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ABSTRACT 

Non-small cell lung cancer (NSCLC) is the second most frequently diagnosed 

cancer worldwide and the leading cause of cancer-related mortality, with approximately 

1.8 million reported deaths in 2020. NSCLC treatment includes surgery, chemotherapy, 

radiation, and immunotherapy, with Immune Checkpoint Inhibitors (ICIs) such as PD-

1/PD-L1 inhibitors revolutionizing patient outcomes. However, treatment response varies 

significantly among patients, presenting a substantial challenge. Emerging evidence 

suggests that the gut microbiome profoundly influences the efficacy of cancer therapies, 

including ICIs. This research investigates the role of gut microbial species, strains, and 

genetic variants in modulating NSCLC treatment response. Utilizing metagenomic 

analysis, taxonomic profiling was conducted to identify microbial species such as B. 

uniformis, F. prausnitzii, and A. muciniphila present in NSCLC patients' gut microbiomes 

at various time points and response categories. Strain diversity profiling revealed specific 

strains consistently present across all time points, including strains of B. uniformis and F. 

prausnitzii, while others, such as L. eligens and E. coli, were unique to patient responses. 

Variant calling identified 35,615 genetic variations in responders and 47,969 in non-

responders, including SNPs, indels, and complex mutations. Notably, NR exhibited a 

higher number of genetic variations, highlighting potential microbial markers for treatment 

efficacy. Specific genes, including ftsA, lpdA, and sufD, were associated with treatment 

response, providing insights into the functional attributes of these variations. Further, gene 

ontology analysis categorized these genetic variants into biological processes, cellular 

components, and molecular functions, underscoring the role of microbial genes in 
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influencing treatment outcomes. Machine learning models showed an AUC of 85%, 

indicating the predictive capabilities for treatment response based on gut microbiome 

composition. 

Our findings emphasize the potential of integrating gut microbiome analysis with 

NSCLC treatment strategies to enhance the efficacy of immunotherapy. By deciphering 

the connection between gut microbiome and NSCLC treatment responses, this study may 

highlight the need for developing microbiome-based interventions to optimize cancer 

therapy outcomes. 

Keywords: NSCLC, Gut microbiome, Immunotherapy, Immune checkpoint inhibitors 

(ICIs), PD-1/PD-L1, Microbial strains, Genetic variants. 
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CHAPTER 1: INTRODUCTION 

Cancer is characterized by uncontrolled cell growth and the potential to metastasize 

to different body sites (Brown et al. 2019). This usually occurs due to the overexpression 

of certain genes, known as oncogenes, or the suppression of protective genes, referred to 

as tumor suppressor genes (Sinkala 2023). Various factors such as age, gender, race, 

environment, diet, and genetics can influence the occurrence and type of cancer (Seke Etet 

et al. 2023). As cancer cells proliferate, they often form clusters known as tumors. Tumors 

can be benign, remaining in one location without invading nearby tissues, or they can be 

malignant, spreading and invading surrounding tissues (Boutry et al. 2022). Cancers are 

categorized based on the type of fluid or tissue they originate from or their initial location 

in the body, such as breast cancer, prostate cancer, liver cancer, lung cancer, etc. (Rahman 

et al. 2022).  

1.1 Understanding Lung Cancer 

Lung cancer ranks as the second most diagnosed cancer and is the leading cause of 

cancer-related deaths globally (Sung et al. 2021). In 2020, ~2.2 million new cases of lung 

cancer were identified, making it the second most common cancer after breast cancer. Lung 

cancer also had the highest mortality rate, with approximately 1.8 million deaths, mainly 

due to late detection (Restrepo et al., 2023). The high mortality rate of lung cancer is often 

due to late diagnoses, with the disease frequently detected at an advanced stage. Effective 

management of lung cancer depends on a thorough understanding of cancer development, 

along with efficient early detection methods and suitable pharmaceutical treatments 
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(Bertolaccini et al. 2022). Early detection is especially crucial when screening high-risk 

individuals, such as smokers or those exposed to hazardous environments like fumes, oil 

fields, or toxic workplaces. The discovery of novel biomarkers is also essential. It is vital 

to accurately identify and understand each lung cancer patient's specific diagnosis 

(Nooreldeen & Bach 2021). Often, lung cancer is diagnosed at an advanced stage, with 

metastasis to other sites such as the brain (Souza et al. 2023), as shown in Figure 1.1. This 

advanced stage makes targeted therapy and conventional treatments less effective 

(Restrepo et al. 2023). 

 

Figure 1.1: Cancer cells and their metastasis via the bloodstream to different body sites 
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Lung cancers are generally classified into two main histological types: Small Cell 

Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC) (Howlader et al. 2020). 

SCLCs are aggressive lung malignancies often associated with smoking, comprising about 

15-20% of all primary lung cancer cases. NSCLC, the more prevalent histological subtype, 

accounts for approximately 85% of all lung cancer cases. NSCLC is often detected at an 

advanced local stage in about 30% of new cases, presenting a variety of clinical situations 

with different therapeutic options (Petrella et al. 2023). NSCLC can be further classified 

into four distinct subtypes: Lung Adenocarcinoma (LUAD), Lung Squamous Cell 

Carcinoma (LUSC), Large-Cell Carcinoma, and Bronchial Carcinoid Tumor. LUAD is the 

most common form of NSCLC and the most frequently occurring primary lung tumor 

(Nooreldeen & Bach 2021). 

1.2 Non-Small Cell Lung Cancer (NSCLC) 

NSCLC is the leading cause of cancer-related deaths worldwide, resulting in nearly 

1.8 million deaths annually (Ibodeng et al., 2023). Early detection of NSCLC and the 

utilization of diagnostic methods like PET scans and biomarkers are crucial for enhancing 

patient outcomes and lowering mortality rates (Thakur et al., 2020). NSCLC includes 

several subtypes such as adenocarcinoma, squamous cell carcinoma, and large cell 

carcinoma, and is often diagnosed at advanced stages, which complicates treatment (Nair 

et al., 2023). Adenocarcinoma is the most common subtype, accounting for about 40% of 

cases. It originates from type II alveolar cells that produce mucus and other substances and 

can affect smokers and non-smokers of all ages. This cancer typically grows more slowly 

and is often located in the outer regions of the lungs, possibly due to cigarette filters 

blocking larger particles. Compared to other NSCLC subtypes, adenocarcinoma is more 
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likely to be detected before spreading beyond the lungs (Seguin et al., 2022). Conversely, 

large cell carcinoma, which lacks specific squamous or glandular features, represents 5-

10% of lung cancer cases. It is typically diagnosed by excluding other possibilities and 

usually originates in the central part of the lungs, with the potential to spread to nearby 

lymph nodes, the chest wall, and distant organs (Suster & Mino-Kenudson, 2020). 

1.3 Treatments of NSCLC 

The treatment of NSCLC includes various methods such as radiation therapy, 

surgical intervention, systemic modalities like chemotherapy, targeted molecular therapies, 

hormone-based regimens, and immunotherapy as illustrated in Figure 1.2 (Alduais et al., 

2023). For NSCLC, data indicates that approximately 56% of individuals with early-stage 

(I and II) disease opt for surgery as their treatment. In contrast, most stage III NSCLC 

patients (62%) undergo chemotherapy or radiotherapy (Lampridis & Scarci, 2023). 

Patients diagnosed with stages I, II, and IIIA of NSCLC typically undergo surgery 

to remove the tumor if it is operable and the patient can withstand the procedure. Post-

surgery, some patients may benefit from additional therapy known as adjuvant therapy, 

aimed at reducing the risk of cancer recurrence. Adjuvant therapy can include radiation, 

chemotherapy, and targeted therapy. For patients with various advanced stages of NSCLC, 

chemotherapy is often administered post-surgery to eliminate any remaining cancer cells 

and improve survival chances (Lim & Yeo, 2022). 
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Figure 1.2: Different types of NSCLC treatment 

Radiation therapy uses powerful beams of energy to damage the DNA in cancer 

cells, effectively killing them. This approach is effective in managing or eradicating tumors 

located in specific parts of the body. Patients with chest-localized NSCLC who are not 

suitable for surgery may benefit from this treatment. Additionally, radiation therapy can be 

used in palliative care to enhance the quality of life for NSCLC patients who do not respond 

to surgery or chemotherapy (Alduais et al., 2023). Immunotherapy, a groundbreaking 

cancer treatment, utilizes the body’s natural defense mechanisms to fight cancer. Some 

cancer cells closely resemble healthy cells, making it difficult for the immune system to 

differentiate between them. Immunotherapy works by boosting the immune system's 

ability to target cancer cells, slow their growth, prevent their spread, or increase its overall 

effectiveness in combating cancer (Mamdani et al., 2022). 

1.3.1 Immunotherapy for NSCLC 
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Immunotherapies work by removing the constraints on the immune system, 

exposing the tumor, and enhancing the recognition of tumor-associated neoantigens. This 

action stimulates an immune response that leads to tumor suppression. This cutting-edge 

approach empowers the immune system of the host to respond effectively, regardless of 

the tumor-specific histology or underlying driver mutations. Several strategies have 

emerged within cancer immunotherapies, focusing on boosting effector mechanisms and 

reducing inhibitory and suppressive pathways (Yao et al., 2023), as demonstrated in Figure 

1.3. 

One such strategy involves neutralizing suppressive mechanisms using antibodies 

against immune checkpoint proteins. Tumors often exploit immune checkpoints to avoid 

immune detection (Marei et al., 2023). To counteract this, immune checkpoint inhibitors 

(ICIs) are used therapeutically. They stimulate immune responses against tumor cells 

within the tumor microenvironment (TME), which includes various immune cell 

populations and the extracellular matrix (ECM) intricately linked with tumor cells 

(Shiravand et al., 2022). Significant progress has been made with agents such as 

pembrolizumab and nivolumab, both inhibitors of the programmed death-1 (PD-1) 

pathway, and atezolizumab, an inhibitor of its primary ligand, programmed death ligand-1 

(PD-L1). These inhibitors have shown superior responses compared to conventional 

chemotherapy, leading to their endorsement as second-line treatments for patients with 

metastatic NSCLC (Punekar et al., 2022). 
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Figure 1.3: The common immunotherapy treatments for lung cancer 

1.3.2 Immune Checkpoint Inhibitors 

The effectiveness of ICIs has significantly expanded the options for cancer 

treatment. Immune checkpoints are molecules on cell membranes that regulate T-cell 

responses to prevent overactivation. Unfortunately, cancer cells exploit this system to 

evade immune detection. ICIs can reactivate previously ineffective T-cells, restoring their 

ability to respond to tumor-related substances (Naimi et al., 2022). Lung cancer 

immunotherapy has recently gathered considerable attention for its role in enabling the 

immune system to detect and eliminate cancer cells. A pivotal milestone in immunotherapy 

was the discovery of immune checkpoints (ICPs), proteins produced by certain immune 

cells like T-cells and by cancer cells themselves (Starzer et al., 2022). Under normal 

conditions, these checkpoints engage with their partner proteins through receptor-ligand 

interactions, sending inhibitory signals that deactivate T-cell responses to prevent 

unintended attacks on healthy cells. These checkpoints are crucial for maintaining self-
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tolerance, regulating the immune system, and ensuring overall immune balance (Dutta et 

al., 2023). 

Tumor cells exploit this regulatory mechanism by using ICP proteins to evade 

destruction by immune cells. Targeting these immune checkpoints with checkpoint 

inhibitors (CKIs) has shown potential for achieving sustained clinical responses and even 

curative outcomes in cancer treatment (Marei et al., 2023). From the initial discovery of 

CTLA-4, various immune checkpoints, including PD-1, have been identified. The 

interaction between PD-1 on effector T-cells and PD-L1 on tumor cells and myeloid cells 

within the tumor microenvironment acts as an inhibitory signal, leading to effector T-cell 

exhaustion (Yi et al., 2022). Similarly, CTLA-4, upregulated in activated T-cells, competes 

with co-stimulatory molecules CD80/86 on antigen-presenting cells (APCs), dampening 

T-cell activation and function. While PD-1 and CTLA-4 are the most extensively studied 

immune checkpoint proteins, other immune checkpoint proteins also hold therapeutic 

potential (Goleva et al., 2021).  

In 2015, the United States Food and Drug Administration (FDA) approved 

nivolumab for advanced LUSC, later extending its use to all histological types of NSCLC 

following the failure of initial platinum doublet chemotherapy (Choi & Chang, 2023). 

Antibodies targeting the ICI mechanism protect tumor cells from immune attacks. In 

particular, the inhibition of immune checkpoint proteins through the blockade of CTLA-4, 

PD-1, and PD-L1 has proven especially effective as an immunotherapeutic strategy for 

NSCLC (Tang et al., 2022). Antibodies targeting the PD-1 protein have shown significant 

therapeutic potential in NSCLC by counteracting the suppression of T-cell functions. 
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1.3.3 Anti-PD-1/PD-L1 Therapy 

PD-1 and its ligands, PD-L1 and PD-L2, are crucial ICP proteins. Their primary 

function is to prevent T-cell effector activity in peripheral tissues during inflammatory 

responses, thus preventing autoimmunity. However, in the tumor microenvironment, these 

proteins facilitate tumor suppression of the immune response (Waldman et al., 2020). 

Over recent decades, immunotherapy has been a focus for treating NSCLC 

(Dantoing et al., 2021). Data indicates that cancer often arises when the immune system 

malfunctions. Proteins like PD-1 and PD-L1, which usually help maintain immune balance, 

instead help tumors evade the immune system in cancer (Davies, 2019). Blocking PD-1 

and PD-L1 can enhance the immune system's ability to combat cancer. PD-1 is a receptor 

on immune cells, while PD-L1 is a ligand on cancer cells. When PD-1 on immune cells 

binds to PD-L1 on cancer cells, it prevents the immune cells from attacking, allowing 

cancer to proliferate unhindered. Consequently, scientists have developed drugs that block 

the PD-1/PD-L1 interaction, enabling immune cells to target and destroy cancer cells more 

effectively (Lin, 2023). Figure 1.4 shows the mechanism of action of PD-1/PD-L1.  

1.4 The Human Gut Microbiome 

The human microbiome is a diverse community of microorganisms including 

bacteria, archaea, viruses, and other microbes that inhabit our bodies both externally and 

internally. These microorganisms have the potential to significantly affect our bodily 

functions, influencing our health and disease states (Xia et al., 2023). They contribute to 

various aspects of our metabolism, protect us from harmful pathogens, guide our immune 

system, and consequently affect nearly all body functions, either directly or indirectly 
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(Colella et al., 2023). To understand the impact of gut microbiome on health and disease, 

it is essential to first study the microorganisms present in healthy individuals. Healthy 

adults host over a thousand different bacterial species, with Bacteroidetes and Firmicutes 

being the dominant groups. The gut has an exceptionally diverse microbial population, 

though the exact composition can vary widely among individuals (Hou et al., 2022). 

 

Figure 1.4: Mechanism of Immunotherapy particularly immune checkpoint inhibitors 

(PD-1/PD-L1) 

The relationship between the host immune system and the gut microbiome is 

complex, bidirectional, and extensive such as the gut-lung axis, shown in Figure 1.5. The 

immune system must tolerate harmless microbiota while effectively responding to harmful 

pathogens. Conversely, the gut microbiome plays a crucial role in developing the immune 
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system to function properly (Yoo et al., 2020). There is significant interest in studying how 

changes in the gut microbiome are associated with disease. However, it is often unclear 

whether these changes are a cause or a consequence of disease (Yoo et al., 2020). Diseases 

can alter the gut microbiome due to various factors such as diet changes, gastrointestinal 

function alterations, and medication use like antibiotics (Zheng et al., 2020). 

 

Figure 1.5: The gut microbiome can influence the treatment response and treatment can 

influence the gut microbiome composition 

The gut microbiome has been linked to the onset and progression of various 

cancers, affecting both the epithelial barrier and sterile tissues (El Tekle et al., 2023). The 

gut microbiome can directly cause cancer by producing harmful metabolites, such as 

lithocholic acid (LCA) (Yang et al., 2023), or substances with carcinogenic properties like 

H. pylori, classified as a class I carcinogen by the International Agency for Research on 

Cancer (IARC) (Garg et al., 2023). It can also promote cancer indirectly by causing 
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inflammation, as seen with Campylobacter species (Xia et al., 2023). Emerging evidence 

shows bacteria can enhance the body's immune response against distant tumors (Jain et al., 

2021). Antibiotic use is linked to cancer risk and is influenced by dosage (Simin et al., 

2020). The effectiveness of some therapies can be reduced due to the absence or alteration 

of the gut microbiome. The role of the gut microbiome in enhancing the immune response 

to cancer treatment varies with the treatment method (Sadrekarimi et al., 2022). 

1.4.1 Gut Microbiome and Immunotherapy 

Increasing evidence suggests the gut microbiome significantly affects responses to 

immunotherapy (Shi et al., 2023). Studies on patients undergoing immunotherapy, 

especially ICIs, show that disruptions in the gut microbiome composition and function are 

linked to immune-related disorders like inflammatory bowel disease, autoimmune 

diseases, chronic inflammation, and cancer. Recent research highlights the correlation 

between the gut microbiome and the effectiveness and side effects of ICI-based 

immunotherapy (Lu et al., 2022). 

A pivotal preclinical study by Sivan et al. demonstrated the interplay between 

specific gut commensals, such as Bifidobacterium, and outcomes like reduced tumor 

growth, increased T-cell infiltration into tumors, and enhanced anti-tumor immune 

responses, supporting PD-L1 blockade effectiveness. Following this, many studies have 

explored the connection between microbial signatures and ICI treatment responses. 

Interventional studies aim to manipulate the gut microbiome to enhance positive outcomes 

and reduce adverse events in patients with solid tumors undergoing ICI therapies (Yi et al., 

2018). 
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Gopalakrishnan et al. examined the link between gut bacteria and anti-PD-1 

immunotherapy response in melanoma patients, dividing them into R and NR. R had a 

richer diversity of gut bacteria compared to NR, suggesting the role of microbial diversity 

in treatment efficacy. Specific bacteria, like Faecalibacterium, were abundant in R and 

linked to longer progression-free survival, while NR had bacteria like B. thetaiotaomicron, 

E. coli, and A. colihominis. Increased Faecalibacterium abundance correlated with better 

responses and longer survival in R, indicating the crucial role of gut bacteria composition 

and diversity in melanoma patients' response to anti-PD-1 therapy (Gopalakrishnan et al., 

2018).  

A meta-analysis of four shotgun metagenomic studies on microbiome composition 

between R and NR to immunotherapy revealed that Faecalibacterium was common in 

responders. Additionally, B. intestinihominis was more abundant in responders (Limeta et 

al., 2020). Maia et al. demonstrated a correlation between microbiome composition and 

response to nivolumab or nivolumab plus ipilimumab in patients with metastatic Renal Cell 

Carcinoma (RCC). R had higher alpha diversity and more Roseburia and Faecalibacterium 

species than NR. There were also reports of a temporal increase in A. muciniphila (Maia et 

al., 2018). 

Routy et al. conducted a shotgun metagenomic study to determine gut composition 

differences between R and NR to PD-1 inhibition in patients with RCC and NSCLC. They 

found a high abundance of A. muciniphila in R patients. Fecal Microbiota Transplantation 

(FMT) in germ-free mice validated that only stool from R patients enhanced the anticancer 

effects of PD-1 inhibitors. Moreover, oral supplementation with A. muciniphila, alone or 

with E. hirae, restored anticancer effects in antibiotic-treated mice (Routy et al., 2018). Jin 
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et al. reported that NSCLC patients with high gut microbiome α-diversity, enriched in B. 

longum, A. putredinis, and P. copri, had significantly longer Progression-Free Survival 

(PFS) compared to those with low diversity and abundant Ruminococcus. This suggests 

that gut microbiome diversity influences immunotherapy response by enhancing antitumor 

immunity (Mao et al., 2021; Jin et al., 2019). 

Hakozaki et al. found that in 70 Japanese NSCLC patients treated with anti-PD-

1/PD-L1 antibodies, Ruminococcaceae were linked with favorable prognosis, likely due to 

high colon IFNγ production from CD8+ T-cells. In contrast, butyrate-producing 

Agathobacter was linked with poor prognosis, while Eggerthellaceae and Barnesiella, 

promoting IFN-γ-producing γδ T-cells in cancer lesions, were associated with NR (Tanoue 

et al., 2019; Hakozaki et al., 2020). Jin et al. also found that high-diversity microbiomes in 

Chinese NSCLC patients correlated with extended PFS, with significant differences in gut 

microbiome composition between R and NR patients. R patients were enriched in A. 

putredinis, B. longum, and P. copri, whereas NR patients had more 

Ruminococcus_unclassified (Jin et al., 2019; Abdelsalam et al., 2023). 

Katayama et al. analyzed fecal samples from 17 Japanese NSCLC patients treated 

with ICIs and found that R patients had more Lactobacillus and Clostridium, which 

stimulate T-cell mobilization to tumors, correlating with longer time to treatment failure 

(TTF) (Katayama et al., 2019). Lee et al. sequenced stool samples from five cohorts of ICI-

naive advanced melanoma patients, identifying species like B. pseudocatenulatum linked 

to response, highlighting a cohort-dependent association between the gut microbiome and 

ICI response (S.-H. Lee et al., 2021). The taxonomic composition associated with favorable 

vs. unfavorable responses to ICI therapy is summarized in Table 1.1. 
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Table 1.1: Major gut microbial taxa associated with response to NSCLC treatment 

Source  
Major Taxa associated with 

favorable response  

Major Taxa associated with 

an unfavorable response  

Hakozaki et al., 2020  

Ruminococcaceae  Eggerthellaceae  

Agathobacter  Barnesiella  

Jin et al., 2019  

Alistipes putredinis  

Ruminococcus  Prevotella copri  

Bifidobacterium longum  

Katayama et al., 2019  

Lactobacillus  Bilophila  

Clostridium  Sutterella  

Syntrophococcus  Parabacteroides  

Lee et al., 2021  Bifidobacterium bifidum  
Akkermansia muciniphila  

Blautia obeum  

Routy et al., 2018  

Akkermansia muciniphila  Parabacteroides distasonis  

Alistipes  Bifidobacterium adolescentis  

Eubacterium  
Bifidobacterium longum  

Ruminococcus  

Song et al., 2020  

Parabacteroides  Veillonella  

Methanobacteriaceae  
Selenomonadales  

Negativicutes  

Song et al. analyzed samples from 63 advanced NSCLC patients on PD-1 

inhibitors, finding higher β-diversity in patients with PFS ≥ six months. These patients 

were rich in Parabacteroides and Methanobrevibacter, while those with PFS < six months 

had more Veillonella, Selenomonadales (modulating tumor cell properties and DNA 

processes), and Negativicutes (inducing Treg cells and IL-10 to suppress immune 

responses) (Song et al., 2020; Ehudin et al., 2022; W. Y. Cheng et al., 2020). The major 
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gut microbiome-related biomarkers of R and NR for the treatment of NSCLC are shown in 

Figure 1.6. 

 

Figure 1.6: The gut microbial biomarkers associated with NSCLC treatment responses 

1.4.2 Gut Microbiome and Microbial Strains 

The human gut microbiome hosts a diverse range of microbial strains, each 

uniquely contributing to the host's health and disease states (Bou Zerdan et al., 2022). In 

NSCLC treatment, specific bacterial strains have been identified that significantly 

influence therapeutic outcomes. For instance, B. longum and L. rhamnosus have shown 

promise in enhancing the efficacy of ICIs (Sun et al., 2023). These probiotics are known 

to modulate the immune system by promoting the production of beneficial cytokines and 

enhancing the activity of dendritic cells and T-cells, which are crucial for an effective anti-

tumor response. 
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Moreover, the presence of A. muciniphila has been correlated with improved 

responses to PD-1 blockade therapy in NSCLC patients. This strain is particularly effective 

in strengthening the gut barrier and reducing systemic inflammation, thereby supporting a 

more robust immune response against cancer cells (Jin et al., 2019). Studies have indicated 

that patients with higher levels of A. muciniphila in their gut microbiome tend to experience 

better clinical outcomes with fewer adverse effects during ICI treatment. The beneficial 

effects of A. muciniphila are thought to be mediated through its ability to produce short-

chain fatty acids and other metabolites with immunomodulatory properties (Souza et al., 

2023). 

Another notable strain is F. prausnitzii, which has been linked to reduced toxicity 

and enhanced therapeutic efficacy. F. prausnitzii is renowned for its anti-inflammatory 

properties and ability to produce butyrate, a short-chain fatty acid that serves as a critical 

energy source for colonocytes and helps maintain gut homeostasis. The presence of F. 

prausnitzii in the gut microbiome is associated with a balanced immune response and a 

lower risk of treatment-related complications, making it a potential target for microbiome-

based interventions aimed at improving NSCLC treatment outcomes (Parsaei et al., 2021). 

1.4.3 Gut Microbiome and Genetic Variations 

Genetic variations within the human gut microbiome significantly influence the 

efficacy and toxicity of NSCLC treatments. The composition and genetic diversity of the 

gut microbiome can impact drug metabolism, immune modulation, and inflammation, all 

of which are critical in cancer therapy (Liu et al., 2023). Certain bacterial strains in the gut 

microbiome, for example, can activate or deactivate chemotherapeutic agents, thereby 
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affecting their therapeutic effectiveness. Moreover, variations in the gut microbiome can 

modulate the host's immune response, influencing the success of immunotherapies, which 

are increasingly utilized in NSCLC treatment. Strains such as B. fragilis and A. muciniphila 

have been shown to enhance immune responses, potentially improving the outcomes of 

immunotherapies (Liu et al., 2023). Understanding these genetic variations helps in 

predicting patient responses to treatments and in developing personalized therapeutic 

strategies. 

1.5 Research Gap and Problem Statement 

In NSCLC, the disease is often diagnosed in advanced stages, making traditional 

treatments less effective. Addressing, the need to make the available treatment options 

more effective to control cancer growth and progression to improve patient outcomes. 

1.6 Objectives 

• To identify gut microbiome strains and genetic variations linked to favorable or 

unfavorable treatment responses in NSCLC. 

• To explore potential mechanisms by which gut microbiome strains and genetic 

variations influence treatment efficacy in NSCLC patients. 
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CHAPTER 2: MATERIAL AND METHODS 

 In this study, bioinformatics analysis was conducted on metagenomic samples from 

NSCLC patients, following several key steps to derive meaningful insights from the data. 

Initially, the metagenomic data was retrieved and preprocessed to ensure its quality and 

integrity. Subsequently, taxonomic profiling was performed to determine the taxonomic 

composition of the samples. Strain profiling of the most abundant species was then 

conducted to characterize the microbial strains present. Additionally, genetic variants were 

identified through variant calling of microbial strains, focusing on the genes containing 

these variants and exploring their potential functional attributes using gene ontology. To 

further elucidate the findings, statistical analyses were conducted to identify associations 

among species, genes, and variants with treatment response and time points. This 

comprehensive approach enabled a deeper understanding of the microbial community and 

the functional potential encoded within the metagenomic data from NSCLC patients. 

2.1 Data Acquisition 

The metagenomic data along with metadata was retrieved from a study by Routy et al., 

2018b titled "Gut microbiome influences efficacy of PD-1-based immunotherapy against 

epithelial tumors,". The study involved 118 samples from 87 NSCLC patients. The 

metagenomic shotgun sequencing was retrieved from the European Nucleotide Archive 

(EMBL-EBI) under the accession number PRJEB22863. 

Patients eligible for the study had advanced stage IIIA-IV NSCLC with either 

squamous or non-squamous histology and had documented recurrence or progression after 
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at least one prior line of treatment. The study also included patients with known ALK or 

EGFR mutations, who had received prior tyrosine kinase inhibitors (TKI). The treatment 

involved administering the anti-PD-1 monoclonal antibody, nivolumab, intravenously 

every two weeks until disease progression or intolerable side effects. Between August 2015 

and September 2016, 60 NSCLC patients were enrolled, and an additional 27 patients were 

enrolled in the validation cohort from October 2016 to April 2017. Tumor response was 

assessed by the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST1.1), 

and Computer tomography (CT) scans were performed at baseline and every 8 to 12 weeks 

for the first year and then every 12 to 15 weeks until disease progression. Data were 

collected from a case report form (CRF) at each site and evaluated an objective response 

and considered R those in complete response, partial response, or stable disease compared 

to non-responders NR, who either progressed or died. Progression-free survival (PFS) at 3 

and 6 months was also defined as an endpoint using RECIST 1.1 criteria. Feces were 

collected according to International Human Microbiome Standards (IHMS) guidelines 

(SOP 03 V1) before the first injection (T0) and after the 2nd (T1- 1 month), 4th (T2- 2 

months) and 12th (T3- 6 months) injection. 

2.2 Preprocessing of Sequence Reads 

When analyzing metagenomic sequence data, it is essential to process and analyze the 

sequence data following the acquisition of the raw reads. 

2.2.1 Quality Control 

The study sourced its data by extracting and sequencing total faecal DNA using ion-

proton technology (ThermoFisher), resulting in an average of 22.7±0.9 million single-end 
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short reads, each 150 bases long. Before commencing the analysis, it is essential to assess 

the quality of the sequencing output. In the sequencing process, certain DNA fragments 

may undergo more amplification, leading to an overrepresentation of specific sequences. 

This imbalance can introduce bias into subsequent analyses. Additionally, reads that are 

excessively short or long may be less dependable or informative. To ensure optimal data 

quality, it is recommended to exclude reads that fall outside the specified length range. 

Furthermore, to minimize biases arising from sequencing errors, it is advisable to remove 

low-quality reads, duplicates, adapters, and host reads during the analysis process. 

The SRA Toolkit comprises a set of tools and libraries designed for interacting with 

the Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/Traces/sra) from NCBI, 

EBI and DDBJ, a public repository housing raw DNA sequencing data. To acquire a dataset 

containing 118 single-end samples from SRA, the prefetch command was utilized. 

Subsequently, the fastq-dump command was employed to convert these single-end SRA 

samples into the FASTQ format, followed by compression using the “gzip” command. 

Before applying quality control measures to the compressed FASTQ single-end files, an 

initial analysis was conducted using FastQC, a tool for quality control visualization 

(accessible at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

The “fastqc” command was executed to generate quality reports for the single-end files. 

Upon reviewing the summary reports, it became evident that certain parameters needed 

adjustment to enhance read quality for subsequent analysis. Adjustments were made, 

addressing parameters such as per base sequence quality, per base sequence content, and 

removal of persistent sequencing adapters, utilizing the “fastp” command (Chen et al., 

2018). These modifications aimed to improve read quality, facilitating further analysis. 

http://www.ncbi.nlm.nih.gov/Traces/sra
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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In studying microbial communities in the host gut, it is crucial to filter out non-

microbial reads present in samples obtained from the host-associated environment. To 

achieve this, a two-step process was implemented for the data files. Firstly, pre-processing 

using the Fastp tool was conducted. Subsequently, the BBDuk tool (BBMap, 2023) was 

applied to eliminate any reads originating from the host.  

2.3 Taxonomic Profiling 

MetaPhlAn3 (Beghini et al., 2021, p. 3), also known as Metagenomic Phylogenetic 

Analysis, is a bioinformatics tool designed to identify the microbial composition of a 

sample based on marker genes. Its methodology involves estimating the relative abundance 

of species by aligning reads against a collection of clade-specific marker sequences. These 

markers are derived from coding sequences that distinguish microbial clades at the species 

level or higher taxonomic levels. MetaPhlAn3 utilizes bowtie2 to map reads from a given 

sample to a comprehensive catalog comprising over 1 million markers associated with 

13,475 species. In cases where reads belong to clades lacking available genome data, they 

are categorized as an 'unclassified' subclade of their closest ancestor with available data. 

The estimation of clade abundances involves normalizing read-based counts by the average 

genome size of each clade. Notably, MetaPhlAn3 achieves a classification rate of 

approximately 10,000 reads per second, ensuring robust and high-throughput assessments 

of metagenomic data at the species level. For a complete taxonomic profiling run, 

MetaPhlAn3 requires 2.6 GB of memory. 
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2.3.1 Visualizing the MetaPhlAn3 Output 

MetaPhlAn3 provides a comprehensive report on the microbial makeup of a sample, 

detailing the relative abundance of various microbial species. The output includes 

information on clade-specific marker sequences, enabling users to identify and quantify 

different microbial taxa within the analyzed sample. The output mainly consists of 

"bowtie2", "sams" and "profiles". The results generated by MetaPhlAn3 are often 

presented in a tabular format (.tsv files) stored in the "profiles", providing abundance 

estimates for each identified species or clade. These tables contain the microbial 

composition of the samples ranging from kingdom to species in the case of bacteria. The 

"merge" and "grep" command were used to merge the tables of all the samples into one 

and extract the species tables with relative abundances, respectively. Bar charts are 

frequently used to display the relative abundance of different microbial taxa, offering a 

quick overview of the community structure. Heatmaps are another valuable visualization 

tool, allowing for the representation of abundance patterns across multiple samples. The 

MetaPhlAn3 also provides a feature known as "hclust2" 

(https://github.com/SegataLab/hclust2) that is used to visualize the results from 

MetaPhlAn3 stored in "profiles" in the form of heatmaps which is based on the relative 

abundance of the species present in the samples. The top 25 species heatmaps were 

generated for further analysis. Apart from metaphlan3, the GraPhlAn (Asnicar et al., 2015) 

is a tool which is built for visualization purposes. We used GraPhlAn to generate the 

cladograms of the MetaPhlAn3 output which showed the overall microbial composition of 

the samples. 

2.4 Strain Diversity Profiling 

https://github.com/SegataLab/hclust2
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The analysis of microbial community composition in stool samples involved two main 

steps: initial estimation using MetaPhlAn3 and subsequent strain-level profiling with the 

StrainPhlAn3 module. MetaPhlAn3 employed a library of species-specific markers 

spanning bacterial, archaeal, viral, and eukaryotic phylogenies. These markers, selected for 

strong conservation within each species and minimal sequence similarity with other species 

genomic regions, were used to estimate microbial composition. The StrainPhlAn3 (Truong 

et al., 2017) module then utilized reads mapped against the MetaPhlAn3 database to 

reconstruct consensus sequences for each detected species-specific marker. Filtering 

operations followed, including removing markers with over 20% ambiguous bases and 

trimming the first and last 50 bases. Species presence in a sample was determined based 

on the number of reconstructed markers exceeding 20% of the total available for that 

species. Different parameters were used in the StrainPhlAn3 execution command include 

“--mutation_rates”, “--tmp”, “--marker_in_n_samples 20” and “--sample_with_n_markers 

20”. Reconstructed marker sequences for each present species underwent alignment using 

MUSCLE. The resulting multiple sequence alignment (MSA) was processed to filter 

poorly covered regions, with subsequent concatenation for each species. Strains with gaps 

in over 20% of the concatenated alignment were excluded. 

2.4.1 Visualizing the StrainPhlAn3 Output 

 To enhance taxonomic resolution, StrainPhlAn3 was applied to microbial clades 

identified by MetaPhlAn3, reconstructing specific strains within the metagenome. 

StrainPhlAn3 allowed the analysis of strains with sufficient sequencing depth, employing 

output such as phylogenetic trees, MSAs, and temporal folders which contain markers 

FASTA and alignments. Additionally, the phylogenetic trees resulting from StrainPhlAn3 
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were visualized using iTOL (Letunic & Bork, 2021), a tool used to visualize the 

phylogenetic trees showing the distances and variation between samples and references for 

the particular species. On the other hand, the MSAs resulting from StrainPhlAn3 were 

visualized via NCBI MSA viewer and UGENE through which the variations were 

identified at the specific positions in the alignment. 

2.5 Variant Calling 

The identification and analysis of genomic variations such as single nucleotide 

polymorphisms (SNPs), insertions, and deletions are pivotal in understanding bacterial 

strain diversity and evolution. This step employs SNIPPY 

(https://github.com/tseemann/snippy), a rapid variant calling tool, for the analysis of 

genomic variations. The algorithm of SNIPPY aligns the sample reads against a reference 

genome, a step crucial in establishing a baseline for identifying genomic variants. It then 

proceeds to detect SNPs and indels, distinguishing true genetic variations from potential 

sequencing errors. This precise identification is critical for the reliability of the variant 

calling process. The input of SNIPPY requires samples in fastq.gz format and reference 

genomes of that species in GenBank format to identify variant effects and products. 

SNIPPY applies rigorous filters to these identified variants, ensuring that only those with 

high confidence are considered in subsequent analyses.  

The output from SNIPPY includes detailed information about each variant, such as its 

genomic location, type, and potential biological impact. The files generated as an output 

include HTML table summary, VCF file, excel table, and alignments in the form of reports. 

This data is foundational for in-depth genetic analyses and interpretation. For further 

https://github.com/tseemann/snippy
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analysis, we extracted common and uncommon variations throughout the samples for 

microbial species found to be abundant and have a link with the NSCLC treatment 

response. 

2.6 Gene Ontology 

Various terms have been used to describe extensive information about gene products 

and biological data. Gene Ontology (GO) offers consistent terminology and a controlled 

vocabulary to describe gene products across different databases, making it useful for 

various biological communities. Attributes of gene products are categorized into three 

distinct categories: Molecular Function, Biological Process, and Cellular Component, each 

with unique information about the genes. GO terms are organized as a network of nodes, 

with connections based on parent-child relationships. These nodes are linked to many other 

gene and protein databases such as UniProt, GenBank, and EMBL. 

ShinyGO v0.80 (Ge et al., 2020) is a graphical tool for gene-set enrichment analysis, 

compatible with KEGG and STRING. It uses false discovery rate (FDR) adjustments for 

p-values of enrichment terms. To identify robust pathways enriched with genes from 

specific microbial species or strains, we selected the list of genes with identified variations 

from the variant calling step. Enrichment terms from ShinyGO v0.80 with an adjusted p-

value <0.01 were included. The top 10 biological processes, cellular components, and 

molecular functions were visualized using bar plots, phylogenetic trees, and networks, 

illustrating the presence and enrichment of genes within various attributes. The “Remove 

Redundancy” option was unchecked to include all the repeated genes in the list provided 

because different and various number of variations have occurred in the single gene. 
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2.7 Statistical Analysis 

2.7.1 Alpha Diversity of Species, Genes Counts & Genetic Variants 

 Alpha diversity measures the ecological diversity within a specific sample. The 

diversity indices used to quantify alpha diversity generally increase with the number of 

species in the sample (richness) and the evenness of their distribution. Various measures 

of alpha diversity exist, such as the Shannon index. Species richness and evenness are 

considered two independent characteristics that together contribute to overall diversity. 

Species richness accounts for the number of different species in the sample, while species 

evenness examines how the distribution of individuals among these species affects 

diversity. Most richness and evenness indices are calculated based on the relative 

abundance of species. 

 Additionally, we calculated alpha diversity based on gene count and variation count 

identified from variants calling on abundant species/strains at different time points and in 

treatment response. An R script using the "vegan" library was employed to calculate alpha 

diversity for species abundance, gene count, and variant count, estimating Shannon 

diversity. The results were visualized through line plots. 

2.7.2 Median Comparison Using Wilcoxon Test 

The Wilcoxon test was used to assess statistical significance, offering a robust 

method for evaluating differences within and between groups without relying on strict 

distributional assumptions. To evaluate and compare species abundance, gene count, and 

variation count with treatment response, the Wilcoxon test was applied using alpha 
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diversity measures. This analysis involved using the Wilcoxon test to compare the 

frequency and proportion of species, genes, and variations associated with treatment 

response alone and across all time points. A p-value of < 0.05 was considered indicative of 

statistically significant differences. 

2.7.3 Associations Using MaAsLin2 

This study utilized MaAsLin2 (Mallick et al., 2021) to identify associations between 

genes and genetic variations from variant calling of abundant species/strains with treatment 

response, specifically distinguishing between R and NR. For gene associations, we input 

the gene count matrix and a metadata file containing sample names and their corresponding 

responses into MaAsLin2. The association analysis between genes and samples was 

conducted based on treatment response, using R as the reference group. Default parameters 

were used, except for setting 'normalization' to 'NONE'. 

2.8 Association via Machine Learning Models 

 To associate different genes and genetic variations with treatment response (i.e. R 

and NR), a supervised machine learning approach was employed. The genes and variants 

data were preprocessed to ensure consistency and quality, addressing any missing or 

incomplete data points through imputation or removal. Categorical data were converted 

into numerical form using label encoding to facilitate smooth and accurate association 

analysis. The dataset was split into training and test sets in an 80:20 ratio, with stratified 

sampling used to maintain class distribution. 
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 The target variable was "Response," while the features were "Gene" and "Effect." 

The classification was performed using multiple algorithms, including XGBoost, random 

forest (RF) classifier, decision tree, gradient boosting machine (GBM), logistic regression, 

and support vector machine (SVM). K-fold cross-validation was then employed to evaluate 

model performance and ensure generalizability. Hyper-parameter tuning was conducted 

using grid search or random search to identify the optimal combination of model 

parameters, optimizing performance metrics such as accuracy, precision, recall, area under 

the curve (AUC), and F1-score. The selected model was trained on the preprocessed data 

using the identified features and optimized hyper-parameters. 

2.9 Functional Annotation of Genes 

The genes found to be associated with treatment response i.e. R and NR from 

MaAsLin2 were further studied. The functions and pathways of associated genes were 

analyzed both in the microbial community and the case of NSCLC and its treatment i.e. 

immunotherapy, particularly, immune checkpoint inhibitors. The genetic variations that 

occurred in the associated genes were also studied and the effect of these variations on the 

functional ability of genes making their possible role in treatment response. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Data Preprocessing 

The raw data comprised approximately 2.4 billion reads, with a maximum read 

length of 26.2 Mbp, a minimum read length of 19.3 Mbp, and an average read length of 20 

Mbp. Figure 3.1 shows the distribution of raw reads in the data. 

 

Figure 3.1: Distribution of raw reads 

During the cleaning stage, which involved removing low-quality reads, adapters, 

and duplicates, the data count slightly decreased to about 2.1 billion reads. Concurrently, 

the maximum read length was reduced to 23.5 Mbp, the minimum to 15.6 Mbp, and the 

average read length to 18.7 Mbp, resulting in a more consistent dataset. Figure 3.2 

illustrates the distribution of clean reads in the data. 
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Figure 3.2: Distribution of clean reads 

 Subsequently, during the human genome (hg) trimming stage, where host genome 

reads were removed, the data count remained at approximately 2.1 billion reads. The 

maximum and minimum read lengths stayed consistent with the clean stage at 23.5 and 

15.6 Mbp, respectively, while the average read length further decreased to 18.5 Mbp. 

Figure 3.3 shows the distribution of hg-trimmed reads in the data. 

 

Figure 3.3: Distribution of HG-trimmed reads 
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This progression highlights significant refinement and increased consistency in the 

dataset through each preprocessing step, particularly in reducing data size and variability. 

Table 3.1 demonstrates the total number of reads at each stage of preprocessing. 

Table 3.1: Total number of reads at each preprocessing stage 

 Raw Clean HG Trimmed 

Count 2.40 B 2.17 B 2.15 B 

Max 26.24 M 23.56 M 23.56 M 

Min 19.30 M 15.64 M 15.64 M 

Mean 20.68 M 18.74 M 18.56 M 

3.2 Taxonomic Profiling 

The MetaPhlAn3 analysis provided a detailed profile of the microbial composition 

in our samples by aligning reads against a collection of clade-specific marker sequences. 

This approach enabled MetaPhlAn3 to identify and estimate the relative abundance of 

microbial species. Cladogram was generated using GraPhlAn to determine the taxonomic 

classification at all three time points: T0, T1, and T2, as shown in Figure 3.4. At all-time 

points, the identified phyla included Actinobacteria, Bacteroidetes, Firmicutes, 

Proteobacteria, and Verrucomicrobia. 
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Figure 3.4: Taxonomic classification at all time points 

The cladogram revealed the top 25 abundant species from these phyla, which 

included B. caccae, B. cellulosilyticus, B. dorei, B. ovatus, B. stercoris, B. 

thetaiotaomicron, B. uniformis, B. vulgatus, B.intestinihominis, P. copri, A. finegoldii, A. 

putredinis, B. distasonis, P. johnsonii, P. merdae, E. eligens, E. sp. CAG 180, L. 
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pectinoschiza, E. rectale, R. faecis, F. prausnitzii, R. bromii, A. intestini, E. coli, and A. 

muciniphila. 

Heatmaps were generated for both time points (T0, T1, and T2) and response (R 

and NR). At T0, the most abundant species were P. vulgatus, B. uniformis, F. prausnitzii, 

P. dorei, and P. distasonis. At T1, the abundant species included B. uniformis, B. vulgatus, 

F. prausnitzii, A. muciniphila, and B. dorei. At T2, B. vulgatus, B. uniformis, F. prausnitzii, 

B. dorei, and A. finegoldii were the most abundant. Figures 3.5-3.7 illustrate the heatmaps 

of the T0, T1 and T2 time points. 

 

Figure 3.5: Heatmaps of the top 25 abundant species in the T0 sample group 
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Figure 3.6: Heatmaps of the top 25 abundant species in the T1 sample group 

 

Figure 3.7: Heatmaps of the top 25 abundant species in the T2 sample group 
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Across all timepoints, P. vulgatus, B. uniformis, F. prausnitzii, P. dorei, and P. 

distasonis were the most abundant species. Based on response, the most abundant species 

in R were P. vulgatus, B. uniformis, F. prausnitzii, P. dorei, and A.muciniphila, whereas in 

NR, B. uniformis, P. vulgatus, F. prausnitzii, P. distasonis, and P. dorei were predominant. 

Figure 3.8 illustrates the heatmap showing the top 25 most abundant species by response. 

 

Figure 3.8: Heatmap of the top 25 abundant species by Response 
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Across all time points (T0, T1, and T2), P. vulgatus, B. uniformis, and F. prausnitzii 

consistently emerged as the most abundant species, suggesting their pivotal role in 

maintaining gut health and stability (Zappa & Mousa, 2016). In R, the presence of P. 

vulgatus, B. uniformis, and A. muciniphila indicates a potential beneficial impact on the 

efficacy of immunotherapy in NSCLC patients. Conversely, NR showed higher 

abundances of P. distasonis and P. dorei, which may be associated with a less favorable 

response to treatment (Qi et al., 2022). 

Strain diversity profiling was further conducted on the top 25 abundant species 

identified by cladograms and heatmaps at various time points and responses to elucidate 

complex mechanisms and processes through phylogenetic and functional relationships. 

Table 3.2 shows the relative abundances of the most abundant species identified. 

Table 3.2: Relative abundances of Species abundant in different categories 

Species Rel. abundance Category 

Phocaeicola vulgatus 467.75 

T0 

Bacteroides uniformis 353.66 

Faecalibacterium prausnitzii 214.62 

Phocaeicola dorei 184 

Parabacteroides distasonis 168.19 

Bacteroides uniformis 344.66608 

T1 Bacteroides vulgatus 339.19621 

Faecalibacterium prausnitzii 206.02129 
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Akkermansia muciniphila 115.76012 

Bacteroides dorei 115.2153 

Bacteroides vulgatus 149.89851 

T2 

Bacteroides uniformis 141.52046 

Faecalibacterium prausnitzii 95.08367 

Bacteroides dorei 77.61672 

Alistipes finegoldii 57.7487 

Phocaeicola vulgatus 802.7912 

All Timepoints 

Bacteroides uniformis 641.7307 

Faecalibacterium prausnitzii 427.6501 

Phocaeicola dorei 303.9049 

Parabacteroides distasonis 261.728 

Phocaeicola vulgatus 523.58272 

Responder 

Bacteroides uniformis 300.78456 

Faecalibacterium prausnitzii 205.7608 

Phocaeicola dorei 129.44106 

Akkermansia muciniphila 110.78218 

Bacteroides uniformis 340.9462 

Non-Responder 

Phocaeicola vulgatus 279.2084 

Faecalibacterium prausnitzii 221.8893 

Parabacteroides distasonis 179.4488 

Phocaeicola dorei 174.4638 
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3.3 Strain Diversity Profiling 

Diving deeper into the microbiome beyond the species level allows us to 

characterize specific strains or subspecies via StrainPhlAn3 and link them to the treatment 

response in NSCLC patients. Strain diversity profiling was performed based on both time 

points and response, resulting in phylogenetic trees that show variations and relationships 

between samples and bacterial strains. Table 3.3 demonstrates the abundant and common 

species whose strains were identified across timepoint samples. 

Table 3.3: Species with identified strains across time points 

Species with identified strain Timepoint 

Phocaeicola dorei 

T0-T1-T2 

Bacteroides uniformis 

Bacteroides stercoris 

Parabacteroides distasonis 

Akkermansia muciniphila 

Faecalibacterium prausnitzii 

Phocaeicola vulgatus 

Bacteroides thetaiotaomicron 

T0-T1 

Bacteroides ovatus 

Ruminococcus bromii 

Bacteroides cellulosilyticus 

Acidaminococcus intestini 

Prevotella copri 

Bacteroides caccae 

Lachnospira eligens 
T0-T2 

Parabacteroides merdae 

Roseburia faecis 

T0 Escherichia coli 

Eubacterium rectale 

Bacteroides fragilis 
T2 

Alistipes finegoldii 
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As shown in Table 3.3, the strains of seven bacterial species, including P. dorei, B. 

uniformis, B. stercoris, P. distasonis, A. muciniphila, F. prausnitzii, and P. vulgatus, were 

present in samples from all time points (T0, T1, and T2). The strains of seven other 

bacterial species, including B. thetaiotaomicron, B. ovatus, R. bromii, B. cellulosilyticus, 

A. intestini, P. copri, and B. caccae, were specifically present in T0 and T1 samples. The 

strains of L. eligens and P. merdae were uniquely found in T0 and T2 samples. 

Additionally, strains of R. faecis, E. coli, and E. rectale were found only in T0 samples, 

while strains of B. fragilis and A. finegoldii were unique to T2 samples. Figure 3.9 

illustrates the Venn diagram and upset plot showing the distribution of microbial strains of 

abundant species across the time points. 

 

Figure 3.9: A. Venn diagram; B. UpSet plot showing the distribution of species with 

identified strains across time points 
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Based on response shown in Table 3.4, sixteen strains of bacterial species, including 

P. dorei, B. uniformis, B. thetaiotaomicron, B. ovatus, R. bromii, B. stercoris, B. 

cellulosilyticus, A. intestini, R. faecis, A. muciniphila, F. prausnitzii, P. copri, A. finegoldii, 

P. vulgatus, E. rectale, and B. caccae, were present in both R and NR. 

Table 3.4: Species with identified strain identified in R and NR 

Species with identified strains Response 

Phocaeicola dorei 

Non-Responder & Responder 

Bacteroides uniformis 

Bacteroides thetaiotaomicron 

Bacteroides ovatus 

Ruminococcus bromii 

Bacteroides stercoris 

Bacteroides cellulosilyticus 

Acidaminococcus intestini 

Roseburia faecis 

Akkermansia muciniphila 

Faecalibacterium prausnitzii 

Prevotella copri 

Alistipes finegoldii 

Phocaeicola vulgatus 

Eubacterium rectale 

Bacteroides caccae 

Lachnospira eligens Responder 
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Escherichia coli 

Parabacteroides merdae 

Parabacteroides distasonis 
Non-Responder 

Bacteroides fragilis 

Strains of only three bacterial species were linked exclusively with R which 

includes L. eligens, E. coli, and P. merdae. Conversely, strains of two bacterial species, P. 

distasonis and B. fragilis, were found only in non-responders. Figure 3.10 illustrates Venn 

diagram and upset plot showing the distribution of microbial strains of abundant species in 

R and NR. 

 

Figure 3.10: A. Venn diagram; B. UpSet plot showing the distribution of species with 

identified strains by Response 

 The analysis revealed that strains of P. dorei, B. uniformis, B. stercoris, P. 

distasonis, A. muciniphila, F. prausnitzii, and P. vulgatus were consistently present across 
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all time points (T0, T1, and T2), indicating their stable role in the microbiome. In both R 

and NR, sixteen bacterial strains, including P. dorei, B. uniformis, and F. prausnitzii, were 

common, suggesting their significant influence on treatment response. Strains unique to R 

were L. eligens, E. coli, and P. merdae, while P. distasonis and B. fragilis were specific to 

NR, highlighting potential microbial markers for treatment efficacy (Li et al., 2024). Figure 

3.11 illustrates the presence-absence plot showing the presence and absence of strains of 

abundant microbial species in R and NR. 

 

Figure 3.11: Presence-absence plot showing species with identified strains in R and NR 

3.4 Variant Calling 

The rapid haploid variant calling and core genome alignment tool Snippy (version 

4.4.0) was utilized to identify genetic variations in samples to investigate the link with 

treatment response. Sequencing reads were aligned to a reference sequence, and 

polymorphisms were identified. The alignments revealed thousands of genetic variations 

in samples compared to reference sequences of different bacterial strains as shown in figure 
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3.12. Among the seven most abundant common species across all time points (T0, T1, and 

T2) were A. muciniphila, B. dorei, B. stercoris, B. uniformis, F. prausnitzii, P. distasonis, 

and P. vulgatus. A total of 83,583 variations were identified, with 63,737 being SNPs, 

17,553 complex mutations, 1,803 multiple nucleotide polymorphisms (MNPs), 278 

deletions (del), and 216 insertions (ins). NR exhibited 47,969 genetic variations, while R 

had 35,615, indicating a higher number of variations in NR, as shown in Figure 3.13. 

 

Figure 3.12: Number of alterations across samples in R vs. NR 

 

Figure 3.13: Total number of alterations in R vs. NR 
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A. muciniphila contained 10,135 variations (5,939 in NR, 4,197 in R), B. dorei had 

4,689 (2,719 in NR, 1,971 in R), B. stercoris had 4,977 (3,177 in NR, 1,801 in R), B. 

uniformis had 48,773 (26,810 in NR, 21,964 in R), F. prausnitzii had 2,644 (1,532 in NR, 

1,113 in R), P. distasonis had 4,507 (all in NR), and P. vulgatus had 7,864 (3,291 in NR, 

4,574 in R), as illustrated in Figure 3.14. 

  

Figure 3.14: Number of alterations in species in R and NR 

Variant calling identified genes in these species, highlighting 31,827 genes with 

variations, 17,794 in NR, and 14,034 in R, which is also illustrated in Figure 3.15. Eight 

genes associated with treatment response were identified: ftsA (cell division protein FtsA), 

lpdA (dihydrolipoyl dehydrogenase), nadB (L-aspartate oxidase), obgE (GTPase ObgE), 

rhaT (L-rhamnose-proton symporter), sufD (Fe-S cluster assembly protein SufD), uxaC 
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(glucuronate isomerase), and xylE (D-xylose transporter XylE). In NR, the number of 

variations in these genes was 35 (ftsA), 76 (lpdA), 28 (nadB), 16 (obgE), 28 (rhaT), 119 

(sufD), 77 (uxaC), and 37 (xylE). In responders, the number of variations was 7 (ftsA), 11 

(lpdA), 3 (nadB), 6 (rhaT), 41 (sufD), 7 (uxaC), and 5 (xylE), as shown in Figure 3.16. 

 

Figure 3.15: Number of alterations in total genes in R vs. NR 

The study identified a greater number of genetic variations in NR compared to R, 

with specific genes linked to treatment response showing significant variation. This 

suggests that genetic variability in common abundant bacterial species may influence 

treatment outcomes. The genes ftsA, lpdA, nadB, obgE, rhaT, sufD, uxaC, and xylE were 

particularly associated with treatment response, their impact is discussed further in the 

thesis. 
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Figure 3.16: Number of alterations in eight associated genes in R vs. NR 

3.5 Gene Ontology 

The Gene Ontology (GO) analysis was conducted to establish consistent gene 

product descriptions across various databases, focusing on three main categories: 

biological processes, cellular components, and molecular functions. Among the most 

prevalent species observed across all time points (T0, T1, and T2) were A. muciniphila, B. 

dorei, B. stercoris, B. uniformis, F. prausnitzii, P. distasonis, and P. vulgatus. This GO 

analysis was performed specifically for these species due to the identification of numerous 

variations in the genes discussed in the previous section. 

3.5.1 Biological Processes 
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In A. muciniphila, enriched pathways in NR include Organic substance biosynthetic 

process (FDR = 1.2811e-89, nGenes = 149, Fold Enrichment = 5.70), Cellular biosynthetic 

process (FDR = 1.1329e-86, nGenes = 146, Fold Enrichment = 5.65), and Biosynthetic 

process (FDR = 2.4758e-89, nGenes = 150, Fold Enrichment = 5.60) shown in Figure 3.17.  

  

Figure 3.17: Top biological processes in A. muciniphila in NR 

In R, the species showed significant involvement in Cellular nitrogen compound 

metabolic process (FDR = 8.897e-81, nGenes = 138, Fold Enrichment = 5.71), Organic 

substance biosynthetic process (FDR = 1.279e-89, nGenes = 149, Fold Enrichment = 5.70), 

and Cellular biosynthetic process (FDR = 5.428e-88, nGenes = 147, Fold Enrichment = 

5.69) illustrated in Figure 3.18. 
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Figure 3.18: Top biological processes in A. muciniphila in R 

For B. dorei, enriched pathways in NR include Cellular aromatic compound 

metabolic process (FDR = 7.78e-31, nGenes = 101, Fold Enrichment = 3.34), Heterocycle 

metabolic process (FDR = 1.63e-31, nGenes = 103, Fold Enrichment = 3.33), and Organic 

cyclic compound metabolic process (FDR = 1.34e-32, nGenes = 106, Fold Enrichment = 

3.33) shown in Figure 3.19.  

  

Figure 3.19: Top biological processes in B. dorei in NR 
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In R, the species showed significant involvement in small molecule metabolic 

process (FDR = 1.20e-38, nGenes = 108, Fold Enrichment = 3.83), Heterocycle metabolic 

process (FDR = 1.01e-38, nGenes = 119, Fold Enrichment = 3.45), and Organic cyclic 

compound metabolic process (FDR = 1.15e-39, nGenes = 122, Fold Enrichment = 3.44) 

demonstrated in figure 3.20. 

  

Figure 3.20: Top biological processes in B. dorei in R 

For B. stercoris, enriched pathways in NR include Organonitrogen compound 

biosynthetic process (FDR = 2.08e-62, nGenes = 108, Fold Enrichment = 6.27), Small 

molecule metabolic process (FDR = 1.73e-62, nGenes = 119, Fold Enrichment = 5.46), and 

Cellular biosynthetic process (FDR = 2.34e-66, nGenes = 138, Fold Enrichment = 4.73) 

shown in Figure 3.21.  
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Figure 3.21: Top biological processes in B. stercoris in NR 

In R, the species showed significant involvement in Cellular biosynthetic process 

(FDR = 2.2647e-61, nGenes = 128, Fold Enrichment = 4.746), Organic substance 

biosynthetic process (FDR = 4.5170e-60, nGenes = 128, Fold Enrichment = 4.632), and 

Biosynthetic process (FDR = 3.3827e-58, nGenes = 128, Fold Enrichment = 4.476) 

illustrated in Figure 3.22. 

  

Figure 3.22: Top biological processes in B. stercoris in R 
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For B. uniformis, enriched pathways in NR include Organonitrogen compound 

biosynthetic process (FDR = 6.85e-82, nGenes = 200, Fold Enrichment = 3.98), Small 

molecule metabolic process (FDR = 7.55e-98, nGenes = 251, Fold Enrichment = 3.71), and 

Cellular biosynthetic process (FDR = 4.10e-76, nGenes = 267, Fold Enrichment = 2.93) 

shown in Figure 3.23.  

  

Figure 3.23: Top biological processes in B. uniformis in NR 

In R, the species showed significant involvement in Organonitrogen compound 

biosynthetic process (FDR = 1.91e-76, nGenes = 191, Fold Enrichment = 3.94), Small 

molecule metabolic process (FDR = 1.34e-90, nGenes = 239, Fold Enrichment = 3.67), and 

Cellular biosynthetic process (FDR = 4.16e-74, nGenes = 259, Fold Enrichment = 2.95) 

demonstrated in Figure 3.24. 
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Figure 3.24: Top biological processes in B. uniformis in R 

For B. vulgatus, enriched pathways in NR include Organonitrogen compound 

biosynthetic process (FDR = 1.17e-42, nGenes = 105, Fold Enrichment = 4.28), Small 

molecule metabolic process (FDR = 6.09e-45, nGenes = 119, Fold Enrichment = 3.89), and 

Organic cyclic compound metabolic process (FDR = 7.08e-45, nGenes = 133, Fold 

Enrichment = 3.39) shown in Figure 3.25.  

  

Figure 3.25: Top biological processes in B. vulgatus in NR 
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In R, the species showed significant involvement in Organonitrogen compound 

biosynthetic process (FDR = 2.35e-44, nGenes = 106, Fold Enrichment = 4.40), Small 

molecule metabolic process (FDR = 1.71e-43, nGenes = 116, Fold Enrichment = 3.86), and 

Cellular biosynthetic process (FDR = 2.18e-42, nGenes = 133, Fold Enrichment = 3.20) 

illustrated in Figure 3.26. 

  

Figure 3.26: Top biological processes in B. vulgatus in R 

For F. prausnitzii, enriched pathways in NR include Organic substance biosynthetic 

process (FDR = 7.07e-23, nGenes = 40, Fold Enrichment = 6.08), Cellular biosynthetic 

process (FDR = 3.80e-22, nGenes = 39, Fold Enrichment = 6.06), and Biosynthetic process 

(FDR = 2.00e-22, nGenes = 40, Fold Enrichment = 5.90) shown in Figure 3.27. 
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Figure 3.27: Top biological processes in F. prausnitzii in NR 

 In R, the species showed significant involvement in Organic substance 

biosynthetic process (FDR = 2.59e-29, nGenes = 54, Fold Enrichment = 5.75), Cellular 

biosynthetic process (FDR = 1.14e-27, nGenes = 52, Fold Enrichment = 5.65), and 

Organonitrogen compound metabolic process (FDR = 3.09e-28, nGenes = 53, Fold 

Enrichment = 5.63) demonstrated in Figure 3.28. 

  

Figure 3.28: Top biological processes in F. prausnitzii in R 
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Lastly, P. distasonis, in NR, shows significant enrichment in cellular aromatic 

compound metabolism (FDR = 5.29e-36, nGenes = 98, fold enrichment = 3.76), organic 

cyclic compound metabolism (FDR = 1.97e-37, nGenes = 102, fold enrichment = 3.71), and 

heterocycle metabolism (FDR = 5.60e-36, nGenes = 99, fold enrichment = 3.70) as shown 

in Figure 3.29. These findings underscore the diverse metabolic activities of P.distasonis 

in NR. 

  

Figure 3.29: Top biological processes in P. distasonis in NR 

Overall, these results highlight the intricate involvement of different genes of 

abundant microbial species in distinct metabolic pathways, potentially influencing 

treatment response in patients. 

3.5.2 Cellular Processes 

In NR, A. muciniphila demonstrated significant enrichment in various cellular 

components. Among the top three most notable were the Intracellular (FDR = 3.8643e-104, 

nGenes = 176, fold enrichment = 4.85), Cytoplasm (FDR = 2.9588e-83, nGenes = 151, fold 
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enrichment = 4.96), and Cytosol (FDR = 1.7047e-11, nGenes = 30, fold enrichment = 4.50) 

shown in Figure 3.30.  

  

Figure 3.30: Top cellular processes in A. muciniphila in NR 

Conversely, in R, A. muciniphila showed enrichment primarily in the Intracellular 

(FDR = 2.4614e-101, nGenes = 174, fold enrichment = 4.79), Cytoplasm (FDR = 1.9039e-

79, nGenes = 148, fold enrichment = 4.86), and Cytosol (FDR = 8.3765e-15, nGenes = 34, 

fold enrichment = 5.10) illustrated in Figure 3.31. 

  

Figure 3.31: Top cellular processes in A. muciniphila in R 
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For B. dorei present in NR, significant enrichment was observed in the Intracellular 

(FDR = 7.0860e-56, nGenes = 162, fold enrichment = 2.99), Cytoplasm (FDR = 6.3656e-50, 

nGenes = 148, fold enrichment = 3.09), and Cytosol (FDR = 6.0304e-10, nGenes = 37, fold 

enrichment = 3.31) shown in Figure 3.32.  

  

Figure 3.32: Top cellular processes in B. dorei in NR 

In contrast, responders exhibited enrichment primarily in the Intracellular (FDR = 

7.3963e-59, nGenes = 178, fold enrichment = 2.92), Cytoplasm (FDR = 5.5915e-57, nGenes 

= 167, fold enrichment = 3.10), and Cytosol (FDR = 1.9181e-13, nGenes = 45, fold 

enrichment = 3.57) demonstrated in Figure 3.33. 
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Figure 3.33: Top cellular processes in B. dorei in R 

In NR, B. stercoris showed significant enrichment in the Intracellular (FDR = 

5.3199e-87, nGenes = 187, fold enrichment = 3.85), Cytoplasm (FDR = 5.5518e-76, nGenes 

= 169, fold enrichment = 3.96), and Cytosol (FDR = 1.3326e-15, nGenes = 43, fold 

enrichment = 4.23) shown in Figure 3.34.  

  

Figure 3.34: Top cellular processes in B. stercoris in NR 
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Conversely, R displayed enrichment primarily in the Intracellular (FDR = 4.1460e-

73, nGenes = 168, fold enrichment = 3.71), Cytoplasm (FDR = 1.4633e-64, nGenes = 152, 

fold enrichment = 3.82), and Cytosol (FDR = 1.2369e-17, nGenes = 44, fold enrichment = 

4.65) illustrated in Figure 3.35. 

  

Figure 3.35: Top cellular processes in B. stercoris in R 

In NR, B. uniformis showed significant enrichment in the Proton-transporting ATP 

synthase complex (FDR = 0.005247, nGenes = 6, fold enrichment = 4.82), Catalytic 

complex (FDR = 1.9876e-07, nGenes = 29, fold enrichment = 3.03), and Cytosol (FDR = 

1.5124e-23, nGenes = 99, fold enrichment = 2.85) shown in Figure 3.36. 
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Figure 3.36: Top cellular processes in B. uniformis in NR 

Conversely, R exhibited enrichment primarily in the Proton-transporting ATP 

synthase complex, catalytic core F(1) (FDR = 0.001341, nGenes = 5, fold enrichment = 

6.98), Proton-transporting two-sector ATPase complex, catalytic domain (FDR = 

0.008143, nGenes = 5, fold enrichment = 5.23), and Proton-transporting ATP synthase 

complex (FDR = 0.003583, nGenes = 6, fold enrichment = 5.03) demonstrated in Figure 

3.37. 

  

Figure 3.37: Top cellular processes in B. uniformis in R 
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In NR, B. vulgatus showed significant enrichment in the DNA repair complex 

(FDR = 0.004182, nGenes = 5, fold enrichment = 7.51), Cytosol (FDR = 4.3346e-11, 

nGenes = 40, fold enrichment = 3.40), and Cytoplasm (FDR = 2.2362e-62, nGenes = 170, 

fold enrichment = 3.17) shown in Figure 3.38.  

  

Figure 3.38: Top cellular processes in B. vulgatus in NR 

Conversely, R exhibited enrichment primarily in the DNA repair complex (FDR = 

0.004483, nGenes = 5, fold enrichment = 7.65), Cytosol (FDR = 2.2813e-11, nGenes = 40, 

fold enrichment = 3.46), and Cytoplasm (FDR = 4.3766e-57, nGenes = 163, fold enrichment 

= 3.09) illustrated in Figure 3.39. 
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Figure 3.39: Top cellular processes in B. vulgatus in R 

For F. prausnitzii in NR, significant enrichment was noted in the Proton-

transporting two-sector ATPase complex, catalytic domain (FDR = 7.7376e-06, nGenes = 

4, fold enrichment = 35.84), Proton-transporting two-sector ATPase complex (FDR = 

3.7194e-06, nGenes = 5, fold enrichment = 25.20), and Proton-transporting ATP synthase 

complex (FDR = 3.7194e-06, nGenes = 5, fold enrichment = 25.20) illustrated in Figure 

3.40.  

  

Figure 3.40: Top cellular processes in F. prausnitzii in NR 
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Conversely, R exhibited enrichment primarily in the Proton-transporting two-sector 

ATPase complex (FDR = 2.5088e-05, nGenes = 5, fold enrichment = 17.96), Proton-

transporting ATP synthase complex (FDR = 2.5088e-05, nGenes = 5, fold enrichment = 

17.96), and Ribosome (FDR = 1.868e-06, nGenes = 9, fold enrichment = 9.40) shown in 

Figure 3.41. 

  

Figure 3.41: Top cellular processes in F. prausnitzii in R 

Lastly, in NR, P. distasonis displayed significant enrichment in the 

Endodeoxyribonuclease complex (FDR = 0.00126, nGenes = 4, fold enrichment = 13.23), 

Endonuclease complex (FDR = 0.00179, nGenes = 4, fold enrichment = 11.90), and DNA 

repair complex (FDR = 0.00501, nGenes = 4, fold enrichment = 9.16) demonstrated in 

Figure 3.42.  



65 

 

  

Figure 3.42: Top cellular processes in P. distasonis in NR 

This section underscored the enrichment of genes in the distinct cellular component 

associated with different microbial species and their potential implications in treatment 

response. 

3.5.3 Molecular Functions 

In NR, A. muciniphila demonstrated significant enrichment in key molecular 

binding and catalytic activity functions. The top three most significant functions identified 

were Purine ribonucleotide binding (FDR = 5.6117e-42, nGenes = 78, fold enrichment = 

6.04), Nucleotide-binding (FDR = 4.8138e-46, nGenes = 89, fold enrichment = 5.64), and 

Nucleoside phosphate binding (FDR = 4.8138e-46, nGenes = 89, fold enrichment = 5.64) 

shown in Figure 3.43.  
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Figure 3.43: Top molecular functions in A. muciniphila in NR 

In R, the most significant functions were Purine ribonucleotide binding (FDR = 

7.2878e-40, nGenes = 76, fold enrichment = 5.89), Nucleotide binding (FDR = 6.0487e-44, 

nGenes = 87, fold enrichment = 5.51), and Nucleoside phosphate binding (FDR = 6.0487e-

44, nGenes = 87, fold enrichment = 5.51) illustrated in Figure 3.44. 

  

Figure 3.44: Top molecular functions in A. muciniphila in R 
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For NR, B. dorei was found in functions related to Ribonucleotide binding (FDR = 

2.3051e-21, nGenes = 74, fold enrichment = 3.34), Nucleotide binding (FDR = 7.0620e-25, 

nGenes = 85, fold enrichment = 3.32), and Nucleoside phosphate binding (FDR = 7.0620e-

25, nGenes = 85, fold enrichment = 3.32) shown in Figure 3.45.  

  

Figure 3.45: Top molecular functions in B. dorei in NR 

In R, the significant functions included Nucleotide binding (FDR = 7.6106e-27, 

nGenes = 94, fold enrichment = 3.26), Nucleoside phosphate binding (FDR = 7.6106e-27, 

nGenes = 94, fold enrichment = 3.26), and Ribonucleotide binding (FDR = 1.9716e-22, 

nGenes = 81, fold enrichment = 3.25) demonstrated in Figure 3.46. 
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Figure 3.46: Top molecular functions in B. dorei in R 

In R, B. stercoris showed enrichment in Nucleotide binding (FDR = 2.6162e-27, 

nGenes = 82, fold enrichment = 3.74), Nucleoside phosphate binding (FDR = 2.6162e-27, 

nGenes = 82, fold enrichment = 3.74), and small molecule binding (FDR = 8.4471e-31, 

nGenes = 91, fold enrichment = 3.73) shown in Figure 3.47.  

  

Figure 3.47: Top molecular functions in B. stercoris in NR 
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R exhibited significant pathways in small molecule binding (FDR = 1.177e-27, 

nGenes = 83, fold enrichment = 3.71), Metal ion binding (FDR = 1.719e-22, nGenes = 70, 

fold enrichment = 3.68), and Nucleotide binding (FDR = 6.358e-24, nGenes = 74, fold 

enrichment = 3.67) illustrated in Figure 3.48. 

  

Figure 3.48: Top molecular functions in B. stercoris in R 

In NR, B. uniformis exhibited significant functions in Cation binding (FDR = 

6.581e-39, nGenes = 171, fold enrichment = 2.70), Small molecule binding (FDR = 2.555e-

44, nGenes = 203, fold enrichment = 2.59), and Anion binding (FDR = 1.568e-38, nGenes = 

182, fold enrichment = 2.58) demonstrated in Figure 3.49.  



70 

 

  

Figure 3.49: Top molecular functions in B. uniformis in NR 

In R, the significant functions were Cation binding (FDR = 4.409e-36, nGenes = 

163, fold enrichment = 2.67), Metal ion binding (FDR = 7.205e-36, nGenes = 162, fold 

enrichment = 2.67), and Anion binding (FDR = 7.599e-35, nGenes = 172, fold enrichment 

= 2.53) shown in Figure 3.50. 

  

Figure 3.50: Top molecular functions in B. uniformis in R 
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For NR, B. vulgatus had the most significant functions in Purine nucleotide binding 

(FDR = 1.103e-29, nGenes = 90, fold enrichment = 3.64), Purine ribonucleotide binding 

(FDR = 3.780e-29, nGenes = 89, fold enrichment = 3.61), and Purine ribonucleoside 

triphosphate binding (FDR = 3.780e-29, nGenes = 89, fold enrichment = 3.61), with notable 

enrichment in Nucleotide binding, Anion binding, and small molecule binding pathways 

as shown in Figure 3.51.  

  

Figure 3.51: Top molecular functions in B. vulgatus in NR 

R showed significant pathways in Purine nucleotide binding (FDR = 3.744e-24, 

nGenes = 82, fold enrichment = 3.36), Purine ribonucleotide binding (FDR = 1.451e-23, 

nGenes = 81, fold enrichment = 3.33), and Carbohydrate derivative binding (FDR = 3.162e-

24, nGenes = 84, fold enrichment = 3.30), with substantial enrichment in Nucleotide-

binding, Anion binding, and small molecule binding pathways as illustrated in Figure 3.52.  
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Figure 3.52: Top molecular functions in B. vulgatus in R 

For NR, F. prausnitzii showed significant pathways in Purine nucleotide binding 

(FDR = 1.062e-10, nGenes = 24, fold enrichment = 5.07), Purine ribonucleotide binding 

(FDR = 6.470e-10, nGenes = 23, fold enrichment = 4.87), and Nucleotide binding (FDR = 

7.661e-11, nGenes = 26, fold enrichment = 4.71), with notable enrichment in Small 

molecule binding, Ion binding, and pathways associated with organic cyclic and 

heterocyclic compound binding, shown in Figure 3.53.  

  

Figure 3.53: Top molecular functions in F. prausnitzii in NR 
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R had significant functions in Purine nucleotide binding (FDR = 3.711e-14, nGenes 

= 33, fold enrichment = 4.93), Carbohydrate derivative binding (FDR = 2.960e-14, nGenes 

= 34, fold enrichment = 4.81), and Purine ribonucleotide binding (FDR = 1.996e-13, nGenes 

= 32, fold enrichment = 4.79), with enrichment in Nucleotide binding and pathways 

associated with organic cyclic and heterocyclic compound binding as shown in Figure 3.54. 

  

Figure 3.54: Top molecular functions in F. prausnitzii in R 

For NR, P. distasonis exhibited significant enrichment in Carbohydrate derivative 

binding (FDR = 1.230e-15, nGenes = 60, fold enrichment = 3.12), Nucleotide binding (FDR 

= 7.759e-17, nGenes = 66, fold enrichment = 3.06), and small molecule binding (FDR = 

1.883e-17, nGenes = 71, fold enrichment = 2.96), with significant enrichment in pathways 

associated with anion binding and nucleoside phosphate binding, illustrated in Figure 3.55. 



74 

 

  

Figure 3.55: Top molecular functions in P. distasonis in NR 

Across both NR and R, various bacterial species exhibited significant enrichment 

in molecular binding and catalytic activity functions. Key functions such as Purine 

ribonucleotide binding, Nucleotide-binding, and small molecule binding were consistently 

significant. Differences in the fold enrichment and the number of genes involved highlight 

the variations between the NR and R. 

3.6 Statistical Analysis 

3.6.1 Alpha Diversity of Species, Genes Counts & Genetic Variants 

The α diversity of species was analyzed with response (R and NR) across three 

different time points (T0, T1, and T2). R demonstrated an increase in α diversity from T0 

(3.386) to a peak at T1 (3.864), followed by a slight decrease at T2 (3.718). In contrast, 

NR exhibited more stable alpha diversity, with a slight increase at T1 (3.564) from T0 

(3.347) and a subsequent decline at T2 (3.270). Overall, R had higher α diversity compared 
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to NR across the observed time points, with mean values of 3.578 for R and 3.417 for NR. 

Figure 3.56 illustrates the α diversity in R and NR. 

  

Figure 3.56: α diversity of A. microbial species; B. gene counts; and C. genetic variants 

in R vs. NR 



76 

 

The α diversity of gene counts was assessed with response status across different 

time points. R showed a decrease in α diversity from T0 (5.324) to T1 (5.202), followed 

by an increase at T2 (5.628). Conversely, NR exhibited a steady decline in α diversity from 

T0 (5.683) to T1 (5.518) and further to T2 (5.351). Across all time points, NR had a higher 

mean α diversity (5.585) compared to R (5.347). 

The α diversity of genetic variants was evaluated concerning response status over 

time points. R showed a decrease in α diversity from T0 (6.372) to T1 (6.284), followed 

by an increase at T2 (6.883). In contrast, NR exhibited a slight decline in α diversity from 

T0 (6.886) to T1 (6.753) and further to T2 (6.677). Overall, NR maintained a higher mean 

α diversity (6.814) compared to R (6.436) throughout the timepoints. 

3.6.2 Median Comparison of Species, Genes Count & Genetic Variants Using Wilcoxon 

Test 

The α diversity data of species was analysed by response status (R and NR) across 

time points (T0, T1, and T2). R showed an increase in α diversity from T0 to T1, followed 

by a slight decrease at T2, while NR maintained a more stable pattern. Despite these trends, 

the Wilcoxon test results indicated that the differences in α diversity between R and NR 

were not statistically significant, with p-values of 0.4082, 0.0833, and 0.181 for the 

respective time points. Therefore, although there are observable differences in trends, they 

do not reach statistical significance as shown in Figure 3.57. 
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Figure 3.57: Wilcoxon test on α diversity of A. Species B. gene counts C. genetic 

variants 
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The α diversity of gene counts was examined by response across time points. The 

Wilcoxon test showed that R experienced a decrease in α diversity from T0 to T1, followed 

by an increase at T2, while NR exhibited a steady decline. However, the differences in α 

diversity between R and NR were not statistically significant, with p-values of 0.1487, 

0.4664, and 0.6095 for the respective time points. These findings suggest that the trends in 

α diversity, though observable, do not reach statistical significance. 

The α diversity of genetic variants was analysed by response across time points. R 

showed a decrease in α diversity from T0 to T1, followed by an increase at T2. In contrast, 

NR exhibited a slight decline from T0 to T1, with a further decrease at T2. The Wilcoxon 

test results indicated that the differences in α diversity between R and NR were not 

statistically significant, with p-values of 0.1487, 0.2382, and 0.7619 for the respective time 

points. Thus, while there are noticeable trends, they do not reach statistical significance. 

3.6.3 Associations Using MaAsLin2 

The analysis of gene associations with response (R vs. NR) revealed several trends 

in gene expression differences. In R, the expression of lpdA was significantly lower 

compared to NR, with a coefficient of -0.967 and an FDR of 0.2335. Similarly, nadB 

exhibited reduced expression in R, with a coefficient of -0.591 and an FDR of 0.2335. The 

genes sufD and uxaC also showed decreased expression in R, with coefficients of -1.14 

and -0.952 respectively, both having an FDR of 0.2335. Additionally, ftsA, obgE, rhaT, 

and xylE also showed lower expression in R, with coefficients of -0.586, -0.363, -0.521, 

and -0.654, and FDR values around 0.2354. Hence, responders generally exhibit lower 
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expression levels of these genes compared to NR. Figure 3.58 shows the association of 

genes with treatment response. 

  

Figure 3.58: Genes identified by MaAsLin2 associated with treatment response 
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3.7 Association via Machine Learning Models 

3.7.1 Evaluation Through ML Models 

The RF classifier showed robust performance with an accuracy of 76%, precision of 

76%, recall of 79%, and an F1-score of 77%, effectively distinguishing between R and NR. 

The model's ROC AUC of 0.83 further underscores its excellent discriminative capability. 

Noteworthy genes identified include sufD, uxaC, and nadB, indicating their significant 

roles in response mechanisms. Additionally, critical variants such as missense variant 

c.817T>C p.Cys273Arg and missense variant c.697T>C p.Tyr233His were highlighted. 

Figure 3.59 shows the performance of the RF classifier via the ROC curve. 

  

Figure 3.59: RF classifier model performance 

The Logistic Regression model demonstrated good performance in classifying R and 

NR, with an accuracy of 68%, precision of 65%, recall of 84%, and an F1-score of 73%. 

The model's ROC AUC of 0.75 indicates a high level of discriminative capability. 



81 

 

Important variants identified include missense variant c.817T>C p.Cys273Arg, missense 

variant c.697T>C p.Tyr233His, and missense variant c.931G>A p.Ala311Thr. Figure 3.60 

shows the performance of the logistic regression model via ROC curve. The identification 

of these variants provides valuable insights for understanding the genetic basis of treatment 

response and could inform targeted therapeutic strategies. 

  

Figure 3.60: Logistic regression model performance 

The SVM model demonstrated strong performance with an accuracy of 71%, 

precision of 69%, recall of 79%, and an F1-score of 74%. The ROC AUC of 0.76 indicates 

good discriminative ability. Significant genes identified include sufD, underscoring its 

relevance in treatment response. Key variants such as missense variant c.931G>A 

p.Ala311Thr and missense variant c.698A>G p.His233Arg were also highlighted, 

suggesting their crucial roles in distinguishing between R and NR. Figure 3.61 shows the 

performance of the SVM model via the ROC curve. 
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Figure 3.61: SVM model performance 

The XGBoost model demonstrated outstanding performance with an accuracy of 

78%, precision of 76%, recall of 84%, and an F1-score of 80%. The ROC AUC of 0.83 

indicates exceptional discriminative ability. Significant genes identified include obgE, 

nadB, and rhaT, highlighting their relevance in predicting treatment response. Key variants 

such as missense variant c.698A>G p.His233Arg, missense variant c.931G>A 

p.Ala311Thr, and missense variant c.817T>C p.Cys273Arg were also identified, 

underscoring their significant roles in classification. Figure 3.62 illustrates the performance 

of the XGBoost model via the ROC curve. 

The Decision Tree model performed well, achieving an accuracy of 84%, precision 

of 77%, recall of 85%, and an F1-score of 80%. The ROC AUC of 0.84 indicates strong 

discriminative ability. Significant genes identified include sufD, rhaT, and xylE, 

highlighting their relevance in treatment response prediction. 
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Figure 3.62: XGBoost model performance 

Key variants such as missense variant c.931G>A p.Ala311Thr, missense variant c.989T>C 

p.Leu330Ser, and missense variant c.503C>T p.Ala168Val were also identified. Figure 

3.63 demonstrates the performance of the Decision tree model via the ROC curve. 

  

Figure 3.63: Decision tree model performance 
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The GBM model demonstrated strong performance with an accuracy of 79%, 

precision of 77%, recall of 84%, and an F1-score of 80%. The ROC AUC of 0.85 indicates 

excellent discriminative capability. Key genes identified include sufD, rhaT, and xylE, 

highlighting their relevance in predicting treatment response. Significant variants such as 

missense variant c.503C>T p.Ala168Val, missense variant c.989T>C p.Leu330Ser, and 

missense variant c.931G>A p.Ala311Thr were also identified. Figure 3.64 shows the 

performance of the GBM model via ROC curve. 

  

Figure 3.64: GBM model performance 

GBM and DT emerged as the top-performing models with ROC AUC values of 

0.85 and 0.84, respectively. Key genes consistently identified across multiple models 

include sufD, rhaT, and xylE. Significant variants such as missense variant c.503C>T 

p.Ala168Val, missense variant c.931G>A p.Ala311Thr, and missense variant c.697T>C 

p.Tyr233His were pivotal in distinguishing between R and NR. These genetic markers 
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provide critical insights for developing targeted therapeutic strategies and advancing our 

understanding of treatment response mechanisms. 

Table 3.5: Performance matrix of ML models 

 

Non-Responders Responders 

 

Model Precision Recall F1 - 

Score 

Precision Recall F1 - 

Score 

Accuracy AUC 

Random 

Forest 

0.76 0.73 0.75 0.76 0.77 0.76 0.76 0.83 

Logistic 

regression 

0.75 0.52 0.61 0.65 0.84 0.73 0.68 0.75 

SVM 0.73 0.62 0.67 0.69 0.79 0.74 0.71 0.76 

XGBoost 0.80 0.72 0.76 0.76 0.84 0.80 0.78 0.83 

Decision 

tree 

0.81 0.72 0.77 0.77 0.85 0.80 0.79 0.84 

GBM 0.81 0.73 0.77 0.77 0.84 0.80 0.79 0.85 

3.8 Functional Annotation of Genes 

The gene lpdA encodes a protein involved in the oxidative decarboxylation of 

pyruvate and other alpha-keto acids. It plays a critical role in cellular respiration and energy 

production. In the context of cancer, alterations in metabolic pathways, including those 

involving lpdA, can contribute to tumor growth and survival. This gene is involved in the 

pyruvate metabolism pathway and is present in various bacterial species, highlighting its 

role in fundamental metabolic processes across different organisms. nadB gene is 

responsible for the biosynthesis of NAD (nicotinamide adenine dinucleotide), a crucial 
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coenzyme in redox reactions. NAD is essential for cellular metabolism and energy 

production. In cancer, NAD metabolism is often dysregulated, leading to changes in 

cellular energy homeostasis and redox balance, which can promote cancer cell proliferation 

and survival. The nadB gene is part of the NAD biosynthesis pathway and is found in 

several bacterial species, indicating its conserved role in essential cellular functions.  

The sufD gene is involved in the assembly of iron-sulfur clusters, which are vital 

cofactors for numerous enzymes. Iron-sulfur clusters play a significant role in various 

cellular processes, including DNA repair, respiration, and metabolic pathways. 

Dysregulation of iron-sulfur cluster assembly can impact mitochondrial function and 

genomic stability, contributing to cancer development. The sufD gene is part of the iron-

sulfur cluster assembly pathway and is present in a range of bacterial species. The uxaC 

gene encodes an enzyme involved in the degradation of uronic acids, which are 

components of complex carbohydrates. This metabolic pathway is crucial for the utilization 

of plant-derived polysaccharides. While uxaC itself is not directly implicated in cancer, 

alterations in carbohydrate metabolism and the tumor microenvironment can influence 

cancer progression. The uxaC gene is found in bacterial species that metabolize plant-

derived sugars.  

The ftsA gene is a key component of the bacterial cell division machinery. It plays 

a critical role in the formation of the divisome, a protein complex essential for bacterial 

cytokinesis. While ftsA is not directly related to human cancer, studying bacterial cell 

division genes can provide insights into fundamental biological processes and potential 

antimicrobial targets. The ftsA gene is present in various bacterial species involved in cell 

division. The obgE gene encodes a GTP-binding protein involved in various cellular 
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processes, including ribosome assembly, stress response, and cell cycle regulation. In 

cancer, dysregulation of cell cycle and stress response pathways can contribute to tumor 

growth and resistance to therapy. The obgE gene is part of stress response pathways and is 

found in numerous bacterial species, indicating its role in fundamental cellular processes.  

The rhaT gene is involved in the transport and metabolism of rhamnose, a sugar 

found in plant cell walls. While rhaT itself is not directly linked to cancer, changes in sugar 

metabolism and the availability of nutrients in the tumor microenvironment can influence 

cancer progression. The rhaT gene is present in bacterial species that metabolize plant-

derived sugars. The xylE gene encodes an enzyme involved in the degradation of xylose, a 

sugar found in hemicellulose from plant biomass. Alterations in sugar metabolism 

pathways can affect the tumor microenvironment and cancer cell metabolism. The xylE 

gene is part of the xylose degradation pathway and is found in bacterial species that utilize 

plant-derived sugars. 

Addressing the treatment response, the genes lpdA, nadB, sufD, obgE, and xylE 

show significant associations with R and NR categories. Alterations in these genes' 

metabolic pathways might be indicative of their roles in influencing treatment outcomes, 

potentially contributing to cancer cell proliferation, survival, and response to therapy. 
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CHAPTER 4: CONCLUSIONS AND FUTURE RECOMMENDATION 

The comprehensive analysis of microbial species, strains, genetic variants, and 

genes in R and NR to treatment has provided valuable insights into the complex 

interactions within the gut microbiome and their potential impact on treatment efficacy. 

In R, the most abundant microbial species included P. vulgatus, B. uniformis, F. 

prausnitzii, P. dorei, and A. muciniphila. These species are known for their beneficial roles 

in gut health and immune modulation, which might contribute to a favorable response to 

treatment. In contrast, NR showed higher abundances of P. distasonis and P. dorei, species 

that may be associated with a less favorable treatment response. Strain diversity profiling 

revealed that certain strains were consistently present across all time points in both R and 

NR, such as P. dorei, B. uniformis, and F. prausnitzii, indicating their stable role in the 

microbiome. Unique strains to R included L. eligens, E. coli, and P. merdae, whereas P. 

distasonis and B. fragilis were specific to NR. These findings suggest potential microbial 

markers for predicting treatment efficacy. 

Among the seven most abundant common species across all time points; A. 

muciniphila, B. dorei, B. stercoris, B. uniformis, F. prausnitzii, P. distasonis, and P. 

vulgatus, NR exhibited a higher number of genetic variations with 47,969 compared to R 

containing 35,615. This indicates a possible link between genetic diversity and treatment 

response. Specifically, genes such as ftsA, lpdA, nadB, obgE, rhaT, sufD, uxaC, and xylE 

were significantly associated with treatment response, showing distinct patterns of 

variation between the two groups. These genes are involved in critical biological processes, 

including cell division, metabolic pathways, and stress responses, which could influence 
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treatment outcomes. Machine learning models, particularly GBM with AUC of 85% and 

DT having AUC of 84%, effectively identified key genes and variants associated with 

treatment response, providing robust predictive power with high accuracy, precision, and 

recall. Important genes such as sufD, rhaT, and xylE, along with significant variants like 

missense variant c.817T>C p.Cys273Arg, missense variant c.503C>T p.Ala168Val, 

missense variant c.698A>G p.His233Arg, missense variant c.680C>T p.Thr227Ile, 

missense variant c.697T>C p.Tyr233His, and missense variant cc.931G>A p.Ala311Thr, 

were consistently highlighted, underscoring their relevance in distinguishing between R 

and NR. 

Future research should focus on the insights gained from the identified microbial 

species, strains, and genetic variants to enhance treatment outcomes for NSCLC patients. 

Longitudinal studies with larger cohorts are essential to validate these microbial and 

genetic markers, enabling a deeper understanding of their dynamic changes over time and 

their influence on treatment response. Experimental validation of the functional roles of 

identified genes and microbial strains, particularly those consistently present across all time 

points such as P. dorei, B. uniformis, and F. prausnitzii, will provide crucial insights into 

their mechanisms of action and potential therapeutic targets. 

Microbiome engineering approaches, such as probiotics or faecal microbiota 

transplantation, should be explored to modulate the gut microbiome composition in favor 

of beneficial species like A. muciniphila, which could enhance treatment efficacy in NR. 

By altering the gut microbiota to support beneficial strains, it may be possible to shift the 

microbial balance toward a state that supports better treatment outcomes. Integrating 

microbial and genetic profiling into clinical practice can pave the way for personalized 
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treatment strategies, allowing for tailored interventions based on an individual's 

microbiome and genetic makeup. For instance, profiling the presence of specific genetic 

variants such as missense variant c.817T>C p.Cys273Arg or missense variant c.503C>T 

p.Ala168Val could guide the customization of therapeutic approaches to improve patient 

outcomes. 

Employing multi-omics approaches, which combine genomics, transcriptomics, 

proteomics, and metabolomics, will offer a comprehensive view of the biological processes 

involved in treatment response and help identify additional therapeutic targets. This holistic 

approach can reveal how different layers of biological information interact and contribute 

to treatment response, providing a more complete picture of the underlying mechanisms. 

By focusing on these areas, future research can build on the current findings to develop 

more effective treatments and improve outcomes for patients undergoing immunotherapy 

and other cancer treatments in NSCLC. 
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