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ABSTRACT 

The rapid increase in data center size and number, driven by escalating internet and cloud 

computing demands, has led to high energy consumption and public concern. Densely 

packed high-powered systems within data centers generate significant radiant heat, 

necessitating effective and Reliable cooling solutions for maintaining uptime. This 

research presents a novel method to evaluate Computer Room Air Conditioning (CRAC) 

system performance and efficiency. Firstly, a rack-level heat transfer probabilistic 

constraint is introduced, integrating environmental conditions such as ambient 

temperature, humidity, and airflow patterns, which significantly impact heat transfer 

processes and are accurately incorporated to reflect real-world scenarios. Additionally, the 

model accounts for specific configurations and thermal properties of data server racks, 

enabling precise simulation of heat generation and dissipation patterns. The probabilistic 

variables undergone training including the layout of servers, types of cooling mechanisms 

employed, and the material properties of the racks. Secondly, modelling the CRAC 

system’s heat transfer rate as random distribution facilitates effective thermal load 

management and balances computational demands with accuracy. Based on the output 

from two probabilistic performance functions, a multi-response Gaussian process 

(AMRGP) model is developed using an adaptive sampling technique, enhancing predictive 

accuracy and efficiency by training the predicted responses with a learning U-function to 

calculate the probability of failure and reliability of the model. The proposed method also 

improves risk assessment by predicting the likelihood of failure events, aiding in the 

development of a powerful tool for designing and evaluating CRAC system reliability in 

complex and uncertain environments. This research thus represents a significant 

advancement in the field of data center engineering, providing a robust framework for 

future development in thermal management and reliability assessment. 

Keywords: Data center, CRAC system, Radiation heat transfer, MCS, Reliability 

predictions, Adaptive sampling, Thermal management tools.
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CHAPTER 1: INTRODUCTION 

1.1 Background and Motivation 

Data centers have become the nerve centers of modern digital operations, playing a 

pivotal role in storing, processing, and delivering vast amounts of data essential for 

businesses, organizations, and individuals. Within these facilities, the efficient 

management of temperature and humidity levels is vital to ensure the reliable operation of 

critical equipment. Computer Room Air Conditioning (CRAC) systems emerge as key 

components in maintaining optimal environmental conditions within data centers. These 

systems are specifically designed to regulate temperature and humidity levels, effectively 

dissipating the heat generated by densely packed servers and networking equipment. 

The background of the CRAC system stems from the escalating demands of data 

center operations, with a surge in data traffic from 2010 to 2018 due to the rise of cloud-

based services and applications provided by major commercial cloud services providers 

such as Google, Facebook, and Amazon [1]. With rising concerns about energy 

consumption and environmental sustainability, there has been a growing emphasis on 

making data center operations more energy-efficient and reliable. CRAC systems, which 

typically account for a significant portion of energy usage within data centers, have been a 

focal point for energy efficiency initiatives. Manufacturers have introduced more energy-

efficient designs and technologies, such as variable-speed compressors and economizer 

modes, to reduce energy consumption and improve the coefficient of performance. 

The reliability analysis of CRAC systems in data centers is driven by the critical 

importance of cooling systems in maintaining the reliability, availability, and energy 

efficiency of data center infrastructure. According to [2], by conducting quantifiable 

reliability analysis on component’s inherent characteristics, data center operators can 

identify vulnerabilities, optimize performance, and implement proactive measures to 

ensure continuous and uninterrupted operations, thereby guaranteeing the delivery of 

reliable and robust data center services. The main motivation of this study comes from the 



2 

 

need for the reliability analysis of data center’s spatial data, intensive radiation heat 

uncertainty quantifications, and surrogate modelling using the Kriging method. A 

classification derived from the synopsis of data center energy consumption and reliability 

modelling is offered in Figure 1. 

 

Figure 1.1: Spectrum of data center reliability analysis and energy consumption 

modelling 

1.2 Environmental Classes of Data Centers 

The CRAC system of data centers serves a multifaceted role critical to their efficient 

operations. Its foremost importance lies in temperature regulations, as the CRAC system 

diligently maintains optimal temperatures within the data center. By effectively managing 

heat dissipated from servers and networking equipment, it prevents overheating, thus 
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protecting from hardware failures and costly downtime. As data centers become more 

sophisticated and capable of handling big data, there arises a critical need for a standardized 

framework to categorize varying levels of data centers capacities. The American Society 

of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) has risen to this 

challenge by introducing ASHRAE 2008, and 2011 standards, which were further 

restructured into the 2015 ASHRAE environmental classes for data center applications [3]. 

These classes provide guidelines for CRAC system design and implementation to 

enterprise engineers. This section discusses three data center environmental classes, each 

representing allowable environmental ranges and thresholds for critical equipment and the 

density of the data center. 

 

Figure 1.2: Environmental classifications of data center infrastructure 

1.2.1 Class A: Tightly Controlled Environments 

Class A represents mission-critical data centers where maintaining tight 

temperature and humidity tolerances is imperative for optimal equipment performance and 

reliability. It allows only 2.4 𝑚𝑖𝑛/𝑦𝑒𝑎𝑟 downtime, with fully redundant equipment 

commissioning. The recommended temperature range is  64.4°𝐹 to 80.6°𝐹 with dew point 
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and humidity ranges of 10.4°𝐹 DP & 20% RH to 59°𝐹 DP and 80% RH. Class A 

environments comprise of enterprise servers, storage products, and volume servers. These 

data centers are equipped with advanced cooling technologies, monitoring mechanisms, 

and robust equipment to withstand continuous heat flux and changing ambient conditions. 

1.2.2 Class B: Controlled Environments 

The data centers pertaining to Class B have a wider operating range while still 

maintaining adequate environmental control. They offer 1.6 ℎ/𝑦𝑒𝑎𝑟 downtime with 72 ℎ 

power failure safety and temperature ranges from 41°𝐹 to 95°𝐹 with humidity range of 

8% to 80% RH. This class is suitable for data centers where energy efficiency is a priority, 

as the broader temperature range allows for more flexible cooling strategies without 

compromising equipment reliability. 

1.2.3 Class C: No-Control Environments 

Class C data centers expand the permissible temperature ranges further, making 

them suitable for environments where energy efficiency takes precedence over precise 

environmental control. They offer 28.8 ℎ/𝑦𝑒𝑎𝑟 downtime with partial to no redundancy, 

and the permissible ambient temperature range is 41°𝐹 to 104°𝐹 with humidity ranging 

from 8% to 80% RH. These data centers can tolerate wider temperature variations, 

allowing operators to implement economization techniques such as air-side or water-side 

economizers to reduce cooling costs while maintaining equipment reliability. 

1.3 Types of CRAC Systems 

Heat removal by the CRAC system in a data center can be conceptualized as the 

process of transferring heat energy from the data center environment to the outdoors. This 

transfer can be as straightforward as using an air duct to carry heat energy to an outdoor 

cooling system. Typically, heat exchanger equipment is commissioned in CRAC systems 

to facilitate this transfer by moving heat energy from one fluid to another, such as from air 

to water. Table 1.1 presents seven common CRAC types implemented worldwide with 
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specific indoor and outdoor heat transfer mechanisms. The fluid medium (liquid or gas) is 

responsible for transporting the heat energy from the data center.  

Table 1.1: Comparison of heat transfer methods of CRAC systems 

S. 
No. 

Indoor Heat 
Exchanger 

Transport 
fluid 

Outdoor 
Heat 

Exchanger  

Advantages Disadvantages 

1 CRAH Chilled 
water 

Chiller Low Running 
Cost. 

Fewer parts. 

High heat 
removal 
capacity. 

High capital cost. 

Poses threat to IT 
Equipment. 

2 Pumped 
refrigerant 

System 

Refrigerant Chiller High efficiency. 

Non-
conductivity of 
fluids. 

Offers chip-
level cooling. 

High build-up cost. 

Implementable for 
closed coupled 
systems. 

Required 
additional pumps 
and heat 
exchangers. 

3 Air-cooled 
CRAC 

Refrigerant Condenser Low overall 
execution cost. 

Easy operation 
and 
maintenance. 

Complicated 
Piping system. 

Restriction of long 
distance in 
refrigerant piping. 

Multiple CRAC 
systems cannot be 
coupled.  

4 Glycol-
cooled 
CRAC 

Glycol Dry cooler One single 
factory-sealed 
equipment 
housing. 

Offers long-
distance piping 
network. 

Requires 
additional 
equipment (pump 
package, valves). 

More Capital and 
installation costs. 
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Glycol offers 
free cooling as 
an economizer 
mode. 

The volume of 
refrigerant to be 
maintained 
regularly. 

5 Water-
cooled 
CRAC 

Condenser 
water 

Cooling 
tower 

Low running 
cost. 

Highly reliable. 

High execution and 
maintenance costs. 

 

6 Air-cooled 
self-

contained 
system 

Air Air 
Duct/Exha
ust louvers 

Lowest 
installation 
costs. 

High energy 
savings 

Suitable for 
moderate 
availability 
requirements. 

Less heat removal 
capacity. 

Requires ductwork 
or dropped ceiling 
in an indoor 
environment. 

Demands frequent 
filter changes 

7 Air duct 
system 

Air Evaporativ
e 

cooler/RT
U 

Less space 
requirements 

Significant 
cooling energy 
savings in mild 
seasons 

Low reliability of 
data center 
equipment. 

Difficult to 
implement in 
existing 
infrastructure. 

The fundamentals of each type of CRAC system are as follows: 

1.3.1 Computer Room Air Handler (CRAH) System 

Computer room air handler (CRAH) systems are also known as chilled water 

systems, the CRAH integrates the refrigeration components of the CRAC unit with a water 

chiller. The chiller produces water chiller to around 46 − 59°𝐹, which is pumped to the 

CRAC units in the data center. The CRAH system returns warm air to the chiller, which 

transfers the heat to another stream called condenser water, circulating through a cooling 

tower. The cooling tower works as a radiator, lowering the water temperature. Key 

advantages include lower cost, fewer parts, greater heat removal capacity, and enhanced 

efficiency. However, they require higher capital costs for smaller installations and 

continuous make-up water. These systems are common in large buildings with data centers 
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needing moderate-to-high availability, especially for larger installations exceeding 

200𝑘𝑊. 

1.3.2 Pumped Refrigerant Heat Exchanger System 

  This system, also known as a pumper refrigerant system, uses a heat exchanger and 

pump to isolate the cooling medium from the chilled water, employing refrigerants like 

𝑅 − 134𝐴 or non-conductive fluids like fluorinert, which are circulated through the system 

without the need for a compressor. Chilled water from the chiller transfers heat from the 

pumped refrigerant, which then returns to the cooling unit. The main advantages are 

preventing water damage to equipment, using oil-less and non-conductive refrigerant, and 

enhancing efficiency and proximity to servers or direct-to-chip level cooling. 

1.3.3 Air-cooled CRAC System 

The combination of an air-cooled CRAC unit with a condenser is commonly 

referred to as an air-cooled CRAC DX system. This system uses refrigerant and a semi-

hermetic compressor with a matching evaporative coil, extensively utilized in data centers 

of various sizes, especially small and medium spaces. The compressor is usually within the 

CRAC unit, transferring heat from the data centers to outdoor surroundings. Advantages 

include lower costs and simplified operation and maintenance, although long-distance 

refrigerant piping is not viable, impacting reliability. Common in wiring closets, computer 

rooms, and data centers ranging from 7 𝑡𝑜 200𝐾𝑊 with moderate availability 

requirements. 

1.3.4 Glycol-cooled CRAC System 

A glycol-cooled CRAC system paired with a dry cooler constitutes what’s 

commonly termed a glycol-cooled system using glycol to extract and transport heat. Glycol 

pipes are smaller and can cover longer distances, facilitating the servicing of multiple 

CRAC units. An economizer coil can deactivate the refrigeration cycle, achieving free 

cooling and reducing operating costs. Regular maintenance is needed to ensure proper 
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glycol volume and quantity. This system offers reliability with factory-sealed units and is 

cost-effective for larger data centers. 

1.3.5 Water-cooled CRAC System   

When a water-cooled CRAC is coupled with a cooling tower, it forms what’s 

commonly known as a water-cooled system. These systems use a water loop called 

condenser water to gather and transfer heat from the data center. Heat dissipation occurs 

outdoors via a cooling tower. It is cost-effective for leased data center environments but 

requires a high initial investment for the cooling tower, pump, and piping system. 

Reliability concerns arise with non-dedicated cooling towers compared to dedicated ones 

for CRAC units. 

1.3.6 Air-cooled Self-contained System 

Indoor self-contained systems are typically limited in capacity (up to 15𝑘𝑊) due 

to the space needed for all components and large air ducts. While larger capacities are 

possible for outdoor systems, they are uncommon for precision cooling. These systems 

offer the lowest installation cost and are used in wiring closets and computer rooms with 

moderate availability requirements, occasionally addressing hot spots in the data center. 

1.3.7 Direct Fresh Air Evaporative Cooling system 

This system combines an air duct with a direct fresh air evaporative cooler. It uses 

fans and louvers to draw cold outdoor air through filters directly into the data center, 

regulated by louvers and dampers to maintain environmental set points. The primary 

cooling mode is economizer or free cooling, with containerized DX air-cooled systems as 

a backup. Despite filtration, fine particulates like smoke and gases may enter the data 

center. 

There are several types of Computer Room Air Conditioning (CRAC) systems, that 

plays a crucial role in maintaining the environmental stability of data centers. For this 

research, DX-type air-cooled CRAC systems have been selected due to their prevalent use 
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in small to medium-sized data centers and their simple design, lower initial costs, and ease 

of installation. This simplicity, however, comes at the cost of lower energy efficiency and 

higher running costs compared to water-cooled systems, particularly in larger installations. 

To enhance the reliability and efficiency of these systems, metamodelling techniques are 

employed. By reducing computational demands, facilitating sensitivity analysis, and 

quantifying uncertainties, metamodelling supports the identification of critical factors 

affecting CRAC system performance and helps in making informed decisions to enhance 

reliability. The integration of metamodelling into the design and operation of the CRAC 

system, provides a robust framework for predicting failures, assessing the risk, and refining 

the system parameters, thereby ensuring the continuous and efficient operation of data 

centers.   

1.4 Metamodelling for Reliability Analysis 

In the domain of Reliability analysis, both analytical and simulation-based methods 

are integral for comprehensively assessing the performance and efficacy of critical 

engineering systems. Analytical reliability analysis methods, such as Failure Mode and 

Effects Analysis (FMEA) and Fault Tree Analysis (FTA), offer systematic approaches to 

identifying potential failure modes and evaluating their impact on system reliability. 

However, these methods may be limited by their reliance on static assumptions, potentially 

overlooking the dynamic and stochastic nature of real-world operating conditions. To 

supplement these analytical techniques, simulation-based methods, such as Monte Carlo 

Simulation (MCS), are employed to model the probabilistic behavior of systems across 

diverse operational scenarios. MCS entails running numerous simulations with randomly 

generated input variables to estimate the distribution of possible outcomes, effectively 

incorporating uncertainty and variability in system parameters for a more comprehensive 

and realistic assessment of reliability and accuracy in performance. 

There are various metamodelling techniques employed to approximate the behavior 

of the probabilistic performance function 𝑔(𝑋) of the engineering systems. The basic block 

diagram of a metamodel reflected as a grey box built on input design variable (𝑋) with 

associated output 𝑔(𝑋) is presented in Error! Reference source not found.. This section 
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outlines the advanced metamodel developed by the researchers and their application within 

the reliability analysis domain [4]. 

 

Figure 1.3: A basic functional diagram of interpretable metamodel 

1.4.1  Monte Carlo Simulation (MCS) 

Monte Carlo Simulations (MCS) build on input variables (𝑥), which are system 

parameters, while 𝑔(𝑥) quantifies the system response. Through random sampling of input 

variables and evaluation of performance function, MCS determines the probability of 

failure by a predefined threshold, offering insights into system reliability. 

1.4.2 Polynomial Chaos Expansion 

Polynomial chaos expansions (PCE) formulate the performance function 𝑔(𝑥) 

using orthogonal multivariate basis functions with respect to joint probability density 

functions 𝑓𝑥 of input variables (𝑥). PCE is typically implanted in its non-intrusive form, 

where (𝑥) is represented in the standard normal space via variable transformation. 

However, the efficiency of the PCE method is a trade-off between the dimensionality of 

input data (𝑥), as larger dimensions lead to an exponential increase in the required 

experimental design size and costs. 

1.4.3 Kriging or Gaussian Process Models 

Kriging models, also known as Gaussian process models, interpolate 𝑔(𝑥) as a 

Gaussian process indexed by input random variables, with the design variables acting as 
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training points. Kriging models inherently account for uncertainty and refinement based on 

the available data. The application of Kriging entails selecting a correlation function, which 

is considered stationary and in Gaussian form with a polynomial basis. The prediction in 

the kriging method depends on hypermeters such as 𝛼, 𝜎2, and a correlation factor ℛ(𝑥; 𝜃). 

Where 𝜃, is a hypermeter trained with a common kernel for each dimension of the design 

point (𝑥) to enhance the accuracy of the model. 

1.5 Scope of the Research Work 

The dependability of the CRAC systems in data centers on load sections has led to the 

exploration and development of a novel algorithm for reliability analysis of the complete 

data center system. The adaptive Multiple Response Gaussian Process (AMRGP) model, 

designed to handle multi-dimensional output variables as an n-dimensional Gaussian 

process with a separable covariance function, will be deployed. The research involves 

generating probabilistic performance functions by integrating radiation heat transfer theory 

and the sensible heat transfer rate of the CRAC system. A metamodel based on an adaptive 

sampling method is produced, serving as a spatial representation of the complex and 

mission-critical model of a data center. The hyperparameters of the metamodel are tuned 

to predict the response and estimate the joint probability of failure of two highly uncertain 

subsystems within a data center: the data server rack and the Computer Room Air 

Conditioning (CRAC) system. The overall accumulative reliability and accuracy of 

probabilistic constraints are calculated. 

1.6 Research Objectives 

1. Implementation of a practical engineering problem with uncertainties and 

development of multiple limit state functions for reliability analysis. 

2.  Development of a time-independent algorithm using the AMRGP model with 

adaptive sampling to reduce the computational costs by achieving the 

predefined targets, which are specified as percentage reduction with absolute 

values. 
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3. To identify the effectiveness of the proposed approach and to train the data 

center model for reliability assessment of already commissioned data centers 

and their associated CRAC systems. 

The thesis is further organized as the literature review which examines the existing body 

of knowledge, exploring relevant theories, methodologies, and findings in the field. The 

methodology section outlines the research design, including data collection methods, 

analytical frameworks, and simulation techniques employed. Subsequently, the results 

chapter presents the findings of the study, followed by a discussion section that interprets 

and contextualizes the results within the broader research context. Finally, the conclusion 

chapter summarizes the key findings, discusses their implications, and suggests avenues 

for future research. 
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 CHAPTER 2: LITERATURE REVIEW 

The inception of reliability analysis in engineering marks a crucial shift towards evaluating 

system dependability and robustness, driven by the imperative to ensure reliable system 

function amidst diverse conditions and potential consequences like failure, safety hazards, 

and financial losses. Reliability analysis involves systematic exploration of methodologies 

to assess failure likelihood and system performance, including identifying failure modes, 

quantifying probabilities, and evaluating metrics such as availability, reliability, and 

maintainability.  

2.1: Classical Reliability Analysis Techniques 

The need for reliability analysis was incepted by researchers at the end of the 19th 

century by categorizing its implementation into three broader areas [5]; 

1. The exploration of system-level reliability analysis gained attention, 

particularly driven by the need for rigorous treatment of safety aspects in 

complex systems like nuclear power plants. The researchers highlighted the 

importance of understanding how various components interact to influence 

overall system reliability. 

2. With the increasing integration of software into various systems, there was a 

notable rise in the focus on software reliability and functionality of modern 

systems, prompting efforts made to improve software reliability through 

systematic testing and refinement processes. 

3. Despite the vital role of reliability in ensuring product quality and customer 

satisfaction, there was a noticeable lack of interest among managers in 

implementing reliability programs. This indifference towards reliability 

initiatives prompted the development of incentives to enhance reliability and 

highlight its significance in achieving long-term success and competitiveness. 

Moreover, the reliability analysis method based on mathematical equations was 

first introduced by [6]. The method consists of calculating different performance metrics 
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of a repairable component of a system having monotonic behaviour. The main focus was 

to determine the availability point, the pattern of failures within a specific time frame, and 

the duration of system downtime. [7],[8] introduces a comprehensive perspective on 

system failure engineering in which failure was linked with the system’s states and was 

classified in a binary manner based on coherent structural function. However, the 

representation and modelling of the systems along with its quantification posed the biggest 

challenge for the researchers. Additionally, a persistent struggle continues to adequately 

represent, propagate, and quantify the inherited uncertainties in engineering systems. These 

classical methods were extensively used to evaluate and analyze various engineering 

components of the systems, but the accuracy in the representation and modelling of multi-

state dynamics persists as a challenging task.  

2.2: Analytical Methods 

 Analytical methods for reliability analysis involve mathematical and statistical 

techniques to assess the reliability of systems, components, or processes. These methods 

aim to quantify the probability of failure or success, identify potential failure modes, and 

evaluate the system’s performance under various uncertainties [9]. However, analytical 

methods can be time-consuming for complex systems. Some common analytical methods 

for reliability analysis developed by researchers include: 

Probabilistic modelling involves constructing mathematical models that represent 

the reliability characteristics of the system or its components. These models often utilize 

probability distributions to present the likelihood of failure or success over time. 

Probabilistic models are implemented on many systems by using techniques such as 

Markov models [10], stochastic processes [11], and Bayesian analysis [12]. 

The Fault tree analysis method, employed by [13], is a deductive approach used to 

analyze and visualize the causes of system failures. It starts with a top-level event (system 

failure) and back propagates through a logical diagram of events and conditions that could 

eventually lead to the top event. FTA helps identify critical failure paths and assess their 

probabilities but it is time-consuming and more prone to error. 
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 Failure mode and effects analysis (FMEA) offers a systematic approach to identify 

potential failure modes and evaluate their effects within a system. [14] & [15] presented a 

detailed overview of FMEA and its limitations in weighing the risk factors and ranking the 

failure modes of engineering systems. It involves investigating the severity, occurrence 

probability, and detectability of each failure mode to prioritize them for mitigation. 

 A reliability block diagram (RBD) is a graphical method used to model the 

reliability of complex systems by breaking them down into individual components or 

blocks and representing their correlations. Unlike previous methods of modelling and 

constructing fault trees, the RBD method eliminates the need for identifying minimal path 

sets. However, model mapping is still an open area for research [16]. The unstable and 

indeterminate performance of analytical methods for multimodal and complex engineering 

systems has led to the introduction of sampling-based methods.  

2.3: Sampling-based Methods 

Sampling-based methods of reliability analysis involve using statistical sampling 

techniques to estimate reliability metrics, such as failure probabilities or system 

performance when analytical solutions are impractical. These methods are particularly 

useful for complex systems or situations where explicit mathematical models are difficult 

to construct. [17] developed a method using sampling-based techniques to perform 

uncertainty and sensitivity analysis, and the computational costs were optimized using a 

variance reduction method. 

Monte Carlo simulation (MCS) involves generating random samples from 

probability distributions that represent uncertain input parameters, such as component 

failure rates or environmental conditions. The performance, including convergence and 

computational efficiency, of the MCS method was investigated by [18], for series systems 

with various configurations. Significant reductions in computational cost were achieved 

using the proposed methodology. 

Latin Hypercube Sampling (LHS) is a sampling technique that offers superior 

efficiency over Monte Carlo simulation by ensuring a more uniform coverage of input 
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parametric space. It divides each input parameter range into equally probable intervals and 

samples from each interval once, which reduces the number of samples needed to achieve 

accurate results [19].  

Importance Sampling (IS) is a variance reduction technique that improves the 

efficiency of a model by biasing the sampling towards regions of the input parametric space 

that contribute most to the output uncertainty [20]. 

A significant apprehension in analytical and sampling-based methods revolves 

around certifying the accuracy of the response surface and the effectiveness of the sampling 

procedure associated with it. The ultimate goal is to accurately determine the true 

combination of unknown parameters. The accuracy of the traditional reliability analysis 

methods is often assessed using a small subset of testing samples in many applications due 

to the high computational costs of evaluating the entire parametric space [21]. This 

challenge is further compounded when dealing with high-dimensional unknown model 

parameters, leading to complexity and error. To address this issue, the Gaussian Process 

Regression model (GPR) has been established by [22]. 

2.4: Probabilistic Gaussian Process Regression(GPR) Reliability Modelling 

Probabilistic modelling offers the characterization of uncertainties associated with 

various factors that influence the performance of engineering systems. These uncertainties 

include material properties, load conditions, environmental conditions, manufacturing 

variations, and operational parameters. In probabilistic modelling, the uncertainties are 

represented using probability distributions, such as uniform, normal, and lognormal 

distributions, to reflect the variability and randomness in the system’s behaviour.  

In recent years, the Kriging method [23], a spatial interpolation technique, has 

gained popularity as a surrogate modelling method due to its ability to formulate spatial 

correlations and handling of high-dimensional data. However, it poses the limitation of 

modelling a single probabilistic constraint for reliability analysis of engineering systems. 

To address this problem, Multiple Response Gaussian Process (AMRGP) modelling is 

offered [24]. AMRGP is a powerful approach for reliability analysis that can handle 



17 

 

multiple correlated responses of a complete engineering system simultaneously. It offers 

the ability to model complex relationships between response functions, making it suitable 

for applications where traditional single-response models are inadequate. 

Table 2.1: Literature Review of Methods of Reliability Analysis 

Classification Classes Published 
Works 

Advantages Limitations 

Analytical 
Methods [9] 

Classical 
Math-based 

[5-8] Provides precise 
analytical 

solutions for 
simple systems. 

May not adequately 
capture complexities 

the of real-world 
systems. 

Probabilistic 
Modelling 

[10-12] Incorporates 
uncertainty in 

system 
parameters, 

providing a more 
realistic 

representation of 
system behavior. 

Requires extensive 
data and assumptions 

about probability 
distributions, which 
may not always be 

available. 

Fault Tree 
Analysis 
(FTA) 

[13] Offers a structured 
approach to 

identifying system 
failure modes and 

their causes. 

Can become complex 
and time-consuming 

for large, 
interconnected 

systems. 

Failure 
Mode and 

Effect 
Analysis 
(FMEA) 

[14, 15] Systematically 
evaluates potential 
failure modes and 

their effects on 
system 

performance. 

Relies heavily on 
expert judgment and 
may not capture all 

failure modes or their 
interactions. 

Reliability 
Block 

Diagram 
(RBD) 

[16] Simplifies system 
representation, 

facilitating 
analysis of 

complex systems. 

May oversimplify 
system interactions, 

potentially 
overlooking 

important failure 
modes or 

correlations. 

Sampling-
based 

Methods [17] 

Monte 
Carlo 

Simulations  
(MCS) 

[18] Provides 
probabilistic 

assessment of 
system reliability, 

Can be 
computationally 

intensive, especially 
for complex systems 
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accounting for 
uncertainties and 

variability. 

with numerous 
parameters. 

Latin 
Hypercube 
Sampling 

(LHS) 

[19] Efficiently 
samples across the 
entire parameter 
space, reducing 
the number of 
simulations 

needed. 

Requires careful 
consideration of the 
number of samples 
and distribution of 

parameters. 

Importance 
Sampling 

(IS) 

[20] Focuses 
simulations on 

regions of interest, 
improving 

efficiency for rare 
event analysis. 

Selection of 
Importance functions 

and tuning 
parameters can be 

challenging. 

GPR 
Probabilistic 
Reliability 
Modelling 

[22] 

Kriging [23] Provides a 
surrogate model to 

approximate 
complex system 

responses, 
reducing 

computational 
burden. 

Requires careful 
selection of 

correlation function 
and tuning of 

hyperparameters. 

Multiple 
Response 
Gaussian 
Process 

(AMRGP) 

[24] Handles multi-
dimensional 

output variables 
and provides 
flexibility in 
modelling 

complex system 
responses. 

May require 
significant 

computational 
resources for model 

training and 
optimization, 

especially for large 
datasets. 

2.5: Reliability Analysis of CRAC Systems 

 The CRAC system within a data center contributes to roughly 40%  of its total 

power usage. Data server equipment produces heat through Joule heating, necessitating 

effective thermal management to avoid undesirable temperatures. This heat generation is 

typically quantified in watts, with the power consumed by data servers being largely 

converted into heat. Hence, the data server’s thermal output is directly proportional to its 

power consumption [25]. Moreover, data server equipment is designed to operate within 

specific temperature ranges to maintain optimal performance and high reliability. 
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Temperature fluctuations beyond these ranges can significantly increase the failure rates 

of semiconductor devices within data servers and telecommunication equipment devices, 

with failure rates doubling for every 10°𝐶 rise [26].   

The occurrence of uncertainties during operations and variations in environmental 

temperatures can result in malfunctions and breakdowns within the data center and its 

systems. To mitigate these uncertainties, it is essential to conduct a detailed reliability 

analysis during the design phase, well before the construction and deployment of data 

centers. Researchers have introduced various methodologies and techniques to evaluate the 

reliability of CRAC systems in data centers. 

  A state-of-the-art Power usage effectiveness (PUE) technique was developed by 

[27], introducing the Evaporative Cooling Composite |Air Conditioning system (ECCAC). 

This system integrates the indirect heat transfer method with vapor compression 

refrigeration techniques to deliver year-round cooling for data centers. Additionally, it 

utilizes an evaporative condenser to maximize the utilization of natural cooling sources. A 

refrigerant circuit serves as the cooling carrier instead of air or water, thereby reducing 

cooling losses. However, achieving a robust coefficient of performance (COP) in the 

proposed system involves balancing efficiency against cost considerations. 

The power consumption modelling technique analyzes the power consumption and 

losses of data server racks to efficiently design the CRAC system. The impact of power 

losses, as the number of servers increases, is evaluated by analyzing the percentage of 

power loss by [28]. The reliability block diagram (RBD) technique is utilized to measure 

the availability of critical equipment, employing mean-time-to-fail (MTTF) and mean-

time-to-repair (MTTR) metrics. 

The strategic design selections and control measures in optimizing airflow 

uniformity, temperature distributions, and overall thermal management efficiency are of 

paramount importance in data center environments. [29] conducted comprehensive 

numerical and experimental investigations utilizing a scaled physical model to explore the 

impact of various factors on data center cooling. These factors include power density, floor 

tile opening ratio, the lateral spacing between CRAC units, and cold aisles of data server 
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racks. The study focused on evaluating thermal management performance parameters such 

as SHI/RHI and Return Temperature Indices (RTI). However, the air balancing of the 

CRAC system with the complete data center environment remains a challenge. 

SCADA is an emerging approach that involves the implementation of two 

proprietary control strategies: supervisory control and data acquisition (SCADA) and 

ON/OFF, within a hybrid evaporative and direct expansion CRAC DX model for data 

center cooling systems. These control schemes can operate independently or 

synergistically, resulting in energy conservation through methods like airside 

economization and evaporative cooling [30]. The main objective of the research is to assess 

how proprietary controls influence the reliability and energy efficiency of the data center. 

Integrated system-level controls (SCADA) achieve recommended temperature and 

humidity conditions at all times, with a low cooling power usage effectiveness (PUE) of 

1.13 compared to 3.76 with no controls. 

Hierarchical modelling techniques investigate reliability and availability metrics 

and conduct parametric sensitivity analysis of the CRAC system of the data center. The 

technique revolves around modelling reliability block diagrams (RBD) and utilizing 

parametric sensitivity analysis on each CRAC component to gauge the system’s 

responsiveness to component failures and repair durations [31]. This technique can 

segregate the critical components of the CRAC system and those with negligible impact 

on availability to uphold operational Reliability. 

Reliability and availability analysis (RAA) identifies risks and devises potential 

solutions for CRAC system design and operation. The CRAC systems with hybrid cooling 

techniques, identical to water-side economizers, require frequent reliability and availability 

analysis. This is due to its complex configuration and multiple operational modes [32]. The 

model comprises a Markov chain in conjunction with the reliability block diagram (RBD) 

method to evaluate the reliability and operational availability of the CRAC system through 

spatial temperature gradient data. 
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2.6: Summary of Literature Review 

From the review of available literature, it is evident that reliability analysis ensures 

system dependability and robustness by assessing failure likelihood and performance 

through classical techniques, analytical methods, and sampling-based methods. Whereas, 

prevailing reliability analysis techniques encounter difficulties in effectively managing the 

complexity and uncertainty inherent in modern engineering systems, particularly within 

the domain of data center cooling systems. For CRAC systems in data centers, reliability 

analysis manages thermal output, power consumption, and environmental variations using 

methodologies such as PUE, SCADA controls, and hierarchical modelling. The 

conventional methodologies struggle to accurately assess the reliability and performance 

of these systems due to their multi-dimensional nature and dynamic operation conditions, 

compounded by scalability and efficiency challenges when applied to large-scale data 

centers, and necessitates real-time reliability analysis. Current methods also cannot often 

provide continuous, real-time updates, which is essential for timely decision-making in 

mission-critical data center environments. 

The research gap addressed by this work underscores the absence of studies on 

CRAC systems of data centers and their probabilistic constraints through surrogate 

modelling, representing a worldwide research gap. This research bridges this gap by 

introducing a novel algorithm based on the Adaptive Multiple Response Gaussian Process 

(AMRGP) model and adaptive sampling techniques of reliability analysis for engineering 

systems, thereby advancing the field. This introduction of a robust framework, provides 

invaluable insights to practitioners and researchers to optimize airflow, and temperature 

distribution, and integrate advanced control strategies to enhance the reliability and energy 

efficiency of data centers.   

  



22 

 

CHAPTER 3: METHODOLOGY 

This study introduces an innovative approach to reliability analysis, accentuating the 

spatial interpolation of radiation heat transfer and exchange mechanisms. It employs direct 

sampling techniques to probabilistically evaluate the CRAC system’s failure and 

reliability. 

3.1: Reliability Analysis of CRAC System 

 The CRAC system of the data center utilizes data collected from temperature and 

humidity sensors positioned at the return air inlet and various strategic spatial points. 

Operators manually adjust the desired temperature to enhance the CRAC system’s 

performance and heat exchange capability. Effective management of cool and hot airflow 

within data center aisles is critical, necessitating precise zoning and channelization 

strategies and arrangement to markedly enhance the efficiency and robust performance of 

the CRAC system. Consequently, the selection of optimal capacity and layout of data 

server racks to facilitate active heat exchange by the CRAC system presents a substantial 

challenge to the industry. 

Furthermore, the layout and airflow patterns must strike a balance between the data 

server’s capacity and the cost of execution. This study introduces a novel modelling 

technique for reliability analysis, highlighting spatial distribution of heat transfer 

mechanisms from data server racks to the data center environment, and subsequently to the 

CRAC system. The proposed approach employs adaptive sampling technique to derive 

probabilities of failure and reliability values. The aim is to model an efficient modelling 

technique providing high accuracy in the design and equipment selections of the data 

centers. 

Once the data center racks and CRAC model are converged, they can generate 

temperature distribution patterns and actual heat transfer gradients, offering a 

benchmarking technique to analyze various load scenarios and assess the effectiveness of 
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the CRAC system’s capacity within the data center. The probability of failure of the 

proposed method is expressed as: 

 𝑃𝑓
𝐷𝐶 =  Ρ𝓇(𝑓Χ(𝒙), Χ = 1,2, … , 𝑛) = Ρ𝓇( min

Χ=1,2,…,𝑛
𝑓Χ(𝒙) < 0)  (1.1)  

 In this context, 𝑃𝑓
𝐷𝐶 represents the probability that the performance function 𝑓Χ, which is 

influenced by various input factors denoted as 𝒙 (such as the area of data server racks, 

temperature gradients, flow rate of CRAC system, density of air, and air emissivity), yields 

a value less than 0. The critical performance functions, which define radiation heat transfer 

and rate of heat transfer by the CRAC system, are symbolized as 𝑓Χ(𝒙). It depends on 

deterministic design space within 𝒙 and ensure a reliability level surpassing a 

predetermined mark.    

3.1.1 Radiation Heat Transfer of Data Server Rack 

Radiation heat transfer, as a probabilistic constraint, refers to a conditional 

requirement within a system or process where the transfer of thermal energy through 

radiation must meet certain probabilistic criteria. This constraint is particularly important 

where heat transfer plays a crucial role, such as in data centers. It is a mathematical 

relationship between the temperature of a data center rack and the rate at which it emits 

thermal radiation. The total radiant heat energy emitted per unit surface area of a rack per 

unit of time is directly proportional to the fourth power of its absolute temperature 

(measured in Kelvin). The probabilistic constraint can be expressed mathematically as: 

 𝑅𝑟𝑎𝑐𝑘 =  𝜖 × 𝜎 × 𝐴 × (𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

4 )   (1.2) 

- 𝑅𝑟𝑎𝑐𝑘 represents the radiation heat transfer rate of the rack, in watts (𝑊).  

- 𝜖 symbol denotes the emissivity of the rack’s surface ranging from 0.1 to 0.9. 

- 𝜎 is the Stefan-Boltzmann constant, with a value of 5.67 × 108 (𝑊/(𝑚2. 𝐾4)). 

- 𝐴 represents the surface area of the rack in square meters 𝑚2. 

- 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the temperature of the rack’s surface, measured in Kelvin (𝐾). 
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- 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 pertains to the ambient temperature of the data center environment.   

3.1.2 Heat Transfer Rate of CRAC System 

The heat transfer rate of CRAC systems involves the removal of heat from the data 

center space using airflow, heat exchange, and refrigeration technologies. It requires proper 

design, sizing, and operation of the CRAC system for efficient heat transfer and 

maintaining optimal operating conditions of data servers and their equipment in the data 

center. By multiplying the mass flow rate, density of air, specific heat capacity, and 

temperature difference, we obtain the total heat transfer rate of the CRAC system. The 

mathematical equation can be presented as: 

  𝑅𝑐𝑟𝑎𝑐 =  𝓂 × 𝜌 × 𝑐𝑝 × (∆𝑇)   (1.3) 

- 𝑅𝑐𝑟𝑎𝑐 is the heat transfer rate in watts (𝑊). 

- 𝓂 represents the mass flow rate of the air in (𝑚3/ℎ). 

- 𝜌 is the density of air in (𝑘𝑔/𝑚3). 

- 𝑐𝑝 pertains to the specific heat capacity of air in (𝐽/𝑘𝑔. 𝐾). 

- ∆𝑇 reflects the temperature difference of air medium at CRAC I/O in (𝐾). 

3.2: Baseline Method  

 This work refers to [33] for the baseline method. In contrast to the Kriging model’s 

handling of a single output variable as isotropic Gaussian stochastic process, the AMRGP 

model is capable of accommodating multidimensional output variables. It establishes a 

comprehensive approximate relationship between input and output variables. Overall, the 

proposed approach can simultaneously consider both accuracy and efficiency in reliability 

estimation, enabling significant time savings while ensuring the correctness of the solution. 
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Table 3.1: Classification of Kriging and AMRGP method 

Classification Kriging  AMRGP 

Modelling approach Gaussian process 
based 

Extended Gaussian process with 
separate covariance functions 

Handling of output 
variables 

Single output based 
on spatial correlation 

Multiple response variables with 
correlation and joint predictions 

Covariance function Isotropic or 
anisotropic  

Correlation with input variables 
and response variables 

Application domain Spatial domain  Engineering, biology, multiple 
response functions of Mechanical 

systems 

Complexity and 
scalability 

Intensive for large 
datasets due to big 
covariance metrics 

Scalable interference techniques 
and advanced Gaussian processes 
are feasible for response variables.  

Predicative 
performance 

Low accuracy for 
complex and 

uncertain application 

Best accuracy for intricate 
correlation and complex spatial 

relationships of variables. 

3.3: Adaptive Multiple Response Gaussian Process Model Architecture 

The AMRGP method is characterized by the following mathematical formulation: 

  𝓩𝑛(𝜽, 𝜽′) ∼ 𝑀𝐺𝑃(𝓣𝑛(𝜽, 𝜽′)𝓜𝑛, 𝚺𝑛𝓡𝑛((𝜽, 𝜽′), (𝜽, 𝜽′))   (1.4) 

The AMRGP model has the capability of handling multi-dimensional output 

variables represented as 𝓩 = [𝓩𝟏, 𝓩𝟐, … , 𝓩𝒏 ], which formulates them as an n-dimensional 

Gaussian process with separable covariance functions. 

- In the above equation, 𝑀𝐺𝑃(𝜽, 𝜽′) denotes the Gaussian process used for 

constructing the total estimated affiliation between input and output variables. 

- 𝓣𝑛(𝜽, 𝜽′) = [𝑡1
𝑛(𝑥, 𝑥 ′), 𝑡2

𝑛(𝑥, 𝑥 ′), … , 𝑡𝑧
𝑛(𝑥, 𝑥 ′)] represents the vector of 

regression models, while 𝓜𝑛 = [𝒎𝟏
𝑛, 𝒎𝟐

𝑛, … , 𝒎𝒛
𝑛, ] stands for the vector of 

regression coefficients. 
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-  𝓡𝑛(𝜽, 𝜽′) denotes a spatial correlation function indicating three-dimensional 

position, and 𝚺𝑛 represents an unidentified covariance matrix essential for 

managing multiple failure models. 

In this framework, to illustrate the correlation among multi-dimensional output 

response variables, an isotropic Gaussian model is employed to measure the spatial location 

and correlation. The isotropic Gaussian model is built from:  

 
𝑌𝑛(𝒙, 𝒙′) = exp {− ∑ 𝝎𝑖

𝑛(𝑥𝑖 − 𝑥𝑖
′ )2

𝑧

𝐼=1

}   (1.5) 

The primary objective of incorporating isotropic Gaussian model is to assess how 

quickly the correlation among the multiple failure modes decreases to zero, leveraging the 

roughness parameter denoted as a vector 𝝎𝑖
𝑛 = (𝜔1, 𝜔2, … , 𝜔𝑧). The lower values of 𝜔𝑖

𝑛 

correspond to a well-adjusted AMRGP model for the responses 𝓩𝑛(𝜽, 𝜽′). The spatial 

correlation function 𝓡𝑛(𝜽, 𝜽′) is associated with 𝓜𝑛, 𝚺𝑛 in Equation (1.4) and can be fully 

expressed by solving the following equations: 

 𝓜�̂� = [(𝓣𝑛)𝑇𝚸−1𝓣𝑛]−1 (𝓣𝑛)𝑇𝚸−1𝓩 (1.6) 

 
𝚺�̂� =

1

𝑧
[(𝓩 − 𝓣𝑛𝓜𝑛)𝑇𝚸−1(𝓩 − 𝓣𝑛𝓜𝑛)] (1.7) 



27 

 

 

Figure 3.4: Block Diagram of AMRGP Model Architecture 

In these equations, 𝚸 is the correlation matrix of 𝑌𝑛(𝒙, 𝒙′), 𝓩 is the corresponding 

matrix of output response values, and 𝑧 represents the number of sample points to be 

modeled. The solution for the roughness parameter 𝝎𝑖
𝑛 is vital for constructing the AMRGP 

model. To address this, a logarithmic inverse function log[𝑧(𝑣𝑒𝑐𝑡(𝓩)|𝓜𝒏,𝚺𝑛, 𝝎𝑖
𝑛 ] of the 

maximum likelihood technique [34] is utilized: 

  Log[𝑧(𝑣𝑒𝑐𝑡(𝓩)|𝓜𝒏,𝚺𝑛, 𝝎𝑖
𝑛 ] = −

𝑛𝑧

2
log(2π) −

𝑧

2
log(|𝚺𝑛|) −

𝑛

2
log(|𝚸|) −

1

2
𝑣𝑒𝑐𝑡(𝓩 − 𝓣𝑛𝓜𝑛)𝑇 × (𝚺𝑛⨂𝚸)−1𝑣𝑒𝑐𝑡(𝓩 − 𝓣𝑛𝓜𝑛)  

(1.8) 
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Here, the methodology involves sorting a matrix by a column vector represented 

by 𝑣𝑒𝑐𝑡(𝜽) and using the Kronecker product ⨂. The static AMRGP model is then 

constructed using Equation (1.8), facilitating the prediction of multidimensional response 

values �̂�(𝑥𝑧) at any uncertain point 𝑥𝑧. The mean and variance of these predicted values 

are subsequently formulated as follows: 

 𝜇�̂�(𝑥𝑧) = 𝓣𝑛(𝑥𝑧)𝓜𝒏 + 𝑐(𝑥𝑧)𝑇𝚸−𝟏(𝓩 − 𝓣𝑛𝓜𝑛) (1.9) 

 
𝜎�̂�(𝑥𝑧 ) = 𝑑𝑖𝑎𝑔𝑣𝑒𝑐 (𝜎

× (1 − 𝑐(𝑥𝑧)𝑇𝚸−1𝑐(𝑥𝑧)

+ (𝓣𝑛(𝑥𝑧)𝑇 − (𝓣𝑛)𝑇𝚸−𝟏𝑐(𝑥𝑍))
𝑇

× ((𝓣𝑛)𝑇𝚸−1𝓣𝑛)−𝟏(𝒯𝑛(𝑥𝑧)𝑇 − (𝓣𝒏)𝑇𝚸−1𝑐(𝑥𝑍)))) 

(2.0) 

  The regression model vector is denoted as 𝓣𝑛(𝑥𝑧), which is formulated at an 

unknown point 𝑥𝑧, 𝑐(𝑥𝑧) signifies the spatial correlation vector among the unknown point 

𝑥𝑧, and the input trial point 𝑁𝑡 = [𝑥1, 𝑥2, … , 𝑥𝑛]. The 𝑑𝑖𝑎𝑔𝑣𝑒𝑐 represents the transverse 

elements of the matrix. The predicted average value of an unforeseen data point can be 

determined by using the mean of random variables, while the variance offers insights into 

the level of uncertainty specific to that point. 
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Figure 3.5: Block diagram of AMRGP Prediction Function 

The AMRGP model can be utilized to create the limit state surface of a system that 

accounts for multiple failure modes. Despite the significant improvement in the quality of 

preliminary sample points generated by the LHS method, the model’s accuracy still falls 

short of requirements due to the limited number of samples. Therefore, there is a need to 

enhance the adaptability of the AMRGP model to improve its accuracy and efficiency. The 

initial surrogate model for the extreme value response surface relies on the AMRGP model; 

therefore, new random variables are initialized by the learning functions. This study 

instigated advanced learning U-function introduced by [35] to identify the best-updated 

sample points from the candidate sample pool obtained through MCS and the expression 

is as follows: 
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𝒰(𝑥𝑧) =  (|

𝜇�̂�(𝑥𝑧)

𝜎
�̂�
2(𝑥𝑧 )

|)   (2.1) 

 Here, 𝜇�̂�(𝑥𝑧) denotes the predicted mean, and 𝜎�̂�(𝑥𝑧 ) represents the predicted 

standard deviation of the AMRGP model, respectively. Subsequently, the sample points 

requiring refinement can be recognized as follows: 

    𝑥Θ =  min
𝑥∈𝑥𝑚𝑐

𝒰(𝑥𝑧) ≥ 𝑡ℎ𝑢 (2.2) 

Where, 𝑥Θ is the new sample point obtained from the learning function and is 

reintroduced in 𝑁𝑡, and 𝑥𝑚𝑐 represents the 106 sample repository generated through MCS. 

Subsequently, the probability of failure comes out to be 𝑃𝑓
𝐷𝐶 = 𝑃(𝜇�̂�(𝑥𝑧) < 0) as offered 

in Equation (1.1). 
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Figure 3.6: Block diagram of Proposed Adaptive AMRGP Algorithm 

The coefficient of variation of the MCS method for the estimated probability can 

be expressed as follows: 

    

𝐶𝑉(Ρ𝑓) = √
1 − Ρ𝑓

DC

(𝑛𝑚𝑐 − 1)Ρ𝑓
DC

 (2.3) 

The estimated probability of failure is denoted as Ρ𝑓
DC and 𝑛𝑚𝑐 is the total number 

of MCS samples. If the coefficient of variance exceeds 5%, the estimation is considered 

unacceptable, necessitating expansion of the sample repository. On the other hand, if it 

falls below 5%, the estimation is considered acceptable, indicating that the number of 
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samples required to achieve accurate and precise results is adequate. Once the new samples 

have been initialized and the outputs from the performance functions obtained, the erros is 

calculated to evaluate the model’s accuracy. Where, 𝑓𝑚𝑐 denotes the actual count of failing 

trajectories from the 𝑛𝑚𝑐 sample repository, while 𝑓𝑙ℎ𝑠 is the actual count of failing 

samples. So, the error expression is formulated as: 

    
𝜁 =  𝑚𝑎𝑥

𝑓𝑙ℎ𝑠𝜖[𝑜,𝑓𝑚𝑐]

𝑓𝑙ℎ𝑠

|𝑓𝑚𝑐 − 𝑓𝑙ℎ𝑠|
× 100% (2.4) 

3.4: Summary of Proposed Adaptive AMRGP Reliability Analysis Method: 

Step1: Generate an initial set of samples denoted as 𝑁𝑡, using Latin hypercube 

sampling (LHS). 

Step2: Utilize the samples generated in Step1 to calculate the corresponding results 

by training them through the two probabilistic performance functions. 

Step3: Initialize a Multiple Response Gaussian Process model using the input 

samples and the corresponding output. 

Step4: Generate new samples by MCS technique through random distributions of 

input variables. 

Step5: Predict the response of the system and formulate the error of each 

performance function through MCS samples and established AMRGP 

model. 

Step6: Calculate the results by employing the learning function using the MCS 

samples and the output predictions obtained in Step5. 

Step7: Assess the precision of the AMRGP model. If it satisfies the specified 

threshold of less than 0.05%, then proceed with reliability estimation. 

Step8: If the outcomes from the AMRGP model are not precise, identify and 

reintroduce acquired samples from learning U-function. Incorporate these 

new samples in 𝑁𝑡 and repeat Step7 until accurate results are achieved. 

Step9: Estimate the reliability and error of the refined AMRGP model. 
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CHAPTER 4: DATACENTER MODELLING 

4.1: Implementation Details 

A practical model of a Class-A data center CRAC system and its layout arrangement is 

presented in Figure4.7. In this study, a DX-type air-cool CRAC system is selected with an 

in-row air distribution arrangement which guarantees targeted cooling with exceptional 

heat dissipation capacity providing high availability and low commissioning cost. 

 

 

Figure 4.7: (a)Typical Layout Plan of the Data center with inflow air distribution 

arrangement (b) Cooling System Configuration in Data center 
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The temperature ranges are determined using commercially accessible 

computational fluid dynamics (CFD) analysis program Mentor MA FloVENT, the detailed 

description of this simulation technique is provided in [36]. This packaged software utilizes 

input as the root assembly with geometrical details of data center enclosure including doors 

and windows. Fixed flow CRAC is selected for Supply/Return air temperature 

measurements with monitor points placed as per data center layout plan. The heat transfer 

power along with the flow rate of the racks of the datacenter is provided to access the 

gradient distribution of thermal heat transfer, which helps in defining the capacity of the 

CRAC system.  
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Figure 4.8: FloVENT geometric model of Class-A data center system   

The simulation run by the FloVENT generated the transient heat model and the 

temperature gradient for the datacenter equipment is exhibited as shown in Figure4.9. 
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Figure 4.9: (a)Thermal model illustrating the data center environment temperatures after 

experimental modifications. (b) The graph presents the temperature distribution against 

the set data points.    

Once the heat transfer model is converged to the required ambient conditions. The 

next step involves creating an adaptive surrogate model for the two performance functions 

as derived in Section 3.1.1 & 3.1.2. The output of the first performance function is a spatial 

representation of the surface temperature of the data server rack (𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒), the ambient 

temperature of the data center (𝑇𝑎𝑚𝑏𝑖𝑛𝑒𝑡) & CRAC air (∆𝑇) as uniformly distributed 

gradients. The emissivity of air (𝜖) between the range 0.1 − 0.9 and the normally 

distributed area 𝐴𝑥 of data center racks are trained as inputs to the model. The uniformly 

distributed temperature gradients 𝑇1 and 𝑇2 obtained from the FloVENT Model are taken 

as probabilistic constraints. Flow rate 𝑚 of the CRAC system is normally distributed and 

selected using [37], with uniform delta air temperature gradient. A single multi-response 

surrogate model is then generated to examine the typical distribution of thermal gradient 

and the effect of the heat transfer rate of the CRAC system from heat-transmitting data 

server racks. In this method, a crucial task is to identify a single failure point of both 

performance functions along the entire temperature profile which provides the precise 

reliability of the system. The parameters describing the distribution of the probabilistic 

input variables are listed in Table 4.1. 
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Table 4.1: Dispersal constraints of data server rack and CRAC system 

Input parameters Probabilistic mean 
Standard 
deviation Type of distribution 

𝑚 5 1 Normal distribution 

𝜀 0.8995 1 Normal distribution 

𝐴 6 1 Normal distribution 

∆𝑇 2 ≤ 𝑇 ≤ 6 − Uniformly distributed 

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 40 ≤ 𝑇1 ≤ 58 − Uniformly distributed 

𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 20 ≤ 𝑇2 ≤ 30 − Uniformly distributed 

4.2: Machine Setup 

Reliability modelling and estimation require special hardware and software 

equipment. The details of the server machine are as follows: 

Table 4.2: Machine setup details (Software + Hardware) 

Setup IT Equipment Description 

Hardware 

Motherboard MSI x570 

CPU Intel i5-3330 

GPU NVIDIA Quadro RTX 5000 

RAM 16 GB 

SSD 500 GB 

Software 

OS Microsoft Windows 10 Pro 

Language MATLAB R2018a 

IDE MATLAB desktop environment 

Library 2GB 

CFD Modelling Tool FloVENT 11.3 
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4.3: Fine-tuning Hypermeters of AMRGP Model 

 Fine-tuning hypermeters of the AMRGP model involves optimizing its 

configuration to enhance its ability to capture dependencies and make predictions for 

multiple responses simultaneously. In this study, the upper bound for the correlation matrix 

is set at 0.6 and the degree of a polynomial function is set as 1. 

4.4: Optimization method 

 A MATLAB optimization function ‘fmincon’ is used for solving constrained 

nonlinear probabilistic performance functions [38]. This algorithm provides an improved 

solution by iteratively adjusting the hypermeters as input and returns a scalar value 

representing the objective to be minimized.  
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CHAPTER 5: RESULTS AND DISCUSSION 

 The experimentation aimed to evaluate two distinct probabilistic performance 

functions of CRAC system and data server racks which are heat-emitting and exchanging 

sources within the data center environment. Adaptive multiple response Gaussian process 

model produced notably precise and accurate results. Each performance function 

underwent scrutiny to establish the critical performance and reliability estimation by 

formulating the probability of failure. 

 The built adaptive AMRGP model is based on a combination of variables which 

are randomly distributed along with performance function data. Initially, 07 samples (𝑁𝑡 =

7) are generated to create the surrogate model for both performance functions. The model 

undergoes iterative refinement till the error margin falls under 5%. Once the model is 

refined, the reliability values are calculated. The efficiency of the algorithm is evaluated 

based on the sum of performance function calls, and are lesser than the number of samples 

used for building the model. The results are then compared to the MCS method which is 

built on 106 samples and is vastly accurate due to its ability to analyze large datasets. The 

error value is then calculated using the formula 𝜁 =
|𝑅𝑚𝑐−𝑅|

𝑅𝑚𝑐
× 100. The proposed adaptive 

AMRGP method with fewer samples, demonstrates an error of less than 0.09% when 

compared to the MCS method having 106 samples. This indicates accurate and precise 

results, as decreasing the sample size improves the accuracy. 

Table 5.1: Results of Proposed Reliability analysis methods in comparison with other 

methods 

Methods used Number of 
samples 

𝑷𝒇
𝑫𝑪 Error 

Proposed Adaptive AMRGP 7 0.0012 0.13% 

MRGP 20 0.0019 0.16% 

Adaptive Kriging 20 0.0037 0.16% 

Polynomial Chaos Expansion 1 × 103 0.049 5.10% 
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MCS 1 × 106 0.0029 - 

For Reliability analysis of the Computer Room Air Conditioning (CRAC) system, 

conducting physical experiments is often impractical due to the high risk and cost 

associated due to uncertainties. Consequently, computational fluid dynamics (CFD) 

simulations are frequently employed for Reliability and Availability analysis. Furthermore, 

building a Gaussian Process model based on a full CFD dataset is very computationally 

intensive. To overcome this issue, Latin Hypercube Sampling (LHS) is employed to 

determine the highest levels of variability in input variables ∆𝑇, 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒, and 𝑇_𝑎𝑚𝑏𝑖𝑒𝑛𝑡. 

The fitted adaptive AMRGP model provides estimated mean function coefficients and the 

correlation parameters based on the exponential covariance function. The results achieved 

are highly accurate with low error values. Moreover, a complete heat transfer model of the 

CRAC system of the datacenter is developed which is the main contribution of this 

research. The analysis conducted in this study aligns with the general principles of heat 

transfer and thermodynamics, validating the model’s predictions to tackle the 

computational costs. 

This research does not address the energy management techniques developed to 

enhance the reliability and efficiency of data centers. Instead, the focus is on the heat 

transfer models of the data center’s major components. Additionally, the integration of 

sustainable and green energy resources presents novel challenges in data center operations. 

The impact of green technologies, such as renewable energy generation and free cooling 

techniques, on energy and heat transfer modelling approaches is not covered and can be 

explored further.  
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CHAPTER 6: CONCLUSIONS AND FUTURE RECOMMENDATION 

In conclusion, the proposed methods offer several advantages over existing analytical 

approaches. (1) A novel AMRGP Reliability analysis technique is developed for dynamic 

and very uncertain data center environments, an area that is rarely explored in literature. 

(2) The proposed method efficiently identified optimal design variables having uniform 

and random distributions throughout the sampling space. This approach effectively 

prevents issues related to sample points clustering along the critical design space boundary. 

(3) The algorithm and model simultaneously consider multiple performance functions, 

making it suitable for system-level design analysis. (4) The model provides correlation 

among the multiple performance functions of the CRAC system and data server racks, 

which can facilitate better equipment selections in the future. (5) The developed algorithm 

predicts the Reliability and error with notable accuracy and reduced computational cost 

and energy. 

The reliability assessment of the complete data center’s infrastructure across various failure 

scenarios validates the practicality of the proposed approach. Findings reveal a system 

reliability of 0.9988 under dual failure modes, demonstrating a mere 0.13% deviation from 

MCS method. Importantly, this method notably enhances computational efficiency.     

Future research perspectives are the adaption of sustainable energy resources in data 

centers and their impact on the reliability of CRAC systems. On the other hand, integrating 

various robust optimization algorithms with the proposed adaptive AMRGP method 

presents another promising research direction for Reliability analysis and design 

optimization of CRAC systems.
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