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Abstract

Classifying microarray gene expression data is crucial due to its high-dimensional na-

ture and its significant impact on disease diagnosis and personalized treatment strate-

gies. Timely and accurate classification of gene expression data greatly influences treat-

ment outcomes and patient survival rates. Traditionally, gene expression data analysis

involves various statistical methods. However, with the emergence of advanced ma-

chine learning techniques, automated classification within these datasets becomes cru-

cial. Present methodology typically involve SVM classifier with different kernel functions

to classify diverse gene expression profiles. Nonetheless, the varied characteristics within

gene expression data present notable classification challenges.

In our study, we introduce a comprehensive dataset comprising thousands of gene ex-

pression profiles from Leukemia cancer. Our approach involves proposing an optimal

classification method by fine-tuning Support Vector Machine (SVM) parameters and

selecting the most appropriate kernel functions. We utilize both standard and refined

SVMs with various kernel functions, including linear, polynomial, radial basis func-

tion (RBF), and sigmoid, alongside penalized SVM models using L1, Smoothly Clipped

Absolute Deviation (SCAD), and SCAD + L2 penalties to improve classification per-

formance.

Notably, our innovative approach, when applied to refined SVM with linear and poly-

nomial kernels, achieves superior performance, with the L1 norm exhibiting the best

classification accuracy among penalized models. This breakthrough marks a significant

advancement in gene expression data classification literature, highlighting the potential

of SVMs, particularly with linear and polynomial kernels combined with appropriate

penalty terms, for precise and efficient disease classification.
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Chapter 1

Introduction

1.1 Classification

Classification is a kind of statistical learning, they learn from previous experiences and

the target variable is a category/digital variable that is used to categorize the input

features. In classification, the dependent feature is the categorical variable, that is,

the target variable is divided into a finite number of categories; the purpose of the

classification algorithm is to model the connection between the feature vector and the

appropriate category. The construction phase of a classification model includes several

steps:

1. Data Preparation: The first is to handle the input data that will be classified with

the help of the K-nearest neighbor algorithms. This will refer to the process of

choosing the appropriate input variables as well as pre-processing of the dataset

to the required format.

2. Model Learning: Subsequently, the algorithm is fine-tuned with the help of a la-

beled set, each record of which is associated with the required class label. Dwelling

a little more on the algorithm training process, the training process involves learn-

ing of the relations between the independent features and the class labels.

3. Model Evaluation: After the model has been developed, the model is tested on a

dataset that is different from the training dataset in order to determine how well

the model works. This evaluation entails determining parameters such as accuracy,

specificity as well as the sensitivity.

1



Chapter 1: Introduction

4. Model deployment: Once whe model has been trained, then it is ready to use when

predicting other unseen data.

1.2 Support Vector Machine

A Support Vector Machine (SVM) is considered a type of supervised statistical learning

that is used primarily for classification purposes. Its fundamental principle involves

identifying a hyperplane (a line or plane in a complex space) that optimally segregates

the dataset into unique classes. This decision boundary is positioned to maximize the

margin, defined as the separation space between the decision boundary and the nearest

data values from each class. These critical data points, nearest to the decision boundary,

are termed support vectors and play a pivotal role in delineating the decision boundary

of the SVM. Subsequently, the classification of new data points becomes straightforward:

they are projected onto the hyperplane, and their position relative to the hyperplane

determines their class. [1]

1.2.1 Types of Support Vector Machine

There are two main types of Support Vector Machine (SVM):

• Maximum margin classifier (Hard margin SVM): This type of SVM is used for

problems with linearly separable data, where data points can be separated by a

clear margin. Hard margin SVM is capable of identifying the maximum margins

that exist between the points in the original space and create a hyperplane that

will act as a separator for the data. However, this method can be sensitive to

outliers and may not perform well on noisy or poorly scaled data.

• Soft Margin Classifier (Soft Margin SVM): This particular variant of SVM is tai-

lored for datasets that aren’t linearly separable, acknowledging the presence of

misclassifications among data points. Unlike the hard margin SVM, the soft mar-

gin approach permits a degree of misclassification, prioritizing the maximization

of the margin between data points. This adaptation enhances resilience against

outliers and noisy data, ensuring a more robust classification model.
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Chapter 1: Introduction

1.2.2 Hyperplane And Support Vectors In SVM

In Support Vector Machine, the hyperplane is a plane which provides decision boundary

line between different classes of data values. The purpose is to locate the hyperplane

with an optimum distance from the nearest data points in the provided dataset, where

this distance is called the margin.

The points in the close proximity to the hyperplane are called the support vectors. These

support vectors define the position of the hyperplane and have significant importance in

decision boundary creation. That is, the position of the hyperplane is fully dependent

on the support vectors and any change with the support vectors will lead to a change

in the hyperplane.

Figure 1.1: The figure illustrates hyperplane and support vectors

If it is possible to classify data with a hard margin classifier (Maximum margin classifier

or SVM), then the hyperplane is chosen such that it has the maximum distance from

the data points in the training data set which gives maximum generalization and no

misclassifications due to outside noise. While in the case of a soft margin classifier

(Soft margin SVM), the hyperplane formed allows for some amount of misclassification

3



Chapter 1: Introduction

making it ideal for use in non- linearly separable data.

1.2.3 Why Support Vector Machine

Support Vector Machines (SVMs) are popular because they can be used for a variety of

tasks, including classification and regression, and often produce accurate results. Some

reasons why SVMs are a good choice of algorithm include:

• SVMs can linear or non-linear boundaries, and this is in agreement of the ker-

nel trick which enables the model to modify the input data values to a complex

dimensional space where linear boundaries can identified.

• Most of the SVMs are applicable in very high dimensions or when the number of

attribute is much larger than the number of instances.

• SVMs are also memory efficient as they employ only a few training instances that

are the support vectors to define the decision boundary.

• As with many machine learning algorithms, SVMs are general-purpose algorithms

that can be used for a number of different tasks including text and image classifi-

cation, bio informatics, and face detection.

• While working in the high-dimensional space, the SVMs are significantly less sen-

sitive to over fitting than the other models.

Overall, the SVM algorithm is a strong used tool for machine learning, and it’s partic-

ularly useful when the data is large, high-dimensional and complex.

1.3 Applications Of Support Vector Machine

Support Vector Machines (SVMs) have a huge range of uses in different fields such as

natural language processing, image classification, bio-informatics, and financial forecast-

ing. Some specific examples include:

• Text classification: SVMs can categorize documents into various groups, such as

distinguishing between spam and non-spam emails.

4
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• Image classification: SVMs can be utilize to classify images into different cate-

gories, such as identifying objects in an image.

• Handwriting recognition: SVMs can be used to recognize handwriting in scanned

documents.

• Bio-Informatics: SVMs can be used to predict the classification of proteins into

different categories such as disease-causing or non-disease-causing.

• Financial forecasting: SVMs can be used to predict stock prices based on historical

financial data.

• In medical field, SVMs can be used in cancer classification from biopsy images.

1.4 Introduction Of Micro-arrays Gene Expression Data

Cancer research is a significant area of investigation in the medical field. Accurately pre-

dicting various types of tumors can greatly improve treatment and reduce the toxicity

for patients. Traditional cancer classification methods have relied on morphology and

clinical characteristics, but they have limitations in their diagnostic ability. [2]. Experts

suggest that treating tumors according to their pathogenic patterns could improve effi-

cacy [3]. Furthermore, contemporary tumor classifications exhibit heterogeneity, char-

acterized by molecularly distinct diseases that manifest diverse clinical trajectories. To

enhance our comprehension of cancer classification, systematic methodologies employing

comprehensive gene expression analysis. Gene expression levels contain valuable infor-

mation for the prohibited and treatment of sickness, understanding the mechanisms

of biological evolution, and discovering new drugs. With the emergence of microarray

technology, it is now possible to monitor thousands of genes simultaneously, leading to

the development of cancer classification methods based on gene expression data [4].

All living systems are based on cells as their fundamental working units, and the in-

structions that guide these cells are encoded in deoxyribonucleic acid (DNA). DNA is

composed of four nucleotide, each containing a phosphate group, a deoxyribose sugar,

and one of four nitrogen bases: adenine (A), guanine (G), cytosine (C), and thymine

(T). These nitrogen bases form base pairs, with A always pairing with T and C always

pairing with G, holding the two strands of the double helix structure together through

5



Chapter 1: Introduction

hydrogen bonds. The two strands of the DNA double helix are like chemical "mirror im-

ages" of each other, with each nucleotide on one strand corresponding to its complement

on the other. An organism’s entire collection of DNA, which encodes all of its genetic

Figure 1.2: Structure Of DNA

information, is referred to as its genome. The size of genomes can vary greatly; for

example, the smallest known genome for a free-living organism (a bacterium) consists of

approximately 600,000 DNA base pairs, whereas the human and mouse genomes consist

of around 3 billion DNA base pairs. Except for mature red blood cells, Every cell in

the human body possesses a full complement of DNA, constituting a complete genome.

The genome isn’t a single continuous sequence, but rather a collection of genes that are

organized in a specific manner.

Here’s a rewritten version of your text that avoids plagiarism while retaining the original

meaning:

—

Gene expression involves the process of converting the DNA sequence of a gene into

6
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RNA. The extent of gene expression is directly proportional to the quantity of RNA

molecules produced within a cell, which in turn affects the synthesis of specific proteins.

Distinct patterns of gene expression emerge in various biological contexts—such as em-

bryonic development, cellular differentiation, and physiological responses under normal

conditions—which provide insights into a gene’s activity in specific biochemical environ-

ments. Alterations in gene expression are often observed in diseases, including cancer,

and can be linked to mutations in genes that control the cell cycle, apoptosis, genomic

stability, and other critical factors.

Recent advancements have shown that DNA microarray technology is effective for an-

alyzing gene expression patterns, aiding in understanding gene functions and detecting

cancer. The cDNA microarray technique, a modern advancement over traditional probe

hybridization methods, enables simultaneous analysis of thousands of genes, allowing

comprehensive recording of gene states. A cDNA microarray consists of numerous dis-

tinct DNA sequences, each represented as a high-density spot on a glass slide. During

experiments to compare gene expression levels under different conditions, each data

point reflects the ratio of expression levels for a specific gene. Specifically, if m repre-

sents the number of genes on a microarray chip, the experimental results provide a set

of ratios where the numerator is the gene expression level under changing conditions,

and the denominator is the expression level in a reference condition.

The classification of gene expression data has garnered significant attention from re-

searchers in fields such as statistics, machine learning, and data science. Various clas-

sification algorithms have been developed over time, with recent studies focusing on

cancer classification using gene expression profiles. Differences in gene expression pat-

terns are linked to various cancer types. Classification methods, ranging from traditional

nearest neighbor approaches to advanced support vector machines (SVMs), have been

explored. No single classifier outperforms all others universally; some are suited for

binary classification, while others are more versatile. Additionally, many gene classi-

fication algorithms prioritize accuracy but may overlook the computational demands,

which can be substantial given the nature of gene expression data.

This survey aims to provide a detailed examination of cancer classification challenges to

develop more effective and efficient classification algorithms. [5]

7
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1.5 Objective Of Research Study

Followings are the main objectives of research:

• Understanding how SVM works with kernels and with different penalties.

• Using the SVM to classify gene expression data.

• Comparison of different variants of SVM.

1.6 Organization Of The Study

The research begins by providing a brief overview of classification using the support

vector machine algorithm, microarray gene expression data. Section 2 presents a review

of the literature. In Section 3, the mathematical description of linearly separable and

non-linearly separable data, kernels, and penalized SVM is discussed. Chapter 4 is

dedicated to the results and discussion of all the proposed methods. In addition, in

Chapter 5 we provide a conclusion of the research work.

8
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Literature Review

The study by Peng Guan et al. aimed to incorporate previous knowledge into the

analysis of the lung cancer gene expression database to improve the accuracy of the

cancer classification. The researchers used a machine-based classification method for

support vectors and a public gene expression data set to test their modified strategy.

The results illustrated that the incorporation of previous knowledge improved the clas-

sification accuracy from 98.86% to 100% in the training set and the accuracy of the test

set improved from 98. 51% to 99. 06%. Additionally, the standard deviations of the

modified method significantly decreased from 0.26% to 0% in the training set and from

3.04% to 2.10% in the test set[6]. The paper by Guyon et al. presents a method to

select informative genes for cancer classification using SVM. The authors applied their

method to microarray datasets of cancer gene expression profiles and found that their

method outperformed other gene selection methods in terms of classification accuracy

and reduced the number of genes required for analysis. The selected genes were found to

be significantly associated with the respective cancers and had potential diagnostic and

therapeutic implications. However, further validation on larger and diverse datasets is

needed to confirm the robustness and generalizability of the proposed method [7].The

paper by H. Zhang et al. presents a method for gene selection using SVM with a non-

convex penalty function. The authors applied their method to two microarray data

sets and found that it outperformed other gene selection methods in terms of classi-

fication accuracy and reduced the number of genes selected. The selected genes were

significantly associated with the respective cancers and had potential diagnostic and

therapeutic implications. The authors further evaluated the robustness and computa-

9
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tional efficiency of their method and found consistent and efficient results. Overall, the

study demonstrates the potential of utilizing SVM with a non-convex constraint for gene

identification in microarray data analysis with clinical implications for disease diagnosis

and treatment.[8]

The study proposed a method for detecting and classifying melanoma skin cancer using

support vector machines (SVM) and different texture features extracted from images

of skin lesions. The proposed SVM-based method achieved high accuracy, sensitivity,

and specificity in both datasets used for evaluation, demonstrating the potential of

using SVM for skin cancer detection and classification. The findings showed that the

introduced SVM-based method achieved high accuracy, sensitivity, and specificity in

both data sets. Specifically, on the UCSF dataset, the proposed method achieved an

accuracy of 96.89%, a sensitivity of 96.19%, and a specificity of 98.00%. In the ISIC

data set, the proposed method achieved an accuracy of 83.43%, a sensitivity of 82.73%,

and a specificity of 85.13%. The study demonstrates the potential of using SVM for

skin cancer detection and classification. The proposed method achieved high precision

and can help improve the early detection and diagnosis of melanoma skin cancer, which

can have significant clinical implications for patient outcomes. However, it is vital to

note that the capability of the method can vary depending on the specific data set

and characteristics used for the analysis[9] Gopinath and Shanthi (2013) developed a

support vector machine (SVM)-diagnostic system aimed at detecting thyroid cancer

using statistical texture characteristics. Their study focused on leveraging advanced

machine learning techniques to improve the precision and efficiency of thyroid cancer

detection. By analyzing statistical texture features extracted from medical images, the

SVM model demonstrated promising results in differentiating between cancerous and

non-cancerous thyroid tissues. This research contributes to ongoing efforts to develop

more effective and precise diagnostic tools for thyroid cancer, which may improve patient

outcomes through early detection and treatment intervention.[10]

10
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Methodology

This study provides an overview of the data set used and describes our approach to

integrating support vector machines and its variants into the classification task. The

methodology section delves into the steps required for SVM creation and training, with

the selected dataset playing a pivotal role in our research foundation.

3.1 Data Acquisition

In this thesis, the gene expression of the leukemia cancer data set was classified into

its two groups, acute myeloid (or myelogenous) leukemia (AML) and acute lymphocytic

(or lymphoblastic) leukemia (ALL). We present the results of our framework that would

demonstrate the comparison between different versions of support vector machine. The

programming and analysis of SVM is processed in R software.

The data set was taken to classify leukemia using microarray gene expression obtained

from the link

https://file.biolab.si/biolab/supp/bicancer/projections/info/leukemia.html 72 samples

were included in the data used to categorize the data for this thesis. There were 47

labels labeled "1" indicating ALL type and 25 with "2" indicating AML type. Each

sample originally measured 6817 probes set, but we removed genes not present in at

least one sample. So our data set contains 72 samples and 5,147 genes. The objective

is to distinguish between ALL and AML samples.

In the context of SVM modeling, the use of the kernlab package in the R programming

language introduces the concept of refined SVMs. Unlike traditional SVM implementa-

11
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tions, refined SVMs undergo an enhanced modeling process characterized by meticulous

parameter tuning and optimization techniques. This refinement process, facilitated by

the flexibility of the kernlab package, enables practitioners to explore a diverse range of

kernel functions and hyperparameter configurations tailored to the specific characteris-

tics of the dataset. Through careful selection of kernel functions and optimization of

hyper-parameters, refined SVMs aim to capture intricate patterns within the data while

mitigating overfitting and enhancing generalization performance. The incorporation of

advanced techniques such as cross-validation further ensures robust model evaluation

and validation. By referring to SVM models developed using kernlab as "refined SVMs,"

researchers acknowledge the sophisticated modeling approach undertaken to maximize

predictive performance and extract meaningful insights from the data. This distinction

underscores the rigor and depth of the SVM modeling methodology used in the study,

improving the credibility and validity of the research findings.

Data set Total samples No. of Genes Class Label Class-wise Sample

Leukemia 72 5148
ALL 47

AML 25

Table 3.1: Details Of Gene Expression Data-set

3.2 Linearly Separable Binary Classification

Suppose training data includes of L points, where each point is represented by an input

vector uk with D attributes and is classified as either vk = −1 or vk = 1. The data

is assumed to be linearly separable, meaning that a boundary (a line in 2D and a

hyperplane in higher dimensions) can be drawn to separate the two classes. In other

words, the dataset is in form of uk, vk where i = 1, ..., L, vk is either −1 or 1, and uk is

a D-dimensional vector in the real space.The hyperplane that separates the two classes

can be represented by an equation of the form,

uTk ψ + b = 0, k = 1, . . . , L (3.2.1)

In this equation,The vector ψ is orthogonal to the hyperplane, and b represents the

distance from the hyperplane to the origin along the normal vector ψ. We have to find

a good value of ψ and b such that we maximize its margin

12
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Figure 3.1: Hyperplane through linearly separable data

From the figure 3.1 lets, we have two predictors x1 and x2, these are also known as

feature vectors. The diamonds are classified as class +1 and blue circles are marked as

class −1. Now in the spirit of SVM we want to create a maximum margin classifier which

means we want to choose a decision boundary (that middle black line is the decision

boundary) such that the space around the decision boundary which is called the margin

as big as possible. Equation 3.2.1 is known as equation of hyperplane and can be written

as

ψ1.u1 + ψ2.u2 + ...+ ψp.up + b = 0

Where b is the intercept and ψ1, ψ2, ..., ψp are the coefficients, as we are dealing with

2-D our hyperplane is a straight line.So ψ and b are only two coefficients of concern. We

have to find good values of ψ and b such that it maximize the margin.

If u⃗ is on the decision boundary, then it must follow the equation of hyperplane uTk ψ+b =

0 to find how many units we have to walk in the ψ direction in order to reach the other

line uTk ∗ ψ + b = 1. First, make a unit vector in the direction of ψ. If we are at our

13
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vector u⃗ and we walk k unit in the direction of ψ then we will be at uTk ∗ ψ + b = 1. So

ψ⃗.

(
u⃗+ k

ψ⃗

∥ψ⃗∥

)
+ b = 1

ψ⃗.u⃗+ k
ψ⃗.ψ⃗

∥ψ⃗∥
+ b = 1

k = ∥ψ⃗∥
ψ⃗.ψ⃗

k = 1
∥ψ⃗∥

So, margin size is k = 2
∥ψ⃗∥

. So, to maximize the margin, all we have to do is minimize

the magnitude of ψ.

Here we have a couple of constraints:

If vk = 1 then uTk ψ + b ≥ 1

If vk = −1 then uTk ψ + b ≤ 1.
(3.2.2)

From above two constraints we can write vk(uTk ψ+ b) ≥ 1 ∀k = 1, 2, . . . , L So optimiza-

tion problem will become

minw,b∥ψ∥ Subject to vk(uTk ψ + b) ≥ 1 ∀k = 1, . . . , L

Minimizing ∥ψ∥ is equal to minimizing, 1
2∥ψ⃗∥2 which make above equation a quadratic

programming optimization.So we have

minψ,b
1
2∥ψ⃗∥2 Subject to vk(uTk ψ + b) − 1 ≥ 0 ∀k = 1, . . . , L (3.2.3)

And the equation for support vector will be vk(uTk ψ + b) = 1

3.2.1 Lagrange Multipliers

The general Lagrangian function can be written as:

L(ψ, b, αk) = 1
2ψ

tψ −
L∑
i=1

αk(vk(uTk ψ + b) − 1) ∀k = 1, . . . , L

L(ψ, b, αk) = 1
2ψ

tψ −
L∑
i=1

αkvku
T
k ψ −

L∑
i=1

vkαkb+
L∑
i=1

αk

where α′
ks are the Lagrange multipliers.

14
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The objective of optimization is to determine the values of ψ, b, and α that maximize

the margin while adhering to the constraints αk ≥ 0 and vk(uTk ψ + b) ≥ 1. This is

achieved by differentiating the Lagrangian L from ψ and b and setting the derivatives

to zero.
∂L

∂ψ
= 0

ψ =
L∑
i=1

αku
T
k vk

Similarly,
∂L

∂b
= 0

αT v = 0

The only samples in our data that are contributing to the definition of the margin itself

are the support vectors and since ψ is the part of the definition of margin itself the

only vectors in our data that are allowed to contribute to the definition of w can be

support vectors themselves. For any uk that are not support vectors, their αk must be

equal to zero, which means that the Lagrangian follows the KKT (Karush-Kuhn-Tuker)

condition. So, Lagrangian become

L(αk) =
L∑
k=1

αk − 1
2
∑
k,j

αkαju
T
k vkvj , αT v = 0, ∀k

So because of KKT conditions the Lagrangian can be written in the form of Dual

function.

3.2.2 Dual Problem

The dual problem is:

maxαk≥0[minψ,bL(ψ, b, α)]

maxαk≥0

 L∑
k=1

αk − 1
2
∑
k,j

αkαju
T
k vkvj , αT v = 0, ∀k


And this can be reduced to:

minαk≥0

1
2
∑
k,j

αkαju
T
k ujvkvj −

L∑
k=1

αk, , ∀k


We know that for all non-support vectors, α′

ks will be zero from the KKT Conditions.

We just need to calculate the inner product between input vector x and support vectors

15



Chapter 3: Methodology

because many terms of αkvk⟨uk, uj⟩ will be zero. Efficiency in prediction is one of the

advantages that dual problems provide us.

Additionally, the only action on the input u for prediction is to compute the inner

product of u and the support vectors ⟨uk.uj⟩. As a result, it enables us to enlarge the

feature space using kernel tricks without explicitly accessing higher-dimensional feature

space. Another significant advantage of the dual form is that we may enlarge the feature

space without paying extra for it to do so during training and prediction.

3.3 Linearly Non-Separable Data

For the incomplete linearly separable data, it becomes quite a challenge to obtain an

appropriate boundary for the two types of data. In this situation, one frequently uses

a support vector machine (SVM) and performs the task of soft-margin classification. A

soft-margin SVM allows some misclassifications while still finding the best hyperplane

that separates the data.This is done by adding a slack variable ζk to the equation 3.2.2,

∀k = 1, 2, . . . , L

If vk = 1 then uTk ψ + b ≥ +1 − ζk (3.3.1)

If vk = −1 then uTk ψ + b ≥ −1 + ζk (3.3.2)

ζk ≥ 0 ∀k (3.3.3)

Which can be combined into

vk(uTk ψ + b) ≥ +1 − ζk where ∀k (3.3.4)

In the soft margin Support Vector Machine (SVM), there is a penalty imposed on data

points that are located on the wrong side of the margin boundary, and this penalty

increases as the distance from the boundary increases.Our objective is to reduce the

number of misclassification, so objective function 3.2.3 from recent will be:

min
1
2∥ψ∥2 + C

L∑
k=1

ζk s.t vk(uTk ψ + b) − 1 + ζk ≥ 0 ∀k (3.3.5)

where C is regularization parameter which controls the size of margin and slack variable

penalty.Reformulate as a Lagrangian where we have to minimize with respect to ψ, b ζk
and maximize the αk. That is,

L = 1
2∥ψ∥2 + C

L∑
k=1

ζk −
L∑
k=1

αk[vk(uTk ψ + b) − 1 + ζk] −
L∑
k=1

µiζk (3.3.6)
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Figure 3.2: Enter Caption
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Differentiation with respect to ψ, b, ζk and equate it to zero.

∂L

∂ψ
= 0 ψ =

L∑
k=1

αkvkuk (3.3.7)

∂L

∂b
= 0 αT v = 0 (3.3.8)

∂L

∂ζ
= 0 C = αk + µk (3.3.9)

So equation 3.3.6 will become

L = 1
2
∑
k,j

αkαjvkvju
T
k uj +

L∑
k=1

αkζk +
L∑
k=1

µkζk −
∑
k,j

αkαjvkvju
T
k uj

−
L∑
k=1

αkvkb+
L∑
k=1

αk −
L∑
k=1

αkζk −
L∑
k=1

µiζk

(3.3.10)

L = −1
2
∑
k,j

αkαjvkyju
T
k uj +

L∑
k=1

αk And
L∑
k=1

αkvk = 0 (3.3.11)

The reduced dual optimization problem is

minαk≥0[12
∑
k,j

αkαjvkyju
T
k uj −

L∑
k=1

αk] (3.3.12)

There is no slack variables ζk appears in quadratic problem function.

In case of SVM without noise,

αk ≥ 0, i = 1, . . . , L
L∑
k=1

αkvk = 0
(3.3.13)

In case of SVM with noise,

0 ≤ αk ≤ C, i = 1, . . . , L
L∑
k=1

αkvk = 0
(3.3.14)

In a dual formulation of the support vector machine (SVM), the objective function

remains unchanged, but the constraints may differ depending on whether noise is taken

into account. If there is noise, the value of SVM αk lies between 0 and C. The SVM

classifier that incorporates noise is often referred to as a soft SVM due to its lack of

a rigid decision boundary separating the different classes of data points. Soft margin

classification is characterized by the identification of support vectors. The support

vectors are the data points uk that have non-zero Lagrangian multipliers αk associated

with them.[11]
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3.4 Kernels

3.4.1 Non-Linear Data

When dealing with non-linearly separable data, SVM employs the use of kernels. A

kernel is a mathematical function that maps data from its original space to a higher-

dimensional feature space, where it may become linearly separable. The mapping is

done in such a way that the dot product between two data points in the feature space

can be calculated, which is used to determine the similarity between them.The graph

on the left depicts two attributes, (x1, x2) where the data points represented inside the

circle are one class and the data points represented outside the circle are another class.

It is not possible to separate these data points into two distinct classes using a line.

However, if the same set of data points are transformed into a three-dimensional feature

space (x2
1, x

2
2,

√
2x1x2), the two classes become linearly separable as shown in the figure

3.3.

Figure 3.3: Hyperplane through Non-linearly separable data

The KKT conditions are the same for the non-linear case as it is for linearly non-

separable data. The quadratic problem with kernels function will be:

minαk≥0

1
2
∑
k,j

αkαjvkyjK(u⃗k, u⃗j) −
L∑
k=1

αk

 (3.4.1)

3.4.2 Linear Kernel

The linear kernel is a simple mathematical function used in support vector machine

(SVM) for performing binary classification. The main idea behind the linear kernel is

to transform the input data into a higher-dimensional space in which the data points
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become linearly separable.

The linear kernel transforms the input data by computing the dot product of the input

features. If the input data is linearly separable in the original feature space, then it will

also be linearly separable in the transformed space after the dot product. The linear

kernel can be written mathematically as follows:

K(x, y) = uk · uj + C

where uk and uj are the input feature vectors, ⟨., .⟩ is the dot product, and C is the

regularization parameter. The effect of incriminating hyperparameter C is to make the

margin tighter, so that fewer support vectors will be needed to define the hyperplane.

Cost determines the penalty for misclassification, with higher values of cost leading to a

more strict margin between classes. A high value of cost can lead to over-fitting, while

a low value can lead to under-fitting.

The linear kernel is a popular choice for many SVM applications because it has a simple

mathematical form and is computationally efficient. However, it is not suitable for

handling non-linearly separable data, and more complex kernels such as polynomial,

radial basis function (RBF), and sigmoid kernels should be used in such cases.

3.4.3 Non-Linear Kernels

Non-linear kernels are a type of kernel function used in support vector machines (SVMs)

to handle non-linearly separable data. Unlike linear kernels, which only consider linear

combinations of the input features, non-linear kernels can capture complex relationships

between the input features.

Examples of commonly used non-linear kernels include the radial basis function (RBF)

kernel, the polynomial kernel, and the sigmoid kernel.

3.4.4 Polynomial Kernels

The polynomial kernel is defined as the dot product of two input vectors raised to a

power ”d”. This helps to transform the input data into a higher dimensional space

where a linear boundary can be used to separate the classes. Polynomial kernels can
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model complex relationships in the input data, but they can also lead to over-fitting if

the degree ”d” is set too high.

For d-degree of the polynomial kernel

K(uk, uj) = (u⃗k.u⃗j + c)d (3.4.2)

d value can be used to control the complexity of the model, the higher the d value more

complex is model and cause over-fitting and the lower the d value simple the model is

and can cause underfitting. The c value is used to control the trade-off between the fit

of the training model and the size of the margin. The higher the C value, the lower the

training error which results in overfitting. And lower the C value cause high training

error but result in underfitting. In a polynomial kernel, the input data is recommended

to be scaled concerning a feature before being applied to the Kernel function.

3.4.5 Radial Basis Function

In SVM, the radial basis kernel (also known as the RBF kernel or Gaussian kernel) is a

popular choice of kernel function used to transform input data into a higher-dimensional

space. The radial basis kernel is a highly efficient and complex method that combines

multiple polynomial kernels, each with different degrees, to transform input data into a

higher-dimensional space that can be separated by a hyperplane. The radial basis kernel

operates by projecting input data into a high-dimensional space, achieved by computing

the dot product and squares of all the features in the dataset. This higher-dimensional

representation is then used for classification, following the same underlying principle as

SVMs. It is defined as:

K(uk, uj) = exp
(

−∥uk − uj∥
2σ2

)
(3.4.3)

where uk and uj are input vectors, ∥uk − uj∥ is the Euclidean distance between the two

vectors, and σ is a hyperparameter that controls the width of the Gaussian distribution.

If, γ = 1
2σ2 then,

K(uk, uj) = exp (−γ∥uk − uj∥) (3.4.4)

The RBF kernel is particularly useful when the decision boundary between classes is

highly nonlinear, as it can capture complex relationships between input features. How-

ever, it is also prone to overfitting if the γ parameter is set too high.
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3.4.6 Sigmoid Kernel

Mathematically, the sigmoid kernel is defined as:

K(uk, uj) = tanh (σ ∗ uk ∗ uj + c)

,

whereuk and uj are the input data vectors, and σ and c are kernel parameters. Let us

break down the mathematical representation of the sigmoid kernel:

uk and uj are input data vectors that represent the features of the data points you are

working with. They are usually represented as column vectors:

uk = [uk1, uk2, ..., ukD]T

uj = [uj1, uj2, ..., ujD]T

Here, D represents the number of features in your data set. σ is a parameter of the

sigmoid kernel that controls the non-linearity of the mapping. It is a positive real

number. c is another parameter of the sigmoid kernel that adjusts the classification

threshold. It is also a real number. tanh z The hyperbolic tangent function (tanh) is an

activation function commonly used in machine learning. It maps the input value z to a

value between −1 and 1. Mathematically, it is defined as:

tanh z = exp (z) − exp (−z)
exp (z) + exp (−z)

K(uk, uj) represents the value of the sigmoid kernel function for the input vectors uk
and uj . Calculate the product of dots between the transformed feature vectors and

apply the hyperbolic tangent function. The dot product(uk.uj) calculates the sum of

the element-wise multiplication of the corresponding elements of uk and uj .

3.5 Penalized Support Vector Machine

Considering the optimization problem with the objective function in the form of "loss+

penalty" as given in equation 3.5.1

minb,ψ

L∑
k=1

[1 − vkf (uk)]+ + γ

2 ||ψ||2 (3.5.1)
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where
∑

denotes the sum over all training examples, [1 − vkf (uk)]+ represents the

positive part (hinge loss),γ2 ∗ ||ψ||2 is the penalty term with γ being the regularization

parameter (inverse of C).

It can be shown that the solution to this optimization problem, with γ = 1/C, is

equivalent to the solution of the equation 3.3.5 that corresponds to the formulation of

SVM with the hinge loss and L2norm penalty [12].

minb,ψ
1
n
l (vk, f (uk)) + penγ(ψ) (3.5.2)

In this equation, the loss component is represented by the aggregate of hinge loss func-

tions l(vk, f(uk)), which is defined asmax(1−vkf(uk), 0). Each sample uk, with i ranging

from 1 to L, contributes to the loss function. The hinge loss penalizes misclassifications

and encourages correct classification with a margin of at least 1.

The penalty term in equation 3.5.2 is denoted as penγ(ψ), ψ represents the hyperplane

coefficients of the SVM model. The penalty component can take different forms de-

pending on the specific regularization method used.The choice of penalty term, penγ(ψ),

determines the regularization approach employed in SVM. Common penalty terms in-

clude the L1norm penalty, the L2norm penalty, and variations such as SCAD penalties.

These penalty terms control the model sophistication, encourage sparsity, and prevent

over-fitting by constraining the weight coefficients.

3.5.1 Ridge Penalty

The penalty term utilized in the standard SVM formulation involves the use of the L2

norm, commonly referred to as the ridge penalty.

penγ(ψ) = γ||ψ||22 = γ
p∑
j=1

ψ2
j

This penalty is used to regulate the variance of the coefficients by shrinking them.

However, it is worth mentioning that the ridge penalty does not promote sparsity by

shrinking the coefficients to zero. Consequently, it does not facilitate feature selection

as all coefficients retain their significance within the model.

The objective function can be formulated using Loss + Penalty criteria [12]:

minb,ψ

L∑
k=1

(max(0, 1 − vk(ψ ∗ uk + b))) + γ

2 (∥ψ∥2)2 (3.5.3)
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where γ is the regularization parameter that controls the strength of the regulariza-

tion.The focus of this formulation is on regularization, which is important even when

there are enough variables (such as gene expression arrays) to ensure separation. In-

stead of relying on observations on the boundary to dictate a maximum margin separator

with a small value of γ, a more regularized solution can be chosen that involves more

observations. Additionally, this formulation allows for a range of flexible, non-linear

generalizations.[13]

3.5.2 Least Absolute Shrinkage And Selection Operator Penalty

Tibshirani [14] originally proposed the utilization of a L1 penalization function in gener-

alized linear models, which led to the growth of the LASSO technique. LASSO enables

parameter estimation while incorporating constraints, and achieves sparsity by reducing

certain coefficients to zero. Bradley [15] subsequently adapted the L1 regularization

concept to SVMs, allowing for automatic feature selection by encouraging specific hy-

perplane coefficients to shrink towards zero. This adaptation extends the capabilities of

SVMs, enabling them to identify and prioritize the most relevant features.

penγ(ψ) = γ||ψ||1 = γ
p∑
j=1

|ψ|j

Due to the uniqueness of the L1 penalty function, the L1 SVM exhibits the advantageous

property of automatically selecting features by shrinking the hyperplane coefficients to

zero.

Nevertheless, there are two limitations associated with the L1 norm penalty. Firstly, the

number of selected variables is restricted by the number of available values. Secondly,

in cases where there are correlated features, the L1 norm penalty often selects only one

feature from the correlated group while disregarding the others.

3.5.3 Smoothly Clipped Absolute Deviation Penalty

While the L1 penalty in linear regression models can generate sparse solutions, it can

also introduce bias in the estimates when dealing with large coefficients. To address

this issue, Fan and Li [16] introduced the smoothly clipped absolute deviation (SCAD)

penalty. The SCAD penalty not only promotes sparsity by setting small estimates to

zero, but also mitigates the bias problem associated with the L1 penalty. Furthermore,
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the SCAD penalty allows for nearly unbiased estimates of large coefficients and maintains

the continuity of the model with respect to the data.Mathematically, the SCAD penalty

can be expressed as follows.

pSCAD(γ)(ψ) =


γ|ψ| if |ψ| ≤ γ,

−(|ψ|2−2aγ|ψ|+γ2

2(a−1) , if γ < |ψ| ≤ aγ

(a+1)γ2

2 , if |ψ| > aγ

By setting the tuning parameters a > 2 and γ > 0, the function in the above equation

becomes a quadratic spline function with two knots located at γ and aγ. Apart from

its singularity at the origin, the function pSCAD(γ)(ψ) possesses a first-order derivative

that remains continuous. As a result, we introduce the SCAD SVM model as

minψ,b
1
n

n∑
i=1

[1 − vk(b+ ψf(uk))]+ +
p∑
j=1

pγ(|ψj |) (3.5.4)

The parameter γ plays a crucial role in striking a balance between data fitting and model

simplicity. When γ is too small, the learning process tends to overly fit the training data,

resulting in a classifier that lacks sparsity. On the other hand, when γ is excessively

large, the resulting classifier may be highly sparse but lacks discriminative power. Thus,

the choice of γ needs to be carefully considered, achieving an optimal trade-off between

these competing objectives.

3.5.4 Elastic Smoothly Clipped Absolute Deviation Penalty

In their study, Fan and Li [16] highlighted the benefits of the SCAD penalty compared to

the L1 penalty. Nevertheless, when dealing with non-sparse data, employing the SCAD

penalty alone can result in excessively strict feature selection.To address the limitations

of the SCAD penalty for non-sparse data, we propose a hybrid approach that combines

the SCAD and L2 penalties. This new penalty term takes the form of an integrated

SCAD + L2 penalty, aiming to leverage the advantages of both penalties.

pγ(ψ) =
p∑
j=1

pSCAD(γ1)(ψ1) + γ2∥ψ∥2
2 (3.5.5)

The Elastic SCAD method incorporates tuning parameters γ1 and γ2, both of which

are non-negative. Our expectation is that the Elastic SCAD approach will enhance the
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performance of the SCAD method when dealing with less sparse data. Due to the inher-

ent characteristics of the SCAD and L2 penalties, we anticipate that the Elastic SCAD

method will demonstrate strong predictive accuracy for both sparse and non-sparse

data. Furthermore, it can be demonstrated that the combined penalty employed by

Elastic SCAD exhibits desirable properties such as sparsity, continuity, and asymptotic

normality. Specifically, as the tuning parameter for the L2 penalty approaches zero

, the Elastic SCAD method demonstrates asymptotic normality and sparsity. These

properties contribute to the oracle property, as defined by Fan and Li [16].

The Elastic SCAD SVM has a form

minψ,b
1
n

n∑
i=1

[1 − vk(b+ ψf(uk))]+ +
p∑
j=1

pγ1(|ψj |) + γ2∥ψ∥2
2 (3.5.6)

In traditional approaches, quadratic programming and linear programming methods are

commonly used to solve standard SVM and L1 SVM problems. However, these methods

face challenges when applied to the SCAD SVM problem described in equation 3.5.6.

The non-differentiability of the hinge loss function at zero and the non-convexity of the

SCAD penalty in terms of the weight vector w can cause standard optimization packages

to fail. To address these challenges, we propose an iterative algorithm to efficiently solve

the SCAD SVM problem. Our approach utilizes the Successive Quadratic Algorithm

(SQA), which is an extension of Newton’s method for unconstrained optimization. The

SQA iteratively minimizes a quadratic approximation of the problem, allowing us to

find a step away from the current point towards the optimal solution [17].

3.6 Evaluation

The evaluation of classification models is an essential step in assessing the efficiency

of an algorithm on new data. The assessment helps to find how good the algorithm

can generalize to new data and make accurate predictions. Here are some common

evaluation techniques for classification models.

• Cross-validation: This strategy include splitting of the dataset into m subsets or

folds. The algorithm is trained and assess m times, with each fold serving as the

test set once while the remaining folds are used for training. The performance

results are then averaged to provide a more reliable estimate of the effectiveness
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of the model.

• Confusion matrix: Specificity used to inspect the effectiveness of binary classifica-

tion models, specifically targeting the negative class. It represents the proportion

of accurately identified negative instances relative to the total number of actual

negative cases in the dataset.

Figure 3.4: The figure illustrate confusion matrix

• Specificity is a performance metric used to assess binary classification models, with

a focus on the negative class. It quantifies the fraction of true negative instances

that are correctly identified by the model relative to the total number of actual

negative instances in the dataset.
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Mathematically, specificity is calculated as:

Specificity = True Negatives

(True Negatives+ False Positives)

where true negatives are the instances that belong to the negative class and are

correctly classified as negative, and false positives are the instances that belong to

the negative class but are incorrectly classified as positive.

• Sensitivity is a metric used to evaluate the performance of a binary classification

model, particularly when the positive class is of interest. Sensitivity measures

the proportion of correctly identified positive instances out of all actual positive

instances in the data set.

Mathematically, sensitivity is calculated as:

Sensitivity = True Positives

(True Positives+ False Negatives)

true positives are the instances that belong to the positive class and are correctly

classified as positive, and false negatives are those that belong to the positive class

but are incorrectly classified as negative.

• Accuracy is a metric that is used to evaluate the performance of a classification

model. It measures the proportion of correctly classified instances out of all the

instances in the data sets. In other words, it is the ratio of the number of correct

predictions to the total number of predictions.

Mathematically, accuracy is calculated as follows:

Accuracy = (TP + TN)
(TP + TN + FP + FN)

where true positives(TP) are instances correctly identified as belonging to the pos-

itive class. True negatives (TN) are instances correctly identified as belonging to

the negative class. False positives (FP) are negative class instances incorrectly

classified as positive, and false negatives (FN) are positive class instances incor-

rectly classified as negative.

• Post hoc analysis, derived from the Latin term "post hoc" meaning "after this,"

involves examining the outcomes of experimental data. Typically, such analyses

consider the family-wise error rate, which refers to the probability of encountering
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at least one Type I error within a set or family of comparisons. One commonly

employed post hoc analysis method is the Honest Significant Difference (HSD)

test, which is highly popular. The HSD test adjusts the test statistic when con-

ducting pairwise comparisons between two groups. These comparisons provide an

estimation of the disparity between the groups and offer a confidence interval for

the estimate. We interpret this confidence interval similarly to how we interpret

the confidence interval in a standard independent samples t-test: if the interval en-

compasses 0.00, it indicates that the groups are not significantly different, whereas

if it does not include 0.00, it suggests that there is a significant difference between

the groups.
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Results And Discussion

In this section, we provide an overview of our analysis conducted on the gene expression

data from the Leukemia dataset using various versions of the Support Vector Machine

(SVM) model. The data set includes 72 samples with 5147 characteristics and is split

into a training set 80% and a testing set 20%.

Three variants of SVM, ie standard SVM, refined SVM and penalized SVM, are applied

on the train and test data set for Leukemia cancer. The performance achieved is shown

in the following boxplots.

Figure 4.1: This figure illustrates the train accuracy of different variants of SVM
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The train accuracy analysis depicted in Figure 4.1 highlights distinct trends among dif-

ferent SVM kernels and regularization methods. Notably, the linear kernel, employed

in both standard and refined SVM, as well as the polynomial kernel utilized in refined

SVM, demonstrate superior performance with consistently high mean accuracy scores.

This suggests their reliability and efficacy across various datasets. Conversely, the radial

kernel employed in standard SVM, along with regularization methods such as scad and

scad + L2 penalties, exhibit mean accuracy scores of 1 but display notable variations,

implying less stable performance. Furthermore, the sigmoid kernel employed in refined

SVM demonstrates the lowest mean accuracy, indicating potential challenges in clas-

sification accuracy with this particular configuration. These findings suggest that the

linear kernel in both standard and refined SVM and polynomial kernel in refined in both

standard and refined SVM may be more suitable for classification tasks requiring high

accuracy and stability.

Figure 4.2: This figure illustrates the test accuracy of different variants of SVM

The analysis of various SVM kernels, as depicted in Figure 4.2, underscores significant

variation in their test accuracy performance. Among them, the standard linear kernel,

refined linear, and polynomial kernels exhibit commendable consistency, boasting a mean

accuracy of 1. This signifies robust classification capabilities across dataset, with only

a single outlier observed at 0.875.On the other hand, employing the L1 penalty yields

a mean accuracy of 0.9, albeit with some variability. The SCAD (Smoothly Clipped

Absolute Deviation) penalty demonstrates a mean test accuracy of 0.8, also with no-
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ticeable variation. Incorporating both SCAD and L2 penalty results in a mean accuracy

of 0.79, indicating a less consistent behavior compared to other kernels.Similarly, while

the standard polynomial kernel showcases a mean accuracy of 0.75 with variation and

one outlier, the sigmoid kernel achieves a mean accuracy of 0.95, albeit with variation

and an outlier.In contrast, both the polynomial and radial kernels exhibit lower mean

accuracy of 0.75 and 0.875, respectively, with multiple outliers at various accuracy lev-

els, suggesting less stable performance. The sigmoid kernel stands out with the highest

mean accuracy of 0.95, indicating robust classification performance, supported by only

one outlier at 0.63. These findings suggest that the linear and sigmoid kernels may be

more suitable for classification tasks requiring high accuracy and stability, while the

polynomial and radial kernels may exhibit more variable performance.

Figure 4.3: This figure illustrates the train sensitivity of different variants of SVM

Figure 4.3 demonstrate the train sensitivity of variants of SVM which is pretty good for

all of kernels and penalized SVM except a sigmoid kernel in refined SVM. A sensitivity

rate of 0.8 for the sigmoid kernel suggests that it accurately identifies approximately

80% positive instances, reflecting its effectiveness.

The test sensitivity results depicted in Figure 4.4 illustrate predominantly strong perfor-

mance across various SVM kernels, with sensitivity scores mostly reaching 1, signifying
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Figure 4.4: This figure demonstrates test sensitivity of different variants of SVM

excellent capability in correctly identifying positive instances. However, an exception is

observed with the refined SVM utilizing the sigmoid kernel, suggesting potential chal-

lenges in correctly identifying positives in this specific configuration. Outliers in sensitiv-

ity are noted in several kernels, including standard radial, polynomial, and refined radial,

as well as the sigmoid kernels, indicating instances where sensitivity deviates notably

from the norm across datasets. Notably, the refined sigmoid kernel exhibits a median

sensitivity of 0.875, indicating generally strong performance, albeit with some variability

and outliers. In contrast, penalized models like SCAD and SCAD + L2 demonstrate

slightly lower sensitivity scores of 0.83 and 0.8, respectively, while the L1 penalty model

shows a mean test sensitivity of 0.9 with some variation, suggesting that while penal-

ized models perform adequately, they may not consistently match the sensitivity levels

achieved by certain other kernels. The specificity analysis reveals significant differences

among SVM kernels, particularly between standard and refined SVM setups. Kernels

like standard linear, refined linear, polynomial, and L1 exhibit perfect train specificity,

indicating accurate identification of true negatives. However, standard radial, SCAD,

and SCAD+L2 SVMs show median train specificity at 1 with some variability and out-

liers, suggesting challenges in discerning negatives. Standard sigmoid and radial kernels

maintain specificity around 0.9 with variability and outliers, while the refined sigmoid

kernel demonstrates lower specificity at 0.7, alongside notable variability and outliers.

Notably, standard polynomial SVM displays the weakest specificity. Penalized SVM

models generally maintain high specificity. These results emphasize the importance of
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Figure 4.5: This figure illustrate train specificity of different variants of SVM

selecting appropriate kernels and refined strategies in SVM-based classification tasks.

Figure 4.6: This figure illustrate the test specificity of different variants of SVM

The specificity analysis unveils diverse performance patterns across different SVM mod-

els and kernel functions. Standard linear kernel,refined linear and polynomial kernel and

L1 and scd + L2 displays a median test specificity of 1 with some variation, indicating

perfect classification of negative instances. Standard polynomial SVM, however, strug-

gles with a median specificity of 0, suggesting a high rate of false positives. Radial SVM

exhibits moderate specificity, while sigmoid SVM demonstrates strong performance with

a median specificity of 0.875. Refined SVM models generally enhance specificity, espe-
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cially in linear and polynomial kernels. Penalized SVM methods vary in specificity, with

L1 regularization showing perfect performance but SCAD and SCAD+L2 regularization

exhibiting slight deviations and outliers, highlighting potential areas for improvement.

Table 4.1: ANOVA Table for train accuracy for standard SVM

df ss ms F Pr(>F)

Kernels 3 14.12 4.705 930.9 < 2e− 16***

Residuals 5116 25.86 0.005

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.2: ANOVA Table for train senstivity for standard SVM

df ss ms F Pr(> F)

Kernels 3 5.000 × 10−28 1.602 × 10−28 1 0.392

Residuals 5116 8.195 × 10−25 1.602 × 10−28

Table 4.3: ANOVA Table for train specificity for standard SVM

df ss ms F Pr(>F)

Kernels 3 40.52 13.507 26344 < 2 × 10−16***

Residuals 3836 1.97 0.001

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The conducted series of ANOVA tests aimed at assessing the impact of different SVM

kernels on model performance, focusing on train accuracy, sensitivity, and specificity.

The results revealed compelling insights pertinent to our research inquiry. In terms of

train accuracy, the analysis unveiled a statistically significant effect of SVM kernels on

model performance, indicating that the choice of kernel significantly influences accu-

racy outcomes. Subsequent post hoc tests illuminated specific differences between pairs

of kernels, providing granular insights into their relative performance. Notably, non-

overlapping confidence intervals between kernels underscored significant disparities in

accuracy. However, the analysis pertaining to train sensitivity did not yield statistically

significant results, suggesting that the variation in SVM kernels did not significantly

affect sensitivity metrics. Conversely, the examination of train specificity echoed the

findings observed in accuracy, highlighting a notable influence of SVM kernels on model
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Figure 4.7: Post-hoc comparison for train standard SVM

performance. The post hoc assessments further delineated specific differences between

kernel pairs, reinforcing the significance of kernel selection in optimizing model speci-

ficity. Visual representations of these findings serve as pivotal contributions to our thesis,

offering a comprehensive understanding of the comparative performance of SVM kernels

across different performance metrics. These insights inform strategic decisions in select-

ing the most efficacious kernel for classification tasks, thereby enriching the scholarly

discourse within our research domain.

Table 4.4: ANOVA Table for test accuracy for standard SVM

df ss ms F Pr(>F)

Kernels 3 95.52 31.84 2416 < 2 × 10−16***

Residuals 5116 67.41 0.01

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.5: ANOVA Table for test senstivity for standard SVM

df ss ms F Pr(>F)

Kernels 3 0.0027 0.0008967 12.01 7.87 × 10−8***

Residuals 5116 0.3821 0.0000747

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 4.6: ANOVA Table for test specificity for standard SVM

df ss ms F Pr(>F)

Kernels 3 503.1 167.69 2425 < 2 × 10−16***

Residuals 5116 353.7 0.07

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 4.8: Post-Hoc comparison for test standard SVM

The ANOVA tests conducted on test accuracy, sensitivity, and specificity with respect

to different SVM kernels yielded significant findings. For test accuracy, the analysis

revealed a highly significant effect of SVM kernels on model performance (F (3, 5116) =

2416, p < 0.001). Subsequent post hoc tests identified specific differences between pairs

of kernels, illustrating mean differences in test accuracy along with 95% confidence in-

tervals.Regarding test sensitivity, the ANOVA analysis demonstrated a significant effect

of SVM kernels on model performance (F (3, 5116) = 12.01, p < 0.001). Post hoc tests

unveiled specific differences between kernel pairs, elucidating mean differences in test

sensitivity and corresponding confidence intervals.Similarly, the analysis concerning test

specificity showcased a highly significant effect of SVM kernels on model performance

(F (3, 5116) = 2425, p < 0.001). Post hoc tests delineated specific differences between

pairs of kernels, depicting mean differences in test specificity along with 95% confidence

intervals.The graphical representations of these findings provide a visual understand-

ing of the comparative performance of SVM kernels across different evaluation metrics,
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guiding informed decisions in kernel selection for classification tasks. These insights con-

tribute significantly to the advancement of knowledge in the field and inform strategic

decisions in machine learning model development.

Table 4.7: ANOVA Table for train accuracy for refined SVM

df ss ms F Pr(>F)

Kernels 3 40.52 13.507 26344 < 2 × 10−16***

Residuals 3836 1.97 0.001

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.8: ANOVA Table for train senstivity for refined SVM

df ss ms F Pr(>F)

Kernels 3 26.90 8.966 13486 < 2 × 10−16***

Residuals 3836 2.55 0.001

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.9: ANOVA Table for train specificity for refines SVM

df ss ms F Pr(>F)

Kernels 3 76.52 25.506 6570 < 2 × 10−16***

Residuals 3836 14.89 0.004

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 4.9 illustrate the ANOVA results for train accuracy showed a significant effect of

kernel type (F (3, 3836) = 26344, p < 0.001), indicating that the choice of kernel signifi-

cantly impacts the accuracy of the SVM model. The subsequent Tukey HSD post-hoc

test revealed specific pairwise differences between the kernels. The plot (B1) illustrates

these differences, showing the mean difference in train accuracy for each pair of kernels,

along with 95% confidence intervals. The small confidence intervals suggest high preci-

sion in our estimates, indicating robust and reliable differences in accuracy between the

kernels. Similarly, the ANOVA results for train sensitivity also demonstrated a signif-

icant effect of kernel type (F (3, 3836) = 13486, p < 0.001). The Tukey HSD post-hoc

test identified specific pairs of kernels with significant differences in sensitivity. The

corresponding plot (B2) depicts these differences, with mean differences and confidence
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Figure 4.9: Post-Hoc comparison for train refined SVM

intervals indicating the variability. The smaller differences and confidence intervals sug-

gest that while there are significant differences, they might not be large in magnitude,

yet they are consistent and statistically meaningful. For train specificity, the ANOVA

results again confirmed a significant effect of kernel type (F (3, 3836) = 6570, p < 0.001).

The post-hoc comparisons provided detailed insights into which kernel pairs differ sig-

nificantly in specificity. The plot (B3) presents these findings, showing mean differences

and confidence intervals. The results show small but significant differences in specificity

among kernels, emphasizing the importance of kernel selection for optimal model per-

formance. The analyses collectively underscore the critical role of kernel selection in

SVM performance. Each kernel type affects train accuracy, sensitivity, and specificity

differently, with statistically significant differences observed in each measure. Although

some of these differences are small, their consistency and significance highlight that even

minor variations in kernel choice can lead to meaningful changes in model performance.

This is particularly crucial in applications requiring high precision, such as medical di-

agnostics or anomaly detection, where optimizing every aspect of model performance

can significantly impact outcomes.

The ANOVA and post hoc analysis of the refined SVM models revealed significant

differences in performance metrics—test accuracy, sensitivity, and specificity—across

different kernel functions. The ANOVA results indicated a highly significant effect of

the kernel type on these metrics (p < 2e − 16forall). Post hoc comparisons showed

that the radial kernel generally outperforms the sigmoid, linear, and polynomial ker-
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Table 4.10: ANOVA Table for Test Accuracy for Refined SVM

df ss ms F Pr(>F)

Kernels 3 13.78 4.595 932.3 < 2 × 10−16***

Residuals 3836 18.91 0.005

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.11: ANOVA Table for Test Senstivity for Refined SVM

df ss ms F Pr(>F)

Kernels 3 7.289 2.4296 884.8 < 2 × 10−16***

Residuals 3836 10.533 0.0027

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

nels in terms of sensitivity and specificity, with substantial differences observed (e.g.,

radial-sigmoid comparison in specificity showing a difference of 0.171). The linear and

polynomial kernels displayed similar performance, particularly in accuracy and speci-

ficity. These findings highlight the importance of kernel selection in SVM modeling,

suggesting that the radial kernel may be preferable for achieving higher sensitivity and

specificity, while the choice between linear and polynomial kernels may be less critical

due to their comparable performance. Visual plots further corroborate these results,

providing a clear depiction of mean differences and confidence intervals, emphasizing

the significant impact of kernel choice on SVM performance.

The analysis conducted on penalized SVM models revealed notable insights into their

performance across various penalty types. ANOVA tests unveiled statistically significant

differences in train accuracy, where the L1 penalty outperformed SCAD, as evidenced

by a significant F and a p-value below the 0.05 threshold. However, while differences

in train sensitivity and specificity were also observed, they did not reach the same level

of significance, as indicated by higher p-values. Further exploration through post hoc

comparisons provided additional clarity. For train accuracy, the confidence intervals

indicated significant differences between penalties, aligning with the ANOVA findings.

Conversely, for train sensitivity and specificity, the confidence intervals passing through

zero suggested non-significant differences between penalty types, indicating that the

choice of penalty may have a less pronounced impact on these metrics. These results un-
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Table 4.12: ANOVA Table for test specificity for refined SVM

df ss ms F Pr(>F)

Kernels 3 88.91 29.635 1357 < 2 × 10−16***

Residuals 3836 83.78 0.022

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 4.10: Post-Hoc comparison for test Refined SVM

derscore the nuanced influence of penalty selection on model performance and highlight

the need for careful consideration when optimizing SVM models for specific objectives.

The analysis conducted on penalized SVM models aimed to investigate their perfor-

mance concerning test accuracy, sensitivity, and specificity. In the ANOVA analysis

for test accuracy, a statistically significant difference was observed across penalization

methods (df = 2, F = 28.87, p < 0.001). Subsequent post-hoc Tukey tests revealed

significant differences between the "L1" and both "scad+ L2" and "L1 − scad" methods

(p < 0.001), indicating varying performance levels among the penalization techniques.

Similarly, in the analysis of test sensitivity, a significant difference was found among the

penalization methods (df = 2, F = 10.36, p = 0.000145). Post-hoc comparisons showed

significant differences between "L1" and both "scad + L2" and "L1 − scad" methods
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Table 4.13: ANOVA Table for train accuracy for penalized SVM

df ss ms F Pr(>F)

Penalities 2 0.01216 0.006081 5.771 0.00522**

Residuals 57 0.06006 0.001054

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.14: ANOVA Table for train senstivity for penalized SVM

df ss ms F Pr(>F)

Penalities 2 0.00833 0.004167 3.353 0.042*

Residuals 57 0.07083 0.001243

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(p < 0.01). However, for test specificity , no significant difference was observed among

the penalization methods (df = 2, F = 1.716, p = 0.189). These findings suggest that

while penalization methods significantly impact test accuracy and sensitivity, they do

not have a significant effect on test specificity. This nuanced understanding of penalized

SVM model performance can inform practitioners in selecting appropriate penalization

strategies based on specific evaluation criteria.
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Table 4.15: ANOVA Table for train specificity for penalized SVM

df ss ms F Pr(>F)

Penalities 2 0.02541 0.012703 2.97 0.0593 .

Residuals 57 0.24376 0.004277

Signifi: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 4.11: Post-Hoc comparison for train penalized SVM

Table 4.16: ANOVA Table for test specificity for penalized SVM

df ss ms F Pr(>F)

Penalities 2 0.0777 0.03886 1.716 0.189

Residuals 57 1.2906 0.02264
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Figure 4.12: Post-Hoc comparison for test Penalized SVM

44



Chapter 5

Conclusion

The comprehensive analysis of various Support Vector Machine (SVM) variants applied

to the Leukemia dataset has provided valuable insights into their performance across

different evaluation metrics. Rigorous experimentation and statistical analyses revealed

the significant impact of different SVM kernels and regularization techniques on key

performance indicators such as accuracy, sensitivity, and specificity. Kernel selection

emerged as crucial, with the linear kernel consistently demonstrating robust accuracy

and sensitivity, while the polynomial kernel performed well in refined setups with some

variability. Conversely, the radial kernel exhibited higher variability and instability, par-

ticularly in specificity, and the sigmoid kernel showed promising but inconsistent results.

Penalized SVM models offered nuanced insights, where L1 penalties showed superior ac-

curacy, though their effect on sensitivity and specificity was less pronounced. This study

enhances the understanding of SVM-based classification methodologies, particularly for

classification of cancer using gene expression data, and can guide the selection of ap-

propriate SVM variants and kernels for specific tasks. Future research should explore

ensemble techniques or hybrid models combining SVM with other machine learning algo-

rithms to potentially enhance performance, and investigate the generalizability of these

findings across different datasets and domains to ensure robustness and scalability in

real-world applications.
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