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ABSTRACT 

       This thesis presents an innovative and efficient approach to track multiple objects in a 

video sequence by integrating state-of-art You Only Look Once (YOLO) object detection 

framework with efficient Reduced Order Observer (ROO) based target trajectory estimator. 

Traditionally, Kalman Filter is utilized to estimate detected objects in video frames, however, 

this approach is computationally demanding due to repeated estimation of large number of 

state variables in each iteration. To address this challenge, ROO based trajectory estimator is 

proposed that focuses on estimating a subset of state vector, thereby enhancing processing 

speed for real-time applications. 

A video sequence with frame rate of 30 frames per second is fed into YOLO model 

which outputs bounding box defined by a state vector for each detected object in a frame. 

State vector elements include position (x and y axis), velocity (x and y axis), aspect ratio and 

height of bounding box. State estimator is required to estimate states of these bounding boxes 

/ detected objects in next frame of video sequence. ROO separates observable states from 

unmeasurable states and only estimates unmeasurable states. These estimates combined with 

Intersection Over Union (IoU) matching are used to assign bounding boxes / detected objects 

to tracklets ensuring efficient tracking even in the presence of occlusion and dynamic real-

time environments. 

This approach has been validated by implementing ROO framework in MATLAB 

R2023b and subsequently in Microsoft Visual Studio for online tracking of objects in video 

frame. This research contributes to the field of multi-object tracking by providing a 

computationally efficient trajectory estimator with potential applications in autonomous 

driving, surveillance and robotics. 
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CHAPTER 1 

INTRODUCTION  

1.1 Background 

In computer vision, object tracking serves as fundamental component in applications like 

autonomous driving, surveillance systems, robotics etc. Object tracking is often carried out 

using track by detection technique in which objects are detected in a frame firstly and then 

associated with objects in next frame for tracklet assignment. However, to carryout 

assignment of object in detections of next frame, object positions need to be predicted. These 

predictions are largely carried out using Kalman Filter algorithm. Real-time performance in 

these tasks is crucial for the success of applications dependent on timely and accurate object 

tracking. 

Kalman Filter is used for estimating the state of a moving object based on incomplete and 

noisy measurements. Though it is powerful, the Kalman Filter is computationally expensive 

to execute, especially for multiple objects or high-resolution video streams. The 

computational overhead associated with them means that they are not generally suited to real-

time systems where resources can be scarce. 

With the arrival of deep learning models, field of computer vision has powerful new tools to 

make object detection and tracking more robust. You Only Look Once (YOLO) is one of 

these tools that have created quite an interest in the field due to the accuracy at which it can 

detect objects in real-time. It is a full-image-sliding-window object detection network using 

YOLO with an added bonus - this model is capable of predicting bounding boxes and class 

probabilities for these boxes at the same time and in a single run, making it much faster than 

the previous approaches.  

The approach put forward in this thesis combines a YOLO-based model for object detection 

with a Reduced Order Observer (ROO) for trajectory estimation. The ROO intends to lower 

the computational complexity by estimating only few of the state variables, hence making it 

computationally less expensive and real-time friendly. 

While recent advancements in MOT have shown promise, a critical gap exists in addressing 

computational complexity and real-time performance. Current methods, while effective, often 

struggle to meet the demands of real-time applications due to high computational 

requirements. Integration of YOLO and Reduced Order Observer (ROO) for target estimation 

in the context of MOT has the potential to significantly reduce computational complexity 
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while enhancing real-time performance. Exploration of this integration represents an 

unexplored avenue in the literature, presenting an opportunity to contribute to the 

development of efficient and responsive tracking system suitable for applications in 

surveillance, autonomous vehicles and beyond. 

1.2 Problem Statement 

Current challenge in computer vision and object tracking lies in balancing the computational 

complexity, real-time performance vis-à-vis tracking accuracy of MOT systems. While 

YOLO demonstrates efficient object detection, integrating it with Reduced Order Observer 

(ROO) for target estimation in tracking remains unexplored. Existing systems face issues of 

high computational demands, hindering real-time applications. This research aims to address 

the challenge by developing an integrated solution that significantly reduces computational 

complexity, ensuring enhanced real-time performance. The key focus is on seamlessly 

merging YOLO and ROO to create a comprehensive system, contributing to the evolution of 

efficient and responsive object tracker in dynamic scenarios. 

1.3 Research Objectives 

The specific objectives of this study include: 

1. Integration of YOLO and ROO: To integrate the YOLO object detection 

framework with a Reduced Order Observer (ROO) for efficient multi-object 

tracking. 

2. Enhance Processing Speed: To enhance the processing speed of trajectory 

estimation, making it feasible for real-time applications. 

3. Validation through Implementation: To validate the proposed approach through 

implementation and experimentation in both MATLAB and Microsoft Visual Studio 

environments. 

1.4 Thesis Outline 

Chapter 1 provides an overview of the background, problem statement, objectives and 

organization of the thesis. Chapter 2 reviews relevant literature on object detection, YOLO, 

trajectory estimation techniques, and Reduced Order Observers. Chapter 3 entails 

methodology used in this research, including integration of YOLO and ROO, and use of IoU 

matching for tracklet assignment. Chapter 4 describes implementation of ROO framework in 

MATLAB and Microsoft Visual Studio and discusses system architecture and performance 
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optimization. Chapter 5 presents experimental setup, dataset description, evaluation metrics, 

results and analysis. Chapter 6 is summary of findings and future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Related Works 

In computer vision (CV), multi-object tracking (MOT) involves frame-wise detection and 

tracking multiple objects in video sequences, aiming to identify and locate objects across 

frames despite challenges like occlusion, motion blur, and appearance changes. Various 

algorithms integrate object detection and data association techniques to address these 

challenges. Studies highlight the importance of effective data association methods for 

accurate tracking, such as Global Nearest Neighbor and Multiple Hypothesis Tracking 

algorithms [1]. Research emphasizes significance of incorporating multiple features for 

robust data association, improving track quality and accuracy, especially in complex 

scenarios like occlusion and fast motion [2]. Additionally, advancements in MOT include use 

of global appearance and motion models to enhance tracking efficiency and accuracy, 

achieving appreciable results on benchmark datasets. 

Simple Online & Real-time Tracking (SORT) architecture used in paper [3] leverages the 

Faster Region CNN (FrRCNN) detection framework, specifically utilizing two network 

architectures: FrRCNN. FrRCNN consists of two stages where features are extracted and 

regions are proposed for object classification. This end-to-end framework allows for efficient 

detection by sharing parameters between stages and enhances detection performance with 

different network architectures. 

Simple Online And Realtime Tracking With A Deep Association Metric introduces a 

pragmatic approach to MOT by introducing appearance information and an appearance 

metric which enhances performance under occluded environments [4]. Algorithm is trained 

on a deep association metric and achieves 45% reduction in switching of identities under 

occluded environments. Moreover, this viable performance is achieved at high frame rates. In 

order to achieve this performance and learning of appearance metric, a well discriminating 

embedding vector is trained offline and then used in tracking pipeline. For this purpose, this 

paper has trained a CNN on person re-identification dataset that contains over 1,100,000 

images of 1,261 pedestrians. This training makes it suitable for learning / tracking pedestrians 

in complex environments. 

Tracktor is a tracking system that attains exceptional tracking accuracy without requiring 

specialized training / optimization. Utilizing object detection and bounding box regression, 
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Tracktor demonstrates proficiency in MOT in demanding situations like occlusions and 

motion prediction [5]. Re-identification, motion prediction and occlusion handling are few 

major problems encountered in MOT. Tracktor is successful in tracking objects without 

considering any of these tasks as its primary goal. Moreover, there is no involvement / 

requirement to optimize algorithm on tracking dataset. It explores depth of bounding box 

regression and estimates / tracks object locations in consecutive frames.  

Towards Real-time Multi Object Tracking proposes “Joint Learning of Detection and 

Embedding” model [6]. This integration enhances efficiency and establishes a quicker 

baseline for real-time tracking applications. The architecture involves a Feature Pyramid 

Network (FPN) as the backbone network. The FPN makes predictions at multiple scales, 

which benefits detecting pedestrians of varying sizes in each frame of video sequence. Input 

video frame generates feature maps of 3 varying scales after it gets passed from backbone 

network. Rates of downsampling for these maps include 1/32, 1/16, and 1/8. Additionally, 

system incorporates prediction heads on multiple FPN scales. Classification of anchor, box 

regression and embedding vector learning are 3 important tasks treated by each prediction 

head. Losses linked with each task are tackled independently by adding randomness / 

uncertainty to each task. This approach optimizes learning process and improves overall 

efficiency of system. Furthermore, architecture includes an association algorithm that works 

with JDE. This method aims to reduce computational costs compared to previous MOT 

systems, thereby providing a foundation for future developments in real-time MOT algorithm 

design. 

FairMOT balances biasness between detection and reID tasks in Joint Detection & 

Embedding Models [7]. Earlier work treats re-ID as secondary task and object detection as 

primary task. Resultantly, network is biased towards detection task (primary) and re-ID is 

ignored. To solve the problem, FairMOT presents anchor-free architecture CenterNet which 

eliminates biasness of network towards any task, may it either by re-ID or detection. 
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Figure 2.1 - FairMOT Architecture 
 

 

Image Based Multi Objects' Trajectories Estimation through ROO assumes position of object, 

its appearance and rate of change of position as states and links MAP for object detection 

with ROO for trajectory estimation. Error in predicted and actual positions improves future 

estimation. Calculations are reduced by applying a Single object tracking model multiple 

times [8]. 

CSTrack addresses one of the most important challenge faced in one-shot tracking architype 

It states that re-ID and detection are treated as isolated tasks in this architype, contrary to 

two-stage trackers [9]. It proposes REN to tackle this problem. REN has:- 

• Self-relation. 

• Cross-relation design. 

Resultantly, it learns representation based on re-ID / detection tasks properly. Further, a 

scale-aware attention network (SAAN) is also proposed in this paper. SAAN has fol feature:- 

• Prevents misalignment of semantics. 

• Improves association. 
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Figure 2.2 - CSTrack Architecture 

 

Bag-of-Tricks (BoT) SORT [10] introduced:- 

• Enhanced motion / appearance information. 

• Camera-motion compensation. 

• Kalman filter state vector with enhanced accuracy.  

BoT SORT claimed improvement in performance of MOT by adding above mentioned 

corrections. Association between detected objects and tracks formulated can be made more 

robust by using IoU and fusing cosine-distances. BoT-SORT and BoT-SORT-ReID cannot 

estimate camera motion if background has high density objects. In such cases, tracker 

response can be erroneous. Moreover, if large images are processed, global motion 

compensation calculation can be extremely expensive. 

Earlier methods only associate detection boxes with high confidence scores and objects 

detected with low confidence scores were simply thrown away. ByteTrack proved that by 

iteratively associating detection boxes with both high and low confidence scores, MOT 

efficiency can be enhanced. Fragments formed in MOT were also reduced and occlusion 

handling of architecture was also improved [11]. 

StrongSORT proposes two algorithms:- 

• AFLink model for missed associations. 

• GSI model for missed detections. 

AFLink model conducts global association without requiring appearance information. This 

method is faster and accurate as compared to traditional methods which associate tracklets 

with trajectories at cost of high computations.  

Gaussian-smoothed interpolation (GSI) is based on Gaussian process regression and 

addresses problem of missed detections [12].  

SMILEtrack proposes two algorithms:- 

Similarity Learning Module (SLM) which integrates Siamese network with object detector. It 

also works on evaluating similarity between appearance of objects and is an enhancement to 
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feature descriptors of SDE models. SLM incorporates Patch Self-Attention (PSA) which is 

based on vision Transformer.  

 

Figure 2.3 - SmileTrack Patch Self-Attention 
Similarity Matching Cascade (SMC) is also proposed in this paper with a novel GATE 

function which improved association performance of tracker.module [13]. Earlier methods 

used weighted sum between IOU and appearance information for association of objects. In 

these methods IOU score can dominate the results. SMC GATE function addresses this 

problem by not allowing IOU score to dominate the weighted sum and rejecting associations 

with low appearance matching [13]. 

 

Figure 2.4 - SmileTrack Association with GATE Function 
 
 

SMILEtrack is an SDE method and performs MOT tasks faster than JDE methods.  

Summarily, race between accuracy and inference speed is still on-going and in near future 

implementation of these architectures on small chips shall further enhance requirement to 

reduce computational complexity of these algorithms. Researchers have explored different 
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avenues to reduce computational complexity while maintaining accuracy of these algorithms. 

Hence, a significant gap exists to further reduce computational complexity of these 

algorithms thereby easing their implementation on hardware chips in future. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

In this chapter, discussion is carried on methodology used to develop and evaluate the 

proposed YOLO-based multi-object tracking system with a Reduced Order Observer (ROO) 

for target trajectory estimation. The methodology is divided into several key components: 

system architecture, YOLOX-based object detection, ROO for trajectory estimation and 

integration of these components. This chapter also discusses implementation details, 

including software tools and frameworks used. 

 

Figure 3.1 - Outline Methodology 
 

3.2 System Architecture 

The proposed system includes following components: 

• Object Detection using YOLOX. 

• Trajectory Estimation using Reduced Order Observer (ROO). 

• Tracklet Management and Assignment. 

Each component plays role in ensuring efficient and accurate MOT. Overall architecture 

processes video sequences in real-time and provides reliable tracking information for each 

detected object. 
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3.3 YOLO-Based Object Detection 

YOLOX is an object detection framework that builds upon principles of original YOLO 

series and introduces several improvements [14], [15].  

 

Figure 3.2 - YOLO v3 to v5 
 

YOLOX leverages anchor-free detection and dynamic label assignment strategies as a result 

of which detection accuracy and inference speed are enhanced [16]. 

 

 

Figure 3.3 - YOLOX Architecture 
 

3.3.1 Model Architecture 

The YOLOX model architecture used in this research incorporates several key features: 

• Backbone: Darknet-based architecture with CSPNet (Cross Stage Partial 

Network) integration, which balances between speed and accuracy. 

• Neck: PANet (Path Aggregation Network) for enhanced feature fusion and 

improved detection performance. 

• Head: Decoupled head design, separating classification and regression tasks to 

improve model convergence and accuracy. 
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3.3.2 Detection Process 

The detection process involves the following steps: 

• Image Preprocessing: Input video frames are re-sized and normalized to match 

input requirements of YOLOX model. 

• Forward Pass: The preprocessed frames are fed to YOLOX model, which outputs 

coordinates / details of bounding boxes and class predictions of detected objects. 

• Post-Processing: Non-Maximum Suppression (NMS) filters redundant bounding 

boxes. 

 

3.4 Trajectory Estimation using Reduced Order Observer (ROO) 

3.4.1 Concept of ROO 

ROO estimates a subset of state variables, focusing on unmeasured states [17]. Resultantly, 

improving computational complexity and enhancing processing speed and suitability towards 

real-time applications is achieved. 

3.4.2 System Dynamics and Modelling 

System dynamics for trajectory estimation are defined as follows: 

3.4.2.1 State Vector 

The state vector includes following aspects of bounding box: 

• Position in x  

• Position in y 

• Velocity vx  

• Velocity vy 

• Aspect ratio a 

• Rate of change of aspect ratio 

• Height h 

• Rate of change of height 
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Figure 3.4 - State Description 
 

3.4.2.2 System Dynamics 

System Matrix 

A  = [1 dt 0 0 0 0 0 0; 

         0 1 0 0 0 0 0 0; 

         0 0 1 dt 0 0 0 0; 

         0 0 0 1 0 0 0 0; 

         0 0 0 0 1 dt 0 0; 

         0 0 0 0 0 1 0 0; 

         0 0 0 0 0 0 1 dt; 

         0 0 0 0 0 0 0 1]; 

 

Input Matrix 

B  =  [ 0 dt 0 dt 0 dt 0 dt]’; 

Output Matrix 

C = [1 0 0 0 0 0 0 0; 

        0 0 1 0 0 0 0 0; 

        0 0 0 0 1 0 0 0; 

        0 0 0 0 0 0 1 0]; 
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Feedforward Matrix 

D  =  [ 0 ]; 

 

3.4.2.3 Separation into Measurable and Unmeasured System 

State Vector 

In the state vector mentioned above, measurable and unmeasurable states can be separated as 

under: 

Measured 

• x   –  Position in x-axis 

• y   –  Position in y-axis 

• a   –  Aspect Ratio (width / height) 

• h   –  Object height 

Unmeasureable 

• vx  –  Velocity in x-axis 

• vy  –  Velocity in y-axis 

• va  –  Rate of change of aspect ratio 

• vh  –  Rate of change of object height 

Final form of State Vector: x = [x y a h vx vy va vh]’ 

 

System Matrix 

Ar = [1 0 0 0 dt 0 0 0; 

         0 1 0 0 0 dt 0 0; 

         0 0 1 0 0 0 dt 0; 

         0 0 0 1 0 0 0 dt; 

         0 0 0 0 1 0 0 0; 

         0 0 0 0 0 1 0 0; 

         0 0 0 0 0 0 1 0; 
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         0 0 0 0 0 0 0 1]; 

 

Ar11 = [1 0 0 0; 

           0 1 0 0; 

           0 0 1 0; 

           0 0 0 1]; 

 

Ar12 = [dt 0 0 0; 

           0 dt 0 0; 

           0 0 dt 0; 

           0 0 0 dt]; 

 

Ar21 = [0 0 0 0; 

           0 0 0 0; 

           0 0 0 0; 

           0 0 0 0]; 

 

Ar22 = [1 0 0 0; 

           0 1 0 0; 

           0 0 1 0; 

           0 0 0 1]; 

 

Input Matrix 

Br  =  [0 0 0 0 dt dt dt dt]’; 

Br1  =  [0 0 0 0]’; 

Br2  =  [dt dt dt dt]’; 
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Output Matrix 

Cr = [1 0 0 0 0 0 0 0; 

         0 1 0 0 0 0 0 0; 

         0 0 1 0 0 0 0 0; 

         0 0 0 1 0 0 0 0]; 

Cr1 = [1 0 0 0; 

          0 1 0 0; 

          0 0 1 0; 

          0 0 0 1]; 

Cr2 = [0 0 0 0; 

          0 0 0 0; 

          0 0 0 0; 

          0 0 0 0]; 

Feedforward Matrix 

D  =  [ 0 ]; 

 

3.4.2.4 Partitioned and Unmeasured Portion of System 

Dynamics of partitioned system are as under: 

[
�̇�𝑚
�̇�𝑢

]=[
𝐴𝑟11 𝐴𝑟12
𝐴𝑟21 𝐴𝑟22

] [
𝑥𝑚
𝑥𝑢

] + [
𝐵1
𝐵2

] 𝑢 

𝑦 = [𝐶𝑟1     𝐶𝑟2] [
𝑥𝑚
𝑥𝑢

] 

Unmeasured Portion of System is as under: 

�̇�𝑢 = 𝐴𝑟22𝑥𝑢 + (𝐴𝑟21𝑥𝑚 + 𝐵2𝑢) 

We design Reduced Order Observer for unmeasured portion of the system. 

 

3.4.3 Reduced Order Observer 
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Separated system can be visualized as under: 

• Total states (n) = 8 

• Measured states (m) = 4 

• Unmeasured states (n-m) =4 

Pole Placement 

Poles need to be selected in left half plane to achieve stable output. Following poles were 

selected for this system. However, there is alot of flexibility in choosing pole location. 

poles = [-2 -2.5 -3 -3.5]; 

Gain Calculation / Correction Term 

Selection of Gain (L) is carried out to reduce observer error. 

L = (place(A22,(C1*A12),poles)); 

L= [46.1538     0         0         0; 

         0   53.8462         0         0; 

         0         0   61.5385         0; 

         0         0         0   69.2308]; 

Reduced Order Observer Error is defined as under: 

�̃��̇� = (𝐴22 − 𝐿𝐴12)�̃�𝑢 

 

3.4.4 Final Form of ROO 

Final form of ROO is as under: 

�̇� = 𝐷𝑧 + 𝐹𝑦 + 𝐺𝑢 

𝑥�̂� = 𝑧 + 𝐿𝑦 

𝑥�̂� 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑢𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑠. 

   𝐷 = 𝐴22 − 𝐿𝐴12 

   𝐹 = 𝐷𝐿 + 𝐴21 − 𝐿𝐴11 

   𝐺 = 𝐵2 − 𝐿𝐵1 
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Calculating measured states using corresponding estimated unmeasured state e.g. 

Calculating position from estimated velocity is done as under for each measured state 

separately: 

𝑥𝑛 = 𝑥𝑛 − 1 + 𝑣𝑛. ∆𝑡 

 

3.4.5 MATLAB Implementation of Reduced Order Observer 

In order to validate performance of reduced order observer, implementation of this algorithm 

has been carried out separately. 

 

 

Figure 3.5 - MATLAB-Simulink Implementation of ROO 
 

Reduced Order output on 2D System (one unmeasured state) is as under: 

 

 
Figure 3.6 - MATLAB-Simulink Output on sample 2D System 

  

Reduced Order output on our 8D System (4 unmeasured states), discussed above, is as under: 
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Figure 3.7 - MATLAB-Simulink Output on our 8D System 
 

3.5 Association and Tracklet Assignment 

3.5.1 Intersection Over Union (IoU) Matching 

To ensure consistent tracking of objects across frames, Intersection Over Union (IoU) 

matching is used to assign detected objects to tracklets. IoU metric is a measure of amount of 

region overlapped between predicted bounding boxes and detected bounding boxes. 

Algorithm for ByteTrack [11] based tracklet assignment is as under: 
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Figure 3.8 - ByteTrack based Tracklet Assignment 
 

3.5.2 Tracklet Management 

The tracklet management process involves: 

• Initialization: Initialize new tracklets for objects detected in first frame. 

• Update: Update existing tracklets based on IoU matching in subsequent frames. 

• Termination: Terminate tracklets if an object is not detected for a specified 

number of consecutive frames, indicating disappearance of object. 

 

3.6 Implementation Details 

Software Tools and Frameworks 

The implementation of proposed system was carried out using software tools and 

frameworks, described as under: 

• MATLAB R2023b: Used for initial development and validation of the ROO-

based trajectory estimation algorithm. 
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• Microsoft Visual Studio 2019: Used for implementing the complete system, 

including YOLOX-based object detection and ROO-based trajectory estimation 

and tracklet assignment. 

• Google Colab: Used for evaluating results discussed in next chapter. 

 

Algorithm Development 

The algorithm development process involved: 

• Model Training: Pre-trained YOLOX model was utilized for this project. 

• Observer Design: Designing and tuning the ROO for efficient trajectory 

estimation. 

• Integration: Integrating the YOLOX-based detection and ROO-based trajectory 

estimation into a unified system alongwith ByteTrack based association algorithm. 

 

3.7 Summary 

This chapter details used in developing proposed YOLOX-based MOT system with a ROO 

for target trajectory estimation. System architecture, YOLOX-based object detection, ROO-

based trajectory estimation, and tracklet management were discussed. Implementation details, 

including software tools and frameworks, are also provided. This methodology sets 

foundation for analysis and evaluation of proposed approach, demonstrating its potential for 

real-time MOT applications. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter explains experimental setup, evaluation metrics, results, and discussion of the 

findings for the proposed YOLOX-based multi-object tracking system with a ROO. Goal is to 

demonstrate system's effectiveness and efficiency in real-time multi-object tracking 

applications. 

 

4.2 Evaluation Metrics 

The Clear MOT Metric paper outlines evaluation metrics for evaluating results [18]. 

MOTA (Multi Object Tracking Accuracy) 

MOTA is a measure of overall accuracy of both the tracker and detector 

 

𝑀𝑂𝑇𝐴 = 1 −  
∑ (𝐹𝑁𝑡 + 𝐹𝑃𝑡 + 𝐼𝐷𝑆𝑊𝑡)𝑡

∑ 𝐺𝑡𝑡
 

 

FN = False Negative 

FP = False Positive 

IDSW = Identity Switch  

G = Ground Truth 

 

If MOTA is 1, then system has good accuracy. 

If MOTA is around zero or less, system’s accuracy is poor. 

MOTA doesn’t include localization error. 

 

MOTP (Multi Object Tracking Precision) 

MOTP measures localization accuracy i.e. average dissimilarity between all TPs and 

corresponding GT targets. MOTP = 0 implies that there is no distance error. 
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𝑀𝑂𝑇𝑃 =  
∑ 𝑑𝑡, 𝑖𝑡,𝑖

∑ 𝑐𝑡𝑡
 

 

dt,i = Overlap between bounding box of target i with GT object (IoU). 

ct = Correct Matches in frame t 

 

IDF1 

IDF1 is ratio of correct identities with average detection in each frame. 

𝐼𝐷𝐹1 = 2.
𝐼𝐷𝑃. 𝐼𝐷𝑅

𝐼𝐷𝑃 + 𝐼𝐷𝑅
 

 

IDP 

IDP is reflection of precision of object identities. 

 

𝐼𝐷𝑃 =  
𝐼𝐷𝑇𝑃

𝐼𝐷𝑇𝑃 + 𝐼𝐷𝐹𝑃
 

 

IDR 

IDR is recall of object identities 

 

𝐼𝐷𝑃 =  
𝐼𝐷𝑇𝑃

𝐼𝐷𝑇𝑃 + 𝐼𝐷𝐹𝑁
 

 

IDSW (Identity Switch) 

IDSW is number of transitions of assigned identity to tracked object from one identity to 

another. 
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MT (Mostly Tracked) 

 Trajectories with more than 80% overlap as compared to trajectory of object in ground-truth. 

Number of such trajectories is called MT. 

 

ML (Mostly Lost) 

Trajectories with less than 20% overlap as compared to trajectory of object in ground-truth. 

Number of such trajectories is called ML. 

 

Frag (Fragments) 

Frag is summary of number of fragments in one trajectory. 

 

4.3 Results 

Results have been evaluated on MOT Challenge dataset [19]. Details are under mentioned. 

4.3.1 Instance-I 

Input Video Sequence 

Table I - Input Video Sequence (Instance-1) 

Ser Item Details 

1 Sequence Name MOT16-03 

2 FPS 30 

3 Resolution 1920x1080 

4 Length 50 sec 

5 Track 148 

6 Boxes 104556 

7 Density 69.7 

 

 

 

Parameter Metric Comparison 
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Taking results from Kalman Filter based tracker as ground truth and ROO based tracker as 

evaluated results we achieve following comparison. 

Table II - Parameter Metric Comparison (Instance-1) 

Ser Item Details 

1 MOTA 0.9854 

2 MOTP 0.118 

3 IDF1 0.9642 

4 IDSw 5 

5 ML 0 

6 MT 119 

7 Frag 21 

 

Inference Time Comparison 

Table III - Instance Time Comparison (Instance-1) 

Ser Method Time 

1 Inference Time using Kalman Filter 280.8 ms 

2 Inference Time using ROO 203.9 ms 

 

4.3.2 Instance-II 

Input Video Sequence 

Table IV - Input Video Sequence (Instace-2) 

Ser Item Details 

1 Sequence Name MOT17-01 

2 FPS 30 

3 Resolution 1920x1080 

4 Length 15 sec 

5 Track 24 

6 Boxes 6450 

7 Density 14.3 

 

 

Parameter Metric Comparison 
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Taking results from Kalman Filter based tracker as ground truth and ROO based tracker as 

evaluated results we achieve following comparison. 

Table V - Parameter Metric Comparison (Instance-2) 

Ser Item Details 

1 MOTA 0.96 

2 MOTP 0.123 

3 IDF1 0.83 

4 IDSw 18 

5 ML 0 

6 MT 33 

7 Frag 20 

 

Inference Time Comparison 

Table VI - Instance Time Comparison (Instance-2) 

Ser Method Time 

1 Inference Time using Kalman Filter 86.1 ms 

2 Inference Time using ROO 82.4 ms 

 

4.3.3 Instance-III 

Input Video Sequence 

Table VII - Input Video Sequence (Instance-3) 

Ser Item Details 

1 Sequence Name MOT17-05 

2 FPS 14 

3 Resolution 640x480 

4 Length 1 min 

5 Track 181 

6 Boxes 6917 

7 Density 8.3 
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Parameter Metric Comparison 

Taking results from Kalman Filter based tracker as ground truth and ROO based tracker as 

evaluated results we achieve following comparison. 

Table VIII - Parameter Metric Comparison (Instance-3) 

Ser Item Details 

1 MOTA 0.82 

2 MOTP 0.2 

3 IDF1 0.72 

4 IDSw 173 

5 ML 3 

6 MT 139 

7 Frag 413 

 

Inference Time Comparison 

Table IX - Inference Time Comparison (Instance-3) 

Ser Method Time 

1 Inference Time using Kalman Filter 198.3 ms 

2 Inference Time using ROO 137.7 ms 

 

4.4 Discussion 

Experimental results demonstrate effectiveness of YOLOX-ROO approach for multi-object 

tracking. The following key observations can be made: 

 

Comparable results of Clear Metric 

The ROO-based tracking system achieved comparable results with Kalman filter based 

tracking system.  
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Efficient Trajectory Estimation 

Reduced Order Observer (ROO) provided efficient trajectory estimation by focusing on 

unmeasured states, reducing computational load compared to traditional Kalman Filter. 

Hence, this approach leads to faster processing time without sacrificing accuracy. 

 

Robust Tracking Performance 

Proposed approach demonstrated robust tracking performance with high MOTA and MOTP. 

The number of ID switches and fragmentations was relatively low, indicating consistent and 

reliable tracking even in during occluded environment. 

 

Real-Time Capability 

The system processed video frames at 30 FPS in lesser time duration, achieving real-time 

performance suitability. Applications requiring fast and accurate MOT, such as autonomous 

driving and surveillance may benefit from this approach. 

 

 

  



 

29 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

This study demonstrates successful implementation of ROO-based tracking system for target 

trajectory estimation. This approach surpassed traditional Kalman filter based estimation 

mechanism in terms of inference time. ROO based system is proposed as viable solution for 

utilization in MOT pipeline where real-time performance is valued higher and minor 

variations in accuracy can be ignored. Significant reduction in MOT inference time per frame 

is a contribution in the field due to its rapid requirements and implementation of these 

systems on embedded systems with limited computational resources. 

5.2 Future Work 

A value addition to the research may be done by reducing time utilized in detection of objects  

and appearance learning / matching used for re-identification of objects.  
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