rod with silk, leading to the observation that the 

rod attracted the silk. Upon rubbing a second glass rod with silk, these rods exhibited repulsion. 

Franklin, seeking to explain this phenomenon, arbitrarily designated the charge on the glass rod 

as positive and the charge on the silk as negative. The introduction of the electric field concept 

aimed to elucidate the force between these charged objects. The flow of charges corresponds to 

the concept of current, measured in amperes or amps. Current is defined as the amount of charge, 

measured in coulombs, moving per unit of time (seconds). Positive charges moving from silk to 

rod are combined with negative charges flowing in the opposite direction, from rod to silk, to 

determine the total current flow. Although current has a direction, it can be defined as either the 

net rate of flow of negative charges or the net rate of flow of positive charges. The convention, 

however, designates current as the net rate of flow of positive charges, explaining the 

representation of diagrams with current flowing from positive leads to negative leads. While it 

may seem counterintuitive given that electrons, the usual charge carriers, are negative, the 
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convention remains consistent for circuit design purposes. In the example of the rod-silk 

interaction, the convention implies that current flowed from silk to rod, whereas in physical 

reality, electrons moved from rod to silk. Despite this potential for confusion, the convention 

remains irrelevant for the practical aspects of circuit design (Barry, 1991). 

In the neuromuscular system, each muscle is controlled by a group of motor neurons that 

initiate muscle contractions. When an electrical signal, known as an action potential (AP), travels 

along the axon of motor neuron and reaches the connection point between the nerve and muscle, 

called the neuromuscular junction, it triggers the generation of an action potential in each muscle 

fiber connected to that motor neuron. In the neuromuscular system, each muscle is controlled by 

a group of motor neurons that initiate muscle contractions. When an electrical signal, known as 

an action potential (AP), travels along the motor neuron's axon and reaches the connection point 

between the nerve and muscle, called the neuromuscular junction, it triggers the generation of an 

action potential in each muscle fiber connected to that motor neuron (Farina & Holobar, 2016). 

The genesis of electromyography (EMG) signals is rooted in the intricate orchestration of the 

neuromuscular system, beginning with the activation of motor neurons. These specialized nerve 

cells, originating from the central nervous system, transmit signals that prompt muscle 

movement. At neuromuscular junctions, the meeting point between motor neurons and muscle 

fibres, neurotransmitters are released, initiating a cascade of events that set the stage for muscle 

contraction. The activation of muscle fibers follows the release of neurotransmitters, setting off a 

sequence of electrical events. The initiation of an action potential propagates along the 

sarcolemma, the muscle fibre’s membrane, triggering the release of Ca+2 ions from the 

sarcoplasmic reticulum. This influx of Ca+2 ions is pivotal for the interaction between actin and 

myosin filaments, the molecular machinery responsible for muscle contraction. As these 

filaments slide past each other, muscle fibres contract, and the associated electrical activity 

intensifies. At the core of EMG signal generation is the concept of motor units, comprising a 

motor neuron and the muscle fibres it controls. When a motor neuron is activated, all the muscle 

fibres within its motor unit contract in unison. This collective activation generates an electrical 

field, and electrodes placed on the skin's surface or inserted into muscle tissue following a 

specific protocol, capture this electrical activity. The resulting EMG signal is a graphical 

representation of the summation of individual muscle fibre action potentials, reflecting the 

overall muscle activation during a specific task or movement. The utilization of EMG signals 
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extends into both clinical and research domains. Clinicians employ EMG to diagnose 

neuromuscular disorders, assess muscle function, and monitor rehabilitation progress. In 

research, EMG serves as a valuable tool to delve into biomechanics, study muscle coordination, 

and unravel the complexities of motor control. The waveform of the EMG signal provides 

researchers and healthcare professionals with a dynamic insight into the real-time interplay 

between the nervous system and skeletal muscles during voluntary movements, offering a 

nuanced understanding of muscle activity and function. 

 

 

 

Figure 2.1.3 depicts the process of generation of EMG signals. 
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2.1.4 MOTOR UNIT 

 

A motor unit is comprised of a single α-motor neuron and all the muscle fibers it 

innervates. The innervation ratio, representing the number of muscle fibers innervated by a 

single motor unit, can vary significantly depending on the muscle's function. Activation of a 

motor unit leads to the contraction of all its associated muscle fibers. Physiologically and 

biochemically, there are three types of motor units: (1) Slow fatigue-resistant motor units (type I) 

contract slowly, generate relatively small forces, and rely on oxidative metabolism; (2) Fast 

fatigable motor units (type IIb) contract rapidly, produce the greatest force, and rely on anaerobic 

glycolysis; (3) Fast fatigue-resistant motor units (type IIa) exhibit properties between the other 

two. While most muscles contain all three types of motor units, the proportions vary according to 

the muscle's specific function. The size principle dictates that smaller motor units with lower 

thresholds are typically recruited first within a muscle, producing the smallest increment in force. 

Various disorders can arise from damage or dysfunction of motor units due to genetic or 

acquired factors such as toxicity, trauma, or infections. Conditions primarily affecting the motor 

neuron or its axon fall under the category of neurogenic diseases, while those predominantly 

impacting the muscle fibers are termed myopathic diseases, including conditions like muscular 

dystrophies (Weinberger & Dostrovsky, 2010). 

A motor unit is the smallest functional unit in the neuromuscular system and consists of 

two essential components: a motor neuron and the muscle fibres it commands. Motor units 

exhibit distinctiveness in their ability to be consciously activated by the brain when there is a 

desire to move a specific muscle. The reliability of the connection between the motor neuron and 

muscle fibre at the neuromuscular junction is crucial. It ensures that every time an action 

potential travels down the motor neuron's nerve fibre (motor neuron AP) and reaches the 

neuromuscular junction, it consistently triggers an action potential in the muscle fibre it's linked 

to, resulting in what's called a Motor Unit Action Potential (MUAP). This one-to-one 

relationship between motor neuron APs and MUAPs essentially means that muscle units act as 

natural signal amplifiers. The relatively weak neural signal from the brain is effectively 

magnified within the muscle fibre due to the dependable transmission at the neuromuscular 

junction. As a result, even small neural signals can generate significant muscle contractions, 

allowing us to control our muscles with precision and strength (Farina & Holobar, 2016). 
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Figure 2.1.4 visualizes the motor units within the human nervous system. 

 

 

2.2 EMG CHARACTERISTICS 

 

In signal analysis, when capturing the electrical contractions of muscles through needle 

electromyography, the recorded signals may exhibit either sporadic or pseudo-stochastic 

characteristics (Berardelli et al., 1986). To examine sporadic signals, various determining 

variables are employed to characterize isolated motor unit action potentials (MUAPs) and other 

waves (Ferraccioli et al., 1987). This allows for the observation of signal shape, time 

characteristics, and amplitude. In contrast, pseudo-stochastic signals can be derived by 

employing diverse statistical models. When capturing the electrical activity of muscles, the 

signal's frequency is influenced by multiple factors. Initially, during the recording process, the 

signal is impacted by the intramuscular electrical activity of the tissues, thus affecting volume 

conduction (Petrofsky & Lind, 1980). In this context, the attenuation of high-frequency 

components in the signals becomes more pronounced in comparison to the diminishing effect on 

low-frequency components. This attenuation corresponds to the increased distance of action 

potential generators from the surface of the electrode. Notably, it has been observed that active 

electrodes characterized by smaller surface areas and higher input resistance or impedance tend 

to manifest more delicate and nuanced high-frequency responses, whereas the opposite holds 
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true for electrodes with contrasting characteristics (Mambrito & De Luca, 1984). When 

employing sEMG to capture electrical activity, it's noteworthy that the signal's frequency 

components consistently register below 500 Hz (TESCH et al., 1990). In contrast, a single-fibre 

EMG electrode boasts a maximum frequency of 10 kHz, while for Compound Nerve Electrodes 

(CNE), this upper limit is set at 2 kHz (Hakkinen et al., 1998). This nuanced awareness of 

frequency characteristics proves to be invaluable in the realm of physiological studies. 

The focal point of frequency analysis primarily revolves around the exploration of 

muscular fatigue, predominantly leveraging sEMG data. Nevertheless, it's important to 

acknowledge that comparable insights can be gleaned from needle EMG studies. Furthermore, in 

the context of needle EMG investigations, the examination of chronic neurogenic states tends to 

unveil a predilection towards lower frequency components. Conversely, myopathies in these 

studies often exhibit a deviation towards the higher frequency spectrum. This comprehensive 

understanding of frequency dynamics not only enhances our grasp of muscular fatigue through 

sEMG analysis but also provides valuable insights into the distinctive frequency signatures 

associated with neurogenic conditions and myopathies, as observed in needle EMG studies 

(Chan et al., 2000). The amplitude of an EMG signal is influenced by factors similar to those 

affecting frequency. Key determinants include electrode size, the spacing between electrodes, 

and the location of the action potential (AP) generator (Reimers-Neils et al., 1994). In the case of 

measuring the amplitude of a single Motor Unit Action Potential (MUAP) with a single-fibre 

EMG electrode, the recorded values typically range between 0.3 mV and 10 mV (Bø & Stien, 

1994). It's noteworthy that the strength of the fibres acting as potent electrical generators has 

minimal impact in this context. Consequently, it can be stated that depending on action potential 

(AP) amplitude for a single muscle fibre is not a reliable diagnostic criterion for single-fibre 

electromyography (EMG). On the contrary, the employment of concentric needle electrodes 

shows more promising outcomes in capturing motor unit action potential (MUAP) amplitude. 

This is attributed to the minimal changes in distance within this electrode configuration. 

Moreover, concerning macro-EMG, the reliance on distance is notably diminished compared to 

the previously mentioned factors. Consequently, it is judicious to infer that the amplitude of the 

macro-MUAP serves as an indicator of the strength of the action potential generator. The 

inadequacy of relying on AP amplitude for single-muscle fibres in single-fibre EMG underscores 

the need for more robust diagnostic criteria. The use of concentric needle electrodes is favoured 
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due to its ability to provide more reliable assessments of MUAP amplitude, facilitated by the 

inherent advantages of minimal distance variations in this electrode arrangement. Furthermore, 

the diminished influence of distance in macro-EMG emphasizes the significance of considering 

other factors when evaluating the amplitude of macro-MUAP. This nuanced understanding 

contributes to a more comprehensive interpretation of EMG data, enhancing diagnostic accuracy 

in assessing the strength and characteristics of the underlying action potential generator 

(VRANA, 1993). 

2.3 MYOELECTRIC CONTROL 

 

The development of power-based prostheses relies significantly on surface myoelectric 

signals derived from surface electromyography (EMG), serving as a crucial and effective input 

system. In technical terms, this control application is referred to as myoelectric control. It has 

gained widespread popularity, particularly among individuals born with congenital upper limb 

amputation or those who have undergone amputation due to injuries or accidents. This system is 

intricately designed to enable voluntary control over the selection and adjustment of multi- 

dimensional prosthetics. The underlying concept hinges on harnessing the voluntary control 

capabilities inherent in various parameters of myoelectrical signals obtained from either 

muscular groups or individual muscles. The origin of control signals for myoelectric controllers 

typically involves the presence of viable residual muscle in individuals with amputations or the 

available muscle in cases of congenital limb deficiencies. In instances where there is a significant 

superficial muscle and a closely spaced bipolar electrode pair on the surface, it becomes feasible 

to capture myoelectric signals solely from this muscle, creating a single muscle control channel 

(Cholewicki & McGill, 1994). Alternatively, with a fine wire intramuscular bipolar electrode, it 

is possible to isolate a specific muscle segment and utilize the action potential trains of motor 

units as sources for control signals. However, from a clinical perspective, the latter signal source 

is not considered practical due to the invasive nature of transcutaneous electrodes (Calancie et 

al., 1994). For surface electrodes, limitations associated with a single muscle source include the 

necessity for a superficial muscle, a requirement for small interelectrode spacing, and, in the case 

of congenital amputees, uncertainties related to the positioning of the muscle. 
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In contrast to the aforementioned single muscle myoelectric channel, a strategically 

positioned widely spaced electrode pair on the limb can capture signals from an entire muscle 

group. This multi-muscle control signal source involves the temporal and spatial summation of 

the electrical activity produced by the muscles within the group. Due to the practical challenges 

associated with obtaining a single muscle source, the use of a multi-muscle source has become 

the more prevalent method for control. It is more straightforward to place a widely spaced 

electrode pair on the limb and utilize all available signals rather than seeking specific positions 

on individual muscles. From a control information perspective, the temporal and spatial 

summation of signals from a muscle group offers certain advantages over a single muscle source 

(Ng et al., 1998). This stems from the observation that each muscle's contribution to the sum is 

contingent on the intended action of the limb. Consequently, the contribution pattern can be 

voluntarily controlled and employed for control purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 illustrates the pattern recognition-based myoelectric control system. 
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2.4 CONTROL SYSTEM BASED ON PATTERN RECOGNITION 

 

In order to enhance the hierarchy of devices for optimizing the control of myoelectric 

signals, it is essential to develop a more advanced strategy capable of discerning the diverse 

motion states of the specific muscle being targeted. The above figure 7 illustrates a myoelectric 

control system based on pattern recognition. This can be achieved through two distinct 

approaches (Sang-Hui Park & Seok-Pil Lee, 1998). 

Initially, it is desirable for the system to gather additional information regarding muscular 

activity in its active state. This can be accomplished through either or both of the following 

approaches: 

i. To acquire exclusive information about the targeted muscular groups, the system should 

utilize various MES channels. 

ii. Another approach involves developing sets of features capable of extracting maximum 

information from input signals, enabling differentiation between distinct motion 

categories. 

Finally, it is essential to construct a classifier with the capability to effectively utilize the 

extracted information. This classifier plays a crucial role in assimilating input information and 

determining its respective class of origin. 

2.5 APPROACHES FOR MEASURING MYOELECTRIC SIGNALS 

 

When employing the surface myoelectric signal, the main consideration related to the 

positioning of recording electrodes is to capture the maximum novel information regarding 

muscle activity. To achieve this goal, when situating electrodes on the upper limb, two options 

are available. In the technique employed by Hudgins, a singular bipolar channel is utilized, 

featuring widely spaced bipolar electrodes (Nummela et al., 1994). This configuration involves 

the strategic placement of one electrode on the biceps and another on the triceps. The objective 

of this method is to capture the comprehensive activity across a substantial muscle volume, 

amalgamating the signals into a unified myoelectric channel. 



24  

Despite its advantages, this approach comes with a notable drawback. The absence of 

spatial discrimination in monitoring the activities of distinct muscles is a limitation. 

Consequently, the potential arises for novel information originating from different muscles to 

undergo destructive interference within this singular channel configuration. This limitation poses 

challenges to the precise extraction and differentiation of unique muscular signals, highlighting 

the need for alternative strategies that offer improved spatial resolution in myoelectric signal 

monitoring. The other is using multiple bipolar channels, each featuring closely spaced electrode 

pairs, becomes imperative due to the more localized pickup region under such pairs. This 

approach demands the deployment of several channels to effectively capture the activities of 

diverse muscle groups. The advantages of employing multiple channels address the shortcomings 

associated with a single channel (Murray et al., 1984) (Hogan, 1976). Now, spatial 

discrimination becomes achievable, allowing for a more nuanced understanding of the distinct 

activities of various muscles. Additionally, the risk of destructive cancellation is mitigated, 

ensuring that valuable information from different muscle sources can be discerned without 

interference. 

Numerous studies have convincingly demonstrated that the utilization of multiple MES 

channels offers significantly enhanced discrimination capabilities among various control states, 

surpassing the performance of single-channel systems. The myoelectric signal, with its inherent 

characteristics, has the potential to exert influence over and guide the control signal in terms of 

its competencies. It's crucial to emphasize that the research methodologies devised by previous 

scientists predominantly involved recording contractile MES or myoelectric signals within a 

constant or steady-state environment (Akazawa et al., 1983). This controlled setting aimed to 

capture the myoelectric activity during contractions. Notably, when subjected to statistical 

analysis, the resulting output often manifests as a randomly generated signal, as previously 

discussed. Analysing the properties of these myoelectric signals reveals a noteworthy aspect: the 

specified patterns of neuronal firing responsible for executing contractions, coupled with the 

active modification of recruited motor units, collectively contribute to a myoelectric signal that 

exhibits minimal temporal or time-dependent structure during the steady-state phase. This 

temporal characteristic underscores the dynamic and adaptive nature of myoelectric signals, 

prompting a nuanced understanding for devising effective control strategies in diverse 

applications. 
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Hudgins and colleagues extensively investigated the impact of myoelectric signals 

concurrent with the initiation of active muscle contraction. Their research revealed a notable 

presence of transient patterns within the waveform structure, as depicted in Figure 7. This figure 

illustrates localized behavioural patterns corresponding to both pronation and supination 

orientations of the forearms, along with the observable elbow flexion and extension. 

Furthermore, the data presented in the figure was derived from the muscular activity of the 

biceps and triceps in the arm. To record these activities, a single pair of bipolar electrodes was 

strategically placed on these muscle groups. The intention was to encompass a significant portion 

of these musculoskeletal regions for enhanced efficiency and a more comprehensive 

understanding of the myoelectric responses during various movements. 

The insights gained from this research contribute to a deeper understanding of the 

dynamic interplay between myoelectric signals and muscle contractions, particularly in the 

specified musculoskeletal contexts. The detailed observations of local behavioural patterns 

provide valuable information for refining strategies in myoelectric control systems, with 

potential implications for applications in prosthetics, rehabilitation, and other related fields. 

Upon analysis in the time domain, these waves exhibited distinct contrasts in the considered 

patterns. Simultaneously, an examination of pattern groups obtained at specific contraction rates 

revealed that their respective structures were sufficiently distinct, allowing for visual 

differentiation across varying rates of contractions. Several other researchers have also noted the 

existence of this visible arrangement, indicating a systematic integration of neuronal units in the 

brain known as motor units (Solomonow et al., 1994). 

This ordered assimilation of motor units may arise from a "motor plan" situated within 

the central nervous system (CNS), the absence of sensory feedback pathways during rapid bursts 

of activity, or a combination of both factors. Elaborating on this, the systematic patterns 

observed in myoelectric signals during different contraction rates underscore the intricate 

coordination within the CNS. The discernible variations in patterns not only highlight the 

complexity of motor unit integration but also suggest potential factors influencing this 

organization, such as pre-established motor plans or the dynamic interplay of sensory feedback 

pathways. This nuanced understanding contributes to the broader knowledge of neurophysiology 
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and has implications for the design and optimization of myoelectric control systems in 

applications ranging from prosthetics to neuromuscular rehabilitation. 

 

 

Figure 2.5(a) depicts the forearm pronation EMG signal. Figure 2.5(b) depicts the forearm 

supination EMG signal. 

 

The indication of determinism in the transient myoelectric signals (MES) occurring 

during the initiation of muscle contractions implies that these data could serve as a potent tool for 

distinguishing MES patterns associated with various types of movements. This capability has 

been illustrated by Hudgins et al. in the context of a prosthetic control system, as elaborated 

below, and by Farry et al., who applied it to teleoperation of a robotic hand. Expanding on this 

notion, the recognition of determinism in transient MES not only suggests a valuable 

discriminative feature for different movement types but also underscores the potential 

applicability of such findings in advanced control systems. The work by Hudgins and colleagues, 

along with the research conducted by Farry and team, highlights practical implementations in 

prosthetics and teleoperation of robotic systems. These applications showcase the real-world 

utility of understanding and leveraging determinism in MES patterns, opening avenues for 

enhanced control precision and functionality in diverse technological domains (Turton et al., 

1996) (PETROFSKY et al., 1982). 
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2.6 SIGNAL FILTRATION 

 

The amplitude of the electromyographic (EMG) signal is generally acknowledged to fall 

within the microvolt to low millivolt range, typically ranging from 0 to 6 mV peak-to-peak or 0 

to 1.5 mV RMS. In the frequency domain, the energetic distribution of the EMG signal primarily 

occurs within the 0 to 500 Hz range, with dominant components concentrated in the 50 to 150 Hz 

range. Beyond the 0-500 Hz frequency range, signals with energy levels lower than electrical 

noise become impractical for use (J. Wang et al., 2013). Several key sources contribute to the 

noise encountered during the acquisition of EMG signals. Firstly, inherent noise from electronic 

components within the signal detection and recording instrument is a notable factor. 

Additionally, ambient noise stemming from electromagnetic radiation in the surrounding 

environment contributes to the overall noise profile. Motion artifacts represent another source, 

introducing electrical signals mainly within the 0-20 Hz range due to factors such as electrode- 

skin interface disturbances and movement of the cable connecting the electrode to the amplifier. 

Lastly, the inherent instability of the EMG signal adds another layer of complexity, with unstable 

components in the 0-20 Hz range attributed to the quasi-random nature of the firing rate of 

muscular motor units. Overall, understanding and managing these various sources of noise is 

crucial for accurate and reliable EMG signal acquisition and interpretation (De Luca & C. J., 

2002). 

In the circuitry for amplification and filtering, both high-pass and low-pass filters are 

implemented following the initial and secondary amplification stages. This choice is made to 

address the simultaneous amplification of both unwanted noise and the electromyographic 

(EMG) signals, as this is unfavourable for subsequent processing. When designing a filter, key 

parameters such as the corner frequency, roll-off rate, and circuit topology must be carefully 

selected. The corner frequency, roll-off rate, and circuit topology are critical considerations in 

filter design. The corner frequency determines the point at which the filter begins to attenuate 

signals, the roll-off rate indicates the slope of the filter's frequency response curve, and the 

circuit topology defines the arrangement of components within the filter. The filter order dictates 

the roll-off rate, representing the rate at which the filter response attenuates signals. For instance, 

a first-order filter exhibits a roll-off rate of -6 dB/octave, while a second-order filter has a steeper 

-12 dB/octave roll-off rate. This implies that the roll-off rate is proportional to the order of the 
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filter, and higher-order filters are typically constructed by cascading first- and second-order 

blocks. This approach allows for effective control over the frequency response and ensures that 

the filter adequately addresses the specific requirements of amplifying and filtering EMG signals 

while minimizing unwanted noise (J. Wang et al., 2013). Furthermore, the multifaceted nature of 

electromyography (EMG) signals is not only influenced by the anatomical and physiological 

aspects of muscles and the regulatory mechanisms of the nervous system but is also intricately 

tied to a myriad of technical considerations. Expanding on this, the specific timing and intensity 

of muscle contractions are crucial determinants, as they directly impact the characteristic features 

of EMG waveforms. 

The distance between the electrode and the target muscle is another critical factor, 

influencing signal amplitude and morphology. Additionally, the presence of adipose tissue 

between the skin and muscle introduces a layer of complexity, as it can attenuate or distort the 

recorded signals. In the realm of instrumentation, the properties of both the electrode and the 

amplifier wield significant influence. The choice of electrode material, size, and configuration, as 

well as the amplifier's specifications, can collectively shape the overall quality of the recorded 

EMG signals. Moreover, the efficacy of signal acquisition is highly dependent on the intimate 

contact between the skin and the electrode, making skin preparation and electrode placement 

pivotal considerations in ensuring accurate and reliable measurements. 

Different types of filters are employed in signal filtration, each designed to target 

particular frequency ranges. A low-pass filter allows frequencies below a certain cutoff point to 

pass through while attenuating higher frequencies. This type of filter is commonly used to 

eliminate high-frequency noise or unwanted components, allowing the smoother representation 

of the signal's low-frequency content. On the other hand, a high-pass filter permits frequencies 

above a designated cutoff to pass, effectively removing low-frequency components from the 

signal. Band-pass filters are designed to selectively pass a specific range of frequencies while 

attenuating those outside the desired band. This type of filtration is valuable when focusing on 

isolating signals within a particular frequency range of interest, as seen in applications like EEG 

signal processing or vibration analysis. Conversely, a band-stop filter also known as notch filter 

does the opposite, attenuating a specific frequency range while allowing others to pass through. 
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Notch filters are often employed to remove unwanted interference, such as powerline noise at 50 

or 60 Hz. 

2.7 SIGNAL SEGMENTATION 

 

The analysis of biological signals, such as ECG, relies on the valuable insights provided 

by individual peaks, leading to the segmentation of these signals based on their distinctive 

shapes. However, when dealing with EMG signals, the intricacies of muscle activity demand a 

more nuanced approach. Individual peaks, while informative, may not furnish adequate details 

for effective PR-based MEC. Given the non-stationary nature of EMG signals—where statistical 

features fluctuate over time—researchers opt to study these signals in segments of varying 

durations. 

The segmentation strategy serves a dual purpose. Firstly, each segment, functioning as a 

snapshot in a particular time slot, assists in predicting the overarching features and attributes of 

the continuous signal stream. Secondly, it acknowledges the non-uniformity in the behaviour of 

muscles over time, ensuring a more comprehensive analysis. Yet, as with any analytical method, 

there are trade-offs to consider. The length of the signal segment emerges as a critical factor. 

Longer segments inherently encapsulate more information about the original signal, contributing 

to a richer understanding of muscle activity. However, this advantage comes at the cost of 

increased hardware complexity in the context of practical PR-based MEC (Tangel et al., 1991). 

The delicate balance between segment length and processing considerations introduces a 

trade-off, forcing a compromise between the speed of data processing and the precision of 

section descriptions. In this delicate interplay, shorter segments become more susceptible to 

challenges such as volatility, extraction bias, and noise due to their limited temporal scope. As 

researchers grapple with optimizing this balance, they aim to discern the ideal segment length 

that simultaneously captures the intricacies of EMG signals while maintaining a manageable 

level of hardware complexity. This ongoing exploration reflects the dynamic nature of signal 

processing, where methodological choices impact the depth and accuracy of our understanding 

of muscle activity in real-world contexts. A segment duration of less than 200ms proves 

inadequate in accurately representing the original signal (Yang & Winter, 1985). To ensure a 
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more faithful reproduction of the original signal in both real-time Muscle Effort Classification 

(MEC) scenarios and offline analyses, it is recommended that a segment surpasses the 200ms 

threshold. Striking a balance between real-time responsiveness and signal fidelity, real-time 

MEC typically imposes a limit of 300ms on segment size for seamless operation. 

The segmentation process, as illustrated in Figure 9, involves two distinct approaches. In 

the case of a disjoint segment, its length is determined solely by its span. On the other hand, an 

overlapped segment's length is influenced by both its duration and a threshold value 

(adjustment). The temporal dynamics of sequential segments, characterized by leaps or gaps, are 

smaller than their respective lengths but exceed the processing time required for MEC. To 

elaborate further, the choice of segment duration becomes a critical factor in achieving a balance 

between capturing meaningful signal information and ensuring computational efficiency. 

Segments that fall below the 200ms threshold may lack the necessary detail, impacting the 

fidelity of the signal reproduction. Conversely, exceeding the 300ms limit, as imposed by real- 

time constraints, may compromise the timeliness of MEC operations (Hazlett & Hazlett, 1999). 

The segmentation process, whether disjoint or overlapped, involves a thoughtful consideration of 

both temporal span and threshold values, influencing the overall effectiveness of signal analysis 

for muscle effort classification. Thus, the intricacies of segment length and its implications 

underscore the challenges in optimizing MEC methodologies for both real-time applications and 

comprehensive offline analyses. 
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Figure 2.7(a) employs a disjoint segmentation technique, dividing the pre-processed EMG 

signal into non-overlapping segments of equal length. Figure 2.7(b) illustrates overlap 

segmentation, featuring segments with overlapping portions, fostering continuity between 

successive segments 

 

Feature extraction is then performed on each window to characterize muscle activity 

effectively. Mean absolute value, root mean square, and waveform length are among the 

common features extracted. These features serve as descriptors that represent the essential 

characteristics of the muscle activity within each segment. The criteria for segmentation are 

established based on the goals of the analysis. This could involve identifying specific events, 

such as the onset or offset of a movement, or recognizing patterns within the signal. The 

segmentation process itself entails applying these criteria to delineate distinct phases or activities 

within the EMG signal, marking the start and end points of each segment. Post-processing steps 

may include smoothing the segmented signal to reduce abrupt changes and enhance 

interpretability. It is essential to validate the segmentation results through visual inspection or 

quantitative analysis, ensuring the accuracy and reliability of the segmented data. Ultimately, the 

segmented EMG signal is subjected to in-depth analysis and interpretation. Researchers analyse 

each segment to extract valuable insights into muscle activity, fatigue, or other relevant 

parameters. The interpretation of segmented data contributes to a comprehensive understanding 

of the physiological and biomechanical aspects captured by the EMG signal, fostering 

advancements in fields such as sports science, rehabilitation, and human-computer interaction. 
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2.8 FEATURE EXTRACTION 

 

Feature extraction is a fundamental process in signal processing and pattern recognition 

that involves distilling relevant information from raw data to create a set of features better suited 

for analysis. This technique is widely applied in various domains, including machine learning, 

image processing, and physiological signal analysis. In the context of physiological signals like 

electromyography (EMG), feature extraction aims to identify and quantify key attributes or 

patterns within the signal that are pertinent to the specific analysis or application at hand. Feature 

extraction in the analysis of electromyography (EMG) signals commonly initiates post- 

segmentation. This crucial process involves selecting pertinent features by identifying attributes 

that capture essential aspects of the signal, aligning with the specific objectives of the study. The 

careful selection of these features is pivotal in shaping the subsequent analysis and interpretation 

of the EMG data. These selected features may undergo mathematical transformations to enhance 

their discriminatory power or suitability for a particular analysis. Additionally, normalization 

techniques may be employed to ensure consistency and comparability of feature values across 

different datasets or conditions. The actual extraction of features involves computing or deriving 

the chosen attributes from the signal using predefined algorithms or mathematical operations. 

The extracted features serve as inputs for subsequent analysis, such as classification, clustering, 

or trend analysis, depending on the goals of the study. In machine learning applications, these 

features contribute to the learning process, aiding algorithms in identifying patterns and 

relationships within the data. Effective feature extraction is paramount for improving the 

performance of machine learning models, as it helps reduce dimensionality, mitigate the curse of 

dimensionality, and focus on the most relevant information within the dataset. 

The predominant and widely adopted feature for characterizing the MES is the index of 

gross activity, typically represented by measures like variance, mean absolute value, or similar 

metrics. Additionally, there have been successful presentations and utilization of multivariate 

feature sets aimed at providing supplementary insights into the MES within each channel (Komi 

et al., 2000). In the early stages, the features extracted from electromyography (EMG) signals 

were constrained by the computational capabilities of the era. These features predominantly 

relied on time-domain statistics, encompassing metrics such as variance, zero crossings, and the 

"length" of the waveform locus. However, as computational power advanced, there was a 
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paradigm shift towards more sophisticated systems. With increased computational resources, 

new feature extraction systems emerged, incorporating techniques like autocorrelation time 

series models, spectral measurements, and coefficients. These approaches allowed for a more 

comprehensive analysis of EMG signals, capturing intricate details of muscle activity. The 

evolution of feature extraction methods continued with the integration of advanced techniques 

such as short-time high-order spectrum analysis, wavelet transforms, and wavelet packet 

transforms. In contemporary applications, Fourier transform has also played a crucial role in 

extracting features from EMG signals. Current methodologies aim to exploit the temporal 

structure of MES patterns, offering a more nuanced understanding of muscle activity. These 

advancements in feature extraction techniques not only enhance the accuracy and sensitivity of 

EMG signal analysis but also pave the way for a deeper exploration of the underlying 

physiological processes associated with muscle function (Granata & Marras, 1995). 

2.9 CLASSIFICATION 

 

EMG signal classification involves categorizing electromyography (EMG) signals into 

different groups or classes based on their patterns and characteristics. This process typically 

employs machine learning algorithms or signal processing techniques to analyze the electrical 

activity recorded from muscles and distinguish between different muscle actions or conditions. 

The goal is to identify and classify specific patterns in the EMG signals that correspond to 

different muscle activities, such as contraction, relaxation, or specific movements. Researchers 

and clinicians use EMG signal classification for various applications, including diagnosing 

neuromuscular disorders, controlling prosthetic devices, and understanding muscle function in 

rehabilitation settings. By training algorithms to recognize distinct patterns in EMG signals, it 

becomes possible to infer the intended movement or action of a user, facilitating the 

development of advanced prosthetics, assistive devices, or biofeedback systems. 

Hence, in this context, pattern classification encompasses three fundamental categories of 

practical approaches. Traditionally, the statistical and syntactic methods have stood out as the 

two most prevalent and frequently employed approaches in the field. Over time, these 

approaches have played pivotal roles in shaping the landscape of pattern classification, providing 

frameworks for understanding and categorizing data based on statistical characteristics and 
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syntactic structures. As technology and methodologies advance, new paradigms within these 

categories and emerging hybrid approaches continue to contribute to the evolution of pattern 

classification techniques (Visser et al., 1999). The category of learning, or neural, techniques 

represent the latest development in pattern classification, evolving from the foundational 

concepts of perceptrons and adaptive linear components into the extensive realm of artificial 

neural networks. This evolution has significantly broadened the scope of capabilities in 

understanding and classifying complex patterns. Examining the application of classifiers in MES 

control systems reveals a historical reliance on statistical classifiers until the mid-1980s. It was 

during this period that the pioneering applications of artificial neural networks emerged, 

signifying a transformative shift in classification methodologies. The subsequent exploration of 

artificial neural networks for MES pattern recognition has been marked by a diverse range of 

architectures and learning algorithms. 

Within this framework, investigations have delved into structures such as simple feed- 

forward multilayer perceptrons, dynamic networks, and self-organizing feature maps. The 

research landscape has further expanded with recent inquiries into the utilization of advanced 

techniques like genetic algorithms and fuzzy logic classifiers. A recurring observation from these 

studies underscores the intrinsic importance of the feature set in the overall performance of MES 

classification. While potent classifiers may contribute marginally to improving the accuracy of 

MES classification, the consensus points to the paramount significance of selecting and defining 

a robust feature set. This recognition emphasizes the pivotal role that thoughtful feature 

engineering plays in optimizing the efficiency and effectiveness of MES classification, further 

advancing the field and its applications in diverse domains. In this study, the utilization of Linear 

Support Vector Machine (Linear SVM) is noteworthy. Let's delve into a brief overview of Linear 

SVM to better comprehend its role in the research. A Linear Support Vector Machine (Linear 

SVM) is a classification algorithm specifically designed for binary classification tasks. The term 

"linear" signifies its focus on identifying a linear decision boundary, often termed a hyperplane, 

to separate data points of different classes in a feature space. The primary objective of a linear 

SVM is to optimize the margin, representing the distance between the hyperplane and the nearest 

data points (support vectors) of each class. The hyperplane is strategically positioned to achieve 

the optimal separation between classes. Linear SVMs find applications in diverse domains such 

as histogram-based image classification, spam categorization, financial time series forecasting, 
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face membership authentication, and general data analysis and classification (Dagher, 2008). 

Linear SVMs prove particularly effective when the relationship between input features and 

classes exhibits linearity. However, in cases of more intricate, non-linear relationships, 

kernelized SVMs come into play. Kernelized SVMs transform input features into a higher- 

dimensional space, enabling a more effective separation of classes. 



36  

CHAPTER: 3 
 

 

3.1 METHODOLOGY 

 

The schematic diagram delineates the methodological framework employed in this study. 

Initially, the raw signal undergoes a filtration process to enhance its signal quality. Subsequently, 

the signal is subjected to a systematic segmentation process. Following segmentation, time- 

domain and frequency-domain features are extracted from overlapping segments. Feature 

selection is then meticulously performed using an exhaustive technique, ensuring the retention of 

only the most relevant and discriminative features. The classification accuracy is subsequently 

evaluated using a Support Vector Machine (SVM) classifier, known for its robust performance in 

classification tasks. This structured methodology aims to systematically analyse the dynamic 

properties of the signal and derive meaningful insights from the data. 

 

 

 

Figure 3.1 illustrates the flowchart depicting the sequential process for exploring the 

Cardinality as a feature. 
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3.2 Dataset 

 

The dataset under investigation in this study has been sourced from the Ninapro database, 

with a specific focus on the Ninapro DB2 dataset. This dataset is curated to encompass the motor 

activities of 10 distinct hand movements performed by 10 intact subjects. Each set of data 

corresponds to 17 hand movements, specifically centered around exercise number 1, with a 

meticulous examination of 10 specific hand movements. The temporal structure of the dataset is 

characterized by each hand movement lasting for 5 seconds, followed by a 3-second interval. 

The 10 hand movements featured in the dataset include the following actions: thumbs raised, 

index finger extended while others are flexed, ring and little fingers flexed while others are 

extended, thumb opposing the base of the little finger, all fingers spreading apart, fingers curled 

into a fist, index finger pointing outward, extended fingers brought together, wrist turned 

outward with the middle finger as the axis, wrist turned inward with the middle finger as the 

axis, along with the resting position of the hand. 

 

 

 

 

Figure 3.2 shows the different hand movements used in this study. 
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The acquisition of muscle activity data is facilitated by the implementation of a Delsys 

Trigno Wireless EMG system equipped with 12 active double differential wireless electrodes. 

These electrodes, operating at a sampling frequency of 2000 Hz, are strategically positioned for 

comprehensive data collection. Eight of them are evenly distributed around the forearm near the 

radio-humeral joint, two are placed on key locations of the flexor digitorum and extensor 

digitorum, and the remaining two are situated on crucial areas of the biceps and triceps. This 

meticulous arrangement is designed to achieve a thorough sampling approach while ensuring 

precise anatomical positioning. In essence, the dataset's detailed composition, along with the 

sophisticated instrumentation employed, underscores the methodological rigor applied in 

collecting muscle activity data for the study's analytical purposes. 

3.3 Preprocessing 

 

The electromyographic (EMG) signal, encompassing a spectral range from 10 Hz to 500 

Hz, is susceptible to various undesired elements during recording, such as line interference and 

motion artifacts, which can compromise the integrity of the original signal. Consequently, a 

meticulous pre-processing regimen was applied to the dataset to address these concerns. The pre- 

processing involved the application of a notch filter at 50 Hz to attenuate electrical interferences 

and a fourth-order digital Butterworth high-pass filter spanning the range of 20 Hz to 500 Hz, 

effectively minimizing motion artifacts. 

Expressed in mathematical terms, a one-dimensional signal with noise is often 

characterized as follows: 

s (i) = f (i) + σ.e (i), i = 1, 2, … n – 1 

 

In this equation, f(i) represents the actual signal, e(i) represents the noise, and s(i) 

encapsulates the signal contaminated with noise. This formulation succinctly captures the 

interplay between the genuine signal and the noise component within the EMG signal. 

It is noteworthy that valuable signals tend to exhibit low-frequency or gradual variations, 

while noise signals typically manifest as high-frequency variations (M. Wang et al., 2019). This 

observation underscores the importance of differentiating between the signal and noise 
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components, especially in the context of EMG data analysis, where the preservation of 

meaningful signals is paramount. The utilization of notch and high-pass filters in the pre- 

processing stage aligns with best practices to ensure the fidelity of the EMG signal for 

subsequent analysis. 

 

 

Figure 3.3(a) visualizes the raw EMG signal. Figure 3.3(b) visualizes the filtered EMG 

signal. 

 

3.4 Segmentation 

 

Segmentation, within the realm of signal processing, constitutes a fundamental procedure 

aimed at breaking down a continuous data stream or sequence into discernible and meaningful 

segments or sections. The primary objective of segmentation is to pinpoint and isolate specific 

patterns, features, or events embedded within the data, thereby facilitating a more structured and 

manageable framework for subsequent analysis. The overarching categorization of segmentation 

encompasses two principal types: Disjoint Segmentation and Overlapping Segmentation. 

Disjoint segmentation involves the partitioning of a continuous data stream or sequence into 

distinct and non-overlapping segments or intervals. Each segment operates as an independent 

unit, devoid of any temporal overlap with its adjacent counterparts. The hallmark of disjoint 

segmentation  lies  in  the  clearly defined  boundaries  demarcating  consecutive  segments, 



40  

contributing to a modular and compartmentalized representation of the data. Conversely, 

overlapping segmentation adopts an approach wherein a continuous data stream or sequence is 

divided into segments that share a certain degree of temporal overlap. In this method, each 

segment encompasses a portion of the time span covered by its neighbouring segments. The 

degree of overlap is governed by a designated step size or overlap parameter, dictating the extent 

of temporal convergence between consecutive segments. Overlapping segmentation proves 

advantageous in capturing more comprehensive information and context within sequential data 

analysis, offering a broader perspective on the intricate dynamics embedded in the signal. In 

essence, segmentation serves as a pivotal preprocessing step, introducing a structured framework 

for the analysis of continuous data streams by delineating distinct segments, each holding 

valuable insights into the underlying patterns and features of the signal. The choice between 

disjoint and overlapping segmentation hinges on the analytical objectives and the nature of the 

information sought within the data. 

Biomedical signals, such as Electrocardiogram (ECG) signals, are conventionally 

segmented based on the distinctive shapes of individual peaks, where each peak encapsulates 

valuable information about the original signal. However, the segmentation approach for 

Electromyography (EMG) signals, particularly in the context of Myoelectric Control (MEC) 

based on pattern recognition, requires a more nuanced strategy than relying solely on a single 

peak. Moreover, EMG signals present a challenge due to their non-stationarity, indicating 

fluctuations in statistical characteristics across temporal intervals. This inherent variability 

necessitates the analysis of EMG signals in segments of varying time durations. Each segment, 

representing a specific time interval within the signal, plays a pivotal role in estimating the 

overall characteristics of the complete signal. The choice of segment duration involves a delicate 

balance between obtaining sufficient information about the original signal and managing 

computational burden, especially in the context of real-time Myoelectric Control. Longer 

segments offer a more comprehensive representation of the signal but may incur higher 

computational costs. Striking the right balance is crucial for optimizing the precision of signal 

representation within a segment while maintaining computational efficiency. On the other hand, 

shorter segments, particularly those shorter than 200ms, are more prone to variance, bias in 

feature extraction, and susceptibility to noise interference. Therefore, a segment duration 

exceeding 200ms is deemed critical for ensuring precise signal representation in both offline and 
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real-time Myoelectric Control applications. This consideration addresses the need for a 

pragmatic approach in segmenting EMG signals, accounting for the trade-off between 

computational efficiency and the accuracy of signal representation, a crucial aspect in the 

successful implementation of Myoelectric Control systems (Ortiz-Catalan et al., 2013) (Valls‐ 

Solé et al., 1999). 

Maintaining a careful balance is essential, especially when considering the processing 

time constraints inherent in Myoelectric Control (MEC). The step size must be configured to be 

shorter than the segment length but still within the acceptable processing time for real-time MEC 

applications. This meticulous consideration aims to optimize the temporal alignment between 

overlapping segments while accommodating the computational demands of MEC systems. In the 

pursuit of achieving an equilibrium between the benefits of longer segments for enhanced pattern 

recognition in MEC and the constraints of processing time, the study employs an overlap 

segmentation approach. This technique allows for the utilization of segments longer than 200ms, 

contributing to improved pattern recognition capabilities in MEC applications (Ashraf et al., 

2020). In the specific context of this study, both disjoint and overlap segmentation techniques are 

thoroughly investigated across the dataset. The analysis involving disjoint segments adopts a 

fixed length of 400 milliseconds, providing a basis for comparison. On the other hand, the 

analysis of overlapping segments incorporates a step size equivalent to 50% of the length of the 

disjoint segments. This approach ensures a substantial overlap between consecutive segments, 

facilitating a comprehensive exploration of the dataset and enabling a robust evaluation of the 

efficacy of both segmentation techniques. 

3.5 Feature Extraction 

 

Feature selection constitutes a pivotal facet within the domain of pattern recognition- 

based Myoelectric Control (MEC). The exploration of this area has witnessed extensive research 

efforts, resulting in the proposal and comparative analysis of diverse time-domain and 

frequency-domain features. In the realm of classification, the present study delves into a total of 

sixteen features including Card, other are comprising of ten time-domain features and five 

frequency-domain features. These features encompass a rich set of descriptors, including mean 

absolute value (MAV), average energy (AE), standard deviation (STD), waveform length (WL), 



42  

root mean square (RMS), zero crossings (ZC), myopulse percentage rate (MYOP), integrated 

EMG (IEMG), skewness (SK), kurtosis (KUR), cardinality (CARD), mean frequency (FreqMn), 

median frequency (FreqMd), frequency ratio (FreqRatio), band power (BP) and power 

bandwidth (BW). These features play a central role in the training and testing phases of the 

pattern recognition-based MEC system. Notably, the time-domain feature "Cardinality" 

undergoes meticulous scrutiny to validate its authenticity. This involves a comprehensive 

evaluation achieved by systematically combining both time-domain and frequency-domain 

features. Employing an exhaustive feature selection technique, the study generates every 

conceivable combination of time-domain and frequency-domain features independently. Each 

combination comprises two distinct features, alongside the constant feature, Cardinality. This 

thorough exploration and assessment of feature combinations not only contribute to enhancing 

the understanding of the interplay between different features but also underscore the significance 

of the "Cardinality" feature within the broader context of pattern recognition in Myoelectric 

Control systems. Because Cardinality is affected by the precision of the units employed, in this 

study, the best results were obtained when expressing Cardinality up to seven decimal points, 

aligning with the precision required by the utilized signal. 

3.6 Classification 

 

To comprehensively evaluate classification accuracies across various feature sets, 

exhaustive combinations were meticulously formed for both time-domain and frequency-domain 

features independently. Specifically, 45 combinations per subject were generated for time- 

domain features, while 10 combinations were produced from frequency-domain features. Within 

the realm of time-domain features, the optimal outcome materialized when integrating 

Cardinality (Card) with Mean Absolute Value (MAV). In contrast, among frequency-domain 

features, the highest classification performance was achieved through the synergistic 

combination of Cardinality with Band Power (BP). In this study, a Linear Support Vector 

Machine (Linear SVM) served as the classification algorithm to discern the optimal combination 

of time-domain and frequency-domain features. This optimal combination, when paired with 

Cardinality, demonstrated superior classification accuracy. A Linear SVM is specifically 

designed for binary classification problems, seeking to establish a linear decision boundary, or 

hyperplane, that efficiently separates data points from different classes in a feature space. The 
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algorithm focuses on optimizing the margin, defined as the distance between the hyperplane and 

the nearest data points (support vectors) of each class. The Linear SVM classifier employed in 

this study was trained with a linear kernel and a box constraint of 1. The dataset underwent a 

randomization process, with 70% allocated for training and 30% for testing. The subsequent 

evaluation and presentation of results exclusively considered the testing data. MATLAB R2022a 

was the chosen platform for data analysis and processing. Remarkably, the SVM classifier 

achieved classification accuracy of 85.58% of M1, 70.49% of M2, 77.32% of M3, 77.24% of 

M4, 80.82% of M5, 77.52% of M6, 82.94% of M7, 84.34% of M8, 84.75% of M9, 86.92% of 

M10 for the combination of Cardinality with MAV and BP. 

 

The meticulous exploration of feature combinations and the subsequent utilization of a 

Linear SVM yielded noteworthy results in terms of classification accuracy. Specifically, among 

the ten hand movements studied, Movement number 10 demonstrated exceptional effectiveness, 

showcasing superior performance in terms of classification accuracy of 86.92% when compared 

to the remaining nine movements. Statistical analysis was conducted to assess potential 

differences between these movements. The results indicated a significant distinction between 

Movement number 2 and Movement number 10, with a p-value of 0.001. A p-value equal to or 

less than 0.05 suggests a notable difference between datasets. Conversely, no statistically 

significant difference was observed among the other hand movements, as evidenced by p-values 

greater than 0.05. These findings underscore the significance of feature selection and the 

thoughtful integration of complementary features in enhancing the overall performance of 

Myoelectric Control (MEC) systems. The use of a Linear SVM, with its capacity for binary 

classification based on linear decision boundaries, showcased its efficacy in accurately 

distinguishing between different classes within the dataset. The algorithm's ability to optimize 

the margin, crucial for effective separation between classes, contributed to its success in 

achieving perfect classification accuracy for the optimal feature combinations. The adoption of a 

linear kernel in the SVM training process, coupled with a box constraint of 1, reflected a 

deliberate choice in favor of simplicity and interpretability, especially when dealing with feature 

sets that exhibit approximately linear relationships. This pragmatic approach aligns with the 

inherent characteristics of the dataset and contributes to the algorithm's robust performance. The 

results obtained not only validate the effectiveness of the chosen features but also emphasize the 

importance of the interplay between feature selection and classification algorithm in the realm of 
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Myoelectric Control. This study contributes valuable insights into the optimization of feature sets 

for improved pattern recognition, a critical aspect in advancing the precision and efficiency of 

Myoelectric Control systems. 

 

 

 

 

 

Figure 3.6 illustrates the MAV, CARD, BP combination radar chart classification 

accuracy of all ten hand movements. 
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CHAPTER: 4 
 

 

4.1 RESULTS 

 

The research findings underscore significant distinctions in the classification accuracy of 

time-domain and frequency-domain features when integrated with the pivotal feature 

Cardinality, particularly. Among the time-domain features, the standout performer is Mean 

Absolute Value (MAV), surpassing other features in terms of its efficacy when paired with 

Cardinality. This superiority can be attributed to MAV's ability to generate the highest number of 

combinations, contributing to its robust performance in the myoelectric pattern recognition task. 

Similarly, within the realm of frequency-domain features, Band Power (BP) emerges as the top 

performer when combined with Cardinality, outperforming other frequency-domain features and 

forming the most numerous combinations. 

 

 

 

Figure 4.1(a) visualizes the time-domain features. Figure 4.1(b) visualizes the frequency-domain 

features. 

The optimal feature set that consistently outperforms other time-domain and frequency- 

domain features in the domain of myoelectric pattern recognition is composed of MAV, 

Cardinality, and BP. This triad of features achieves a remarkable classification accuracy when 

employed in conjunction with SVM classifier. These findings not only highlight the pivotal role 
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of feature selection in enhancing pattern recognition but also provide a concrete and effective 

feature set for optimizing the precision and efficacy of myoelectric control systems. 

 

No. of Movement Classifications 

Accuracy 

M1 85.58% 

M2 70.49% 

M3 77.32% 

M4 77.24% 

M5 80.82% 

M6 77.52% 

M7 82.94% 

M8 84.34% 

M9 84.75% 

M10 86.92% 

Table 4.1 illustrates the combination of MAV, CARD, BP classification accuracy of all ten 

hand movements. 

 

In the examination of ten distinct hand movements, Movement number 10 emerged as 

particularly noteworthy, showcasing an exceptional classification accuracy of 86.92%. This 

performance surpassed that of the remaining nine movements. Moreover, Movement number 1 

demonstrated commendable accuracy, achieving a noteworthy 85.58%. To explore potential 

distinctions between specific movements, statistical analyses were conducted. Firstly, an 

examination of Movement-1 and Movement-10 was carried out. The results of this analysis 
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revealed no significant difference between the two, as indicated by a p-value of 0.75. In 

statistical terms, a p-value greater than 0.05 suggests a lack of noteworthy difference between 

datasets. Conversely, the Movement number 2 achieved the lowest classification accuracy of 

70.49% than other movements. When comparing Movement-2 and Movement-10, a distinctive 

contrast emerged, supported by a statistically significant p-value of 0.001. This result implies a 

notable difference in characteristics between these two movements. The meticulous statistical 

analyses thus provide valuable insights into the varying effectiveness of different hand 

movements in the context of classification accuracy. The outcomes not only confirm the efficacy 

of the selected features but also underscore the significance of the synergy between feature 

selection, classification algorithms in Myoelectric Control. This research provides valuable 

insights into enhancing pattern recognition by optimizing feature sets, a crucial factor in 

elevating the accuracy and efficiency of Myoelectric Control systems. 

4.2 DISCUSSION AND CONCLUSION 

 

This study aims to evaluate the effectiveness of a unique feature, Cardinality, in 

prosthetic control and rehabilitation applications. The effectiveness of Cardinality is contingent 

upon the accuracy of the units employed. In this research, Cardinality demonstrates optimal 

performance when utilizing seven decimal points. The approach involves testing various 

combinations of features through exhaustive feature selection technique to assess the distinctive 

qualities of Cardinality. The results emphasize the interplay between feature selection and 

classification algorithms in MEC. The optimal feature set, comprising MAV, Card, and BP, 

achieved remarkable classification accuracy. This set not only validates the effectiveness of 

chosen features but also provides a concrete foundation for enhancing pattern recognition in 

myoelectric control. 

In conclusion, this study contributes valuable insights into the design and optimization of 

Myoelectric Control systems. The methodological rigor, from signal acquisition to feature 

selection and classification, reflects a systematic approach to address the challenges posed by 

EMG signal analysis. The identified optimal feature set, including MAV, Cardinality, and BP, 

represents a robust foundation for myoelectric pattern recognition. These features, when 

integrated into a Linear SVM classifier, demonstrate the accuracy of 85.58% of M1, 70.49% of 
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M2, 77.32% of M3, 77.24% of M4, 80.82% of M5, 77.52% of M6, 82.94% of M7, 84.34% of 

M8, 84.75% of M9, 86.92% of M10 for the combination of Card with MAV and BP, setting a 

benchmark for future studies in the field. As advancements in prosthetics and rehabilitation 

technologies continue, the insights gained from this study can play a pivotal role in refining the 

precision and efficiency of Myoelectric Control systems, ultimately benefiting individuals with 

limb loss or motor impairments. 

In summary, this study provides valuable insights into the practical application of EMG- 

based pattern recognition models. While acknowledging certain limitations, such as the necessity 

for additional research on EMG signals with different and broader features sets and broader 

investigations involving diverse demographics, the study establishes a groundwork for future 

research pursuits. By addressing these limitations and exploring novel research avenues, 

researchers can further refine and optimize EMG-based Pattern recognition models, thereby 

augmenting their efficacy and relevance in clinical settings and the development of assistive 

devices. 
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