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Abstract

After cardiovascular disease, cancer is the second major cause of death. Brain tumors really do

have the lowest overall survival rate of any type of cancer. Brain tumors are classified according

to their morphologically, and location. Appropriate diagnosis of the Tumor type enables the

physician to make the best treatment sensible decision and potentially save the patient’s life. In

the domain of Artificial Intelligence, there is a critical need for a Computer-Aided Diagnosis

(CAD) system that can assist physicians and radiologists with diagnosing and classification of

cancers. The most powerful and common Machine learning models used for different image

analysis tasks like 3D analysis, image retrieval, image classification, and object detection are

known as Deep Neural Networks (DNNs). They have achieved a performance level near the

human level. Based on the success of DNNs on natural images (e.g., captured images from

natural scenes like Imagenet and Cifar10), they have become very popular for tasks such as

medical image processing, organ/landmark localization, diagnosis of Cancer, diabetic retinopa-

thy detection, and Covid19 identification. In this study, a novel methodology will be proposed

for the early diagnosis and classification of Brain tumors using the different models of DNNs

and transfer learning.
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CHAPTER 1

Introduction and Motivation

Cancer is a major issue worldwide, ranking second only to cardiovascular diseases in caus-

ing death and responsible for one-sixth of all global deaths. Brain tumors are one of the most

lethal types of cancer, owing to their aggressive nature, diverse traits, and low probability of

survival. Brain tumors have various shapes, types, and locations. For instance, Acoustic Neu-

roma, Meningioma, Pituitary, Glioma, and CNS Lymphoma, among others. In clinical settings,

Glioma, Meningioma, and Pituitary tumors make up roughly 45 percent, 15 percent, and 15

percent of all brain tumors. By diagnosing the tumor type, physicians can determine patient

survival and choose the best treatment option from surgery, chemotherapy, radiotherapy, and

less invasive "wait and see" approaches. Therefore, tumor grading is critical to treatment plan-

ning and monitoring [39, 30, 32, 19]. Magnetic Resonance Imaging (MRI) is a non-invasive

and painless medical imaging procedure that captures high-quality 2D and 3D images of human

body organs, making it One of the most precise methods for detecting and classifying cancer.

However, recognizing the type of cancer from MRI images is challenging, specialized, and re-

liant on the radiologist’s experience, making the process prone to errors. Moreover, the tumor’s

shape may vary with few visible landmarks, making human diagnosis unreliable, which can

decrease the patient’s survival chances. Conversely, a correct diagnosis can facilitate timely and

appropriate treatment, extending the patient’s lifespan. Thus, the AI field must design an in-

novative Computer-Assisted Diagnosis system that can relieve doctors and radiologists of their

workload and accurately diagnose and classify tumors.

Recently, the field of Computer-Assisted Diagnosis (CAD) has garnered significant attention for

its role in advancing medical imaging and diagnostic radiology. This interest primarily focuses
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CHAPTER 1: INTRODUCTION AND MOTIVATION

on improving cancer classification and diagnosis through innovative research and development

initiatives. A CAD system usually consists of three primary steps, beginning with the segmen-

tation of lesions from the image. A Computer-Assisted Diagnosis (CAD) system generally in-

volves three main steps. Initially, the system separates the lesions from the image. Subsequently,

the model captures the features of the segmented tumors by using innotvative statistical or with

the help of mathematical parameters learned from a labeled set of MRI images. Lastly, the

system uses an appropriate machine learning classifier to anticipate the abnormality class [2, 7].

Before proceeding with classification, many traditional machine-learning techniques necessitate

the segmentation of lesions. However, segmentation is a time-consuming and computationally

intensive step that can be unreliable and may negatively affect the classification accuracy be-

cause of variations in image contrast and intensity normalization. Extracting distinctive parts or

features from a raw image, known as feature extraction, is a crucial process in determining the

contents of the image. However, this step can be time-consuming and requires prior knowledge

of the problem domain. Morphological feature-based classification of tumor types can be mis-

leading since tumors of different types may have a similar appearance. The extracted features

are utilized as inputs for machine learning classifiers that classify the image into a specific class

based on these features[8]. Unlike traditional machine learning, deep learning does not depend

on manually created features. Studies have shown [12, 6] that deep learning has effectively re-

duced the disparity between human and computer vision when it comes to pattern recognition

and can achieve better classification results compared to traditional machine learning methods.

The advancements in medical deep learning have made it clear that many state-of-the-art sys-

tems can be vulnerable to exploitation by adversarial examples [4, 16]. The risk of adversarial

attacks is higher in automated diagnostic processes, as they can stem from various sources such

as rare disease image sharing. These attacks involve crafting inputs that deliberately mislead

machine learning models into producing inaccurate diagnostic results, known as adversarial ex-

amples.

Adversarial attacks on deep learning models often involve altering the classification output of a

sample, leading to a decrease in the prediction confidence of the target model. Deep learning

models designed for disease diagnosis are more susceptible to these attacks as radiology images

are typically pre-defined and easily accessible, making it easier for attackers to manipulate them.

This vulnerability is higher in disease diagnosis models compared to other computer vision ap-

plications, as stated in source [38]. The risk of successful adversarial attacks on deep-learning

2



CHAPTER 1: INTRODUCTION AND MOTIVATION

models for rare diseases like COVID-19, Brain tumor, skin cancer and many more diseases is

higher due to the limited architectural diversity and data sharing among institutions to generate

big data repositories. These models are often publicly available, making it crucial to conduct

extensive research to understand potential attacks and develop robust training methods. Adver-

sarial attacks on diagnostic deep-learning algorithms have become a significant concern in both

physical and virtual settings, attracting attention and emphasizing the need for research into this

area as mentioned in sources [31, 37, 15, 27]. Cutting-edge techniques like FGSM attacks are

employed to examine the restrictions of current deep learning methods. These attacks involve

optimizing the generation of slight alterations to trick a target model, making it vulnerable to

attacks.

1.1 Problem Statement and Contribution

Cancer ranks as the second leading cause of death globally, following cardiovascular disease.

Among cancers, brain tumors exhibit notably poor survival rates. These tumors are categorized

based on their morphology and location. Accurate tumor classification is crucial for physicians

to determine the most effective treatment options, potentially saving patients’ lives. In Artificial

Intelligence (AI), there is a pressing demand for Computer-Aided Diagnosis (CAD) systems to

aid physicians and radiologists in cancer diagnosis and classification.

Deep Neural Networks (DNNs) are prominent in AI for various image analysis tasks such as

3D analysis, image retrieval, classification, and object detection. They have demonstrated per-

formance levels approaching human capabilities, particularly in natural image datasets like Im-

agenet and Cifar10. This success has spurred their popularity in medical applications, including

medical image processing, organ localization, cancer diagnosis, diabetic retinopathy detection,

and Covid-19 identification. This study proposes a novel methodology using DNNs and transfer

learning for early diagnosis and classification of brain tumors.

1.2 Study’s Objective

The key objective of this researh are:

• Diagnosing Brain Tumor via computer aided diagnosis

• Assisting radiologist and doctors in correct diagnosis and subsequent treatmemt of differ-

3



CHAPTER 1: INTRODUCTION AND MOTIVATION

ent types of tumors.

• Robustness of deep learning models under normal conditions as well as adversarial at-

tacks.

• Analyzing Brain tumor disease through the lens of deep learning

1.3 Advantages and Potential Applications

1.3.1 Advantages

The following are some of the dissertation’s benefits:

• Computer aided diagnosis (CAD) for Brain Tumor

• Early detection of Brain tumor

• Time reduction compared to conventional approach

• Helping physicians at far flung area

• Adversarial attacks on deep learning models

• Transform domain attacks on deep learning models

• Understanding adversarial attacks on Medical Images

• Robustness of Deep learning models towards adversarial attacks

1.3.2 Potential Applications

• Computer-aided diagnosis (CAD)

• Embedded devices

• Artificial intelligence and Deep learning

• Image processing

• Disease diagnosis

• X-rays images

4



CHAPTER 1: INTRODUCTION AND MOTIVATION

The remaining sections of this dissertation are as follows: The literature overview is in Chapter

2, followed by deep learning models and transfer learning in Chapter 3, and the methodology

of the proposed work is discussed in Chapter 4. In chapters 5 and 6, the results as well as future

work are discussed.

5



CHAPTER 2

Literature Review

This chapter looks at Artificial Intelligence based medical diagnostic tools and how they’re used.

Many countries are still suffering from brain tumors, and while some countries have reported

a decline in cases, brain tumors have not been completely eradicated. Various techniques of

dealing with brain tumors have been documented in the literature. Researchers are working

hard to establish an effective way to diagnose patients and are also frantically trying to find a

cure for the disease

2.1 Background Concepts

Advances in AI-based methodologies have led in an increase in demand for automatic appli-

cations in the medical industry for disease diagnosis over the last few decades [16]. These

artificial intelligence (AI) applications aid in enhancing diagnosis accuracy. Many such appli-

cations have been developed and are primarily employed in clinics and hospitals in the United

States. Artificial intelligence (AI) applications are widely deployed in image process- ing for

object detection, categorization and segmentation. Several of these applications do high-level

functions, such as disease prediction. Researchers are primarily focused on the creation of au-

tomated systems for tasks that are time demanding for health specialists to complete analysis,

hence assist- ing health professionals in providing better patient care. These AI-based solutions

aid pathologists and radiologists tremendously.

6
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2.2 Machine Learning

With the increasing amount of data, a tool to analyse it and generate infor- mation from it is

needed, and Machine Learning can help. Machine learning is a branch of artificial intelligence

that assists in the development of au- tonomous systems in which computers learn about the task

at hand without being explicitly coded. Machine Learning may be used in a variety of vocations.

For machine learning algorithms to work, handcrafted features are nec- essary. Feature selection

is a critical stage in Machine Learning, when im- portant characteristics are chosen to allow the

model to train and converge

smoothly. In medical diagnostics, a number of machine learning applications have been used. In

the pharmaceutical industry, many Machine learning applications have recently been developed,

with the system being able to identify patients who are more likely to benefit from the therapies.

The three basic areas of machine learning applications are:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

• The model is given labels and then asked to determine the link between input and output

using supervised learning. A supervised model’s output can forecast numerous categories

where the model is aiming to categorize, and this is referred to as ’Classification’ whereas

a scalar model’s output is referred to as ’Regression’.

• In Unsupervised learning, the labels are not given to the model during training.

• In Reinforcement learning the model learns based on the experiences.

The three essential steps in ML applications are datasets, features, and models.The dataset refers

to the massive amount of data that must be mined for understanding. The model is a representa-

tion of the phenomenon that a machine learning application has identified, and the features are

a subset of this data that aid in the learning process.

2.2.1 Classification

If the data is divided into multiple classes or categories, the model will learn the link between

the inputs and outputs and attempt to group similar data into a single category. The goal of the

7
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method is to draw distinctions between different kinds of classes. If the supplied data falls under

the decision boundary, it will be assigned to that class.

2.3 Deep Learning

Deep Learning is a popular subset of Machine Learning because it does not require feature se-

lection and instead learns features directly from the data, allowing it to handle more complicated

tasks. They’re popular because they’re simple to use and give more accurate results.

Neural networks are used in deep learning. It employs an artificial neural network that attempts

to replicate the human brain. Different layers are combined to form a neural network. Neural

network is made up of three layers: an input layer, a hidden layer, and an output layer. These

levels are made up of ’nodes.’ The data is sent into the input layer, the hidden layer does some

calculations, and the output layer outputs the required results. The weights and biases of these

hidden layers are changed in order to minimize the loss function and allow the model to con-

verge. The depth of a neural network is increased by adding numerous hidden layers, which is

why the term "deep" is employed.

Deep learning models work well when there is a lot of data. Depending on the activities they’re

utilized for. Neural networks come in a number of shapes and sizes. When working with

photographs, Convolutional Neural Networks (CNN) are used. You’ll want to use a Recurrent

Neural Network if you’re working on things like Natural Language Processing (RNN). Robotics,

video synthesis, facial recognition, and diagnosis of disease are all examples of deep learning

applications.

2.3.1 Deep Learning in Medical Field

Because of deep learning, many applications for medical diagnostics have been developed. Deep

learning is assisting health professionals in identifying more precise and efficient ways to treat

patients. These models aid in medication discovery by examining the patient’s medical history,

allowing for improved therapy. It can also be used to forecast whether or not a patient’s medical

insurance claim will be fraudulent. The diseased photos were digitized with full slide scanners

and then employed in the deep learning model. This has aided pathologists in analyzing complex

8
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tasks such as cancer detection. These models also make heavy use of radiological scans such as

CT and MRI images, which assists radiologists.

2.4 Adversarial Attacks

Adversarial attack entails skillfully altering an original image in a way that the modifications

remain imperceptible to human vision. The resulting modified image, called an adversarial im-

age, is incorrectly classified by a classifier, while the original image is classified correctly. These

attacks can have serious real-world implications; for example, altering a traffic sign could con-

fuse autonomous vehicles, potentially leading to accidents. Another concern is the possibility of

illicit content being subtly altered to avoid detection by content moderation algorithms on major

websites or by law enforcement web crawlers. The extent of alteration is typically measured

using the l norm, which quantifies the maximum absolute shift in a single pixel[29].

Figure 2.1: Adversarial Example [38]

2.4.1 White Box Attack and White Box Attack

In white-box attacks, the attacker has access to the model’s parameters, allowing them to gen-

erate adversarial images with precise knowledge of how the model functions. Conversely, in

black-box attacks, the attacker lacks access to these parameters. Instead, they create adversarial

images using either a different model or no model at all, relying on the expectation that these

images will transfer to the target model successfully[26].

9
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2.4.2 Targeted and Non-targeted Attacks

Non-targeted attacks aim to induce misclassification of the adversarial image by the model,

while targeted attacks aim to manipulate the model into classifying the image as a specific tar-

get class different from its true class.

2.4.3 Adversarial Attacks Common Type

Gradient-based methods are frequently employed in adversarial attacks. In these methods, at-

tackers adjust the image according to the gradient of the loss function with respect to the input

image. There are two main approaches to conducting these attacks: one-shot attacks involve a

single adjustment in the gradient direction, while iterative attacks involve multiple successive

adjustments instead of a single step[17].

The following are the common types of attack

• Fast gradient sign method

• Targeted Fast gradient method

2.5 Related Work

2.5.1 Machine learning for Brain tumor detection

Over time, there have been numerous attempts to create an automated system capable of clas-

sifying early diagnosis of brain tumors from magnetic resonance image. Several researchers

have utilized conventional machine learning techniques, which involve several steps such as

pre-processing the images, extracting features, reducing the size of features through feature

selection, and applying a classification and detection algorithm to produce the final result. Dif-

ferent methods were used for feature extraction, including Discrete Wavelet and Discrete cosine

transform [36]. The techniques used in this context include the Gray Level Co-occurrence Ma-

trix (GLCM) [36], Histogram of Oriented Gradients (HOG) [14], Genetic Algorithm [13], and

Zernike Moments. The main difficulty in earlier machine learning research has been the labo-

rious, time-intensive, and error-prone nature of manual feature extraction, which also demands

10
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prior domain expertise. In the past, various approaches have been used to develop an automated

system for brain tumor classification using MRI images.

2.5.2 Deep Neural Network for Brain tumor detection

Earlier methods involved segmenting the tumors based on regions before feature extraction as

well as classification. Additionally, feature selection necessitated the further reduction of se-

lected features, and there was no single method of extraction of feature that could be universally

applied. However, with the advent of deep learning [20], a sub field of machine learning, manual

feature engineering is no longer required. Nevertheless, to obtain better outcomes, it should be

applied appropriately to preprocessed data, with the use of suitable architectures and hyperpa-

rameters. Convolutional Neural Networks (CNNs) are a noteworthy instance of deep learning

methods, owing to their advanced image processing capabilities and faster computation rate,

they are widely used in brain tumor research. Numerous studies have attempted to leverage

CNNs for the diagnosis of brain cancer, as documented in the literature [23, 35]. These ef-

forts seek to determine the optimal model and network architecture for enhancing the automatic

classification of brain cancer. Earlier studies on brain tumor classification using deep learning

methods utilized smaller datasets compared to the dataset used in this study. This is because

medical datasets are relatively rare and difficult to collect. A deep learning model based on

CNNs efficiently addressed the problem of brain tumor classification [25]. One of the benefits

of a CNN-based classifier system is its ability to provide a fully automated classifier without

necessitating manually segmented tumor regions. Pashaei et al. [24] conducted a research in

which they developed a CNN structure that extracted brain MRI features. This CNN design had

five learnable layers, with all layer filters measuring 3x3. The CNN model achieved an accuracy

rate of 81 for classification. However, the accuracy was enhanced by combining CNN features

with an extreme learning machines (ELM) classifier model. The classifier’s discrimination abil-

ity was shown to be limited by the low recall measures for meningioma. To overcome this issue,

Afshar et al. [21] utilized a modified CNN structure called CapsNet, which considered the spa-

tial relationship between the tumor and its neighboring tissues.

However, the resulting enhancement in performance was only minor. In studies conducted by

other researchers [33], Convolutional Neural Networks were utilized to classify brain tumors,

11
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resulting in better accuracy. On the other hand, authors of [22] introduced a Capsule Networks

architecture. This approach resulted in accuracy rates of 90 and 86, respectively. A study by A.

Pashaei and colleagues [34] employed a combination of a Convolutional Neural Network and

other machine learning techniques, such as KELM, to achieve an accuracy rate of 93.8.

12



CHAPTER 3

Deep Learning Models and Transfer

Learning

This section provides a detailed explanation of the architecture of deep learning models, in-

cluding their key components and structure. Additionally, it delves into the concept of transfer

learning, discussing how pre-trained models on large datasets can be adapted to specific tasks,

improving performance and efficiency by leveraging previously learned features and knowledge.

3.1 Deep Learning Models

Deep learning is an emerging field which consists of following basic models.

• Supervised models

• Unsupervised models

In Supervised models, the labels are given to the model during training stage. The most common

examples of supervised models are Multilayer Perceptron and Convolutional Neural Network

(CNN) while in Unsupervised models, the labels are not given to the models during training

stage. The input is fed into the model and the model tries to make prediction without the labels.

3.2 Convolutional Neural Network CNN

When dealing with pictures or Computer Vision tasks, a convolutional neural network (CNN)

model is used. Numerous CNN applications have been created to assist with object detection,

13
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classification, and segmentation for applications such as human face detection, vehicle identifi-

cation, and so on. CNN is often utilised in the medical field to aid in disease diagnosis

There are mainly three building blocks in the architecture of CNN

• Convolution Layer: This layer is used for learning the features of an input image.

• Max-Pooling layer: It is also known as subsampling layer. It down samples the image in

order to reduce image’s dimensionality leading to lesser computational complexity.

• Fully Connected Layer: It is known to instill classification capacities in the network.

Figure 3.1: General Structure of CNN

3.2.1 Alexnet

AlexNet was suggested in 2012 and was the winner of the 2012 ImageNet classification contest.

It was the first time that a deep neural network was used to classify images in an imagenet.

AlexNet has eight layers in total, excluding the pooling levels. Maxpooling is the pooling

method employed. Five convolutional layers and three fully linked layers comprise this image.

It employs a wide receptive field (11 x 11) and a small receptive field (5 x 5) in the initial

layers and a smaller receptive field (3x3) in the subsequent layers. Each convolutional layer is

followed by a ReLU activation function, and the final layer classifies 1,000 classes using the

softmax function [18]. The architecture of AlexNet is shown
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Figure 3.2: Architecture of Alexnet

3.2.2 VGGNET

The Oxford Visual Geometry Group developed the VGG architecture, which is the state-of-

the-art model in 2014. VGG was an evolution of the AlexNet architecture. VGG has fewer

parameters than AlexNet due to the usage of a set of filters with 12 tiny receptive fields of size

(3 x 3). On imagenet data, it achieved a top 5 test accuracy of 97.2 percent for the Classification

challenge.Vgg has two different variants.One is Vgg-16 which is 16 layer dense model while

the other one is Vgg-19 which is 19 layers dense network[28].

Figure 3.3: Architecture of VGG model

3.2.3 DenseNet

Dense Convolutional Networks (DenseNet) require fewer parameters than typical CNNs since

they never learn redundant mapping features. DenseNet’s layers are relatively thin, consisting of
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12 filters, which result in a smaller collection of new feature maps. DenseNet is available in four

flavours: DenseNet121, DenseNet169, DenseNet201, and DenseNet264. The computational

cost is minimised since each dense block is directly connected to the input image and loss

function gradient [1].

Figure 3.4: Architecture of DenseNet citeR41

3.2.4 Squeezenet

Squeezenet is another sort of CNN that is learned using an imagenet dataset. AlexNet is more

sophisticated by a factor of fifty. The network is formed by an extruded and extended fireproof

module. The extruded layer contains only a single 11-filter, which is more suitable for an en-

larged layer than a mixture of 11 and 33-filters . CNN classifiers are regarded as a significant

evolutionary step in the development of Inception models. They are inherently complicated.

There are numerous versions, with each one improving on the preceding one iteratively [9].

3.2.5 ResNet

The number of layers in deep learning models enhances the network’s depth. However, when the

network’s depth increases, it runs into problems, culminating in a network that is extremely bad

and inaccurate. The following are the most common challenges that a deep network encounter:

• Exploding/Vanishing Gradient: As the number of layers in the network rises and the

weights are changed, gradients become unstable. As a result of continuous multiplication,

the gradient value may climb to an infinitely large value or shrink to an eternally small

value, and the weights are not updated.
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Figure 3.5: Architecture of SqueezeNet

• Network Degradation: Another issue is that as you get deeper into the model, its perfor-

mance begins to deteriorate. The network’s accuracy suffers as a result of low perfor-

mance.

Microsoft created a network called Residual Neural Network (ResNet) to overcome the chal-

lenges outlined[10].

The ResNet architecture’s basic concept is to use skip connections after numerous levels. After

a few more levels, the output from the preceding layers can be applied as is. As a result of

the increase in depth, the exploding /vanishing gradient problem is avoided, as well as network

performance decrease. These leftover blocks are simply put together to increase the depth of

the networks. The input and output dimensions are the same in an identity skip connection.

Resnet has been released in many versions, such as resnet50, resnet101, and resnet151. The

only distinction between them is the number of layers.

3.3 Transfer Learning

When faced with a huge dataset, it is well established that deep transfer learning CNNs outper-

form smaller networks. As a result, transfer learning is frequently used when smaller datasets

are available. The following figure can assist in comprehending the concept of transfer learning.

Without sacrificing efficiency, a model trained from a bigger dataset (ImageNet) can be put to

use for smaller datasets. Transfer learning has recently been used to for many image recognition

tasks as well as for medical images for disease diagnosis[8].
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Figure 3.6: Architecture of Residual block

Figure 3.7: Block diagram of Transfer learning
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Proposed Methodology

The following section outlines the proposed model’s design and implementation.

4.1 Proposed method pipeline

Our methodology comprises several stages that together form the pipeline for constructing our

deep learning model. It begins with acquiring raw data and concludes with generating the output.

Each stage’s output serves as input for the subsequent stage. The proposed approach pipeline is

depicted in the figure below, with detailed explanations provided in the following sections[3].

• Acquiring Data:Data acquisition is essential for defining the task and evaluating the model’s

performance. Once we acquired the brain tumor dataset, we conducted necessary image

preprocessing and conversions to optimize the model’s performance.

• Preprocessing Data: Due to constraints, medical image datasets are usually smaller than

datasets in other domains. Maximizing the data during runtime and enable the model to

achieve excellent results and generalize, we used various augmentation techniques while

preprocessing the data.

• Displaying data in a visual format: To understand the patterns in the data, we created

visualizations of the training data during both the pre-processing and augmentation stages.

• Creating a Model: A model refers to an algorithm which receives input data X and gen-

erates predictions for Y outcome.

• Model training: This stage entails optimizing model parameters and updating classifica-

tion weights through iterative training.
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Figure 4.1: Overall methodology for Classical and Transform domain attacks

• Evaluating a Model: To evaluate the performance of our model, we used various metrics

such as accuracy, precision, recall, f1-score, and balanced accuracy.

• Adversarial attack: In order to analyze the effect of deep learning models on adversarial

attacks, we apply different attacks.

4.2 Dataset

We will utilize a brain tumor dataset consisting of 3064 T1-weighted contrast-enhanced MRI im-

ages, which were made publicly available and collected from Nanfang Hospital in Guangzhou,

China, and General Hospital, Tianjin Medical University in China between 2005 and 2010. The

dataset encompasses three types of brain tumors: Meningiomas, Gliomas, and Pituitary tumors,

which are among the most prevalent brain tumors. Cheng et al. [8]initially processed the dataset

to develop a brain tumor classification model. The dataset includes 2D MRI scan images from

233 cancer patients, with each patient’s identity anonymized. Figure 5 shows sample images
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Category of Tumor Patients Number Slices Number

Meningioma Tumor 82 708

Pituitary Tumor 62 930

Glioma Tumr 89 1426

with class labels, and Figure 4 depicts the distribution of images across the different classes.

Figure 4.2: Overall methodology for Classical and Transform domain attacks

4.3 Data-Preprocessing

Before inputting images into our classifiers, we utilize a variety of preprocessing techniques.

For instance, the MRI images in the Figshare dataset are in a ”.mat” format defined in Matlab,

so we must expand the dimensions of the image to read it. Subsequently, we convert all images

into NumPy arrays, which take up less space and are compatible with our model in Python. To

ensure our model can train on unordered data, we shuffle the dataset before splitting it into three

sections: training, testing, and validation. We allocate approximately 80 of the data to training
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and the remaining 20 to validation and testing.

4.4 Data Augmentation

To address the issue of inadequate training data, one effective solution is to utilize data augmen-

tation techniques. By applying modifications such as adjusting brightness, scaling, and flipping

to the existing data, new images with the same label can be created, effectively expanding the

dataset. This approach is particularly useful for deep learning models, which perform better with

larger datasets. Data augmentation also acts as a form of regularization on the dataset level,

reducing overfitting and improving generalization performance without modifying the model

architecture. Additionally, data augmentation can help address the class imbalance by over-

sampling the minority class, resulting in more balanced training data. Medical image datasets

are often limited in size and difficult to obtain, making data augmentation especially useful in

applications such as skin lesion classification as well as disease of liver lesion detection and

classification and brain scan analysis and other medical imaging tasks [11, 3].

In our study, we incorporated diverse augmentation methods during the training process to in-

crease the number of images. These techniques included flipping the images horizontally and

vertically as well as rotating them.

4.5 Proposed Model

In our groundbreaking research, we employed a comprehensive ensemble of eight distinct

models, each meticulously crafted to tackle the intricate challenge of brain tumor classifica-

tion. Among these formidable models are our bespoke Convolutional Neural Network (CNN),

renowned architectures like AlexNet, ResNet-34, SqueezeNet, GoogLeNet, DenseNet-121, Inception-

V3, and the venerable VGG-16.

Harnessing the power of these models demanded extensive training on our meticulously curated

dataset. With 3,216 high-resolution images earmarked for training and a further 805 meticu-

lously selected images for rigorous evaluation, our models were put through their paces.

To overcome the inherent limitations of training data and time constraints, we adopted a strate-

gic transfer learning approach. By leveraging pre-trained models, we expedited the learning
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Hyper-Parameter Optimized Values

Optimizer used SGD

Activiation function used Relu

Learning rate used 0.0001

Batch size used 32

Epochs used 30

Table 4.1: Hyper-parameters for proposed method

process while ensuring adaptability to our specific task. This entailed freezing the upper layers

of the pre-trained models and introducing fully connected layers tailored to our dataset. Through

this meticulous process, we aimed to extract nuanced features while preserving the invaluable

insights encapsulated within the pre-trained weights.

Our training regimen spanned an exhaustive 300 epochs, with the Rectified Linear Unit (ReLu)

activation function and Stochastic Gradient Descent (SGD) optimizer at the helm. SGD opti-

mization, renowned for its stochastic nature, facilitated dynamic adjustments to model parame-

ters, optimizing convergence towards our desired outcomes.

For transparency and reproducibility, we have meticulously documented the hyperparameters

governing our model’s performance, as outlined in table below. Each parameter meticulously

calibrated to strike the delicate balance between model complexity and performance, ensuring

robustness and generalizability across diverse datasets.

4.6 Adversarial attacks

An adversarial attack refers to a subtle modification of an original image that is almost imper-

ceptible to the human eye, resulting in an adversarial image that is misclassified by the classifier.

This type of attack, known as adversarial noise, can greatly compromise the robustness of deep

neural networks used for various image classification tasks. There are two categories of adver-

sarial attacks: in-distribution (IND) and out-of-distribution (OOD) [31]. Although there have

been extensive studies on IND adversarial attacks for a variety of applications, this research

illustrates that attacks such as FGSM can effectively impair the performance of dependable DL

models [32,33].
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4.6.1 Fast Gradient Sign Method

In a text, the fast gradient sign method creates an adversarial example using the neural network’s

gradients. The fast gradient sign process for determining adversarial images was invented by

Ian Goodfellow et al. (2014) [5]. According to Equation (1), the gradient sign method generates

adversarial examples by using the gradient of the existing model:

y ‘ = y+ ε.sign(∇y(θ ,y,z)) (4.6.1)

The input image is denoted by y, and its original class is denoted by z, and the parameter vector

of model is denoted by θ . J(θ ,y,z) denotes the loss function that was used in training of the

network. To begin, with the loss function gradient the is calculated through the input pixels. The

operator ∇ is a mathematical technique for computing the function’s derivatives with respect to

the model’s various parameters. As a result, ∇xJ(θ ,y,z) is now the gradient vector through

which the sign is obtained. The gradient can have either a positive or negative sign, based on the

loss function. The positive sign indicates that loss increases by increasing the pixel intensity, i.e.,

the model’s error, while the negative sign indicates that by decreasing the pixel intensity results

in increasing the loss. This vulnerabilities occur when the model treats the relationship between

the intensity of an input pixel and the class score linearly. Figure 3 illustrates the procedure.

The sign (xJ(,y,z)) represents the product of a very slight epsilon value and the signed values

Figure 4.3: Block diagram of FSGM

calculated through the gradient vector. The output of the multiplication is then added to that

original image Y to generate the adversarial images Y .

y ‘ = y+η (4.6.2)

24



CHAPTER 4: PROPOSED METHODOLOGY

where η denotes sign (yJ(θ ,y,z)).

Thus, differing the value of epsilon, which is typically between 0 and 1, results in a variety of

adversarial examples. The majority of these examples are imperceptible to the naked eye [34].

4.6.2 Patch gradient Method

It is also a white box attack meaning that all the model gradients can be accessed by the attacker.

In other words, the attacker is equiped with a copy of weights of the neural network. White box

attacks are way more powerful than other attacks as they give access to the attacks to craft the

attack for fooling the model in such a way that the pertubations are discarded which can be

evident in case of transfer attacks. PGD is considered as the strongest white box attack as it

minimizes the effort and time for an attacker into finding the best attack.

Figure 4.4: PGD attack

4.6.3 Basic Iterative Method

This attack is an advanced version of FGSM. In order to create this attack, step size of FGSM is

made smaller and it is replaced multiple times. The result obtained after each iteration is clipped

so that pertubation stays within the original image’s neighborhood. Resultantly, basic iterative

method becomes much stronger step having small pertubations.
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Results and Discussion

This chapter delves into the software utilized for implementation purposes, along with a detailed

examination of the recommended approach and its outcomes. Furthermore, it scrutinizes the

performance of the proposed work, specifically focusing on early diagnosis of brain tumors

utilizing Deep Neural Networks (DNN), as well as classical and transform domain adversarial

attacks on medical images.

Pytorch enables the end user to readily access a variety of deep learning models and pre-trained

weights. It enables significant time savings by avoiding the need to develop and train deep learn-

ing models from scratch.The input size is reduced to different dimensions to make in compatible

for different deep learning models.

5.1 Results for the Brain Tumor diagnosis

In this section, we conducted a comparative analysis of various pre-trained models alongside our

custom-designed model. The training phase utilized 3216 data samples, with an additional 804

samples reserved for model evaluation. Results indicate that fine-tuned versions of AlexNet,

Inception V3, and SqueezeNet achieved the highest accuracy of 98% on test images. Our pro-

posed model also performed well, achieving an accuracy of 97.02%, notable for its efficiency

with fewer computational demands and parameters compared to other models. The performance

of these models is summarized in the table below.
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Parameter Values

BrainNet (self-designed) 97.02

ResNet-18 94

AlexNet 92

VGG-19 93

Inception v3 98

Table 5.1: Accuracies for different DL models

5.2 Performance Metrics

A simple confusion matrix is shown below. Five different criteria are explained below that

Figure 5.1: Confusion Matrix

encompasses the techniques of deep transfer learning:

5.2.1 Accuracy

It is the ratio of True Positive and True Negative observations to the total number of observations.

(tp + tn)/(tp + tn + fp + fn) (5.2.1)

where tn and tp is for true negative and true positive respectively while fp represents false posi-

tive and false negative is shown by fn.

5.2.2 Recall

Recall is calculated as

tp/(tp + fn) (5.2.2)
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5.2.3 Specificity

In general specificity is calculated by

tn/(tn + fp) (5.2.3)

5.2.4 Precision

It compares the True Positive to all positive cases in the Predicted class.

tp/(tp + fp) (5.2.4)

5.2.5 F1-score

It is determined by the use of Recall and Precision.

2x[(precisionxrecall)/(precision+ recall)] (5.2.5)

The F1-Score is directly proportional to the classifier’s performance. A high F1-score indicates

that the classifier is doing well.

5.3 Parameters Count

The table below summarises the entire number of parameters in our custom-built CNN and

various models. VGG16 contains the most parameters, indicating that it is more computationally

complex than other models. In comparison to previous pre-trained models, our suggested CNN

model has less parameters.

5.4 Classical Adversarial Attacks on Medical Images

This section explains the generation of adversarial images in classical domain using the concept

of FSGM in order to fool the state of art DNN.

5.4.1 Analysis of FGSM based attack on Brain Tumor X-rays

In our study focusing on brain tumor sample categorization, we employed transfer learning-

based models to enhance classification accuracy. However, to evaluate the robustness of these
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Parameter Values

ResNet 34 21.282 million

CNN (Self designed) 13 million

AlexNet 61 million

GoogleNet 7 million

VGG 16 138 million

Inception V3 24 million

DenseNet 121 7.2 million

SqueezeNet 7 million

Table 5.2: Parameters of different Models

models, we subjected them to the Fast Gradient Sign Method (FGSM) attack. This attack is a

commonly used technique to generate adversarial examples by perturbing input data slightly in

the direction of the gradient of the loss function with respect to the input.

The primary objective was to investigate the impact of FGSM perturbations on the perceptibility

of brain MRI images and to determine whether such perturbations could lead to misclassification

by both human and machine radiologists. By analyzing the FGSM results for both binary and

multiclass scenarios, we aimed to understand the vulnerability of the models to adversarial

attacks and assess the potential risks associated with deploying them in clinical settings.

Our findings shed light on the susceptibility of transfer learning-based models to adversarial

attacks, highlighting the need for robust defenses to safeguard against such threats in medical

image analysis applications.

From the Table 5.3, it can seen that by increasing the value of epsilon, the pertubations increases

as a result the accuracies of different deep learning models drops abruptly.For high value of

epsiolon, the pertubations can be easily seen by naked eye.

5.4.2 Analysis of PGD based attack on Brain Tumor X-rays

Building upon our investigation into the robustness of transfer learning-based models for brain

tumor classification, we extended our analysis to include the Projected Gradient Descent (PGD)

attack. Unlike the FGSM attack, PGD iteratively applies small perturbations to input data while

ensuring that the perturbed samples remain within a specified epsilon-bound neighborhood. This
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Table 5.3: Accuracy scores for different models under various epsilon values.

Model Accuracy Epsilon 0 Epsilon

0.0002

Epsilon

0.0004

Epsilon

0.0006

Epsilon

0.005

Inception-V3 97 97 95 93 91 37

AlexNet 92 92 91 90 89 54

ResNet-18 84 84 21 5 1.6 3.2

Vgg19 87 87 82 75 70 2.2

BrainNet 97.02 97.02 86 80 65 40

approach allows for a more systematic exploration of the model’s vulnerability to adversarial

manipulation.

Similar to our evaluation with the FGSM attack, our focus with PGD was twofold: first, to

assess the degree of perturbation required to mislead the models, and second, to evaluate the

perceptibility of the perturbed brain MRI images. By subjecting the models to PGD attacks and

analyzing the resulting adversarial examples, we aimed to gain deeper insights into the resilience

of the models against adversarial perturbations and the potential impact on their performance in

clinical settings.

Through our investigation of both FGSM and PGD attacks, we aim to contribute valuable in-

sights into the robustness and reliability of transfer learning-based models for brain tumor clas-

sification. Our findings will inform the development of more resilient models and defense mech-

anisms to mitigate the risks associated with adversarial attacks in medical image analysis.

From the table below, it can seen that by increasing the value of epsilon, the pertubations in-

creases as a result the accuracies of different deep learning models drops abruptly.For high value

of epsiolon, the pertubations can be easily seen by naked eye.

Table 5.4: Accuracy scores for different models under various epsilon values.

Model Accuracy Epsilon 0 Epsilon 0.05 Epsilon 0.07 Epsilon 0.105 Epsilon 0.1

Inception-V3 97 97 24 24 24 24

AlexNet 92 92 54 36 32 32

ResNet-18 84 84 33 32 31 31

Vgg19 87 87 85 (0.0001) 26 (0.002) 7 (0.05) 7 0.1

BrainNet 97.02 97.02 81 50 40 25
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5.4.3 Analysis of BIM based attack on Brain Tumor X-rays

In addition to evaluating the susceptibility of transfer learning-based models to adversarial at-

tacks like the FGSM, our study also explored the implications of the Boundary-Input-Masking

(BIM) attack on brain tumor classification. The BIM attack extends the FGSM approach by

iteratively applying small perturbations to input data, aiming to maximize the model’s misclas-

sification rate while ensuring the perturbations remain imperceptible to human observers.

By subjecting our models to the BIM attack and analyzing the resulting perturbed brain MRI

images, we sought to ascertain the effectiveness of this attack strategy in circumventing classi-

fication models trained on medical imaging data. Our investigation focused on quantifying the

extent of perturbation required to induce misclassification and assessing the potential impact of

such attacks on the reliability of automated brain tumor diagnosis systems.

Through comprehensive analysis of the BIM attack results, we aimed to enhance our under-

standing of the vulnerabilities inherent in transfer learning-based models deployed in medical

image analysis tasks. These insights are crucial for developing robust defense mechanisms to

mitigate the risks posed by adversarial attacks in clinical settings.

From the table below, it can seen that by increasing the value of epsilon, the pertubations in-

creases as a result the accuracies of different deep learning models drops abruptly.For high value

of epsiolon, the pertubations can be easily seen by naked eye.

Table 5.5: Accuracy scores for different models under various epsilon values.

Model Accuracy Epsilon 0 Epsilon 0.05 Epsilon 0.01 Epsilon 0.105 Epsilon 0.2

Inception-V3 97 97 47 47 47 47

AlexNet 92 92 64 64 64 64

ResNet-18 84 84 30 30 30 30

Vgg19 87 87 6 6 6 6

BrainNet 97.02 97.02 90 81 70 50
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Conclusion and Future Work

he concluding remarks of our study on early detection methods for brain tumors and the eval-

uation of adversarial attacks on medical images using classical techniques are elaborated upon

in this chapter. We delve into the effectiveness and limitations of our proposed approach in

accurately identifying brain tumors from MRI scans, considering both the potential benefits and

challenges posed by adversarial attacks.

Through comprehensive analysis of our experimental results, we shed light on the strengths and

weaknesses of our detection framework, highlighting its performance in differentiating between

tumor and non-tumor regions in brain images. Furthermore, we discuss the impact of adversarial

attacks on the robustness of our classification models, emphasizing the need for robust defense

mechanisms to counter such attacks.

In addition to summarizing our findings, we outline potential avenues for future research in

this domain. These include exploring novel techniques for enhancing the resilience of brain

tumor detection models against adversarial attacks, investigating the integration of multi-modal

imaging data for improved diagnostic accuracy, and exploring the feasibility of deploying our

approach in clinical settings.

By addressing these research directions, we aim to contribute to the ongoing efforts in advancing

early detection methods for brain tumors while addressing the emerging challenges posed by

adversarial attacks on medical image analysis systems. Through collaboration and continued

exploration of innovative methodologies, we strive to improve the effectiveness and reliability

of brain tumor diagnosis in clinical practice.
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6.1 Future Work

It is imperative to detect brain tumor patients early to mitigate the progression of the disease. In

this research, we have proposed a method called deep transfer learning, which leverages MRI

images to identify patients with brain tumors and predict whether the tumor is present or not on

a diagnostic basis. Our findings suggest that this technique can aid healthcare professionals in

decision-making processes in various ways. Moreover, by augmenting the brain tumor dataset

with a larger repository containing diverse chest disorders data, we can develop a more robust

and practical model. Additionally, subtle modifications to the dataset through adversarial attacks

in both classical and transformed domains can potentially deceive deep learning algorithm.
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