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Abstract

We extend the factorization formalism for a somewhat complex process W+ → B+ℓ+ℓ−

in the non-zero limit of invariant squared-mass of dilepton, q2, at the lowest order in
1/mb up to O(αs), inspired by the investigation of heavy-light meson production within
the context of heavy quark effective theory (HQET) factorization. In current study, we
have extended the HQET factorization formula for the decay W+ → B+ℓ+ℓ− and cal-
culated the form factors up to next-to-leading order (NLO) corrections in αs. We have
shown that the amplitude of decay W+ → B+ℓ+ℓ− can be written into a convolution
between the perturbatively calculable hard-scattering kernel and the non-perturbative
light-cone distribution amplitude (LCDA) defined in HQET. The validity of HQET fac-
torization depends on the assumed scale hierarchy mW ∼ mb ≫ ΛQCD. We calculated
the form factors associated to W+ → B+ℓ+ℓ− process in HQET factorization,revealing
details on its phenomenology. Furthermore, we conduct an exploratory phenomenolog-
ical investigation on W+ → B+ℓ+ℓ− by using the LCDAs with an exponential model
for B+ meson. According to our research, the branching ratio for W+ → B+ℓ+ℓ− is
below 10−10. This channel in high luminosity LHC experiments may serve to further
restrict the value of λB even when the branching ratios are small.

VII
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Chapter 1

Introduction

Standard Model of particle physics is the mathematical framework which describes the
strong, electroweak and electromagnetic interactions between the leptons, quarks and
fundamental particles of Standard Model. It is the result of an immense theoretical and
experimental effort of nearly fifty years. Although it is the most well tested theory of
particle physics, but data from several laboratories show deviation from the predictions
of the SM. To improve the Standard Model, heavy flavour physics specially B-Physics
provides a vital opportunity. CP violation and CKM matrices are the interesting
areas of flavour physics which are not tested with high precision under the SM. CKM
matrices dictate the degree of mixing the quarks mass and weak eigen states in weak
interactions. The weak eigen states are related to mass eigen states by CKM matrix d′

s′

b′

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s
b

 . (1.1)

The numerical values of CKM matrices are calculated experimentally and it is still
a challenge to precisely pin down their values. CP violation is another problem in
particle physics which was first observed in 1964 while studying the neutral K-mesons.
Later on, it was also observed and studied in detail in neutral B-mesons.
Weak decays are the most direct ways to find out the angles of CKM matrix and to
test the flavour sector of SM. On the other side, these transition are important to study
the non-perturbative part of the strong interactions.
Among the decays of B mesons, the exclusive B-decays in particular not only offer an
excellent laboratory to extract the SM parameters or to look for yet-unknown particles
and interactions but also help to pin-down the strong interaction dynamics at different
scales from the Quantum Chormodynamics (QCD) point of view. It has been found
that exclusive B-decays turn to be complicated as far as strong interactions required
to study theoretically through the weak decays of b quark. Indeed, in the past few
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decades, a reasonable number of literature has been devoted to understand the heavy-
light mesons whose underlying weak decays are understandable but the complications
appear during the study of strong interactions for their theoretical elucidation in the
context of perturbative and non-perturbative QCD effects.
For their theoretical description, numerous techniques have been introduced to disen-
tangle perturbative and non-perturbative affects of QCD that relies on the relatively
large mass of the b-quark as compare to the strong interaction scale ΛQCD. Actu-
ally, the mass of bottom quark mb provides a scale at which the strong coupling αs
is smaller such that the short-distance effects are possible to calculate in perturbative
manner. Aiming to deal with non-perturbative effects, various theoretical approaches
are developed. Among them, the QCD factorization has emerged as the predominant
theoretical framework which derives from the first principle [1].
The significant generation of weak gauge bosons at large hadron collider (LHC) is a
source of inspiration to validate the predictions of the SM, search for the new physics
(NP), improve our understanding about QCD dynamics at different regime and also of-
fers opportunities to investigate exclusive hadronic decays. Among these decay modes,
W → Dsγ stands out with the highest branching fraction. The first detailed analysis of
radiative decay process W → Dsγ has been studied decades ago. The upper limit was
set by CDF collaboration with the value BExp(W → Dsγ) < 1.3×10−3. This high-yield
production of W± and Z has been a pivotal driver to unravel their decay characteris-
tics with increased precision. In this context, several exclusive radiative decays of W
and Z bosons into heavy-light meson have been investigated in the standard collinear
factorization [2]. In this factorization, heavy-meson LCDAs appear in the formula are
not completely non-perturbative, as they still entail the hard scale.
Nonetheless, the LCDA of heavy-light mesons defined the HQET framework is en-
tirely nonperturbative which enters in HQET factorization formula. It is noteworthy
to highlight that both types of LCDA associated with heavy-light meson are connected
through perturbatively calculable matching coefficient [3]. The HQET factorization
formula crucially depends on the mass hierarchy: mW ∼ mb ≫ ΛQCD. This hierarchy
ensures that the LCDA’s dependence is confined to the soft scale, consequently, the
LCDAs behavior is not entangled with perturbative effects. This separation of scales,
facilitated by the mass hierarchy, allows for a more tractable and precise description of
the heavy meson HQET LCDA. Notably, the production of heavy-light mesons within
the HQET factorization formalism has been comprehensively addressed in [3] upto
NLO in αs, shedding light on the application of this factorization formula in the study
of these processes. Furthermore, the exclusive production of flavoured quarkonia, such
as W+ → B+

c γ, has also been ivestigated through O(αs) within the NRQCD factor-
ization framework [4].
In view of the kinematical scales involved in the study of hadrons, various types of
theoretical approaches have been built up. QCD factorization is one of the crucial
approach developed by Brodsky and Lepege [5]. it provides a theoretical basis to study
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the QCD effects in exclusive processes.
This factorization helps to write the decay amplitude in term of short distance and
long distance physics. QCD factorization simplifies the weak decays in heavy quark
limit mb ≫ ΛQCD [6]. The heavy quark expansion allows for the study of several areas
of B-physics, including inclusive rates and exclusive semi-leptonic decays. The physical
idea of color transparency explains the relevance of the heavy-quark limit.
Soft QCD interactions decouple from a fast-moving light meson produced from a point-
like source (a local operator in the effective weak Hamiltonian). More precisely, the
couplings of soft gluons to such a system may be assessed by a multipole expansion,
where a power of ΛQCD/mb suppresses the initial contribution (from the color dipole).
Based on the heavy quark expansion, the QCD factorization technique offers the theo-
retical foundation for a systematic investigation of hadronic and radiative exclusive B
decay amplitudes [6].
The factorization framework was initially employed in collider physics experiments like
Deep Inelastic Scattering and hard hadron scattering experiments like the Drell-Yan
process. The explanation of such processes is based on the parton model, which states
that the partons that make up a hadron are mutually free. Such scatterings have total
cross sections equal to a convolution integral of a hard perturbative parton-level cross-
section with a process-independent, non-perturbative parton distribution function [7].
The weak decays amplitudes can be understood under the factorization framework.
There are two types of forces involved in these process.
The HQET factorization formula for the decay process W+ → B+(D+

s )γ has previ-
ously been established in [3] for the scenario where photon is energetic, q− ≫ ΛQCD.
In our study, we extends the decay of W+ → B+(D+

s )ℓ
+ℓ− where we have taken in

account q2 as non-zero (but small), and also q2 is the invariant mass squared of the
ℓ+ℓ− pair originating from the virtual photon. Our primary objective is to perform a
comprehensive calculation of the form factors associated with the W+ → B+(D+

s )ℓ
+ℓ−

process within HQET framework, upto NLO in αs.
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Chapter 2

Factorization

Factorization is a method of separating the long-distance contributions in a process
from the short-distance part, which is solely dependent on a large scale mb. The
computation of the short-distance part may be expressed as a series expansion in the
strong coupling αs(mb). The long-distance contributions must be calculated using non-
perturbative methods or established via experimental approaches. The benefit lies in
the fact that these non-perturbative elements often exhibit a simpler structure com-
pared to the original quantity, or they are not influenced by the specific process [1].
When considering the weak decays of heavy-light mesons, there are three primary kine-
matic scales. Specifically, the scales of interest are the masses of the weak boson mW ,
the heavy quark mb (in this instance, the b quark), and the scale of non-perturbative
QCD interactions ΛQCD. When examining this process at the heavy quark limit, these
scales exhibit a hierarchical structure as follows:

mW ≫ mb ≫ ΛQCD (2.1)

The weak interactions give rise to hadronic processes that can be described by the
following form:

A (B → M1M2) =
GF√
2

∑
i

λiCi(µ)
〈
M1M2 |Oi|B

〉
(µ) (2.2)

The four fermion effective coupling is denoted asGF , the CKM elements are represented
by λi, and the short distance Wilson coefficients of the long distance effective operators
Oi(µ) are denoted as Ci. The most challenging theoretical task is to calculate these
elements of a matrix or, at the very least, to simplify them into more manageable
non-perturbative entities. There are different approaches to simplify this difficulty [1].
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2.1 Naive factorization

The first method, referred as "naive factorization", involves substituting the matrix el-
ement of a four-fermion operator in a heavy-quark decay with the product of the matrix
elements of two currents [8]. An appropriate decay process to start the conversation
would be

B → π+π−

under naive factorization we can write as〈
π+π− ∣∣(ūb)V−A(d̄u)V−A

∣∣ B̄d

〉
→
〈
π− ∣∣(d̄u)V−A

∣∣ 0〉〈π+
∣∣(ūb)V−A

∣∣ B̄d

〉
(2.3)

By this way, the matrix element has been simplified into the product of decay constant
and form factor of B̄ → π+. Due to gluon exchange, the π− and

(
B̄π+

)
system might

interact, resulting in non-factorizable gluon contributions. This interaction can only
be ignored if the virtual gluon is below the µ ∼ mb.

2.2 QCD Factorization

The factorization of decay amplitude of heavy-light mesons into a convolution of hard
kernel (T ) and light cone distribution is possible due to the existence of widely sep-
arated kinematics scales. The B meson is considered the hydrogen atom in the field
of quantum-chromodynamics (QCD), being the most basic non-trivial hadron. In the
leading approximation, the b quark remains stationary at the origin and generates a
chromo-electric field. Light degrees of freedom like gluons and light quarks moves in
external fields [9].
The usual mass and energy scales used in the creation of B mesons are mb = 4.8 GeV,
mW = 80 GeV, and the momentum scale of the non-perturbative QCD interaction
ΛQCD = 0.2 GeV. The two-meson final state determines the factorization characteristics
of non-leptonic decay amplitudes. A meson is considered "light" if, at the heavy-quark
limit, its mass m does not become infinite. If we suppose that the mass scale of a
meson within mb in heavy-quark limit, i.e., m/mb remains constant, then we conclude
that meson is heavy. For a light meson, it is still possible to have m≫ ΛQCD.
In the heavy-quark limit, we examine weak decays B → M1M2 and segregate decays
into final states that include either one heavy meson and one light meson or two light
mesons [1]. The factorization formula takes the following form in the case of both
mesons M1 and M2 are light mesons〈

M1M2 |Oi| B̄
〉
=
∑
j

FB→M1
j

(
m2

2

) ∫ 1

0

duT Iij(u)ΦM2(u) + (M1 ↔M2)

+

∫ 1

0

dξdudvT IIi (ξ, u, v)ΦB(ξ)ΦM1(v)ΦM2(u)

(2.4)
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Lets suppose M1 is heavy and M2 is light meson, in this case the factorization formula
takes the form [1]

〈
M1M2 |Oi| B̄

〉
=
∑
j

FB→M1
j

(
m2

2

) ∫ 1

0

duT Iij(u)ΦM2(u) (2.5)

The factorization formula graphical representation can be illustrated as

Figure 2.1: Factorization formula graphical representation

F
B→M1,2

j (m2
2,1) is a B → M1,2 form factor, ΦX(u) is the light-cone distribution am-

plitude for the quark-antiquark fock state of X meson. T Ij (u) and T IIj (ξ, u, w) are
hard-scattering kernels, which are calculated perturbatively. The hard-scattering ker-
nels and LCDAs are factorization scale dependant. Finally, m1,2 denote the light meson
masses [1].

2.3 Non-Perturbative Quantities

Non perturbative region is the region where strong forces dominate and coupling is
strong enough to make the bound states. Due to strong coupling constant, we can no
longer expand the theory perturbativily in term of coupling constant.

2.3.1 Form Factors

The weak hadronic current’s matrix elements include certain scalar functions of the
four-momentum transfer squared, q2, referred to as form factors. These previously
unidentified functions are intended to include all information on the modifications of
the fundamental weak interaction caused by "virtual" strong interactions. Likewise, the
matrix components of meson decays may be represented using established kinematic
quantities and first unidentified form factors that characterize the "virtual" effects
of strong interactions. To get a full understanding of weak processes, it is essential
to possess understanding of the associated form factors. This entails the ability to
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compute the strong interaction effects that these form factors represent [10].
Form factors are made up of independent components that are produced by applying
gauge symmetry and Lorentz decomposition to current matrix elements. Two scalar
form factors are used in QCD factorization to parameterize the vector currents’ matrix
elements: FB→P

+

(
q2
)

and FB→P
0

(
q2
)
. The vector matrix element B to pseudo-scalar

(P) is parameterized as

〈
P(k) |q̄γµb| B̄(p)

〉
= FB→P

+ (pµ + kµ) +
[
FB→P
0 − FB→P

+

] m2
B −m2

P

q2
qµ (2.6)

Here, q represents the difference in momentum among the two mesons. The two form
factors become about equal as the difference in momentum among the final and first
mesons approaches zero. The previously mentioned form factors are referred to as
physical form factors. Using these form factor are beneficial since they are connected
to measurable quantities or with other form factors derived from LQCDs or QCD sum
rules.

2.3.2 Light Mesons LCDA’s

The momentum distribution for light mesons is determined by their corresponding
Light-Cone Distribution Amplitudes (LCDA’s) in exclusive processes. This is compa-
rable to Parton distribution functions for inclusive processes. Typically, they refer to
matrix components of a two-quark bi-local operator between vacuum and meson states.
The primary twist light-cone distribution amplitudes (LCDA’s) for Pseudo-scalar (P),
longitudinally polarized Vector (V||), and transversely polarized Vector (V⊥) mesons
are shown below, inside the heavy quark limit.〈

P(q)
∣∣q̄(y)αq′(x)β

∣∣ 0〉∣∣∣∣
(x−y)2=0

=
ifP
4

(
/qγ5

)
βα

∫ 1

0

duei(ūqx+uqy)ΦP (u, µ),〈
V∥(q)

∣∣q̄(y)αq′(x)β
∣∣ 0〉∣∣∣∣

(x−y)2=0

= −ifV
4
/qβα

∫ 1

0

duei(ūqx+uqy)Φ∥(u, µ),〈
V⊥(q)

∣∣q̄(y)αq′(x)β∣∣ 0〉∣∣∣∣
(x−y)2=0

= −ifT (µ)
8

[
̸ ϵ∗⊥, /q

]
βα

∫ 1

0

duei(ūqx+uqy)Φ⊥(u, µ)

(2.7)

The form factors of their respective mesons are denoted as fP,V||,V⊥(µ) representing the
mesons.

2.3.3 B-Mesons LCDA defined in QCD

Since LCDAs are defined using light-cone coordinates, detailed descriptions of these
coordinates are provided in Chapter 4 with thorough explanations. The motivation for
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the inclusion of the B meson Light-Cone Distribution Amplitude (LCDA) in the QCD
factorization framework is the hard interaction of spectator quark. The hard spectator
interaction term is determined by the dot product of p′ and l, where p′ represents
the momentum of the light meson and l represents the momentum of the spectator
quark. Since only the p′− component of the light meson momentum is non-zero, the
dot product p′ · l may be simplified to p′−l+. The decay amplitude of the two-particle
Fock state of the B meson is given by:

ΨB(z,p) =
〈
0
∣∣q̄α(z)[z, 0]bβ(0)∣∣ B̄d(p)

〉
=

∫
d4l

(2π)4
e−ilzΨ̂B(l, p) (2.8)

The symbol Ψ̂B denotes the complete Bethe-Salpeter wave function, whereas [z, 0]
symbolizes the Wilson line, which guarantees the bi-local gauge invariance of the matrix
element. Subsequently, estimating the result as∫

d4l

(2π)4
A(l, . . .)Ψ̂B(l, p) =

∫
dl+A

(
l+, . . .

) ∫ d2l⊥}textdl−

(2π)4
Ψ̂B(l, p) (2.9)

At leading order B meson LCDA can be expressed using two scalar wave functions:〈
0
∣∣q̄α(z)[z, 0]bβ(0)∣∣ B̄d(p)

〉
= −ifB

4
δij
[
(̸ p+mb) γ5

]
βγ

×
∫ 1

0

dξe−iξp
+z−

[
ΦB1(ξ) + /n−ΦB2(ξ)

]
γα

(2.10)

The re-normalization conditions are∫ 1

0

dξΦB1(ξ) = 1,

∫ 1

0

dξΦB2(ξ) = 0 (2.11)

where ξ ≡ l+/p+ is the s longitudinal momentum fraction of spectator quark. one can
neglect the difference of B-meson and b-quark at the leading order in O(1/mb)
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Chapter 3

Heavy Quark Effective Theory

In this chapter, we will discuss heavy quark effective field theory and motivation behind
it. We will derive Feynman rules of HQET to solve the heavy quark b wave function
correction. LCDA’s of B Meson will also be defined in HQET.
There are total six quarks in SM. Three of them are heavy quarks named as top t,
bottom b and charm c quarks. Their masses are very large then the ΛQCD scale where
quarks are in bound state. Top quark physics can accurately be predicted perturbativily
since mtop >> ΛQCD. For bound state of other two quarks b and c we can use the heavy
quark limit, by expanding the ΛQCD/mb and ΛQCD/mc respectively. For light quarks
mesons, mq < ΛQCD and so we can use the limit mq = 0. Under this limit, QCD
Lagrangian is reduced to low energy chiral Lagrangian where mq is the mass of light
quark.

3.1 Physical picture of HQET

In heavy quark limit, the heavy light mesons are very similar to the hydrogen atom. To
proceed the discussion, we will discuss B-meson. Just like in hydrogen atom, proton
is static and electron is revolving around it under the Coulomb potential which is
provided by the proton. In B-meson, the b-quark behaves like the proton and is at rest
and anti-up quark is very light as compare to the b, so it does behave like electron. But
as the QCD is strongly coupled at low energies, we cannot directly relate the Coulomb
potential to the Strong force potential. QCD can represent the interactions between
gluons and all types of quarks, but for heavy-light mesons, HQET is a more appropriate
approximation. This works due to the substantial disparity in mass between one of
the constituent quarks and the other quark, as well as the interchange of momentum
that keeps the meson bound together. The effective theory is obtained by taking the
limit of heavy quark mass in QCD, mQ → ∞, resulting in the emergence of fascinating
symmetries like heavy quark spin symmetry [11].
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The spin of B-meson (bū) is 1
2
⊗ 1

2
= 0 ⊕ 1. The leading order spin state-0 is of

B-meson and NLO spin state-1 triplet state is of B∗ which is the excited state of
B-meson. The mass difference in these two states is analogous to the energy states
difference between the S (spin singlet) and P(spin triplet) states of hydrogen atom in
fine structure. Experimentally determined mass difference between these two states
are 44MeV. At leading order ΛQCD/mb, the B-meson is is independent of spin and both
B and B∗ are in degenerate state. This is known as Heavy quark-spin symmetry [7]
Other then spin symmetry, there is another important symmetry called Heavy quark-
flavor symmetry where we take the limit mQ → ∞. At this limit the heavy quark
is stationary and acts as the stationary source of gluons. At leading order 1/mQ,
the dynamics is independent of the flavour of the quark and it puts very important
constrain on heavy hadron physics [11].

3.2 Heavy quark symmetry

For a number of reasons, the strong interactions in systems with heavy quarks are
easier to understand than one with light quarks only. Asymptotic freedom, or the
weakening of QCD’s effective coupling constant in processes involving substantial mo-
mentum transfer, which corresponds to interactions at small distance scales, is one
crucial feature.

αs
(
Q2
)
=
g2eff
(
Q2
)

4π
=

12π(
33− 2nf

)
ln(Q2/Λ2

QCD)
(3.1)

The effective coupling constant exhibits a drop as the value of Q2 increases, resulting in
a weakening of strong interactions at shorter distances. At large distances (with a small
Q2), the coupling becomes strong, results in nonperturbative effects like confinement of
quarks and gluons on a long scale Rhad ∼ 1/ΛQCD ∼ 1fm. For heavy quark he effective
coupling constant αs(mQ) is quite small. The scale is comparable to the Compton
wavelength λQ ∼ 1/mQ.
The complexity of systems consisting of a heavy quark and other light components is
heightened. The overall size of these systems are dictated by RHad, and the typical
momenta transferred between the heavy and light elements are of order ΛQCD.

mQΛQCD → λQ ≪ Rhad (3.2)

To determine the quantum numbers of the heavy quark, a rigorous investigation using
a Q2 ≥ m2

Q would be necessary. The gluons that form soft couplings with the "brown
muck" are limited to resolving distances much greater than λQ. Hence, the degrees of
freedom associated with light are independent of the flavor(mass) and spin orientation
of the heavy quark. They just see the colour force, which spans large distances be-
cause to confinement. In the rest frame of the heavy quark, the electric colour field is

10
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the only significant factor, whereas relativistic phenomena such as colour magnetism
diminish as the mQ → ∞ increases. The decoupling of the heavy quark spin occurs
due to its exclusive involvement in interactions mediated by relativistic processes. The
insignificance of the heavy quark mass may be seen in the following manner: Therefore,
at the mQ → ∞ limit, hadronic systems that vary just in the flavour or spin quantum
numbers of the heavy quark possess identical light degrees of freedom configurations.

3.3 HQR Mechanism

The primary goal of HQR is to give an accurate picture in the heavy quark limit for
generation of hadrons with heavy flavors. This entails distinguishing between the ef-
fects of hadrons at O(ΛQCD) and the dynamics of order mb or higher. However, HQR
no longer differentiates between the hard-scattering scale that is peculiar to the pro-
cess, such as Q and mb.
The basic idea underlying this process is extremely simple: in a hard scattering, there
is a significant chance that the heavy quark will combine with a spectator quark.
This process is relatively soft at rest, creating a heavy-light hadron. The HQR for-
malism alone includes a single nonperturbative component. In this context of the
color-singlet channel, where the difference between inclusive and exclusive generation
of heavy hadrons is minimal at the lowest order. According to HQET, this factor is
exactly proportional to the B meson LCDA’s first inverse moment [3].
The parton recombination model created by Das and Hwa in 1977 is where the word
"recombination" in high energy physics first appeared. The purpose of this model was
to describe how mesons are produced in hadronic collisions at low p’. In this case, the
momentum of a valence particle in one of the colliding hadrons provides the bulk of
the momentum of the meson. Recombination of a sea parton obtained from the same
hadron with a valence parton yields the meson. Similar processes result in the pro-
duction of heavy mesons by recombination, where a valence parton can impart a large
amount of its momentum to the heavy meson. However, in this particular scenario,
the valence parton interacts with a heavy quark generated during the process of hard
scattering [12].

3.4 HQET Lagrangian

Consider an effective field theory where heavy symmetries is exact. Consider the mo-
mentum of B-meson is pµ which can be decompose as

pµ = mQv
µ + kµ (3.3)

where vµ is 4-velocity and v2 = 1. kµ is the momentum of all other soft degrees in
B-meson and kµ ∼ ΛQCD. If we consider to shift kµ → kµ+∆kµ, and 4-velocity changes
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as vµ → vµ −∆kµ/mQ then at leading order 1/mQ, the interactions can only change
vµ by the factor of ΛQCD/mQ. So the velocity is unique at leading order and becomes
quantum number for heavy quark effective field theory [7].
The QCD Lagrangian is given as

LQCD = Ψ̄(i /D −mQ)Ψ (3.4)

where /D is covariant derivative and mQ is the mass of heavy quark. The QCD field
Ψ = e−imQv·x(ψv+χv) where ψv is particle spinor and χv is anti-particle spinor. e−imQv·x

filters out the hard degrees of freedom from soft degrees of freedom in bound state.
Dirac equation for heavy quark can be written as

(mQ/v + k)Ψ = mQΨ (3.5)

We can expand it in term of mass as(
1− /v − k/mQ

)
Ψ = 0 (3.6)

To satisfy the Eq 3.4, both spinors have to satisfy the following equations1 + /v + k
mQ

2

Ψ = ψv and

1− /v − k
mQ

2

Ψ = χv (3.7)

Term k/mQ is suppressed due to heavy quark mass limit mQ → ∞. The term 1 ± /v
acts like a projection operators to project out the particle and anti particle spinors
when acts on heavy quark field Ψ. From Dirac field we can conclude that

ψv ≈
(
1 + /v

2

)
Ψ and χv ≈ 0 (3.8)

This shows that pair production is not allowed in HQET as anti-particle spinor is
suppressed. So we can write the heavy quark field as Ψ = e−imQv·xψv and QCD
Lagrangian can be expressed as

LHQET = eimQv·xψ̄v(i /D −M)e−imQv·xψv (3.9)

Covariant derivative /D is given as

/D = /vv ·D + /D⊥ (3.10)

LHQET =eimQv·xψ̄v
(
iγµ(∂µ + igAµ) + i /D⊥ −mQ

)
e−imQv·xψv (3.11)

LHQET =ψ̄v
(
−(1− /v)mQ + iv · (∂ + igA)

)
ψv (3.12)
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and we have shown above that anti-spinor is suppressed so (/v − 1)ψv = 0. At leading
order in mQ, the effective Lagrangian takes the following form [13, 11]

LHQET = ψ̄v(iv ·D)ψv +O
(
1/mQ

)
(3.13)

There is no mass of heavy quark involved in Lagrangian which is due to the heavy
quark flavour symmetry. Under this symmetry, there is no way to distinguish between
the different heavy quarks flavours as we have discussed above. There is no gamma
matrices involved in HQET Lagrangian showing that its SU(2) Lagrangian [13, 11].

3.5 Feynman rules of HQET

The HQET Lagrangian can be written explicitly as

LHQET = iψ̄vv · ∂ψv + igψ̄vv · Aψv (3.14)

One can get the Feynman rules from this lagrangian as heavy quark propagator gives
1
v.p
δij and heavy quark- gluon vertex gives −igT avµ. We can directly calculate these

Feynman rules as from simple Feynman propagator. The Feynman propagator is given
as

/p+mQ

p2 −m2
Q

δij (3.15)

where

pµ =mQv
µ + kµ (3.16)

So the Eq 3.15 becomes

=
/v + 1 + k

mQ

2v · k + k2

mQ

δij (3.17)

and we get our propagator with the projection operator

=
/v + 1

2v · k
δij +O

(
k/mQ

)
(3.18)

For quark gluon vertex, consider QCD vertex as igγµT a. We can write it in HQET as
follow

=
1 + /v

2
γµ

1 + /v

2
(3.19)

and we can simplify it as
= −igT avµ (3.20)
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3.6 Heavy Quark Self Energy Diagram

Consider the following self energy diagram

Figure 3.1: Heavy quark self energy diagram with outgoing loop momentum l

By using the derived Feynman rules in section 3.5 we can write amplitude of above
diagram as following

ΣQ = −CFg2µ2ϵ

∫
dDl

l2
v2

[v · (p− l)]
(3.21)

by using Feynman parametrisation technique to simplify the denominator

1

AB
=

∫ ∞

0

dy
1

(A+ yB)2
(3.22)

With the help of this formula, we can write the amplitude in this way considering
v2 = 1.

ΣQ = −CFg2µ2ϵ

∫ ∞

0

dx

∫
dDl

1

(l2 + xv · (p− l))2
(3.23)

We can integrate the loop momenta by using [14]∫
dDl

1

[l2 + 2l ·Q−R2]n
=

(−1)niπD/2Γ(n−D/2)

Γ(n)[Q2 +R2]n−D/2
(3.24)

where D = 4 − 2ϵ, l is our loop momentum, Q2 = y2

4
and R2 = −yv.p. This simple

propagator reduced to the following result by using Eq 3.24

ΣQ = iπ
3
2
−ϵµ2ϵΓ(1− ϵ)Γ

(
ϵ− 1

2

)
Γ(ϵ)

(
− 1

p.v

)ϵ
(−p.v)1−ϵ (3.25)
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by expanding this result in the power of ϵ we can write it out as

ΣQ = 2p.v

(
1

ϵ
+ 2 log(µ) + log

(
− 1

p.v

)
− log(−4πp.v) + 2

)
(3.26)

The first term 1
ϵ

is UV divergence and will be cancelled out by adding the counter term
diagram so we are left with the heavy quark self energy diagram result as

ΣQ = 2p.v

(
2 log(µ) + log

(
− 1

p.v

)
− log(−4πp.v) + 2

)
(3.27)

3.7 Re-normalization of HQET Propagator

Bare heavy quark field contains the counter term

ψ0 =

(
1 +

δψ
2

)
ψ (3.28)

The bare propagator is given as [15]

G0 = ZψG (3.29)

where Z is the counter term. Consider the following 1IP loop diagram

Figure 3.2: (a) Self energy of single heavy quark. (b) Calculating the total heavy
quark propagators by considering both the tree level and up to N 1PI self energy loop
corrections.
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By taking the sum of the increasing number of loops as shown in Fig 3.2 (b)

iG0 =
i(1 + /v)

v · k
+
i(1 + /v)

v · k
∑
Q

+
i(1 + ψ)

v · k
+ . . . (3.30)

We can express this sum up this series as geometric series and we get the following
result

iG0 =
i(1 + /v)

v · k

 1

1 +
(1+/v)

∑
Q

v·k

 (3.31)

So we can express the re- normalized propagator as

iGR =
1

1 + δψ

i(1 + /v)

v · k + (1 + /v)
∑

Q

(3.32)

By expanding only in first order of ϵ, we can write the re-normalized propagator as

iGR =
i(1 + /v)

v · k + (1 + /v)
∑

Q+δψv · k +O
(

1
ϵ2

) (3.33)

Only divergence of order 1
ϵ

has been retained in counter term.

3.8 HQET Factorization for Radiative B Decay

In order to concentrate on the fundamental aspects of the topic, we will confine our
attention to a more straightforward process B → γlν̄l outlined in [16]. The factorization
of the given process involves just the hard photon and weak boson as the final states.
The factorization of this is carried out at the tree level and includes QCD corrections
up to the first order gluon loop. As a result of the lack of mesons i n the final state, the
HQET factorization formula for this simply comprises the second convolution integral.

M =

∫ ∞

0

dω T II(ω, µF )Φ(ω, µF ) +O(1/mb) (3.34)

where ω represents the momentum of the light quark, whereas µF denotes the factor-
ization scale that distinguishes between the long and short distance physics. Therefore,
it may be represented as a expression that is organized by order by order.

M(0) +M(1) + . . . = Φ(0) ⊗ T (0) + Φ(1) ⊗ T (0) + Φ(0) ⊗ T (1) + . . . (3.35)

It can be shown that factorisation is valid up to one loop order and does not need
reliance on any transverse components.
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3.8.1 Light Cone Distribution Amplitudes (LCDAs) in HQET

When in hard exclusive QCD processes the internal composition of hadrons when ex-
amined is known as light-cone distribution amplitudes (LCDAs). These factors are
non-perturbative and play a crucial role in the theory and in the study of strong in-
teractions. LCDAs of heavy hadrons are used in many computations, such as the
generation of heavy hadron pairs, as well as in the examination of symmetry relation-
ships between the form factors that describe the transitions between heavy and light
mesons [17] .
B-meson light cone distribution amplitude (LCDA) is an essential nonperturbative fac-
tor that consistently appears in different exclusive B decay processes. The entity that
enters the B exclusive production process in the HQET factorization framework is iden-
tical. Let’s examine the co-relator consisting of the light spectator quark and b-quark.
They are separated at a light-like distance, enclosed in a vacuum with B meson moving
with velocity of v. The most general way to express it is in the following manner[3]

〈
B(v)

∣∣ūβ(z)[z, 0]hv,α(0)∣∣ 0〉 =
if̂BmB

4

{[
2ϕ̃+

B(t)−
/z

t

(
ϕ̃−
B(t)− ϕ̃+

B(t)
)] 1− /v

2
γ5

}
αβ

where z2 = 0, the product of v and z the is defined as variable t, and ϕ+
B represents

a pair of nonperturbative functions that depend on t. u represents the standard QCD
field for the u quark. hv denotes the b quark field with the velocity label v introduced
in HQET. α and β represent spinor indices. fB represents the decay constant of the B
meson, which is specified in HQET as following [3]

⟨B(v)|ūγµγ5hv|0⟩ = if̂BmBv
µ (3.36)

B-meson decay factor f̂B upto one loop is given as [3]

f̂B(µF ) =

[
1 +

αsCF
4π

(
3 ln

µF
mb

+ 2

)]
fB (3.37)

The term [z, 0] denotes the Wilson line, which is used to guarantee bi-local gauge
invariance of the matrix element.

[z, 0] = P exp

[
−igs

∫ z

0

dξµAaµ(ξ)t
a

]
(3.38)

The expression ta (a = 1, . . . , 8) represents the generators of SU(3) in the basic repre-
sentation, while P denotes the path ordering.
When the hard-scattering kernel T is computed using fixed-order perturbation theory,
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only the logarithmic moments of the light-cone distribution amplitude (LCDA) are
examined. In momentum space, B meson LCDA can be expressed as

Φ±
B(ω) ≡ if̂BmBϕ

±
B(ω) =

1

v±

∫
dt

2π
eiωt

〈
B(v)

∣∣∣ū(z)[z, 0]/n∓γ5hv(0)
∣∣∣ 0〉∣∣∣∣∣

z+,z⊥=0

(3.39)

where the pair of B-meson LCDAs are defined as

ϕ±
B(ω) =

∫ ∞

0

dt

2π
eiωtϕ̃±

B(t) (3.40)

Both quantities Φ±
B(ω) are scale dependant and are evolved by Lange-Neubert equation

[18]

d

d lnµ
ϕ+
B(ω, µ) =− αsCF

4π

∫ ∞

0

dω′

{(
4 ln

µ

ω
− 2

)
δ
(
ω − ω′)− 4ω

[
θ (ω′ − ω)

ω′ (ω′ − ω)

+
θ (ω − ω′)

ω (ω − ω′)

]
+

}
ϕ+
B

(
ω′, µ

)
(3.41)

Where µ is the our normalization scale and it usually ranges 1GeV ≤ µ ≤ mb.

3.8.2 Momentum Space Projector of B Meson

Consider Eq 3.36, If we choose the pre factors such that z = 0 and ϕ̃+
B(t) = ϕ̃−

B(t) = 0
By using identity given as∫

d4z M(z)T (z) =

∫
d4k

(2π)4
T (k)

∫
d4z e−ikzM(z) =

∫ ∞

0

dk+MBT (k)

∣∣∣∣
k=kn−

(3.42)

here M(z) is the position space projector and T (z) is hard scattering kernel in position
space. In order to get the position space operator for the B meson from Eq 3.42, we
first break down the momentum k into light cone components.∫

d4zM(z)T (z) =
if̂BmB

4

{(
1− /v

2

)∫ ∞

0

dω
[
2ϕ+

B(ω)+∫ ω

0

dη
(
ϕ−
B(η)ϕ

+
B(η)

)
γµ

∂

∂kν

]
γ5

}
αβ

Tαβ(k)

∣∣∣∣
k=ωv

We can write the Hard scattering kernel amplitude in heavy quark limit as

T (k) = T (0)(k+) + k⊥T
(1)
µ (k+) (3.43)
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By decomposing partial derivative ∂
∂k

into light cone we can get the B-meson space
projector from ??

Mαβ
B =

if̂BmB

4

{
1− /ν

2

[
Φ+
B(ω)/n

+ + Φ−
B(ω)/n

−

−
∫ ω

0

dη
(
Φ−
B(η)− Φ+

B(η)
)
γµ

∂

∂kν⊥

]
γ5


αβ

(3.44)

3.8.3 Phenomenological Parameters of B Meson

We can write the form factors in term of some unique integrals which are known as
inverse moments. The first inverse moment is given as [3]

λ−1
B (µ) ≡

∫ ∞

0

dω

ω
ϕ+
B(ω, µ) (3.45)

and logarithmic inverse movements are given as

λ−1
B σB,n(µ) ≡ −

∫ ∞

0

dω

ω
lnn

ω

µ
ϕ+
B(ω, µ) (3.46)

We have used till 2nd logarithmic moment. ϕ+ depends on scale µF , which is fac-
torization scale typically ranges from 1GeV to mb. The evolution of Φ+ is given by
Lange-Neubert equation.
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Chapter 4

Factorization of the Amplitude
W+ → B+γ

To calculate the vector and axial vector form factors which appear in amplitude while
writing it under given symmetries of theory, we calculate the Feynman amplitude at
LO and NLO and then calculate LCDAs. By writing the Feynman amplitude in the
form of convolution, we calculate the hard scattering kernel at LO and NLO. After
calculating both LCDAs and hard kernel at LO and NLO, we calculate both form
factors.
In this chapter, the radiative production of heavy light meson B is studied in the
following decay

W+ → B+γ

We calculate the Feynman amplitude in full QCD and LCDAs are calculated either in
HQET or in QCD at LO and NLO. We write the full amplitude in term of convolution
of hard scattering kernel and LCDAs. One loop gives rise six topological diagrams and
every diagram corresponds to its own LCDAs and hard kernel. Final hard scattering
kernel is the sum of all six hard kernels.
The hadronic matrix element can be written in term of factors as

M
(
W+ → B+γ

)
=

eue
2Vub

4
√
2 sin θW

(
ϵµναβ

P µqνεαW ε
∗β
γ

P · q
FV + iεW · ε∗γFA

)
(4.1)

4.1 Kinematics of process

We can define the kimatics of this process in both frame of references, In B-meson rest
frame or in W boson rest frame. For the sake of simplicity, we work in mass dimensions.
W boson decays into B meson and hard photon. To conserve the momentum, both B
meson and photon are in opposite direction to make the final momentum zero.
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4.1.1 In W boson rest frame

Consider the W boson is in rest frame, decaying into the B meson moving in positive
x axis of light cone coordinates and photon is moving in opposite direction for the
conservation of momentum.
Four momenta of particles in W rest frame is given as follow

Kµ = (mW ,
−→
0 )

P µ = (EB,
−→p )

qµ = (Eγ,
−→q )

We can write at due to conservation of momentum

Kµ = P µ + qµ

and as we are working in W rest frame

Kµ = (mW , 0⃗)

which allows to write the four momenta as

P µ
B =

(
m2
W +m2

B

2mW

, 0, 0,
m2
W −m2

B

2mW

)

qµ =

(
m2
W −m2

B

2mW

, 0, 0,
m2
B −m2

W

2mW

)
The light cone representation of a vector is given as

nµ =
1√
2
(1, 0, 0, 1)

and
nµ =

1√
2
(1, 0, 0,−1)

A vector in light cone basis can be given as

V µ = (V · n)nµ + (V · n)nµ + V µ
⊥ = V µ

+ + V µ
− + V µ

⊥ (4.2)

In these basis, the momenta defined above can be expressed as following

Kµ =
1√
2
(mW ,mW , 0)

P µ
B =

1√
2

(
mW ,

m2
B

mW

, 0

)

qµ =
1√
2

(
0,mW − m2

B

mW

, 0

)
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4.1.2 In the rest frame of B meson

HQET is defined in B meson rest frame, So we can consider B meson in rest and W
boson and photon are moving in opposite direction. The photon is boosted along −z
axis. The photon momentum is B rest frame is invariant given as

qµ = (Eγ, 0, 0,−q⃗z) (4.3)

and
P µ = (mB, 0, 0, 0) (4.4)

qµ =

(
m2
W −m2

B

2mW

, 0, 0,
m2
B −m2

W

2mW

)
(4.5)

In light cone representation, we can write as

P µ
B =

1√
2
(mB,mB, 0) (4.6)

qµ =

(
0,
m2
W −m2

B

mW

, 0

)
(4.7)

B meson is made up of b̄ and u quark. The total momentum is split between both of
them. The u quark mass is 0.001GeV ∼ O(ΛQCD)
So the mass hierarchy is given as

mW ∼ mb ≫ ΛQCD

4.2 Tree Level Amplitude

There are three possible tree level diagrams for the decay. The leading order contri-
bution only comes from Fig 4.1 (a). Other two diagrams are suppressed by O(1/mb)
and O(1/m2

W ) respectively .The Feynman amplitude of leading order diagram can be
written as

M(0) =
eue

2Vub

4
√
2 sin θW

(
−i
ϵµναβv

µnν−ε
α
W ε

∗β
γ

v+
+ εW · ε∗γ

)∫ ∞

0

dω

ω
δ
(
k+/v+ − ω

)
(4.8)

one can get the Leading order level hard kernel as following

T (0)(ω) =
eue

2Vub

4
√
2 sin θW

(
−i
ϵµναβP

µqνεαW ε
∗β
γ

P · q
+ εW · ε∗γ

)
1

ω
(4.9)
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Figure 4.1: Possible Feynman diagram at tree level

Figure 4.2: LCDA at tree level

For factorization to be valid, the hard scattering kernel must be independent of the IR
effects of initial state [16]. So we can choose any state according to our own convenience.
The fock space expansion of B meson is given as [19]

|B⟩ = |bq⟩+ |bgq⟩+ . . .

The same hard kernel is associated to all fock states. Now we can calculate form
factors at LO by comparing the tree level convolution with hadronic matrix amplitude.

F
(0)
A = F

(0)
V = f̂BmB

∫ ∞

0

dω

ω
ϕ+
B(ω) =

f̂BmB

λB
(4.10)

The equality of these two form factors is due to the heavy quark spin symmetry.

4.3 One Loop level Amplitude

At one loop level, there are six Feynman diagrams as shown in Fig 5.3 which can
contribute to NLO amplitude. The corresponding NLO LCDAs diagrams NLO to
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QCD diagrams are shown in Fig 4.3. The final hard kernel T (0) from all these diagram
can be expressed as [3]

Figure 4.3: One loop QCD diagrams

T (1) (ω,mb, µF ) =
αsCF
4π

{
ln2 2q

−v+ω

µ2
F

− 2 ln2 mb

µF
+

(
5− 4 ln

1− r
r

)
ln
mb

µF

+ 2Li2(r) + ln2 r −
(
2 ln

1− r
r

− 3 + r
)
ln

1− r
r

+
π2

12
− 7

−iπ

[
2 ln

2q−v+ω

µ2
F

− 4 ln
mb

µF
− r − 4 ln(1− r) + 2 ln r + 3

]T (0)

(4.11)

24



25

Figure 4.4: The corresponding NLO LCDAs diagrams to NLO QCD diagrams

The NLO form factors FA/V associated to NLO hard kernel are

F
(1)
V = F

(1)
A = F

(0)
V/A

∫ ∞

0

dω

ω

T (1)(ω)

T (0)(ω)
ϕ+
B(ω)

= F
(0)
V/A

αsCF
4π

{
− ln2 mb

µF
− ln

mb

µF

(
2 ln

1− r
r

− 2

)
+ 2Li2(r)− ln2(1− r)

+ 2 ln r ln(1− r) + (3− r) ln
1− r

r
+
π2

12
− 5− 2σB,1

(
ln

1− r
r

+ ln
mb

µF

)
−σB,2 + iπ

[
2 ln

mb

µF
− 3 + r + 2 ln(1− r) + 2σB,1

]}
(4.12)

where r ≡ m2
b/m

2
W , σB,1 and σ2 are defined in Eq 3.46
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Chapter 5

Factorization of the Amplitude
W+ → B+ l+l−

In this chapter we study the factorization of the radiative decay W+ → B+ l+l−.
There are six one loop diagrams associated to this decay at NLO. These six diagrams
are solved either in HQET factorization or in QCD factorization. To check the validity
of the HQET factorization for this decay, we will find out the two form factors FV/A
to see either they are equal or not. The equality of these form factors is the validity of
HQET factorization.

5.1 Kinematics of decay

As discussed in section 4.1, we can define our kinematics in either W or B frame of
reference. Again both B meson and hard photon are moving in opposite direction to
keep momentum conserve. The kinematics of this decay is bit different from previous
decays as q2 is no longer zero.

5.1.1 In W rest frame

Consider W boson is in rest and B meson and a virtual photon of momentum q2 moves
opposite in z axis. By using conservation of four momentum, we can write as

P = K − q

We can write the qz of the virtual photon momentum as

qz =
√
E2
γ∗ − q2
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qz =

√√√√(m2
W + q2 −m2

B

2mW

)2

− q2

This result can be simplified as

qz =

√
λ

2mW

(5.1)

Where λ ≡ m4
B +

(
m2
W − q2

)2 − 2m2
B

(
q2 +m2

W

)
. In light cone coordinates we can

write it as

qµW =

(
m2
W + q2 −m2

B −
√
λ

2mW

,
m2
W + q2 −m2

B +
√
λ

2mW

, 0⊥

)
(5.2)

where q2 is the momentum of virtual photon. In the limit of q2 = 0, we can reproduce
the results given in 4.1.1

5.1.2 In B-meson rest frame

By conservation of momentum we can write as

K = P + q

The qz is given as
qz =

√
E2
γ∗ − q2

and we can simplify the result as

qz =

√
λ

2mB

(5.3)

So we can define virtual photon momentum in light cone coordinates as

qµB =

(
m2
W − q2 −m2

B −
√
λ

2mB

,
m2
W + q2 −m2

B +
√
λ

2mB

, 0⊥

)
(5.4)

where λ ≡ m4
W +

(
m2
B − q2

)2 − 2m2
W

(
q2 +m2

B

)
. Again in the limit of q2 = 0 we can

reproduce the result given in 4.1.2.

5.2 HQET factorization and form factors for W+ →
B+ l+l−

The computation of the form factors FV,A is conducted in the B meson’s rest frame. For
this, we follow the NLO calculation of W+ → B+γ [3] and therefore, it is instructive
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to modify the HQET factorization formula reported in [3] for W+ → B+ ℓ+ℓ− as

M = e ℓ̄γµℓ

∫ ∞

0

dω Tµ(ω,mb, q
2, µF )Φ

+
B(ω, µF ) +O

(
m−1
b

)
, (5.5)

Tµ(ω,mb, q
2, µF ) is hard-scattering kernel, which can be computed in perturbation

theory by employing the perturbative matching technique. The hard scattering kernel
is also a function of the invariant squared mass of the dilepton, q2. In the following
section, it is explicitly shown that the hard-scattering kernel for the W → B+γ process
can be recovered by the substitution of q2 → 0 in the expression of Tµ(ω,mb, q

2, µF ).
The transition amplitude W+ → B+ l+l− transition is associated to hadronic matrix
amplitude as [2]

M = q2M̃(W+ → B+ℓ+ℓ−) (5.6)

and

M̃ =
eue

3Vub

4q2
√
2 sin θW

[
ϵµναβP

νqαϵβW
P · q

FV + i

(
ϵWµ +

Pµq · ϵW
P · q

)
FA

]
ℓ̄γµℓ,

where eu and e are the electric charges of spectator quark u and leptonic family re-
spectively. Vub is CKM matrix element. θW is week mixing angle. FV/A are vector and
axial vector form factors which are affiliated to process W+ → B+ l+l−. The decay
rate associated to the this decay in W rest frame is calculated as

dΓ

ds dt
=

1

256π3m3
W q

4
|M|2, (5.7)

where

|M|2 = (|FV |2 + |FA|2)|Vub|2

m2
W

(
m2
B −m2

W + s
)2 ×

(
2e2uπ

3α3

sin2 θW

)
×
[
4m4

ℓs(m
2
B +m2

W ) + 2m2
ℓ

(
m6
B +m4

B(m
2
W + 3s)

−m2
B

(
5m4

W − 2m2
W s+ s(3s+ 4t)

)
+ 3m6

W − 5m4
W s

+ 2m2
ℓ

(
m2
W s(3s− 4t)− s3

)
+ 2m8

B

−m6
B

(
6m2

W + s+ 2t
)
+ 2t

(
m6
W − 3m4

W s+m2
W s

2 + s3
)

+m4
B

(
6m4

W +m2
W (9s+ 6t)− 3s(s+ 2t)

)
+ 4m2

W st
2 + s

(
m2
W − s

)2(
3m2

W + s
)

+m2
B

(
−2m6

W − 3m4
W (s+ 2t)− 4m2

W st+ s
(
s2 + 6st+ 4t2

))]
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smin = 4m2
ℓ ;

smax = (mW −mB)
2,

tmax(min) =
1

2

(
2m2

ℓ +m2
B +m2

W − s±
√
λ

√
1− 4m2

ℓ

s

)
,

λ = m4
B − 2m2

Bm
2
W − 2m2

Bs+m4
W − 2m2

W s+ s2.

and α is QED fine structure constant.

5.3 Factorization of tree level amplitude

There three possible diagrams associated to this decay at tree level heaving u, b quarks
and W boson as the propagators as shown

Figure 5.1: Feynman diagrams of W+ → B+ l+l−

The tree level amplitude associated to Fig 5.1(a) can be written as

M(0) =
eue

2Vub

4
√
2 sin θW

ū(k)γµ/q/ϵWPLν(p− k)

q2 + 2k+q−
ℓ̄γµℓ (5.8)

The LCDA diagram associated to Fig 5.1 can be simplified as

Φ
±(0)
[bu] (ω) = δ

(
k±

v±
− ω

)
(5.9)
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Figure 5.2: Tree level LCDA diagram

By writing the amplitude in the convolution form, one can extract the tree level
hard kernel as

T (0)
µ =

eue
2Vub

4
√
2 sin θW

(
−i(ϵµναβp

νϵαqβ)

p · q
+ ϵµ +

q · ϵW
p · q

pµ

)(
1

ω + q+/v+

)
(5.10)

Analytical expression for form factors can be obtain by comparing Lorentz decompo-
sition with factorization formula 5.5

F
(0)
V = F

(0)
A = fBmB

∫ ∞

0

dω

ω + q+/v+
ϕ+
B(ω) =

fBmB

λB (q+)
(5.11)

Here λ−1
B (q+) is inverse moment of the B mesonLCDA which depends on invariant

squared-mass of dilepton through q+ = q2/q− and defined as:

1

λB (q+)
≡
∫ ∞

0

dω

ω + q+/v+
ϕ+
B(ω). (5.12)

5.4 NLO amplitude factorization

There are six Feynman diagrams associated to this decay at NLO. We will evaluate
diagram by diagram to get the NLO hard kernel. At lower order in 1/mb, the dominated
contribution is an order of Λ−1

QCD that arises only through those diagrams for which the
virtual photon is emitted from the spectator quark. To have the hard-scattering kernel
atNLO, one needs to evaluate M(1) in standard QCD and Φ(1) in HQET.
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Effective field theory general principle dictates that the infrared (IR) finite hard kernel
atNLO precision can be extracted by evaluating the difference of M(1) and Φ(1) ⊗ T

(0)
µ

on a diagram-by-diagram basis, as these quantities contain the same IR singularities.
Therefore, it appears instructive to regulate mass (collinear) singularity in the same
way for both M(1) and Φ(1) ⊗ T (0), this can be achieved by taking a nonzero mass
mu to the spectator u quark. However, dimensional regularization (with spacetime
dimensions d = 4− 2ϵ) is used to regularize UV divergences. While we have used the
MS renormalization scheme by redefining the ’t Hooft unit mass through µ2 → µ2 e−γE

4π
.

The ’t Hooft unit mass µR is designated for the QCD amplitude M(1) calculation, while
a different ’t Hooft unit mass µF is used in computing Φ(1).

l

k

q

P
+q

P
+q

P− kP
+q

P− k

q
2

q
1

Figure 5.3: One loop Feynman amplitude diagrams to the decay W+ → B+ l+l−
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l

k

P− kP− k

Figure 5.4: One loop LCDA diagrams to the decay W+ → B+ l+l−

5.5 Electromagnetic Vertex Correction

The EM-QCD vertex diagram is shown in Fig 5.3(a). The associated Feynman ampli-
tude to this diagram is

M(1)
em =

eue2Vub
4
√
2 sin θW

∫
dDl

×
ūγµ(/k + /l + m)γρ(/k + /q + /l + m)γµ(/k + /q + m)/ϵWPLν[
(k + l)2 − m2

]
[l2]
[
(q + k + l)2 − m2

] [
(q + k)2 −m2

] (5.13)

Where p2 = m2
b , k2 = m2 and in this decay our q2 ̸= 0. At leading power in 1/mb, the

only contribution we want ti retain is M(1) of order Λ−1
QCD,. We have considered only

those diagrams where the virtual photon is emitted from the spectator quark. The
contribution to M(1) from the electromagnetic vertex correction reads

M(1)
em =

[
1

ϵ
+ ln

q2 + z

m2
+ ln

µ2
R

m2
+ iπ

− q2

z
ln
q2 + z

q2

(
3 + 2π3 + iπ2

{
(2 lnπ + ln

q2 + z

q2

})]
M(0), (5.14)
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where z = 2 q ·k. The perturbative contributions to the Φ(1)⊗T (0) can be obtained from
the soft loop region of the electromagnetic vertex correction as depicted in Fig. 5.4(a).
The einkonal vertex and propagator in feynman rules are expressed as −igsT anµ+ and
1/p+, respectively. The contribution to Φ

(1)
+em⊗ T (0) takes the form

Φ
(1)
+em ⊗ T (0) =

αsCF
4π

(
2

ϵ
− 4 ln

m

µF
+ 4

)
M(0) (5.15)

where µF is the factorization scale. One can see, as expected, both entities Φ(1)
+em⊗

T (0) and M(1)
em possess same mass singularity. Moreover, we have also included quark

mass counter term diagrams in order to obtain UV-finite results. Therefore the hard-
scattering kernel is independent of mass singularity and can be readily found

T(1)
em(ω) =

αsCF

4π
T(0)(ω)

(ln q2 + 2q−v+ω

µ2
F

+ 2 ln
µR
µF

− 4 + iπ

)

− q2

2q−v+ω
ln
q2 + 2q−v+ω

q2

3 + 2π3 + iπ2

{
2 lnπ + ln

q2 + 2q−v+ω

q2

}


5.6 Spectator Quark Propagator Correction

The Feynman amplitude associated to spectator quark propagator NLO diagram as
shown in Fig 5.3(d) reads

M(1)
Σ =

αCF
4π

T (0)
(
k̃+

)−1

ε
− 1− ln

(
−µ2

R

q2 + 2q−v+ω

) (5.16)

As the gluon is attached to two points of the Wilson line as shown in Fig 5.4(d), So
we get nµ+n+µ = n2

+ = 0. So LCDA diagram is zero at NLO At NLO, we can write the
factorization theorem as

M(1)
Σ = Φ(0) ⊗ T

(1)
Σ (5.17)

So the hard kernel is

T
(1)
Σ (ω) =

αsCF
4π

T (0)(ω)

(
ln
q2 + 2q−v+ω

µ2
R

− 1 + iπ

)
(5.18)

where UV divergence 1
ϵ

is cancelled by adding the counter term in amplitude.
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5.7 External light quark correction

The external quark leg correction in QCD and associated LCDA diagrams are shown
in Fig 5.3 (e) and 5.4 (e) respectively. By using the on-shell subtraction scheme, we
can write as

M(1)
u = M(0) δ

u
2

2
(µR) (5.19)

where δu2 = i
dΣu

2

d/k

∣∣∣
/k=m

.

Σu
2 = −iαCF

4π
µ2ε
R,F

∫
dDl

γµ(k − l +m)γµ

[l2]
[
(k − l)2 −m2

] (5.20)

δu2 = −1

ε
+ log

(
− k2

m2

)
− 1− log

(
µ2

m2

)
(5.21)

All terms will be cancelled and only term heaving µ will survive.

T
(1)
δZu

(ω) =
1

2

[
δZu (µR)− δZu (µF )

]
T (0)(ω) =

αsCF
4π

ln
µF
µR

T (0)(ω) (5.22)

NLO hard kernel is independent of IR singularities and depends on both re-normalization
and factorization scale.

5.8 External heavy quark correction

The Feynman amplitude is calculated in QCD and LCDA is calculated in HQET fac-
torization. Heavy quark field wave function correction and associated LCDA diagrams
are shown in Fig 5.3 (f) and 5.4 (f). we can calculate hard kernel as

T
(1)
δZb

(ω) =
1

2

[
δZb (µR)− δẐb (µF )

]
T (0)(ω) =

αsCF
4π

(
2 ln

mb

µF
+ ln

mb

µR
− 2

)
T (0)(ω)

5.9 Box Diagram

We can approximate the hard kernel of the box diagram via strategy of region [14]. The
Fig 5.3 (c) shows the box diagram. There are four regions where the loop momentum
spans and are defined as

lµs ∼
(
ΛQCD,ΛQCD,ΛQCD

)
lµh ∼ (mb,mb,mb)

lµc ∼
(
ΛQCD,mb,

√
ΛQCDmb

)
lµc̄ ∼

(
mb,ΛQCD,

√
ΛQCDmb

) (5.23)
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Where the hard region is O(mb), Soft region O(ΛQCD), and col-linear region O(
√
ΛQCD).

So we can approximate the loop integral as

A(l) = Ah(l) + As(l) + Ac(l) + Ac̄(l) (5.24)

To apply the strategy of region, we solve loop integral in each region and then add all
of them to get the final result. We will carry only leading contribution in MBox and
ΦBox ⊗ T (0). By considering d4l = dl+dl−dl⊥, the amplitude of loop integral in these
four regions are

Ms ∼ 1/ΛQCD

Mh ∼ 1/mb

Mc ∼ 1/mb

Mc̄ ∼ 1/mb

(5.25)

At the lowest order of 1/mb, the hard kernel T (1)
Box = 0.

5.10 Weak Vertex Correction

As we have done before for electromagnetic vertex, we do the same for the weak vertex.
The weak vertex QCD and counter part LCDA diagrams are shown in Fig 5.3 (b) and
5.4 (b) respectively.

5.10.1 Feynman Amplitude of Weak Vertex Correction

The QCD Feynman amplitude associated to Fig 5.3 (b) can be written as

M(1)
Wk =

1

ϵ
− 2Li2

(
−x

y

)
− log

(
x
µ2

R

)
+ 2 log

(
x
y

)
log

(
y
z

)
+

iπy
x + y

+ 2iπ log

(
x

y
+ 1

)
+ 2 log

(
x

y
+ 1

)
log

(
y
x

)
+

y log
(y

x

)
x+ y

− log2
(

y
z

)
+ 2 log

(
y
z

)
+ 2iπ log

(
z
y

)
− 2π2

3
+ 4iπ

(5.26)

where x = m2
b and y = 2p.q. The convolution associated to weak vertex is

Φw ⊗ T (0) =
α

4π
CFM(0)

2 ln2

(
µF√
2k+

)
+

3π2

4

 (5.27)
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We can get the hard kernel from the convolution as

T
(1)
wk (ω) =

αsCF
4π

T (0)(ω)

[
2 ln2 z

µ2
F

− ln2 q
2 + z

µ2
F

− 2 ln
q2 + z

µ2
F

− 2 ln2 mb

µF
− 2 ln

mb

µR

+ 4 ln
mb

µF

(
1 + ln

q2 + z

z
+ ln

mb√
2q−

)
+ ln2 mb

mb +
√
2q−

+
π2

12

+

(
2 + 4 ln

q2 + z

z
− 2 ln

√
2q−

mb

)
ln

√
2q−

mb

+ 2Li2

(
mb

mb +
√
2q−

)

+

√
2mbq

−

q2 +m2
b +

√
2mbq−

ln
q2 +

√
2mbq

−

m2
b

−iπ

{
2 ln

q2 + z

µ2
F

− 2 ln

√
2mbq

−

µ2
F

+

2 ln
m2
b +

√
2mbq

−
√
2mbq−

+

√
2mbq

− − 2q2

q2 +m2
b +

√
2mbq−

} .
Now for the NLO hard kernel for this decay, We add all the hard kernels we have
calculated for each diagrams and add them resulting

T (1) =
αsCF
4π

T (0)(ω)

[
2 ln2 z

µ2
F

− ln2 q
2 + z

µ2
F

− 2 ln2 mb

µF
+ ln2 mb

mb +
√
2q−

+ ln
mb

µF

(
5 + 4 ln

q2 + z

z
+ 4 ln

mb√
2q−

)
+ 2 ln

q2 +
√
2mbq

−
√
2mbq−

+

(
2 + 4 ln

q2 + z

z
− 2 ln

√
2q−

mb

)
ln

√
2q−

mb

+ 2Li2

(
mb

mb +
√
2q−

)

+

√
2mbq

−

q2 +m2
b +

√
2mbq−

ln
q2 +

√
2mbq

−

m2
b

+
π2

12
− 7− iπ

{
2 ln

q2 + z

µ2
F

− 2 ln

√
2mbq

−

µ2
F

+ 2 ln
m2
b +

√
2mbq

−
√
2mbq−

+
2m2

b + 3
√
2mbq

−

q2 +m2
b +

√
2mbq−

}

+ q2


(
2m2

b +
√
2mbq

−
)
+ iπ

(
2m2

b + 3
√
2mbq

−
)

√
2mbq−

(
q2 +m2

b +
√
2mbq−

) ln
q2 +

√
2mbq

−

m2
b

+
1

z

3 + 2π3 − iπ2

{
2 lnπ + ln

q2 + z

q2

} ln
q2 + z

q2

].

(5.28)

36



37

At leading order the NLO form factor is

F
(1)
V = F

(1)
A =

αsCF
4π

fBmB

∫ ∞

0

ϕ+
B(ω)(

ω + q+/v+
)[− ln2 mb

µF
− ln

mb

µF

(
2 ln

1− r
r

− 2

)
+ 2Li2(r)− ln2(1− r) + 2 ln r ln(1− r) + (3− r) ln

1− r

r
+
π2

12
− 5

− 2 ln
ω + q+/v+

µF

(
ln

1− r

r
+ ln

mb

µF

)
+ 2 ln2 ω

µF
− ln2 ω + q+/v+

µF

+ iπ

{
2 ln

mb

µF
− 3 + r + 2 ln(1− r) + 2 ln

ω + q+/v+

µF

}
− q+

v+ω

[(
ln
q2

µ2
F

− ln
mb

µF
− ln

1− r

r
− ln

ω + q+/v+

µF

)
3 + 2π3 + iπ2

{
ln
q2

µ2
F

− ln
mb

µF
− ln

1− r

r
− ln

ω + q+/v+

µF

}]]dω.
(5.29)

The equivalence of the form factors is due to the heavy quark spin symmetry as dis-
cussed in section 3.2 and is the proof of the validity of HQET for this decay. We have
recovered the Form factors of the decay W+ → B+γ in the limit q2 = 0.
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Chapter 6

Numerical Analysis

In this section, we perform numerical computations to predict the vector/axial-vector
form factors associated with W+ → B+ℓ+ℓ− process. We also calculate the angular
observable corresponding to the decay width i.e., branching fractions. For this purpose,
we use the numerical values of input parameters from PDG,

sin θW = 0.481, α
(
mW/2

)
= 1/130, mW = 80.379 GeV, fB = 0.190 GeV,

|Vub| = 3.67× 10−3, mb = 4.18 GeV, mB = 5.279 GeV,

It is worth full to mention here that our theoretical predictions are based on the
Grozin-Neubert exponential model, where heavy-light meson LCDA at the initial scale
µ0 = 1 GeV defined as:

ϕ+
M

(
ω
)
=
ω

λ2M
exp

(
− ω

λM

)
, (6.1)

where M denotes the heavy-light meson, with λB ≡ λ+B(q
+ = 0) = 0.350± 0.15 GeV.

In the current study, we have calculated the leading order (LO) and next-to-leading
order (NLO) QCD corrections to the form factors for the decay W+ → B+ℓ+ℓ− which
are defined as F LO

V/A ≡ F
(0)
V/A and FNLO

V/A ≡ F
(0)
V/A+F

(1)
V/A. The form factors F (0)

V/A and F (1)
V/A

are given in Eq. (5.3) and Eq.(5.29), respectively.
One can see from these equations that the form factors clearly rely on the B me-
son LCDA, which demonstrates scale dependence µF . Therefore, to understand the
variation in the vector/axial-vector form factors arising due to the factorization scale
µF , it is essential to first know the µF dependence of LCDA. Consequently, one can
calculate the sensitivity in the physical observables such as decay rates and branching
fractions to the scale µF . To acheive this goal, we use the analytical solutions of Lange-
Neubert evolution Equation, to obtain the form factors at desired scales as a function
of invariant squared-mass of dilepton, q2.

38



39

0 1 2 3 4 5 6

-1

0

1

2

3

q2[GeV
2]

FV /A for W+→ B+l+l-

0 1 2 3 4 5 6

-1

0

1

2

q2[GeV
2]

FV /A for W+→ B+l+l-

(a) (b)

Figure 6.1: The q2 dependence of the vector/axial vector form-factors at LO and NLO
in αs. The band represents the uncertainty from µ = 1 to mB (left) and µ = mB to 10
GeV (right).

In Fig. 6.1, we plot the form-factors at LO and NLO in αs as a function of q2. The
band indicates the uncertainty arising from the factorization scale, µ. We divide the
variation in µ into two intervals: 1 ≤ µ1 ≤ mB (left) & mB ≤ µ2 ≤ 10 (right), one can
notice that the q2 dependence of the form factors is very mild for both intervals while
the color bands depict the scale dependence. The blue, red and gray bands correspond
to the form factors for LO (FNLO

V/A ), real part of NLO (Re[FNLO
V/A ]) and the imaginary

part of NLO (Im[FNLO
V/A ]) QCD corrections, respectively.

It is observed that these uncertainty bands of the F LO
V/A and FNLO

V/A (both computed
at percision in αs) turn out to be well separated as µ varies within the µ1 interval.
While for the µ2-interval, the uncertainty bands reduce and overlap for both F LO

V/A and
Re[FNLO

V/A ], however, the Im[FNLO
V/A ] is not significantly changed. As one can also see

from Fig. 6.1(b) that the reduction in the FNLO
V/A is more than the F LO

V/A for mB ≤
µ2 ≤ 10 which is attributed to the inclusion of αs correction in the form-factors. This
ensures, the decay rates at NLO for W+ → B+ℓ+ℓ− processes in the µ2-interval is
almost insensitive as shown in Fig.6.2. However, for relatively small scales, the NLO
form factors, FNLO

V/A , still reflect the notable dependence on µ. This residual scale
dependence could be eliminated by incorporating the higher-order QCD corrections.
Moreover, in our NLO predictions for decay rates, we also include the imaginary part
of one loop corrections to the form factors, Im[F

(1)
V/A], without strictly truncating the

decay width at O(αs). To show the µ-dependence, we have plotted the decay rates for
W+ → B+ℓ+ℓ− (ℓ = e, µ, τ) against µ, after integrating over q2ϵ[4m2

ℓ , 6] for electron
and muon and q2ϵ[14, 20] for the tauon, in Fig. 6.2. One can notice from the graphs
shown in Fig. 6.2, the LO decay rates (ΓLO) strongly depend upon the µ. On the other
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hand, the NLO decay rates (ΓNLO) at low µ scale, from 1GeV to 4GeV, are highly
sensitive while at relatively large scale, above than 4GeV, the sensitivity is very mild.
This feature emerges due to the fact that one loop QCD corrections generate significant
precision in the form factors. Consequently, the scale dependence in the NLO decay
rates (ΓNLO) get largely reduced, particularly, for relatively large µ. We have also
calculated the numerical values of these decay rates (ΓLO, ΓNLO) and the branching
fractions (BrNLO) at NLO by varying the µ from 1Gev to 10GeV, which are listed in
Tab. 6.1. We found that the NLO corrections turn to be substantial, which may vary
from −75% to +58% of the LO decay rates for the case of electron and muon whereas
for tauon it varies from −63% to + 71%. The profiles of the decay rates against the
factorization scale show the similar behaviour for W+ → B+γ [3].

In addition, the theoretical predictions for the branching ratios are also influenced
by the parameter λB(µ0), because it affects the HQET factorization through ϕ+

B. There-
fore, the analysis of branching fractions as a function of λB is a handy tool to precisely
constraint this parameter. For this purpose, to see the sensitivity of the branching frac-
tion to the λB, we ploted it against the λB by using the range: λB(µ0) = 0.35 ± 0.15
and shown in Fig. 6.3 by the green and red bands. Fig. 6.3(a) depicts when the leptons
in the final state are electron or muon while Fig. 6.3(b) corresponds to the case of tauon
as a final state leptons. The width of the green and red band represents the variation
by µ in the interval 1 ≤ µ1 ≤ mB and mB ≤ µ2 ≤ 10 , respectively.

The green band clearly indicates the strong dependence on λB compared to un-
certainty arising from the scale µ. Similarly, the branching fraction exhibits higher
sensitivity to the smaller values of λB compared to its larger values. Therefore, the
branching fraction in the interval mB ≤ µ2 ≤ 10 is more suitable to extract the precise
value of λB, particularly, around the lower value of λB ≃ 0.24 GeV which is measured
by Belle with 90% C.L.

Decay Channel ΓLO ΓNLO BrNLO

W+ → B+e+e− (0.71− 1.64)× 10−11GeV (0.41− 1.11)× 10−11GeV (0.19− 0.52)× 10−11

W+ → B+µ+µ− (0.69− 1.61)× 10−11GeV (0.40− 1.09)× 10−11GeV (0.19− 0.52)× 10−11

W+ → B+τ+τ− (0.31− 0.69)× 10−11GeV (0.25− 0.52)× 10−11GeV (0.12− 0.25)× 10−11

Table 6.1. Numerical predictions to the decay rates and branching ratios for the
processes W+ → B+ℓ+ℓ− with ℓ = e, µ, τ . The uncertainty is estimated by varying µF
from 1 GeV to 10 GeV at λB = 0.35 GeV after integrating over q2ϵ[4m2

ℓ , 6] for electron
and muon while for tauon integrating over q2ϵ[14, 20].

To further explore how the parametric dependence of the branching ratio varies in
the different q2 bins, the numerical values of the branching ratios are calculated for the
processes W → B+ℓ+ℓ− where ℓ = e, µ, τ and listed in Tab. 6.2. To get the numerical
values, we have integrated over three q2 bins: [4m2

ℓ , 0.96], [4m2
ℓ , 6] and [2, 6] for the
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case of electron and muon while for the tauon, we have selected the q2 bin above than
the cc̄ resonance region i.e, [14, 20]. In the first and second columns, we have listed
the numerical values by setting the µhc = 1.5, µh = 5GeV and λB = 0.35 GeV for the
LO and NLO, respectively. In the remaining columns, we have given the uncertainties
in the branching ratio by using the ranges of parameters: µhc = 1.5 ± 0.5GeV, µh =
5+5
−2.5GeV and λB = 0.35± 0.15GeV. The total uncertainty is calculated by adding the

uncertainties due to the µh,hc and λB in quadrature.

ΓLO for W+→ B+ μ+μ-

ΓNLO for W+→ B+ μ+μ-

ΓLO for W+→ B+ e+e-

ΓNLO for W+→ B+ e+e-

ΓLO for W+→ B+ τ+τ-

ΓNLO for W+→ B+ τ+τ-

2 4 6 8 10

0

1.×10-11

2.×10-11

3.×10-11

4.×10-11

5.×10-11

6.×10-11

7.×10-11

μF[GeV]

Γ [W +→ B
+

l
+

l
-]

Figure 6.2: Decay rates of W+ → B+ℓ+ℓ− as a function of µ, which varies from 1 to
10 GeV.
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Figure 6.3: Illustration of the inverse moment λB(µ0) dependence of the branching
fraction for the decay modesW+ → B+ℓ+ℓ−. The uncertainly band shows the variation
in µ from 1 GeV to meson mass. λB.

Decay q2 bin LO NLO Uncertainty
GeV2 λB=0.35 GeV λB=0.35 GeV LO NLO LO (λB) NLO (λB) LO (tot) NLO (tot)

(µhc, µh)=(1.5,5)GeV (µhc, µh)=(1.5,5)GeV (µhc, µh) (µhc, µh) (1.5,5)GeV (1.5,5)GeV (1.5,5)GeV (1.5,5)GeV
B+e+e− [4m2

e, 0.96] (0.24, 0.51)× 10−11 (0.01, 0.17)× 10−11 (+0.12
−0.07,

+1.45
−1.02 ) (+0.08

−0.12,
+0.03
−0.09 ) (+1.31

−0.35,
+6.68
−2.00 ) (+0.60

−0.13,
+0.77
−0.22 ) (+1.32

−0.36,
+6.84
−2.25) (+0.61

−0.18,
+0.77
−0.24 )

[4m2
e, 6] (0.14, 0.91)× 10−11 (0.68, 1.07)× 10−11 (+0.70

−0.42,
+0.81
−0.61 ) (+0.47

−0.82,
+0.11
−0.47 ) (+7.57

−2.05,
+3.88
−1.19 ) (+3.69

−0.89,
+4.75
−1.40 ) (+7.60

−2.09,
+3.96
−1.34 ) (+3.72

−1.21,
+4.75
−1.49 )

[2, 6] (0.92, 0.59)× 10−11 (0.46, 0.72)× 10−11 (+0.46
−0.29,

+0.53
−0.39 ) (+0.31

−0.55,
+0.06
−0.29 ) (+4.89

−1.34,
+2.51
−0.78 ) (+2.44

−0.60,
+3.15
−0.93 ) (+4.91

−1.37,
+2.57
−0.87) (+2.46

−0.81,
+3.15
−0.97 )

B+µ+µ− [4m2
µ, 0.96] (0.21, 0.13)× 10−11 (0.09, 0.15)× 10−11 (+0.11

−0.06,
+0.12
−0.09) (+0.07

−0.11,
+0.02
−0.08 ) (+1.14

−0.30,
+0.58
−0.15) (+0.52

−0.12,
+0.67
−0.19 ) (+1.15

−0.31,
+0.59
−0.17) (+0.53

−0.16,
+0.67
−0.21 )

[4m2
µ, 6] (0.14, 0.88)× 10−11 (0.66, 1.04)× 10−11 (+0.68

−0.41,
+0.78
−0.59 ) (+0.45

−0.80,
+0.10
−0.45 ) (+7.34

−1.99,
+3.77
−1.15) (+3.59

−0.86,
+4.62
−1.36 ) (+7.37

−2.03,
+3.85
−1.29) (+3.62

−1.74,
+4.62
−1.43 )

[2, 6] (0.92, 0.59)× 10−11 (0.46, 0.72)× 10−11 (+0.45
−0.27,

+0.52
−0.39 ) (+0.31

−0.55,
+0.06
−0.29 ) (+4.86

−1.33,
+2.50
−0.77) (+2.42

−0.60,
+3.13
−0.93 ) (+4.88

−1.36,
+2.55
−0.86) (+2.44

−0.81,
+3.13
−0.98 )

B+τ+τ− [14, 20] (0.59, 0.39)× 10−11 (0.38, 0.52)× 10−11 (+0.28
−0.14,

+0.34
−0.25 ) (+0.19

−0.39,
+0.00
−0.14 ) (+2.79

−0.82,
+1.46
−0.48) (+1.63

−0.47,
+2.07
−0.65) (+2.80

−0.83,
+1.50
−0.54) (+1.64

−0.61,
+2.07
−0.66)

Table 6.2. The numerical values of branching ratio are integrated over the different
q2 bins for the processes W → B+ℓ+ℓ− where ℓ = e, µ, τ . In the first and second
columns, we have listed the numerical values by setting the µhc = 1.5 , µh = 5 GeV and
λB = 0.35 GeV for the LO and NLO, respectively. In the remaining columns, we
have given the uncertainties in the branching ratio by using the ranges of parameters:
µhc = 1.5± 0.5GeV, µh = 5+5

−2.5 GeV, and λB = 0.35± 0.15 GeV. The total uncertainty
is calculated by adding the uncertainties due to the µh,hc and λB in quadrature.
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Chapter 7

Conclusion

In our study we have investigated the impact of NLO pertubative corrections and their
numerical prediction for the of vector and axial-vector form factors in W+ → B+ℓ+ℓ−.
For leading order LO the form factor are F LO

V/A ≡ F
(0)
V/A and next-to-leading order NLO

form factors are F LO
V/A ≡ F

(0)
V/A + F

(1)
V/A. For a fixed value of µF , we evaluated the LO

and NLO form factors as a function of q2.
We study the production of heavy-light meson at NLO in strong coupling αs at

leading order in 1/mb through semi-leptonic W boson decay in HQET factorization
approach. We explicitly calculated the IR finite hard scattering kernel at NLO. It is
found that both form factors are identical upto NLO which ensures the heavy-quark
spin symmetry. Our results for radiative decay are extended to non-zero invariant mass
square of the two lepton pair. We stress that our result agree with those of Ref. [3]
in q2 → 0 limit. Along with we also presented the λB and factorization scale µF
dependence of the form factors.

In addition, by using these form factors, we have calculated the decay rates and
branching ratios for the processes W → W+ℓ+ℓ− where ℓ = e, µ, τ . Furthermore, to
show the explicit dependence of the decay rates on the form factors, we have calcu-
lated their numerical values in different bins. Finally, our calculations show that the
branching ratios of the above mentioned process are sensitive to the parameter λB.
Therefore, the precise measurements of these branching ratios would be a handy tool
that not only to constraints the value of parameter λB but also provide a fertile ground
to determine its precise value.
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Appendix A

Wilson Lines

A Wilson line refers to the result of taking the exponential of a line integral of the gauge
field A taken along along certain paths C, with the integral being ordered according
to the path.

UC = Peigs
∫
(dzµAµ(z)) (A.1)

The symbol gs represents the strong coupling constant, whereas P symbolizes path
ordering, a crucial concept in the context of non-commutative fields such as Aµ(z).
Let’s begin by examining a scalar field ϕ(x) that is complex. The phase of this field is
just a matter of convention. Therefore, a theory pertaining to this field should exhibit
invariance when subjected to re-definitions of the kind ϕ(x) → eiαϕ(x) . Let’s consider
the scenario where we want to analyze the field at two distant positions xµ and yµ.
In a local theory, the choice of convention at xµ should be unrelated to the choice
of convention at yµ. However, how can we determine if ϕ(x) = ϕ(y). By altering
conventions, we would get

The expression
ϕ(y)− ϕ(x) → eiα(y)ϕ(y)− eiα(x)ϕ(x). (A.2)

In order to provide clear and precise comparisons between field values at various loca-
tions, an additional element is required. This prompts the establishment of a new field
W (x, y) referred to as a Wilson line. This is a bi-local field that is dependent on two
points. We like the transformation to be of the form

W (x, y) → eiα(x)W (x, y)e−iα(y) (A.3)

PAµ1(z1)Aµ2(z2) = θ(λ1 − λ2)Aµ1(z1)Aµ2(z2) + θ(λ2 − λ1)Aµ2(z2)Aµ1(z1) (A.4)
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Figure A.1: Illustration of the term of order n in the expansion of the Wilson line,
using n gluon fields that are radiating.

A.0.1 Wilson Line Feynman Rules

We begin by considering a trajectory that originates at a point aµ and extends to-
wards positive infinity in the direction of nµ. The given path may be expressed as a
parameterized function.

zµ = aµ + nµλ λ = 0 . . .∞. (A.5)

By using path-ordering and Fourier transformation we can write as

In = (ig)nµn1
1 . . . µnn

n e
ia

∑
kj

∫ ∞

0

∫ ∞

λ1

. . .

∫ ∞

λn−1

dλ1 . . . dλne
i
∑

(nk;it+nj)λj (A.6)

Figure A.2: The radiation of n-gluons for a Wilson line extending from aµ to ∞

In = (ig)nµn1
1 . . . µnn

n e
ia

∑
kj

n∏
j=1

i

n ·
∑n

l=j kl + iϵ
(A.7)

from above equation we can extract the Feynman rules for Wilson line.

45



46

• Propagator: = i
n·k+iϵ

• Wilson line - gluon vertex: ignµ+(ta)ij

• Start Point: eia.k

• End point : e−ia.k
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Appendix B

Eikonal Approximation

The eikonal approximation assumes that moving quark emits radiation that is both soft
and collinear, and this radiation may be combined into a Wilson line. In the eikonal
approximation, we make the assumption that a quark has a sufficiently high momentum
to disregard any changes in its momentum resulting from the emission or absorption of
a low-energy soft gluon. Even after several interactions, it will not significantly depart
from its original trajectory, which we consider to remain unchanged. quark of such
kind is referred to as an eikonal.[8]
Consider an incoming quark of momentum p interacts with two soft gluons

i(/p− /q1 − /q2)

(p− q1 − q2)2 + iϵ
− igbtbγν

i(/p− /q1)

(p− q1)2 + iϵ
− igataγµu(p) (B.1)

under soft approximation we can neglect /qi

ipργργν

−2p · q1 − 2p · q2 + iϵ
− igbtbγργν

−2p · q1 + iϵ
− igataγµu(p) (B.2)

by using anti commutation property of dirac matrices we can write it as

ipργργν

−2p · q1 − 2p · q2 + iϵ
− igbtb

ipσ{γσ, γµ}
−2p · q1 + iϵ

− igataγµu(p) (B.3)

The presence of the Minkowski metric tensor in the numerator of the anti-commutator
enables the representation of the quark’s four momentum in the light cone basis.

− i

n · (q1 + q2)− iϵ
ignνtbγν − i

n · q1 − iϵ
ignµtaγµu(p) (B.4)

What we see is that the Dirac propagators have been substituted with Wilson line
propagators, and the Dirac-gluon couplings have been replaced with Wilson vertices.
Through the use of the eikonal approximation, we effectively separated the gluon con-
tribution from the Dirac component.
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