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ABSTRACT 

Interaction recognition, a sub-domain of human activity recognition that primarily focuses 

on recognizing actions occurring between two subjects, which could be human-human or 

human-object interactions. In this area, researchers have concentrated on tasks such as 

object or person detection, tracking, and recognizing actions performed between subjects 

in videos. However, recognizing such activities in videos poses challenges, resulting in a 

limited availability of methods overall. Significant improvements have been made in 

recognizing solo actions, research on recognizing complex activities involving multiple 

subjects is ongoing. In this research study, we propose a novel keypoints-based deep 

learning model called 'InterAcT', that focuses on recognizing solo actions and interactions 

between two individuals in grayscale aerial videos. InterAcT is inspired from Action 

Transformer (AcT) model that captures spatial and temporal information using pose data. 

It features a lightweight architecture with 0.0795 million parameters and 0.0389 giga flops, 

distinguishing it from the AcT models. The pipeline primarily consists of a preprocessing 

stage and a pose-based deep learning transformer model. The preprocessing stage includes 

data augmentation, person detection, keypoints extraction, and data transformation 

modules. The transformer stage comprises six components: Linear Projection of Features, 

Class Token Embedding, Position Embedding, Transformer Encoder Layers, MLP Head, 

and Predicted Class Label. The transformer model utilizes sequential 2D pose data for 

training and outputs the recognized class. For performance evaluation, we have used two 

public datasets: the Drone Action dataset and UT-Interaction dataset, totaling 18 classes 

(13 solo actions and 5 interaction classes). The model was trained on 80% of the train set, 

validated on 10% of the validation set, and tested on 10% of the test set, achieving an 
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accuracy of 99.23%. On the same preprocessed data, we compared our model with 

benchmark models. It outperformed the AcT models (micro: 93.53%, small: 98.93%, base: 

99.07%, and large: 95.58%). 2P-GCN achieved an accuracy of 93.37%, LSTM achieved 

97.74%, 3D-ResNet achieved 99.21%, and 3D CNN achieved 99.20%. Our novel 

framework has the strength to recognize a large number of solo actions and two-person 

interaction classes in aerial videos, as well as fixed camera videos (grayscale and RGB). 

Due to its lightweight architecture, it can be utilized in real-world applications such as 

security and surveillance.  

Keywords: Action Recognition, Interaction Recognition, Skeletal-based Transformer, 

Pose-based Classification, Aerial Videos, Grayscale Videos    
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CHAPTER 1: INTRODUCTION 

Activity recognition in videos is a prominent research study in computer vision and 

machine learning/deep learning. It involves developing algorithms and techniques to 

automatically analyze and comprehend human activities captured in video sequences. With 

the increasing availability of datasets and the advancements in computational power, action 

recognition has become an important study and has found applications in areas such as 

security and surveillance, human-computer interaction, sports analysis, and autonomous 

systems. There are numerous challenges that are faced by researchers in this domain, these 

particularly includes data-modalities, activity type to recognize, subjects involved, action 

classes, weather/illumination conditions, background variations, variations in subject 

appearance, camera altitude, and viewpoints changes. Researchers have proposed a wide 

range of methodologies using traditional and advanced machine learning approaches as 

well as computer vision algorithms to recognize activities under these challenges. 

This research study proposes a novel deep learning model that utilizes pose data to 

recognize solo actions as well as human-human interactions in grayscale aerial videos. The 

proposed approach uses two public datasets namely Ut-Interaction [1] and Drone-Action 

[2] datasets to recognize 18 classes (13 solo actions and 5 human-human interactions 

classes). The pipeline incorporates YOLO v8 [3] Person Detection and Pose Extraction 

algorithm to extract poses of subjects in the videos and transform the sequential pose-data 

to fed into the transformer model to recognize the undergoing activity class in the videos.  

1.1 Motivation, Scope, and Background 

Activity recognition is the task of detecting the subject(s) and recognizing the 

associated activity by using computer vision and machine learning/deep learning 

algorithms. This research has potential applications including Security and Surveillance, 

Sports Analysis, Education, Healthcare and Augmented Reality. The demand for video-

based activity recognition is increasing due to availability of public video datasets, sharing 
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of videos on social media and development of advanced machine learning, deep learning, 

and computer vision algorithms.  

This research study primarily focused on utilizing RGB video datasets to perform the 

desired activity recognition which includes solo-actions recognition and human-human 

interactions. Here, it is crucial to mention that the low-altitude aerial dataset is to be 

considered containing moving target(s) that can be reliably detected and their pose reliably 

extracted; hence the assumption is that the image resolution is satisfactory. The solution 

could therefore possibly involve the use of extracted pose information because different 

activities, in principle, are distinguishable based on target’s bodily movements. As part of 

the investigation, the model’s evaluation will be performed on the data that is converted 

from RGB (24-bit) to grayscale (8-bit).        

1.2 Activity Categories 

The choice of activity to recognize is a challenge as the range of human activities spans 

from simple, fine-grained actions to complex activities. The choice of selecting desired 

activity type can be made easy by categorizing the activities in five common groups. The 

categories of activity types are Gestures, Solo-actions, Interactions, Group Activity and 

Event Analysis.  

1.2.1 Gestures 

Gesture recognition involves the identification and interpretation of hand or body 

movements to understand user intentions or commands. This type of activity recognition 

plays a vital role in giving instructions or commands to other subject(s). Gestures offer a 

non-verbal means of communication, making them particularly valuable in scenarios 

where speech may be impractical or impossible. As such, gesture recognition holds 

promise in fields such as traffic control, autonomous vehicles, gaming, augmented reality, 

and healthcare, enhancing user experiences and expanding the possibilities of interaction 

with technology. 
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Figure 1.1: Hand-Gestures, Image taken from HaGRID [4] dataset. 

1.2.2 Solo Actions 

Solo action recognition pertains to the identification and understanding of 

individual movements or actions executed by a single subject. This form of activity 

recognition is essential in various contexts, including sports analysis, rehabilitation, and 

gesture-based interfaces. Solo actions examples are walking, running, or specific exercises. 

Solo action recognition systems often rely on advanced algorithms and sensor or visual 

data to accurately detect and classify these actions. The insights gained from recognizing 

solo actions can inform personalized training routines, track progress in rehabilitation 

programs, and even contribute to enhancing sports performance analysis. Consequently, 

solo action recognition holds significant potential in improving physical well-being, 

performance, and overall quality of life for individuals. 

 

 

 

 

 

 

Figure 1.2: Solo Actions, Image taken from Drone-Action [2] dataset. 
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1.2.3 Interactions 

Interaction recognition focuses on understanding the activities performed between 

multiple subjects which could be multiple humans or humans and objects. This category 

has two groups, Human-Human Interaction and Human-Object Interaction. This type of 

action recognition is important in numerous applications, including sports analysis, human-

computer interaction, security and surveillance. By analysing how people interact with 

each other or with objects, the interaction model can recognize activities like shaking hands 

or opening a door. These insights are valuable in designing and development of interfaces 

which understand the interactions and enhances its usage in real-world applications. 

Interaction recognition ultimately aims to improve communication between multiple 

subjects making it more efficient and effective across multiple applications. 

 

 

 

 

 

 

Figure 1.3: Human-Human Interaction, Image taken from UT-Interaction [1] dataset. 
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Figure 1.4: Human-Object Interaction, Image taken from HICO-DET [5] dataset. 

1.2.4 Group Activity 

Group activity recognition involves identifying and understanding the collective 

behaviours and interactions of multiple individuals within a scene or environment. This 

activity type found its applications in crowd management, security and surveillance. By 

analysing the movements, positions, and interactions of individuals within a group, the 

group activity model can infer group activities including meetings, conversations, or crowd 

events like protests or gatherings. The knowledge acquired through group activity 

recognition can enhance decision-making across different fields, leading to enhanced 

safety, productivity, and comprehension of human behaviours within collective 

environments. 

Figure 1.5: Group Activity, Image taken from Collective Activity (CAD) [6] dataset. 
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1.2.5 Event Analysis 

Event analysis in activity recognition involves the detection and understanding of 

specific occurrences or incidents within an environment. This type of activity recognition 

is crucial in various domains, including surveillance, sports analysis, and event detection 

in videos. By analysing patterns and sequences of actions, technology can identify and 

classify events such as accidents, sports plays, or social gatherings. The knowledge 

acquired through event analysis can guide decision-making, improve awareness of 

situations, and streamline response strategies across diverse real-world scenarios. 

Figure 1.6: Accident Analysis, Image taken from CADP [7] dataset. 

1.3 Types of Activity Recognition Approaches 

Activity recognition types depend on the nature of activity recognition category as 

discussed in Section 1.2, the available data modalities, and methods of either traditional or 

deep learning approaches. However, they can be divided into two main categories: sensor-

based approaches and vision-based approaches. 
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1.3.1 Sensor-based Approaches 

In sensor-based approaches, there are mainly two categories: wearable sensors 

[8] and non-wearable sensors [9]. Wearable sensors are devices integrated into clothing 

or accessories worn by individuals to capture physiological signals or motion data 

directly from the body. Wearable sensors comprise of accelerometer, magnetometer, 

gyroscope, smart watches, bands, glasses and helmets. Alternatively, non-wearable 

sensors are stationary or mobile devices that capture visual or environmental data from 

the surroundings without direct attachment to the body. Non-wearable sensors include 

accelerometer, gyroscopes, sound sensors, pressure sensors and temperature sensors. 

The sensor-based approaches are explained in [10]. These approaches include Artificial 

Neural Network (ANN) and Deep Neural Network (DNN) [11], Convolutional Neural 

Network (CNN) [12]), Autoencoder [13], Restricted Boltzmann Machine (RBM) [14], 

Recurrent Neural Network (RNN) [15], and Hybrid Models [16]. They are explained 

as follows:  

Deep Neural Network (DNN) is an Artificial Neural Network (ANN) which 

consists of multiple layers. Unlike simpler ANN models, DNNs utilizes large amounts 

of data to learn from, they are more effective compared to ANN because of their depth. 

In Human Activity Recognition (HAR), DNNs are often used. Early HAR approaches 

used DNNs mainly for classification tasks after extracting features manually. But 

recent studies have shown that deeper DNNs can perform better, especially when 

dealing with complex activities and multidimensional data.  
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Convolutional Neural Networks (CNNs) strengths lies in extracting features 

from signals, making them useful for activity recognition. They work well with time 

series data because they can capture local patterns and ignore irrelevant details. In 

HAR, CNNs applies pooling techniques and share weights effectively. Input adaptation 

transforms the data to a format that CNNs can understand. Pooling helps to extract 

important features and speed up training. Weight sharing techniques [17], which 

includes partial weight-sharing methods [12], can enhance the performance of CNNs 

by reducing redundancy and speeding up learning. 

Autoencoders, including Stacked Autoencoders (SAEs) [18], learn to represent 

input data in a more compact form through hidden layers. In HAR, SAEs can 

automatically learn useful features from the data, which is helpful when labelled data 

is less. Pre-training methods, like layer-wise pretraining, help SAEs learn better 

representations. Adding constraints, such as sparsity, can further improve their 

performance. However, finding the right configuration and activation functions for 

SAEs can be challenging. 

Restricted Boltzmann Machines (RBMs) [19], often used in Deep Belief 

Networks (DBNs), can also learn features from HAR data without labels. They work 

by finding patterns in the data and building a hierarchical representation. RBMs are 

trained layer by layer, starting with simpler features and gradually learning more 

complex ones. Techniques like pooling and weight updates help improve their 

efficiency and performance. RBM-based models are valuable for unsupervised feature 

learning in HAR, especially in environments with limited resources. 
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Recurrent Neural Networks (RNNs) [15] comprises of Long Short-Term 

Memory (LSTM) cells, plays a vital role in capturing temporal dependencies in video 

sequences. While not as common as CNNs, RNN-based models are optimized for 

learning speed and resource efficiency. They are particularly suitable for real-world 

applications where processing speed and memory usage are critical. Researchers have 

explored various techniques to optimize RNN architectures for HAR tasks, ensuring 

both accuracy and efficiency. 

Hybrid models [16] is combination of spatial and temporal approaches, like 

combinations of CNNs and RNNs, offer a powerful approach for HAR. By integrating 

both spatial and temporal information, these models can achieve better performance. 

Combining CNNs with generative models like SAEs or RBMs also speeds up training 

and improves feature extraction. Hybrid models have shown more promising 

recognition of human activities in diverse environments. 

1.3.2 Vision-based Approaches 

Vision-based action recognition is defined as the algorithms that identify and 

comprehend human activities using visual information extracted from video or image 

data. These approaches use computer vision algorithms, such as feature extraction and 

pattern recognition, to analyze temporal and spatial cues within video frames or images 

and classify observed movements into predefined action classes.  

A survey on vision-based approach is presented in [20]. Vision-based 

approaches mainly comprise of two components [21]: action representation and action 

classification. Action representation is the process of converting action videos into 



10 

 

feature vectors [22] whereas action classification refers to deduction of class labels 

from the feature vectors [23]. The evolution of deep neural architectures [24] has 

combined these components into their complex model structure and has enhanced the 

classification performance. Recent studies focus on pose-based methods which are 

presented in [25] , they rely on human poses to understand actions. These methods 

involve detecting key body joints extracted from images or videos, often using 

techniques like pose estimation. These methods have demonstrated promising results 

in tasks of human action recognition. 

This section provides insights into action representation, action classification 

and deep architectures approaches. Each approach is discussed in detail as follows: 

1.3.2.1 Action Representation 

Action representation is the extraction of representative and discriminative 

features and patterns that help in recognition of different action classes. The action 

representation methods discussed in this section are known as hand-crafted methods as 

in these methods, the model’s parameters are predefined. The action representations 

include holistic representations and local representations. 

Holistic representation in video action recognition encompasses a variety of 

methods aimed at encoding spatial and dynamic information of human actions 

comprehensively. Motion Energy Image (MEI) and Motion History Image (MHI) [26] 

provide single-image representations that emphasize both spatial and temporal aspects 

of motion, with MEI highlighting the spatial distribution and MHI indicating the 

temporal evolution. The 3D Motion History Volume (MHV) [27] addresses the 
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challenge of viewpoint changes by utilizing 3D voxel data from multiple camera views 

and applying Fourier transform to ensure viewpoint-invariant features. Additionally, 

methods such as the utilization of the Poisson equation [28] and spatio-temporal 

volume analysis [29] extract shape properties and features, contributing to a holistic 

understanding of human actions. Optical flow algorithms [30] capture apparent motion 

between frames, offering insights into both horizontal and vertical motion patterns. 

Channel-splitting techniques [31] further enhance the representation of detailed motion 

information for human body and body parts. Collectively, these methods provide a rich 

and expressive representation of human actions, enabling robust action recognition 

systems capable of understanding diverse actions in video data. 

Local representations in video action recognition focus on identifying salient  

motion information within specific regions, offering a solution to the limitations of 

holistic approaches. Techniques such as space-time interest points (STIPs) [32] and 

motion trajectories [33] have demonstrated robustness to translation and appearance 

variation. STIPs extend the Harris corner detector [34] to the spatio-temporal domain, 

detecting large motion changes, while dense interest point detection utilizes Gaussian 

smoothing and Gabor filtering [35]. Descriptors like histograms of optical flow (HOF) 

[36], histograms of oriented gradients (HOG) [37] and motion boundary histograms 

(MBH) [38] capture motion and appearance information within these regions. 

However, spatiotemporal interest points are limited in capturing long-term duration 

information, addressed by feature trajectories which track interest points over time. 

Trajectories are described by concatenating features such as HOG, HOF, and MBH, 

[33] or employing hierarchical context information for accuracy and robustness. 
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Techniques to mitigate camera motion effects, such as finding correspondences 

between frames and estimating homography using RANSAC, are also employed [39]. 

These local representation methods provide detailed insights into motion patterns 

within specific regions, enhancing the accuracy and robustness of action recognition. 

1.3.2.2 Action Classification 

Action classification involves training the model to learn patterns from training 

data to determine the probabilities boundaries to discriminate and classify numerous 

action classes. Classification methods can be categorized into direct classification, 

sequential classification, space-time classification, part-based approaches, manifold 

learning approaches, mid-level feature classification. feature fusion techniques, 

classification approaches for interaction recognition and approaches for RGB-D 

modality, each approach is discussed as follows:  

Direct Classification [39] approaches summarize action videos into feature 

vectors, which are then classified into action classes using pre-existing classifiers such 

as support vector machine and k-nearest neighbor. These methods characterize action 

dynamics holistically using action shape or the bag-of-words model, capturing local 

motion patterns.  

Sequential approaches [40] capture the temporal dependencies of appearance 

or pose using sequential models like hidden Markov models, conditional random fields, 

and structured support vector machines. These methods treat a video as a temporal 

segments or frames known as video sequences, modeling the trajectory or key poses to 

represent human actions.  
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Space-time approaches [41] take into account the spatiotemporal correlations 

between local features and the global spatio-temporal distribution of interest points. 

Methods like global Gaussian mixture models, Directional Pyramid Cooccurrence 

Matrix, and context-dependent graph kernels capture the geometrical distribution and 

relationships among local features.  

Part-based approaches [42] model human actions by utilizing motion data from 

both the entire body and individual body parts. These methods inherently capture the 

spatial relationships among body parts, employing models like constellation models 

and hierarchical part-based models.  

Manifold learning approaches [43] decrease the dimensionality of silhouette 

representations and map them onto nonlinear low-dimensional dynamic shape 

manifolds. Techniques like kernel PCA and optimal manifold embedding aim to 

efficiently represent temporally variational human silhouettes for action recognition.  

Mid-level feature approaches [44] learn additional layers of representations 

from low-level features to better abstract features for classification. Hierarchical 

approaches and semantic descriptions are explored to learn better action 

representations.  

Feature fusion approaches [45] combine multiple types of features from videos 

to improve action recognition. Methods like maximum margin distance learning, Multi-

Task Sparse Learning, and multi-feature max-margin hierarchical Bayesian model fuse 

various features by exploiting their correlations and inter-relationships. 
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Human interaction recognition involves understanding actions performed 

among multiple subjects, for instance "handshaking" or "talking" between two 

individuals. Early methods [36] treated interactions as holistic motions, failing to 

capture individual actions within the group. Recent advancements focus on explicit 

modeling of action co-occurrence and spatial relationships between interacting 

individuals. These approaches utilize techniques like coupling motion states, body part 

tracking, and structured learning to better understand complex interactions. 

Hierarchical representation models offer a comprehensive understanding by 

categorizing atomic actions, interactions, and collective actions. Additionally, part-

based approaches focus on modeling interactions using key poses and spatial 

relationships between body parts, providing detailed insights into interaction dynamics. 

Patch-aware models address the ambiguity in feature-to-person assignments, 

improving recognition accuracy, especially in interactions with close physical contact. 

Action recognition from RGB-D videos [46] leverages depth information to 

capture 3D structural details, reducing noise and simplifying motion variations. 

Effective feature extraction techniques like histogram of oriented 4D normals and depth 

spatiotemporal interest points enhance recognition accuracy. These features capture 

spatio-temporal information, contributing to an effective recognition. Fusion of RGB 

and depth data enhances classification performance by leveraging shared features 

between modalities. Methods explore both shared and private features, improving 

recognition accuracy even when one modality is missing. Integration of auxiliary 

information, such as skeleton data from Kinect sensors, further enhances recognition 
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performance by learning shared feature spaces and leveraging auxiliary databases for 

improved action reconstruction. 

1.3.2.3 Deep Learning Approaches 

Deep learning techniques have revolutionized action recognition by enabling 

the automatic learning of powerful features from raw data. In contrast to hand-crafted 

features, which demand considerable human effort and expertise, deep learning 

methods can automatically learn hierarchical representations that generalize well 

across diverse datasets. Deep architectures comprise of Convolutional Neural 

Networks (CNNS), Temporal Modeling, Multistream Networks and Hybrid 

Approaches. Recent deep architectures are Transformer based architectures relying on 

attention mechanisms. 

In CNNs domain, the prominent architecture for action recognition is the C3D 

(Convolutional 3D) network [47] purpose-built for analyzing video data. C3D 

networks consist of layers of convolutions and max-pooling, followed by fully 

connected layers, enabling the extraction of spatiotemporal features from video 

sequences efficiently. On the other hand, traditional 2D Convolutional Networks [48] 

although efficient for capturing spatial features from individual frames, lack explicit  

temporal modeling capabilities. 

Temporal modeling in deep architectures involves various techniques to capture 

temporal patterns in videos effectively. Three-Dimensional Convolution (3D 

Convolution) directly captures temporal trajectories by convolving over a video 

sequence, allowing for the creation of hierarchical representations of spatiotemporal 
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data. Additionally, temporal pooling and aggregation methods [49] such as LSTM 

networks and temporal pooling layers, facilitate the modeling of temporal 

dependencies and long-range interactions in videos. Temporal Segment Networks 

(TSN) offer an efficient way to analyze short video snippets to capture long-range 

dynamics effectively. 

Multi-Stream Networks [50] such as Two-Stream Networks, incorporate 

separate spatial and temporal streams to capture appearance and motion information 

independently. These streams, typically comprising a spatial ConvNet and a temporal 

ConvNet, are fused at the decision level to achieve robust action recognition. Fusion 

strategies like spatial fusion functions and residual connections enhance interaction 

between spatial and temporal streams, improving the extraction of spatiotemporal 

features. 

Hybrid Networks [51] merge the capabilities of convolutional layers with 

recurrent layers, like LSTMs, to efficiently capture both spatial and temporal 

information. By leveraging the capabilities of both architectures, hybrid networks can 

model complex spatiotemporal patterns and long-term dependencies present in videos. 

In pose-based action recognition, hybrid neural networks are developed to model 

structured body joints and temporal information obtained from skeleton data. Methods 

like recurrent neural networks, temporal CNNs, and graph convolution networks are 

utilized to comprehensively capture both the spatial and temporal features of body 

movements. 
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A survey on vision transformers in action recognition tasks are presented in [52] 

represents an advancement in deep learning, with its significant impact spanning 

various fields. Many architectures of vision transformers have been applied for activity 

recognition tasks and each has its unique pros and cons. Initially recognized for its 

remarkable success in natural language processing (NLP), transformers have 

outperformed traditional methods like recurrent and convolutional neural networks 

(RNNs and CNNs). The primary feature of this architecture is its attention mechanism, 

enabling models to concentrate on relevant parts of input sequences. Expanding beyond 

NLP, transformers have been used in computer vision tasks, showing better 

performance than standard CNNs for recognizing images on large datasets. Vision 

transformers have demonstrated high effectiveness in various computer vision tasks. 

Additionally, recent efforts have extended transformer architectures to action 

recognition tasks, dealing with the complexities of extracting spatial and temporal 

information from video sequences and has shown promising results. 

1.3.2.4 Pose-based Approaches 

A survey on pose-based methods is presented in [53]. The survey explores 

recent advancements in understanding human actions through analyzing body poses in 

images or videos. There are two main categories of pose-based action recognition, these 

are 3D skeleton-based action recognition, and 2D skeleton-based action recognition.  

The survey explores recent advancements in pose extraction and its application 

in activity recognition using poses data extracted from RGB videos. It covers common 

datasets used for evaluation, comprehensive reviews of pose extraction methods (both 
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deep learning-based and traditional), recent works integrating pose estimation into 

action recognition, and discussions on the challenges and future directions in the field. 

It provides insights into different frameworks for pose extraction, compares skeleton-

based and video-based activity recognition algorithms, and highlights the importance 

of improving pose extraction for effective activity recognition. 

1.4 Challenges in Activity Recognition 

Vision-based activity recognition encounters numerous challenges, including 

anthropometric differences [54], multi-view variation [55], cluttered backgrounds [56], 

intraclass variability [57], occlusions [58], illumination changes [59], low quality videos 

[60], camera motion [61], data scarcity [62], adverse weather [63], and computational 

constraints [64]. Moreover, multi-target tracking is also a challenging task in surveillance 

applications [65].  Anthropometric variation refers to the diversity in body size and shape 

among individuals, which impact activity recognition. Multiview variation arises from 

different perspectives capturing activities, adding complexity. Cluttered and dynamic 

backgrounds with distractions hinder recognition, the difficulty of distinguishing between 

similar actions (intraclass variability) and similar-looking actions (interclass similarity) in 

the videos also poses a challenge in activity recognition. Low-quality videos with poor 

resolution or noise and occlusions, where objects or body parts block views also present a 

challenge to activity recognition. Illumination variations, shadows, and scale changes also 

affect recognition. The challenge of camera motion introduces blurriness or distortion into 

video data which makes recognition a challenging task. Insufficient data availability and 

limited diversity in datasets restrict model training. Poor weather conditions can degrade 

video quality, and computational constraints challenge resource-intensive processing 

needs. Tracking multi-targets effectively in surveillance applications is also a challenging 

task. Addressing these challenges is crucial for improving the performance of vision-based 

human activity recognition models. For further insights into these challenges, we 

recommend referring to the following sources [66], [67], [68] which offer comprehensive 

discussions on the challenges in activity recognition. 
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1.5 Research Objectives 

The research objectives of this study are as follows: 

1. To recognize Human-Human Interactions as well as Solo actions in aerial 

grayscale videos. 

2. To identify suitable dataset(s) for evaluation. 

3. To propose and implement a state-of-the-art pose-based deep learning framework 

that recognizes human-human interactions as well as solo actions. 

4. To perform experimentations on proposed pipeline to enhance model’s 

performance and obtain an optimized variant of the model. 

5. To perform comparative analysis of the proposed model with other state-of-the-art 

models. 
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CHAPTER 2: LITERATURE REVIEW  

 Activity recognition in videos is an important research study in computer vision 

and machine learning/deep learning. It involves developing algorithms and techniques to 

automatically analyze and comprehend human activities captured in video sequences. With 

the increasing availability of video data and the advancements in computational power, it 

has gained significant attention in diverse applications such as surveillance and security 

[69] human-computer interaction, sports analysis, and autonomous systems. This literature 

review aims to explore and summarize the recent advancements, methodologies, and 

datasets employed specifically in the field of interactions and solo actions recognition for 

security and surveillance applications, shedding light on the progress made in this exciting 

field of study. 

2.1 Traditional and Deep Learning Approaches for Solo Actions and Interactions 

Recognition 

 An effective Transformer-based method [70] for human activity recognition in 

aerial videos is proposed which uses skeletal keypoints extracted with YOLOv8 [3]. The 

proposed method has a two-stage network, first extracting skeletal keypoints and then 

feeding them into a Transformer network for training and testing. This approach offers a 

promising solution for efficient and effective solo human activity recognition in aerial 

videos. [70] 

 Two-persons Graph Convolutional Network (2P-GCN) [71] is skeleton-based 

human-human interaction recognition, that aims to improve the accuracy of action 

recognition in human-to-human interaction sequences. It addresses the limitation of current 

interaction recognition methods that treat two-person interactions as isolated individuals, 

potentially losing crucial interactive information. 2P-GCN introduces a unified two-person 

graph to represent both intra-body and inter-body correlations, enhancing spatial modeling. 

The model achieves significant accuracy improvements in recognizing both human-human 

interactions and solo actions [71].   
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 MITFAS [72]employs the expanding architecture X3D, which encompasses five 

different variants. Each variant of X3D is characterized by its computational complexity, 

measured in terms of flops/G-flops. Within the MITFAS architecture, the baseline model 

is X3D-M. This model is enhanced with temporal feature alignment and frame sampling 

techniques, enabling it to identify individual actions performed by a person in UAV videos. 

The temporal feature alignment method employs the concept of mutual information to 

extract features that emphasize human actions rather than background areas. Meanwhile, 

the frame sampling method is responsible for selecting the most informative and distinct 

frames from video sequences. The purpose of the MITFAS model is to effectively handle 

challenges such as variations in human resolution, significant alterations in the positions 

of individuals across frames, and the partial occlusion of key action points due to the 

continuous movement of UAVs [72]. 

 AZTR [73] is a novel deep learning method that incorporates an auto-zoom model 

to identify and scale the subject, optimizing device memory and processor usage. The auto-

zoom model focuses on spatial information, reduces interference and anomalies caused by 

UAV movement, and keeps the target object centered in the video. It enhances feature 

extraction and robustness. Additionally, the method employs a temporal reasoning 

algorithm, utilizing convolutions (2D+1 & 3D) and attention mechanisms for action 

prediction on high-end desktops, edge devices, robots, and UAVs. The 2D+1 convolutions 

fuse spatial features from each frame, while the 3D convolutions handle spatio-temporal 

information simultaneously. The attention mechanism consists of cross-attention and self-

attention, providing spatio-temporal representations with linear computational complexity. 

Cross-attention adjusts input sequences to a new sequence size as needed for computational 

efficiency, while self-attention is a fundamental component of transformers. AZTR is 

developed to effectively utilize available hardware resources, including high-end desktops 

and low-power devices, for action recognition. It aims to optimize the model's performance 

on both types of hardware platforms [73]. 

 Graph Convolutional Networks (GCNs) [74] use skeleton data for action 

recognition, including single-person actions and human-to-human interactions. Message 

passing relies on a dynamic adjacency matrix, facilitating meaningful propagation. A frame 
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importance calculation module reduces traditional convolution impact. Multidimensional 

features capture spatial-temporal relationships, measuring similarity with different metrics. 

Hand-crafted spatial and temporal features like 3D coordinates, bone information, and 

velocity assess relative limb positions. Graph diffusion connects joints within the body and 

between interacting individuals, guiding network learning and accelerating convergence. 

Dynamic convolution extends message transmission, while a searching scheme suppresses 

noise and enables adaptive segmentation. Feature-specific similarity metrics guide 

message propagation. Dynamic Temporal Convolution (Dynamic TCN) calculates frame 

importance. The network combines ST-GCN, diffusion-guided GCN, and dynamic TCN, 

with extracted features classified using a standard classifier. Graph diffusion and dynamic 

convolution improve message propagation and frame importance. The model achieves 

high-precision recognition by utilizing multidimensional features and appropriate 

similarity metrics. It accurately predicts human-to-human interactions by integrating graph 

diffusion, dynamic convolution, and feature-based similarity analysis [74]. 

 The 3D Convolutional Neural Network (3DCNN) [75] architecture is commonly 

utilized for video classification, particularly in complex and medical images. It utilizes 

3DCNN layers, MaxPooling3D, batch normalization, dense layers, and a flatten layer to 

achieve accurate results. The 3DCNN excels in analyzing moving 3D images by 

considering temporal object positions [75]. 

 A comprehensive review of aerial surveillance tasks in computer vision and pattern 

recognition tasks is presented in [76]. The authors perform a comprehensive analysis of the 

present status of aerial surveillance, employing drones, UAVs, and other airborne 

platforms. The main emphasis is on detecting, identifying, tracking, re-identifying, and 

analyzing human activity from aerial perspectives. This paper discusses the unique 

challenges that arise in performing these tasks compared to ground-based settings for each 

specific objective. Additionally, it thoroughly examines publicly available aerial datasets 

and investigates the approaches proposed in existing literature to tackle these challenges. 

The authors propose multiple methods for aerial action recognition, including single-frame 

classification utilizing established 2D networks such as ResNet, InceptionNet, MobileNet, 

and DenseNet. They also explore fusion approaches, LSTM-based techniques, and two-
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stream CNNs that combine appearance and motion, incorporating pose estimation 

methods. The effectiveness of 3D CNNs, particularly the widely used I3D architecture, is 

examined for aerial action recognition. Furthermore, the paper discusses the exploration of 

alternative models such as C3D, P3D, and TRN, as well as the application of lightweight 

MobileNet with self-attention mechanisms in transformers. The authors address various 

challenges in aerial action recognition, such as low-resolution imagery, limited data 

availability, diverse viewing angles, and the use of fish-eye cameras. Overall, this paper 

presents a comprehensive analysis of activity recognition in aerial surveillance tasks, 

making remarkable contributions in the field of computer vision and pattern recognition 

[76]. 

 An Attention Interactive Graph Convolutional Network (AIGCN) [77] is utilized 

for efficient extraction of spatial-temporal relationships in interaction recognition. 

Skeletons are encoded using two semantic vectors to derive both dynamic and static 

adjacency matrices. An Interactive Attention Encoding GCN (IAE-GCN) module is 

employed to extract interactive spatial structures, capturing the influence of joints on each 

other through joint position encoding. The IAE-GCN model utilizes static and dynamic 

graph convolutions, represented by a Mirror graph (static adjacency matrix) and an 

Attention-encoding graph (dynamic adjacency matrix) that dynamically symbolizes 

connections using joints' semantic codes and self-attention. Furthermore, an Interactive-

Attention Mask TCN (IAM-TCN) is used to extract temporal interactive features by 

representing the temporal attentional excitation signal among different joints over time. 

The attention mechanism is utilized to generate a mask that activates features at various 

times from the past or future. The proposed model achieves state-of-the-art (SOTA) 

performance on interaction datasets namely SBU-Interaction, NTU-RGB+D and NTU-

RGB+D 120 [77]. 

 In activity recognition, skeleton-based methods have shown remarkable progress, 

but there is a lack of focus on action recognition from UAV views, and traditional models 

face challenges due to drastic changes in viewpoints. To address this, two novel methods, 

namely Channel-wise Topology Refinement Graph Convolution Network (CTR-GCN) and 

Semantics Guided Network (SGN), have been introduced in[78]. These methods leverage 
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graph-based modeling to capture relationships between joints and their neighbors, with the 

adjacency matrix representing the correlations between joints. CTR-GCN dynamically 

infers skeleton topology using pairwise relationships between joints, while SGN 

incorporates high-level semantics like joint types and frame index for enhanced feature 

representation. The fusion of CTR-GCN and SGN prediction scores is achieved through a 

weighted sum, ensuring that the two methods complement each other without interference. 

Overall, these approaches offer robustness to complex backgrounds, consume fewer 

computational resources, and have shorter training periods compared to RGB-based or 

video stream processing methods [78]. 

 To address the limitation of real data and annotations, paper [79] proposes a 

framework that utilizes game action videos and GAN-generated features to enhance 

activity recognition in real-time aerial videos. The GTA and FIFA gaming engines were 

chosen for their ability to provide highly realistic simulations, accurately depicting real-

world environments, objects, and human actions. GAN-generated video examples are 

generated using conditional Wasserstein GAN with gradient penalty (WCGAN-GP) to 

produce discriminative features that mimic real aerial data. These features are then used to 

train soft-max classifiers for action classification. Disjoint multitask learning is introduced 

to handle the action labels in both the game and real datasets, allowing the model to 

simultaneously learn multiple related tasks. Deep features are extracted from real aerial 

and game videos using 3D convolutional neural networks, namely MNF-3D, I3D, and 

ResNet3D models. The training process involves branches for classification, where 

available real and game labels are used to train corresponding branches, and labels for game 

data and real data are inferred from the predictions of other branches. By combining real, 

GAN-generated, and game videos within this framework, the proposed approach tackles 

the constraints of traditional multitask learning and facilitates the effective classification 

of aerial videos [79]. 

 A deeply coupled ConvNet with RGB frames and bi-directional LSTM (Bi-LSTM) 

is introduced in [80]. At the bottom layer, a CNN model trained with a single dynamic 

motion image (DMI) is employed. The RGB frames refine the pre-trained CNN features 

via end-to-end learning, whereas the dynamic image stream is fine-tuned to capture 
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temporal information. Both streams’ features are fused using late fusion techniques, with 

maximum fusion achieving high accuracy. The model incorporates the Inception-v3 deep 

architecture and utilizes Bi-LSTM for sequential data processing. The concept of compact 

Dynamic Motion Image (DMIs) is introduced, capturing long-term dynamics and motion 

patterns. The two-stream architecture is connected in parallel, with scores fused at the 

decision level. The Inception-v3 architecture includes input blocks, Inception Modules, 

grid size reduction blocks, auxiliary classifiers, and output blocks. Bi-LSTM addresses 

sequential data analysis, and the proposed approach samples frames from RGB videos and 

fine-tunes the CNN architecture. DMIs represent the entire video sequence using rank 

pooling, and approximate rank pooling is introduced for efficiency. Late fusion techniques 

combine features from different channels, and maximum fusion is applied in this approach. 

Overall, the proposed method achieves excellent action recognition results [80]. 

 For interaction recognition among between two individuals, a GCN [81] is utilized 

by incorporating knowledge graphs. Two types of graphs are proposed: a knowledge-given 

graph and a knowledge learned graph. The knowledge-given graph captures direct 

correlations between joints of two persons based on common sense knowledge, while the 

knowledge-learned graph adaptively learns connections between joints from the dataset. 

These graphs are combined with a naturally connected graph to form the knowledge 

embedded graph convolution network (K-GCN), which extracts discriminative features for 

interaction recognition. The K-GCN consists of multiple graph convolution blocks that 

perform spatial and temporal convolutions. Additionally, a multi-level scheme for 

modelling joint-level and part level information simultaneously is proposed, that enhances 

the model’s performance. It also explores a two-stream network that combines joint-level 

and part-level inputs using a weighted fusion approach [81]. 

 An improved human action recognition through the combination of a 3D CNN, a 

residual structure, and an attention mechanism is proposed in [82]. The researchers 

introduced a shallow feature extraction module and a customized deep feature extraction 

module to enhance the extraction of temporal and spatio-temporal features. A 3D spatio-

temporal attention mechanism is proposed to capture global action features by considering 

the inter-frame relationship. The fusion of the residual structure and attention mechanism 
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led to the development of the Attention Residual 3D Network (AR3D), with two fusion 

strategies. These strategies integrated the attention mechanism either into the identity 

transformation connection or the output of the residual structure. The proposed models 

aimed to address limitations in existing 3D CNN approaches and  improve the performance 

of human action recognition systems [82]. 

 Dual-stream HAR model as proposed in [83] combines the advantages of human 

pose information and scene images. By utilizing spatio-temporal graph convolution, the 

model extracts motion features from human skeleton data, which provides robustness to 

illumination and scene changes. Moreover, a scene recognition model employing a video-

level consensus strategy processes the visual scene information captured within the video 

frames. The fusion of skeleton-based motion features and scene images enhances the 

accuracy and robustness of action recognition. This comprehensive approach leverages the 

strengths of both modalities to overcome limitations and improve the comprehension and 

recognition of human activities, providing a promising solution in activity recognition [83]. 

 A novel architecture called Hierarchical Long Short-Term Concurrent Memory (H-

LSTCM) [84] is proposed to recognize human interactions. It utilizes Single-Person 

LSTMs to model individual dynamics and a Concurrent LSTM to capture inter-related 

dynamics among multiple persons. The Concurrent LSTM comprises of sub-memory units, 

a cell gate, and a co-memory cell, allowing selective integration and storage of motion 

information. A loss function is employed for training the model and can be optimized using 

Backpropagation Through Time (BPTT) algorithm [84]. 

 In vision-based action recognition, recent models are based on Vision Transformer. 

A survey of transformer-based models is presented in paper [52]. The paper provides a 

comprehensive review on four fundamental action recognition tasks (classification, 

detection, segmentation, and anticipation), data modalities (uni-modal and multimodal 

data), and three types of dominant architectures (CNN based Transformer, Transformer 

based CNN and Pure Transformer models). RNNs tend to forget earlier inputs in long 

sequences, while Transformers address this issue by using attention mechanisms to capture 

relevant information of the sequence, allowing better handling of long-range dependencies 
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without recurrence. CNN-Integrated Transformers uses 2D and 3D features to extract 

meaningful spatio-temporal, convolution has proven ability to learn visual features, these 

models are easy to replicate and integrate in other architectures. CNNs face challenges in 

effectively handling positional and temporal information in videos, particularly when 

objects of interest exhibit variations in rotation and scaling. This weakness affects 

subsequent processes in recognition tasks. Moreover, during striding, CNNs can lose 

crucial compositional and positional details, potentially leading to misclassification of 

actions. Although data augmentation techniques like flipping or rotating training data help 

mitigate these issues to some extent, they fall short in addressing the complexities of real-

world scenarios, leaving CNN-based approaches vulnerable to adversarial attacks. 

Additionally, CNNs can be slower due to operations such as max pooling. Pure 

Transformer-based architectures, like Vision Transformers (ViTs), are becoming popular 

in action recognition tasks. They're good at capturing complex patterns in images and 

focusing on important details using attention maps. ViTs handle positional and temporal 

information well and are robust against image distortions. However, they're harder to train 

than CNNs because they lack some built-in shortcuts. While ViTs often perform very well, 

they may not always beat CNNs, especially on simpler tasks, and they can be challenging 

to use on devices with limited resources. CNNs have been around longer and have proven 

effective in many situations, while ViTs are still being explored  [52]. 

 More recent studies are utilizing Transformers for pose-based activity recognition. 

An extensive review of skeleton-based transformers architectures is presented in [85]. The 

paper discusses the traditional methods based on prior knowlegde and the deep learning 

models which mainly includes RNN-based methods, CNN-based methods, GCN-based 

methods, and Transformer-based methods. Graph convolution and Transformer are 

popular technologies for action recognition, known for their strong capabilities in 

interacting with skeleton data and extracting topological structures. Many methods 

improve traditional structures like ST-GCN by adding self-attention mechanisms or 

correlation matrix auxiliary networks for better spatio-temporal processing. The paper 

explores Transformer-style graph convolution and standard Transformer methods for 

skeleton action recognition, as well as unsupervised and transfer learning techniques. The 

survey summarizes the cutting-edge skeleton transformers, proposes a classification 
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taxonomy, and discusses the introduction, innovation, and improvement of related papers. 

Moreover, challenges and future research directions in transformer-based skeleton action 

recognition are also discussed [85]. 

 Both sensor-based and vision-based approaches possess distinct strengths and 

weaknesses, and the selection of approach relies on the requirements of the application and 

constraints. Sensor-based approaches are accurate and robust to environmental conditions 

and occlusions however they are expensive and extracting desired features from raw sensor 

data is a tedious and challenging task. On the other hand, vision-based approaches are 

versatile and cost-effective. However, they can be affected by environmental conditions 

like noise, lightning, cluttered scenes, and occlusions. Among all approaches, pose-based 

approaches are often preferred over traditional and other deep learning methods because 

they capture rich information about the actions being performed allowing accurate 

recognition. Pose-based methods focus on body’s skeleton and movements patterns 

making them robust to environmental factors as they filter-out the irrelevant cluttered 

background and occlusions. Moreover, they required standard cameras or depth sensors 

which are accessible and cheap hence making them cost-effective. 

 Among vision-based approaches, shallow approaches have their unique pros and 

cons. Direct approaches are straightforward to implement but often exhibit limited 

performance. Sequential models have evolved by adding temporal dimension however they 

are sensitive to noises. Space-time methods are good at capturing spatio-temporal 

structures, but they are limited to datasets of small sizes. Part-based models learn the 

patterns at a finer level, but its limitations lie in the use of small size datasets. Manifold  

methods have shown promising results, but they rely on human-silhouettes. The limitation 

of mid-level feature models is their requirement of large annotations. Feature fusion 

methods enhance accuracy by fusing two or more feature extraction methods, but they are 

computationally expensive. Alternatively, deep learning models in vision-based  

recognition have unified frameworks that automatically extract relevant features and 

classify the predefined class. Among them, space-time models have short temporal 

intervals, multi-stream networks are limited by complexity, data synchronization 

challenges, feature fusion difficulties, data imbalances, and interpretability issues. Whereas 
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hybrid approaches have shown greater accuracy, however they are computationally 

expensive, difficult to fine-tune and are not suitable to employ in real-time applications. 

 In recent research’s, Vision Transformers (ViTs) are becoming popular, because of 

their capability to capture complex patterns in images and effectively handle long-range 

dependencies without recurrence. Unlike traditional recurrent neural networks (RNNs), 

which tend to forget earlier inputs in long sequences, Transformers utilize attention 

mechanisms to focus on relevant information, enabling them to handle long sequences 

more efficiently. Recent models based on Vision Transformers integrate both 2D and 3D 

features to extract meaningful spatio-temporal information, allowing them to better 

represent temporal dynamics in videos. While CNN-based approaches have shown 

effectiveness in learning visual features, they may struggle with positional and temporal 

information and can be vulnerable to adversarial attacks. Pure Transformer-based  

architectures, such as Vision Transformers (ViTs), excel in capturing spatio-temporal 

information. However, ViTs may be more challenging to train compared to CNNs and may 

not always outperform them, especially on simpler tasks. Despite their advantages, ViTs 

may also pose challenges in deployment on devices with limited computational resources. 

Both CNNs and ViTs have their unique pros and cons, ViTs have shown promising results 

compared to CNNs. 

 Skeleton-based transformers are preferred over other deep learning models for 

action recognition due to their robustness, compactness, and noise immunity. Skeleton data 

is lightweight and ideal for resource-constrained environments. Graph Convolutional 

Networks (GCNs) have traditionally been used for skeleton-based action recognition 

particularly for human-human interactions. However, traditional GCNs and recent variants 

of GCNs have complex architectures making them computationally expensive and are not 

suitable for real-time applications. Moreover, skeleton-based transformers have shown 

promising results in terms of computational complexity, performance, and real-time 

applications. Hence, in this study, we proposed a skeleton-based action transformer model 

which is lightweight, computationally effective for recognizing solo actions and human-

to-human interactions in aerial videos.  
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Table 2.1: Summary of literature review. 

Referenc
e 

Input Description Method Dataset/Results Remarks 
Limitation

s 
Future work 

[70] 
Keypoint
s Data 

A light-
weight 
Transformer 

model 
designed for 
solo-actions 
recognition 

in aerial 
videos. 

Action 
Transformer 

Drone-Action: 
Accuracy: 
75.42% 

Efficient 
method for 
recognizing 

solo actions in 
aerial videos 

Single-
person 
action 

recognition 

Nil 

[71] 
Keypoint
s Data 

A novel 
graph 
convolution 

method, 
capturing 
inter-body 

and intra-
body 
correlations 
between two 

individuals 
to recognize 
human-to-
human 

interactions. 

2P-GCN 
(Baseline 
Model:ST-

GCN) 

Accuracy: 
SBU: 98.90%, 
NTU-RGB+D: 

97.05% (Xsub) & 
98.80% (Xview), 
NTU-RGB+D 60: 

93.47% (Xsub) & 
93.73% (Xview) 

A unified 
framework that 
recognizes 

human-to-
human 
interactions 

effectively 

Two-
person 
recognition

. 

Extension to 
human-object 
interactions 

and group 
activity 
recognition 

[72] 
Video 
frames 

Mutual 
information 
extracts 
useful 

temporal 
features for 
human 
action focus. 

Frame 
sampling 
selects 
informative 

frames for 
training. 
Integrated 

with X3D 
model for 
improved 
action 

prediction. 

Integrated 
X3D + 
Softmax 

Improved Top-1 
Accuracy: UAV 
Human/18.9%, 
Drone 

Action/7.3%, 
NEC 
Drones/7.16% 

Flexible 
method handles 
occlusion and 
viewpoint 

changes, Novel 
sampling 
method to 
extract most 

informative 
frames 

No spatial 
relationship 
b/w actor 
and 

background
, Single-
person 
action 

recognition 

Extend to 
multi-human 
and multi-
actions videos 

[73] 
Video 
frames 

A novel 
architecture 
for action 
prediction on 

different 
platforms, 
using auto-
zoom and 

temporal 
reasoning 
algorithms. 

AZTR: 
Movinets, 
MobileNet 
V2(light-

weight 
platforms) & 
X3D-M, 
Cascaded 

Mask RCNN 
(high-end 
platforms) as 
backbone 

architecture & 
localization 
respectively. 

+ Softmax 

Improved Top-1 
Accuracy: 
RoCoG-v2/6.1-
7.4%, UAV-

Human/8.3-
10.4%, Drone 
Action/3.2% 

Model run on 
edge/mobile 
platforms, 
Robust auto-

zoom algorithm 
for key spatial 
feature 
extraction, 

Temporal 
reasoning 
algorithm for 
key temporal 

feature 
extraction 
making 

accurate 
predictions 

Performanc
e depends 
on 
localization 

method, 
Single-
person 
action 

recognition 

Extend to 
multi-human, 
multi-action 
and dynamic 

environmenta
l conditions 

[74] 
Two-

person 
skeleton 

A novel 
GCN that 
utilizes 

Baseline 
model of ST-
GCN,combin

Accuracy: NTU-
RGB+D 
60/88.6%, NTU-

Graph 
Diffusion 
embedded into 

Model 
confusion 
in Inter-

Extend to 
group activity 
recognition, 
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sequence 
graph; 
Joint, 

velocity 

and 
bones 

features 

graph 
diffusion 
mechanism 
to recognize 

human-to-
human 
interactions 

in videos. 

ed with 
Diffusion 
guided GCN 
and Dynamic 

TCN+ 
Softmax 

RGB+D 
120/85.2%, 
Kinetics-Skeleton 
400/33.8%, SBU-

Interaction/- 

GCNs, 
Dynamic 
construction of 
adjacency 

matrix, Frame 
importance 
calculation 

module for 
dynamic 
convolution, 
Multidimension

al features 
extraction and 
distinct metrics 
for similarity 

measure in 
motions. 

class 
actions 

Need of 
efficient 
pattern 
extraction 

method 

[75] 
Video 

frames 

A modified 
3DCNN to 
classify 

human 
activities 

Modified 
3DCNN + 
Softmax 

Accuracy: UCF 
YouTube Action 
dataset/85.2%, 

UCF-101/79.9% 

Non-standard 
behavior 
recognition in 

public spaces. 
Satisfactory 
overall 
accuracy: 

79.9% for 
UCF101 
dataset, 85.2% 

for UCF 
YouTube 
Action dataset. 

Model 
effectivene
ss may be 

limited 
beyond 
non-
standard 

behavior in 
public 
places. 

Nil 

[76] 

Video 

frames & 
Posture 

data 

Survey of 
action 

recognition 
including 
activity 
types, 

challenges 
and 
approaches 
in each 

activity 
domain 

Multiple 
techniques 

including 
single-frame 
classification, 
Two-stream 

CNNs and 3D 
CNNs + 
Softmax for 
action 

recognition, 
Other activity 
types have 
multiple 

classifiers 

Multiple datasets 
for different 

activity types, 
along with 
various 
performance 

metrics and 
results for each 
approach. 
 

 
 

The paper 
provides a 

survey of 
activity types, 
its challenges, 
datasets and 

methods to 
recognize each 
activity. 

The paper 
discusses 

open issues 
from two 
perspective
s; Data & 

Model 
developme
nt and 
model 

deployment 

Multiple 
future work is 

suggested to 
address 
limitations in 
data, model 

development, 
and model 
deployment. 

[77] 

Two 
Persons 
Skeleton 

Data 

AIGCN 
captures 
spatial-
temporal 

relationships 
for 
interaction 
recognition 

using 
skeleton 
encoding, 

dynamic/stati
c adjacency 
matrices, 
IAE-GCN 

for spatial 
structures, 
IAM-TCN 
for temporal 

features. 

AIGCN: 
IAE-GCN-
Spatial 
features, 

IAM-TCN-
Temporal 
features  + 
Softmax 

Accuracy: SBU 
Interaction/99.1%
, NTU-
RGB+D/95.34%, 

NTU-RGB+D 
120/90.71% 

Skeleton 
encoding, 
dynamic/static 
adjacency using 

IAE-GCN, 
Enhanced 
temporal 
coactions using 

IAM-TCN, 
AIGCN achieve 
SOTA 

performance on 
SBU-
Interaction, 
NTU-RGB+D 

and NTU-
RGB+D 120. 

Nil Nil 

[78] 
Skeleton 

data 

Two novel 
models, 
CTR-GCN 
and SGN, for 

action 

CTR-GCN & 
SGN + FCN 
followed by 
Argmax 

function 

Accuracy: UAV-
Human/45.84% 

Dynamic 
topology 
modeling using 
CTR-GCN, 

Low 
accuracy 
on NTU-
RGB+D 

dataset, 

Exploration 
and 
implementati
on of robust 

models to 
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recognition 
from UAV 
views, 
leveraging 

graph-based 
modeling 
and 

incorporating 
high-level 
semantics for 
enhanced 

feature 
representatio
n. 

Semantic 
feature 
integration 
using SGN, 

Combined 
strengths of 
both models 

using Fusion 
module. 

Lower 
performanc
e compared 
to regular 

approaches 
in UAV 
videos 

address UAV 
challenges 
and recognize 
actions 

accurately. 

[79] 

(Few 
real 

aerial 
videos + 

Game 
videos) 

OR (Few 
real 

aerial 
videos + 

GAN 
generate

d 

videos); 
Video 
deep 

visual 

feature 

A framework 
that 

combines 
game action 
videos and 
GAN-

generated 
features to 
improve 
human 

action 
recognition 
in real-world 

aerial videos 
when few 
aerial videos 
are available. 

Video 
features: 

MNF-3D, 
I3D & 
ResNet3D; 
Conditional 

Wasserstein 
GAN; 
Disjoint 
Multitask 

learning 
framework + 
Softmax 

Accuracy: UCF-
ARG-Aerial/ 

35.9%, 16.3%, 
15.1%; YouTube-
Aerial/68.2%, 
67.0% ,58.6% 

Useful 
approach for 

training with 
few aerial 
videos, First 
method that 

utilize aerial 
game videos, 
Use of Disjoint 
Multitask 

Learning 
framework to 
learn an 

accurate 
classifier, Two 
novel datasets 
proposed 

Game-
videos are 

specific 
actions 
biased, 
Difficult to 

generate 
GAN based 
videos for 
all actions 

Attention-
based spatio-

temporal 
localization, 
Low-power 
algorithms 

[80] 
Video 
frames 

A two-
stream 
spatio-
temporal 

network 
followed by 
a late fusion 
technique to 

recognize 
actions in 
videos. 

Deeply 
coupled 
ConvNet: 
Two streams 

network of 
spatial (pre-
trained with 
Inception-v3 

architecture 
followed by 
Bi-LSTM) & 
temporal (pre-

trained with 
Inception-v3 
architecture) 
features 

followed by 
late fusion 
technique 

(Maximum 
fusion); 
Upper stream 
input: RGB 

images; 
Bottom 
stream input: 
Dynamic 

motion image 
+ Softmax 
followed by 
late fusion 

(maximum 
fusion) 
technique 

SBU 
Interaction/98.70
%, MIVIA 
Action/99.41%, 

MSR Action 
Pair/98.30%, 
MSR Daily 
Activity/98.37%. 

SOTA accuracy 
as compared to 
other deep 
architectures 

Nil To utilize 
depth & 
skeleton 
modality in 

the model; To 
add complex 
multi-view 
classes in the 

training data 

[81] 
Skeleton 

data 

A novel 
GCN named 

K-GCN is 
proposed 

K-GCN & 
Multi-level 

K-GCN + K-

Accuracy: 
K-GCN: 

SBU/96.55%, 

Proposed two 
novel graphs 

(Knowledge 
given graph & 

Nil Nil 
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along with 
Multi-level 
K-GCN for 
two-person 

action 
recognition. 

GCN: 
Softmax; 
Multi-level 
K-GCN: 

Softmax 
followed by 
weighted 

fusion method 

NTU-
RGB+D/92.70% 
Multi-level K-
GCN: 

SBU/97.2%, 
NTU-
RGB+D/92.70% 

Knowledge 
learned graph); 
Proposed two 
novel networks 

- Knowledge 
embedded 
graph 

convolution 
graphs (K-GCN 
& Multi-level 
K-GCN) 

[82] 

RGB 
Images/ 

Video 
frames 

Novel AR3D 

models 
combines 3D 
CNN, 
residual 

structure, 
and attention 
mechanism 
for enhanced 

feature 
extraction 
and 
representatio

n to address 
limitations of 
existing 3D 

CNNs 

R3D: [3D 

SFE+DFE 
(3D Residual 
Modules)] 
AR3D: - 

AR3D_V1: 
R3D with 3D 
Attention 
fused in 

identify 
transformatio
n connection 
within 3D 

Residual 
structure of 
DFE 

AR3D_V2: 
R3D with 3D 
Attention 
fused after the 

3D Residual 
Modules of 
DFE + 
Softmax 

 

Accuracy: UCF-

101/87.89, 88.39, 
89.28, 
HMDB51/50.27, 
51.53, 52.51 

Separate 

extraction of 
shallow & deep 
features in 
R3D, 3D 

convolution 
decoupled 
residual 
module, 3D 

attention-
mechanism for 
handling 
background 

changes, Two 
novel AR3D 
fusion models, 

High-accuracy 
without pre-
training on 
large-datasets 

Nil Nil 

[83] 
Video 
frames 

A dual-
stream 
model 
combining 

pose data 
and scene 
image 
information 

for improved 
action 
recognition 
through 

spatio-
temporal 
graph 

convolution 
and fusion of 
motion and 
visual 

features. 

Dual stream 
network: - 
Skeleton 
stream: 

Human 
skeleton 
extraction+ 
ST-GCN + 

Max.Pool + 
FCN, 
Image stream: 
Random 

frames 
sampling + 
ResNet101 + 

Segmental 
consensus; 
Late fusion 
(weighted & 

maximum) of 
both streams 
+ Softmax 

Accuracy: UCF-
101/96.6%, 
HMDB51/73.1% 

Model 
incorporates 
skeleton and 
scene images 

modalities, 
Dual-stream 
fusion of 
skeleton stream 

& image/scene 
stream 

Nil To extend & 
enhance the 
proposed 
model 

incorporating 
multi-
modalities 
streams & 

overcome 
occlusion 
changes 

[84] 
Video 

frames 

A novel 
Hierarchical 

Long Short-
Term 
Concurrent 
Memory (H-

LSTCM) 
model to 
capture long-
term inter-

related 
dynamics 

H-LSTCM: 
Single-person 

LSTMs + Co-
LSTM units + 
Softmax 

Accuracy: - (H-
LSTCM): 

BIT/94.03, UT-
Interaction/98.33
%, CAD/83.75%; 
(E-H-LSTCM): 

VD/88.4% 

Proposed a 
novel H-

LSTCM model, 
Proposed a 
novel Co-
LSTM unit 

Nil To extend the 
model by 

incorporating 
hypergraph 
architecture 
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among a 
group of 
persons for 
human 

interactions 
recognition. 

[52] 
Video 

frames 

A survey of 
Vision 
Transformer 

based 
architectures 
for action 

recognition 

CNN based 
Transformer, 
Transformer 

based CNN 
and Pure 
Transformer 

model 

Top-1 Accuracy, 
F1 Score,mAP 
for top 

performing 
models on 
popular datasets 

A 
comprehensive 
review on 

transformers-
based models 

Each 
models 
pros and 

cons are 
discussed  

To enhance 
motion 
modeling in 

pure-
transformer 
based models, 

To design a 
multimodel 
transformer 
model, To 

advance the 
training 
strategies 

[85] 
Pose 
data 

A survey of 
skeleton-

based 
transformer 
architectures 
for 

recognition 
actions in 
videos 

Variants of 
Transformers 

utilizing 
GCNs 

Accuracies 
reported on 

various models 
using NTU-
RGB+D 60, 
NTU-RGB+D 

120, Kinetics, 
NW-UCLA and 
UAV Human 

Novel models 
utilizing 

Transformers 
with GCNs 

Each model 
pros and 

cons are 
discussed.  

Nil 

 

2.2 Available Datasets for Activity Recognition 

There are number of actions which are categorized in gestures, single-person/solo 

actions, interactions (human-human & human-object), group/crowd analysis, behaviors 

and events analysis. The target of this research study is to recognize human interactions 

(human-to-human) and solo actions. So, from literature review, for interactions and 

solo actions recognition, there are number of datasets which were captured using indoor 

cameras, outdoor ground truth cameras, rooftops cameras and very limited datasets 

were captured using UAVs. Table 2.2 shows a few human-human interactions, human-

object interactions and solo actions datasets which have been utilized in number of 

interactions and solo actions recognition approaches. 

 



35 

 

Table 2.2: Publicly available interactions-solo actions datasets.  

Dataset (Year) [Ref] No. of Actions Modality 

SBU (2012) [59] 8 RGB+D+S 

K3HI (2013) [86] 8 S 

CAD-60 (2011) [87] 12 RGB+D+S 

CAD-120 (2013) [87] 20 RGB+D+S 

PKU-MMD (2017) [88] 51 RGB+D+S+IR 

NTU-RGB+D/NTU-

RGB+D 60 (2016) [89] 
60 RGB+D+S+IR 

NTU+RGB+D 120 (2019) 
[90]  

120 RGB+D+S+IR 

Kinetics/Kinetics-400 

(2017) [91] 
400 RGB 

Kinetics-600 (2018) [92] 600 RGB 

Kinetics-700 (2019) [93] 700 RGB 

MSR Action3D (2010) [94] 20 D+S 

BEHAVE (2004) [95] Unspecified RGB+D+SMPL 

TV Human Interaction 

(2010) [96] 
4 RGB 

UT Interaction (2010) [1] 240+ RGB 

CAVIAR (2012) [97] 7 RGB 

CASIA Action (2013) [98] 15 RGB 

Hollywood (2009) [99] 8 RGB 

Hollywood2 (2009) [100] 12 RGB 

HMDB51 (2011) [101] 51 RGB 

UCF 101 (2013) [102] 101 RGB 

J-HMDB (2013) [103] 21 
Joints, Pose, Dense 

Opticalflow 

UCF 50 (2013) [104] 50 RGB 

CASIA C (2006) [105] 1 IR 

KTH (2004) [106] 6 RGB+Grayscale 

Drive&Act (2019) [107] 83 RGB+D+IR+3DP 

UAV Human (2021) [108] 119 Fe+Nv+RGB+IR+D+J 

DHU Night (2021) [109] 4 IR 

LTIR (2015) [110] 20 IR 

AAU-PD-T (2020) [111] 9 IR 

IITR Infrared Action 

Recognition-(IITR-IAR) 

(2019) [112] 

21 IR+SDFDI+SSDI 

IITR+Thermal Simulated 

Fall-(TSF) (2022) [113] 
38 IR 
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IIAR-30 (2022) [114] 8 IR 

The abbreviations for the modalities listed in Table 2.2 are RGB-Color, D-Depth, 

S-Skeleton, IR-Infrared, HM-Human Mask, SMPL-Skinned Multi Person Linear fits, 

3DP-3D Pose, Fe-Fisheye, Nv-Night vision, J-Joint, SDFDI- Stacked Dense Flow 

Difference Image, SSDI- Stacked Saliency Difference Image. 

As a part of our investigation study is to recognize solo actions as well as human-

human interactions in grayscale videos, we will utilize the (RGB modality) videos 

captured from UAVs but in our study, we will convert the RGB videos to grayscale 

videos as per the requirements from the end user who has funded the project . Some 

relevant aerial datasets are listed in Table 2.3. 

Table 2.3: Relevant aerial datasets. 

Dataset (Year) [Ref] No. of Actions Modality 

UT-Interaction (2010) 
[1] 

240+ RGB 

Mini-Drone (2015) 

[115] 
38 RGB 

Drone-Action (2019) 
[2] 

13 RGB 

UCF ARG & UCF 

Aerial Action (2009) 
[79] 

10+9 RGB 

Okutama-Action 

(2017) [116] 
12 RGB 

Aeriform in-action 
(2023) [117] 

13 RGB 

Among the datasets listed in Table 2.3, UT-Interaction dataset [1] is particularly 

suitable for recognizing human-human interactions due to its resolution of 720x480 

pixels. The videos in this dataset are recorded using a low altitude camera with static 

camera movement, as depicted in Figure 2.1. Similarly, the Mini-drone dataset [115], 



37 

 

with a resolution of 1920x1080 pixels, features videos recorded using a low altitude 

camera (Figure 2.2), which also exhibits dynamic camera movement. Both datasets are 

relevant for the task of human-human interactions recognition. 

 

Figure 2.1: Image taken from UT-Interaction dataset [1].  

 

Figure 2.2: Image taken from Mini-drone dataset [115] 

While the Drone-action dataset [2] (Figure 2.4) also possesses a resolution of 

1920x1080 pixels and includes low altitude camera footage, this dataset is well-suited 

for solo-actions recognition.  

 

Figure 2.3: Image taken from Drone-action dataset [2]. 
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On the other hand, the Okutama-action dataset [116] boasts a high resolution of 4k. 

However, it involves high altitude UAV footage (Figure 2.5), which is required in our 

study. 

 

Figure 2.4: Image taken from Okutama dataset [116]. 

The most recent dataset of captured unmanned aerial vehicle (UAV) footage, 

demonstrated in Figure 2.6, is referred to as "Aeriform in-action" [117]. It possesses a 

high resolution of 4k and encompasses 14 distinct action classes, including both solo 

activities and interactions. However, the drawback of this dataset lies in its restricted 

accessibility, as it is not publicly accessible. 

 
 

Figure 2.5:  Image taken from Aeriform in-action dataset [117]. 
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Among all the datasets, the UCF datasets [79] suffer from poor resolution and high-

altitude camera shots with noticeable jitters (Figure 2.7), making action recognition a 

complex and challenging task. 

 

Figure 2.6: Image taken from UCF Aerial Action dataset [79]. 

 For this research study, the most appropriate datasets are the Ut-Interaction dataset 

[1], which is ideal for recognizing human-human interactions, and the Drone-action 

dataset [2], which is well-suited for recognizing solo actions. These datasets are 

particularly advantageous due to their low-altitude videos and high resolution, 

facilitating easy detection of individuals. 
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2.3 Scope of the Research Study 

The agreed scope of the thesis is to focus on human activity recognition, where 

activity could involve solo actions or interactions. The datasets to be considered for 

evaluation of human-human interactions and solo actions recognition are UT-Interaction 

[1] and Drone-Action [2].  It is important to note that the low-altitude aerial videos are 

being considered containing moving target(s) that can be reliably detected and their pose 

reliably extracted; hence the assumption is that the image resolution is satisfactory. The 

solution therefore involves the use of extracted pose information because different 

activities, in principle, are distinguishable based on target’s bodily movements. The 

detection/tracking problem is assumed to have been solved a priori for this study. As part 

of the investigation, the evaluation will be performed on the data that is converted from 

RGB (24-bit) to grayscale (8-bit) as per the requirements from the funding body. It is also 

relevant to mention that, recently, some approaches (including transformer-based 

networks) have shown encouraging performance for human activity recognition (but not 

with aerial videos) for solo actions; however, there appears a lot of room to devise effective 

methods for aerial human activity recognition, particularly to recognize and classify 

‘interactions’ that is the main goal of this research study. 
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2.4 Research Gap Analysis and Contributions of the Proposed Methodology 

 The current state-of-the-art methods have made significant progress, however there 

is a lack of generic methods capable of recognizing both solo actions as well as interactions 

in aerial videos. Due to diverse interactions classes and challenges in videos, limited 

methods are proposed to recognize them, Additionally, existing methods can be improved 

in terms of computational performance to make them more suitable for real-time 

applications.  Specifically, for low altitude grayscale aerial videos, no generic method is 

proposed that is computationally efficient for real-time applications.  

 The contributions of our research study are as follows: 

1. We have proposed a state-of-the-art skeletal-based transformer 'InterAcT' 

model capable of recognizing solo actions and human-human interactions 

in aerial grayscale videos. 

2. We have performed experiments to select optimized parameters of the 

proposed model. 

3. We have proposed a novel framework which is computationally efficient 

and accurate for real-time applications. 

4. We have performed performance evaluation and comparative analysis of 

our model with other state-of-the-art methods. 
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CHAPTER 3: PROPOSED METHODOLOGY  

 Human Action Recognition (HAR) is an interesting research study in computer 

vision and pattern recognition and it encompasses the identification and classification of 

human activities. Previous HAR studies generally utilized datasets featuring extended 

temporal durations, treating HAR as a post-processing task, categorizing intricate and 

prolonged human actions by leveraging past and future information. In contrast, Action 

Transformer [118] focuses on short-time HAR, continuously classifying actions within 

brief past time steps, typically up to a second. This approach is essential for real-time 

applications. The Action Transformer (AcT), drawing inspiration from the straightforward 

and architecture-independent design of the Vision Transformer [119]. The Transformer 

architecture [120] stands out as a significant breakthrough in the field of natural language 

processing (NLP) over the past few years. Furthermore, multi-head self-attention has 

demonstrated its effectiveness across various tasks beyond NLP, including applications in 

image classification [121], image super-resolution [122] and speech recognition [123]. 

Additionally, refined editions of the Transformer have emerged, tailored for real-time and 

embedded applications [124], demonstrating the adaptability of this architecture for Edge 

AI objectives. In recent times, numerous models aimed at enhancing the accuracy of 

Human Action Recognition have suggested incorporating attention mechanisms within 

convolutional and recurrent blocks. Nevertheless, solutions exclusively reliant on self-

attention blocks for this task have not yet been explored. AcT employs a purely 

Transformer encoder-based architecture for action recognition, resulting in an accurate and 

low-latency model suitable for real-time applications.  

 The choice for utilizing Transformer models over other deep neural networks such 

as Convolutional Neural Networks (CNNs) [125], Recurrent Neural Networks (RNNs) that 

includes Long Short-Term Memory (LSTMs) and Gated Recurrent Units (GRUs) [59], and 

Graph Convolutional Networks (GCNs) [126] rests upon several distinct advantages. 2D 

CNNs are effective in extracting spatial features, Transformers can complement CNNs by 

capturing not just spatial but also temporal dependencies. For temporal dependencies, there 

are 3D CNNs, but they are computationally expensive and are not suitable for inference. 
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RNN-based models that process data sequentially, Transformers, with their attention 

mechanism, offer a significant edge in processing sequential data, enabling efficient 

capture of long-range dependencies without suffering from the vanishing gradient problem 

seen in recurrent networks. Unlike RNNs that process sequences sequentially, the 

parallelization capability of Transformers accelerates training and inference, making them 

well-suited for large datasets. Moreover, their modular structure facilitates scalability, 

adaptability to various tasks, and the availability of pre-trained models for effective transfer 

learning. With more interpretable representations due to the attention mechanism, 

Transformers stands out as a compelling choice for tasks reliant on sequential data 

processing, leveraging their efficiency and robust performance. 

 The Action Transformer (AcT) [118] is a state-of-the-art (SOTA) model of 

Transformer family that exclusively leverages keypoints data in recognizing actions 

classes. AcT utilizes a Transformer encoder-based architecture for action recognition, 

yielding an accurate and low-latency model ideal for real-time applications. It possesses 

the robust capability to identify action classes even when the dataset is limited in sample 

size. Offering four variants—micro, small, base, and large—the model exhibits a spectrum 

of architectures, ranging from simpler to more complex designs. Each architectural variant 

bears distinct characteristics in comprehending data patterns. Notably, the model's 

complexity directly correlates with the requirement for more extensive data to effectively 

learn underlying patterns. Compared to alternative deep neural networks, the Action 

Transformer demonstrates significant potential and yields promising outcomes in its 

applications of activity recognition.  

 To the best of our knowledge, the use of AcT has been used for recognition of ‘solo 

actions’ (that involve just a single person), but not well explored for recognizing 

‘interactions’ (involving more than one person e.g., hand shaking, hitting someone, etc.) 

along with solo actions, which is envisaged to be the expected contribution of this work. 
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3.1 Description of Proposed InterAcT Framework 

 Inspired from the Action Transformer (AcT) [118] model, InterAcT model 

incorporates a Transformer-encoder based architecture to process video input sequences. 

Initially, the model pre-processes the input data from a multi-person 2D pose estimation 

network, generating 2D poses for each frame. These poses are subsequently utilized to 

create a 1D sequence of token embeddings. The Transformer architecture then receives 

these token embeddings and processes them using a standard Transformer encoder. 

Through a sequence of layers, which incorporate self-attention mechanisms and feed-

forward blocks, the model transforms and processes the input information. Notably, the 

model leverages a class token to facilitate self-attention aggregation, enabling a high-

dimensional representation to discern different action classes. The resulting network can 

predict actions for multiple individuals within a video stream with high accuracy. The 

transformer architecture within the model employs a multi-layer design with alternating 

self-attention and feed-forward blocks, optimizing the sequence of operations for efficient 

processing. Additionally, the network is designed with a focus on reducing 

hyperparameters, scaling the model's dimension, and facilitates optimal performance with 

reduced complexity and parameters, making it adaptable and effective for real-time 

applications. The proposed InterAcT architecture as explained above is illustrated in Figure 

3.1 below. To understand the architecture, it’s important to understand each element in the 

pipeline. There are six components in the architecture that includes Linear Projection of 

Features, Class Token Embedding, Position Embedding, Transformer Encoder Layers, 

MLP Head and Predicted Class Label. 

 

Figure 3.1: Flowchart of InterAcT architecture. 
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3.1.1 Linear Projection of Pose Features 

  It serves as a crucial step in transforming input pose matrices into a higher-

dimensional space, necessary for the model's operations. The primary objectives behind 

this transformation include increasing the model's capacity to grasp the patterns and 

relationships within pose data, allowing for the discernment of subtle pose variations. 

Additionally, linear projection aids in feature learning, extracting meaningful insights from 

pose data to highlight crucial aspects pertinent to action recognition. Moreover, this 

projection facilitates improved interactions during self-attention, enabling the model to 

better capture dependencies between different elements in the input sequence. Integrating 

with positional embeddings, the linear projection further enriches the input tokens, 

enhancing the model's comprehension of the significance of various keypoints within the 

sequence. Overall, this process significantly augments the model's ability to comprehend 

essential features and relationships, ultimately advancing the accuracy of action 

recognition within video streams. 

3.1.2 Class Token Embedding 

  Class token, a concept inspired by BERT [127] and Vision Transformer 

[119], plays a unique role in input sequences by serving as a special token. Its primary 

function is to amalgamate information across the sequence, facilitating the model's 

comprehension of the broader context. In this architectural design, the input sequence of 

pose matrices incorporates the [CLS] token. The core objective behind including the [CLS] 

token is to stimulate the self-attention mechanism within the Transformer, enabling the 

creation of a high-dimensional representation that encapsulates crucial features pertinent 

to distinct action categories. With this distinct token, the model becomes proficient at 

distinguishing between different actions with greater effectiveness. 

 

 

 



46 

 

3.1.3 Position Embedding 

  Positional information is crucial because the model does not inherently 

understand the order or position of the tokens (pose+class) in the input sequence. This 

allows the model to distinguish the position of each token within the sequence and 

understand the temporal relationships between the frames in the video. 

3.1.4 Transformer Encoder Layer and MLP Head 

  The Transformer encoder as shown in Figure 3.2, consists of multiple layers 

employing alternating multi-head self-attention and feed-forward blocks. After each block, 

Dropout, Layer-norm, and residual connections are applied. Each feed-forward block 

operates as a multi-layer perceptron, using GeLu non-linearity. The self-attention 

mechanism involves computing queries, keys, and values, then calculating attention 

weights based on pairwise similarities, resulting in weighted sums. These operations are 

performed for all heads, concatenated, and then linearly projected back to the initial 

dimension. The attention mechanism operates in the time domain, allowing the 

representation of a global class embedding by correlating different time windows. To 

manage hyperparameters and model dimensions, the grid search method was employed to 

select the optimal parameters that gives efficient and effective performance. The Action 

Transformer (AcT)[118] architectural parameters for its four variants are given in Table 

3.1. For this study, inspired by the 'micro' architecture, we have proposed a lightweight 

InterAcT architecture 'nano' that is effective and efficient based on its performance making 

it well-suited for real-time applications. 
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Figure 3.2: InterAcT architecture - Transformer encoder layer (top) and Multi-head self-
attention block (bottom). 

 

Table 3.1: Parameters for four variants of AcT [118]. 

Model 
Number of 

Heads (H) 

Dimensions 

of Model 

(Dmodel) 

Dimensions 

of MLP 

Head 

(Dmlp) 

Number of 

Transformer 

Encoder 

Layers (L) 

Parameters 

micro 1 64 256 4 227.7k 

small 2 128 256 5 1041.9k 

base 3 192 256 6 2742.6k 

large 4 256 512 6 4905.2k 
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3.2 Implemented Framework - Flowchart 

 Figure 3.3 below illustrates the steps undertaken to attain the intended outcomes. 
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Figure 3.3: Flowchart of Implemented Framework. 

 The proposed framework commences by utilizing two RGB modality videos 

datasets named Ut-Interaction [1] and Drone-Action [2]. The Ut-Interaction dataset 

comprises of five human-human interactions classes and the Drone-Action dataset 

comprises of 13 solo-action classes. The videos from both datasets were fed into the pre-
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processing block that outputs the sequential data and the labelled data (X-data and Y-data) 

that were further fed into the data splits block to splits the sequential data and the labelled 

data (X-data and Y-data) into training set, validation set and test set in order to train, 

validate, tune hyperparameters and perform performance evaluations of the proposed 

model. 

3.2.1 Pre-processing Block 

  The pre-processing block consists of multiple modules. The detail of each 

module is explained as follows: 

3.2.1.1 Data Augmentation 

The pre-processing block commences by the data-augmentation 

module. Data-augmentation techniques are utilized when videos are fewer than 

the required number of videos to extract desired number of sequential data to 

train the model. Moreover, it also helps in making the model generalizable. For 

extracting a greater number of sequential data from the videos, it’s important to 

have a greater number of videos for each class to obtain an equal number of 

sequential samples per class. To increase number of videos per class, two types 

of augmentation techniques were employed namely horizontal flip and rotation 

of 30˚ and 45˚ about the center. 
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3.2.1.2 Color Conversion 

The second stage of pre-processing is the conversion of videos color. 

Color videos consist of three channels known as RGB (Red, Green and Blue 

channels). The RGB videos contains more information and can help us in 

detection and extraction of desired data. For this study, as a part of 

investigation, our goal is to recognize solo-actions and human-human 

interactions in grayscale videos. Thus, the videos were converted from RGB 

to Grayscale videos and were fed into the pose extraction module to extract 

the pose data.    

3.2.1.3 Pose Extraction 

Pose estimation in computer vision is the process of identifying the 

positions of specific points in an image, commonly known as keypoints. These 

keypoints typically denote different parts of the object, such as joints, 

landmarks, or other notable features. The coordinates of these keypoints are 

often represented as a set of 2D [x, y] or 3D [x, y, visible] coordinates. In the 

context of human pose estimation, the goal is to identify the locations of key 

body joints such as elbows, knees, wrists, and ankles, as well as the overall body 

orientation. Pose estimation algorithms often rely on deep learning techniques, 

particularly convolutional neural networks (CNNs), which are trained on large 

datasets containing annotated images or videos of human poses. These 

networks learn to detect and localize key body joints by analysing patterns and 

features within the input data. Once trained, the pose estimation model can 
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process new images or video frames to estimate the pose of the subjects present. 

This typically involves identifying key points, connecting them to form skeletal 

structures, and inferring the spatial relationships between these points to 

determine the pose.  

There are variety of pose estimation algorithms developed by 

researchers. Some of the pose estimation algorithms includes OpenPose [128], 

HRNet [129], AlphaPose [130], YOLO Pose [3] and Mediapipe ([131]).  

In this study, we have utilized the latest Ultralytics YOLO v8 Pose 

Estimation model [3]. YOLO v8 pose estimation model has six variants, each differ 

in terms of input resolution, performance, and computation complexity. In our 

study, we have utilized the light-weight model named “yolov9n-pose” that accepts 

a maximum input resolution of 640x640, and it has the minimum model complexity 

of 3.3M parameters and 9.2B flops among all six pose estimation models. The 

default confidence score of detection offer by this model is 0.25. Any higher 

resolution as input to the model resizes by default and extract 17 2D keypoints per 

person. The details of indices and name of extracted keypoints for a person is given 

in Table 3.2. 
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Table 3.2: YOLO v8 pose keypoints indices. 

 

 

 

 

 

 

 

3.2.1.4 Data Transformation 

The final module of pre-processing block is transformation of extracted 

data. By utilizing Ultralytics YOLO-v8 pose model for each video, we 

extracted the keypoints of person(s) involved in each frame of the video. 

For each class in the datasets, frames keypoints data for each video were 

saved to numpy files (.npy files) for further processing. Each video numpy 

file have a shape of (Number of Frames in the Video, Number of Keypoints 

per Person*Number of Person(s), Number of Coordinates per Keypoint). 

As our study focus on recognizing two persons interaction as well as solo 

actions. The frames with no single person detection, we have appended an 

array of zeros in the numpy files so that the shape of numpy files remains 

consistent for further transformation.  

Index Keypoints 

0 Nose 

1 Left-eye 

2 Right-eye 

3 Left-ear 

4 Right-ear 

5 Left-shoulder 

6 Right-shoulder 

7 Left-elbow 

8 Right-elbow 

9 Left-wrist 

10 Right-wrist 

11 Left-hip 

12 Right-hip 

13 Left-knee 

14 Right-knee 

15 Left-ankle 

16 Right-ankle 



54 

 

The transformation module commences with frames to sequences 

conversion. Depending upon required temporal or sequence length, the 

frames keypoints data per video were transformed into sequences to form 

the sequential keypoints data for each video. The sequential keypoints data 

for all videos were also saved to numpy files (.npy files), each having a 

shape of (Number of Sequences in the Video, Sequence Length, Number of 

Keypoints per Person*Number of Person(s), Number of Coordinates per 

Keypoint). These video-wise sequential keypoints data were merged 

according to the respective class to form class-wise sequential keypoints 

data that has shape of ( ∑ Number of Sequences of Video_(n) N
n =1 , 

Sequence Length, Number of Keypoints per Person*Number of Person(s), 

Number of Coordinates per Keypoint ). In this conversion module, there 

was the problem of selection of sequences transformation type, i.e. fixed 

window sequences or sliding window sequences. In case of fixed window 

sequences, during conversion, some last frames of each video fail to form a 

complete sequence of required sequence length. To address this problem, 

there are multiple ways, one way is to drop those frames, another is to 

duplicate those last frames, some methods use approximation techniques or 

use sliding window sequences instead of fixed window sequences. Class-

imbalance was another problem in this conversion, when class-wise 

sequential keypoints data are generated, one class has high number of 

sequences than the other class. To address the class imbalance problem, the 

technique of data slicing was employed.  In this study, for each video, we 
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have generated sequential keypoints data with temporal or sequence length 

of 30 frames and to remove the class imbalance, among all classes 

sequences samples, we selected the minimum number of samples and used 

that number of samples per class to balance all classes sequential data.  

In the last stage of transformation module, class-wise sequential 

labelled data were generated based on the class-wise sequential keypoints 

data as generated in the prior stage and all class-wise sequential labelled 

data were merged to form the overall labelled data (Ydata) that has shape 

of (Total Classes*Number of Sequences per Class). By merging the class-

wise sequential keypoints data, it resulted in a data shape of (Total 

Classes*Number of Sequences per Class, Sequence Length, Number of 

Keypoints per Person*Number of Person(s), Number of Coordinates per 

Keypoint). This data was reshaped to (Total Classes*Number of Sequences 

per Class, Sequence Length, Number of Keypoints per Person*Number of 

Person(s)* Number of Coordinates per Keypoint) and this reshaped data is 

known as overall sequential keypoints data (Xdata). Both overall labelled 

data (Ydata) and overall sequential keypoints data (Xdata) were then fed 

into the data splitting block of the pipeline.  

3.2.2  Data Splits and DNN Block 

When data (Xdata and Ydata) was prepared, it was split into three parts 

namely training set, validation set and test set. The training set is used to train the 

model so that the model learns the patterns of the data to make it work for the 
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desired task. For validation and hyperparameters tuning of the model, a validation 

set was used to check the model’s generalizability (underfitting and overfitting) and 

to set the model on best settings. After training and validation, the performance of 

the model was evaluated on unseen test data. The performance of the model on the 

test set tells us how it will work for the desired task and its suitability for 

deployment. The data splits percentages depend on the available size of the 

prepared data (Xdata and Ydata), the choice of the model and the choice of the 

desired task. The percentage range of training-set varies from 60% to 80%, 

validation-set from 10% to 20% and remaining 10% to 20% for test-set 

respectively. In this study we have used 80% of data for training, 10% for validation 

and hyperparameters tuning and 10% for testing the model.  

3.2.3 Performance Evaluation 

The process of assessing how well a trained model performs on unseen data 

is known is performance evaluation. Depending on the recognition task and choice 

of the model, there are different techniques and metrics which helps us in measuring 

the model’s effectiveness and generalization ability of the model.  

For understanding the classification performance metrics, it’s important to 

understand the basics of Confusion Matrix. A confusion matrix also known as Error 

Matrix is a table used to describe the performance of a classification model. A 

general binary classification confusion matrix is shown in Figure 3.4 which is a 2x2 

matrix to understand the terminologies which is useful when finding the 

performance metrics. A confusion matrix is a nxn matrix where n represents the 
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number of labels in the data. It presents a comprehensive summary of the model's 

predictions against the actual outcomes in a tabular format. The general 2x2 matrix 

is composed of four different combinations of predicted and actual classes:  

3.2.3.1 True Positives (TP) 

Instances where the model correctly predicts the positive class. It means 

that the true class label case as in ground truth has correctly predicted by the 

model as true.   

3.2.3.2 True Negatives (TN) 

Instances where the model correctly predicts the negative class. It means 

that the negative class label case as in ground truth has correctly predicted by 

the model as negative. 

3.2.3.3 False Positives (FP) 

Instances where the model predicts the positive class incorrectly. It’s a 

misclassification case where a true class label as in ground truth is predicted as 

negative class label by the model. 

3.2.3.4 False Negatives (FN) 

Instances where the model predicts the negative class incorrectly. It’s a 

misclassification case where a negative class label as in ground truth is 

predicted as positive class label by the model. 
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A confusion matrix is useful in finding classification performance metrics 

that includes overall accuracy, precision, recall/sensitivity, and F1-Score. The 

details of each performance metric are explained in Table 3.3. 

 

Figure 3.4: A general 2x2 confusion matrix. 

Table 3.3: Classification performance metrics. 

Performance 

Metric 
Definition Purpose Formula 

Overall 

Accuracy 

The ratio of 
correct 

predictions to the 
total number of 

predictions. 

Offers a 
comprehensive 
evaluation of 

the model's 
accuracy 

across all 
predictions. 

 
TP + TN

TP + TN + FP + FN
 

Precision 

The ratio of true 
positive 
predictions out of 

the total predicted 
positive 
instances. 

Evaluates the 

model's 
precision in 
predicting 

positive 
instances, 
minimizing 

false positives. 

 
TP

TP +  FP
 

Recall/Sensitivity 

The ratio of true 
positives to the 

sum of true 
positives and 

false negatives. 

Evaluates the 
model's 

sensitivity to 
identifying 

actual positive 

 
TP

TP +  FN
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instances, 
minimizing 
false 

negatives. 

F1-Score 

The harmonic 
means of 

precision and 
recall, providing 
a balanced 

measure between 
the two metrics. 

Balances 

precision and 
recall, yielding 

a single metric 
that accounts 
for both false 

positives and 
false 

negatives. 

2 x 
Precision x Recall

Precision +  Recall
 

Generalization is defined as the model's ability to perform well on new, 

unseen data. There are two types of generalization problems, and both are 

undesirable in evaluating model performance on unseen data, these include 

underfitting and overfitting.  

Underfitting occurs when a model is too basic to understand the patterns in 

the training data.It fails to learn the complexity of the data and performs poorly, 

both on the training and unseen data. It may arise from using a model that's too 

basic or lacks the capacity to represent the underlying patterns in the data. 

Additionally, insufficient training or a lack of suitable features can contribute to 

underfitting. The model in underfitting performs poorly on both the training and 

test datasets, showing high errors and low accuracy. To address underfitting, one 

can try using more complex models, adding more features, increasing model 

capacity, or extending training time. 

Overfitting occurs when a model is too complex, capturing noise or random 

changes in the training data rather than learning the underlying patterns. An overfit 
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model performs very well on the training data but poorly on unseen data. Complex 

models or models trained for too long can capture noise instead of general patterns, 

leading to overfitting. Additionally, when a dataset is small or the model is too 

tailored to the training data, overfitting can occur. High performance on the training 

data but a significant drop in performance on the test or validation data indicates 

overfitting. The model essentially memorizes the training data rather than learning 

the underlying trends. To address overfitting, there are several ways including 

simplifying the model, reducing its complexity through regularization techniques 

(like dropout, L1/L2 regularization), increasing the dataset size, or using cross-

validation to mitigate the effects of overfitting. 

The number of computational resources required to execute and deploy the 

model is also important and to access the computational complexity of model, 

metrics like number of model parameters, flops, fps and inference time are used 

that helps us in selecting the appropriate resources in order to train the model and 

deploy it in real-time applications. Balancing computational complexity and 

performance metrics is essential in designing efficient models. Theses metrics are 

explained as follows: 

3.2.3.5 Model Parameters 

The total number of fixed parameters, also known as non-trainable 

parameters and updatable parameters (weights and biases) that are learned by 

the model during the training process, is known as the parameters of the model. 

The more the number of parameters, the more complex is the model, such 
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complex model helps in capturing all complex patterns of the data and increases 

the accuracy however it increases the computational complexity that results in 

high utilizing of hardware resources and such model may not be preferable to 

deploy for real-time applications. On the other hand, the smaller number of 

parameters makes the model less computationally expensive, it utilizes less 

hardware resources. However, in such a model the accuracy of model may 

sacrifice but well suitable for deployment in real-time applications.   

3.2.3.6 Floating-point Operations (Flops) 

The number of arithmetic operations performed by the model during 

training and inference is known as floating-point operations (flops). The more 

the number of flops, the more complex is the model and vice versa. Models 

with high flops require more hardware resources and time to execute as 

compared to models with less flops.  

3.2.3.7 Frames Per Seconds (FPS) 

The number of frames processed by a model per second is known as 

frames per second (fps). This metric is commonly used in real-time applications 

to check whether a model is suitable for deployment. The more fps indicates 

faster processing which is crucial for applications where quick response is 

needed. For more fps, a complex model requires more computation power and 

vice versa. 
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3.2.3.8 Inference Time 

The amount of time taken by a trained model to make predictions on 

new data is known as inference time. Lower inference time is often desirable, 

making the model well suitable to deploy for real-time applications.  

3.2.4 Inference Block 

Inference, also known as real-time prediction is a stage where a trained 

model is deployed in a real-time application without further training or testing the 

model. The trained model at inference stage takes new unseen data as input, 

processes it, make quick predictions and a decision is made by the system on the 

predictions.  
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CHAPTER 4: IMPLEMENTATION  

 This chapter provides insights into the implementation of the proposed InterAcT 

model. It presents the details of implementation of each section as discussed in chapter 3. 

The chapter starts with pre-processing of public datasets, discusses common characteristics 

of model, and provides the details of training process.   

4.1 Preprocessing of Datasets 

 We have selected two public datasets for our study, Ut-Interaction [1] which is a 

human-human interaction dataset and Drone-Action [2] which is a solo action dataset. The 

statistics of these datasets are as given in Table 4.1. 

Table 4.1: Statistics of selected datasets.  

Dataset 
Number of 

Classes 

Number of 

Videos 

Number of 

Person 

Video 

Resolution 
Environment 

Ut-

Interaction 

[1]  

5 20 2 720x480 
Outdoor 

(Plain Road + 

Forest) 

Drone-

Action [2] 
13 240 1 1920x1080 

Outdoor 
(Unpaved 

Road) 

 Ut-Interaction dataset offers two types of video data: original and segmented. Based 

on environment, there are two sets of original data: original set1 (plain-road) and original 

set2 (forest). Similarly, there are two sets of clipped data: clipped set1 (plain-road) and 

clipped set2 (forest). Original data contains 10 videos per set which includes all five classes 

and has resolution of 720x480 while clipped data contains videos that are clipped to the 

duration of class and are cropped. Since clipped videos are cropped, all videos have 
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different resolution. The dataset has five human-human interactions classes namely 

handshaking, hugging, kicking, punching, and pushing. 

 Drone-Action dataset is a solo human action dataset comprises of 13 classes 

including clapping, hitting bottle, hitting stick, jogging front-back-view, jogging side-view, 

kicking, punching, running front-back-view, running side-view, stabbing, walking front-

back-view, walking side-view and waving hands. The videos are shot on an unpaved road 

environment. Each class has 20 videos except clapping and waving hands, both classes 

have 10 videos. The resolution of the videos is 1920x1080.  

 It is to note that both datasets have different video resolutions which can be 

problematic in extracting the poses because YOLO v8 pose extractor model (yolov9n-pose) 

accepts a max resolution of 640x640 to extract poses. It resizes videos that have resolution 

higher than the max resolution. Resizing the resolution can affect the pose model to extract 

the poses effectively or may not extract poses if subject(s) size is very small. Another 

problem is the change of scale of extracted pose also known as coordinate scaling, different 

resolutions have different aspect ratios which affect the scale of extracted pose. To tackle 

these issues, the possible solution to resizing problem is to crop the original videos of both 

datasets into a fixed resolution and then employ the pose extractor model to extract poses, 

this will solve both issues. Another solution is to crop the videos of Drone-Action dataset 

to a resolution that are equivalent to that of Ut-Interaction clipped dataset, this will help 

model to adapt to equivalent resolutions. The scale change can be addressed by use of a 

scaling technique, one way is to multiply either axis (width or height) by the ratio of width 

over height. For equivalent resolutions, this will maintain the scale of both coordinates of 

the extracted pose. 
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 From the analysis of selected datasets, there is an imbalance in the number of videos 

per class. To address this problem, data augmentation was employed for those classes that 

have a smaller number of videos. Another advantage of employing data augmentation is to 

increase the generalizability of the model. Two types of augmentation techniques were 

employed: horizontal flip and rotation of 30˚ and 45˚ about the center. Figure 4.1 shows 

the data-augmentation for clapping class of Drone-Action dataset. 

 

 

 

 

 

 

Figure 4.1: Data augmentation for Drone-Action “clapping” class. 

The next stage of pre-processing is color conversion in which all RGB videos were 

converted into Grayscale videos. Figure 4.2 shows the color conversion for Ut-Interaction 

“handshaking” class and Drone-Action “kicking” class respectively. 

 

 

 

(a) Original Frame (b) Horizontal Flipped 

Frame 

(c) 30˚ Rotated Frame (d) 45˚ Rotated Frame 
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Figure 4.2: Color conversion for Ut-Interaction “handshaking” class and Drone-Action 
“kicking” class.  

 After conversion from RGB to Grayscale, YOLO v8 pose model was employed to 

extract the poses of subject(s) involved in the videos. YOLO v8 pose model extracts 17 2D 

keypoints for each subject(s) in the video. The results of YOLO v8 pose model are depicted 

in Figure 4.3.    

 

 

 

 

 

 

Figure 4.3: YOLO v8 pose keypoints for Ut-Interaction “handshaking” class and Drone-

Action “waving hands” class. 

(a) Original Frame (b) Grayscale Frame 

(c) Original Frame (d) Grayscale Frame 

(b) Handshaking Keypoints on 

Grayscale Frame 

(a) Handshaking Keypoints 

(d) Waving Hands Keypoints on 

Grayscale Frame 

(c) Waving Hands Keypoints 
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 After extracting keypoints of subject(s) in the videos, the keypoints data were 

transformed into sequential data (Xdata) along with labelled data (Ydata) as discussed in 

Section 3.2.1.4 of Chapter 3. The sequential data (Xdata) and labelled data (Ydata) were 

further split into three sets: training- set, validation-set and test-set with percentages of 

80%, 10% and 10% respectively. 

4.2 Proposed InterAcT Model Training Parameters  

 This section presents the characteristics of the proposed InterAcT model during 

training it. This section gives an overview of hyperparameters, activation functions and 

optimizers that were experimented and selected during this study. The details of each 

parameter are explained as follows: 

4.2.1 Hyperparameters  

  The parameters that are chosen prior to training are known as 

hyperparameters. Their values can be adjusted prior to training and remain constant during 

training. The hyperparameters used in our model are mentioned in Table 4.2.  

Table 4.2: List of hyperparameters. 

Hyperparameter Set of Values 
Selected 

Value 

Epoch 500 500 

Learning Rate 0.1, 0.01, 0.001, 0.0001, 0.00001,0.000001 0.001 

Weight Decay 0.1, 0.01, 0.001, 0.0001, 0.00001,0.000001 0.000001 

Batch Size 1, 2, 4, 8, 16, 32, 64, 96, 128, 160, 192, 224, 256 192 

Sequence 

Length 
30 30 

Sequences Type Fixed Window, Sliding Window 
Sliding 

Window 
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4.2.1.1 Epoch  

The number of iterations taken by the model to learn the entire 

training dataset is known as epoch. Training the model with a smaller 

number of epochs takes less time to train the model. However, the model 

may not learn the training set well resulting in underfitting problem. On the 

other hand, if the model is trained for many epochs, the model will take 

more time to learn, and training loss decreases but sometimes training 

model for many epochs leads to overfitting problem. It is important to select 

a balanced number of epochs which make the training process efficient and 

to overcome the generalizability problem. To select a balanced number of 

epochs, plot the training and validation loss over each epoch. Initially, both 

losses should decrease as the model learns. However, if the validation loss 

starts to increase while the training loss continues to decrease, it indicates 

overfitting. Choose the number of epochs just before the validation loss 

begins to increase. 

4.2.1.2 Learning Rate 

In machine learning, learning rate is a tuning parameter that 

determines the size of steps taken in optimization process while moving 

toward a minimum of a loss function. A high learning rate may cause the 

algorithm to overshoot the minimum which leads to divergence. On the 

other hand, a very low learning rate may cause slow convergence or may be 

stuck in local minima. Therefore, choosing an appropriate learning rate is 
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essential to train the model efficiently and effectively. To select an 

appropriate learning rate, numerous techniques are used including grid 

search, learning rate schedulers, learning rate warmup, and visualizing 

learning rate vs loss curve. It’s a good practice to start with a small learning 

rate and gradually increase it until a value that trains the model effectively 

without causing divergence. Grid search is often a good choice to look for 

an appropriate learning rate. By selecting a set of values, the model is 

trained on each value and the one that performs best on validation set is 

selected.  

4.2.1.3 Weight Decay 

In machine learning, weight decay also known as L2 regularization 

is a method that prevents overfitting of models and optimizes the model. It 

is used in weighted optimizers. It adds a regularization term to loss function 

that penalizes large weights. Choosing large weight decay reduces 

overfitting but may cause underfitting. Conversely, choosing a very small 

weight decay weakens the regularization and increases the risks of 

overfitting. Therefore, choosing an appropriate weight decay is essential for 

training model effectively without generalization problems. To select an 

appropriate weight decay, grid search is a good technique. By selecting a 

set of values, the model is trained on each value and the one that performs 

best on validation set is selected. 
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4.2.1.4 Batch Size 

In machine learning, batch size is the number of samples that are 

utilized in one iteration during training. By using batch size, the training set 

is divided into subsets called batches and are utilized in each training 

iteration. The number of iterations taken during training are determined by 

dividing the total number of training samples by batch size. Choosing a 

larger batch size results in faster convergence and less training time. 

Selecting an appropriate batch size is essential in training the model 

effectively. By using grid search, a batch size that gives good performance 

on validation set is selected.    

4.2.1.5 Sequence Length 

In sequential based models, sequence length is the number of 

samples or frames per sequence.  In action recognition, it provides the 

temporal dimension of video sequence. It determines the amount of context 

a model can consider at once. Large sequence length provides more context 

to the model but requires more memory and computation as compared to 

small sequence length. The choice of sequence length depends on data 

characteristics, model architectures, computational resources, and nature of 

task. To select an optimal sequence length, grid search is often employed to 

select the value that gives good performance on validation set.   
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4.2.1.6 Sequences Type 

Sequences type or Sequences formation type is defined as the nature 

of extracting desired number of frames for a video having n frames. There 

are mainly two types of sequence formation, fixed window sequencing and 

sliding window sequencing.  

In fixed window sequencing, desired number of frames (sequence 

length) are taken subsequently. In this type, for a video having n frames and 

desired sequence length of S, we get n/S sequences. In fixed window 

sequencing, there is problem of complete sequence formation in the last 

sequence. To address this issue, the frames in the last sequence are either 

duplicated or dropped. 

In sliding window sequencing, desired number of frames (sequence 

length) are taken consecutively. In this type, for a video having n frames 

and desired sequence length of S, we get n-S+1 sequences. In sliding 

window sequencing, we always get complete sequences. 

For selection of best sequencing type, grid search is often employed 

to select the type that gives good performance on validation set.   
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4.2.2 Activation Functions  

  The mathematical operations applied to output of a neuron in a neural 

network are known as activation functions. They introduce non-linearity in the model to 

make model learn complex patterns of data. It decides whether a neuron should be activated 

or not by calculating the weighted sum and adding bias to it. There are numerous activation 

functions that can be utilized in models however, the choice of activation functions depends 

on architecture of model, nature of data and specific task at hand. In the case of action 

recognition using deep learning models, the most popular activation function is Gaussian 

Error Linear Unit (GeLu). Other activation functions that are used in machine learning and 

deep learning tasks are sigmoid, relu, leaky-relu, selu, silu, elu, softmax, softplus, swish 

and mish functions.  To select an activation function, choose a set of activation functions 

and perform grid search. The activation function that gives good performance on validation 

set is selected for the desired task. Activation functions that were experimented under this 

study are given in Table 4.3.  

Table 4.3: List of activation functions. 

 

 

 

 

 

 

Set of Activation Functions Selected Activation Function 

selu, silu, elu, gelu, swish, mish gelu 
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4.2.2.1 Gaussian Error Linear Unit (GeLu) 

Gaussian Error Linear Unit (GeLu) activation function weights the 

input by its probability under a Gaussian distribution. The operation 

performed by GeLU is given by equation 4.1. 

𝐺𝑒𝐿𝑢(𝑥)  =  𝑥.Φ(𝑥) =  𝑥.
1

2
(1 + 𝑒𝑟𝑓 (

𝑥

√2
))  (4.1) 

Where Φ(x) represents the cumulative distribution function of a standard 

Gaussian distribution, and erf(x) is the error function. 

GeLU is suitable to use in deep learning models because it’s a smooth 

function (continuously differentiable), it approaches linearity for large 

positive and negative values of x which is advantageous for capturing 

linearity, it is zero centered which helps mitigate issues related to shifting 

distributions in the network's activations, leading to faster convergence 

during training. Based on its performance on validation set, it outperforms 

the activation functions that are given in Table 4.3. 

4.2.3 Optimizers  

  An algorithm that is used to adjust the weights and biases iteratively during 

the training process to minimize the loss function is known as an optimizer. An optimizer 

is used to adjust the weights and biases that best fit the training data and generalize well on 

unseen data. The optimizers that were experimented on the proposed model are presented 

in Table 4.4. 
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Table 4.4: List of optimizers. 
 

 

4.2.3.1 Adaptive Moment Estimation with Weight Decay 

AdamW (Adaptive Moment Estimation with Weight Decay) is a 

variant of the traditional Adaptive Moment Estimation (Adam) optimizer 

that incorporates weight decay regularization directly into the update rule. 

Weight decay penalizes large weights in the model to prevent overfitting. 

The update rule for AdamW is given by equation 4.2. 

θt+1 =  θt  −  α.
�̂�

√𝑣 + ∈
 −  𝛼. 𝜆. θt   (4.2) 

Where θ represents the model parameters (weights and biases). α is the 

learning rate, �̂�  and �̂� are the bias-corrected first and second moment 

estimates, respectively. ∈ is a small value to prevent division by zero. λ is 

the weight decay coefficient. λ is the weight decay coefficient. 

 

 

 

 

 

Set of Optimizers Selected Optimizer 

AdamW, LAMB, LazyAdam, RAdam, SGDW AdamW 
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4.3 Resources Utilized  

 This section presents the hardware and software resources that were utilized to 

implement the proposed framework.  

4.3.1 Hardware Resources  

  For deep learning models, it is important to use a powerful system that takes 

less time to train the model and to test the model for inference. The specifications of 

hardware that was used for this study are given in Table 4.5. 

Table 4.5: Hardware specifications. 

Component Specifications 

Processor Name 12th Generation Intel (R) Core (TM) i7-12700 

Processor Clock Speed 4.9 GHz 

Processor Cores 12 

Processor Threads 24 (2 Threads per Core) 

Graphics Card Name NVIDIA GeForce RTX 3090 

Graphics Memory (VRAM) 24 GB 

RAM Size 62 GB 

RAM Technology DDR5 

4.3.2 Software Resources  

  For this study, we have used Python 3.11.5. Python is a popular 

programming language that is well suited for machine learning and deep learning 

programming. It offers a wide range of libraries and is a user-friendly language. For 

implementation of proposed framework, we have used TensorFlow 2.15.0 which is an 

open-source framework developed by Google providing high-level APIs to build deep 

learning models. Moreover, we have implemented our model on Linux Operating System 
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(Ubuntu 22.04.1, Linux Kernel version 6.5.0-25-generic) due to its flexibility, 

performance, and strong support for development tools and GPU acceleration. 

4.4 Training Setup  

 The selected hyperparameters, activation function and optimizer are given in Table 

4.2, Table 4.3, and Table 4.4 respectively. With these selected parameters, we trained the 

model and tested its performance on the test set. The training and validation accuracy-loss 

curve is illustrated in Figure 4.4. 

 

 

 

 

 

Figure 4.4: Training and validation accuracy-loss curve. 

 Figure 4.4 illustrates the training and validation accuracies and losses of the 

proposed InterAcT model, trained with selected hyperparameters as given in Table 4.2. 

The model was trained for 500 epochs. It shows that both training and validation accuracies 

are increasing, and losses are decreasing over time which means that the model is learning 

and improving. Moreover, the validation accuracy and validation loss are closer to the 

training accuracy and training loss respectively. This behavior indicates that the model is 

neither underfit nor overfit which is a positive sign in terms of model’s generalizability. 
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After training the model with 500 epochs, it reports an accuracy of 99.23% and evaluation 

time of 0.2013 seconds on test set.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

CHAPTER 5: EXPERIMENTS, RESULTS AND DISCUSSION  

 This chapter presents the detailed experiments performed on the proposed InterAcT 

framework, performance evaluation on test set and benchmarks comparison. This chapter 

commences with experimentations results of hyperparameters, optimizers and activation 

functions. After selection of parameters, the InterAcT model was evaluated on test set and 

at the end, it was compared with other state-of-the-arts benchmark models in terms of 

model complexity, evaluation time and test accuracy.    

5.1 Experiments on Proposed InterAcT Framework  

 This section commences with the experimentation results of architectural changes 

of the proposed InterAcT model. After selection of architectural parameters, different 

parameters including hyperparameters, activation functions and optimizers as given in 

Table 4.2, Table 4.3 and Table 4.4 respectively were experimented on our model. 

 5.1.1 Experiments on Architectural Parameters   

The original action transformer (AcT)[118] has proposed four variants of 

action transformer including micro, small, base, and large. The architectural 

parameters of these models are given in Table 5.1. 
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Table 5.1: Architectural parameters for four variants of AcT [118]. 

 Inspired from the ‘micro’ architecture of AcT [118], we have proposed a 

light-weight model by performing experiments on architectural parameters such as 

dimensions of model (Dmodel) also known as embedded dimensions, dimensions 

of MLP Head (Dmlp) and number of transformer encoder layers (L). The set of 

values taken for experiments on these architectural parameters are given in Table 

5.2. The experiments with these architectural parameters were performed with fixed 

window sequences, 500 epochs, batch-size of 32, gelu activation function, AdamW 

optimizer with learning rate of 0.0001 and weight decay of 0.00001. These 

architectural parameters were selected sequentially. 

Table 5.2: List of architectural parameters. 

 

Model 
Number of 

Heads H 

Dimensions 

of Model 

Dmodel 

Dimensions 

of MLP 

Head Dmlp 

Number of 

Transformer 

Encoder 

Layers L 

Dropout 

Percentage 
Parameters 

micro 1 64 256 4 0.30 0.2277M 

small 2 128 256 5 0.30 1.0419M 

Base 3 192 256 6 0.30 2.7426M 

large 4 256 512 6 0.30 4.9052M 

Architecture 

Parameter 
Set of Values 

Selected 

Value 

Number of Heads (H) 1 1 

Number of 
Transformer Encoder 

Layers (L) 

1,2,3,4 3 

Embedded Dimensions 
(Dmodel) 

1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64 56 

Dropout Percentage 0.05, 0.1, 0.15, 0.20, 0.25, 0.30 0.10 

Dimensions of MLP 

Heads (Dmlp) 
1, 2, 4, 8, 16, 32, 64, 96, 128, 160, 192, 224, 256 96 
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5.1.1.1 Effect of Number of Encoder Layers   

 Our aim is to propose a light-weight model, so we have chosen 

four values for embedded dimensions to perform experiments for it. During 

these experiments, other architectural parameters were set to their default 

values. The result of the number of encoder layers is shown in Figure 5.1. 

The final value was selected based on highest validation accuracy.    

 

 

 

 

 

 

Figure 5.1: Number of encoder layers versus validation accuracy. 

Figure 5.1 illustrates the effect of number of encoder layers versus 

validation accuracy. The plot shows an increasing validation accuracy over 

number of encoder layers which means that increasing the number of 

encoder layers increases the model performance however, if number of 

encoder layers are increased too much, the performance drops which is 

evident from the plot. Increasing the number of encoder layers results in a 

more complex model having increased number of flops and training 
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parameters of the proposed model. The model with a greater number of 

encoder layers will take more time in training and inference. In this study, 

we have selected 3 number of encoder layers for our proposed model so that 

there is a balance between performance and model complexity.      

5.1.1.2 Effect of Embedded Dimensions   

 To perform experiments for embedded dimensions, we have 

chosen twelve values. During these experiments, the number of encoder 

layers was set to 3 (selected from previous experiment), while other 

architectural parameters were set to their default values. The result of 

embedded dimensions is shown in Figure 5.2. The value with the highest 

validation accuracy is selected for our model.    

 

Figure 5.2: Embedded dimensions versus validation accuracy. 
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Figure 5.2 illustrates the effect of embedded dimensions versus 

validation accuracy. The plot shows an increase in validation accuracy for 

increase in embedded dimensions. The behavior after embedded 

dimensions of 48 becomes closer and steady. However, increasing 

embedded dimensions increases the complexity of the model and reduces 

the performance at higher values. In this study, we have used embedded 

dimensions of 56 for our model. 

5.1.1.3 Effect of Dropout Percentage   

 In machine learning, dropout is a regularization technique used 

to prevent the model from overfitting and increase generalizability by 

removing a percentage of neurons which do not contribute to the forward or 

backward pass during training. The set of values for this experiment are 

listed in Table 5.2. The result of dropout percentage is illustrated in Figure 

5.3.    

 

 

 

 

 

Figure 5.3: Dropout percentage versus validation accuracy. 
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Figure 5.3 illustrates the effect of dropout percentage versus 

validation accuracy. The plot shows that the validation accuracy decreases 

with an increase in dropout percentage. For our proposed model, we have 

used a dropout percentage of 10%. 

5.1.1.4 Effect of Dimensions of MLP Heads   

The set of values for this experiment are listed in Table 5.2. The 

result for this experiment is shown in Figure 5.4. 

 

Figure 5.4: Dimensions of MLP heads versus validation accuracy. 

Figure 5.4 illustrates an increase in validation accuracy over 

increase in dimensions of MLP Heads. After MLP Heads dimensions of 96, 

the validation accuracy decreases. Selecting a larger value result in a 

complex model which requires more computational resources and time to 

both training and inference. From the plot, we get maximum validation 
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accuracy at MLP Heads dimensions of 96. Thus, for our proposed model, 

we have used MLP Heads dimensions of 96.  

After performing and analyzing these experiments, the selected values of 

these parameters for our study are listed in Table 5.2.  

 5.1.2 Experiments on Hyperparameters, Optimizers and Activation Functions 

This section presents the experiments performed on hyperparameters, 

optimizers and activation functions as given in Table 4.2, Table 4.4, and Table 4.3 

respectively.   

5.1.2.1 Experiments on Optimizers with Learning Rates and Weight         

Decays   

This section presents the experiments performed on different 

optimizers as given in Table 4.4 at different learning rates and weight 

decays as given in Table 4.2. The optimizer along with learning rate and 

weight decay was selected based on validation accuracy. 
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5.1.2.1.1 Experiments on AdamW Optimizer with Different 

Learning Rates and Weight Decays    

In this experiment, the AdamW (Adaptive Moment 

Estimation with Weight Decay) optimizer was experimented with 

different learning rates and weight decays. The result of each 

learning rate and weight decay are illustrated in Figure 5.5. 

 
Figure 5.5: AdamW optimizer - Weight decay versus validation accuracy. 

Figure 5.5 illustrates the validation accuracy of the model 

with change in weight decay at different learning rates. At learning 

rate 0.1, the validation accuracy remains constant for all values of 

weight decay, this shows that at learning rate of 0.1, the model is not 

learning effectively. At the learning rate of 0.01, the model shows 

improvement. At learning rate of 0.001 and smaller, the validation 

accuracy decreases with increase in weight decay. Figure 5.6 
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illustrates the maximum validation accuracy bar plot for AdamW at 

respective learning rates and weight decays.  

 

 

 

 

 

 

 
Figure 5.6: AdamW optimizer - Learning rate versus validation accuracy. 

From Figure 5.6, For AdamW optimizer, the model gives a 

maximum validation of 77.20% at learning rate of 0.001 and weight 

decay of 0.000001.  
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5.1.2.1.2 Experiments on LAMB Optimizer with Different 

Learning Rates    

In this experiment, the LAMB (Layer-wise Adaptive 

Moments optimizer for Batch training) optimizer was experimented 

with change of learning rates only, because LAMB optimizer does 

not use weight decay in its operation and is only dependent on the 

learning rate. The experimentation results for this optimizer are 

shown in Figure 5.7.  

 

 

 

 

 

 

Figure 5.7: LAMB optimizer - Learning rate versus validation accuracy. 

From Figure 5.7, as learning rate increases, the validation 

accuracy increases however if it is increased too much, the 

validation accuracy tends to drop. For LAMB optimizer, the model 

gives the maximum validation accuracy (70.60%) at a learning rate 

of 0.001. 
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5.1.2.1.3 Experiments on LazyAdam Optimizer with Different 

Learning Rates    

In this experiment, the LazyAdam optimizer was 

experimented with change of learning rates as this optimizer is 

dependent on the learning rate. The result of change of learning rate 

on this optimizer is shown in Figure 5.8. 

 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

Figure 5.8: LazyAdam optimizer - Learning rate versus validation accuracy. 

From Figure 5.8, as the learning rate increases, the validation 

accuracy also increases. After the learning rate of 0.0001, the 

validation accuracy drops with an increase in the learning rate. For 

LazyAdam optimizer, the model gives the maximum validation 

accuracy (76.10%) at a learning rate of 0.0001. 
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5.1.2.1.4 Experiments on RAdam Optimizer with Different 

Learning Rates    

In this experiment, the RAdam (Rectified Adam) optimizer 

was experimented with change of learning rates. Figure 5.9 

illustrates the results of change of learning rate on Radam optimizer.  

 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

Figure 5.9: RAdam optimizer - Learning rate versus validation accuracy. 

From Figure 5.9, as the learning rate increases, the validation 

accuracy also increases. After the learning rate of 0.0001, the 

validation accuracy drops with an increase in the learning rate. For 

RAdam optimizer, the model gives the maximum validation 

accuracy (76.65%) at a learning rate of 0.0001. 
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5.1.2.1.5 Experiments on SGDW Optimizer with Different 

Learning Rates and Weight Decays    

In this experiment, SGDW (Stochastic Gradient Descent 

with Weight Decay) optimizer was experimented with change of 

learning rate as well as weight decay. The results of change of 

weight decay versus validation accuracy at different learning rates 

are shown in Figure 5.10. 

 
Figure 5.10: SGDW optimizer: Weight decay versus validation accuracy. 

Figure 5.10 illustrates that at a learning rate of 0.1, as the 

weight decay increases, the validation accuracy comparatively 

remains constant, this shows that the model is not learning 

effectively. At other learning rates, the model gives similar behavior 

for change in weight decay. The model comparatively gives high 

validation accuracy for a smaller weight decay and decreases as 

weight decay increases. Figure 5.11 illustrates the maximum 
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validation accuracy bar plot for SGDW optimizer at respective 

learning rates and weight decays.  

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

Figure 5.11: SGDW optimizer: Learning versus validation accuracy. 

Figure 5.11 shows the max validation accuracy at different 

learning rates and weight decays. Among all the learning rates, at a 

learning rate of 0.01, the model gives the maximum validation 

accuracy (76.37%) for the SGDW optimizer.    

After performing the above experiments, a bar plot of max 

validation accuracy for each optimizer was made as shown in Figure 5.12 

to perform their comparative analysis. From the bar plot, the validation 

accuracies are comparable to each other. Among all optimizers, AdamW 

with a learning rate of 0.001 and a weight decay of 0.000001 gives the max 

validation accuracy of 77.20%. So, we have selected AdamW optimizer for 

our proposed model.  
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Figure 5.12: Optimizers versus validation accuracy. 

5.1.2.2 Experiments on Activation Functions 

This section presents experiments performed for selection of activation 

function for our proposed model. Different activation functions are given in Table 

4.3.  The result of this experiment is illustrated in Figure 5.13. 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 

Figure 5.13: Activation functions versus validation accuracy. 
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Figure 5.13 illustrates the validation accuracy reported by the model on 

three different activation functions including selu, silu, elu, gelu, swish and mish. 

Among all activation functions, gelu has the highest validation accuracy and hence 

this activation function is utilized in our proposed model.  

5.1.2.3 Experiments on Batch Size 

This section presents experiments performed for selection of optimal value 

of batch size for our proposed model. The result of change of batch size is shown 

in Figure 5.14. 

 
 

 
 
 

 
 
 

 
 

 
 

Figure 5.14: Batch-size versus validation accuracy. 

Figure 5.14 illustrates the effect of change of batch-size on model’s 

validation accuracy. Generally, a smaller batch size takes longer time to train the 

model as compared to a larger batch size. Moreover, the performance at smaller 

batch sizes may not be as efficient as at larger batch sizes. This behavior is evident 

from the plot, at smaller batch-sizes the validation accuracy is very less and as 

batch-size increases the validation accuracy also increases. However, if batch-size 

is increased too much, the validation accuracy tends to drop, this behavior is also 
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shown in the plot for the large number of batch-sizes. From the plot, the max 

validation accuracy occurs at a batch-size of 192 and we have utilized this batch-

size in our proposed model.  

5.1.2.4 Experiments on Sequences Type 

This section presents experiments performed for selection of sequences type 

to perform training and performance evaluation of our proposed model. The result 

of sequences type is illustrated in Figure 5.15. 

 

 

 

 

 

 
Figure 5.15: Sequences type versus validation accuracy. 

From Figure 5.15, Sliding Window Sequences has the maximum validation 

accuracy, it is due to the increased number of sequences that includes consecutive 

temporal patterns. It enhances the training of the model and hence increases the 

performance of the model.  Alternatively, Fixed Window Sequences consists of 

subsequent temporal patterns that results in fewer sequences and less sequential 

data for training the model, hence the model’s performance drops as compared to 

Sliding Window Sequences.      
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5.2 InterAcT Model - Performance Evaluation Results 

 This section presents the results of the proposed InterAcT model with selected 

parameters as discussed in the previous section. This section includes training and 

validation accuracy-loss curve followed by the confusion matrix and performance metrics 

as listed in Table 3.3. 

 After running the proposed model with tuned parameters, the training and 

validation accuracy-loss curve is shown in Figure 5.16. From the plot, the training accuracy 

is improving over epochs which shows that the model is learning. To check the model’s 

generalizability problems (underfitting and overfitting), validation accuracy-loss curve was 

obtained. From validation accuracy-loss curve, the validation accuracy is increasing while 

validation loss is decreasing. The behavior depicted by validation accuracy-loss curve is 

closer to that of training accuracy-loss curve which shows that the model is learning 

effectively and is generalizable. 

 

 

 

 

 

 

Figure 5.16: Training and validation accuracy-loss curve. 
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 After training the model, the trained model was evaluated on the test set. The 

confusion matrix for the test set is given in Figure 5.17.  

 
Figure 5.17: Confusion matrix evaluated on test-set. 

 The confusion matrix as illustrated in Figure 5.17 depicts the classification results 

for a test set consisting of 18 classes. For the 'handshaking' class, among 173 instances, 

171 instances are accurately predicted while one instance misclassified with 'hugging' and 

one instance misclassified with 'pushing'. 'Hugging' sequences, totaling 173, has 171 

correctly identified, with 2 instances misclassified as 'kicking'. 'Kicking' sequences (173) 

has 171 accurate predictions while 2 instances misclassified as 'punching'. All sequences 

of 'punching' (172), 'pushing' (172), 'clapping_solo' (172), 'hitting_bottle_solo' (173) and 

'hitting_stick_solo' (172) are accurately predicted. 'Jogging_f_b_solo' sequences (173) has 

168 correct predictions, with 2 sequences misclassified as 'running_f_b_solo' and 3 

sequences as 'walking_fb_solo'. All sequences of 'jogging_side_solo' (172), 'kicking_solo' 

(172) and 'puching_solo' (173) are correctly predicted. 'Running_f_b_solo' has a total of 
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173 sequences out of which 172 are predicted correctly while one instance misclassified as 

'jogging_f_b_solo'. All sequences of 'running_side_solo' (172) are accurately predicted. 

Among 173 sequences of 'stabbing_solo', 164 sequences are correctly identified while 8 

sequences misclassified as 'hitting_bottle_solo' and one sequence misclassified as 

'punching_solo'. Out of 172 sequences of 'walking_f_b_solo', 171 sequences are accurately 

predicted while one sequence misclassified as 'jogging_f_b_solo'. 'Walking_side_solo' 

sequences (173) has 171 correct predictions while 2 sequences misclassified as 

'jogging_side_solo'. All sequences of 'waving_hands_solo' sequences (172) are correctly 

predicted. In summary, the confusion matrix provides detailed insights into the 

classification performance across all 18 classes, highlighting correct predictions as well as 

instances of misclassification.   

 Using the confusion matrix, we obtained the class-wise accuracies which are shown 

in Figure 5.18. The model reports an accuracy of 99.31% for interactions classes, 99.20% 

for solo-actions and overall accuracy of 99.23%. 

Figure 5.18: Class-wise accuracies. 
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 Further classification metrics including precision, recall and f1-score are also 

obtained for each class. Figure 5.19 illustrates the classification report containing precision, 

recall and f1-score for each class. 

 
Figure 5.19: Class-wise classification report. 
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5.3 InterAcT Benchmarking with State-of-the-art Deep Learning Models 

 This section gives the benchmark comparison tables of the proposed InterAcT 

model with state-of-the-art models. First, we have compared our proposed model with the 

models proposed in Action Transformer (AcT) given in Table 5.3. Our proposed model 

was then compared with other models including 2P-GCN [71], LSTM [132], 3D-ResNet 

[133] and 3D-CNN [134] along with the Action Transformer (AcT) [118] models as given 

in Table 5.4.  

Table 5.3: InterAcT model comparison with AcT models. 

Model 
Architecture 

Multi-
head 

Attention 
Layers 

Encoder 
Layers 

Embedded 
Dimensions 

Drop-out 
Percentage 

MLP 
Heads 

Dimensions 

A
cT

 [
1

1
8

] micro 1 4 64 0.30 256 

small 2 5 128 0.30 256 

base 3 6 192 0.30 256 

large 4 6 256 0.40 512 

Ours 1 3 56 0.10 96 

Table 5.4: InterAcT model comparison with SOTA models. 

Model 
Model Parameters  

(M) 
Model Flops  

(G) 
Test Evaluation Time  

(s) 
Test Accuracy 

G
C

N
 

2PGCN [71] 4.0300 2.5100 8.900 0.9337 

R
N

N
 

LSTM [132] 4.1566 0.1644 7.6194 0.9774 

C
N

N
 3D ResNet [133] 33.1567 0.3241 1.2067 0.9921 

3D CNN [134] 0.3524 0.0266 0.9509 0.9920 

T
r
a

n
sf

o
r
m

e
r
 

A
c
T

 [
1

1
8

] 
 micro 0.2277 0.0701 1.0520 0.9353 

small 1.0419 0.1752 1.4881 0.9893 

base 2.7426 0.3153 2.1741 0.9907 

large 4.9052 0.4208 3.0388 0.9558 

Ours 0.0795 0.0389 0.2013 0.9923 
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 From Table 5.3 and Table 5.4, our proposed model outperforms the other state-of-

the-art models in terms of model complexity and evaluation time. Our model is lightweight 

and efficient, having 0.0795M training parameters and 0.0389G flops. Our model reports 

an accuracy of 99.23% with an evaluation time of 0.2013 seconds on the test set. From the 

comparative analysis, our model is well-suited for deployment in real-time applications. 

We call our proposed model 'InterAcT' because it has the capabilities to recognize both 

human-human interactions and solo-actions and the model architecture is named as 'nano' 

because it offers the least model complexity as compared to other models of Action 

Transformer (AcT) [118].   
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CHAPTER 6: CONCLUSIONS AND FUTURE 

RECOMMENDATIONS  

 In this research study, we have proposed an efficient and effective novel skeletal-

based transformer called 'InterAcT' model which is capable of recognizing solo actions as 

well as human-human interactions in Aerial Grayscale videos. We have utilized the action 

transformer (AcT) as a baseline model and developed an architecture 'nano' that offers less 

model complexity and computational cost.  For keypoints extraction, we have utilized 

Ultralytics YOLO v8 pose estimation model on Ut-Interaction and Drone-Action datasets 

to extract 2D keypoints data that are fed into the proposed model. Our model gives an 

overall accuracy of 99.23% with an evaluation time of 201.3 milli seconds. Compared with 

other state-of-the-art models, our model outperforms 2P-GCN (93.37%, 8900 milli 

seconds), LSTM (97.74%, 7619.4 milli seconds), 3D ResNet (99.21%, 1206.7 milli 

seconds), 3D CNN [134] (99.20%, 950.9 milli seconds) and AcT models (micro: 93.53%, 

1052 milli seconds – small: 98.93%,1488.10 milli seconds – base: 99.07%, 2174.10 milli 

seconds – large: 95.58%, 3038.8 milli seconds). Our model has the potential to work well 

with RGB videos as well. The key strengths of our model are its lightweight architecture 

and performance making it deployable for real-time applications.  

  In future, our model can be extended to gestures recognition, human-human 

interactions between more than two persons, human-object interactions and group analysis. 

Our model classification performance can be improved by utilizing more keypoints 

extracted on finer level i.e. to utilize 3D keypoints and to increase number of person(s) 

keypoints (for example: adding facial keypoints for emotions/gestures recognition, adding 
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hands keypoints for human-human or human-object interactions). Person and object 

tracking algorithms can be employed to track each person(s)/object(s) to easily extract 

respective person(s)/object(s) keypoints which will help in keypoints concatenation 

module to overcome the multi-persons/multi-objects/person(s)-object(s) keypoints mixing 

and to make an ordered sequential data which will help the model to understand the patterns 

more effectively. Our model can be utilized for recognition using multi-modal data.       

 Our future recommendations can be summarized as follows:  

1. Our model can be extended to Gesture recognition, Multi-persons Human-Human 

Interactions, Human-Object Interactions and Group Analysis.  

2. Improving classification performance by utilizing finer level keypoints, such as 3D 

keypoints or increasing the number of keypoints for individuals (e.g., facial 

keypoints for emotions/gestures recognition, hand keypoints for interactions). 

3. Employing person and object tracking algorithms to track each person/object to 

extract respective keypoints. It also helps to overcome multi-person/multi-object  

keypoints mixing.  

4. Utilizing the model for recognition using multi-modal data. 
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