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ABSTRACT

Contrastive learning (CL) with Transformer-based sequence encoders offers a robust

framework for sequential recommendation by effectively addressing data noise and spar-

sity issues. By utilizing the advantages of CL, these models are able to learn rich repre-

sentations from sequential user interactions, leading to improved recommendation and

user satisfaction. However, recent CL methods are affected by two limitations. Firstly,

CL approaches are mainly process input sequences in single direction i.e left to-right

which is sub-optimal for sequential prediction tasks because user historical interactions

might not be in a fixed single direction. Secondly, these models focus on designing

CL objectives based solely on input sequence, overlooking the valuable self-supervision

signals available as contextual information of descriptive text. To address these limita-

tions, this research proposes a novel framework called Bidirectional Transformers

driven Contextual sequential Recommendation with Contrastive Learning

(CCLRec). Specifically, bidirectional Transformers are extended to incorporate auxil-

iary information by using sentence embedding formulated from item’s textual descrip-

tion. Next, we introduce the rolling glass step technique for handling lengthy user

sequence and descriptive features of respective item, which enables more refined parti-

tioning of user sequences. Next the cloze task mask,random occlusion and the dropout

mask are fused for producing high standard of positive samples to demonstrate bet-

ter performance for contrastive learning objective. Comprehensive experiments upon

three benchmark datasets show remarkable improvements when correlating with other

similar contemporary models.

Keywords: Contextual Sequential Recommendation, Bidirectional Transformers, Con-

transtive Learning, Auxiliary contextual Information
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Chapter 1

Introduction

Recommender systems (RS) predict the users’ future preferences by characterizing the

users’ intent that are usually dynamic in nature. These systems are essential tools in

the modern data-driven landscape, helping users find relevant items in vast datasets.

They enhance user experience, increase engagement, and drive business value across

various industries. RS are widely being used in e-commerce platforms and and on-

line media streaming websites to mitigate the efforts by the user in this information

overload world. Users’ interests are usually not stable and keeps on changing with

time. This temporal aspect is crucial in acquiring user dynamic preferences. For the

purpose of identifying user intents more precisely, numerous sequential recommenda-

tion techniques have been introduced in recent past that uses user’s previous historical

interactions [1].

The intention of sequential recommendation (SR) models works in two phases. First

they gather the sequence of past objects from user’s history and then projecting the

most relevant and accurate interaction for each user. Traditionally, researches exploit

Markov Chain model to anticipate future item based on recent items in the user histor-

ical behavior. These models are mathematical systems that undergo transitions from

one state to another in a state space. They are named after the Russian mathematician

Andrey Markov and are characterized by the property that the next state depends only

on the current state and not on the sequence of events that preceded it. [2], [3]. The
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significant advancement of machine learning has been marked by rapid advancements

and innovations. CNNs revolutionized image processing and are primarily designed for

spatial data such as images. CNNs are adept at capturing local patterns through con-

volutional layers, which apply filters to detect features like edges and textures. This

hierarchical feature extraction makes CNNs highly effective for image classification,

object detection, and segmentation tasks. On the other hand, RNNs are tailored for

sequential data, such as text and time series, where the order of the data points mat-

ters [4], [5], [6], [7]. However, CNN based models tend to overlook global features and

RNNs show difficulty in capturing inter items dependencies. More recently, transform-

ers and attention mechanisms have taken center stage, pushing the boundaries of what

is possible in natural language processing and beyond. Self attention mechanisms from

transformers encode sequential behaviors in efficient manner [8]. SASRec predomi-

nantly outperformed other SR models through unidirectional transformers. SASRec

uses self-attention mechanisms inspired by the Transformer architecture to capture

the relevance of past interactions in predicting future actions. By focusing on rele-

vant items in a user’s history, it effectively models long-term dependencies without the

limitations of recurrent networks [9]. BERT4Rec [10], on the other hand, applies the

BERT (Bidirectional Encoder Representations from Transformers) model to sequential

recommendation, utilizing a bidirectional transformer to consider both past and future

contexts of a user’s interaction sequence. This bidirectional approach allows Bert4Rec

to capture complex patterns and dependencies within the data, providing more ac-

curate and context-aware recommendations. KeBERT4Rec [11] integrates keywords

along with the item identifier in BERT4Rec model by concatenating the keyword rep-

resentation with item and its positional representations. However, this model uses one

hot encoding technique to generate the keyword vector, thus neglecting the contextual

meaning of keywords. Another model, FDSA [12] utilizes the attribute information

by applying a separate self-attention block for item in the user history as well as for

the features. Thus, most SR models including SASRec and BERT4Rec consider only
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implicit or explicit feedback based on item identifier for next item recommendation

and neglect the auxiliary data (textual descriptions, keywords, reviews etc). Accuracy

of next item prediction task in SR can be improved by incorporating additional infor-

mation.

Inspite of the efficacy and notable outcomes in different natural language processing

models, researchers face challenge due to the existing sparse interaction matrices and

dataset interaction noises. To address these issues in SR, contrastive learning (CL) has

been introduced to models based on transformers to increase the standard of learned

representations by utilizing data augmentation techniques. These techniques transform

the input data into different perspectives, helping the model learn invariant properties

of the sequence. The core idea is to pull positive views (augmentations of the same

input) closer together while pushing negative views (augmentations from different in-

puts) farther apart. This technique helps capture the nuanced preferences of users by

focusing on the contrast between what users interact with and what they do not. In

the context of sequential recommendation, contrastive learning can effectively enhance

the model’s ability to understand temporal patterns and user behavior by generating

robust embeddings that represent the sequence of interactions. By employing methods

such as data augmentation to create diverse positive and negative samples, contrastive

learning enables models to learn richer and more discriminative representations, lead-

ing to improved recommendation accuracy and the ability to generalize better to new

or unseen sequences. This approach has proven to be particularly powerful in scenar-

ios where explicit feedback is sparse, as it leverages implicit signals more effectively to

infer user preferences. CL4SRec [13] creates positive and negative samples through se-

quence level innovative augmentation techniques. This involves transforming the entire

sequence in various ways to ensure that the model learns robust and invariant represen-

tations. CoSeRec (Contrastive Self-supervised Sequential Recommendation) [14] is an

advanced framework that applies contrastive learning principles specifically to sequen-

tial recommendation tasks. CoSeRec leverages self-supervised learning by generating
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multiple augmented views of a user’s interaction sequence through techniques such as

cropping, masking, and reordering. DuoRec [15] utilizes unsupervised dropout and su-

pervised positive sampling to create positive samples. ICLRec [16] devises expectation

maximization to iteratively refine the representations by maximizing the likelihood of

observing the positive samples and minimizing the likelihood of observing the negative

samples. It is an advanced approach in the field of recommender systems, particularly

tailored to capture the underlying intentions behind user interactions. Unlike tradi-

tional contrastive learning, which primarily focuses on distinguishing between positive

and negative examples to learn effective representations, intention-oriented contrastive

learning aims to understand and model the specific intentions driving user behavior.

CBiT [17] combines dropout mask with cloze task mask to generate diverse and in-

formative pairs of views, enhancing the learning of invariant features uses a masking

operation.

Figure 1.1: Relevant movie is recommended with the help of auxiliary contextual in-
formation available in the form of movie categories.

Although, these SR models including CL based methods show significant perfor-

mance gain, however, they do not exploit contextual features (textual descriptions,

keywords, reviews etc) to generate meaningful representations neglecting the rich sig-
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nals from auxiliary data . For instance, Figure 1.1 depicts the sequence of movies

watched by a user with different categories. Identification of relevance among these set

of movies only having the sequential information is difficult. But we can accurately

infer the preference of user and recommendation of appropriate movies with the auxil-

iary data (textual descriptions, keywords, reviews etc). Moreover, deciding maximum

length of descriptive features and user historical interactions is crucial for recommender

systems due to computational constraints and the need to efficiently process and an-

alyze large amounts of textual data in order to capture more fine-grained contextual

information. Therefore we anticipate that by incorporating additional information in

CL methods and handling lengthy input sequences , prediction accuracy of next items

can be increased particularly under sparse situations.

1.1 Research Objectives

Objectives of the research work are as under:

• To design an efficient and accurate bidirectional transformer based context aware

self attentions module embedded with item rich features.

• To design a robust contrastive learning objective that creates rich set of positive

samples by leveraging cloze task mask, random occlusion mask and dropout mask.

• To introduce rolling glass step technique to handle lengthy user sequences and

descriptive features of respective item to optimize the computational cost and

capture more fine grained contextual information.

• Compare the suggested model with baseline models and recently developed state-

of-the-art techniques.

• To improve predictions accuracy in sequential recommender systems.
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1.1.1 Research Contribution

Within the framework of research, a novel framework called Bidirectional Transformers

driven Contextual Sequential Recommendation with Contrastive Learning (CCLRec)

has been designed to address the challenge of overlooking the valuable self-supervision

signals available as contextual auxiliary information of descriptive features in con-

trastive learning methods. Significant contributions of the research are highlighted as

follows:

• a novel framework architecture which efficiently incorporates the auxiliary con-

textual information into the user behavior and considers the supervision signals

constructed from the descriptive text for CL.

• a novel context driven sequence encoder which generates contextual embedding

of textual description of the items using Sentence-BERT and simultaneously cap-

tures the intinsic association between the respective item and the respective de-

scriptive text by combining the outputs of multiple attention mechanisms into a

single representation.

• a novel context driven contrastive learning (CLL) objective, that learns effective

representations from augmented versions of the original data, through three types

of augmentations: the cloze task mask, random oclusion mask and the dropout

mask.

• evaluation and performance comparison of the proposed model with existing

state-of-the-art techniques to achieve significant performance.

1.2 Outline Report

This thesis is divided into 5 chapters as under:

• Chapter 1: This chapter contains introduction, objectives and the contributions

made in this research.
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• Chapter 2: This chapter presents review of existing relevant research work done

in our domain.

• Chapter 3: This chapter presents the proposed framework architecture in detail.

• Chapter 4: This chapter discusses the experiment details and analysis of the

results by comparing with baseline models along with the brief explanation of

the evaluation metrics being used to evaluate the model.

• Chapter 5: This chapter outlines the summary of research work.

• Chapter 6: This chapter concludes the report and highlights the direction for

future research in our domain.
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Chapter 2

Literature Review

2.1 Sequential Recommendation System

Sequential recommendation system (SRS) is a specialized type of recommendation sys-

tem (RS) that leverages the user interaction sequences to anticipate and recommend an

item a user might be interested in near future[18]. Unlike traditional recommendation

systems that rely on static user profiles or item features, sequential recommendation

systems focus on the temporal dynamics and patterns in user interactions. These

systems leverage techniques from machine learning, particularly sequence modeling

approaches like recurrent neural networks (RNNs), long short-term memory (LSTM)

networks, and more recently, transformer models. By capturing the order and context

of past behaviors, sequential recommendation systems can provide more personalized

and timely suggestions. They are particularly effective in domains such as e-commerce,

content streaming, and social media, where user preferences can change rapidly and

context plays a crucial role in decision-making. The ability to adapt to evolving user

interests and provide relevant recommendations in real-time makes sequential recom-

mendation systems a powerful tool for enhancing user engagement and satisfaction.

SRS aims to recommend future product by considering historical behavior of users as

shown in Figure 2.1. This historical behavior is also known as next item prediction.
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Figure 2.1: Next item is recommended with the help of sequence of user interactions.

Earlier, the SRS were introduced using Markov Chains (MC) models for capturing

sequential patterns from the user historical preferences [19]. The next item preferred by

the users are predicted depending upon the last item, thus interpreting only the adjoin-

ing sequential behavior. Models based on RNNs laverage Gated Recurrent Unit (GRU)

[20] and Long Short Term Memory (LSTM) [21] to show substantial performance gain

for SR . RNNs enforce rigid sequential patterns for encoding user preferences for making

predictions. Besides RNN, a number of Convolutional Neural Network (CNN) [4] based

RS have also been introduced that also target problems related to the SR. Transformer

models based on attention mechanism [8] have revolutionized the field of deep learning

with their extraordinary performance across various domains such as text classification

[22], image captioning [23], and machine translation. These models have become the

new standard because of their capability to effectively handle high-range dependencies

and parallelized computations.

Transformers, primarily modeled for natural language processing, have shown revolu-

tionary impact in the field of sequential recommendations. For modeling the sequential

data, only the encoder part of the Transformer is used that aims at mapping the items

sequences which represent the interaction history of user into the sequence of vec-

tor representations. Transformers leverage the self-attention mechanism, which allows

the model to focus on different parts of the input sequence when making predictions.

This helps in capturing long-range dependencies and relationships within the sequence,
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which is crucial for understanding user behavior patterns. Using Transformer in SR, a

sequence of items are passed as input that is encoded through embedding layer followed

by concatenating with the positional embedding (vector representations that learns the

item’s placement in the sequence) and processed through Transformer layer. A single

Transformer block as illustrated in Figure 2.2 comprises of a ”multi-head self attention”

layer and a ”position-wise feed forward” layer [8].

Figure 2.2: Framework Architecture of Transformers

SASRec exploits the item identifiers for modelling the user interaction. It lever-

ages the transformer architecture, specifically utilizing the self-attention mechanism

to model the sequential behavior of users. Unlike traditional approaches that rely

on RNNs or LSTMs, SASRec can capture long-range dependencies and interactions

within user behavior sequences more effectively. By focusing on the most relevant

parts of a user’s interaction history, SASRec provides more accurate and personalized
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recommendations. The model’s ability to process sequences in parallel also enhances

computational efficiency, making it suitable for large-scale recommendation systems

[9].

Figure 2.3: Framework Architecture of Bert4Rec

On the other hand, unlike traditional sequential recommendation models that typi-

cally predict the next item in a sequence based on past interactions, BERT4Rec utilizes

bidirectional self-attention to capture the dependencies in both forward and back-

ward directions within user behavior sequences as shown in Figure 2.3. This allows

BERT4Rec to better understand the context and relationships among all items in a

sequence, leading to more accurate and robust recommendations. The model employs

a masked item prediction task during training, where model learns to anticipate the

11



masked items based on their context by masking certain items in the sequence. This

pre-training approach enables BERT4Rec to effectively capture complex patterns and

nuances in user behavior [10]. KeBERT4Rec uses keywords along with item identifiers

for next item prediction [11]. However, keywords representations are not extracted

through any of the contextual embedding technique, thus losing the context meaning.

These sequential recommendation techniques exploit the item identifiers for next item

recommendation. [24] proposed S3Rec, a self supervised SR model that utilized the

attribute data of item to learn the correlation among them. A feature level deeper

self attentive model [12] exploits segregated attention blocks for input sequence and

respective features to predict next item. LSSA [25] proposes a novel architecture to

fetch both long-term user choices and short-term sequential user interactions through

attention mechanism. SR-GNN (Session-based Recommendation with Graph Neural

Networks) [26] and GC-SAN (Graph Convolutional Self-Attention Network) [27] lav-

erage GNNs to o capture global dependencies and transitions across different sessions.

DDGHM (Dynamic Graph-based Hybrid Model) [28] integrates attention scores and

dynamic graph modeling to improve the capability of model to take into account the

specific aspects of the data from multiple domains. Models like CL4SRec [13], CoSeRec

[14], and DuoRec [15] leverage CL to achieve better generalization and robustness in

sequence prediction tasks.

2.2 Context driven Recommendation

Context-driven recommendation focuses on developing recommendation systems that

considers various contextual features for provision of more personalized and pertinent

user recommendations. It is an advanced type of recommendation engine that takes

into account the contextual information surrounding the user and the items being rec-

ommended. Different from traditional recommendation systems that primarily focus

on user-item interactions and historical data, context-driven systems consider various

contextual factors such as time, location, mood, device type, and current activity. This
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approach allows for more personalized and relevant recommendations, as it adapts to

the user’s current situation and preferences.

Figure 2.4: Context driven Recommendation System.

A context-driven recommendation system is illustrated in Figure 2.2. For a music

streaming service It might suggests different playlists depending on whether the user is

at the gym, commuting, or relaxing at home. Similarly, an e-commerce platform could

tailor its product suggestions based on the user’s browsing time and location, offering

different items during a lunchtime break at work compared to a weekend evening at

home. By integrating contextual data, these systems enhance user satisfaction and

engagement, providing a more intuitive and seamless experience. [29], [30]. S3Rec, a

self supervised SR model that utilized the attribute data of item to learn the correla-

tion among them [24]. KeBERT4Rec [11] leverages the keyword by integrating them

with item identifier for the prediction of next item in sequence. However, keywords

representations are not extracted through any of the contextual embedding technique,

thus losing the context meanings. A feature level deeper self attentive model [12]

introduced by exploits segregated attention blocks for items and their associated fea-

tures to predict next item. GRU4RecBE, an extension of GRU4Rec [5] model uses
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the rich item features embedding generated through pre-trained BERT and processed

through the GRU-RNN layer [26]. FCLRec introduces a CL objective that enhances

the model’s ability to differentiate between similar and dissimilar sequences by lever-

aging feature-specific information [31]. However type and length of features are not

mentioned thus lacking the contextual meaning. Different from these works, our pro-

posed model combines auxiliary informaion and item identifiers to create embeddings

using the Sentence BERT embedding technique. This enhances item recommendation

and prediction accuracy by capturing contextualized representations.

2.3 Contrastive Learning based Recommendation

Contrastive learning (CL) is self-supervised learning based methodology used to learn

representations by contrasting examples having positive and negative pairs.

Figure 2.5: Core concept of Contrastive Learning where similar samples are places
together where as dissimilar samples are pushed away in embedding space.

The core concept is to draw similar (positive) examples closer together in the embed-

ding space while distancing dissimilar (negative) examples as illustrated in Figure 2.3.

This approach has become particularly popular in tasks where labeled data is scarce

or expensive to obtain, and it is extensively used in numerous domains such as natural

language processing, computer vision, and sequential recommendation systems. [31].
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Moreover, it has significantly improved the process of future item prediction by focusing

on the similarities and differences between sequences. SimCLR’s augmentation strategy

can help capture various aspects of user behavior, while Siamese networks’ pair-based

approach can leverage labeled data to refine recommendations [32]. CL4SRec [13] in-

troduces CL into the SR process to enhance the quality of sequence representations.

CoSeRec [14] leverages self-supervised learning by introducing contrastive objectives to

improve sequence representation learning. DuoRec [15] adopts model augmentation as

a approach to improve item embedding distribution and overcome representation de-

generation problem in contrastive learning. ICLRec (Intent Contrastive Learning for

Sequential Recommendation) [16] is an advanced model designed to enhance the qual-

ity of recommendations by focusing on the underlying user intents within interaction

sequences. By leveraging contrastive learning techniques, ICLRec aims to learn robust

representations that capture the nuanced preferences and intents of users. CBiT [17]

introduces a BERT-based architecture with CL to capture temporal dynamics in SR.

ContraRec [33] leverages CL objective by combining supervision signals from concep-

tual and computational level.

Detailed overview of research findings is displayed in Table 2.1
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Table 2.1. Comparison and Analysis of Present Studies

Title Methodology Model
MC-based SRS [2] Captures sequential patterns from

user historical preferences using

Markov Chains (MC).

Markov

Chains

RNN-based SRS [5] Uses Gated Recurrent Unit

(GRU) and Long Short-Term

Memory (LSTM) to encode pref-

erences of user for predictions.

GRU,

LSTM

CNN-based SRS [4] Utilizes Convolutional Neural

Networks (CNNs) to address se-

quential recommendation prob-

lems.

CNN

Transformer-based SRS [8], [9],

[10]

Leverages the encoder part of

Transformers to map sequences

of user interactions to vector rep-

resentations, utilizing multi-head

self-attention and position-wise

feed-forward layers.

Transformer,

SASRec,

BERT4Rec

KeBERT4Rec: Keyword-

Augmented BERT4Rec for

Sequential Recommendation

[11]

Combines keywords with item

identifiers for next item predic-

tion.

KeBERT4Rec

S3Rec: Self-Supervised Learn-

ing for Sequential Recommen-

dation with Mutual Informa-

tion Maximization [24]

A self-supervised model utilizing

item attribute data to learn corre-

lations among items.

S3Rec

16



Title Methodology Model
Feature-level Deeper Self-

Attentive Model for Sequential

Recommendation [12]

Uses segregated attention blocks

for input sequences and features

to predict the next item.

Feature-level

deeper self

attentive

model
LSSA: Long- and Short-term

Self-Attention for Sequential

Recommendation [25]

Captures long-term preferences

and short-term sequential dynam-

ics through attention mechanisms.

LSSA

SR-GNN: Session-based Rec-

ommendation with Graph Neu-

ral Networks [26]

Combines Graph Neural Net-

works (GNNs) with self-attention

to fetch global dependencies and

transitions.

SR-GNN

GC-SAN: Graph Convolutional

Self-Attention Network for Se-

quential Recommendation [27]

Utilizes GNNs with self-attention

to capture both local and global

transitions in sequences.

GC-SAN

DDGHM: Dynamic Graph-

based Hybrid Model for Cross-

Domain Sequential Recommen-

dation [28]

Integrates dynamic graph mod-

eling with attention scores for

cross-domain sequential recom-

mendation.

DDGHM

CL4SRec: Contrastive Learn-

ing for Sequential Recommen-

dation [13]

Introduces contrastive learning to

enhance sequence representation

quality in sequential recommen-

dation.

CL4SRec

CoSeRec: Contrastive Self-

Supervised Learning for Se-

quential Recommendation [14]

Leverages self-supervised learn-

ing with contrastive objectives to

improve sequence representation

learning.

CoSeRec
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Title Methodology Model
DuoRec: Contrastive Learning

for Representation Degener-

ation Problem in Sequential

Recommendation [15]

Adopts model augmentation as a

approach to improve item embed-

ding distribution and overcome

representation degeneration prob-

lem in contrastive learning

DuoRec

ICLRec: Intent Contrastive

Learning for Sequential Rec-

ommendation [16]

Enhances recommendation qual-

ity by focusing on user intents

within interaction sequences using

contrastive learning techniques.

ICLRec

CBiT: Contrastive BERT-

based Temporal Dynamics for

Sequential Recommendation

[17]

Introduces a BERT-based archi-

tecture with contrastive learning

to capture temporal dynamics in

sequential recommendations.

CBiT

ContraRec: Contrastive Learn-

ing for Sequential Recommen-

dation by Combining Concep-

tual and Computational Super-

vision Signals [34]

Leverages contrastive learning

objectives by combining supervi-

sion signals from conceptual and

computational levels to improve

sequence prediction.

ContraRec
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Chapter 3

Proposed Framework

3.1 Framework Architecture

In this chapter, the proposed framework "Bidrirectional transformers driven Contex-

tual sequential recommendation with Contrastive Learning (CCLRec)" is illustrated.

The proposed model is developed based upon Transformer architecture that adapted

the deep bidirectional BERT model for SR prediction task as described in Figure 3.1.

For each user sequence su, respective auxiliary information and m different masked

sequences are generated that is the textual description of the items in the form of

sentences. Before passing these sequence of items to the model proposed, the auxil-

iary features of these items are passed as input to the Sentence-BERT to extract the

contextual dense feature representation. These dense embedding are extracted prior

to training phase to reduce the model training time.

Subsequently, during the training process, the auxiliary information’s embeddings of

items within a sequence are extracted and then passed to the context aware bidi-

rectional transformers as shown in Figure 3.1 where these embeddings are then con-

catenated with the positional embedding and item’s embedding to fetch the items

sequential behavior. Only the encoder part of Transformer is used to compute the

hidden representation using self attention mechanism for each item. These layers share

information bidirectionally across each position in hierarchical manner. A final learned

hidden representation is projected at output layer that contemplated the future item
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recommendation for a user.

Figure 3.1: Model Architecture of Contextual Sequential RS using Contrastive
Learning.

Numerous Experiments were performed using three bench mark datasets includ-

ing movielens-1m, Amazon Beauty and Toy to establish the efficiency of the proposed

model. The layers of proposed framework are assembled using embedding layer, trans-
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former layer and the output layer.

3.1.1 Mathematical Formulation of Proposed Model

Let set of users U and items I be shown mathematically as:

U = {u1, u2, u3, . . . , u|U |}

I = {i1, i2, i3, . . . , i|I|} (3.1)

Each item has an item description in textual form (auxiliary information) represented

as TD = {des1, des2, des3, . . . , des|I|}. User u interacts with items in a sequence in

historical order is denoted as S = {i1, i2, i3, . . . , in}, where in is a particular item

from I that the user has acted upon previously. Provided the history of sequence

S, Sequential Recommendation System (SRS) aims to predict the future item in+1 in

which a user is interested. The model predicts the probability of in+1 = i given S as:

p(in+1 = i|S)

3.2 Embedding Layer

The embedding layer in CCLRec plays a crucial role in transforming input data into

dense, continuous vectors that the model can process effectively. In CCLRec, the em-

bedding layer consists of two main components: Sequence embedding that consists of

item embeddings and positional embeddings, and descriptive text embeddings. Item

embeddings constitute every unique dataset item as a high-dimensional vector, captur-

ing semantic information about the items. Positional embeddings are added to these

vectors to retain the order of items, which is essential for understanding the sequence

of user interactions. Descriptive text embeddings are used to capture the semantics

of items. By combining these embeddings, the CCLRec model gains a rich, context-

aware representation of the input data, enabling it to capture complex patterns in user
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behavior and make accurate sequential recommendations. This embedding layer forms

the foundation for the subsequent transformer layers, allowing the model to process

and learn from the embedded sequences effectively.

3.2.1 Sequence Embedding

By integrating both item embedding matrix M ∈ RI×d and positional embedding

matrix P ∈ RL×d , CCLRec constructs rich, context-aware hidden representations of

sequences where L is maximum length of sequence and d is hidden dimensions. These

representations enable the model to efficiently seize and utilize the items order and

characteristics, improving the accuracy and relevance of recommendations. Thus, for

item i at t timestamp, the input representation is shown as:

h0t = mt + pt, 1 ≤ t ≤ L (3.2)

where embedding vectors are mi and pt with respect to position t and item i. Each h0t

is stacked together to construct the embedding of complete sequence

H0 = [h01 , h02 , . . . , h0t , . . . , h0L ].

In contrast to recent research, we address the limitation of fixed length of user sequence

due to the computational constraints by introducing rolling glass of step size L over any

lengthy user sequence and descriptive features at the training stage. The sequence is

disintegrated into overlapping segments that fit within the maximum length constraint.

This allows the model to process longer sequences incrementally while maintaining

context continuity. Specifically, for a combined lengthy user sequence including item

description sd with |sd| > L, we extract different sub sequences ŝid = [i1+l, i2+l, . . . , iL+l]

as multiple input instances, where l ∈ {0,Ω, 2Ω, . . . , kΩ}, 0 ≤ kΩ ≤ |sd| − L, and Ω

denotes the rolling glass step size which helps to preserve all the training data and

process sequence of user historical behavior at a deep contextual level.
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3.2.2 Descriptive Text Embedding

Although efficient recommendations can be made by making use of the positional em-

bedding along with the item identifier embedding, thus memorizing the sequential order

of the input. However, the pair alone does not describe the contextual representation

of the input and does not recommend contextually especially under sparse conditions.

Descriptive text embeddings are powerful representations that capture the semantic

essence of text data in a dense, continuous vector space. These embeddings trans-

form textual information into numerical vectors, enabling machine learning models to

process and understand language at a deeper level. For instance, in a product recom-

mendation system, descriptive text embeddings of product reviews, descriptions, and

user comments can be utilized to discern the underlying themes and sentiments, facil-

itating more accurate and contextually relevant recommendations. By converting text

into these meaningful numerical representations, descriptive text embeddings allow for

sophisticated analysis and integration of textual data into various applications, enhanc-

ing the model’s proficiency to engage in meaningful conversations and produce human

communication patterns effectively. The proposed model utilizes the Sentence-BERT

[35] for capturing contextual representation of the item descriptions.

Figure 3.2: Framework Architecture of Sentence-BERT

The architecture of Sentence-BERT for extracting sentence embedding is depicted

in Figure 3.2. Sentence-BERT (SBERT) is a powerful variant of BERT (Bidirectional

Encoder Representations from Transformers) designed to generate high-quality sen-
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tence embeddings for tasks requiring semantic understanding, such as semantic search,

clustering, and paraphrase detection. Unlike the original BERT, which is optimized for

token-level tasks and requires complex pairwise comparisons for sentence-level applica-

tions, SBERT modifies BERT . It creates fixed-size sentence embeddings by augmenting

model with pooling operation after embedding layer. Input in the form of sentences or

text of various length is injected to the selected SBERT model, which in turn generates

contextualized word embedding for all input tokens in the sentence. Secondly, these

word embedding are passed through a pooling layer to generate a fixed sized vector

representation. Among various pooling options available, the model utilizes the mean

pooling to produce a fixed dimensional output embedding vector. SBERT generates

descriptive text embedding ct ∈ RN×d for each associated item it where N represents

dimensionality of sentence embedding.

3.3 Context aware Bidirectional Transformers

Based upon the transformer architecture, we utilize deep bidirectional Transformers

based encoder to capture the interaction sequence of user from left and right direc-

tions. To augment our framework’s ability to handle both sequential and auxiliary

information, we utilize the bidirectional transformer to integrate an innovative context

aware self attention module. This module effectively captures the intricate association

between sequence of items and their respective descriptive text simultaneously. This is

achieved through self-attention layers, where each word in the input sequence is com-

pared with every other word to calculate attention scores, and these scores are then

utilized to produce weighted representations of the input. This allows the model to

capture complex dependencies and nuanced meanings that would be difficult to iden-

tify with traditional sequential models.
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Figure 3.3: The proposed Framework Architecture of CSA module.

3.3.1 Context aware Self attention

To integrate and simultaneously design the intricate association between interaction

sequences and their associated descriptive text, we introduce a novel context aware self

attention (CSA) module as shown in Figure 3.3. This model leverages an advanced

attention mechanism to effectively capture and model the dependencies between items

and its corresponding descriptive text in a sequence, taking into account the context

in which these elements appear. The attention mechanism works by assigning varying

levels of weights, or importance to the input sequence of items. This enables the model

to concentrate on the most relevant information when making predictions or generating

output. In a context-aware setting, this means that the model can dynamically adjust

its attention based on the surrounding context, enabling it to better understand and
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interpret the relationships between words, sentences, or other sequential data. In this

module, the attention layer obtains the context representation xt for each item by

processing the item embedding it as query which refers to its corresponding descriptive

text embedding ct.

xt = softmax

(
(itW

Q
C )(ctW

K
C )⊤√

d

)
(ctW

V
C ) (3.3)

where WQ
C , WK

C , W V
C ∈ Rd×d are learnable parameters. Provided the nth layer sequence

embedding Hn ∈ RL×d and the descriptive text representation X ∈ RL×d, integrated

attention score between the descriptive text representation X and the sequence repre-

sentation Hn is computed as follows:

IAS(Hn, X) = join(h1; h2; . . . ; hh) ·WO

hi = IntgAttn(HnWQ
i , HnWK

i , HnW V
i , XWQC

i , XWKC
i ) (3.4)

where learnable parameters are WQ
i ,WK

i ,W V
i ,WQC

i ,WKC
i ∈ Rd×d/f and WO ∈

Rd×d and f is the number of attention heads. We scale integrated attention score

A with
√

4d/f and take product of softmaxed attention score and the value as belows:

IntgAttn(QC , KC , V,K,Q) = softmax

(
A√
4d/h

)
V (3.5)

where QC , KC depict query, key for the descriptive text and Q, K, V are query, key

and value for the input sequence. We compute A by evaluating the cross relationships

between sequence of items and their corresponding descriptive text as:

A = QK⊤ +QK⊤
C +QCK

⊤ +QCK
⊤
C (3.6)

3.3.2 Feed Forward Network

Position wise feed forward network (PFFN) is incorporated to handle non linear projec-

tions right after CSA module. It is achieved through the use of activation functions ap-

plied to the outputs of each layer. Initially, each layer performs a linear transformation
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on the input data using a weight matrix and bias vector. To introduce non-linearity,

activation function GeLU is applied to the transformed data. This function allows the

network to learn complex patterns and representations by adding non-linearities. The

combination of linear transformations and non-linear activation functions is applied

layer by layer. The output of each layer serves as the input for the next. This process

enables the network to build complex, hierarchical representations of the input data,

progressively capturing higher-level features. By incorporating non-linear activation

function, GeLU feedforward networks approximates any continuous function, allowing

them to model intricate relationships in the data and solve a wide variety of complex

tasks across different domains. Mathematical notation of (PFFN) is as under:

PFFN(H
n) = [SFFN(h

n
1 )

⊤;SFFN(h
n
2 )

⊤; . . . ;SFFN(h
n
T )

⊤]

SFFN(h
n
i ) = GeLU(hn

i W1 + e1)W2 + e2 (3.7)

where trainable hyper-parameters communicated at all layers are W1, W2, e1 and e2.

Transformer block is formed by fusing feef forward network and context aware self

attention (CSA) module. Context aware bidirectional transformer encoder is con-

structed by stacking multiple transformer blocks. Complexity of the model is reduced

using residual connection [36] at each sub layer. In order to avoid overfitting, we apply

dropout [37] followed by layer Normalization [38], LNorm. Layer normalization and

dropout are two effective techniques used in neural networks to avoid overfitting and

improve generalization. Layer normalization works by normalizing the inputs of each

layer across the features, ensuring that the mean and variance of the inputs are consis-

tent. This helps stabilize the learning process and makes the training more robust to

varying batch sizes, leading to improved efficiency. However, dropout is a regulariza-

tion approach where randomly selected neurons are neglected, or "dropped out," in the

course of each training iteration. This prevents the network from becoming too reliant

on specific neurons and forces it to learn more robust features. By reducing inter de-

pendencies among neurons, dropout mitigates overfitting, as the network is less likely
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to memorize the training data. Together, layer normalization and dropout enhance

the network’s ability to generalize from the training data to unseen data, resulting

in a more reliable and effective model. The context driven bidirectional Transformer

encoder Trmc is constructed as under:

Hn = Trmc(H
n−1, X), ∀n ∈ [1, . . . , N ]

Trmc(H
n, X) = LayerNorm(An + Dropout(PFFN(An)))

An = LayerNorm(Hn + Dropout(CSA(Hn, X))) (3.8)

In a nutshell, after obtaining user sequence embedding H0 along with its corresponding

descriptive text representation X, H0 is passed through N layers of Transformer blocks.

The end result of sequence encoder that is in the form of hidden representation HN , is

captured from the last layer N .

3.4 Output Layer

To train bidirectional transformers, our primary training objective is masked item

prediction task MIP(occlusion task and the cloze task). m multiple masked sequences

s1u, s
2
u, . . . , s

m
u are constructed during each iteration by using various random seeds. In

each masked sequence syu (1 ≤ y ≤ m), the token of masked item [mask] is randomly

changed with ratio ρ of all items and corresponding descriptive text with the mask

description des0. P y
u shows the masked items position indices. The task of the model

is to take into account the contexts of remaining unmasked items for generating the

masked items. We define the loss function for mask item prediction task as under:

LMIP = −
m∑
y=1

∑
t∈P y

u

log sigmoid(p(vt|syu)) +
∑
i−t /∈su

log(1− sigmoid(p(i−t |syu)))

 (3.9)

Randomly sampled one negative item i−t is paired with target item it. It is pertinent

to mention that while calculating the loss function, only masked items are considered.
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The item prediction layer generates the probability p(i) and transforms ht which is the

final out put in the form of hidden representation at position t.

p(i) = W Pht + bP (3.10)

where weight matrix is denoted by W P ∈ R|I|×d and prediction layer bias term is

denoted by bP ∈ R|I|.

3.5 Context driven Contrastive Learning

Contrastive learning (CL) is self-supervised learning based methodology used to acquire

representations by contrasting examples having similar and dissimilar pairs. Normally,

if we are having a batch of sequences {su}Du=1 with batch size D, a pair of hidden

representations Ha
u , Hg

u originating from su are treated as positive samples whereas the

remaining 2(D − 1) stemming from su are treated as negative samples [32]. Based on

InfoCE, single pair CL loss [39] is illustrated as under:

L(Ha
u , H

g
u) = − log

e<Ha
u ,H

g
u>/τ

e<Ha
u ,H

g
u>/τ +

∑N
k=1,k ̸=u

∑
c∈{a,g} e

<Ha
u ,H

c
k>/τ

(3.11)

where temperature hyper-parameter is denoted as τ . To compute the similarity score

among two hidden representations, cosine similarity function ⟨ϕ1, ϕ2⟩ = ϕT
1 · ϕ2/||ϕ1|| ·

||ϕ2|| is adopted.

This research devises a Context driven Contrastive Learning (CCL) objective to incor-

porate the descriptive text information in contrastive learning for SR tasks. Specifi-

cally, three types of augmentation namely context level random occlusion mask, data

level cloze task mask and model level dropout mask are used to produce a rich set

of similar pairs. More precisely, these positive samples are generated by integrat-

ing H1
u, H

2
u, . . . , H

m
u (final output of the m hidden representations) and corresponding

masked sequences s1u, s
2
u, . . . , s

m
u . The CCL loss function is computed as under:

LCCL =
m∑

a=1,x ̸=g

m∑
g=1

l(Ha
u , H

g
u) (3.12)

where l(Ha
u , H

g
u) is a CL pair.
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3.6 Training

We train the proposed model by integrating together mask item prediction task MIP

which is our primary training objective and auxiliary task which is context driven

contrastive learning objective CCL. Hence, we formulate the accumulative loss function

for our model as under:

L = LMIP + µLCCL (3.13)

where µ depicts the weighting hyperparameter that regulates the influence of CCL.
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Chapter 4

Experimental Results and Analysis

4.1 Experiments

The present part of the research elaborates the datasets used in the proposed model and

their preparation followed by experiment setup, evaluation metrics and performance

comparison.

4.1.1 Datasets Pre-Processing

Three benchmark datasets including movielens-1m1, Amazon-Beauty2 and Amazon-

Toys3 have been utilized to train and demonstrate the proposed model’s performance.

Datasets are described in detail as under:

• MovieLens: A well-known dataset most commonly used for evaluating the per-

formance of SRS. MovieLens ratings dataset contains the user id, item id (IDs of

the movies from ”movies” table), ratings and timestamp for movie ratings from

each user. The auxiliary information (movie plot summary) for MovieLens is

extracted through IMDbPY4 using the ImdbId unique identifier, thus, making

it information rich dataset.
1https://grouplens.org/datasets/movielens-1m/
2http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/metaBeauty.json.gz
3http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/metaToysandGames.json.gz
4https://imdbpy.github.io/
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• Amazon-Beauty and Toys: It is a set of dataset comprising of reviews of a

number of products extracted from "Amazon.com". The data is disintegrated into

different datasets based upon product categories on Amazon. In our experiments,

"Beauty" and "Toys" categories are chosen having a "rating" and a "meta" file.

To incorporate the auxiliary information in the "rating" dataset, "description"

of each product is extracted from the "meta" dataset.

We eliminate redundant data of interactions and arrange every interactions in chrono-

logical manner in order to create user sequences. Following the methodologies of [10],

[13], [17], we exclude users having lesser than five interactions and items associated

with fewer than five users. We conduct testing with last item, validation with second

last and rest for training by employing the leave-one-out evaluation approach. Table

4.1 summarizes the processed dataset statistics.

Table 4.1. Datasets statistics after Pre-Processing

Datasets Beauty Toys ML-1M

# of Users 22,363 19,412 6,040
# of Items 12,101 11,924 3953
# of Interactions 198,502 167,597 1,000,209
Avg. Length 8.9 8.6 163.5
Sparsity 99.92% 99.93% 95.81%

4.1.2 Evaluation Metrics

For evaluating all models, we compute "Normalized Discounted Cumulative Gain"

(NDCG) and "Hit Ratio" (HR). The degree of performance is measured by the higher

values of these metrics. We utilize top-k ranking to evaluate the performance i.e

Hit Ratio@K (HR@K) and Normalized Discounted Cumulative Gain@K (NDCG@K)

where K ∈ {5, 10, 20}. Hit Ratio is used for measuring the ranking accuracy by com-
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paring the test item set (T) with the ranked list. Mathematically it is expressed as:

HR@K =
Number of Hits@K

|T |
(4.1)

HR@K computes the number of hits in a list with K size. A hit occurs if the item

tested is available in ranked list. Whereas the relative position of that item is assessed

using NDCG in the ranked list . It assigns higher scores if the item is present at top

position in ist. Mathematically it is evaluated by folllowing formula:

NDCG@K = NK

K∑
i=1

2zi − 1

log2(i+ 1)
(4.2)

where NK is the normalizer and zi being the item’s graded relevance at position i. We

compute both the metrics of every test user items and then take their mean.

4.1.3 Baselines

For performance comparisons, we consider the following methods from three groups.

4.1.3.1 Sequential Models

Sequential models refer to a class of neural networks designed to process sequential

data, where the order of inputs is crucial for understanding the data’s meaning or

context. These models are particularly adept at handling tasks where the temporal

or sequential dependencies between elements matter. These models produce item and

user representations using sequence encoders.

• SASRec[9]: SASRec (Self-Attentive Sequential Recommendation) leverages self-

attention mechanisms to model sequential patterns in user behavior, offering

robust recommendations based on deep understanding of item sequences. This is

a unidirectional (left-to-right) self attentive framework for next item prediction.

• BERT4Rec [10]. BERT4Rec enhances recommendation systems by leveraging

BERT’s contextual embeddings to capture nuanced user preferences and item
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characteristics from textual data, improving the relevance and personalization

of recommendations. This top of the line model uses bidirectional self attentive

blocks and cloze task masking for the recommendation task.

• KeBERT4Rec [11]. KeBert4Rec integrates knowledge graphs with BERT to

enhance recommendation systems, leveraging contextual information for more

personalized and effective recommendations. This model extends BERT4Rec by

integrating keywords as additional input layer.

4.1.3.2 Context driven sequential methods

These models incorporate both sequence and contextual information to enhance rec-

ommendation tasks. Some examples are as under:

• S3Rec [24]. It utilizes self-supervised learning techniques to enhance sequential

recommendation systems. This approach focuses on maximizing mutual infor-

mation between different parts of the user-item interaction sequence, thereby

capturing meaningful patterns and dependencies in the data without explicit

user feedback or ratings.

• FCLRec [31]. It adopts BERT4Rec to design intrinsic association between item

sequences and associated features.

4.1.3.3 Sequential models with contrastive learning

Sequential models combined with contrastive learning represent a powerful approach to

learning meaningful representations from sequential data. This combination leverages

the strengths of both sequential modeling, which captures temporal dependencies, and

contrastive learning, which enhances the discriminative power of representations by

comparing positive and negative pairs. These models improve sequential recommenda-

tion with contrastive learning objective. Some examples are as under:
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• CL4SRec [13]. It is an innovative approach that utilizes transformer architec-

ture to integrate contrastive learning techniques into sequential recommendation

system. This model focuses on improving SR by leveraging contrastive learning.

• CoSeRec [14]. It is a sophisticated framework that combines contrastive learning

with self-supervised techniques to enhance the performance of recommendation.

The primary aim of CoSeRec is to improve the learning of user-item interac-

tion patterns by leveraging the strengths of both self-supervised learning and

contrastive objectives.

• DuoRec [15]. It adopts model augmentation as a approach to improve item

embedding distribution and overcome representation degeneration problem in

contrastive learning.

• CBiT [17]. It is a BERT-based CL framework that utilizes cloze task and dropout

mask. It fuses strengths of both contrastive learning and bidirectional transformer

architectures to improve the performance and robustness of recommendation sys-

tems.

4.1.4 Implementation Details

All baseline models were implemented in Pytorch [40] by the codes provided by au-

thors. Instructions from the authors of original papers were followed for setting hyper

parameters. We implement our model in Pytorch framework and train on machine with

NVIDIA Tesla T4 GPU, 1.59 GHz and 16 GB RAM, utilizing transformer encoder with

Transformer blocks N and attention layers set as 2, hidden dimensions set as 128 and

batch size set as 256. We use optimizer Adm [41] with initial learning rate lr 0.001

and 0.01 as weight decay. The masking probability ρ is set as 0.15 for cloze mask task.

Other hyper-parameters are tuned as 3 to 18 the number of positive samples m, 0.1 to

5 τ , 0.1 to 0.8 dropout ratio, The hidden dimensionality d is tested from 64,128,256,

20 to 120 the rolling glass step size L, weighting hyper-parameter µ from 0.01 to 0.6.
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The best NDCG@10 score is displayed by selecting checkpoint for testing with number

of epochs set as 256 on the validation set.

4.2 Comprehensive Performance Analysis

Table 4.2 depicts the optimized outcomes of each baseline model on benchmark datasets.

The performance efficiency of our proposed model in comparison to the best baseline

method is displayed in last column.

We can establish from results that use of transformer based self attention models are

more accurate than using traditional mechanisms. It is evident that SASRec perfor-

mance falls behind as compare to BERT4Rec which depicts that bidirectional model

like BERT4Rec is more powerful as compared to unidirectional model like SASRec.

Furthermore, BERT4Rec is a SR model that relies only on the item identifiers for the

purpose of generating representation/ embedding. This model ignores the auxiliary

information that is already provided with the datasets. However, KeBERT4Rec, a

variant of BERT4Rec, has modified the representation by adding keywords describing

the items e.g. Genre of movie. The addition of this keywords embedding in the model

makes KeBERT4Rec perform better than BERT4Rec. It is observed that context

aware methods further produce better results than sequential methods. Thus, sug-

gesting that incorporating some kind of side information along with item can improve

the recommender’s performance. We also notice that model augmentation(DuoRec)

and hybrid augmentation (CBiT) based CL methods perform significantly better than

models based on data augmentation (CL4Rec, CoSeRec). While contrastive learning

emphasizes the relative positioning of data points, contextual methods focus on the

sequential nature and dependencies within the data. Integration of contextual aspect

with contrastive learning objective offers depth in understanding sequential patterns.

We infer that some original context of sequences might get corrupted by data aug-

mentation and model augmentation cause minimal deviation avoiding any significant

damage to original context.
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Table 4.2. Comprehensive performance analysis of proposed model with referenced
models for next item recommendations. The highest scores are shown in bold, while
the second place scores are underlined.

Dataset Metric
Sequential Methods Contextual SR Models Sequential Models with CL

Improv.
SASRec BERT4Rec KeBERT4Rec S3Rec CL4SRec CoSeRec DuoRec CBiT FCLRec CCLRec

Beauty

HR@5 0.0371 0.0370 0.0436 0.0382 0.0396 0.0504 0.0559 0.0637 0.0679 0.0702 3.39%
HR@10 0.0592 0.0598 0.0652 0.0634 0.0630 0.0726 0.0867 0.0905 0.0954 0.0983 3.04%
HR@20 0.0893 0.0935 0.0958 0.0981 0.0965 0.1035 0.1102 0.1223 0.1310 0.1315 0.38%
NDCG@5 0.0233 0.0233 0.0323 0.0244 0.0232 0.0339 0.0331 0.0451 0.0480 0.0501 4.37%
NDCG@10 0.0284 0.0306 0.0358 0.0335 0.0307 0.0410 0.0430 0.0537 0.0569 0.0571 0.35%
NDCG@20 0.0361 0.0391 0.0411 0.0429 0.0392 0.0488 0.0524 0.0617 0.0658 0.0674 2.43%

Toys

HR@5 0.0429 0.0371 0.0385 0.0440 0.0503 0.0533 0.0539 0.0640 0.0641 0.0664 3.59%
HR@10 0.0652 0.0524 0.0571 0.0705 0.0736 0.0755 0.0744 0.0865 0.0909 0.0948 4.29%
HR@20 0.0957 0.0760 0.0827 0.1008 0.0990 0.1037 0.1008 0.1167 0.1239 0.1285 3.71%
NDCG@5 0.0248 0.0259 0.0245 0.0286 0.0264 0.0370 0.0340 0.0462 0.0464 0.0478 3.02%
NDCG@10 0.0320 0.0309 0.0311 0.0369 0.0339 0.0442 0.0406 0.0535 0.0551 0.0566 2.72%
NDCG@20 0.0397 0.0368 0.0432 0.0458 0.0404 0.0513 0.0472 0.0610 0.0634 0.0642 1.26%

ML-1M

HR@5 0.1078 0.1308 0.1801 0.1128 0.1142 0.1128 0.1930 0.2095 0.2196 0.2243 2.14%
HR@10 0.1810 0.2219 0.2597 0.1969 0.1815 0.1861 0.2865 0.3013 0.3090 0.3146 1.81%
HR@20 0.2745 0.3354 0.3185 0.3067 0.2818 0.2950 0.3901 0.3998 0.4214 0.4114 2.90%
NDCG@5 0.0681 0.0804 0.8194 0.0668 0.0705 0.0692 0.1327 0.1436 0.1517 0.1541 1.58%
NDCG@10 0.0918 0.1097 0.1582 0.0950 0.0920 0.0915 0.1586 0.1694 0.1806 0.1865 3.27%
NDCG@20 0.1156 0.1384 0.2213 0.1189 0.1170 0.1247 0.1843 0.1957 0.2090 0.2152 2.88%

In accordance with the outcomes, on the benchmark datasets, our proposed model

CCLRec clearly outperforms all baseline methods. This clearly demonstrates that

more complex association between item sequence and its corresponding description

can be extracted by the context driven bidirectional transformer and context driven

contrastive learning objective is able to optimize model via three different augmenta-

tion types, introducing more accuracy and effectiveness. The proposed model gains a

significant improvement by 5.69% to 6.34% in NDCG@10.

4.3 Hyperparameter Study

In the present part, the impact of significant hyperparameters such as number of posi-

tive samples m, hidden dimensionality d, dropout ratio and rolling glass step,in CCLRec

is discussed by altering one hyperparameter at a time and keeping others constant.
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Figure 4.1: NDCG@10 performance analysis of three benchmark datasets with re-
spect to other hyperparameters.

4.3.1 Number of Positive Samples

Figure 4.1a depicts the influence of number of positive samples m on the efficiency

of CCLRec.More number of high-quality positive samples from the same sequence are

contrasted with m(N−1) number of negative samples from other sequences in the same

batch. This approach helps the model learn more generalizable, meaningful and robust

representations. These representations capture the underlying hidden structure and

association within the items more effectively. However, balancing an adequate number
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of positive samples is pertinent for training a robust model because there is a point of

diminishing returns where adding more samples does not lead to further improvements

in performance.

4.3.2 Dropout Ratio

The dropout ratio is a crucial hyperparameter in neural networks that impacts their

performance by preventing overfitting and promoting generalization. Dropout involves

randomly "dropping out" a fraction of neurons during training, which means setting

their output to zero with a certain probability (the dropout ratio). Dropout ratio is a

critical hyperparameter that needs careful tuning. We noticed from Figure 4.1b that

CCLRec deteriorates in performance when the dropout ratio is excessively small or

excessively large. The right balance should be in between 0.6 for Beauty, 0.3 for Toys

and 0.2 for ML-1M to significantly enhance the model’s ability to avoid overfitting or

underfitting.

4.3.3 Hidden Dimensionality d

Hidden dimensionality d is a critical hyperparameter that influences the model’s abil-

ity to learn from data. Balancing hidden dimensionality requires careful consideration

of the trade-offs between underfitting and overfitting, computational resources, and

the use of regularization techniques to achieve optimal performance. The hidden di-

mensionality d has a significant influence on the efficiency of recommendation system.

Figure 4.1c exhibits the values of NDCG@10 on different bechmark datasets by vary-

ing hidden dimensionality d ranges between 16,32,64,128,256. It is obvious that with

the increase of dimensionality, the graph converges. However, improved model perfor-

mance is not always achieved with bigger value of hidden dimensionality, particularly

on sparse datasets such as Beauty.
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4.3.4 Rolling Glass Step

Rolling glass step L is a critical factor in sequential data modeling that influences the

ability of a model to capture more fine-grained context, balance between overfitting

and underfitting, and adapt to data variability. A smaller step size increases training

data and accuracy but at the cost of higher computation. A larger step size reduces

computational load but may miss important patterns. Balancing these factors and

tailoring the step size to the specific application and data characteristics is essential

for optimal performance. Glass size should be selected by keeping in consideration

particular task requirements and validated through empirical experimentation. We ob-

served from Figure 4.1d that appropriate rolling glass step should neither be too large

or too small in order to avoid underfitting or overfitting. We keep L 50, 30 and 20 for

ML-1M,Toys and Beauty datasets respectively.

4.4 Computational Complexity

CCLRec involves a combination of the complexities inherent in both contrastive learn-

ing and transformer architecture. For Bidirectional transformers, larger values of

rolling glass step increase quadratic complexity due to the attention mechanism O(L2d).

Therefore time complexity of CCLRec is O((N − L+ 1)L2d) where N − L + 1 is the

rolling glass step size.
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4.5 Ablation Study

Figure 4.2: Ablation study (NDCG@10) on the impact of proposed modules and
auxiliary contextual task

4.5.1 Impact of Proposed Modules

Table 4.3 shows some ablation experiments that were performed on two datasets. To

visualize the impact of proposed modules (1) CCLRec presents results with all modules.

(2) computes results without contrastive learning at all. (3) shows results with only

data and model level augmentation. (4) presents results by testing proposed model

using one hot encoding techniques to generate textual embedding. (5) presents impact

on results by truncating user sequence su to fixed length. We can notice from Table

4.3 and Figure 4.2a that rolling glass step successfully improved results by capturing

more fine grained representations. This also emphasize the use of meaningful and con-

text embedding generating technique i.e SBert for model training to produce relevant

results. Moreover contrastive learning with context level augmentation is better than

absolutely no CL.
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Table 4.3. Ablation Study on our proposed modules. The outcomes depict that
proposed techniques enhanced the overall performance.

Modules Ml-1m Beauty

HR@10 NDCG@10 HR@10 NDCG@10
(1) CCLRec 0.3146 0.1865 0.0983 0.0571
(2) w/o CCL 0.3013 0.1694 0.0905 0.0537
(3) w/o Context level augmentation 0.2954 0.1628 0.0901 0.0488
(4) w/o SBert 0.3090 0.1806 0.0954 0.0558
(5) w/o Rolling glass step 0.2874 0.1685 0.0948 0.0507

4.5.2 Impact of Auxiliary Contextual Task µ

Some ablation experiments were performed to assimilate the influence of the auxiliary

contextual information. We show performance of NDCG@10 of our framework under

different values of weighting hyper-parameter µ, that optimizes context driven con-

trastive learning objective. Figure 4.2b depicts that performance of the model declines

on removal of context driven contrastive learning objective i.e (µ = 0), thus proving

that auxiliary contextual task has significant impact on efficiency of the model.
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Chapter 5

Summary of Research Work

Sequential recommender systems are essential for forecasting users’ future preferences

by examining their past interactions in a dynamic manner. These systems are essen-

tial in various online platforms to relieve information overload and deliver tailored and

pertinent recommendations to users. To enhance the accuracy of sequential recom-

mendations, advanced methodologies like contrastive learning have been introduced.

Contrastive learning leverages data augmentation techniques and transformer-based

models to learn rich representations by pulling positive views and pushing away neg-

ative views within batch examples. By addressing challenges such as extreme sparse

interaction matrices and interaction noises in datasets, contrastive learning frameworks

like CL4SRec, CoSeRec, and DuoRec have shown notable improvements in learning

representations for sequential recommendation tasks.

This study introduces a novel framework called Bidirectional Transformers driven

Contextual Sequential Recommendation with Contrastive Learning (CCLRec)

to further enhance recommendation accuracy. CCLRec extends bidirectional trans-

formers and Sentence-Bert to incorporate auxiliary information from textual features

of items, enabling a more comprehensive understanding of user preferences. The frame-

work introduces a context aware self-attention module to capture meaningful relation-

ships between sequences and descriptive text, improving the modeling of complex user

behaviors. By integrating a Context-driven Contrastive Learning (CLL) objective that
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generates positive samples through various augmentations, CCLRec demonstrates re-

markable improvements in recommendation accuracy compared to traditional methods.

Furthermore, CCLRec presents a comprehensive approach to sequential recommenda-

tion by combining advanced methodologies like bidirectional transformers, contextual

auxiliary information, and contrastive learning. The model’s innovative design, incor-

porating the context-aware self-attention module and the CLL objective, showcases

significant improvements in recommendation accuracy. By identifying meaningful rela-

tionships between items and descriptive textual information, CCLRec provides a robust

solution to the dynamic nature of user preferences, enhancing the overall recommen-

dation process. Moreover, the proposed model incorporates rolling glass technique to

handle lengthy user sequences which further brings innovation to the model by captur-

ing deep semantics at fine grained level.

A state-of-art comparison with a similar work from literature shows the better perfor-

mance of the proposed system. It has achieved higher accuracy than those reported in

previous studies. The results highlight the effectiveness of CCLRec in improving rec-

ommendation accuracy and user satisfaction, validating its capability to address data

noise, sparsity issues, and enhance user satisfaction in recommendation systems. This

positions it as a promising framework for future developments in sequential recommen-

dation systems.

In conclusion, CCLRec demonstrates an innovative development in the field of sequen-

tial recommendation systems by combining advanced methodologies such as bidirec-

tional transformers, contextual auxiliary information, and contrastive learning. The

framework’s innovative design, comprehensive experiments, and superior performance

compared to existing models underscore its potential to revolutionize the way recom-

mendations are made in various online platforms. CCLRec sets a new standard for

accuracy, adaptability, and user satisfaction in sequential recommendation systems,

paving the way for future advancements in personalized recommendation technologies.
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Chapter 6

Conclusion

Self Attention and Transformer based recommendation system have proven to be more

precise and accurate as compared to traditional RS. In this paper, a transformer driven

contrastive learning based sequential RS have been proposed that enhances recommen-

dation accuracy by incorporating contextual auxiliary information of items in a se-

quence. In order to generate the auxiliary information embeddings, a contextual based

pre-trained model sentence − transformer is adopted. Additionally, the framework

introduces a context-driven self-attention module to capture intricate relationships be-

tween user sequences and descriptive text, further enhancing the modeling of user

preferences in recommendation systems.

One of the key contributions of CCLRec is the introduction of a Context-driven Con-

trastive Learning (CLL) objective, which generates positive samples through various

data augmentation techniques. By leveraging cloze task masks, dropout masks, and

random occlusion masks, CCLRec produces high-quality positive samples that improve

the model’s adaptability and performance. The framework’s ability to handle lengthy

user sequences and descriptive features through the rolling glass step technique show-

cases its adaptability and efficiency in processing large amounts of data. Comprehensive

experiments on three public benchmark datasets shows remarkable improvements as

compared to top of the line models.
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Future research may extend our framework to Large Language Models embedding

technique LLM2vec that holds great potential for improving the accuracy and ef-

fectiveness of recommendation systems by providing more nuanced and contextually

rich representations of textual information, ultimately resulting in more tailored and

pertinent recommendations for users.
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