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ABSTRACT

Non-small cell lung cancer (NSCLC) is the second most frequently diagnosed
cancer worldwide and the leading cause of cancer-related mortality, with approximately
1.8 million reported deaths in 2020. NSCLC treatment includes surgery, chemotherapy,
radiation, and immunotherapy, with Immune Checkpoint Inhibitors (ICIs) such as PD-
1/PD-L1 inhibitors revolutionizing patient outcomes. However, treatment response varies
significantly among patients, presenting a substantial challenge. Emerging evidence
suggests that the gut microbiome profoundly influences the efficacy of cancer therapies,
including IClIs. This research investigates the role of gut microbial species, strains, and
genetic variants in modulating NSCLC treatment response. Utilizing metagenomic
analysis, taxonomic profiling was conducted to identify microbial species such as B.
uniformis, F. prausnitzii, and A. muciniphila present in NSCLC patients' gut microbiomes
at various time points and response categories. Strain diversity profiling revealed specific
strains consistently present across all time points, including strains of B. uniformis and F.
prausnitzii, while others, such as L. eligens and E. coli, were unique to patient responses.
Variant calling identified 35,615 genetic variations in responders and 47,969 in non-
responders, including SNPs, indels, and complex mutations. Notably, NR exhibited a
higher number of genetic variations, highlighting potential microbial markers for treatment
efficacy. Specific genes, including ftsA, IpdA, and sufD, were associated with treatment
response, providing insights into the functional attributes of these variations. Further, gene
ontology analysis categorized these genetic variants into biological processes, cellular

components, and molecular functions, underscoring the role of microbial genes in

XVI



influencing treatment outcomes. Machine learning models showed an AUC of 85%,
indicating the predictive capabilities for treatment response based on gut microbiome

composition.

Our findings emphasize the potential of integrating gut microbiome analysis with
NSCLC treatment strategies to enhance the efficacy of immunotherapy. By deciphering
the connection between gut microbiome and NSCLC treatment responses, this study may
highlight the need for developing microbiome-based interventions to optimize cancer

therapy outcomes.

Keywords: NSCLC, Gut microbiome, Immunotherapy, Immune checkpoint inhibitors

(ICls), PD-1/PD-L1, Microbial strains, Genetic variants.
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CHAPTER 1: INTRODUCTION

Cancer is characterized by uncontrolled cell growth and the potential to metastasize
to different body sites (Brown et al. 2019). This usually occurs due to the overexpression
of certain genes, known as oncogenes, or the suppression of protective genes, referred to
as tumor suppressor genes (Sinkala 2023). Various factors such as age, gender, race,
environment, diet, and genetics can influence the occurrence and type of cancer (Seke Etet
et al. 2023). As cancer cells proliferate, they often form clusters known as tumors. Tumors
can be benign, remaining in one location without invading nearby tissues, or they can be
malignant, spreading and invading surrounding tissues (Boutry et al. 2022). Cancers are
categorized based on the type of fluid or tissue they originate from or their initial location
in the body, such as breast cancer, prostate cancer, liver cancer, lung cancer, etc. (Rahman

et al. 2022).

1.1 Understanding Lung Cancer

Lung cancer ranks as the second most diagnosed cancer and is the leading cause of
cancer-related deaths globally (Sung et al. 2021). In 2020, ~2.2 million new cases of lung
cancer were identified, making it the second most common cancer after breast cancer. Lung
cancer also had the highest mortality rate, with approximately 1.8 million deaths, mainly
due to late detection (Restrepo et al., 2023). The high mortality rate of lung cancer is often
due to late diagnoses, with the disease frequently detected at an advanced stage. Effective
management of lung cancer depends on a thorough understanding of cancer development,

along with efficient early detection methods and suitable pharmaceutical treatments
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(Bertolaccini et al. 2022). Early detection is especially crucial when screening high-risk
individuals, such as smokers or those exposed to hazardous environments like fumes, oil
fields, or toxic workplaces. The discovery of novel biomarkers is also essential. It is vital
to accurately identify and understand each lung cancer patient's specific diagnosis
(Nooreldeen & Bach 2021). Often, lung cancer is diagnosed at an advanced stage, with
metastasis to other sites such as the brain (Souza et al. 2023), as shown in Figure 1.1. This
advanced stage makes targeted therapy and conventional treatments less effective

(Restrepo et al. 2023).

Cancer cells Cancer cells Cancer cells Cancer cells Cancer
(metastasizing) (large tumor) (medium tumor) (small tumor) cell

Small cell carcinoma
(~10-15%) Small cell

Blood stream Secondary sites
lung cancer
. Early, widespread metastasis; (sCLC)
Most common in heavy
smokers J
Adenocarcinoma (~40%)
Metastasis )
b Common; Includes minimally
Py invasive adenocarcinoma
(MIA) and adenocarcinoma in
2 \ situ (AIS)
. 4 () Squamous cell
! \ carcinoma (~25-30%) Non-small cell
| . lung cancer
£ 3 ” " Most often arises in mucous (NscLe)
membrane of proximal
bronchi

Large cell
undifferentiated

carcinoma (~10-15%)

' Rare; Large, rapidly-growing
tumors often located in
peripheral lung tissue

Figure 1.1: Cancer cells and their metastasis via the bloodstream to different body sites



Lung cancers are generally classified into two main histological types: Small Cell
Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC) (Howlader et al. 2020).
SCLCs are aggressive lung malignancies often associated with smoking, comprising about
15-20% of all primary lung cancer cases. NSCLC, the more prevalent histological subtype,
accounts for approximately 85% of all lung cancer cases. NSCLC is often detected at an
advanced local stage in about 30% of new cases, presenting a variety of clinical situations
with different therapeutic options (Petrella et al. 2023). NSCLC can be further classified
into four distinct subtypes: Lung Adenocarcinoma (LUAD), Lung Squamous Cell
Carcinoma (LUSC), Large-Cell Carcinoma, and Bronchial Carcinoid Tumor. LUAD is the
most common form of NSCLC and the most frequently occurring primary lung tumor

(Nooreldeen & Bach 2021).

1.2 Non-Small Cell Lung Cancer (NSCLC)

NSCLC is the leading cause of cancer-related deaths worldwide, resulting in nearly
1.8 million deaths annually (Ibodeng et al., 2023). Early detection of NSCLC and the
utilization of diagnostic methods like PET scans and biomarkers are crucial for enhancing
patient outcomes and lowering mortality rates (Thakur et al., 2020). NSCLC includes
several subtypes such as adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma, and is often diagnosed at advanced stages, which complicates treatment (Nair
et al., 2023). Adenocarcinoma is the most common subtype, accounting for about 40% of
cases. It originates from type Il alveolar cells that produce mucus and other substances and
can affect smokers and non-smokers of all ages. This cancer typically grows more slowly
and is often located in the outer regions of the lungs, possibly due to cigarette filters

blocking larger particles. Compared to other NSCLC subtypes, adenocarcinoma is more
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likely to be detected before spreading beyond the lungs (Seguin et al., 2022). Conversely,
large cell carcinoma, which lacks specific squamous or glandular features, represents 5-
10% of lung cancer cases. It is typically diagnosed by excluding other possibilities and
usually originates in the central part of the lungs, with the potential to spread to nearby

lymph nodes, the chest wall, and distant organs (Suster & Mino-Kenudson, 2020).

1.3 Treatments of NSCLC

The treatment of NSCLC includes various methods such as radiation therapy,
surgical intervention, systemic modalities like chemotherapy, targeted molecular therapies,
hormone-based regimens, and immunotherapy as illustrated in Figure 1.2 (Alduais et al.,
2023). For NSCLC, data indicates that approximately 56% of individuals with early-stage
(I and 1I) disease opt for surgery as their treatment. In contrast, most stage 111 NSCLC

patients (62%) undergo chemotherapy or radiotherapy (Lampridis & Scarci, 2023).

Patients diagnosed with stages I, 11, and 11IA of NSCLC typically undergo surgery
to remove the tumor if it is operable and the patient can withstand the procedure. Post-
surgery, some patients may benefit from additional therapy known as adjuvant therapy,
aimed at reducing the risk of cancer recurrence. Adjuvant therapy can include radiation,
chemotherapy, and targeted therapy. For patients with various advanced stages of NSCLC,
chemotherapy is often administered post-surgery to eliminate any remaining cancer cells

and improve survival chances (Lim & Yeo, 2022).



Targeted Immunotherapy

therapy

Types of
Treatment

Surgery Radiotherapy

Chemotherapy

Figure 1.2: Different types of NSCLC treatment

Radiation therapy uses powerful beams of energy to damage the DNA in cancer
cells, effectively killing them. This approach is effective in managing or eradicating tumors
located in specific parts of the body. Patients with chest-localized NSCLC who are not
suitable for surgery may benefit from this treatment. Additionally, radiation therapy can be
used in palliative care to enhance the quality of life for NSCLC patients who do not respond
to surgery or chemotherapy (Alduais et al., 2023). Immunotherapy, a groundbreaking
cancer treatment, utilizes the body’s natural defense mechanisms to fight cancer. Some
cancer cells closely resemble healthy cells, making it difficult for the immune system to
differentiate between them. Immunotherapy works by boosting the immune system's
ability to target cancer cells, slow their growth, prevent their spread, or increase its overall

effectiveness in combating cancer (Mamdani et al., 2022).

1.3.1 Immunotherapy for NSCLC



Immunotherapies work by removing the constraints on the immune system,
exposing the tumor, and enhancing the recognition of tumor-associated neoantigens. This
action stimulates an immune response that leads to tumor suppression. This cutting-edge
approach empowers the immune system of the host to respond effectively, regardless of
the tumor-specific histology or underlying driver mutations. Several strategies have
emerged within cancer immunotherapies, focusing on boosting effector mechanisms and
reducing inhibitory and suppressive pathways (Yao et al., 2023), as demonstrated in Figure

1.3.

One such strategy involves neutralizing suppressive mechanisms using antibodies
against immune checkpoint proteins. Tumors often exploit immune checkpoints to avoid
immune detection (Marei et al., 2023). To counteract this, immune checkpoint inhibitors
(ICIs) are used therapeutically. They stimulate immune responses against tumor cells
within the tumor microenvironment (TME), which includes various immune cell
populations and the extracellular matrix (ECM) intricately linked with tumor cells
(Shiravand et al., 2022). Significant progress has been made with agents such as
pembrolizumab and nivolumab, both inhibitors of the programmed death-1 (PD-1)
pathway, and atezolizumab, an inhibitor of its primary ligand, programmed death ligand-1
(PD-L1). These inhibitors have shown superior responses compared to conventional
chemotherapy, leading to their endorsement as second-line treatments for patients with

metastatic NSCLC (Punekar et al., 2022).



Common Immunotherapy Treatments for Lung Cancer

@ <l~@ checkpoint inhibitors

A )

l ‘ . . Y a7
PN,
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Adoptive T cell therapies &

Figure 1.3: The common immunotherapy treatments for lung cancer

1.3.2 Immune Checkpoint Inhibitors

The effectiveness of ICIs has significantly expanded the options for cancer
treatment. Immune checkpoints are molecules on cell membranes that regulate T-cell
responses to prevent overactivation. Unfortunately, cancer cells exploit this system to
evade immune detection. ICIs can reactivate previously ineffective T-cells, restoring their
ability to respond to tumor-related substances (Naimi et al., 2022). Lung cancer
immunotherapy has recently gathered considerable attention for its role in enabling the
immune system to detect and eliminate cancer cells. A pivotal milestone in immunotherapy
was the discovery of immune checkpoints (ICPs), proteins produced by certain immune
cells like T-cells and by cancer cells themselves (Starzer et al., 2022). Under normal
conditions, these checkpoints engage with their partner proteins through receptor-ligand
interactions, sending inhibitory signals that deactivate T-cell responses to prevent

unintended attacks on healthy cells. These checkpoints are crucial for maintaining self-



tolerance, regulating the immune system, and ensuring overall immune balance (Dutta et

al., 2023).

Tumor cells exploit this regulatory mechanism by using ICP proteins to evade
destruction by immune cells. Targeting these immune checkpoints with checkpoint
inhibitors (CKIs) has shown potential for achieving sustained clinical responses and even
curative outcomes in cancer treatment (Marei et al., 2023). From the initial discovery of
CTLA-4, various immune checkpoints, including PD-1, have been identified. The
interaction between PD-1 on effector T-cells and PD-L1 on tumor cells and myeloid cells
within the tumor microenvironment acts as an inhibitory signal, leading to effector T-cell
exhaustion (Yi etal., 2022). Similarly, CTLA-4, upregulated in activated T-cells, competes
with co-stimulatory molecules CD80/86 on antigen-presenting cells (APCs), dampening
T-cell activation and function. While PD-1 and CTLA-4 are the most extensively studied
immune checkpoint proteins, other immune checkpoint proteins also hold therapeutic

potential (Goleva et al., 2021).

In 2015, the United States Food and Drug Administration (FDA) approved
nivolumab for advanced LUSC, later extending its use to all histological types of NSCLC
following the failure of initial platinum doublet chemotherapy (Choi & Chang, 2023).
Antibodies targeting the ICl mechanism protect tumor cells from immune attacks. In
particular, the inhibition of immune checkpoint proteins through the blockade of CTLA-4,
PD-1, and PD-L1 has proven especially effective as an immunotherapeutic strategy for
NSCLC (Tang et al., 2022). Antibodies targeting the PD-1 protein have shown significant

therapeutic potential in NSCLC by counteracting the suppression of T-cell functions.



1.3.3 Anti-PD-1/PD-L1 Therapy

PD-1 and its ligands, PD-L1 and PD-L2, are crucial ICP proteins. Their primary
function is to prevent T-cell effector activity in peripheral tissues during inflammatory
responses, thus preventing autoimmunity. However, in the tumor microenvironment, these

proteins facilitate tumor suppression of the immune response (Waldman et al., 2020).

Over recent decades, immunotherapy has been a focus for treating NSCLC
(Dantoing et al., 2021). Data indicates that cancer often arises when the immune system
malfunctions. Proteins like PD-1 and PD-L1, which usually help maintain immune balance,
instead help tumors evade the immune system in cancer (Davies, 2019). Blocking PD-1
and PD-L1 can enhance the immune system's ability to combat cancer. PD-1 is a receptor
on immune cells, while PD-L1 is a ligand on cancer cells. When PD-1 on immune cells
binds to PD-L1 on cancer cells, it prevents the immune cells from attacking, allowing
cancer to proliferate unhindered. Consequently, scientists have developed drugs that block
the PD-1/PD-L1 interaction, enabling immune cells to target and destroy cancer cells more

effectively (Lin, 2023). Figure 1.4 shows the mechanism of action of PD-1/PD-L1.

1.4 The Human Gut Microbiome

The human microbiome is a diverse community of microorganisms including
bacteria, archaea, viruses, and other microbes that inhabit our bodies both externally and
internally. These microorganisms have the potential to significantly affect our bodily
functions, influencing our health and disease states (Xia et al., 2023). They contribute to
various aspects of our metabolism, protect us from harmful pathogens, guide our immune
system, and consequently affect nearly all body functions, either directly or indirectly
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(Colella et al., 2023). To understand the impact of gut microbiome on health and disease,
it is essential to first study the microorganisms present in healthy individuals. Healthy
adults host over a thousand different bacterial species, with Bacteroidetes and Firmicutes
being the dominant groups. The gut has an exceptionally diverse microbial population,

though the exact composition can vary widely among individuals (Hou et al., 2022).

Cancer patient |mmunotherapy Recovered patient
Immune checkpoint interaction (PD-L1/PD-1) Immune checkpoint inhibitors - anti-PD-1 and
inhibits T-cell activation anti-PD-L1 - allows immune cell activation
Immune cell i Immune cell
A - Immune attack
Immune cell ;
receptor ' Tumor cell death
Tumor cell ' ’
; 24 O
z,_s/ W
=N
anti-PD-1

antibody = anti-PD-L1

antibody
Immune checkpoint molecules

Figure 1.4: Mechanism of Immunotherapy particularly immune checkpoint inhibitors
(PD-1/PD-L1)

The relationship between the host immune system and the gut microbiome is
complex, bidirectional, and extensive such as the gut-lung axis, shown in Figure 1.5. The
immune system must tolerate harmless microbiota while effectively responding to harmful

pathogens. Conversely, the gut microbiome plays a crucial role in developing the immune
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system to function properly (Yoo et al., 2020). There is significant interest in studying how
changes in the gut microbiome are associated with disease. However, it is often unclear
whether these changes are a cause or a consequence of disease (Yoo et al., 2020). Diseases
can alter the gut microbiome due to various factors such as diet changes, gastrointestinal

function alterations, and medication use like antibiotics (Zheng et al., 2020).
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Figure 1.5: The gut microbiome can influence the treatment response and treatment can

influence the gut microbiome composition

The gut microbiome has been linked to the onset and progression of various
cancers, affecting both the epithelial barrier and sterile tissues (El Tekle et al., 2023). The
gut microbiome can directly cause cancer by producing harmful metabolites, such as
lithocholic acid (LCA) (Yang et al., 2023), or substances with carcinogenic properties like
H. pylori, classified as a class | carcinogen by the International Agency for Research on

Cancer (IARC) (Garg et al., 2023). It can also promote cancer indirectly by causing
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inflammation, as seen with Campylobacter species (Xia et al., 2023). Emerging evidence
shows bacteria can enhance the body's immune response against distant tumors (Jain et al.,
2021). Antibiotic use is linked to cancer risk and is influenced by dosage (Simin et al.,
2020). The effectiveness of some therapies can be reduced due to the absence or alteration
of the gut microbiome. The role of the gut microbiome in enhancing the immune response

to cancer treatment varies with the treatment method (Sadrekarimi et al., 2022).

1.4.1 Gut Microbiome and Immunotherapy

Increasing evidence suggests the gut microbiome significantly affects responses to
immunotherapy (Shi et al.,, 2023). Studies on patients undergoing immunotherapy,
especially ICls, show that disruptions in the gut microbiome composition and function are
linked to immune-related disorders like inflammatory bowel disease, autoimmune
diseases, chronic inflammation, and cancer. Recent research highlights the correlation
between the gut microbiome and the effectiveness and side effects of ICI-based

immunotherapy (Lu et al., 2022).

A pivotal preclinical study by Sivan et al. demonstrated the interplay between
specific gut commensals, such as Bifidobacterium, and outcomes like reduced tumor
growth, increased T-cell infiltration into tumors, and enhanced anti-tumor immune
responses, supporting PD-L1 blockade effectiveness. Following this, many studies have
explored the connection between microbial signatures and ICI treatment responses.
Interventional studies aim to manipulate the gut microbiome to enhance positive outcomes
and reduce adverse events in patients with solid tumors undergoing ICI therapies (Yi et al.,

2018).
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Gopalakrishnan et al. examined the link between gut bacteria and anti-PD-1
immunotherapy response in melanoma patients, dividing them into R and NR. R had a
richer diversity of gut bacteria compared to NR, suggesting the role of microbial diversity
in treatment efficacy. Specific bacteria, like Faecalibacterium, were abundant in R and
linked to longer progression-free survival, while NR had bacteria like B. thetaiotaomicron,
E. coli, and A. colihominis. Increased Faecalibacterium abundance correlated with better
responses and longer survival in R, indicating the crucial role of gut bacteria composition
and diversity in melanoma patients' response to anti-PD-1 therapy (Gopalakrishnan et al.,

2018).

A meta-analysis of four shotgun metagenomic studies on microbiome composition
between R and NR to immunotherapy revealed that Faecalibacterium was common in
responders. Additionally, B. intestinihominis was more abundant in responders (Limeta et
al., 2020). Maia et al. demonstrated a correlation between microbiome composition and
response to nivolumab or nivolumab plus ipilimumab in patients with metastatic Renal Cell
Carcinoma (RCC). R had higher alpha diversity and more Roseburia and Faecalibacterium
species than NR. There were also reports of a temporal increase in A. muciniphila (Maia et

al., 2018).

Routy et al. conducted a shotgun metagenomic study to determine gut composition
differences between R and NR to PD-1 inhibition in patients with RCC and NSCLC. They
found a high abundance of A. muciniphila in R patients. Fecal Microbiota Transplantation
(FMT) in germ-free mice validated that only stool from R patients enhanced the anticancer
effects of PD-1 inhibitors. Moreover, oral supplementation with A. muciniphila, alone or

with E. hirae, restored anticancer effects in antibiotic-treated mice (Routy et al., 2018). Jin
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et al. reported that NSCLC patients with high gut microbiome a-diversity, enriched in B.
longum, A. putredinis, and P. copri, had significantly longer Progression-Free Survival
(PFS) compared to those with low diversity and abundant Ruminococcus. This suggests
that gut microbiome diversity influences immunotherapy response by enhancing antitumor

immunity (Mao et al., 2021; Jin et al., 2019).

Hakozaki et al. found that in 70 Japanese NSCLC patients treated with anti-PD-
1/PD-L1 antibodies, Ruminococcaceae were linked with favorable prognosis, likely due to
high colon IFNy production from CDS8+ T-cells. In contrast, butyrate-producing
Agathobacter was linked with poor prognosis, while Eggerthellaceae and Barnesiella,
promoting IFN-y-producing yd T-cells in cancer lesions, were associated with NR (Tanoue
et al., 2019; Hakozaki et al., 2020). Jin et al. also found that high-diversity microbiomes in
Chinese NSCLC patients correlated with extended PFS, with significant differences in gut
microbiome composition between R and NR patients. R patients were enriched in A.
putredinis, B. longum, and P. copri, whereas NR patients had more

Ruminococcus_unclassified (Jin et al., 2019; Abdelsalam et al., 2023).

Katayama et al. analyzed fecal samples from 17 Japanese NSCLC patients treated
with ICIs and found that R patients had more Lactobacillus and Clostridium, which
stimulate T-cell mobilization to tumors, correlating with longer time to treatment failure
(TTF) (Katayama et al., 2019). Lee et al. sequenced stool samples from five cohorts of ICI-
naive advanced melanoma patients, identifying species like B. pseudocatenulatum linked
to response, highlighting a cohort-dependent association between the gut microbiome and
ICI response (S.-H. Lee et al., 2021). The taxonomic composition associated with favorable

vs. unfavorable responses to ICI therapy is summarized in Table 1.1.
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Table 1.1: Major gut microbial taxa associated with response to NSCLC treatment

Source

Major Taxa associated with
favorable response

Major Taxa associated with
an unfavorable response

Hakozaki et al., 2020

Ruminococcaceae

Eggerthellaceae

IAgathobacter

Barnesiella

Jin et al., 2019

Alistipes putredinis

Prevotella copri

Ruminococcus

Bifidobacterium longum

Katayama et al., 2019

Lactobacillus Bilophila
Clostridium Sutterella
Syntrophococcus Parabacteroides

Lee et al., 2021

Bifidobacterium bifidum

Akkermansia muciniphila

Blautia obeum

Routy et al., 2018

IAkkermansia muciniphila

Parabacteroides distasonis

Alistipes

Bifidobacterium adolescentis

Eubacterium

Ruminococcus

Bifidobacterium longum

Song et al., 2020

Parabacteroides

Veillonella

Methanobacteriaceae

Selenomonadales

Negativicutes

Song et al. analyzed samples from 63 advanced NSCLC patients on PD-1
inhibitors, finding higher B-diversity in patients with PFS > six months. These patients
were rich in Parabacteroides and Methanobrevibacter, while those with PFS < six months
had more Veillonella, Selenomonadales (modulating tumor cell properties and DNA
processes), and Negativicutes (inducing Treg cells and IL-10 to suppress immune

responses) (Song et al., 2020; Ehudin et al., 2022; W. Y. Cheng et al., 2020). The major
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gut microbiome-related biomarkers of R and NR for the treatment of NSCLC are shown in

Figure 1.6.

Gut microbiome related NSCLC biomarkers

Responders (R)
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Agathobacter (Genus)
Alistipes putredinis (Species)
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Syntrophococcus (Genus)
Bifidobacterium bifidum (Species)
Akkermansia muciniphila (Species)
Alistipes (Genus)
Eubacterium (Genus)
Ruminococcus (Genus)
Parabacteroides (Genus)

Methanobacteriaceae (Family)

Non-Responders (NR) (-

Eggerthellaceae (Family)
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Ruminococcus (Genus)
Bilophila (Genus)
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Parabacteroides (Genus)
Akkermansia muciniphila (Species)
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Figure 1.6: The gut microbial biomarkers associated with NSCLC treatment responses

1.4.2 Gut Microbiome and Microbial Strains

The human gut microbiome hosts a diverse range of microbial strains, each
uniquely contributing to the host's health and disease states (Bou Zerdan et al., 2022). In
NSCLC treatment, specific bacterial strains have been identified that significantly
influence therapeutic outcomes. For instance, B. longum and L. rhamnosus have shown
promise in enhancing the efficacy of ICIs (Sun et al., 2023). These probiotics are known
to modulate the immune system by promoting the production of beneficial cytokines and
enhancing the activity of dendritic cells and T-cells, which are crucial for an effective anti-

tumor response.
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Moreover, the presence of A. muciniphila has been correlated with improved
responses to PD-1 blockade therapy in NSCLC patients. This strain is particularly effective
in strengthening the gut barrier and reducing systemic inflammation, thereby supporting a
more robust immune response against cancer cells (Jin et al., 2019). Studies have indicated
that patients with higher levels of A. muciniphila in their gut microbiome tend to experience
better clinical outcomes with fewer adverse effects during ICI treatment. The beneficial
effects of A. muciniphila are thought to be mediated through its ability to produce short-
chain fatty acids and other metabolites with immunomodulatory properties (Souza et al.,

2023).

Another notable strain is F. prausnitzii, which has been linked to reduced toxicity
and enhanced therapeutic efficacy. F. prausnitzii is renowned for its anti-inflammatory
properties and ability to produce butyrate, a short-chain fatty acid that serves as a critical
energy source for colonocytes and helps maintain gut homeostasis. The presence of F.
prausnitzii in the gut microbiome is associated with a balanced immune response and a
lower risk of treatment-related complications, making it a potential target for microbiome-

based interventions aimed at improving NSCLC treatment outcomes (Parsaei et al., 2021).

1.4.3 Gut Microbiome and Genetic Variations

Genetic variations within the human gut microbiome significantly influence the
efficacy and toxicity of NSCLC treatments. The composition and genetic diversity of the
gut microbiome can impact drug metabolism, immune modulation, and inflammation, all
of which are critical in cancer therapy (Liu et al., 2023). Certain bacterial strains in the gut

microbiome, for example, can activate or deactivate chemotherapeutic agents, thereby
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affecting their therapeutic effectiveness. Moreover, variations in the gut microbiome can
modulate the host's immune response, influencing the success of immunotherapies, which
are increasingly utilized in NSCLC treatment. Strains such as B. fragilis and A. muciniphila
have been shown to enhance immune responses, potentially improving the outcomes of
immunotherapies (Liu et al., 2023). Understanding these genetic variations helps in
predicting patient responses to treatments and in developing personalized therapeutic

strategies.

1.5 Research Gap and Problem Statement

In NSCLC, the disease is often diagnosed in advanced stages, making traditional
treatments less effective. Addressing, the need to make the available treatment options

more effective to control cancer growth and progression to improve patient outcomes.

1.6 Objectives

e To identify gut microbiome strains and genetic variations linked to favorable or

unfavorable treatment responses in NSCLC.

e To explore potential mechanisms by which gut microbiome strains and genetic

variations influence treatment efficacy in NSCLC patients.
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CHAPTER 2: MATERIAL AND METHODS

In this study, bioinformatics analysis was conducted on metagenomic samples from
NSCLC patients, following several key steps to derive meaningful insights from the data.
Initially, the metagenomic data was retrieved and preprocessed to ensure its quality and
integrity. Subsequently, taxonomic profiling was performed to determine the taxonomic
composition of the samples. Strain profiling of the most abundant species was then
conducted to characterize the microbial strains present. Additionally, genetic variants were
identified through variant calling of microbial strains, focusing on the genes containing
these variants and exploring their potential functional attributes using gene ontology. To
further elucidate the findings, statistical analyses were conducted to identify associations
among species, genes, and variants with treatment response and time points. This
comprehensive approach enabled a deeper understanding of the microbial community and

the functional potential encoded within the metagenomic data from NSCLC patients.

2.1 Data Acquisition

The metagenomic data along with metadata was retrieved from a study by Routy et al.,
2018b titled "Gut microbiome influences efficacy of PD-1-based immunotherapy against
epithelial tumors,”. The study involved 118 samples from 87 NSCLC patients. The
metagenomic shotgun sequencing was retrieved from the European Nucleotide Archive

(EMBL-EBI) under the accession number PRJIEB22863.

Patients eligible for the study had advanced stage IHA-IV NSCLC with either

squamous or non-squamous histology and had documented recurrence or progression after
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at least one prior line of treatment. The study also included patients with known ALK or
EGFR mutations, who had received prior tyrosine kinase inhibitors (TKI). The treatment
involved administering the anti-PD-1 monoclonal antibody, nivolumab, intravenously
every two weeks until disease progression or intolerable side effects. Between August 2015
and September 2016, 60 NSCLC patients were enrolled, and an additional 27 patients were
enrolled in the validation cohort from October 2016 to April 2017. Tumor response was
assessed by the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST1.1),
and Computer tomography (CT) scans were performed at baseline and every 8 to 12 weeks
for the first year and then every 12 to 15 weeks until disease progression. Data were
collected from a case report form (CRF) at each site and evaluated an objective response
and considered R those in complete response, partial response, or stable disease compared
to non-responders NR, who either progressed or died. Progression-free survival (PFS) at 3
and 6 months was also defined as an endpoint using RECIST 1.1