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Preface

Semiconductor lasers have been actively studied since the first laser oscilla-
tion in 1962. Through continuing efforts based on physics, characteristics of
semiconductor lasers have been extensively improved. As a result, they are
now widely used. For example, they are used as the light sources for bar-code
readers, compact discs (CDs), CD-ROMs, magneto-optical discs (MOs), digi-
tal video discs (DVDs), DVD-ROMs, laser printers, lightwave communication
systems, and pumping sources of solid-state lasers. From these facts, it may
be said that semiconductor lasers are indispensable for our contemporary life.

This textbook explains the physics and fundamental characteristics of
semiconductor lasers with regard to system applications. It is aimed at senior
undergraduates, graduate students, engineers, and researchers. The features
of this book are as follows:

1. The required knowledge to read this book is electromagnetism and in-
troductory quantum mechanics taught in undergraduate courses. After
reading this book, students will be able to understand journal papers on
semiconductor lasers without difficulty.

2. To solve problems in semiconductor lasers, sometimes opposite approaches
are adopted according to system applications. These approaches are com-
pared and explained.

3. In the research of semiconductor lasers, many ideas have been proposed
and tested. Some ideas persist, and others have faded out. These ideas
are compared and the key points of the persisting technologies will be
revealed.

4. The operating principles are often the same, although the structures seem
to be different. These common concepts are essential and important; they
allow us to deeply understand the physics of semiconductor lasers. There-
fore, common concepts are emphasized in several examples, which will
lead to both a qualitative and a quantitative understanding of semicon-
ductor lasers.

This book consists of two parts. The first part, Chapters 1–4, reviews
fundamental subjects such as the band structures of semiconductors, opti-
cal transitions, optical waveguides, and optical resonators. Based on these
fundamentals, the second part, Chapters 5–8, explains semiconductor lasers.
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The operating principles and basic characteristics of semiconductor lasers
are discussed in Chapter 5. More advanced topics, such as dynamic single-
mode lasers, quantum well lasers, and control of the spontaneous emission,
are described in Chapters 6–8.

Finally, the author would like to thank Professor emeritus of the University
of Tokyo, Koichi Shimoda (former professor at Keio University), Professor
Kiyoji Uehara of Keio University, Professor Tomoo Fujioka of Tokai Univer-
sity (former professor at Keio University), and Professor Minoru Obara of
Keio University for their warm encouragement and precious advice since he
was a student. He is also indebted to NEC Corporation, where he started
research on semiconductor lasers just after graduation from Keio Univer-
sity. Thanks are extended to the entire team at Springer-Verlag, especially,
Mr. Frank Ganz, Mr. Frank McGuckin, Ms. Margaret Mitchell, Mr. Timothy
Taylor, and Dr. Hans Koelsch, for their kind help.

Takahiro Numai
Kusatsu, Japan
September 2003
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1 Band Structures

1.1 Introduction

Optical transitions, such as the emission and absorption of light, are closely
related to the energies of electrons, as shown in Table 1.1. When electrons
transit from high energy states to lower ones, lights are emitted, and in the
reverse process, lights are absorbed. Note that nonradiative transitions, which
do not emit lights, also exist when electrons transit from high energy states
to lower ones. Light emissions, however, always accompany the transitions
of electrons from high energy states to lower ones, which are referred to as
radiative transitions.

Table 1.1. Relationship between electron energies and optical transitions

Energy of the Electrons Optical Transition

High → low Emission

Low → high Absorption

Let us consider electron energies, which are the bases of the optical tran-
sitions. Figure 1.1 shows a relationship between atomic spacing and electron
energies. When the atomic spacing is large, such as in gases, the electron
energies are discrete and the energy levels are formed. With a decrease in the
atomic spacing, the wave functions of the electrons start to overlap. Therefore,
the energy levels begin to split so as to satisfy the Pauli exclusion principle.
With an increase in the number of neighboring atoms, the number of split
energy levels is enhanced, and the energy differences in the adjacent energy
levels are reduced. In the semiconductor crystals, the number of atoms per
cubic centimeter is on the order of 1022, where the lattice constant is ap-
proximately 0.5 nm and the atomic spacing is about 0.2 nm. As a result, the
spacing of energy levels is on the order of 10−18 eV. This energy spacing is
much smaller than the bandgap, which is on the order of electron volts. There-
fore, the constituent energy levels, which are known as the energy bands, are
considered to be almost continuous.
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4N electrons
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Fig. 1.1. Relationship between atomic spacing and electron energies for the dia-
mond structure with N atoms

1.2 Bulk Structures

1.2.1 k·p Perturbation Theory

We study the band structures of the bulk semiconductors, in which con-
stituent atoms are periodically placed in a sufficiently long range compared
with the lattice spacing.

Semiconductors have carriers, such as free electrons and holes, only in
the vicinity of the band edges. As a result, we would like to know the band
shapes and the effective masses of the carriers near the band edges, and they
often give us enough information to understand fundamental characteristics
of the optical transitions. When we focus on the neighbor of the band edges,
it is useful to employ the k·p perturbation theory [1–4] whose wave vectors ks
are near the band edge wave vector k0 inside the Brillouin zone. The wave
functions and energies of the bands are calculated with ∆k = k − k0 as a
perturbation parameter . For brevity, we put k0 = 0 in the following.

The Schrödinger equation in the steady state is written as [5, 6][
− �

2

2m
∇2 + V (r)

]
ψnk(r) = En(k)ψnk(r), (1.1)

where � = h/2π = 1.0546 × 10−34 J s is Dirac’s constant , h = 6.6261 ×
10−34 J s is Planck’s constant , m = 9.1094 × 10−31 kg is the electron mass
in a vacuum, V (r) is a potential, ψnk(r) is a wave function, En(k) is an
energy eigenvalue, n is a quantum number , and k is a wave vector. In the
single crystals where the atoms are placed periodically, the potential V (r) is
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spatially periodic. Therefore, as a solution of (1.1), we can consider the Bloch
function given by

ψnk(r) = e i k·runk(r), (1.2)
unk(r) = unk(r + R), (1.3)

where R is a vector indicating the periodicity of the crystal. Equations (1.2)
and (1.3) are called the Bloch theorem, which indicates that the wave function
unk(r) depends on the wave vector k and has the same periodicity as that
of the crystal. Substituting (1.2) into (1.1) results in[

− �
2

2m
∇2 + V (r) + H′

]
unk(r) = En(k)unk(r), (1.4)

where

H′ =
�

2k2

2m
+

�

m
k·p, (1.5)

p = − i �∇. (1.6)

In the k ·p perturbation theory, which is only valid for small k, we solve
(1.4) by regarding (1.5) as the perturbation. Note that the name of the k ·p
perturbation stems from the second term on the right-hand side of (1.5).

When we consider the energy band with n = 0, the wave equation for the
unperturbed state with k = 0 is expressed as[

− �
2

2m
∇2 + V (r)

]
u00(r) = E0(0)u00(r). (1.7)

In the following, for simplicity, the wave function unk(r) and the energy
E0(0) are represented as un(k, r) and E0, respectively.

At first, we consider a nondegenerate case, in which the energy of the
state n is always different from that of the other state n′ (�= n). From the
first-order perturbation theory (see Appendix B), the wave function u0(k, r)
is given by

u0(k, r) = u0(0, r) +
∑
α�=0

− i (�2/m)k · 〈α|∇|0〉
E0 − Eα

uα(0, r), (1.8)

〈α|∇|0〉 =
∫

uα
∗(0, r)∇u0(0, r) d3r, (1.9)

where un(k, r) is assumed to be an orthonormal function. Here, 〈α| and |0〉
are the bra vector and the ket vector , respectively, which were introduced
by Dirac. In the second-order perturbation theory , an energy eigenvalue is
obtained as
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E(k) = E0 +
�

2k2

2m
+

�
2

m2

∑
i,j

kikj

∑
α�=0

〈0|pi|α〉〈α|pj |0〉
E0 − Eα

. (1.10)

From (1.10), the reciprocal effective mass tensor is defined as

(
1
m

)
ij

≡ 1
�2

∂2E

∂ki∂kj
=

1
m

⎛
⎝δij +

2
m

∑
α�=0

〈0|pi|α〉〈α|pj |0〉
E0 − Eα

⎞
⎠ . (1.11)

With the help of (1.11), (1.10) reduces to

E(k) = E0 +
�

2

2

∑
i,j

(
1
m

)
ij

kikj . (1.12)

This equation includes the periodicity of the crystal (potential) in the mass of
the electron as the effective mass. This effective mass is useful to make anal-
ysis easier. For example, in the quantum well (QW) structures, the electrons
see both the periodic potential of the crystal and the quantum well potential.
If we express equations using the effective mass, we have only to consider the
quantum well potential, because the periodic potential of the crystal is al-
ready included in the effective mass. This approximation is referred to as the
effective mass approximation.

In the following, we will consider the band structures of semiconductor
crystals. Most semiconductor crystals for semiconductor lasers have a zinc-
blende structure, in which the bottom of the conduction bands is s-orbital-like
and the tops of the valence bands are p-orbital-like. In zinc-blende or diamond
structures, the atomic bonds are formed via sp3 hybrid orbitals as follows:

C : (2s)2(2p)2 → (2s)1(2p)3

Si : (3s)2(3p)2 → (3s)1(3p)3

ZnS : Zn : (3d)10(4s)2 → Zn2− : (3d)10(4s)1(4p)3

S : (3s)2(3p)4 → S2+ : (3s)1(3p)3

Therefore, the wave functions for the electrons in the zinc-blende or diamond
structures are expressed as superpositions of the s-orbital function and p-
orbital functions.

Let us calculate the wave functions and energies of the bands in the zinc-
blende structures. We assume that both the bottom of the conduction band
and the tops of the valence bands are placed at k = 0, as in the direct
transition semiconductors, which will be elucidated in Section 2.1. When the
spin-orbit interaction is neglected, the tops of the valence bands are three-
fold degenerate corresponding to the three p-orbitals (px, py, pz). Here, the
wave functions are written as

the s-orbital function for the bottom of the conduction band : us(r),
the p-orbital functions for the tops of the valence bands :

ux = xf(r), uy = yf(r), uz = zf(r), f(r) : a spherical function.
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When the energy bands are degenerate, a perturbed wave equation is
given by a linear superposition of us(r) and uj(r) (j = x, y, z) as

un(k, r) = Aus(r) + Bux(r) + Cuy(r) + Duz(r), (1.13)

where A, B, C, and D are coefficients.
To obtain the energy eigenvalues, we rewrite (1.4) as[

− �
2

2m
∇2 + V (r) + H′

d

]
un(k, r) =

[
En(k) − �

2k2

2m

]
un(k, r), (1.14)

H′
d =

�

m
k·p = − i �2

m
k·∇. (1.15)

Note that the unperturbed equation is obtained by setting k = 0 in (1.14),
where En(0) = Ec and u0(0, r) = us(r) for the conduction band, while
En(0) = Ev and u0(0, r) = uj(r) (j = x, y, z) for the valence bands. Here,
Ec is the energy of the bottom of the conduction band, and Ev is the energy
of the tops of the valence bands.

Substituting (1.13) into (1.14); multiplying us
∗(r), ux

∗(r), uy
∗(r), and

uz
∗(r) from the left-hand side; and then integrating with respect to a volume

over the space leads to

(H′
ss + Ec − λ)A + H′

sxB + H′
syC + H′

szD = 0,
H′

xsA + (H′
xx + Ev − λ)B + H′

xyC + H′
xzD = 0,

H′
ysA + H′

yxB + (H′
yy + Ev − λ)C + H′

yzD = 0,
H′

zsA + H′
zxB + H′

zyC + (H′
zz + Ev − λ)D = 0,

(1.16)

where

H′
ij = 〈ui|H′

d|uj〉 =
∫

ui
∗(r)H′

duj(r) d3r (i, j = s, x, y, z),

λ = En(k) − �
2k2

2m
.

(1.17)

Note that the orthonormality of us(r) and uj(r) (j = x, y, z) were used to
derive (1.16).

In (1.16), only when the determinant for the coefficients A, B, C, and D
is zero, we have solutions A, B, C, and D other than A = B = C = D = 0.
From (1.16) and (1.17), the determinant is given by∣∣∣∣∣∣∣∣

Ec − λ Pkx Pky Pkz

P ∗kx Ev − λ 0 0
P ∗ky 0 Ev − λ 0
P ∗kz 0 0 Ev − λ

∣∣∣∣∣∣∣∣
= 0, (1.18)

P = − i
�

2

m

∫
us

∗ ∂uj

∂rj
d3r, P ∗ = − i

�
2

m

∫
uj

∗ ∂us

∂rj
d3r (1.19)

(j = x, y, z, rx = x, ry = y, rz = z).
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The solutions of (1.18) are obtained as

E1,2(k) =
Ec + Ev

2
+

�
2k2

2m
±
[(

Ec − Ev

2

)2

+ k2|P |2
]1/2

, (1.20)

E3,4(k) = Ev +
�

2k2

2m
, (1.21)

where (1.17) was used. Figure 1.2 shows the calculated results of (1.20) and
(1.21). It should be noted that the spin-orbit interaction has been neglected
and only the first-order perturbation has been included to derive these equa-
tions.

Conduction band

Valence bandsDoubly
degenerated

k

Eg

Ec

E

Ev

0

Fig. 1.2. Energy of the conduction and valence bands. Here, only the first-order
perturbation is included; the spin-orbit interaction is neglected

1.2.2 Spin-Orbit Interaction

We consider the band structures by introducing the spin-orbit interaction and
the second-order perturbation. First, let us treat the spin-orbit interaction
semiclassically. As shown in Fig. 1.3, the electron with the electric charge
−e = −1.6022 × 10−19 C rotates about the nucleus with the electric charge
+Ze. The velocity of the electron is v, and the distance between the electron
and the nucleus is |r|.

Electron

Nucleus

− e
r

v

+ Ze

Fig. 1.3. Motions of the electron

If the origin of the reference system is placed at the electron, the nucleus
seems to rotate about the electron with the velocity −v. As a result, due
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to Biot-Savart’s law , a magnetic flux density B is produced at the electron,
which is written as

B =
µ0

4π
Ze

r × v

r3 =
µ0

4π

Ze

m

1
r3 l. (1.22)

Here, µ0 is magnetic permeability in a vacuum, and l is the orbital angular
momentum given by

l = r × p = r × mv. (1.23)

The spin magnetic moment µs is expressed as

µs = − e

m
s = −2µB

�
s, (1.24)

where s is the spin angular momentum and µB is the Bohr magneton defined
as

µB ≡ e�

2m
= 9.2732 × 10−24 A m2. (1.25)

As a result, the interaction energy HSO between the spin magnetic moment
µs and the magnetic flux density B is obtained as

HSO = −µs · B =
µ0

4π

Ze2

m2

1
r3 l · s. (1.26)

From Dirac’s relativistic quantum mechanics, the interaction energy HSO is
given by

HSO =
µ0

4π

Ze2

2m2

1
r3 l · s, (1.27)

which is half of (1.26). As explained earlier, the spin-orbit interaction gener-
ates a magnetic field at the electron due to the orbital motions of the nucleus,
and this field interacts with the electron’s spin magnetic moment.

Introducing Pauli’s spin matrices σ such as

s =
�

2
σ, (1.28)

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
, (1.29)

we can write the spin-orbit interaction Hamiltonian HSO as

HSO =
µ0

4π

Ze2

2m2

1
r3

�

2
l · σ. (1.30)

If we express the up-spin ↑ (sz = �/2) as α and the down-spin ↓ (sz =
−�/2) as β, they are written in matrix form as
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α =
[

1
0

]
, β =

[
0
1

]
. (1.31)

Using α and β, we obtain the following relations:

σzα = α, σzβ = −β. (1.32)

To treat the spin-orbit interaction, it is convenient to use the spherical
polar coordinate systems. Therefore, we rewrite the spin-orbit interaction
Hamiltonian HSO as

HSO =
�

2
ξ(r) l · σ =

�

2
ξ(r)

(
lzσz +

l+σ− + l−σ+

2

)
, (1.33)

where

ξ(r) =
µ0

4π

Ze2

2m2

1
r3 ,

l+ = lx + i ly, l− = lx − i ly, (1.34)
σ+ = σx + iσy, σ− = σx − i σy.

When this HSO is added to the perturbation term, the wave equation (1.14)
is modified as[

− �
2

2m
∇2 + V (r) + H′

d + HSO

]
un(k, r) =

[
En(k) − �

2k2

2m

]
un(k, r).

(1.35)

It should be noted that l operates on e i k·r in the Bloch function, but this
operation is neglected because the result is much smaller than the other
terms.

To solve (1.35), it is useful to represent the wave functions un(k, r) in the
spherical polar coordinate systems such as

us = us,

u+ = −ux + uy√
2

∼ −x + y√
2

,

u− =
ux − uy√

2
∼ x − y√

2
,

uz ∼ z.

(1.36)

In (1.36), the spherical function f(r) is omitted after ∼ to simplify expres-
sions. Note that

√
2 in the denominators is introduced to normalize the wave

functions. Using the spherical harmonic function Y m
l , the wave functions u+,

u−, and uz are also expressed as



1.2 Bulk Structures 9

u+ = Y 1
1 = −1

2

√
3
2π

x + i y√
x2 + y2 + z2

= −1
2

√
3
2π

e i φ sin θ,

u− = Y −1
1 =

1
2

√
3
2π

x − i y√
x2 + y2 + z2

=
1
2

√
3
2π

e−i φ sin θ,

uz = Y 0
1 =

1
2

√
3
π

z√
x2 + y2 + z2

=
1
2

√
3
π

cos θ,

(1.37)

where x = r sin θ cos φ, y = r sin θ sin φ, and z = r cos θ.
When we consider the up- and down-spins α and β, we have eight wave

functions as follows:

usα, usβ, u+α, u+β, uzα, uzβ, u−α, u−β.

Therefore, we have to calculate the elements of the 8 × 8 matrix to obtain
the energy eigenvalues from (1.35).

For brevity, we assume that k is directed in the z-direction and put

kz = k, kx = ky = 0. (1.38)

In this case, however, we have only to solve the determinant for the 4 × 4
matrix on (usα, u+β, uzα, u−β) or (usβ, u−α, uzβ, u+α) because of the
symmetry in the 8×8 matrix. This determinant for the 4×4 matrix is written
as ∣∣∣∣∣∣∣∣∣∣∣∣∣

Ec − λ 0 Pk 0

0 Ev − λ − ∆0

3

√
2

3
∆0 0

P ∗k
√

2
3

∆0 Ev − λ 0

0 0 0 Ev − λ +
∆0

3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (1.39)

where the terms including ∆0 are the matrix elements of HSO, and the other
terms are those of H′

d. Here, using ξ(r) in (1.34), ∆0 is defined as

∆0

3
=

�
2

2

∫
u+

∗u+ξ(r) d3r =
�

2

2

∫
u−∗u−ξ(r) d3r

=
�

2

4

∫
(ux

2 + uy
2)ξ(r) d3r =

�
2

2

∫
uz

2 ξ(r) d3r. (1.40)

From (1.39), the energy of valence band 1 is obtained as

Ev1(k) = Ev +
∆0

3
+

�
2k2

2m
. (1.41)
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When |P |2k2 is small enough, the energy of the conduction band Ec reduces
to

Ec(k) = Ec +
�

2k2

2m
+

|P |2k2

3

(
2

Eg
+

1
Eg + ∆0

)
, (1.42)

where

Eg = Ec − Ev − ∆0

3
. (1.43)

Similarly, the energies of valence bands 2 and 3 are given by

Ev2(k) = Ev +
∆0

3
+

�
2k2

2m
− 2|P |2k2

3Eg
, (1.44)

Ev3(k) = Ev − 2
3
∆0 +

�
2k2

2m
− |P |2k2

3(Eg + ∆0)
. (1.45)

These results, which were obtained under the first-order k ·p perturbation,
are shown in Fig. 1.4. From the definition of effective mass in (1.11), the
band with energy Ev1(k) is referred to as the heavy hole band , and that with
Ev2(k) is called the light hole band . It should be noted that the heavy hole
band and the light hole band are degenerate at a point k = 0. The band
with energy Ev3(k) is designated as the split-off band , and ∆0 is called the
split-off energy .

Conduction band

Heavy hole band

Light hole band

Split-off band

k

Ec (k)

E

Ev1 (k)

Ev2 (k)

Ev3 (k)

0

0∆

Fig. 1.4. Energy bands when the spin-orbit interaction is considered under the
first-order perturbation

If we consider the second-order perturbation, the energies of the valence
bands are given by
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Ev1,2(k) = Ev +
∆0

3
+ A2k

2

± [
B2

2k4 + C2
2 (kx

2ky
2 + ky

2kz
2 + kz

2kx
2)]1/2

(1.46)
(1 → +, 2 → −)

Ev3(k) = Ev − 2
3
∆0 + A2k

2. (1.47)

The coefficients A2, B2, and C2 in (1.46) and (1.47) are experimentally
determined by the cyclotron resonance (see Appendix A). When the second-
order perturbation is included, all the valence bands become upward-convex,
as shown in Fig. 1.5, but degeneracy of the heavy hole band and the light
hole band at k = 0 remains.

Conduction band

Heavy hole band

Light hole band

Split-off band

k

Ec (k)

E

Ev1 (k)

Ev2 (k)

Ev3 (k)

0

0∆

Fig. 1.5. Energy bands when the spin-orbit interaction is considered under the
second-order perturbation

The preceding analysis treats the direct transition semiconductors where
both the bottom of the conduction band and the tops of the valence bands are
placed at k = 0. In the indirect transition semiconductors, k of the bottom of
the conduction band and that of the tops of the valence bands are different.
It should also be noted that the effective masses depend on the direction of
k. Therefore, the band structures are more complicated.

Let us consider the wave functions of the valence bands under the second-
order perturbation. Due to the spin-orbit interaction, the quantum states are
indicated by j = l + s where l is the angular momentum operator and s
is the spin operator. Therefore, as indexes of the wave functions, we use the
quantum numbers j and mj , which represent the eigenvalues of the operators
j and jz, respectively. The relation between the operators and the eigenvalues
is summarized in Table 1.2.
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Table 1.2. Relation between the operators and eigenvalues

Operator Eigenvalue

l2 l(l + 1)�2 (l = 0 : s-orbital, l = 1 : p-orbitals )

lz ml�, ml = 1, 0, −1

s2 s(s + 1)�2, s = 1/2

sz ms�, ms = 1/2, −1/2

j2 j(j + 1)�2, j = 3/2, 1/2

jz mj�, mj=3/2 = 3/2, 1/2, −1/2, −3/2, mj=1/2 = 1/2, −1/2

When we express the wave functions as |j, mj〉, the wave functions are
expressed as:

for the heavy hole band∣∣∣∣32 ,
3
2

〉
=

1√
2

|(x + i y)α〉,
∣∣∣∣32 ,−3

2

〉
=

1√
2

|(x − i y)β〉,
(1.48)

for the light hole band∣∣∣∣32 ,
1
2

〉
=

1√
6

|2zα + (x + i y)β〉,
∣∣∣∣32 ,−1

2

〉
=

1√
6

|2zβ − (x − i y)α〉,
(1.49)

and for the split-off band∣∣∣∣12 ,
1
2

〉
=

1√
3

|zα − (x + i y)β〉,
∣∣∣∣12 ,−1

2

〉
=

1√
3

|zβ + (x − i y)α〉.
(1.50)

1.3 Quantum Structures

1.3.1 Potential Well

The semiconductor structures whose sizes are small enough that their quan-
tum effects may be significant are called quantum structures.
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The electrons in the quantum structures see both the periodic potential ,
corresponding to the periodicity of the crystals, and the quantum well po-
tential. Before studying the energy bands in the quantum structures, we will
review the energies and wave functions of a particle in a square well potential.

Here, we assume that a carrier exists in a square potential well, as shown
in Fig. 1.6.

∞ ∞

φ

0 L

= 0

V = 0

φ = 0

Fig. 1.6. Square well potential

The square potential V (r) is

V (r) = 0 inside the well
V (r) = ∞ outside the well

}
. (1.51)

Note that the potential V (r) is not periodic. When the potential well is a
cube with a side L, the boundary conditions for a wave function φ(x, y, z)
are given by

φ(0, y, z) = φ(L, y, z) = 0
φ(x, 0, z) = φ(x, L, z) = 0
φ(x, y, 0) = φ(x, y, L) = 0

⎫⎬
⎭ . (1.52)

Under these boundary conditions, the wave function φ(x, y, z) and the energy
E are obtained as

φ(x, y, z) =

√
8
L3 sin kxx · sin kyy · sin kzz, E =

�
2

2m
(kx

2 + ky
2 + kz

2),

kx =
nxπ

L
, ky =

nyπ

L
, kz =

nzπ

L
(nx, ny, nz = 1, 2, 3, · · · ).

(1.53)

Figure 1.7 shows the wave functions φs and the energies Es for a one-
dimensional square well potential. As found in (1.53), the energies E are
discrete and their values are proportional to a square of the quantum number
nx. Also, with a decrease in L, an energy separation between the energy levels
increases. The wave functions can take negative values as well as positive ones.
The squares of the wave functions show possibilities of existence, so negative
values are also allowed for the wave functions.
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E ∝ nx
2

Enx =3

∞ ∞

∝ sin (kx x)φ

0 L

Enx =2

Enx =1

Fig. 1.7. Wave functions φs and energies Es in a one-dimensional square well
potential

1.3.2 Quantum Well, Wire, and Box

First, we define some technical terms. Figure 1.8 shows the energies of the
conduction band and valence bands for GaAs sandwiched by AlGaAs at a
point k = 0.

Lz

E3

E1

E2

Ehh1

Ehh2
Elh1

Elh2

∆

Eg=1.424 eVEg=1.798 eV

GaAs Al0.3Ga0.7AsAl0.3Ga0.7As

Ec

Ev∆

Fig. 1.8. Quantum well structure

The low energy regions for the electrons in the conduction band and the
holes in the valence band are called potential wells. Note that, in Fig. 1.8, the
vertical line shows the energy of the electrons, and the energy of the holes
decreases with an increase in the height of the vertical line. In this figure, the
potential well for the electrons in the conduction band and that for the holes
in the valence band are both GaAs. When the width of this potential well Lz

is on the order of less than several tens of nanometers, this well is referred to
as the quantum well . The bandgaps of AlGaAs layers placed at both sides of
GaAs are higher than that of GaAs. As a result, these AlGaAs layers function
as the energy barriers for GaAs, and they are designated as the energy barrier
layers. At the interfaces of the quantum well and the barriers, there are the
energy difference in the conduction bands ∆Ec and that in the valence bands
∆Ev, which are called the band offsets .
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The periods of the potential for the semiconductor crystals are the lattice
constants, which are on the order of 0.5 nm. In contrast, the thickness of
the potential wells or the barriers in the quantum structures is between the
order of nanometers and several tens of nanometers. Hence, in the quantum
structures, the electrons and the holes see both the periodic potential and
the quantum potential. If we use the effective mass, the effect of the periodic
potential is included in the effective mass, as shown in (1.12), and we have
only to consider the quantum potential, which is referred to as the effective
mass approximation.

Under the effective mass approximation, a wave function in the quantum
structure is obtained by a product of the base function ψ and the envelope
function φ. As the base function, we use a wave function for the periodic
potential

ψnk(r) = e i k·runk(r), unk(r) = unk(r + R). (1.54)

As the envelope function, we use a wave function for the quantum potential.
For example, for a cube with the potential shown in Fig. 1.6, φ is given by

φ(x, y, z) =

√
8
L3 sin kxx · sin kyy · sin kzz. (1.55)

(a) One-Dimensional Quantum Well

Let us consider a sheet with side lengths of Lx, Ly, and Lz. As shown in
Fig. 1.9, we assume that only Lz is a quantum size, which satisfies Lz �
Lx, Ly ≈ L. Such a structure is called a one-dimensional quantum well .

Lz

Lx

Ly

Fig. 1.9. One-dimensional quantum well

The energies of the carriers are written as

E = Exy + Ez,

Exy =
�

2

2m∗
π2

L2 (nx
2 + ny

2), Ez =
�

2

2m∗
π2

Lz
2 nz

2.
(1.56)

Here, � is Dirac’s constant; m∗ is the effective mass of the carrier; and nx,
ny, and nz are quantum numbers. If nx, ny, and nz are of the same order,
we have Exy � Ez.

Figure 1.10 schematically shows the energies of the valence bands in the
one-dimensional quantum well. In this figure, Ehh1 and Ehh2 (solid lines)
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represent the heavy hole bands, and Elh1 and Elh2 (broken lines) express
the light hole bands. Here, subscripts 1 and 2 are the quantum numbers
nzs. As shown in Fig. 1.10, the quantum well structures remove degeneracy
of the heavy hole band and the light hole band at a point k = 0, because
the potential symmetry of the quantum wells is lower than that of the bulk
structures.

Ehh1

Ehh2

Elh1

Elh2

k

E

0

Fig. 1.10. Valence bands in a one-dimensional quantum well

Let us calculate the density of states in the one-dimensional quantum
well. As an example, we treat the density of states for nz = 1. The density of
states is determined by combinations of nx and ny. When nx and ny are large
enough, the combinations (nx, ny) for a constant energy Exy are represented
by the points on the circumference of a circle with a radius r, which is given
by

r2 = nx
2 + ny

2 =
2m∗L2

�2π2 Exy. (1.57)

Because both nx and ny are positive numbers, the number S of the com-
binations (nx, ny) is given by the area of the quarter circle with the radius
r, as shown in Fig. 1.11.

r 2 = nx
2 + ny

2

ny

nx0 2 4 6 8

8

6

4

2
0

Fig. 1.11. Combinations of nx and ny



1.3 Quantum Structures 17

From Fig. 1.11, S is expressed as

S =
1
4
πr2 =

π

4
(nx

2 + ny
2) =

π

4
2m∗L2

�2π2 Exy =
m∗L2

2�2π
Exy. (1.58)

Considering the up- and down-spins, the number of states N is written
as

N = 2S =
m∗L2

�2π
Exy. (1.59)

Substituting Exy = E − Ez=1 into (1.59), the electron concentration n for
the energy between zero and E is obtained as

n =
N

L2Lz
=

m∗

�2πLz
(E − Ez=1). (1.60)

When we define the density of states for the energy between E and E + dE
as ρ1(E), we have ∫

ρ1(E) dE ≡ n. (1.61)

From (1.60) and (1.61), we obtain

ρ1(E) ≡ dn

dE
=

m∗

�2πLz
. (1.62)

Similarly, the densities of states for nz = 2, 3, · · · are calculated, and the
results are shown in Fig. 1.12.
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Fig. 1.12. Density of states for the one-dimensional quantum well for Lz = 3 nm
and m∗ = 0.08m (solid line) and that for the bulk structures (broken line)
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In Fig. 1.12, Lz is 3 nm, m∗ is 0.08m where m is the electron mass in a
vacuum, and ρ1(E) for nz = 1, 2, 3 are indicated as ρ11, ρ12, ρ13, respec-
tively. It should be noted that the density of states for the one-dimensional
quantum well is a step function. In contrast, the bulk structures have the
density of states such as

ρ0(E) =
(2m∗)3/2

2π2�3 E1/2, (1.63)

which is proportional to E1/2 as shown by a broken line, because the number
of states is the volume of 1/8 of the sphere with the radius r.

(b) Two-Dimensional Quantum Well (Quantum Wire)

A stripe with Lx � Ly, Lz, shown in Fig. 1.13, is designated the two-
dimensional quantum well or the quantum wire. Note that Ly and Lz are
quantum sizes.

Lz

Lx
Ly

Fig. 1.13. Two-dimensional quantum well (quantum wire)

For brevity, if we put Ly = Lz = L, the energies are written as

E = Ex + Eyz,

Ex =
�

2

2m∗
π2

Lx
2 nx

2, Eyz =
�

2

2m∗
π2

L2 (ny
2 + nz

2).
(1.64)

For a pair of quantum numbers (ny, nz), the density of states ρ2(E) is
obtained as

ρ2(E) =
√

2m∗

�πL2 Ex
−1/2 =

√
2m∗

�πL2 (E − Eyz)−1/2. (1.65)

Figure 1.14 shows the calculated result of (1.65) with Lz = 3 nm and m∗ =
0.08m, which are the same as in Fig. 1.12. When the energy E is equal to Eyz,
the density of states ρ2(E) is infinity. When E exceeds Eyz, ρ2(E) decreases
in proportion to (E − Eyz)−1/2. As a result, the density of states ρ2(E) has
a saw-toothed shape.

(c) Three-Dimensional Quantum Well (Quantum Box)

As shown in Fig. 1.15, a box whose Lx, Ly, and Lz are all quantum sizes, is
named the three-dimensional quantum well or the quantum box .
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Fig. 1.14. Density of states for the two-dimensional quantum well (quantum wire)

Lz

Lx
Ly

Fig. 1.15. Three-dimensional quantum well (quantum box)

For brevity, if we put Lx = Ly = Lz = L, the energies are written as

E = Ex + Ey + Ez,

Ex =
�

2

2m∗
π2

L2 nx
2, Ey =

�
2

2m∗
π2

L2 ny
2, Ez =

�
2

2m∗
π2

L2 nz
2.

(1.66)

It should be noted that the energies are completely discrete. The density
of states ρ3(E) is a delta function, which is written as

ρ3(E) = 2
∑

nx,ny,nz

δ(E − Ex − Ey − Ez). (1.67)

Figure 1.16 shows the number of states per volume and the density of states
in the three-dimensional quantum well.

The energy distributions of the electrons are given by the product of
the densities of states and the Fermi-Dirac distribution functions. With an
increase in the dimension of the quantum wells, the energy bandwidths of the
densities of states decrease. Therefore, the energy distribution of the electron
concentrations narrows with an increase in the dimension of the quantum
wells, as shown in Fig. 1.17.

As explained earlier, the energy distribution of the electrons in the quan-
tum structures is narrower than that in the bulk structures. Therefore, the
optical gain concentrates on a certain energy (wavelength). As a result, in
the quantum well lasers, a low threshold current, a high speed modulation,
a low chirping, and a narrow spectral linewidth are expected, which will be
described in Chapter 7.
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Fig. 1.16. (a) Number of states per unit volume and (b) the density of states for
the three-dimensional quantum well (quantum box)
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Fig. 1.17. Energy distribution of electron concentrations in quantum wells: (a)
bulk structure, (b) 1-D quantum structure, and (c) 2-D quantum structure

1.4 Super Lattices

In the previous section, we studied quantum structures. Here, we consider su-
per lattices, which include array quantum structures and solitary ones. From
the viewpoints of the potential and the period, super lattices are classified as
follows.

1.4.1 Potential

Figure 1.18 shows three kinds of super lattices. In this figure, the horizon-
tal direction indicates the position of the layers, and the vertical direction
represents the energy of the electrons. As a result, with an increase in the



1.4 Super Lattices 21

height of the vertical direction, the energy of electrons increases and that of
the holes decreases. As shown in Fig. 1.18 (a), in Type I super lattice, a spa-
tial position of the potential well for the electrons in the conduction band is
the same as that for the holes in the valence band. Therefore, both electrons
and the holes are confined to semiconductor layer B, which has a narrower
bandgap than layer A. In Type II super lattice in Fig. 1.18 (b), the electrons
in the conduction band are confined to semiconductor layer B, and the holes
in the valence band are confined to semiconductor layer A. In Type III super
lattice in Fig. 1.18 (c), the energy of the conduction band of semiconductor
layer B overlaps that of the valence band of layer A, which results in the
semimetal . Note that in some articles, Type II and Type III are called Type
I′ and Type II, respectively. The names other than Type I may be different,
but the important point is that the characteristics of the super lattices are
highly dependent on the shapes of the potentials.

(a) (c)(b)

Ec

Ev

B A B A B B A B A B B A B A BEc

Ev

Ec

Ev

Fig. 1.18. Classification of super lattices by potential: (a) Type I, (b) Type II, and
(c) Type III

1.4.2 Period

The characteristics of the super lattices also depend on the periods of the
constituent layers. Figure 1.19 shows the relationships between the charac-
teristics of the super lattices and the thickness of the barriers and wells.
When each layer thickness is larger than several tens of nanometers, only the
bulk characteristics are observed. If the barrier thickness is less than several
tens of nanometers, the quantum mechanical tunneling effect appears, which
leads to tunnel diodes (Esaki diodes) or devices using the resonant tunneling
effect . Although the barriers are thick and only the wells are thin, quantum
energy levels are formed in the wells. If such wells are used as the active lay-
ers in the light emitting devices, narrow light emission spectra are obtained.
When both the barriers and the wells are thinner than the order of 10 nm,
the wave functions of a well start to penetrate adjacent wells. As a result,
the wave functions of each well overlap with each other, which produces the
minizones and induces the Bloch oscillations or the negative resistances. As
the thickness of both the barriers and the wells decreases further down to
the order of atomic layers, bending of the Brillouin zones appears, which will
transform the indirect transition materials into the direct transition ones.
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Fig. 1.19. Classification of super lattices by period

1.4.3 Other Features in Addition to Quantum Effects

In order to fabricate the quantum structures, barriers and wells are required.
Because the barriers and wells must have different bandgaps, different kinds
of semiconductor materials are needed. Therefore, the quantum structures
are inevitably heterostructures.

To achieve a low threshold current and a high light emission efficiency in
semiconductor lasers, both the carriers and the light should be confined to
the active layers where the light is generated and amplified. Therefore, the
double heterostructure, in which the heterostructures are placed at both sides
of the active layer, is adopted in semiconductor lasers. Figure 1.20 shows
the electron energies and refractive indexes of the double heterostructure.
Because the energy barriers exist in the junction boundaries, the carriers are
confined to well layer B. In addition, the semiconductors with larger bandgaps
generally have smaller refractive indexes. Therefore, light is confined to well
layer B. As a result, both the carriers and the light are confined to well layer
B, which is used as the active layer.

Energy of 
Electrons

Refractive
    Index

A AB
Ec

Ev

nA

nB

Fig. 1.20. Energies and refractive indexes of the double heterostructure

Finally, we consider a layer epitaxially grown on the semiconductor sub-
strate whose lattice constant is different from that of the grown layer. When
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the layer thickness exceeds the critical thickness, the grown layer is plasti-
cally deformed and the dislocations are induced in it. If the dislocations are
generated, the carriers are dissipated without emitting light. Consequently,
characteristics of light emitting devices become extremely low.

Although the layer thickness is thinner than the critical thickness, the
grown layers are elastically deformed and the dislocations are not generated
in the grown layers. Due to the elastic strains, the atomic spacings of the
grown layers change, which modifies the band structure of the grown layer.
This technology is referred to as band-structure engineering and attracts a
lot of attention. Because the quantum structures have thin layers, they are
suitable for band-structure engineering using elastic strains, and they improve
characteristics of semiconductor lasers, which will be explained in Chapter 7.



2 Optical Transitions

2.1 Introduction

Among energy states, the state with the lowest energy is most stable. There-
fore, the electrons in semiconductors tend to stay in low energy states. If
they are excited by thermal energy, light, or electron beams, the electrons
absorb these energies and transit to high energy states. These transitions of
the electrons from low energy states to high energy states are called excita-
tions. High energy states, however, are unstable. As a result, to take stable
states, the electrons in high energy states transit to low energy states in cer-
tain lifetimes. These transitions of the excited electrons from high energy
states to low energy states are referred to as relaxations. The excitation and
relaxation processes between the valence band and the conduction band are
shown in Fig. 2.1.

ElectronElectron

Electron

Hole Hole

Stable state Stable stateExcitation Relaxation

Ec

Ev

Electron

Conduction
     band

Valence
  band

Fig. 2.1. Excitation and relaxation

In semiconductors, the transitions of electrons from high energy states
to low energy states are designated recombinations of the electrons and the
holes. In the recombinations of the electrons and the holes, there are radiative
recombinations and nonradiative recombinations. The radiative recombina-
tions emit photons , and the energies of the photons correspond to a differ-
ence in the energies between the initial and final energy states related to the
transitions. In contrast, in the nonradiative recombinations, the phonons are
emitted to crystal lattices or the electrons are trapped in the defects, and
the transition energy is transformed into forms other than light. The Auger
processes are also categorized as nonradiative recombinations. To obtain high
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efficiency semiconductor light emitting devices, we have to minimize the non-
radiative recombinations. However, to enhance modulation characteristics,
the nonradiative recombination centers may be intentionally induced in the
active layers, because they reduce the carrier lifetimes (see Section 5.1).

Let us consider the transitions of the electrons from the bottom of the
conduction band to the top of the valence band. A semiconductor, in which
the bottom of the conduction band and the top of the valence band are placed
at a common wave vector k, is the direct transition semiconductor. A semi-
conductor, in which the bottom of the conduction band and the top of the
valence band have different k-values, is the indirect transition semiconductor.
These direct and indirect transitions are schematically shown in Fig. 2.2. In
transitions of the electrons, the energy and the momentum are conserved,
respectively. Therefore, the phonons do not take part in direct transitions.
Because the wave vector k of the phonons is much larger than that of the pho-
tons, the phonon transitions accompany the indirect transitions to satisfy the
momentum conservation law. Hence, in the direct transitions, the transition
probabilities are determined by only the electron transition probabilities. In
contrast, in the indirect transitions, the transition probabilities are given by
a product of the electron transition probabilities and the phonon transition
probabilities. As a result, the transition probabilities of the direct transitions
are much higher than those of the indirect transitions. Consequently, the
direct transition semiconductors are superior to the indirect ones for light
emitting devices.

Ec

Ev

(a) (b)

k

E

0
k

E

0

Ec

Ev

Fig. 2.2. (a) Direct and (b) indirect transition semiconductors

2.2 Light Emitting Processes

Light emission due to the radiative recombinations is called the luminescence.
According to the lifetime, the excitation methods, and the energy states re-
lated to the transitions, light emitting processes are classified as follows.
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2.2.1 Lifetime

With regard to the lifetime, there are two light emissions: fluorescence, with
a short lifetime of 10−9–10−3 s, and phosphorescence, with a long lifetime of
10−3 s to one day.

2.2.2 Excitation

Luminescence due to optical excitation (pumping) is photoluminescence,
which is widely used to characterize materials. Optical excitation is also used
to pump dye lasers (for example, Rhodamine 6G and Coumalin) and solid-
state lasers (for example, YAG and ruby). When the photon energy of the
pumping light is �ω1 and that of the luminescence is �ω2, the luminescence
with �ω2 < �ω1 is called Stokes luminescence and that with �ω2 > �ω1 is
designated anti-Stokes luminescence. Luminescence caused by electrical ex-
citation is electroluminescence, which has been used for panel displays. In
particular, luminescence by current injection is called injection-type electro-
luminescence; it has been used for light emitting diodes (LEDs) and semi-
conductor lasers or laser diodes (LDs). In such injection-type optical devices,
the carriers are injected into the active layers by forward bias across the pn
junctions. Note that the current (carrier) injection is also considered the exci-
tation, because it generates a lot of high energy electrons. The luminescence
due to electron beam irradiation is cathodoluminescence, which has been
adopted to characterize materials. The luminescence induced by mechanical
excitation using stress is triboluminescence, and that by thermal excitation
is thermoluminescence. Luminescence during a chemical reaction is referred
to chemiluminescence; it has not been reported in semiconductors.

2.2.3 Transition States

Figure 2.3 shows light emission processes between various energy states. They
are classified into impurity recombinations, interband recombinations, and
exciton recombinations.

h−    ω A

D

DA

g

e

h−    ω
h−    ω

h−    ω

h−    ω

Fig. 2.3. Light emission processes

In impurity recombinations, there is recombination between the electron
in the conduction band and the empty acceptor level with the photon energy
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of �ωA, recombination between the electron in the donor level and the hole
in the valence band with the photon energy of �ωD, and recombination be-
tween the electron in the donor level and the empty acceptor level with the
photon energy of �ωDA. By observing light emissions due to these recombina-
tions at extremely low temperatures, information on doping characteristics
is obtained.

In interband recombinations between the conduction and valence bands,
light emission in the vicinity of the band edges with the photon energy of
�ωg is dominant. This band edge emission is used in most LEDs and LDs
composed of III-V group semiconductors.

The exciton recombination, with the photon energy of �ωe, is the recom-
bination of the electron generated by decay of an exciton and the hole in the
valence band.

2.3 Spontaneous Emission, Stimulated Emission, and
Absorption

Figure 2.4 schematically shows radiations and absorption. In the radiations,
there are spontaneous emission and stimulated emission (or induced emis-
sion). As shown in Fig. 2.4 (a), spontaneous emission is a radiative process
in which an excited electron decays in a certain lifetime and a photon is
emitted. Note that spontaneous emission takes place irrespective of incident
lights. In contrast, in the stimulated emission illustrated in Fig. 2.4 (b), an
incident light induces a radiative transition of an excited electron. The emit-
ted light due to the stimulated emission has the same wavelength, phase, and
direction as the incident light. Therefore, the light generated by the stim-
ulated emission is highly monochromatic, coherent, and directional. In the
stimulated emission, one incident photon generates two photons; one is the
incident photon itself, and the other is an emitted photon due to the stimu-
lated emission. As a result, the incident light is amplified by the stimulated
emission. The absorption depicted in Fig. 2.4 (c) is a process that the electron
transits from a lower energy state to a higher one by absorbing energy from
the incident light. Because this transition is induced by the incident light, it
is sometimes called induced absorption. It should be noted that spontaneous
absorption does not exist; this will be explained in Chapter 8.

When a light is incident on a material, the stimulated emission and the
absorption simultaneously take place. In thermal equilibrium, there are more
electrons in a lower energy state than in a higher one, because the lower
energy state is more stable than the higher one. Therefore, in thermal equi-
librium, only the absorption is observed when a light is incident on a material.
In order to obtain a net optical gain, we have to make the number of electrons
in a higher energy state larger than in the lower one. This condition is re-
ferred to as inverted population, or population inversion, because the electron
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(a) (b) (c)
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Fig. 2.4. Radiation and absorption: (a) spontaneous emission, (b) stimulated emis-
sion, and (c) absorption

population is inverted compared with that in thermal equilibrium. In semi-
conductors, the population inversion is obtained only in the vicinity of the
band edges by excitation of the electrons through optical pumping or electric
current injection. The population inversion generates many electrons at the
bottom of the conduction band and many holes at the top of the valence
bands.

The laser oscillators use fractions of the spontaneous emission as the op-
tical input and amplify the fractions by the stimulated emission under popu-
lation inversion. Once the optical gains exceed the optical losses in the laser
oscillators, laser oscillations take place. The term laser is an acronym for
“light amplification by stimulated emission of radiation” and is used as a
noun in a laser oscillator. Note that an emitted light from a laser oscillator is
not a laser but a laser light or a laser beam. As a back formation from laser,
“lase” is used as a verb meaning “to emit coherent light.”

Among semiconductor light emitting devices, LEDs use spontaneous emis-
sion and are applied to remote-control transmitters, switch lights, brake
lights, displays, and traffic signals. In contrast, LDs are oscillators of lights
using stimulated emission and are used as light sources for lightwave commu-
nications, compact discs (CDs), magneto-optical discs (MOs), digital video
discs (DVDs), laser beam printers, laser pointers, bar-code readers, and so
on.

2.4 Optical Gains

2.4.1 Lasers

Let us consider the relationships between laser oscillators and optical gains.
First, we review a general oscillator, as shown in Fig. 2.5. An oscillator has a
gain and amplifies an input. Also, the oscillator returns a fraction of an output
to an input port through a feedback loop. The returned one is repetitively
amplified, and oscillation starts when a net gain exceeds an internal loss of
the oscillator.
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Figure 2.6 shows a laser oscillator where a fraction of the spontaneous
emission is used as the input and the optical gain is produced by the stimu-
lated emission. To feed back light, optical resonators or optical cavities, which
are composed of reflectors or mirrors, are adopted. Due to this configuration,
characteristics of lasers (for brevity, lasers are used for laser oscillators here)
are affected by the optical gains and optical resonators. Many lasers use op-
tical resonators, but nitrogen lasers, whose optical gains are very large, can
start laser oscillations even without optical resonators. It should be noted
that all semiconductor lasers use optical resonators.

As explained earlier, a fraction of the spontaneous emission is used as
the input of a laser. Note that all the spontaneously emitted lights cannot
be used as the input, because they have different wavelengths, phases, and
propagation directions. Among these lights, only the lights, which have wave-
lengths within the optical gain spectrum and satisfy the resonance conditions
of the optical resonators, can be the sources of laser oscillations. Other spon-
taneous emissions, which do not satisfy the resonance conditions of optical
resonators, are readily emitted outward without obtaining sufficient optical
gains for laser oscillations. The lights amplified by the stimulated emission
have the same wavelength, phase, and propagation direction as those of the
input lights. Therefore, the laser lights are highly monochromatic, bright,
coherent, and directional.

2.4.2 Optical Gains

(a) Carrier Distribution

We derive equations for the optical gains of semiconductor lasers. We suppose
that many electrons are excited to the conduction band by optical pumping
or electrical current injection. In this condition, the carrier distribution is in
nonthermal equilibrium, and there are many electrons in the conduction band
and many holes in the valence band. As a result, one Fermi level EF cannot
describe the distribution functions of the electrons and holes. In this case, it is
useful to determine the distribution functions by assuming that the electrons
in the conduction band and the holes in the valence band are separately
governed by Fermi-Dirac distribution. For this purpose, we introduce quasi-
Fermi levels EFc and EFv defined as
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n = Nc exp
(

−Ec − EFc

kBT

)
,

p = Nv exp
(

−EFv − Ev

kBT

)
,

Nc = 2
(

2πme
∗kBT

h2

)3/2

,

Nv = 2
(

2πmh
∗kBT

h2

)3/2

.

(2.1)

Here, n and p are the electron concentration and the hole concentration,
respectively; Ec and Ev are the energy of the bottom of the conduction
band and that of the top of the valence band, respectively; kB = 1.3807 ×
10−23 J K−1 is Boltzmann constant ; T is an absolute temperature; Nc and
Nv are the effective density of states for the electrons and that for the holes,
respectively; me

∗ and mh
∗ are the effective mass of the electrons and that of

the holes, respectively; and h is Planck’s constant.
From (2.1), these quasi-Fermi levels EFc and EFv are written as

EFc = Ec + kBT ln
(

n

Nc

)
,

EFv = Ev − kBT ln
(

p

Nv

)
.

(2.2)

We express a distribution function for the electrons in the valence band with
the energy E1 as f1 and that for the electrons in the conduction band with
the energy E2 as f2. Using EFc and EFv, we can express f1 and f2 as

f1 =
1

exp [(E1 − EFv) / (kBT )] + 1
,

f2 =
1

exp [(E2 − EFc) / (kBT )] + 1
.

(2.3)

It should be noted that the distribution function for the holes in the valence
band is given by [1 − f1].

(b) Optical Transition Rates

As shown in Fig. 2.7, we assume that a light, which has a photon energy of
E21 = E2 − E1 and a photon density of nph(E21), interacts with a direct-
transition semiconductor. Under this assumption, we calculate the transition
rates for the stimulated emission, the absorption, and the spontaneous emis-
sion. In Fig. 2.7, Ec is the energy for the bottom of the conduction band,
and Ev is the energy for the top of the valence band. Note that this figure
shows the energy bands for a certain value of k, and the horizontal line has
no physical meaning.
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Fig. 2.7. Schematic model for radiation and absorption

(i) Stimulated Emission Rate

The stimulated emission rate per unit volume r21(stim) is given by a product
of

the transition probability per unit time from E2 to E1 : B21,
the electron concentration in a state with the energy E2 : n2,
the hole concentration in a state with the energy E1 : p1,
the photon density : nph(E21).

The concentration n2 of the electron, which occupies a state with the
energy E2 in the conduction band, is expressed as

n2 = ρc(E2 − Ec)f2, (2.4)

where ρc(E2 − Ec) is the density of states, which is a function of E2 − Ec,
and f2 is the distribution function in (2.3).

The concentration p1 of the hole, which occupies a state with the energy
E1 in the valence band, is written as

p1 = ρv(Ev − E1)[1 − f1], (2.5)

where ρv(Ev − E1) is the density of states, which is a function of Ev − E1,
and f1 is the distribution function in (2.3).

Therefore, the stimulated emission rate r21(stim) is obtained as

r21(stim) = B21n2p1nph(E21)
= B21nph(E21)ρc(E2 − Ec)ρv(Ev − E1)f2[1 − f1]. (2.6)

(ii) Absorption Rate

The absorption rate per unit volume r12(abs) is given by a product of

the transition probability per unit time from E1 to E2 : B12,
the concentration of an empty state with the energy E2 : p2,
the electron concentration in a state with the energy E1 : n1,
the photon density : nph(E21).
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The concentration p2 of an empty state, which is not occupied by the
electrons with the energy E2 in the conduction band, is expressed as

p2 = ρc(E2 − Ec)[1 − f2]. (2.7)

The concentration n1 of the electron, which occupies a state with the
energy E1 in the valence band, is written as

n1 = ρv(Ev − E1)f1. (2.8)

As a result, the absorption rate r12(abs) is obtained as

r12(abs) = B12p2n1nph(E21)
= B12nph(E21)ρc(E2 − Ec)ρv(Ev − E1)f1[1 − f2]. (2.9)

(iii) Spontaneous Emission Rate

The spontaneous emission rate per unit volume r21(spon) is independent of
the incident photon density and given by a product of

the transition probability per unit time from E2 to E1 : A21,
the electron concentration in a state with the energy E2 : n2,
the hole concentration in a state with the energy E1 : p1.

Using (2.4) and (2.5), the spontaneous emission rate r21(spon) is obtained
as

r21(spon) = A21n2p1

= A21ρc(E2 − Ec)ρv(Ev − E1)f2[1 − f1]. (2.10)

(c) Optical Transition in Thermal Equilibrium

In thermal equilibrium, the carrier distributions are described by one Fermi
level EF, and the radiations balance the absorption. In other words, a sum
of the stimulated emission rate and the spontaneous emission rate is equal
to the absorption rate. Using the optical transition rates for the stimulated
emission, the spontaneous emission, and the absorption, we obtain

r21(stim) + r21(spon) = r12(abs),
EF1 = EF2 = EF.

(2.11)

Substituting (2.6), (2.9), and (2.10) into (2.11), we have

nph(E21) =
A21

B12 exp[E21/(kBT )] − B21
, (2.12)

while the blackbody radiation theory gives
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nph(E21) =
8πnr

3E21
2

h3c3 exp[E21/(kBT )] − h3c3 . (2.13)

Here, nr is the effective refractive index of a material, h is Planck’s constant,
and c = 2.99792458 × 108 m s−1 is the speed of light in a vacuum.

Comparison of (2.12) and (2.13) results in

A21 = Z(E21)B, B21 = B12 = B,

Z(E21) =
8πnr

3E21
2

h3c3 ,
(2.14)

which is known as Einstein’s relation, and A21 is called Einstein’s A co-
efficient ; and B is called Einstein’s B coefficient . It should be noted that
B21 = B12 = B, and A21 is proportional to B.

We consider the physical meaning of Z(E21) in (2.14) in the following.
We suppose that a light field EL is written as

EL = A0 exp[ i (ωt − k · r)], (2.15)

where A0 is a complex amplitude, ω is an angular frequency, t is a time, k is
a wave vector, and r is a position vector. We also suppose that the periodic
boundary condition is satisfied on the surfaces of a cube with a side length
L. Because the electric fields at x = 0 and x = L are the same, an eigenmode
is given by

exp(0) = exp( i kxL) = 1, ∴ kx =
2π

L
nx, (2.16)

where kx is an x-component of the wave vector k and nx is an integer.
Similarly, we obtain

ky =
2π

L
ny, kz =

2π

L
nz, (2.17)

where ny and nz are integers. Hence, k2 = kx
2 + ky

2 + kz
2 is expressed as

k2 =
(

2π

L

)2

(nx
2 + ny

2 + nz
2). (2.18)

Using the effective refractive index nr of the material, the angular fre-
quency ω is given by

ω =
kc

nr
. (2.19)

Therefore, the energy E = �ω is written as

E = �ω =
2π�c

nrL
(nx

2 + ny
2 + nz

2)1/2 =
hc

nrL
(nx

2 + ny
2 + nz

2)1/2, (2.20)
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which takes discrete values, because nx, ny, and nz are integers. However,
when L is much larger than the wavelength of the light, nx

2 + ny
2 + nz

2

becomes a huge number, and many modes exist near each other. When we
consider a sphere with a radius of R = (nx

2 + ny
2 + nz

2)1/2, the number
of combinations (nx, ny, nz) is equal to a volume of the sphere 4πR3/3. For
each combination (nx, ny, nz), there exist two modes corresponding to their
polarizations, which are perpendicular to each other. As a result, the number
of modes whose energy is placed between 0 and E is given by

2 × 4π

3

(
nrEL

hc

)3

=
8πnr

3E3

3h3c3 L3. (2.21)

The number of modes with their energies between E and E + dE is ob-
tained as a derivative of (2.21) with respect to E, which is expressed as

8πnr
3E2

h3c3 L3 dE. (2.22)

Because a volume of the cube is L3, dividing (2.22) by L3 gives the number
of modes per unit volume, that is, the mode density m(E) dE as

m(E) dE =
8πnr

3E2

h3c3 dE. (2.23)

From (2.23) and the third equation in (2.14), it is found that we have
m(E21) = Z(E21). This relation suggests that the spontaneous emission takes
place for all the modes with their energy placed between E and E +dE while
the stimulated emission and absorption occur only for the mode correspond-
ing to the incident light.

Note that the derivation of A and B assumes that both r21(stim) and
r12(abs) are proportional to the photon density nph(E21). If we assume that
both r21(stim) and r12(abs) are proportional to the energy density of the
photons as Einstein did [7], other formulas for A and B will be obtained.

Note: Definitions of the Mode Density

In the preceding discussion, we explained the mode density m(E) dE with the
energies placed between E and E + dE. Here, we will derive mode densities
m(ω) dω with the angular frequencies of a light between ω and ω + dω, and
m(ν) dν with the light frequencies between ν and ν+dν. Using the (effective)
refractive index of the material nr and the speed of light in a vacuum c, we
have

k =
nrω

c
=

2πnrν

c
. (2.24)

Substituting (2.24) into (2.18) and then calculating a volume 4πR3/3 of a
sphere with the radius R = (nx

2 + ny
2 + nz

2)1/2 results in
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2 × 4π

3
R3 =

nr
3ω3

3π2c3 L3 =
8πnr

3ν3

3c3 L3, (2.25)

where a factor 2 corresponds to the directions of the polarizations. As a result,
dividing (2.25) by L3 and then differentiating with respect to ω or ν leads to

m(ω) dω =
nr

3ω2

π2c3 dω, m(ν) dν =
8πnr

3ν2

c3 dν. (2.26)

(d) Net Stimulated Emission

Let us consider the excited conditions where many free carriers exist. In these
nonthermal equilibrium conditions, radiations do not balance with absorption
anymore. When a light is incident on a material, the stimulated emission
and the absorption simultaneously take place. Therefore, the net stimulated
emission rate r0(stim) is given by

r0(stim) = r21(stim) − r12(abs)
= Bnph(E21)ρc(E2 − Ec)ρv(Ev − E1)[f2 − f1]

=
A21

Z(E21)
nph(E21)ρc(E2 − Ec)ρv(Ev − E1)[f2 − f1]. (2.27)

From (2.27), to obtain the net stimulated emission r0(stim) > 0, we need

f2 > f1, (2.28)

which indicates the population inversion in the semiconductors. With the
help of (2.3), (2.28) reduces to

EFc − EFv > E2 − E1 = E21, (2.29)

which is known as the Bernard-Duraffourg relation. In semiconductor lasers,
a typical carrier concentration for r0(stim) > 0 is of the order of 1018 cm−3.

(e) Net Stimulated Emission Rate and Optical Gains

The optical power gain coefficient per unit length g is defined as

dI

dz
= gI, (2.30)

where I is the light intensity per unit area and z is a coordinate for a prop-
agation direction of the light. Because the light intensity is proportional to
the square of the electric field, the amplitude gain coefficient gE, which is the
gain coefficient for the electric field, is given by gE = g/2. From the definition,
I is expressed as



2.4 Optical Gains 37

I = v E21nph(E21) = v �ωnph(E21),

v =
dω

dk
=

c

nr
, (2.31)

dI

dt
= v E21

dnph(E21)
dt

= v E21 r0(stim),

where v is a group velocity of the light in the material, E21 = �ω is the
photon energy, and nph(E21) is the photon density.

Here we consider a relationship between the derivatives of I with respect
to a position and a time. Because the position z is a function of the time t,
we have

dI

dz
=

dt

dz

dI

dt
=
(

dz

dt

)−1 dI

dt
=

1
v

dI

dt
,

dI

dz
= gI = g v E21nph(E21).

(2.32)

From (2.31) and (2.32), we have the relation

r0(stim) = v g nph(E21). (2.33)

As a result, it is found that a large r0(stim) leads to a large g. Using (2.27),
(2.31), and (2.33), we can also express g as

g =
r0(stim)
nph(E21)

nr

c
=

nr

c
Bρc(E2 − Ec)ρv(Ev − E1)[f2 − f1]. (2.34)

From the time-dependent quantum mechanical perturbation theory (see
Appendix C), Einstein’s B coefficient in (2.14), which is the transition rate
due to the stimulated emission for a photon in a free space, is given by

B =
e2h

2m2ε0nr
2E21

〈1|p|2〉2. (2.35)

Here, e is the elementary charge; h is Planck’s constant; m is the electron
mass; ε0 is permittivity in a vacuum; nr is the refractive index of the material;
E21 is the photon energy; p is the momentum operator; and |1〉 and |2〉 are
the wave functions of the valence band and the conduction band in a steady
state, respectively.

Substituting (2.35) into (2.14), we can write Einstein’s A coefficient as

A21 =
4πe2nrE21

m2ε0h2c3 〈1|p|2〉2. (2.36)

Using the dipole moment µ, (2.35) and (2.36) can be rewritten as follows:
The momentum operator p is expressed as
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p = m
dr

dt
. (2.37)

As a result, we obtain

1
m

〈1|p|2〉 =
d
dt

〈1|r|2〉 = iω〈1|r|2〉, (2.38)

where r ∝ e i ωt was assumed. With the help of (2.38), Einstein’s A and B
coefficients are written as

B =
πe2ω

ε0nr
2 〈1|r|2〉2 =

πω

ε0nr
2 µ2,

A21 =
2nrω

3

ε0hc3 µ2, (2.39)

µ2 = 〈1|er|2〉2.
Note that many textbooks on quantum electronics use (2.39) as Einstein’s
A coefficient. Expressions on Einstein’s B coefficient depend on the defini-
tions of the stimulated emission rate whether it is proportional to the photon
density or to the energy density. In the preceding explanations, Einstein’s B
coefficient is defined to be in proportion to the photon density. Therefore,
the quantum mechanical transition rate for the stimulated emission is equal
to Einstein’s B coefficient.

Ec

Ev

Fig. 2.8. Transition with a constant photon energy

In semiconductors, due to the energy band structures, transitions take
place between various energy states, as shown in Fig. 2.8. If we put E21 = E
and E2 −Ec = E′′, the electron energy in the valence band E′ for the allowed
transition is given by E′ = E′′ − E. Therefore, by integrating (2.27) with
respect to E′′, the net stimulated emission rate r0(stim) in the semiconductors
is obtained as

r0(stim) =
e2hnph(E)
2m2ε0nr

2E

∫ ∞

0
〈1|p|2〉2ρc(E′′)ρv(E′)[f2(E′′) − f1(E′)] dE′′,

(2.40)

where (2.35) was used. Similarly, the optical power gain coefficient g(E) is
given by
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g(E) =
e2h

2m2ε0nrcE

∫ ∞

0
〈1|p|2〉2ρc(E′′)ρv(E′)[f2(E′′) − f1(E′)] dE′′.

(2.41)

From (2.10) and (2.36), the spontaneous emission rate r21(spon) is expressed
as

r21(spon) =
4πe2nrE

m2ε0h2c3

∫ ∞

0
〈1|p|2〉2ρc(E′′)ρv(E′)f2(E′′)[1 − f1(E′)] dE′′.

(2.42)

When the excitation is weak, the absorption is observed, and the net
absorption rate r0(abs) is written as

r0(abs) = r12(abs) − r21(stim) = −r0(stim). (2.43)

Therefore, the optical power absorption coefficient α(E) and the optical
power gain coefficient g(E) are related as

α(E) = −g(E). (2.44)

Figure 2.9 shows the calculated optical power gain coefficient g(E) in
(2.41) as a function of E − Eg for the bulk structures with the bandgap
energy of Eg = 0.8 eV. With an increase in the carrier concentration n, the
gain peak shifts toward a higher energy (shorter wavelength). This shift of
the gain peak is caused by the band filling effect [8], in which the electrons
in the conduction band and the holes in the valence band occupy each band
from the band edges. Because higher energy states are more dense than lower
energy states, the optical gain in higher energy states is larger than that in
lower energy ones.
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Fig. 2.9. Optical power gain coefficient

Here, let us consider the optical power gain coefficient g(E) from other
viewpoints. In (2.41), ρc(E′′)ρv(E′) is considered to be the density of state
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pairs related to the optical transitions. The density of state pairs is also
expressed using the law of momentum conservation (k-selection rule) and
the law of energy conservation (E21 = E2 − E1). Under the k-selection rule,
optical transitions take place only for k = k1 = k2. Therefore, we can define
the density of state pairs or the reduced density of states ρred(E21) as

ρred(E21) dE21 ≡ ρv(E1) dE1 = ρc(E2) dE2, (2.45)

where

dE21 = dE1 + dE2. (2.46)

From (2.45) and (2.46), we have

ρred(E21) =
[

1
ρv(E1)

+
1

ρc(E2)

]−1

. (2.47)

If the conduction and valence bands are parabolic, the energies E1 and
E2 are written as

E1 = Ev − �
2k2

2mh
∗ , (2.48)

E2 = Ec +
�

2k2

2me
∗ , (2.49)

where mh
∗ and me

∗ are the effective masses of the holes and the electrons,
respectively. As a result, E1 and E2 are rewritten as

E1 = Ev − me
∗

me
∗ + mh

∗ (E21 − Eg) , (2.50)

E2 = Ec +
mh

∗

me
∗ + mh

∗ (E21 − Eg) . (2.51)

Also, once the initial state of the optical transitions is given, the final state
is determined by E21 and k. Hence, the number of state pairs per volume
associated with the optical transitions for the photon energies between E21
and E21 + dE21 is given by

ρred(E21) [f2(E21) − f1(E21)] dE21. (2.52)

We assume that the energy states related to optical transitions have an
energy width of �/τin, and the spectral shape of Lorentzian such as

L(E21) =
1
π

�/τin

(E21 − E)2 + (�/τin)2
, (2.53)

where τin is the relaxation time due to electron scatterings and transitions.
In this case, the optical power gain coefficient g(E) is expressed as
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g(E) =
e2h

2m2ε0nrcE

∫ ∞

0
〈1|p|2〉2ρred(E21) [f2(E21) − f1(E21)] L(E21) dE21,

(2.54)

which is plotted in Fig. 2.10 for the bulk structures with τin = 10−13 s. It
is found that relaxation is equivalent to band tailing, which contributes to
optical transitions in E < Eg.
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Fig. 2.10. Optical power gain coefficient under the k-selection rule

Because f2 and [1 − f1] are always positive, spontaneously emitted lights
distribute in a higher energy than the gain peak. Figure 2.11 schematically
shows spectra for the stimulated emission (laser light) and the spontaneously
emitted lights; its horizontal line indicates photon energy. Note that the pho-
ton energies increase due to the band filling effect with enhancement of the
excitation, irrespective of spontaneous emission or stimulated emission.
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Fig. 2.11. Stimulated emission and spontaneous emission



3 Optical Waveguides

3.1 Introduction

An optical beam propagating in a free space expands in the beam width with
an increase in propagation distance. The beam divergence angle θ in radians
is expressed as

θ � λ

d
, (3.1)

where λ is a light wavelength and d is a beam diameter. For example, if a
laser beam with λ = 1 µm and d = 1 mm propagates by 100 m, its beam
width expands to about 10 cm. In contrast, the optical waveguide confines
lights to itself during propagation of the lights [9–13].

In typical bulk (double heterostructure) semiconductor lasers, the active
layer thickness is 0.1 µm, the beam width is 0.3 µm, and the cavity length
is 300 µm. If there are no optical waveguides, this beam width expands up
to 500 µm by a single-way propagation, where λ is assumed to be 0.5 µm. In
the semiconductor lasers, only the active layer has the optical gain, and it
is extremely inefficient to amplify a beam with the width of 500 µm by the
active layer with the thickness of only 0.1 µm. Therefore, to amplify lights
efficiently, optical waveguides are indispensable for semiconductor lasers. It
should be noted that optical fibers are also representative optical waveguides.

Figure 3.1 shows cross-sectional views of the optical waveguides. Accord-
ing to the operating principles, optical waveguides are divided into index
guiding waveguides and gain guiding ones. In index guiding waveguides, a
light is confined to a high refractive index region, which is surrounded by low
refractive index regions. In Fig. 3.1 (a), only if the refractive indexes nf , nc,
and ns satisfy nf > nc, ns, a light is confined to a region with nf . The gain
guiding waveguides use a property that only a gain region amplifies a light,
and a light seems to propagate in the gain region. In Fig. 3.1 (b), a light is
confined to a region with the optical gain gf , which is larger than gc and gs.

To consider optical gain, we introduce the complex refractive index

ñ = nr − i κ, (3.2)

where nr is a so-called refractive index and κ is the extinction coefficient .
Here, we express the electric field E of a light as
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(a)

nf > nc , ns

ns

nc

nf

(b)

gf > gc , gs

gs

gc

gf

Fig. 3.1. Cross sections of optical waveguides: (a) index guiding and (b) gain
guiding

E = E0 exp[ i (ωt − kz)], (3.3)

where E0 is an amplitude, ω is an angular frequency of the light, t is a time,
k is a wave number, and z is a coordinate for a propagation direction of the
light. Using the complex refractive index ñ in (3.2), the angular frequency ω,
and the speed of light in a vacuum c, we can write the wave number k as

k =
ñω

c
=

nr − i κ
c

ω. (3.4)

Substituting (3.4) into (3.3), we have

E = E0 exp
[
i
(
ωt − nrω

c
z
)]

· exp
(
−ωκ

c
z
)

, (3.5)

where κ > 0 shows the optical loss and κ < 0 indicates the optical gain. As a
result, the optical amplitude gain coefficient gE and the extinction coefficient
κ are related as

gE = −ω

c
κ. (3.6)

Note that the optical power gain coefficient g is equal to 2gE, because the
light intensity is proportional to E2.

From the viewpoint of shape, the optical waveguides are classified into
a two-dimensional optical waveguide, or a planar optical waveguide, and a
three-dimensional optical waveguide, or a strip optical waveguide. The two-
dimensional waveguide has a plane, which is much larger than a wavelength of
light and confines a light one-dimensionally. Only the size of its confinement
direction is on the order of a light wavelength or less. The three-dimensional
waveguide confines a light two-dimensionally, and the sizes along these two
confinement directions are on the order of a light wavelength or less. The
remaining direction is the propagation direction of a light.
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3.2 Two-Dimensional Optical Waveguides

3.2.1 Propagation Modes

Let us consider a two-dimensional waveguide where the guiding layer is sand-
wiched by the cladding layer and the substrate, as shown in Fig. 3.2. The
refractive indexes of the guiding layer, the cladding layer, and the substrate
are nf , nc, and ns, respectively. To confine a light in the guiding layer, we
need nf > ns ≥ nc, and nf − ns is usually on the order of 10−3 to 10−1.

Cladding layer nc

Substrate ns

Guiding layer nf

Fig. 3.2. Cross section of a two-dimensional optical waveguide

Figure 3.3 shows propagation directions of a light when the light enters
from the substrate to the cladding layer through the guiding layer. From
Snell’s law , the angles θs, θf , and θc, which are formed by the interface
normals and the directions of the light, are related to the refractive indexes
ns, nf , and nc as

ns sin θs = nf sin θf = nc sin θc. (3.7)

nc

nf

ns

c

f

s

θ

θ

θ

Fig. 3.3. Snell’s law

When θs is equal to π/2, a light cannot propagate in the substrate, and the
total reflection takes place at the interface of the substrate and the guiding
layer. In this case, the power reflectivity (reflectance) is 100%. When θc is
equal to π/2, the total reflection takes place at the interface of the cladding
layer and the guiding layer. The minimum value of θf to obtain the total
reflection is called the critical angle. According to θs = π/2, and θc = π/2,
we have two critical angles θfs and θfc, which are expressed as

θfs = sin−1
(

ns

nf

)
, θfc = sin−1

(
nc

nf

)
. (3.8)

Here, θfs ≥ θfc is satisfied under the assumption of nf > ns ≥ nc.
Corresponding to a value of θf , there are three propagation modes, as

shown in Fig. 3.4.
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Fig. 3.4. Propagation modes: (a) radiation mode, (b) substrate radiation mode,
and (c) guided mode

(a) θf < θfc ≤ θfs : Radiation Mode

The light is not confined to the optical waveguide at all.

(b) θfc < θf < θfs : Substrate Radiation Mode

The total reflection occurs at the interface of the cladding layer and the
guiding layer, while the refraction takes place at the interface of the guiding
layer and the substrate. As a result, there exists a light propagating in the
substrate.

(c) θfs < θf < π/2 : Guided Mode

At both the interfaces, the total reflections occur. A light is completely con-
fined to the optical waveguide.

Among (a), (b), and (c), the guided mode in (c) is the most important
for semiconductor lasers and photonic integrated circuits. In (a) and (b), the
guided mode does not exist, and such a condition is referred to as the cutoff .
Therefore, in the following, we will examine the guided mode in detail.

3.2.2 Guided Mode

(a) Total Reflection

The total reflection is the reflection with |r|2 = 1, where r is the amplitude
reflectivity. It should be noted that r depends on the angle of incidence and
the direction of polarization.

Here, we consider a plane wave, and we define the plane of incidence as a
plane on which all the directions of incident light , reflected light , and refracted
light coexist. The transverse electric (TE) mode is a linearly polarized light
whose electric field E is normal to the plane of incidence. The transverse
magnetic (TM) mode is a linearly polarized light whose magnetic field H is
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(a) (b)

E H

θ θ

Fig. 3.5. (a) TE mode and (b) TM mode

normal to the plane of incidence. Figure 3.5 shows the TE mode and the TM
mode, where the plane of incidence is placed on the face of the page and only
the incident and reflected lights are illustrated.

From the Fresnel formulas, the amplitude reflectivities are given by

rTE,c =
nf cos θf −

√
nc

2 − nf
2 sin2 θf

nf cos θf +
√

nc
2 − nf

2 sin2 θf

,

(3.9)

rTE,s =
nf cos θf −

√
ns

2 − nf
2 sin2 θf

nf cos θf +
√

ns
2 − nf

2 sin2 θf

,

rTM,c =
nc

2 cos θf − nf

√
nc

2 − nf
2 sin2 θf

nc
2 cos θf + nf

√
nc

2 − nf
2 sin2 θf

,

(3.10)

rTM,s =
ns

2 cos θf − nf

√
ns

2 − nf
2 sin2 θf

ns
2 cos θf + nf

√
ns

2 − nf
2 sin2 θf

.

Here, subscripts TE and TM show the TE mode and the TM mode, respec-
tively; subscripts c and s correspond to the reflection at the interface of the
cladding layer and the guiding layer and that at the interface of the substrate
and the guiding layer, respectively.

When the total reflections take place, |r|2 = 1 is satisfied, and the ampli-
tude reflectivities in (3.9) and (3.10) take complex numbers. As a result, we
can write the amplitude reflectivity r as

r = exp( i 2φ), (3.11)

where φ is the phase shift added to the reflected wave at the interface. In
other words, due to the total reflection, the phase of the reflected wave is
shifted at the interface of the reflection. When we rewrite (3.9) and (3.10) in
the form of (3.11), the phase shifts φ are expressed as
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tanφTE,c =

√
nf

2 sin2 θf − nc
2

nf cos θf
,

(3.12)

tanφTE,s =

√
nf

2 sin2 θf − ns
2

nf cos θf
,

tanφTM,c =
nf

√
nf

2 sin2 θf − nc
2

nc
2 cos θf

,

(3.13)

tanφTM,s =
nf

√
nf

2 sin2 θf − ns
2

ns
2 cos θf

,

where the subscripts are the same as in (3.9) and (3.10).

(b) Guiding Condition

We consider a monochromatic coherent plane wave, which propagates in an
optical waveguide as shown in Fig. 3.6. Here, the x-axis is normal to the layer
interfaces, the y-axis is parallel to the layer interfaces, and the z-axis is along
the propagation direction of the light. The thickness of the guiding layer is
h.

nc

nf

ns

x

y z
h

fθ

Fig. 3.6. Coordinate system for a guided mode

Neglecting a time-dependent factor, we can express the propagating elec-
tric field E as

E = E0 exp[−i k0nf(±x cos θf + z sin θf)], (3.14)

where k0 = ω/c is a wave number in a vacuum, and a sign in front of x
corresponds to the propagation direction of the light (+ : toward positive
x and − : toward negative x). The propagation constant β and the phase
velocity vp along the z-axis are defined as

β ≡ k0nf sin θf ≡ ω

vp
, (3.15)

as shown in Fig. 3.7.
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k0 nf

= k0 nf sin fβ θ

θf

Fig. 3.7. Propagation constant

If we see a light in a reference system, which moves toward the positive
z-axis with a phase velocity vp, we observe that a light is multireflected along
the x-axis. Changes in the phase during a roundtrip of the light along the
x-axis are given by

x = 0 → h (the first half) : k0nfh cos θf ,
x = h (at the interface of the reflection) : −2φc,
x = h → 0 (the second half) : k0nfh cos θf ,
x = 0 (at the interface of the reflection) : −2φs.

Because the phase of the wave front shifts after a roundtrip, the lightwave
intensity is modified by interference. Therefore, to obtain a propagating light-
wave without decay, a total phase change in the roundtrip must satisfy

2k0nfh cos θf − 2φc − 2φs = 2mπ (m = 0, 1, 2, · · · ), (3.16)

where m is the mode number . Equation (3.16) shows a resonance condition
normal to the z-axis, which is called the transverse resonance condition. From
(3.16), it is found that the angle of incidence θf for the guided mode takes
discrete values.

In summary, the guiding condition is characterized by simultaneously sat-
isfying the transverse resonance condition (3.16) and the total reflection con-
dition θfs < θf < π/2.

(c) Goos-Hänchen Shift

When the total reflection takes place, a phase of a lightwave shifts by −2φ at
the interface of the reflection. Due to this phase shift, an optical path changes
at the reflection interfaces, as shown in Fig. 3.8. This shift in the optical path
Z is called the Goos-Hänchen shift , which is given by

Z =
dφ

dβ
, (3.17)

where β is the propagation constant along the z-axis.
At each reflection interface, a lightwave propagates along the interface

and has a component with a decay constant 1/X along the x-axis where X
is the penetration depth. This exponentially decaying wave is designated the
evanescent wave, and the energy does not flow along the x-axis.
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With the help of (3.12) and (3.13), the Goos-Hänchen shifts and the
penetration depths are expressed as

k0ZTE,c = (nf
2 sin2 θf − nc

2)−1/2 · tan θf ,

k0ZTE,s = (nf
2 sin2 θf − ns

2)−1/2 · tan θf , (3.18)

XTE,c =
ZTE,c

tan θf
, XTE,s =

ZTE,s

tan θf
,

k0ZTM,c = (nf
2 sin2 θf − nc

2)−1/2 · tan θf ·
(

N2

nc
2 +

N2

nf
2 − 1

)−1

,

k0ZTM,s = (nf
2 sin2 θf − ns

2)−1/2 · tan θf ·
(

N2

ns
2 +

N2

nf
2 − 1

)−1

, (3.19)

XTM,c =
ZTM,c

tan θf
, XTM,s =

ZTM,s

tan θf
.
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nf

ns

2Zc

2Zs 2Zs

Xc

Xs Xs

θf

Fig. 3.8. Goos-Hänchen shift

(d) Effective Refractive Index

Using a wave number k0 = ω/c in a vacuum and the propagation constant β
along the z-axis, we define the effective refractive index N as

N ≡ β

k0
= nf sin θf . (3.20)

This effective refractive index N is considered to be a refractive index of a
material for a plane wave propagating along the z-axis. Because the semicon-
ductor lasers have optical waveguides within themselves, the effective refrac-
tive index N is important to determine the resonance conditions. Note that
the value of N for the guided modes satisfies

ns < N < nf , (3.21)

where nf > ns was used.
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(e) Optical Confinement Factor

We define the optical confinement factor Γ as a ratio of the intensity of the
light existing in the relevant layer to the total light intensity.

Because the light intensity distributes as shown in Fig. 3.9, the optical
confinement factor Γf for the guiding layer (hatched area) is given by

Γf =

∫ h

0
|E(x)|2dx∫ ∞

−∞
|E(x)|2dx

. (3.22)

Similarly, the optical confinement factors Γc for the cladding layer and Γs for
the substrate are written as

Γc =

∫ ∞

h

|E(x)|2dx∫ ∞

−∞
|E(x)|2dx

, Γs =

∫ 0

−∞
|E(x)|2dx∫ ∞

−∞
|E(x)|2dx

. (3.23)

Light Intensity

nc

nf

ns

h

x
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z

Fig. 3.9. Distribution of light intensity

The optical confinement factor Γ is important to design the optical losses
or the optical gains in the optical waveguides. Using Γ , we can approximately
express the effective refractive index N as

N ≈ Γsns + Γfnf + Γcnc. (3.24)

(f) Normalized Expressions for Eigenvalue Equation

The equation for the transverse resonance condition (3.16) is called an eigen-
value equation. By solving (3.16) numerically, we can examine propagation
characteristics of the guided modes. Furthermore, normalizing (3.16) leads to
dispersion curves, which are common to all step-like two-dimensional optical
waveguides. To obtain a normalized expression of the eigenvalue equation,
we define the normalized frequency , or the normalized waveguide thickness
V , and the normalized waveguide refractive index b as
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V = k0h
√

nf
2 − ns

2, (3.25)

b =
N2 − ns

2

nf
2 − ns

2 . (3.26)

In addition, we introduce the asymmetry measure a as

a =
ns

2 − nc
2

nf
2 − ns

2 . (3.27)

Substituting (3.12), (3.13), and (3.25)–(3.27) into (3.16), we obtain the nor-
malized eigenvalue equation as

V
√

1 − b = mπ + tan−1 χs

√
b

1 − b
+ tan−1 χc

√
a + b

1 − b
, (3.28)

where

χi =
{

1 : TE mode
(nf/ni)

2 : TM mode (i = s, c).
(3.29)

It should be noted that the guided modes for the gain guiding waveguides
can be calculated from (3.16) or (3.28), if we replace the refractive index
ni (i = s, f, c) with the complex refractive index ñi.

Figure 3.10 shows the normalized dispersion curves for the guided TE
modes. If the waveguide parameters, such as the refractive indexes and
the layer thickness, are given, we can design the optical waveguides using
Fig. 3.10. For the design of the optical waveguides, the cutoff condition, in
which the guided modes do not exist, is important. When the angle of in-
cidence θf is equal to the critical angle θfs, the lightwave is not confined to
the guiding layer anymore, and a fraction of the optical power is emitted to
the substrate. In this case, we have N = ns, which results in b = 0 from
(3.26). Hence, from (3.28), a normalized frequency for the cutoff condition
Vm is given by

Vm = mπ + tan−1 χc
√

a. (3.30)

For Vm < V < Vm+1, the guided modes from the zeroth order to the mth
order exist as shown in Fig. 3.10, and a lower-order mode has a larger b for
a common V value. Therefore, from (3.26), a lower-order mode has a larger
effective refractive index, and the fundamental mode (m = 0) has the largest
N among the guided modes.

Figure 3.11 shows the electric fields E(x) for fundamental (m = 0), first-
order (m = 1), and second-order (m = 2) TE modes, in which the mth-order
TE mode is indicated by TEm. See Appendix D for the relationship between
the eigenvalue equations and the light fields.

For symmetric optical waveguides with ns = nc, by using V and b, the
optical confinement factor Γf is also expressed as

Γf =
V

√
b + 2b

V
√

b + 2
. (3.31)
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Normalized Frequency V = k0h (nf
2 − ns
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Fig. 3.10. Normalized dispersion curves for guided TE modes
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Fig. 3.11. Distributions of electric fields

(g) Coupling of Light into Optical Waveguides

When the total reflections occur at the interfaces, we cannot couple a light
into the guiding layer from the cladding layer or the substrate. Therefore,
we introduce the light from a facet of the optical waveguide, as shown in
Fig. 3.12. It should be noted that the angle of incidence in the guiding layer
θf must satisfy the guiding conditions.

Facet

Optical waveguide

θ f

nc

nf

ns

Refractive index of air : 1

Fig. 3.12. Coupling of a light into an optical waveguide
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In semiconductor lasers, lights are generated in the active layers, and we
do not have to couple a light from outside. However, when semiconductor
lasers are used as optical amplifiers by biasing below threshold, or they are
controlled by an incident light such as in injection locking , lights are intro-
duced from the facets of semiconductor lasers.

3.3 Three-Dimensional Optical Waveguides

As shown in Fig. 3.13, we select a coordinate system in which the propagation
direction of the light is the z-axis, the layer interfaces are normal to the x-axis,
and the layer planes are parallel to the y-axis.

The two-dimensional optical waveguides can confine lights only along
the x-axis, not along the y-axis. In contrast, the three-dimensional optical
waveguides confine lights along both the x- and y-axes. When these three-
dimensional optical waveguides are adopted in semiconductor lasers, the
guided modes are efficiently amplified, which results in low-threshold, high-
efficiency laser operations. However, analysis of the three-dimensional optical
waveguides is more complicated than that of two-dimensional ones, and we
cannot obtain exact analytical solutions. As a result, approximate analytical
methods or numerical analyses are used to design the three-dimensional opti-
cal waveguides. As approximate analytical methods, we explain the effective
refractive index method and Marcatili’s method . These approximate meth-
ods can be applied to the guided modes, only when an aspect ratio a/h > 1
where h is the guiding layer thickness and a is the waveguide width, and the
guiding condition is far from the cutoff conditions. If these two conditions
are not satisfied, accuracy of the approximations degrades.

x

y
z

nc

nf

ns

Fig. 3.13. Coordinates for a three-dimensional optical waveguide

3.3.1 Effective Refractive Index Method

Figure 3.14 shows a ridge optical waveguide where an upper figure is a top
view and a lower one is a cross-sectional view. Here, a is the waveguide width,
h is the film thickness of the core region, and f is the film thickness of the
surrounding regions.
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At first, we treat the core region and the surrounding regions separately,
and we regard each region as the two-dimensional optical waveguide. There-
fore, the normalized frequency V and the normalized waveguide refractive
index b for each region are defined as

Vh = k0h
√

nf
2 − ns

2, Vf = k0f
√

nf
2 − ns

2, (3.32)

bh =
Nh

2 − ns
2

nf
2 − ns

2 , bf =
Nf

2 − ns
2

nf
2 − ns

2 , (3.33)

where subscripts h and f correspond to the core region and the surrounding
regions, respectively; and Nh and Nf are the effective refractive indexes for
each region.

Secondly, we consider that the guiding layer with the refractive index Nh
and thickness a is sandwiched by the layers with the refractive index Nf , as
shown in the upper figure of Fig. 3.14. As a result, the normalized frequency
Vy of the three-dimensional optical waveguide is defined as

Vy = k0a

√
Nh

2 − Nf
2. (3.34)

If we express the effective refractive index of the three-dimensional optical
waveguide as Ns, the normalized waveguide refractive index bs of the three-
dimensional optical waveguide is given by

bs =
Ns

2 − Nf
2

Nh
2 − Nf

2 . (3.35)

Substituting Vy and bs into (3.28) leads to the dispersion curves for the three-
dimensional optical waveguide.
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h

Fig. 3.14. Effective refractive index method

3.3.2 Marcatili’s Method

Figure 3.15 shows a cross-sectional view of the three-dimensional optical
waveguide, which is seen toward the positive direction of the z-axis. If most
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of the guided modes are confined to region I, light field amplitudes drastically
decay with an increase in distance from the interfaces. Therefore, the light
intensities distributed in the shaded areas in Fig. 3.15 are neglected, which
is referred to as Marcatili’s method [14]. Under this assumption, light fields
are obtained by solving wave equations.

x

y

I, n1

II, n2

III, n3

IV, n4V, n5 h

a

Fig. 3.15. Marcatili’s method



4 Optical Resonators

4.1 Introduction

As shown in Fig. 4.1, the lasers use a fraction of spontaneously emitted lights
as the input and amplify the fraction by the stimulated emission. To feed
back the light, the optical resonators, or the optical cavities, which consist
of reflectors, are adopted. The resonance conditions of the optical resonators
determine lasing conditions such as a threshold and an oscillation wavelength.

Fraction of 
spontaneous
emission

Optical
   gain

Laser light

Optical feedback by
reflectors

+

β

Fig. 4.1. Laser

In this chapter, we focus on the optical resonators that are used in the
semiconductor lasers and explain the Fabry-Perot cavity , the distributed feed-
back (DFB) cavity, and the distributed Bragg reflector (DBR), which is a
component of a resonator.

The optical resonators are divided into three groups whose constituent
components are mirrors, diffraction gratings, and hybrid of mirrors and
diffraction gratings.

Figure 4.2 shows the optical resonators comprising the mirrors: the Fabry-
Perot cavity and the ring cavity . The Fabry-Perot cavity consists of two par-
allel mirrors in which lights experience repetitive roundtrips. The ring cavity,
in contrast, has three or more mirrors, in which lights propagate clockwise
or counterclockwise. These two optical cavities are also widely used in gas,
solid, and dye lasers as well as in semiconductor lasers. One of the mirrors
is often replaced by the diffraction grating in order to select an oscillation
mode. Note that a cleaved facet is used as a mirror in semiconductor lasers.

Figure 4.3 shows the optical resonators, which use diffraction gratings:
the DFB cavity and the DBR. The DFB cavity has an active layer, which
generates a light, and the optical gain, in its corrugated region, and functions
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Mirror Mirror

(a) (b)

Laser light
Laser light

Mirror Mirror

Mirror

Laser light Laser light

Fig. 4.2. Optical resonators with reflectors: (a) Fabry-Perot cavity and (b) ring
cavity

as the optical resonator by itself. In contrast, the DBR does not have an active
layer in its corrugated region and functions as a reflector, not a resonator.
Therefore, the DBR is combined with other DBRs or the cleaved facets to
form optical resonators.

(b)(a)

Active layer Active layer
Laser beam Laser beamLaser beam Laser beam

Fig. 4.3. (a) DFB and (b) DBR

4.2 Fabry-Perot Cavity

The Fabry-Perot laser has an active material inside the Fabry-Perot cavity,
as shown in Fig. 4.4 (a). In the semiconductor lasers, cleaved facets are used
as mirrors, as illustrated in Fig. 4.4 (b), because lights are reflected at the
interface of the air and the semiconductor due to a difference in refractive
indexes. Note that the cleaved facets are very flat with the order of atomic
layers, and they are much smoother than light wavelengths. These cleaved
facets are often coated with dielectric films to control the reflectivities or
protect the facets from degradation.

Mirror Cleaved facet Active layer

Laser beam Laser beam

(a) (b)

Active
material

Fig. 4.4. Fabry-Perot lasers: (a) laser and (b) LD

Let us consider transmission characteristics of the Fabry-Perot cavity.
We assume that the amplitude reflectivities of the two mirrors are r1 and r2;
the amplitude transmissivities of the two mirrors are t1 and t2, as shown in
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Fig. 4.5. As explained in Chapter 3, these reflectivities and transmissivities
depend on the angle of incidence and the polarization of the light. Here, we
suppose that the angle of incidence θ0 is small enough, and we regard r1, r2,
t1, and t2 as constant.

r1, t1 r2, t2

x

z

E t

E0
0 L

θ0
θ

Fig. 4.5. Analytical model for the Fabry-Perot cavity

If we neglect a time-dependent factor, we can write the incident electric
field Ei through the surface at z = 0 as

Ei = t1E0 exp
[
− i nrtω

c
(x sin θ + z cos θ)

]
× exp[gE(x sin θ + z cos θ)]. (4.1)

Here, E0 is an amplitude of the electric field of the incident light, nrt is a
real part of the complex refractive index of the material placed between the
two mirrors, ω is an angular frequency of the light, c is the speed of light in
a vacuum, and gE is the optical amplitude gain coefficient defined in (3.6).

The transmitted electric field Et through the Fabry-Perot cavity is ex-
pressed as

Et = t1t2E0 exp
[
− i nrtω

c
(x sin θ + L cos θ) +

gEL

cos θ

]

×
{

1 + r1r2 exp
(

−i δ +
2gEL

cos θ

)
+ (r1r2)2 exp

[
2
(

−i δ +
2gEL

cos θ

)]

+ · · ·
}

=
t1t2E0 exp

[
− i nrtω

c
(x sin θ + L cos θ) +

gEL

cos θ

]

1 − r1r2 exp
(

−i δ +
2gEL

cos θ

) , (4.2)

where

δ =
2nrtωL cos θ

c
(4.3)
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was introduced.
The incident light intensity I0 and the transmitted light intensity It are

related to the electric fields E0 and Et as

I0 ∝ E0
∗E0, It ∝ Et

∗Et. (4.4)

Therefore, with the help of (4.2), we obtain

It =
(t1t2)2Gs

1 + (r1r2)2 · Gs
2 − 2r1r2Gs cos δ

I0,

Gs = exp
(

2gEL

cos θ

)
.

(4.5)

Because the power reflectivities R1, R2 and the power transmissivities T1, T2
are given by

R1 = r1
∗r1, R2 = r2

∗r2, T1 = t1
∗t1, T2 = t2

∗t2, (4.6)

we can rewrite (4.5) as

It =
T1T2Gs

1 + Gs
2R1R2 − 2Gs

√
R1R2 cos δ

I0. (4.7)

The angle θ is given by θ = π/2 − θf , where θf was defined in Fig. 3.6.
Hence, we have cos θ = sin θf and (4.3) reduces to

δ =
2nrωL

c
= 2nrk0L, k0 =

ω

c
, (4.8)

where the effective refractive index N = nrt sin θf ≡ nr was used. When the
angle of incidence θ0 is small, as in a fundamental mode, (4.7) results in

It =
T1T2Gs0

(1 − Gs0
√

R1R2)2 + 4Gs0
√

R1R2 sin2(nrk0L)
I0,

Gs0 = exp(2gEL) = exp(gL),

(4.9)

where (4.8) was used and g is the optical power gain coefficient. Figure 4.6
shows a plot of (4.9) where Gs0 = 1, and R1 = R2 = R, T1 = T2 = T =
0.98 − R by assuming that the optical power loss at each mirror is 2%. The
transmissivities have maximum values at nrk0L = nπ (n: a positive integer)
and minimum values at (n + 1/2)π. With an increase in R, the transmission
spectra narrow and the transmissivities decrease. If the optical power loss at
the mirror is null, we have T = 1 − R, which results in a maximum power
transmissivity of 1 (100%) irrespective of R.
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Fig. 4.6. Transmission characteristics for the Fabry-Perot cavity

4.2.1 Resonance Condition

When the resonance condition is satisfied, the power transmissivity has a
peak. From (4.9), the resonance condition is given by

nrk0L =
nrωL

c
=

nrtωL

c
cos θ = nπ, (4.10)

where n is a positive integer. From this equation, it is found that the effective
refractive index nr is useful to express the resonance condition. At normal
incidence with θ0 = θ = 0, the resonance condition is written as

nrtωL

c
= nrtk0L = nπ. (4.11)

Using a wavelength in a vacuum λ0, (4.11) reduces to

L = n
λ0

2nrt
. (4.12)

Because λ0/nrt is a wavelength in a material, a product of a positive integer
and a half-wavelength in a material is equal to the cavity length L at the
resonance condition.

4.2.2 Free Spectral Range

The Fabry-Perot cavity is used as a spectrometer, because its transmissivity
depends on a light wavelength. However, two lights whose nrk0L values are
different by nπ (n: a positive integer) cannot be resolved by the Fabry-Perot
cavity, because there is a common transmissivity for the two lights. When
(n− 1/2)π < nrk0L < (n+1/2)π is satisfied, a light is not confused by other
lights. This region of nrk0L is called the free spectral range, because the
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light is resolved free from other lights. The free spectral range in an angular
frequency ωFSR is given by

ωFSR =
c

nrL
π. (4.13)

Using the free spectral range λFSR in a wavelength, ωFSR is written as

ωFSR = 2πc

(
1
λ0

− 1
λ0 + λFSR

)
. (4.14)

As a result, we have

λFSR � λ0
2

2nrL
=

λ0
2

2πc
ωFSR. (4.15)

4.2.3 Spectral Linewidth

The half width at half maximum (HWHM) is a difference between the wave-
length or the frequency for the maximum transmissivity and that for the half
of the maximum transmissivity. The full width at half maximum (FWHM),
which is twice as large as the HWHM, is a difference between the two wave-
lengths or frequencies for the half of the maximum transmissivity.

Let us calculate the spectral linewidth using (4.9). When the transmissivity
takes a maximum value, the resonance condition (4.11) is satisfied. As a
result, the denominator in (4.9) reduces to

(1 − Gs0

√
R1R2)2. (4.16)

When the transmissivity is half-maximum, the denominator in (4.9) is twice
(4.16), and we have

(1 − Gs0

√
R1R2)2 + 4Gs0

√
R1R2 sin2(nrk0L) = 2(1 − Gs0

√
R1R2)2,

(4.17)

which results in

sin(nrk0L) = ± 1

2 4
√

Gs0
2R1R2

(1 − Gs0

√
R1R2). (4.18)

Expressing k0 = km on resonance and k0 = km ± ∆k0 at half-maximum
and then substituting k0 = km ± ∆k0 into (4.18) leads to

sin(nr∆k0L) =
1

2 4
√

Gs0
2R1R2

(1 − Gs0

√
R1R2). (4.19)

For the spectra in Fig. 4.6, nr∆k0L � 1 is satisfied. Hence, (4.19) reduces
to
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∆k0 =
1 − Gs0

√
R1R2

2nrL
4
√

Gs0
2R1R2

. (4.20)

Using k0 = ω/c, we can express the HWHM in an angular frequency ∆ωH as

∆ωH = c∆k0 =
c(1 − Gs0

√
R1R2)

2nrL
4
√

Gs0
2R1R2

. (4.21)

Therefore, the FWHM ∆ωF, which is twice the HWHM, is given by

∆ωF = 2∆ωH =
c(1 − Gs0

√
R1R2)

nrL
4
√

Gs0
2R1R2

. (4.22)

Using a wavelength in a vacuum, we can write the FWHM in a wavelength
∆λF as

∆λF � λ0
2

2πc
∆ωF =

λ0
2(1 − Gs0

√
R1R2)

2πnrL
4
√

Gs0
2R1R2

. (4.23)

4.2.4 Finesse

When we measure a wavelength or a frequency of light, an index of resolution
is given by the finesse. The finesse F is defined as a ratio of the free spectral
range to the FWHM, which is given by

F =
ωFSR

∆ωF
=

λFSR

∆λF
=

π
4
√

Gs0
2R1R2

1 − Gs0
√

R1R2
, (4.24)

where (4.13), (4.15), (4.22), and (4.23) were used. With an increase in F , the
resolution of a wavelength or a frequency is improved.

4.2.5 Electric Field Inside Fabry-Perot Cavity

Earlier, we considered a relationship between the incident light and the trans-
mitted light in the Fabry-Perot cavity. In this section, we study the light inside
the Fabry-Perot cavity. When the amplitude reflectivities are r1 = r2 = r and
the amplitude transmissivities are t1 = t2 = t, the electric field E inside the
Fabry-Perot cavity is written as

E = tE0 exp(keff x sin θ) {exp(keff z cos θ) + r exp[keff (2L − z) cos θ]}
× [

1 + r2 exp(2keff L cos θ) + r4 exp(4keff L cos θ) + · · · ]

=
tE0 exp(keff x sin θ) {exp(keff z cos θ) + r exp[keff (2L − z) cos θ]}

1 − r2 exp(2keff L cos θ)
,

(4.25)
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where

keff = − i nrtω

c
+ gE. (4.26)

In (4.25), exp(keff z cos θ) exhibits a forward running wave toward a positive
direction along the z-axis, and exp[keff (2L − z) cos θ] expresses a backward
running wave after reflection at a plane with z = L. If we introduce a =
r exp(2keff L cos θ), (4.25) reduces to

E = tE0 exp(keff x sin θ)
(1 − a) exp(keff z cos θ) + 2a cosh(keff z cos θ)

1 − r2 exp(2keff L cos θ)
.

(4.27)

In (4.27), the first term in the numerator represents a forward running wave,
and the second term shows a standing wave. From (4.25)–(4.27), the light
intensity inside the Fabry-Perot cavity takes a maximum value when

nrtωL

c
cos θ =

nrωL

c
= nrk0L = nπ. (4.28)

Here, n is a positive integer, which shows the number of nodes existing be-
tween z = 0 and z = L for a standing wave. Note that (4.28) is the same as
the resonance condition (4.10), which indicates that both the transmissivity
and the internal light intensity of the Fabry-Perot cavity have the largest
values at the resonance condition.

4.3 DFB and DBR

The DFB cavity and the DBR are the optical waveguides, which have diffrac-
tion gratings in them. They feed back lights by spatially modulating the com-
plex refractive indexes of the optical waveguides. In the Fabry-Perot cavity,
the reflection points of lights are only the facets. In contrast, in the DFB
cavity and the DBR, reflection points of lights are distributed in the optical
waveguide as shown in Fig. 4.7. The difference in the DFB cavity and the
DBR is that the former has the optical gain in the corrugated region, and
the latter does not. As described earlier, the DFB cavity functions as the
optical resonator, and the DBR forms the optical resonator with other DBRs
or cleaved facets.

4.3.1 Coupled Wave Theory [15]

Because only the difference in the DFB cavity and the DBR is whether there
is optical gain, their characteristics can be analyzed by a common method.
In order to treat the optical gains or losses, we consider an optical waveguide
with a complex dielectric constant ε̃.
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Mirror Mirror

(a) (b)

Fig. 4.7. Feedback points of lights: (a) Fabry-Perot cavity and (b) DFB cavity and
DBR

When a lightwave is assumed to propagate along the z-axis, a propagation
constant k in the optical waveguide is given by

k2 = ω2µε̃ = ω2µ(εr − i εi) � k0
2nr(z)2

[
1 + i

2α(z)
k0nr(z)

]
,

ε̃ = εr − i εi = ε0

[
nr(z) + i

α(z)
k0

]2

,

(4.29)

where ω is an angular frequency of the light; µ is permeability of a material;
k0 = ω/c is a wave number in a vacuum; ε0 = 8.854 × 10−12 F/m is permit-
tivity in a vacuum; nr(z) is a real part of a complex refractive index; and
α(z) = gE is an optical amplitude gain coefficient. For the usual optical ma-
terials, µ is almost equal to permeability in a vacuum µ0 = 4π × 10−7 H/m.
Because of |α(z)| � k0, a second-order term of α(z) was neglected in (4.29).
Figure 4.8 shows a schematic cross section of the diffraction gratings. The
effective refractive index of the optical waveguide is periodically modulated
with a pitch of Λ by the corrugations formed at the interface between the
two layers with the refractive indexes nA and nB (nA �= nB).

nB

Λ

nA z

Fig. 4.8. Diffraction grating

Here, we assume that nr(z) and α(z) are sinusoidal functions of z, which
are written as

nr(z) = nr0 + nr1 cos(2β0z + Ω),
α(z) = α0 + α1 cos(2β0z + Ω), (4.30)

where Ω is a phase at z = 0 and β0 is related to the grating pitch Λ as

β0 =
π

Λ
. (4.31)

Under the assumption of nr1 � nr0 and α1 � α0, substituting (4.30) into
(4.29) leads to
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k(z)2 = k0
2nr0

2 + i 2k0nr0α0 + 4k0nr0

(
πnr1

λ0
+ i

α1

2

)
cos(2β0z + Ω).

(4.32)

Here, k0 = 2π/λ0, where λ0 is a wavelength in a vacuum.
When the refractive index is constant (nr1 = 0) and the material is trans-

parent (α0 = α1 = 0), the propagation constant k(z) in (4.32) is given by

k(z) = β = k0nr0. (4.33)

In the optical waveguides with corrugations, reflections in Fig. 4.7 (b)
couple a forward running wave and a backward one. To express this coupling,
we define the coupling coefficient κ of the diffraction gratings as

κ =
πnr1

λ0
+ i

α1

2
, (4.34)

which is important to describe the resonance characteristics of the DFB cavity
and the DBR.

With the help of (4.33) and (4.34), (4.32) reduces to

k(z)2 = β2 + i 2βα0 + 4βκ cos(2β0z + Ω). (4.35)

Substituting (4.35) into a wave equation for the electric field E given by

d2E

dz2 + k(z)2E = 0, (4.36)

we obtain

d2E

dz2 +
[
β2 + i 2βα0 + 4βκ cos(2β0z + Ω)

]
E = 0. (4.37)

The electric field E(z), which is a solution of (4.37), is represented by
a superposition of a forward running field Er(z) and a backward one Es(z)
such as

E(z) = Er(z) + Es(z),
Er(z) = R(z) exp(−i β0z), (4.38)
Es(z) = S(z) exp( iβ0z ),

where R(z) and S(z) are the field amplitudes of the forward running wave
and the backward one, respectively, and both are functions of z. Inserting
(4.39) into (4.37) gives the wave equations for R and S as follows:

−dR

dz
+ (α0 − i δ)R = iκS exp(−iΩ),

dS

dz
+ (α0 − i δ)S = iκR exp( iΩ ),

(4.39)



4.3 DFB and DBR 67

where δ is defined as

δ ≡ β2 − β0
2

2β0
� β − β0. (4.40)

Here, R and S were assumed to be slowly varying functions of z, and the
second derivatives with respect to z were neglected. Because the forward
running wave R and the backward one S is coupled by the coupling coefficient
κ, (4.39) is called the coupled wave equation, and a theory based on (4.39) is
referred to as the coupled wave theory [16].

As a wavelength for δ = 0, we define Bragg wavelength λB in a vacuum
as

λB =
2nr0Λ

m
, (4.41)

where (4.31), (4.33), and (4.40) were used and m is a positive integer desig-
nated the order of diffraction.

Using constants a and b, which are determined by the boundary condi-
tions, general solutions of (4.37) are given by

Er(z) = [a exp(γz) + ρ exp(−iΩ) · b exp(−γz)] exp(−i β0z),
Es(z) = [ρ exp( iΩ) · a exp( γz) + b exp(−γz)] exp( iβ0z), (4.42)

where

γ2 = (α0 − i δ)2 + κ2,

ρ =
−γ + (α0 − i δ)

i κ
.

(4.43)

To continue analyzing, it is useful to introduce a transfer matrix F i [17],
which is defined as [

Er(0)
Es(0)

]
= F i

[
Er(Li)
Es(Li)

]
. (4.44)

Here, Li is the length of a corrugated region and F i is written as

F i =
[

F11 F12
F21 F22

]
,

F11 =
[
cosh(γLi) − α0 − i δ

γ
sinh(γLi)

]
exp( iβ0Li),

F12 =
i κ
γ

sinh(γLi) exp[−i (β0Li + Ω)], (4.45)

F21 = − i κ
γ

sinh(γLi) exp[ i (β0Li + Ω)],

F22 =
[
cosh(γLi) +

α0 − i δ
γ

sinh(γLi)
]

exp(−i β0Li).
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When multiple regions are connected in series, as shown in Fig. 4.9, the
total transfer matrix F is given by a product of transfer matrixes in all regions
such as

F =
∏

i

F i. (4.46)

R1 R2
Er (0)

Es (0)

Er (L)

Es (L)

F1 F2 Fn

Fig. 4.9. Analytical model for a diffraction grating

If both facets have the power reflectivity of R1 and R2, the total transfer
matrix F R is given by

F R =
1√

(1 − R1)(1 − R2)

[
1 −√

R1
−√

R1 1

]
× F ×

[
1

√
R2√

R2 1

]
. (4.47)

Let us calculate the power transmissivity T and the power reflectivity R.
When we assume that the corrugated region length is L and the input is
Er(0) with Es(L) = 0, the output for the transmission is Er(L) and that for
the reflection is Es(0). From the definition of the transfer matrix, the power
transmissivity T and the power reflectivity R are given by

T =
1

F11
∗F11

, R =
F21

∗F21

F11
∗F11

. (4.48)

Figure 4.10 shows calculated transmission and reflection spectra of a
diffraction grating. The horizontal line is δL = δ × L, and the vertical line
is the power transmissivity T and the power reflectivity R. Here, it is as-
sumed that the optical waveguide is transparent (α0 = α1 = 0), κL = 2, and
R1 = R2 = 0. In these spectra, there is a low-transmissivity (high-reflectivity)
region that is symmetrical about δL = 0. This region is called the stop band ,
because the transmission is stopped.

4.3.2 Discrete Approach

In the DFB cavity and the DBR, the complex refractive indexes are periodi-
cally modulated along the propagation direction of lights. Therefore, they can
be analyzed by the discrete approach, which has been applied to the periodic
multilayers.

Figure 4.11 shows a model for analysis where a region with a complex
refractive index n2 and length h2 and a region with n3 and h3 are alternately
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Fig. 4.10. Calculated transmission and reflection spectra of a diffraction grating
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Fig. 4.11. Analytical model in a discrete approach

placed. The angles formed by the interface normal and the light propagation
directions are supposed to be θ2 and θ3 in the former region and the latter
region, respectively.

The relationship between the input and output lights is expressed by a
characteristic matrix M2, which is defined as[

U(0)
V (0)

]
= M2

[
U(z)
V (z)

]
. (4.49)

Here, an electric field E and a magnetic field H are assumed to be expressed
by a separation-of-variables procedure. Hence, U(z) and V (z) show depen-
dence of E and H on z. As shown in Fig. 4.11, we choose the light propagation
direction as a positive z-axis and the plane of incidence as an xz-plane. As a
result, we have U(z) = Ey(z), V (z) = Hx(z) for the TE mode (Ex = Ez = 0)
and U(z) = Hy(z), V (z) = −Ex(z) for the TM mode (Hx = Hz = 0), where
a subscript indicates a component along each coordinate.

When we introduce parameters such as

β2 =
2π

λ0
n2h2 cos θ2, β3 =

2π

λ0
n3h3 cos θ3,

p2 = n2 cos θ2, p3 = n3 cos θ3,

(4.50)
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the characteristic matrix M2 for the TE mode is written as

M2 =

⎡
⎣ cos β2 − i

p2
sin β2

−i p2 sin β2 cos β2

⎤
⎦

⎡
⎣ cos β3 − i

p3
sin β3

−i p3 sin β3 cos β3

⎤
⎦ . (4.51)

If the number of periods is N , the total characteristic matrix of the optical
waveguide M is given by

M = M2
N =

[
m11 m12
m21 m22

]
. (4.52)

To analyze the DFB cavity and the DBR by the discrete approach, it is
useful to put

n2 = nr0 + ∆n, n3 = nr0 − ∆n,

h2 = h3 =
Λ

2
, θ2 = θ3 = 0,

(4.53)

where nr0 is an average refractive index of a material; ∆n is a shift of refrac-
tive index from nr0; Λ is the grating pitch; and L = NΛ is the corrugated
region length. If θ2 = θ3 = 0, we have common characteristic matrixes for
the TE mode and the TM mode. With the help of (4.52), when the outside
of the DFB cavity and the DBR is the air, the power transmissivity T and
the power reflectivity R are obtained as

T =
∣∣∣∣ 2
(m11 + m12) + (m21 + m22)

∣∣∣∣
2

,

R =
∣∣∣∣ (m11 + m12) − (m21 + m22)
(m11 + m12) + (m21 + m22)

∣∣∣∣
2

,

(4.54)

where the boundary conditions at the interfaces for E and H were used.
Note that the obtained T and R are derived from Maxwell’s equations. In
this process, we have assumed that E and H are expressed by a separation-
of-variables procedure, and approximations have not been used. For more
detailed explanations on the characteristic matrix, see Appendix E.

4.3.3 Comparison of Coupled Wave Theory and Discrete
Approach

To clarify the application limits of the coupled wave theory and the discrete
approach, we will compare the results of these two theories. For brevity,
we assume that a material is transparent (α0 = α1 = 0) and consider the
reflectivity at Bragg wavelength (δ = 0) in the first-order diffraction gratings
(m = 1).
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(a) Coupled Wave Theory

From (4.43), the assumption of α0 − i δ = 0 leads to γ = ±κ. Substituting
this result into (4.45) and (4.48), we obtain the power reflectivity R as

R = tanh2(κL), (4.55)

where L is the corrugated region length. From (4.55), it is found that κ and
L are important to determine the reflectivity of the diffraction gratings.

(b) Discrete Approach

When ∆n � nr0 is satisfied, the power reflectivity R is obtained as

R =

[
1 −

(
nr0 − ∆n

nr0 + ∆n

)2N
]2 [

1 +
(

nr0 − ∆n

nr0 + ∆n

)2N
]−2

, (4.56)

where (4.51)–(4.54) were used. The second terms in both brackets are ap-
proximated as

(
nr0 − ∆n

nr0 + ∆n

)2N

�
(

1 − ∆n

nr0

)4N

=

[(
1 − ∆n

nr0

)nr0/∆n
]4N∆n/nr0

= exp
(

−4N
∆n

nr0

)
. (4.57)

With the help of NΛ = L and (4.41), the exponent of the right-hand side in
(4.57) is written as

4N
∆n

nr0
=

8∆n

2nr0Λ
L =

8∆n

λB
L. (4.58)

If we put

8∆n = 2πnr1 (4.59)

and substitute (4.59) into (4.58), we have

4N
∆n

nr0
= 2

πnr1

λB
L = 2κL, (4.60)

where (4.34) and the assumption of α1 = 0 were used. Substituting (4.60)
into (4.57) results in

(
nr0 − ∆n

nr0 + ∆n

)2N

� e−2κL. (4.61)
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Inserting (4.61) into (4.56) leads to

R �
[
1 − e−2κL

1 + e−2κL

]2

= tanh2(κL). (4.62)

From (4.55) and (4.62), it is found that the result of the coupled wave
theory agrees with that of the discrete approach when ∆n � nr0 is satisfied.

It should be noted that the coupled wave theory assumes that complex
refractive indexes vary sinusoidally, while the discrete approach presumes
that complex refractive indexes change abruptly. Also, in the example for
the discrete approach, two layers were alternately placed. Therefore, with
an increase in ∆n, the results of the coupled wave theory and the discrete
approach differ from each other. However, with an increase in the number
of layers in one period so that the complex refractive indexes may change
sinusoidally in one period, the results of the two theories agree even when
∆n is large. Also, the discrete approach can easily analyze any corrugation
shape, because one period can be decomposed into many layers. However,
because ∆n in the DFB cavity and the DBR is on the order of 10−3, the
coupled wave theory is widely used to analyze or design the DFB cavity and
the DBR.

As shown in Fig. 4.12, a uniform grating in the DFB cavity or the DBR
and a periodic multilayer seem different in shape. However, they can be an-
alyzed by a common theory, because the operating principle is common. We
should always focus on the essentials, irrespective of superficial differences.

(a) (b)

Fig. 4.12. (a) Uniform grating and (b) periodic multilayer

4.3.4 Category of Diffraction Gratings

From the viewpoint of the pitch and depth, the diffraction gratings are divided
into four groups.

The diffraction grating with uniform pitch and depth, which is shown in
Fig. 4.12 (a), is a uniform grating . Other diffraction gratings are shown in
Fig. 4.13. Figure 4.13 (a) is a phase-shifted grating [18,19] whose corrugations
shift in its optical waveguide, and this grating is especially important for
longitudinal single-mode operations in the DFB-LDs. Figure 4.13 (b) is a
tapered grating whose corrugation depth is spatially modulated along the
propagation direction of the lights. Figure 4.13 (c) is a chirped grating whose
pitch varies along the propagation direction.
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(a) (b) (c)

Fig. 4.13. Diffraction gratings used for the DFB cavity and the DBR: (a) phase-
shifted, (b) tapered, and (c) chirped

4.3.5 Phase-Shifted Grating

The refractive indexes of the optical fibers change according to the wave-
lengths of lights, and propagation velocities of lights vary with their wave-
lengths, which is referred to as chromatic dispersion. Hence, if semiconductor
lasers show multimode operations, optical pulses broaden in the time domain,
and finally adjacent optical pulses overlap each other to limit the transmis-
sion of signals. This overlap of adjacent pulses becomes serious with increases
in the transmission distance and the signal speed. Therefore, longitudinal
single-mode semiconductor lasers are required for long-haul, large-capacity
optical fiber communication systems. To achieve stable single-mode opera-
tions, DFB-LDs with phase-shifted gratings or gain-coupled gratings have
been developed. In the following, we will explain the phase-shifted gratings,
which have been used commercially.

(a) Transmission and Reflection Characteristics

Figure 4.14 shows a schematic structure of the phase-shifted grating, in which
the corrugation phase is shifted by −∆Ω along the z-axis, and the corruga-
tions in the uniform gratings are illustrated by a broken line. It should be
noted that the negative sign of the phase shift is related to the definition of
the spatial distribution of the complex refractive index in (4.30).

Pitch Phase shiftΛ − 

z

∆ Ω

Fig. 4.14. Phase-shifted grating

Let us analyze the phase-shifted gratings using the coupled wave the-
ory. We suppose that both the pitch and the depth are uniform except in
the phase-shifted region. Figure 4.15 shows an analytical model, where the
diffraction gratings consist of two regions, and the phase shift is introduced
as a phase jump at the interface of the two regions.
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Fig. 4.15. Analytical model for the phase-shifted grating

The transfer matrixes of Regions 1 and 2 are expressed as F 1 and F 2,
respectively. The phase Ω at the left edge of Region 1 is written as θ1. Then
the phase θ2 at the right edge of Region 1 is given by

θ2 = θ1 + 2β0L1. (4.63)

Due to the phase shift ∆Ω, the phase θ3 at the left edge of Region 2 is
obtained as

θ3 = θ2 + ∆Ω = θ1 + 2β0L1 + ∆Ω. (4.64)

With the help of (4.48), the transmission and reflection characteristics of the
phase-shifted gratings are given by the transfer matrix F = F 1 × F 2.

Figure 4.16 shows calculated reflection spectra for κL = 2, where the hor-
izontal line is δL = δ × L and the vertical line is the power reflectivity. Here,
it has been assumed that a material is transparent and the facet reflectivity
is null. The solid line and broken line correspond to the phase-shifted grating
with −∆Ω = π and the uniform grating with −∆Ω = 0, respectively. The
characteristic feature of the phase-shifted grating is that it has a pass band
within the stop band, and the phase-shifted DFB-LDs oscillate at this trans-
mission wavelength. The transmission wavelength located within the stop
band depends on the phase shift. When the phase shift is π, the transmission
wavelength agrees with Bragg wavelength.

(b) Comparison of the Phase-Shifted Grating and the
Fabry-Perot Cavity [20]

Comparing the phase-shifted gratings with the Fabry-Perot cavity, we can
understand a physical meaning of the relationship between the transmission
wavelength and the phase shift.

Figure 4.17 schematically shows the Fabry-Perot cavity where the power
reflectivity of the mirror is R0 and the cavity length is L. From (4.12), the
resonance condition of the Fabry-Perot cavity is given by

L = n
λ0

2nr
. (4.65)
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Fig. 4.16. Reflection spectrum

Here, n is a positive integer, nr is the effective refractive index of a material,
and λ0 is a light wavelength in a vacuum. Figure 4.18 shows the power re-
flectivity (reflectance) R0 of the mirror and the power transmissivity (trans-
mittance) T of the Fabry-Perot cavity as a function of a wavelength λ. It
should be noted that R0 is independent of λ if the dispersions are neglected,
and there are sharp peaks for all the wavelengths satisfying the resonance
condition (4.65).

Mirror Mirror

R0

L

R0

Fig. 4.17. Fabry-Perot cavity

(a)

(b)

λ

λ

T

R0

Fig. 4.18. Resonance characteristics of the Fabry-Perot cavity: (a) reflectance of
a mirror and (b) transmittance of a cavity
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Fig. 4.19. Phase-shifted grating: (a) saw-toothed grating and (b) rectangular grat-
ing

Figure 4.19 schematically shows the phase-shifted gratings with a saw-
toothed shape and a rectangular shape. Grating shapes affect the value of
κ, but the concepts on the grating pitch are common to both structures.
Therefore, to focus on only the grating pitch, we will consider the rectangular
shape in the following.

The phase shift −∆Ω is defined as illustrated in Fig. 4.19. Such a phase-
shifted grating is regarded as the Fabry-Perot cavity with length L and the
two mirrors, which have wavelength-dependent reflectivities. In this case, a
relation between L and ∆Ω is expressed as

L =
Λ

2
+

|∆Ω|
2β0

=
Λ

2

(
1 +

|∆Ω|
π

)
, (4.66)

where (4.31) was used. From (4.66), it is found that the cavity length L
changes with the phase shift −∆Ω, which varies a resonance (transmission)
wavelength according to (4.12). For example, when the phase shift is π, (4.41)
and (4.66) give

L = Λ = m
λB

2nr0
, (4.67)

where m is a positive integer called the order of diffraction and nr0 is the aver-
aged refractive index. From (4.67), it is found that the resonance wavelength
for −∆Ω = π is a product of Bragg wavelength and a positive integer. For the
first-order grating (m = 1), the resonance wavelength is Bragg wavelength.

Figure 4.20 shows the power reflectivity R1 of the mirror in Fig. 4.19
and the power transmissivity T of the phase-shifted grating (cavity) with
−∆Ω = π as a function of a wavelength. The power reflectivity R1 of the
mirror depends on a wavelength λ, and only the selected wavelength region
has high reflectivity. Therefore, only a resonance wavelength located in the
high reflectivity region is selectively multireflected in the cavity. Also, because
the cavity length L is on the order of a wavelength, the mode spacing (free
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Fig. 4.20. Resonance characteristics of the phase-shifted grating: (a) reflectance
of a mirror and (b) transmittance of a cavity

spectral range) is so large that only one transmission peak exists within the
stop band.

As described earlier, the phase-shifted grating can be qualitatively ex-
plained as the Fabry-Perot cavity. The only difference between the phase-
shifted grating and the Fabry-Perot cavity is the dependence of the mirror
reflectivities on a wavelength.

Note: Definition of the Phase Shift [21]

There are two definitions of the phase shift in the phase-shifted grating, as
shown in Fig. 4.21. In Fig. 4.21 (a), Region 1 (z < 0) and Region 2 (z > 0)
shift symmetrically with respect to z = 0, while in Fig. 4.21 (b), Region 1
does not move and Region 2 (z > 0) shifts at z = 0.

Region 1 Region 2Region 1Region 2

∆θ∆θ − ∆Ω

z z
z = 0 z = 0

(a) (b)

Fig. 4.21. Definition of the phase shift

Using the definition in Fig. 4.21 (a), the refractive index nr(z) in Region
1 is expressed as

nr(z) = nr0 + nr1 cos(2β0z + ∆θ), (4.68)

whereas the refractive index in Region 2 is written as

nr(z) = nr0 + nr1 cos(2β0z − ∆θ). (4.69)
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When we use the definition in Fig. 4.21 (b), the refractive index in Region
2 is written as

nr(z) = nr0 + nr1 cos(2β0z + ∆θ + ∆Ω), (4.70)

where (4.68) was used. Because (4.69) and (4.70) represent the same refractive
index, the two phase shifts ∆Ω and ∆θ are related as

∆θ + ∆Ω = 2mπ − ∆θ, (4.71)

which reduces to

2∆θ + ∆Ω = 2mπ, (4.72)

where m is an integer.
These two definitions of the phase shift are used in various journal papers

or books. Therefore, we should be careful in discussing a value of the phase-
shift.

4.3.6 Fabrication of Diffraction Gratings

In DFB-LDs and DBR-LDs, oscillation wavelengths are just or in the vicin-
ity of Bragg wavelengths. The oscillation wavelength for the light sources of
the optical fiber transmission systems is 1.3 µm in which the dispersion of
the optical fiber is the smallest, or 1.55 µm where the absorption loss of the
optical fiber is the lowest. Because the effective refractive index nr0 of the
semiconductor lasers is nearly 3.2, pitches of the first-order grating Λ are
approximately 0.2 µm for a wavelength of 1.3 µm and 0.24 µm for 1.55 µm
from (4.41). Corrugation depth is about 0.1 µm = 100 nm just after the grat-
ing fabrication and is reduced to several tens of nanometers after epitaxial
growth of semiconductor layers on the diffraction grating. This reduction in
the grating depth is caused by thermal decomposition of the grating surface
during heating prior to the epitaxial growth.

To fabricate such fine diffraction gratings with high accuracy, holographic
exposure [22–30], electron-beam exposure [31], and X-ray exposure [32] sys-
tems have been developed.

(a) Holographic Exposure

Holographic exposure systems use interference of two coherent laser beams to
make interference fringe patterns. The obtained interference fringe patterns
are transferred to the photoresists coated on the substrates via developing
the photoresists. Finally, the substrates are etched with the patterned pho-
toresists as the etching masks.

Figure 4.22 shows a principle of the holographic exposure, where solid
lines show wave fronts of two lightwaves and closed circles indicate the points
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in which the light intensity is enhanced due to interference. As the wave fronts
propagate toward the substrate, the closed circles propagate along the broken
lines. Consequently, the photoresist regions indicated by arrows are exposed.
The grating pitch Λ is determined by the spacing of the broken lines.

Figure 4.23 shows the angles of incidence θ1 and θ2, which are formed by
the normals of the substrate plane and the propagation directions of the two
laser beams. The grating pitch Λ is given by

Λ =
λe

sin θ1 + sin θ2
, (4.73)

where λe is a wavelength of the incident laser beams.

Wave front

Photoresist

Pitch Λ

Substrate

Fig. 4.22. Principle of holographic exposure

Photoresist

Propagation direction
   of the laser beam

θ θ1 2

Substrate

Wavelength  λ e

Fig. 4.23. Angle of incidence in holographic exposure

Figure 4.24 shows an example of the holographic exposure systems. As
the light sources, He-Cd lasers (λe = 441.6 nm, 325 nm) or Ar ion lasers
(λe = 488 nm) are widely used. A single laser beam emitted from the light
source is divided into two laser beams by a beam splitter, and these two
laser beams are expanded. These expanded beams are collimated and are
finally incident on the photoresists coated on the substrates. To achieve fine
patterns with high accuracy, we need high uniformity in the wave fronts; low
fluctuations in the optical paths; high stability in the wavelength, the phase,
and the light intensity of the laser beams; and precise control of the angle
of incidence. For these purposes, the holographic exposure systems must be
isolated from mechanical vibrations and air flow.
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Fig. 4.24. Holographic exposure system

(b) Electron Beam Exposure

The electron beam exposure systems scan electron beams on the photoresist
in a vacuum, as shown in Fig. 4.25. Scanning of the electron beams and
transfer of the samples are controlled by computers, which results in flexible
patterns. The problem is that exposure time is long. For example, it takes
about 10 hours to draw patterns of the diffraction grating on a 1 -cm square
substrate.

Substrate

Electron beam

Photoresist

Fig. 4.25. Electron beam exposure

(c) X-Ray Exposure

Wavelengths of X-rays are short, which leads to small diffraction angles.
Hence, X-rays are suitable to transfer fine patterns of a photomask to the
photoresist, as shown in Fig. 4.26. To obtain sufficient X-ray intensity for
exposure, synchrotron radiation is often used, which needs a huge plant. Also,
highly reliable photomasks for the X-ray exposure systems have not yet been
developed.

(d) Fabrication of Phase-Shifted Grating

The electron beam and X-ray exposure systems are suitable to fabricate var-
ious patterns. These systems, however, have problems on costs and produc-
tivity. As a result, the holographic exposure systems, which have high pro-
ductivity with low cost, have attracted a lot of interest. As will be explained
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Fig. 4.26. X-ray exposure

in Chapter 6, the most stable single-mode operations are obtained when the
phase-shift is |∆Ω| = π, which corresponds to a shift in the length Λ/2 in the
first-order grating. In other words, the top and bottom of the corrugations
are reversed in the optical waveguide.

From the viewpoint of the reverse of the corrugations, positive and neg-
ative photoresists are simultaneously exposed. In a positive photoresist, ex-
posed areas are removed by development, whereas in a negative photoresist,
unexposed areas are removed. Therefore, by selectively forming the positive
photoresist and the negative photoresist on the substrate, we can obtain a
pattern and its reverse on the same plane. Figure 4.27 shows an example of
this method, where SiN is used to prevent chemical reactions between the
positive photoresist and the negative one [23].

Laser beam

Negative photoresist

Positive photoresist

SiN

Fig. 4.27. Holographic exposure using positive and negative photoresists

From the viewpoint of the shift in the pitch, wave fronts of the laser beams
are shifted, as shown in Figs 4.28 and 4.29.

In Fig. 4.28, a material with a larger refractive index than air is selectively
placed on the surface of the photoresist to shift both wave fronts of the two
incident laser beams. The lights incident on this material are refracted by
Snell’s law, which leads to a change in the exposed positions. In Fig. 4.28
(a) [25], the phase-shift plate is put on the photoresist. If there is a tiny
air gap such as the order of 1 µm between the phase-shift plate and the
photoresist, exposed patterns are heavily degraded due to multireflections of
the laser beams. Hence, precise position control of the phase-shift plate and
the photoresist is required. In Fig. 4.28 (b) [26], in contrast, the phase-shift
layer is coated on a buffer layer, which automatically results in no air gap
between the phase-shift layer and the buffer layer.

In Fig. 4.29, an optical element such as a phase-shift plate or a hologram is
inserted in the optical path for one laser beam to shift one of the wave fronts
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of the two incident laser beams. In Fig. 4.29 (a) [27], the wave fronts are
disturbed due to diffractions at steps in the phase-shift plate, which reduces
the grating formed area. Figure 4.29 (b) [28] uses a hologram to generate a
required phase shift on the photoresist, and there are no distortions in the
wave fronts. However, a highly reliable hologram has not yet been developed.

Laser beam Laser beam

Phase-shift plate
Phase-shift layer

Photoresist
Photoresist

Buffer layer

θ θ1 2

(a) (b)

θ θ1 2

Fig. 4.28. Holographic exposure shifting both wavefronts of the two incident laser
beams

Laser beam Laser beam

Phase-shift plate Hologram

Laser beam

θ θ1 2 θ θ1 2

Laser beam

(a) (b)

Fig. 4.29. Holographic exposure shifting one of the wavefronts of the two incident
laser beams

Figure 4.30 shows a replica method [29] where one laser beam is incident
on a replica of a master phase-shifted grating. The fringe patterns, which are
formed by interference of the transmitted light and the diffracted light from
the replica, are transferred to a photoresist.

Laser beam

Replica

Photoresist

Fig. 4.30. Replica method

Because of reproducibility, productivity, a large tolerance in lithography
conditions, and costs, the phase-shift method in Fig. 4.28 (b) was first applied
to manufacture phase-shifted gratings. Later, the replica method in Fig. 4.30
was also commercially used. Recently, electron beam exposure systems have
been used in some factories.



5 Fundamentals of Semiconductor Lasers

5.1 Key Elements in Semiconductor Lasers

As shown in Fig. 5.1, a laser is composed of an active material, which has
the optical gain, and an optical resonator, which feeds back lights by its re-
flectors. In semiconductor lasers, the active layers generate the spontaneous
emission and amplify a fraction of the spontaneous emission by the stimu-
lated emission. As the optical resonators, the Fabry-Perot cavities, the ring
cavities, the DFB cavities, and the DBRs are used. In this chapter, we study
fundamental characteristics of semiconductor lasers using the Fabry-Perot
LDs, which are shown in Fig. 5.2. Dynamic single-mode lasers such as the
DFB-LDs will be discussed in Chapter 6.

Fraction of 
spontaneous
emission

Optical
   gain

Laser light

Optical feedback by
reflectors

+

β

Fig. 5.1. Key elements in the lasers

Cleaved facet Active layer

Laser beam Laser beam

Fig. 5.2. Fabry-Perot LD

In the following, we will explain the optical resonator, the pn-junction,
and the double heterostructure (DH), which are indispensable elements in
semiconductor lasers.
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5.1.1 Fabry-Perot Cavity

As explained in Chapter 4, the Fabry-Perot cavity comprises two parallel mir-
rors. In semiconductor lasers, cleaved facets such as {011} or {01̄1} surfaces
are used as mirrors, as shown in Fig. 5.2. When a light is normally incident
on a facet, the power reflectivity R0 is given by

R0 =
(

nrt − 1
nrt + 1

)2

, (5.1)

where nrt and 1 are the refractive indexes of the semiconductors and the air,
respectively.

When nrt is 3.5, R0 is about 31%. It should be noted that the cleaved
facets are flat with the order of atomic layers, and the surface is much
smoother than the wavelengths of lights. Therefore, the cleaved facets func-
tion as mirrors with high accuracy. In order to control the reflectivities or to
protect the facets, dielectric films are often coated on the cleaved facets.

5.1.2 pn-Junction

In semiconductor lasers, in order to inject the carriers into the active layers,
the active layers are placed inside the pn-junctions. Therefore, the active layer
is sandwiched by the p-cladding layer and the n-cladding layer, as shown in
Fig. 5.3. Applying a forward bias voltage, which is positive on the p-side
and negative on the n-side, across this pn-junction, the electrons are injected
from the n-cladding layer to the active layer, and the holes are injected from
the p-cladding layer to the active layer, as shown in Fig. 5.4. As explained in
Chapter 2, when the population inversion is generated by the carrier injection,
net stimulated emission is obtained.

p-cladding layer

n-cladding layer

Active layer

Fig. 5.3. Cross section of a pn-junction in semiconductor lasers

Note that the impurities are often undoped in the active layers to achieve
high radiation efficiency. However, in the active layers, there are background
carriers whose concentrations depend on epitaxial growth methods. There-
fore, the active layers are not ideal intrinsic semiconductors.

If the impurities are doped in the active layers, the injected carriers com-
bine with the impurities. Therefore, the carrier lifetime is reduced, and the
modulation speed is enhanced (see Sects. 5.11 and 5.12). However, the re-
combinations of the injected carriers and the impurities do not contribute
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Fig. 5.4. Carrier injection in a pn-junction under a forward bias

to laser transitions, which decreases the radiation efficiency. Thus, the active
layers are sometimes intentionally doped to achieve high-speed modulations
so long as the radiation efficiency is not highly degraded.

5.1.3 Double Heterostructure

The heterojunction is a junction consisting of different materials in which
materials with different compositions are also categorized. In contrast, the
junction composed of common material is called the homojunction.

The bandgap energies in the semiconductors depend on the constituent
elements and the compositions. As a result, the heterostructures have the en-
ergy barriers at the junction interfaces, and these energy barriers confine the
carriers to the well layers. To achieve efficient recombinations of the electrons
and the holes, these carriers have to be confined to the active layers. There-
fore, the heterostructures are formed at both interfaces of the active layer.
Such a structure is designated the double heterostructure because there are
double heterojunctions.

Figure 5.5 shows the distributions of the energy and the refractive index
of the double heterostructure. At the junction interfaces, there are the band
offsets ∆Ec for the conduction band and ∆Ev for the valence band, as shown
in Fig. 5.5 (a). Under a forward bias, the holes are injected from the p-
cladding layer to the active layer, and the electrons are injected from the
n-cladding layer to the active layer. The energy barrier for the holes is ∆Ev
at the interface of the n-cladding layer and the active layer; that for the
electrons is ∆Ec at the interface of the p-cladding layer and the active layer.
In many semiconductors, their refractive indexes increase with a decrease
in the bandgap energies. Hence, the refractive index of the active layer na is
usually greater than that of the p-cladding layer np and that of the n-cladding
layer nn. As a result, a light is efficiently confined to the active layer, which
results in a high light amplification rate.

As described earlier, the double heterostructure confines both the carriers
and the light to the active layer. Therefore, the double heterostructure is
indispensable to achieve excellent characteristics in semiconductor lasers. It
should be noted that the first continuous wave (CW) laser oscillation at room
temperature was achieved by the double heterostructure [33,34].
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Fig. 5.5. Double heterostructure: (a) energy of electrons and (b) distribution of
refractive index

5.2 Threshold Gain

We explain the threshold gain, which is the optical gain required for laser
oscillation. From (4.9), the transmitted light intensity It and the incident
light intensity I0 are related as

It

I0
=

T1T2Gs0

(1 − Gs0
√

R1R2)2 + 4Gs0
√

R1R2 sin2(nrk0L)
, (5.2)

Gs0 = exp(2gEL) = exp(gL),

where gE is the amplitude gain coefficient for the electric field and g is the
optical power gain coefficient.

Oscillation is a state in which there is an output without an input from
outside. As a result, the oscillation condition is given by I0 = 0 and It > 0 in
(5.2). Therefore, at the oscillation condition, the denominator in (5.2) is 0,
and (5.2) goes to infinity. Hence, the oscillation condition for the Fabry-Perot
LDs is expressed as

Resonance condition : sin(nrk0L) = 0,
Gain condition : 1 − Gs0

√
R1R2 = 0.

(5.3)

5.2.1 Resonance Condition

From (5.3), the resonance condition is written as

nrωL

c
= nrk0L = nπ, (5.4)

where n is a positive integer. Using a wavelength in a vacuum λ0, (5.4) reduces
to
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L = n
λ0

2nr
, (5.5)

which is the same as the resonance condition of the Fabry-Perot cavity ex-
plained in Chapter 4. Note that laser oscillation starts at the resonance wave-
length nearest to the gain peak.

5.2.2 Gain Condition

From (5.3), the gain condition is obtained as

1 − Gs0

√
R1R2 = 1 −

√
R1R2 exp(gL) = 0. (5.6)

As a result, the optical power gain coefficient g is written as

g =
1
L

ln
1√

R1R2
, (5.7)

where the right-hand side is called the mirror loss.
As described in Chapter 3, the guided modes propagate in the optical

waveguides while confined to the guiding layer (active layer), and the fields
of the guided modes penetrate into the p-cladding layer and the n-cladding
layer, as shown in Fig. 5.6. Hence, the light sees the optical losses in the
p-cladding layer and the n-cladding layer. Therefore, we have to consider the
optical power gain coefficient g for the entire region where the lights exist.

Light Intensity

nc

nf

ns

h
   Optical
waveguide

Fig. 5.6. Distribution of light intensity in the optical waveguide

Using the optical confinement factors, the optical power gain coefficient,
and the optical power loss coefficients of the layers in the optical waveguide,
we can approximately write the optical power gain coefficient g of the optical
waveguide as

g = Γaga − Γaαa − Γpαp − Γnαn. (5.8)

Here, Γa, Γp, and Γn are the optical confinement factors of the active layer,
the p-cladding layer, and the n-cladding layer, respectively; ga is the optical
power gain coefficient of the active layer; and αa, αp, and αn are the optical
power loss coefficients of the active layer, the p-cladding layer, and the n-
cladding layer, respectively. It should be noted that the exact g value is
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obtained by solving eigenvalue equations, which include complex refractive
indexes.

Introducing the internal loss as

αi = Γaαa + Γpαp + Γnαn (5.9)

and substituting (5.9) into (5.8), we have

g = Γaga − αi, (5.10)

where Γaga is the modal gain. Inserting (5.10) into (5.7) results in

Γaga = αi +
1
L

ln
1√

R1R2
= αi +

1
2L

ln
1

R1R2
, (5.11)

which is the threshold gain of the Fabry-Perot LDs. In this equation, the
left-hand side is the threshold gain, and the right-hand side is the total loss.
Therefore, (5.11) indicates that laser oscillation takes place when the optical
gain is equal to the total loss, which is the sum of the internal loss and
the mirror loss. In InGaAsP/InP LDs for lightwave communications, Γaga is
50–60 cm−1 because of R1 = R2 = 32%, L = 250–300 µm, and αi = 10–
20 cm−1. When the electric currents are injected into semiconductor lasers,
laser oscillation starts at the threshold current Ith, which satisfies (5.11).

5.3 Radiation Efficiency

Figure 5.7 schematically shows the current versus light output (I-L) charac-
teristics of the semiconductor lasers. As shown in Fig. 5.7, when the injection
current I exceeds the threshold current Ith, laser beams are emitted out-
ward. To evaluate radiation efficiency of the semiconductor lasers, the slope
efficiency and the external differential quantum efficiency are used.

5.3.1 Slope Efficiency

The slope efficiency Sdj (in units of mW/mA or W/A) per facet is defined
as the ratio of the increase in light intensity ∆Pj (j = 1, 2) to the increase in
injection current ∆I, which is given by

Sdj =
∆Pj

∆I
. (5.12)

The slope efficiency for the total light output is obtained as

Sd,tot =
∆P1 + ∆P2

∆I
=

∆P

∆I
, (5.13)

where ∆P is an increase in the total light intensity.
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Fig. 5.7. Current versus light output characteristics

5.3.2 External Differential Quantum Efficiency

The external differential quantum efficiency ηd (in no units) is defined as
the number of photons emitted outward per injected carrier. The external
differential quantum efficiency ηd for the total light output is given by

ηd =
∆P

�ω
÷
(

∆I

e

)
=

∆P

∆I

e

�ω
= Sd,tot

e

�ω
, (5.14)

where ω is an angular frequency of the light, � is Dirac’s constant, and e is
the elementary charge.

As shown in (5.11), the total loss is a sum of the internal loss and the
mirror loss. For a reference system placed outside the optical cavity, the mir-
ror loss indicates the light emission rate from the optical cavity. As a result,
using the internal quantum efficiency ηi, which is defined as the number of
photons emitted inside the optical cavity per injected carrier, the external
differential quantum efficiency ηd is expressed as

ηd = ηi
(Mirror Loss)
(Total Loss)

= ηi

1
2L

ln
1

R1R2

αi +
1

2L
ln

1
R1R2

= ηi

ln
1

R1R2

2αiL + ln
1

R1R2

, (5.15)

where the optical losses at the facets due to the absorption or the scattering
were assumed to be negligible. For ηi = 100%, L = 300 µm, R1 = R2 = 32%,
and αi = 20 cm−1, we have ηd = 66%.

5.3.3 Light Output Ratio from Facets

We consider the light outputs P1 and P2 from the two facets. As shown in
Fig. 5.8, we assume that the light intensities in the vicinity of the facets inside
the optical cavity are Pa, Pb, Pc, and Pd; the power reflectivities of the facets
are R1 and R2; and the power transmissivities of the facets are T1 and T2.
Here, the arrows indicate the propagation directions of the lights. Among the
light intensities in a steady state, we have a relationship such as
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Pa = R1Pd, Pb = egLPa, Pc = R2Pb, Pd = egLPc,
P1 = T1Pd, P2 = T2Pb,

(5.16)

where g is the optical power gain coefficient and L is the cavity length. Delet-
ing Pk (k = a, b, c, d) from (5.16), we have

P1

P2
=

T1
√

R2

T2
√

R1
. (5.17)

Substituting P = P1 + P2 into (5.16) leads to

P1 =
T1

√
R2

T1
√

R2 + T2
√

R1
P, P2 =

T2
√

R1

T1
√

R2 + T2
√

R1
P. (5.18)

Hence, the external differential quantum efficiencies for each light output ηd1
and ηd2 are written as

ηd1 =
T1

√
R2

T1
√

R2 + T2
√

R1
ηd, ηd2 =

T2
√

R1

T1
√

R2 + T2
√

R1
ηd, (5.19)

where ηd is the external differential quantum efficiency for the total light
output. When the optical losses at the facets are negligibly small, we have
T1 = 1 − R1 and T2 = 1 − R2.

R1, T1 R2, T2

P1 P2

L

Pa Pb

Pd Pc

Fig. 5.8. Light intensities inside and outside the Fabry-Perot cavity

5.4 Current versus Light Output (I-L) Characteristics

We study the current versus light output (I-L) characteristics above and
below the threshold. With an increase in the injection current into semicon-
ductor lasers, the carrier concentration in the active layer is enhanced. When
the carrier concentration exceeds the threshold carrier concentration, laser
oscillation starts and the light output drastically increases compared to be-
low the threshold. This change in light output is considered to be a change in
the photon density. Therefore, we analyze I-L characteristics by introducing
the rate equations on the carrier concentration and the photon density in the
active layer. Dependence of I-L on temperature is also briefly described.



5.4 Current versus Light Output (I-L) Characteristics 91

5.4.1 Rate Equations

If we assume that the electron concentration n is equal to the hole concen-
tration p, we can write the rate equations for the carrier concentration n and
the photon density S of the laser light as

dn

dt
=

J

ed
− G(n)S − n

τn
, (5.20)

dS

dt
= G(n)S − S

τph
+ βsp

n

τr
. (5.21)

Here, J is the injection current density, which is an electric current flowing
through a unit area; e is the elementary charge; d is the active layer thickness;
G(n) is the amplification rate due to the stimulated emission; τn is the carrier
lifetime; τph is the photon lifetime; βsp is the spontaneous emission coupling
factor ; and τr is the radiative recombination lifetime due to the spontaneous
emission.

In (5.20), J/(ed) is an increased rate of the carrier concentration in the
active layer; −G(n)S shows a consumption rate of the carrier concentration
due to the stimulated emission and is proportional to the photon density S;
and −n/τn expresses a decay rate of the carrier concentration in the carrier
lifetime τn.

In (5.21), G(n)S shows an increased rate of the photon density S due to
the stimulated emission; −S/τph is a decreased rate of the photon density
inside the optical cavity due to the absorption and light emission toward
the outside of the optical cavity; and βsp n/τr represents a coupling rate of
spontaneously emitted photons to the lasing mode, which is a resonance mode
of the cavity.

Here, we explain G(n), τn, τph, and βsp in more detail. With the trans-
parent carrier concentration n0, in which a material is transparent, we can
approximately write G(n) as

G(n) = Γag0(n − n0), (5.22)

where g0 is the differential gain coefficient and Γa is the optical confinement
factor of the active layer.

Using the radiative recombination lifetime τr and the nonradiative recom-
bination lifetime τnr, we can express the carrier lifetime τn as

1
τn

=
1
τr

+
1

τnr
. (5.23)

The radiative recombination lifetime τr is determined by the spontaneous
emission and is not affected by the stimulated emission. The nonradiative
recombination lifetime τnr is related to the recombinations of the injected
carriers and the defects or the impurities, which do not emit lights.
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The photon lifetime τph is the time during which the photons stay in the
optical cavity; it is expressed as

1
τph

=
c

nr

(
αi +

1
2L

ln
1

R1R2

)
, (5.24)

where nr is the effective refractive index and c is the speed of light in a
vacuum.

Here, let us derive (5.24). If we put

αt = αi +
1

2L
ln

1
R1R2

, (5.25)

we can write a differential equation for the photon density S with respect to
a position z as

dS

dz
= −αt S, (5.26)

where the light is assumed to propagate toward a positive z-axis. As a result,
a derivative of the photon density S with respect to a time t is given by

dS

dt
=

dz

dt

dS

dz
=

c

nr

dS

dz
= − c

nr
αt S ≡ − S

τph
. (5.27)

From (5.25) and (5.27), the photon lifetime τph in (5.24) is obtained.
The spontaneous emission coupling factor βsp is defined as

βsp =
(spontaneous emission coupling rate to the lasing mode)

(total spontaneous emission rate)
. (5.28)

When the spontaneous emission spectrum is assumed to be Lorentzian with
the center angular frequency ω0 and the FWHM ∆ω, the spontaneous emis-
sion coupling rate to the lasing mode per unit time and unit volume rsp is
given by

rsp = rsp0
(∆ω/2)2

(ω − ω0)2 + (∆ω/2)2
, (5.29)

where rsp0 is a coefficient.
To calculate the total spontaneous emission rate, we consider the number

of modes dN with two polarizations, which exist in a volume V , a solid angle
for propagation direction dΩ; and an angular frequency range dω. When the
distribution of the modes is continuous, as in a free space, dN is given by

dN = V m(ω) dω
dΩ

4π
= V

nr
3ω2

π2c3 dω
dΩ

4π
, (5.30)

where (2.26) was used. From (5.29) and (5.30), the total spontaneous emission
rate Rsp is obtained as
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Rsp =
∫

rsp dN = rsp0
V

2π

(nr

c

)3
ω0

2 ∆ω. (5.31)

Using (5.28), (5.29), and (5.31), we can express the spontaneous emission
coupling factor βsp for the angular frequency ω0 (a wavelength in a vacuum
λ0) as

βsp = Γa
rsp

Rsp
= Γa

2π

V

(
c

nr

)3 1
ω0

2∆ω
=

Γa

4π2nr
3V

λ0
4

∆λ
, (5.32)

where Γa is the optical confinement factor of the active layer and ∆λ is the
FWHM in units of wavelength. From (5.32), it is found that the spontaneous
emission coupling factor βsp increases with a decrease in the mode volume V
and the spectral linewidth ∆λ.

5.4.2 Threshold Current Density

Let us calculate the threshold current density Jth using the rate equations.
First, we consider the rate equations below the threshold, where net stim-

ulated emission is negligible and S = 0. Therefore, (5.20) reduces to

dn

dt
=

J

ed
− n

τn
. (5.33)

In a steady state (d/dt = 0), from (5.33), the carrier concentration n is given
by

n =
J

ed
τn. (5.34)

When the carrier concentration n increases from 0 to the threshold carrier
concentration nth, we expect that (5.34) is still satisfied at the threshold. As
a result, the threshold current density Jth is expressed as

Jth =
ed

τn
nth. (5.35)

From (5.35), it is found that a small nth and a long τn lead to a low Jth.
Because the optical confinement factor Γa of the active layer depends on the
active layer thickness d, the threshold current density nth is a function of d
and there exists an optimum d value to achieve the lowest Jth.

Secondly, we calculate the threshold carrier concentration nth using the
rate equations above the threshold. In usual semiconductor lasers, the spon-
taneous emission coupling factor βsp is on the order of 10−5. Therefore, as
the first approximation, we neglect the term βspn/τr.

Because (5.21) is valid for any S value in a steady state, we have

G(n) = Γag0(n − n0) =
1

τph
, (5.36)
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where (5.22) was used. Substituting (5.11) and (5.24) into (5.36), we also
obtain

G(n) =
c

nr
Γaga. (5.37)

From (5.36), the carrier concentration n in a steady state is given by

n =
1

Γag0τph
+ n0. (5.38)

Because (5.38) is satisfied even at the threshold, the threshold carrier con-
centration nth is written as

nth =
1

Γag0τph
+ n0. (5.39)

In semiconductor lasers, changes in the cavity length, the facet reflectivities,
and the refractive indexes during laser operation are small, and the right-
hand sides of (5.38) and (5.39) are considered to be constant. Therefore,
above the threshold, the carrier concentration n is clamped on the threshold
carrier concentration nth. Hence, G(n) is constant above the threshold, as far
as the gain saturation and the coupling of the spontaneous emission to the
lasing mode are neglected.

Substituting (5.39) into (5.35), we have

Jth =
ed

τn
nth =

ed

τn

(
1

Γag0τph
+ n0

)
,

A =
ed

τn
n0, B =

ed

τn

1
Γag0τph

,

(5.40)

where it is clearly shown that the threshold current density Jth depends on
the optical confinement factor Γa. Figure 5.9 shows calculated results of Γa
for AlxGa1−xAs/GaAs double heterostructures. As shown in Fig. 5.9, with
an increase in the active layer thickness d, Γa is enhanced. Note that Γa is
proportional to d2 when d is small.

Figure 5.10 shows the threshold current density Jth as a function of the
active layer thickness d. It is found that Jth takes a minimum value when d is
approximately 0.1 µm. In Fig. 5.10, A is a current density, which is required
to obtain the population inversion and is proportional to the active layer
thickness d as in (5.40). On the other hand, B is a current density, in which
the optical gain balances the loss in the optical cavity. For a thin active layer,
B is inversely proportional to d, because Γa is proportional to d2. Because
Jth is given by A + B, there exists an optimum d value to obtain a minimum
Jth.
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5.4.3 Current versus Light Output (I-L) Characteristics in CW
Operation

(a) Without Coupling of Spontaneous Emission to the Lasing
Mode

Let us examine changes in the carrier concentration n and the photon density
S with the injection current density J . When the spontaneous emission cou-
pling factor βsp is small, coupling of the spontaneous emission to the lasing
mode can be neglected.

Below the threshold, with an increase in J , the carrier concentration n
increases according to (5.34), but the photon density S is 0. Above the thresh-
old, n does not increase any more and remains at the threshold carrier concen-
tration nth, while S drastically increases with J , because the excess carriers
(n − nth) are converted to photons.
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From (5.20), the steady-state photon density S above the threshold is
obtained as

S =
1

G(n)

(
J

ed
− nth

τn

)
. (5.41)

Substituting (5.35) and (5.36) into (5.41) results in

S =
τph

ed
(J − Jth). (5.42)

In summary, dependence of the carrier concentration n and the photon
density S on the injection current density J is expressed as

in J < Jth:

n =
J

ed
τn, S = 0; (5.43)

in J ≥ Jth:

n =
Jth

ed
τn, S =

τph

ed
(J − Jth). (5.44)

Figure 5.11 illustrates the calculated results of (5.43) and (5.44). It is
clearly shown that the carrier concentration n is clamped on nth above the
threshold current density Jth.

0 0
00

n

nth

Jth JthJ J

S

Fig. 5.11. Carrier concentration n and photon density S when coupling of the
spontaneous emission to the lasing mode is neglected

(b) With Coupling of Spontaneous Emission to the Lasing Mode

For brevity, we assume that the nonradiative recombination is negligible,
which leads to τr ≈ τn. In a steady state, when the coupling of the spon-
taneous emission to the lasing mode is included, (5.20) and (5.21) reduce
to

J

ed
= Γag0(n − n0)S +

n

τn
, (5.45)

S

τph
= Γag0(n − n0)S + βsp

n

τn
, (5.46)
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where (5.22) was used. Therefore, the carrier concentration n and the photon
density S are given by

n =
nth

2(1 − βsp)

(
X −

√
X2 − Y

)
, (5.47)

S =
βsp

Γag0τn

X − √
X2 − Y

2(1 − βsp) − (
X − √

X2 − Y
) , (5.48)

where

X = 1 +
J

Jth
− βsp

n0

nth
, (5.49)

Y = 4(1 − βsp)
J

Jth
. (5.50)

Figure 5.12 shows the calculated results of (5.47) and (5.48), where solid
and broken lines correspond to βsp > 0 and βsp = 0, respectively. Coupling of
the spontaneous emission to the lasing mode lowers n and enhances S, which
results in a vague threshold. When βsp < 1, however, the emitted lights below
the threshold are incoherent spontaneous emissions or amplified spontaneous
emissions.

0 0
00

n

nth

Jth JthJ J

S

β sp = 0

β sp = 0
β sp > 0

β sp > 0

Fig. 5.12. Carrier concentration n and photon density S when coupling of the
spontaneous emission to the lasing mode is included

5.4.4 Dependence of I-L on Temperature

Generally, with a rise in a temperature, the threshold current density Jth
increases and the external differential quantum efficiency ηd decreases, as
shown in Fig. 5.13. Here, the horizontal line and the vertical line show the
injection current and light output, respectively.

Dependence of the threshold current density Jth on a temperature is em-
pirically expressed as

Jth = Jth0 exp
(

Tj

T0

)
, (5.51)
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Fig. 5.13. Dependence of I-L on temperature

where Jth0 is a coefficient, Tj is the temperature in the active layer or the
junction temperature, and T0 is the characteristic temperature, which indi-
cates dependence of the threshold current density on the temperature.

A large characteristic temperature T0 seems to result in a small dJth/dTj,
which indicates a good semiconductor laser. However, we must be careful
about evaluating the temperature characteristics of semiconductor lasers by
T0, because a larger Jth leads to a greater T0 when dJth/dTj is constant.
Therefore, only when semiconductor lasers with a common Jth at the same
temperature are compared, can T0 be an appropriate index.

Figure 5.14 shows examples of the characteristic temperature T0 for an
AlGaAs/GaAs LD and an InGaAsP/InP LD in pulsed operations. In an
AlGaAs/GaAs LD with an oscillation wavelength of 0.85 µm, T0 is approx-
imately 160 K from 25◦C to 80◦C. It is considered that an increase in Jth
with an increment in Tj is caused by broadening the gain spectrum and the
overflow of the carriers over the heterobarriers. To reduce the overflow of
the carriers over the heterobarriers, we must increase the band offset ∆Eg
between the active layer and the cladding layers. In general, the band offset
∆Eg should be larger than 0.3 eV to suppress a drastic increase in Jth with
a rise in Tj.

The external quantum efficiency ηd decreases with an increase in Jth,
because the threshold carrier concentration nth increases with Jth, which
enhances the free carrier absorption (see Appendix F).

In an InGaAsP/InP LD with an oscillation wavelength of 1.3 µm, T0 is
approximately 70 K from 25◦C to 65◦C. This T0 is lower than that of an
AlGaAs/GaAs LD because of efficient overflow of the carriers due to the
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light effective mass of the electrons and the nonradiative recombinations due
to the Auger processes and the valence band absorptions.

The effective masses of the electrons are 0.070m for AlGaAs with a
bandgap wavelength of 0.85 µm, and 0.059m for InGaAsP with a bandgap
wavelength of 1.3 µm, where m is the electron mass in a vacuum.

The Auger processes are schematically shown in Fig. 5.15 where C, H,
L, and S indicate the conduction band, the heavy hole band, the light hole
band, and the split-off band, respectively. In the Auger processes, there are
two processes, CHSH and CHCC. In the CHSH process, the emitted energy
due to a recombination of electron 1 in the conduction band (C) and hole
2 in the heavy hole band (H) excites electron 3 in the split-off band (S)
to the heavy hole band (H). In the CHCC process, the energy emitted due
to a recombination of electron 1 in the conduction band (C) and hole 2 in
the heavy hole band (H) pumps electron 3 in the conduction band (C) to a
higher energy state 4 in the conduction band. These processes are three-body
collision processes, and a recombination rate RA for the Auger processes is
given by

RA = Cpnp2 + Cnn2p, (5.52)

where Cp and Cn are the Auger coefficients for the CHSH and CHCC pro-
cesses, respectively.

In the valence band absorptions, an electron in the split-off band absorbs
a light generated by a recombination of an electron in the conduction band
and a hole in the heavy hole band. These absorption processes are shown
in Fig. 5.16, where an electron is excited to the heavy hole band and the
acceptor level.

With an increase in temperature, the internal quantum efficiency ηi de-
creases due to the Auger processes and the external quantum efficiency ηd is
lowered due to the valence band absorptions and the free carrier absorption.
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Fig. 5.15. Auger processes: (a) CHSH and (b) CHCC
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Fig. 5.16. Valence band absorption: electron excited to (a) heavy hole band and
(b) the acceptor level

Therefore, light emission efficiency is reduced with an increase in tempera-
ture.

5.5 Current versus Voltage (I-V ) Characteristics

In a steady state, (5.20) and (5.21) reduce to

S = −βs
n

τr

1
G(n) − τph

−1 , (5.53)

I = eVA

[
G(n)S +

n

τn

]
. (5.54)

Here, I is the injection current and VA = SAd is the volume of the active
layer in which SA is the area of the active layer and d is the active layer
thickness.

A flowing current in semiconductor lasers consists of the diffusion current,
the drift current, and the recombination current. Here, it is assumed that the
radiative recombination is dominant, and the diffusion and drift currents are
neglected, as shown in (5.54).

The carrier concentration n is approximately given by
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n = ni exp
(

eV

2kBT

)
, (5.55)

where V is a voltage across the pn-junction and ni is the intrinsic carrier
concentration, which is expressed as

ni = 2
(

2πkBT

h2

)3/2

(memh)3/4 exp
(

− Eg

2kBT

)
. (5.56)

Here, kB is Boltzmann’s constant, T is an absolute temperature, h is Planck’s
constant, me and mh are the effective masses of the electron and the hole,
respectively, and Eg is the bandgap energy of the active layer.

From (5.53)–(5.55), a relation between the injection current I and the
voltage V is given by

I = eVA

[
−βs

nieeV/2kBT

τr

G(nieeV/2kBT )
G(nieeV/2kBT ) − τph

−1 +
nieeV/2kBT

τn

]
, (5.57)

which is illustrated in Fig. 5.17. In this figure, solid, dotted, and broken lines
correspond to the photon lifetimes τph = 1 ps, 2 ps, and 3 ps, respectively.
Here, a sum of a contact resistance and a bulk resistance is assumed to be
4 Ω, which is typical in conventional semiconductor lasers. Other physical
parameters that are used in this calculation are βs = 10−5, ni = 2.7 ×
1011 cm−3, τr = τn = 1 ns, T = 293.15 K (20◦C), (∂G/∂n)n=nth = 2.5 ×
10−6 cm3/s, and VA = 40 µm3 = 4 × 10−11 cm3. It is also supposed that
the transparent carrier concentration is n0 = 0.6 nth, the effective refractive
index is 3.5, and the group velocity vg is 8.57 × 109 cm/s.
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Fig. 5.17. Current versus voltage (I − V ) characteristics
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5.6 Derivative Characteristics

We can use derivative measurements to precisely detect the threshold current.
In the following, relationships among the threshold current, the derivative
light output , and the derivative electrical resistance will be explained.

5.6.1 Derivative Light Output

Using the photon density S in the active layer, we can write the internal light
intensity P as

P = hνvgSBS, (5.58)

where h is Planck’s constant, ν is an oscillation frequency, vg is a group
velocity of the photons, and SB is a beam area. From (5.58), the derivative
light output with respect to the injection current dP/dI is written as

dP

dI
= hνvgSB

dS

dI
= hνvgSB

∂S

∂n

∂n

∂I
. (5.59)

Figure 5.18 shows calculated light output and derivative light output as a
function of the injection current where (5.53), (5.54), (5.58), and (5.59) were
used. The used parameters are the same as in Fig. 5.17. A sharp rise in dP/dI
clearly indicates the threshold current.
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Fig. 5.18. Current versus light output and derivative light output

5.6.2 Derivative Electrical Resistance

The derivative resistance dV/dI is expressed as

dV

dI
=

∂V

∂n

∂n

∂I
. (5.60)
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Figure 5.19 shows calculated I-L and I-dV/dI characteristics where (5.55)–
(5.57) and (5.60) were used. The parameters used are the same as in Figs. 5.17
and 5.18.

As shown in Figs. 5.19 (a) and (b), the I-dV/dI curves have kinks at
the threshold currents. Therefore, the threshold currents are determined by
the derivative electrical resistance dV/dI, and this method will be especially
useful for semiconductor ring or disk lasers with extremely low light output.

5.7 Polarization of Light

The Fabry-Perot LDs, which have bulk active layers, oscillate in the TE mode.
As explained in Chapter 1, the bulk active layers do not have particular
quantum mechanical axes. As a result, the optical gains for the bulk active
layers have values averaged with respect to all angles and are independent
of the polarization of lights. However, the facet reflectivities depend on the
polarization of lights.
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Figure 5.20 (a) schematically shows reflection at a facet of a semiconductor
laser in a zigzag model. We suppose that the effective refractive index of the
optical waveguide is n′

A and the refractive index of the outside of the optical
waveguide is nB. This reflection is also considered as the reflection at the
interface of a material with the refractive index nA = n′

A/ cos θ and that
with the refractive index nB, as shown in Fig. 5.20 (b).

Active layer

Effective refractive 
index n’A

 Refractive index
nB

 Refractive index
nB

 Refractive index
nA

θ

(a) (b)

Fig. 5.20. Reflection at a facet

When the angle of incidence is θ, Fresnel formulas give the power reflec-
tivities RTE and RTM as

RTE =

∣∣∣∣∣nA cos θ −
√

nB
2 − nA

2 sin2 θ

nA cos θ +
√

nB
2 − nA

2 sin2 θ

∣∣∣∣∣
2

, (5.61)

RTM =

∣∣∣∣∣nB
2 cos θ − nA

√
nB

2 − nA
2 sin2 θ

nB
2 cos θ + nA

√
nB

2 − nA
2 sin2 θ

∣∣∣∣∣
2

, (5.62)

where subscripts indicate the polarization of lights. Figure 5.21 shows the
power reflectivity R when laser beams are emitted from GaAs with the refrac-
tive index nA = 3.6 to the air with nB = 1. As found in Fig. 5.21, a relation
RTE ≥ RTM is kept for all values of θ. Hence, from (5.11), the threshold gains
for the TE modes are lower than those of the TM modes, which results in a
start of lasing in the TE modes. With an increase in θ, i.e., with an increase
in the order of modes, RTE is enhanced. Therefore, the threshold gains of
higher-order modes are smaller than those of lower-order modes. However, in
order to minimize the threshold current density, the active layer thickness d
should be approximately 0.1 µm, as shown in Fig. 5.10. In such a small d, the
higher-order modes are cut off, and only the fundamental mode oscillates.

Note that the light intensity ratio of the TE and TM modes is approxi-
mately 1 : 1 below the threshold, because the light emitted below the thresh-
old is the spontaneous emission.

5.8 Parameters and Specifications

There are trade-offs among characteristics of semiconductor lasers, which
are determined by the internal loss αi, the power reflectivity at a facet R,
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Fig. 5.21. Reflectivity for TE and TM modes

the cavity length L, the active layer thickness d, and so on. For example,
a long L and a large R result in a low threshold gain Γaga, as shown in
(5.11). However, a long L leads to a large volume of the active layer VA,
which results in a large threshold current Ith = Jth × VA. Also, a large R
leads to a low power transmissivity T , which results in a low light output as
found in (5.18). Therefore, we need to design semiconductor lasers to satisfy
specifications according to applications.

5.9 Two-Mode Operation

Up to now, for brevity, we have considered single-mode operations and have
neglected the gain saturation. Here, we treat two-mode operations by includ-
ing the self-saturation and cross-saturation of the optical gains [35–40].

The rate equations for the photon densities S1 and S2 in two-mode oper-
ations are given by

Ṡ1 = (α1 − β1S1 − θ12S2) S1, (5.63)

Ṡ2 = (α2 − β2S2 − θ21S1) S2, (5.64)

where αi ≡ Gi − 1/τphi is the net amplification rate, Gi is the amplification
rate, τphi is the photon lifetime for the ith mode, βi is the self-saturation
coefficient, and θij is the cross-saturation coefficient (i, j = 1, 2). In a steady
state (d/dt = 0), we obtain
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β1S1 + θ12S2 = α1 : L1, (5.65)
β2S2 + θ21S1 = α2 : L2, (5.66)

where L1 and L2 indicate lines in Fig. 5.22. From small variations analysis,
the coupling constant C is defined as

C ≡ θ12θ21

β1β2
. (5.67)

According to the value of C, the coupling strengths are classified into
three regions as

C < 1 weak coupling,
C = 1 neutral coupling,
C > 1 strong coupling.

Relationships between S1 and S2 are summarized in Fig. 5.22. As found
in (5.63) and (5.64), we have Ṡi < 0 in a region above line Li (i = 1, 2), and
Ṡi > 0 in a region below line Li (i = 1, 2). According to a sign of Ṡi, a stable
point of the photon density Si is determined.

Figures 5.22 (a) and (b) show the weak coupling (C < 1); in (a), for
β1α2/θ21 < α1 only mode 1 oscillates and oscillation of mode 2 is inhibited,
and in (b), for θ12α2/β2 < α1 < β1α2/θ21 mode 1 and mode 2 simultaneously
oscillate, which is only allowed in the weak coupling. If α1 < θ12α2/β2, only
mode 2 oscillates to prevent mode 1 from oscillating.

Figures 5.22 (c) and (d) show the neutral coupling (C = 1), and lines L1
and L2 are parallel. For β2α1/θ12 = θ21α1/β1 > α2, as shown in Figs. 5.22
(c) and (d), only mode 1 oscillates and mode 2 cannot oscillate. If β2α1/θ12 =
θ21α1/β1 < α2, only mode 2 oscillates oscillation of mode 1 suppressed.

Figures 5.22 (e) and (f) show the strong coupling (C > 1); in (e), for α2 <
β2α1/θ12 only mode 1 oscillates, and in (f), for β2α1/θ12 < α2 < θ21α1/β1,
mode 1 or mode 2 oscillates according to the initial values of S1 and S2.
For example, a change in the refractive index of the optical waveguide by an
applied voltage or an injection current leads to a bistable operation between
S1 and S2, which is only observed in the strong coupling. If θ21α1/β1 < α2,
only mode 2 oscillates.

5.10 Transverse Modes

The transverse modes, or lateral modes, show the light intensity distribu-
tions along the axes perpendicular to the cavity axis, which determine the
shapes of the laser beams. The transverse modes are highly dependent on
the structures of the optical waveguides, and the vertical transverse modes
display the light intensity distributions along the axes perpendicular to the
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active layer plane, whereas the horizontal transverse modes exhibit the light
intensity distributions along the axes parallel to the active layer plane.

To evaluate the transverse modes, we usually use near-field patterns and
far-field patterns, which are shown in Fig. 5.23.

Vertical transverse mode

Horizontal transverse mode

Near-field pattern

Vertical transverse mode

Semiconductor laser

Far-field pattern

Horizontal transverse mode

W⊥

W||

θ

θ

⊥

||

Fig. 5.23. Near-field and far-field patterns

The near-field pattern is the light intensity distributions on a facet; its in-
dexes are the length of the emission region W‖ and W⊥ illustrated in Fig. 5.23.
Usually, the active layer thickness d is approximately 0.1 µm or less to min-
imize the threshold current density, while the active layer width is on the
order of 2 µm or more to achieve high reproducibility with high accuracy. As
a result, the near-field pattern is asymmetric, which is long along the axis
parallel to the active layer plane and short along the axis perpendicular to
the active layer plane.

The far-field pattern is the light intensity distributions at a position that is
far enough from the facet. As shown in Fig. 5.23, its indexes are the radiation
angles θ‖ and θ⊥, which are independent of the distance between the facet
and the detector. This far-field pattern is considered to be a diffracted pattern
of the near-field pattern if the near-field pattern is regarded as a slit. With
a decrease in the size of the slit, the size of the diffracted patterns increases.
Therefore, the far-field patterns are large for small near-field patterns and
small for large near-field patterns. Because of asymmetry in the near-field
patterns, the far-field patterns are also asymmetric with small horizontal
transverse modes and large vertical ones.

When we couple a laser beam to an optical component such as a lens or
an optical fiber, we would like to achieve a large coupling efficiency. For this
purpose, a symmetric laser beam with a narrow radiation angle is required.
In this respect, conventional semiconductor lasers are not optimized, and the
optical coupling loss is minimized by optimizing the optical components or the
optical coupling systems. Recently, however, semiconductor lasers with the
optical waveguides whose thickness or width is graded along the cavity axes
have been demonstrated to enhance the optical coupling efficiencies. Vertical
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cavity surface emitting lasers are also suitable to achieve high optical coupling
efficiency because their emitted beams have symmetric circular shapes with
narrow radiation angles (see Chapter 6).

5.10.1 Vertical Transverse Modes

(a) Guided Modes

The vertical transverse modes present the light intensity distributions along
the axes perpendicular to the active layer plane. Because the double het-
erostructures are adopted in semiconductor lasers, index guiding is estab-
lished along the axis perpendicular to the active layer plane. The guiding
condition is represented by the eigenvalue equation for the transverse reso-
nance condition.

Here, we briefly review the key points of the eigenvalue equation, which
was explained in Chapter 3. Figure 5.24 shows an optical waveguide, in which
the guiding layer with the refractive index nf and the thickness h is sand-
wiched by the cladding layer with the refractive index nc and the substrate
with the refractive index ns where nf > ns ≥ nc.

nc

nf

ns

h
fθ

Fig. 5.24. Cross section of an optical waveguide

Because the Fabry-Perot LDs with bulk active layers oscillate in the TE
modes, we consider the eigenvalue equation for the TE modes. Using a wave
number in a vacuum k0, the normalized frequency or the normalized wave-
guide thickness V is defined as

V = k0h
√

nf
2 − ns

2. (5.68)

With the help of the effective refractive index N , the normalized wave-
guide refractive index bTE is defined as

bTE =
N2 − ns

2

nf
2 − ns

2 . (5.69)

Also, we introduce the asymmetry measure aTE as

aTE =
ns

2 − n2
c

nf
2 − ns

2 . (5.70)

Using these normalized parameters, we can express the normalized eigen-
value equation for the TE modes as
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V
√

1 − bTE = mπ + tan−1

√
bTE

1 − bTE
+ tan−1

√
aTE + bTE

1 − bTE
, (5.71)

where m is a nonnegative integer, which is called the order of modes.
The important concept in designing the optical waveguides is the cutoff

condition in which the guided modes do not exist. When the angle of incidence
(= angle of reflection) in the guiding layer θf is equal to the critical angle
θfs, propagated lights are not confined to the guiding layer and a fraction
of the lights are emitted to the substrate. In this case, we have N = ns,
which results in bTE = 0 from (5.69). As a result, from (5.71), the normalized
frequency Vm for the mth-order mode to be cut off is obtained as

Vm = mπ + tan−1 √
aTE. (5.72)

For Vm < V < Vm+1, the guided modes from the zeroth- to the mth-order
modes exist. In a symmetric optical waveguide with ns = nc where aTE = 0
in (5.70), (5.72) reduces to

Vm = mπ. (5.73)

From (5.68) and (5.73), the cutoff guiding layer thickness hc in a symmetric
optical waveguide is expressed as

hc =
mπ

k0
√

nf
2 − ns

2
=

mλ0

2
√

nf
2 − ns

2
, k0 =

2π

λ0
, (5.74)

where λ0 is a wavelength of a light in a vacuum. From (5.74), with increases
in hc and nf

2 − ns
2, higher-order modes with large ms can be guided in the

optical waveguides.
Using V and b, the optical confinement factor Γf in the symmetric optical

waveguide is given by

Γf =
V

√
b + 2b

V
√

b + 2
. (5.75)

(b) Laser Oscillation in Higher-Order Modes

(i) Active Layer Thickness d � hc

From (5.74) and (5.75), a relationship of the optical confinement factor Γm

for the mth-order mode and Γm−1 for the (m − 1)th-order mode is written
as

Γm < Γm−1. (5.76)

When the active layer thickness d is slightly larger than hc, a difference in
the reflectivities between the adjacent higher-order modes is small. Therefore,
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from (5.40), the threshold current density Jth,m for the mth-order mode and
Jth,m−1 for the (m − 1)th-order mode are related as

Jth,m > Jth,m−1, (5.77)

which leads to a laser oscillation in the (m − 1)th-order mode, not the mth-
order mode.

(ii) Active Layer Thickness d � hc

As shown in Fig. 5.21, higher-order TE modes have larger reflectivities
than lower-order ones. Therefore, when the active layer thickness d is much
larger than hc, a laser oscillation in the mth-order mode takes place. For an
AlGaAs/GaAs LD with nf = 3.6, (nf − ns)/nf = 5%, and λ0 = 0.85 µm, the
cutoff guiding layer thickness hcm for the mth-order mode is obtained as

hc1 = 0.38 µm, hc2 = 0.76 µm, hc3 = 1.13 µm.

In this case, according to the active layer thickness d, the following laser
oscillations in higher-order modes take place:

d > 0.66 µm : first-order mode
d > 0.98 µm : second-order mode
d > 1.30 µm : third-order mode

In conventional semiconductor lasers, to minimize the threshold current
density, the active layer thickness d is approximately 0.1 µm, as shown in
Fig. 5.10. Therefore, the vertical transverse modes are fundamental modes
(m = 0).

(c) Near-Field Pattern and Far-Field Pattern

Let us consider the vertical size of the near-field patterns W⊥ and of the
far-field patterns θ⊥. When the active layer thickness d is larger than a light
wavelength in a material, W⊥ shrinks with a decrease in d, because the light
emission region narrows. However, when d is less than a light wavelength in a
material, W⊥ increases with a decrease in d, because the guided lights highly
penetrate into the cladding layer and the substrate.

As described before, the far-field pattern is considered to be a diffracted
pattern of the near-field pattern. As a result, the far-field pattern is large for
a small near-field pattern and is small for a large near-field pattern.

Figure 5.25 shows the calculated results of W⊥ and θ⊥ for the fundamental
TE mode (m = 0). The horizontal line is the active layer thickness d, and
∆ in the inset is (nf − ns)/nf . For d = 0.1 µm, the radiation angle θ⊥ is
approximately 30◦, which is not good enough for optical coupling. However,
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this value is much smaller than those of LDs below the threshold or LEDs.
This is because the mode for the laser light is the guided mode, while the
spontaneously emitted lights include not only the guided modes but also the
radiation modes, which have various polarizations and propagation directions.
In LEDs, to achieve a relatively narrow radiation angle, monolithic or hybrid
lenses are formed on their light emission surfaces.
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Fig. 5.25. Sizes of near-field and far-field patterns

5.10.2 Horizontal Transverse Modes

The horizontal transverse modes show the light intensity distributions along
the axes parallel to the active layer plane. To control the horizontal transverse
modes, gain guiding and index guiding, which were explained in Chapter 3,
have been used. In gain guiding, lights propagate only in the optical gain
region. In index guiding, lights propagate in a high refractive index region,
which is surrounded by low index regions. As shown in Table 5.1, gain guiding
is superior to index guiding in fabrication but inferior in lasing characteristics.

Table 5.1. Comparison of gain guiding and index guiding

Stability Threshold Current Fabrication

Gain guiding Unstable Large Simple

Index guiding Stable Small Complicated

(a) Gain Guiding

In gain guiding structures, optical gain regions are formed by restricting the
current flowing area. For example, electrodes are selectively evaporated.
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Figure 5.26 shows (a) a cross-sectional view of a gain guiding LD seen
from a facet, (b) distribution of the carrier concentration, and (c) distribution
of the optical gain. The injection current flows from the selectively formed
electrode along the arrows by diffusion. As a result, the carrier concentration
is largest at the center of the stripe, and it decreases with an increase in the
distance from the center. Therefore, the center region of the stripe has the
optical gain and the stripe edges have the optical losses.

Electrode

Active layer

Electrode
(a)

Position

Carrier
Concentration

(b)

Position

Gain

Loss

(c)

Fig. 5.26. Gain guiding LD: (a) cross-sectional view, (b) distribution of the carrier
concentration, and (c) distribution of the optical gain

Here, we consider distribution of the refractive index in the gain guiding
structure. With an increase in injection current, the refractive index changes
due to the free carrier plasma effect , Joule heating in the active layer, and
the spatial hole-burning .

When the free carriers are induced to vibrate with the frequency of a light,
the phases of the free carrier vibrations shift and cancel out the electrical
polarizations of the lattice atoms. This phenomenon is referred to as the free
carrier plasma effect. A change in the refractive index ∆nrf due to the free
carrier plasma effect is given by

∆nrf = − e2

2m∗ω2ε0nr
n, (5.78)

which is proportional to the injected carrier concentration n. Here, e is the el-
ementary charge, m∗ is the effective mass of the free carriers, ω is the angular
frequency of a light, ε0 is permittivity in a vacuum, and nr is the refractive
index when the carriers are not injected. On the derivation of (5.78), see Ap-
pendix F. When the carrier concentration n is on the order of 1018 cm−3, a
decrease in the refractive index is on the order of 10−3. Because the carrier
concentration is large at the center of the stripe, the refractive index in the
center is lower than that of the surrounding regions according to (5.78). As a
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result, the light is not completely confined to the active layer and is radiated
to the surrounding regions, which is called the antiguiding effect .

With an increase in injection current, the active layer is heated by Joule
heating. Therefore, the refractive index increases, and this change ∆nrT is
expressed as

∆nrT = (2 ∼ 5) × 10−4∆T (5.79)

where ∆T is an increase in the temperature of the active layer, which is
expressed in the units of Kelvin. As opposed to the free carrier plasma effect,
the increase in the refractive index due to Joule heating of the active layer
contributes to confine the light to the active layer, which is referred to as the
guiding effect .

When we further increase the injection current and have a large light
output, a lot of carriers are consumed due to the stimulated emission. Because
stimulated emission efficiently takes places at a large optical gain region, the
carrier concentration at the center of the stripe is lower than that of its
surrounding regions. This phenomenon is known as the spatial hole-burning,
which increases the refractive index at the center region, resulting in a large
confinement of the light to the active layer.

As explained earlier, the horizontal distribution of the refractive index is
determined by the free carrier plasma effect, Joule heating of the active layer,
and the spatial hole-burning. Hence, the horizontal transverse modes show
complicated behaviors, such as changes in the positions or multiple peaks,
according to a value of the injection current. When the horizontal transverse
modes change, kinks are observed in I-L curves.

In gain guiding structures, wave fronts of the horizontal transverse modes
bend convexly in the propagation direction, while those of the vertical trans-
verse modes are close to plane waves. As a result, the beam waist , in which
the beam diameter is minimum, of the horizontal transverse modes is placed
inside the optical cavity, while that of the vertical transverse modes is located
on a facet of a semiconductor laser. Such a difference in the positions of the
beam waists for the vertical and horizontal transverse modes is called astig-
matism. When there is astigmatism, we cannot focus both the vertical and
horizontal transverse modes on a common plane by a oneaxially symmetric
convex lens, and we obtain only defocused images.

(b) Index Guiding

Index guiding structures have an intentionally formed refractive index dis-
tribution, as shown in Fig. 5.27. In the index guiding structures, both the
horizontal and the vertical transverse modes are close to plane waves, which
do not generate astigmatism.

To obtain stable horizontal transverse modes, we need that (1) ∆nr >
|∆nrf| where ∆nr is a difference in the refractive indexes between the ac-
tive layer and its surrounding layers and ∆nrf is a change in the refractive
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Fig. 5.27. Index guiding LD: (a) cross-sectional view and (b) distribution of the
refractive index

index due to the free carrier plasma effect; (2) the cutoff condition for the
higher-order modes is satisfied; and (3) the active layer width is shorter than
the diffusion length of the carriers. Condition (1) is required to achieve in-
dex guiding even in a high injection current. Condition (2) is introduced to
obtain a single horizontal transverse mode. If there are multiple higher-order
horizontal transverse modes, mode hopping or the mode competition takes
place between various modes according to operating conditions, which leads
to unstable horizontal transverse modes. To avoid these unstable conditions,
only the fundamental horizontal transverse mode should exist in the optical
waveguides. Finally, condition (3) is needed to achieve uniform distributions
of the carrier concentration in the active layer, which reduces spatial hole-
burning. The active layer width is usually about 2 µm, because the diffusion
length of the injected carriers is 2–3 µm from the viewpoint of reproducibility.
To satisfy conditions (1) and (2), ∆nr/nr is approximately 10−2.

Up to now, many index guiding structures have been developed to effi-
ciently confine both the carriers and the light to the active layer, and the
structures are classified into three categories: rib waveguides, ridge wave-
guides, and buried heterostructures (BHs).

(i) Rib Waveguide

Rib waveguides are the optical waveguides with convex or concave regions,
which are suitable for semiconductor lasers whose active layers cannot be
exposed to the air by etching. For example, AlGaAs active layers are easily
oxidized in the air, and their emission efficiencies drastically decrease.

As an example of a rib waveguide, Fig. 5.28 shows a plano convex wave-
guide (PCW) structure, in which the semiconductor layers are grown on
a preetched substrate. Here, solid line a and broken line b show the flowing
paths of the electric currents. Path a is a direction of a forward current across
the pn-junction, and the electrical resistance along this path is low. On the
other hand, in path b, the electric current flows through a pnpn structure
(thyristor).
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Fig. 5.28. Rib waveguide

Figure 5.29 shows I-V characteristics in the pn and pnpn structures.
When the applied voltage is below a switching voltage Vs, a pn-junction
inside the pnpn structure is reversely biased, and the electric current hardly
flows. Once the applied voltage exceeds Vs, the pnpn structure shows similar
I-V characteristics to those of the pn-junctions in forward bias. Therefore,
by designing Vs to be larger than the applied voltage across the pn-junction,
the electric current hardly flows through path b.

(a) (b)

I I

V V
VS

0 0

Fig. 5.29. Current versus voltage (I-V ) characteristics in (a) pn and (b) pnpn
structures

Note that the electric current flowing regions are broad, because a current
constriction structure is not formed below the p-diffused region. In other
words, rib waveguides are not optimized for confinement of the carriers to
the active layers.

(ii) Ridge Waveguide

Ridge waveguides are the optical waveguides with a convex region. Because
they are easily fabricated by etching after epitaxial growth, low-cost semi-
conductor lasers are expected. When the active layer materials cannot be
exposed to the air, etching is stopped above the active layer, as shown in
Fig. 5.30.

(iii) Buried Heterostructure

Buried heterostructures (BHs), in which the active layer is surrounded by
regrown regions, are fabricated as follows: At first, epitaxial layers are grown
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Fig. 5.30. Ridge waveguide

on a semiconductor substrate, which is followed by etching to form a stripe.
This stripe is buried by the second epitaxial growth, and the buried regions
prevent the injection current from flowing. Although fabrication processes
are complicated, low-threshold and high-efficiency operations are obtained
because of efficient confinement of the carriers and light to the active layers.
However, because the active layers are exposed to the air during fabrication,
only the active layers insensitive to oxidization are suitable for buried het-
erostructures. For example, InGaAsP/InP LDs, which are the light sources
of the optical fiber communication systems, frequently adopt buried het-
erostructures. Figure 5.31 shows an example of a buried heterostructure. To
constrict the current flowing region, the surrounding regions of the stripe are
pnpn structures. Therefore, the electric current efficiently flows in path a but
hardly flows along path b. Also, a current constriction structure is formed
below the p-diffused region, and the carriers are efficiently injected into the
active layer.

p-diffused region

n-substrate

Active layer
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p n

p
abElectrode

Electrode

Fig. 5.31. Buried heterostructure (BH)

5.11 Longitudinal Modes

The longitudinal modes, or axial modes, which determine the resonance wave-
lengths of the cavity, show the light intensity distributions along the cavity
axes. Figure 5.32 shows examples of oscillation spectra for (a) a multimode
operation and (b) a single-mode operation.

Semiconductor lasers use interband transitions to obtain the optical gain,
and the optical gain spectrum has a width of about 10 nm. Also, the Fabry-
Perot cavities have a lot of resonance modes, which leads to low mode se-
lectivity. For these two reasons, the Fabry-Perot LDs tend to oscillate in
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Fig. 5.32. Oscillation spectra of semiconductor lasers: (a) multimode operation
and (b) single-mode operation

multimodes. However, we do not need single-mode LDs for applications such
as compact discs, laser printers, bar-code readers, laser pointers, or short-haul
optical fiber communication systems, in which Fabry-Perot LDs are used.

In long-haul, large-capacity optical fiber communication systems, we need
single-mode LDs because the optical fibers have dispersions that their refrac-
tive indexes depend on the wavelengths and modes of the lights. Due to the
dispersions, the propagation speed of light changes according to the wave-
lengths and modes of the lights. If semiconductor lasers show multimode op-
erations, the optical pulses broaden in a time domain while propagating the
optical fibers. With an increase in the transmission distance and a decrease
in the pulse spacing, adjacent optical pulses tend to overlap each other. As
a result, the receivers cannot resolve sequentially transmitted optical pulses,
as shown in Fig. 5.33.

To achieve single-longitudinal-mode operations, the DFB-LDs, the DBR-
LDs, the surface emitting LDs, the cleaved coupled cavity (C3) LDs have
been developed, in which the optical cavities select only one lasing mode.
These single-longitudinal-mode LDs will be explained in Chapter 6; we focus
on the longitudinal modes of Fabry-Perot LDs in this chapter.

Note that the longitudinal modes change with the transverse modes be-
cause the effective refractive indexes of the optical waveguides depend on the
transverse modes. To achieve single-longitudinal-mode operations, we also
have to obtain a single-transverse mode.

(a) (b)

Time Time

Light
Intensity

Light
Intensity

Fig. 5.33. Light pulses in (a) a transmitter and (b) a receiver
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5.11.1 Static Characteristics of Fabry-Perot LDs

Spacing of the longitudinal modes in the Fabry-Perot LDs is the same as the
free spectral range λFSR in (4.15), which is written as

λFSR =
λ0

2

2nrλL
, (5.80)

where λ0 is a center wavelength of a light, L is the cavity length, and nrλ
is the equivalent refractive index , which is the effective refractive index with
dispersion, and is given by

nrλ = nr

(
1 − λ0

nr

dnr

dλ

)
. (5.81)

Here, nr is the effective refractive index of the optical waveguide for λ0.
Generally, we have dnr/dλ < 0, and the equivalent refractive index nrλ is
larger than nr. For λ0 = 1.55 µm, nrλ = 3.5, and L = 300 µm, λFSR is 11.4 Å.

Figure 5.34 shows a relationship between the gain spectrum and the lon-
gitudinal modes. The Fabry-Perot LDs oscillate at the resonance wavelength,
which is closest to the gain peak. As a result, the oscillation wavelength for
optical gain A is λ0A, and that for optical gain B is λ0B.

With an increase in the carrier concentration n, the refractive index de-
creases due to the free carrier plasma effect and increases due to Joule heating
of the optical waveguide. Above the threshold, the carrier concentration in
the active layer is almost constant. Therefore, above the threshold, the free
carrier plasma effect does not change the refractive index, and Joule heating
of the active layer enhances the refractive index with an increase in the injec-
tion current I. Hence, the resonance wavelength shifts to a longer wavelength
with I (> Ith) according to (5.5).

With an increase in n, the optical gain spectrum shifts to a shorter wave-
length due to the band filling effect and to a longer wavelength due to Joule
heating of the optical waveguide. The band filling effect is a phenomenon
whereby the carriers fill the energy bands from the bottom, and with an
increase in the carrier concentration n, the number of carriers with high en-
ergy increases. As a result, the optical gain peak shifts to a higher energy (a
shorter wavelength) with an increase in n, as shown in Figs. 2.9 and 2.10.
Above the threshold, the carrier concentration is almost constant, and the
band filling effect is not dominant. Therefore, the gain peak shifts to a longer
wavelength due to Joule heating of the optical waveguide with an increase in
I.

As described earlier, with an increase in I above Ith, both the resonance
wavelength and the gain peak shift to longer wavelengths due to Joule heating
of the optical waveguide. Therefore, the oscillation wavelength increases with
I. Here, it should be noted that the change rate of the resonance wavelength
and that of the gain peak with a temperature Tj are different from each other.
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Fig. 5.34. Relationship between the gain spectrum and the longitudinal modes

Hence, with an increase in I or Tj, the oscillation mode jumps, because the
resonance wavelength closest to the gain peak at the threshold departs from
the gain peak, and other resonance wavelengths approach the gain peak.

Figure 5.35 shows dependence of the longitudinal modes on the injection
current I. It is found that the longitudinal modes shift to a longer wavelength,
and the mode jumps to the other mode at several values of I. Also, according
to an increase or decrease in I, there exist hysteresis loops. Similar phenom-
ena are observed when Tj is changed and I is kept constant. The cause of
these hysteresis loops is that the optical gain concentrates on the oscillating
longitudinal mode, and the optical gains for the other modes are suppressed
due to coupling of modes as explained in Section 5.9.

The carriers, which interact in the oscillation mode, are consumed by
the radiative recombination due to the stimulated emission. However, the
intraband relaxation time of the carriers is on the order of 10−12–10−13 s, and
the other carriers promptly compensate the consumed carriers. Therefore, the
number of carriers related to the unoscillating modes decreases, which reduces
the optical gains for the unoscillating modes. Figure 5.36 schematically shows
how the other carriers compensate the consumed carriers, which exist inside
a rectangle.
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5.11.2 Dynamic Characteristics of Fabry-Perot LDs

(a) Turn-on Delay Time and Relaxation Oscillation

(i) Turn-on Delay Time

We assume that a step pulsed current is injected into a semiconductor laser.
As shown in Fig. 5.37 (a), a bias current density Jb is below the thresh-
old current density Jth, and a pulsed current density Jp is injected to the
semiconductor laser at time t = ton = 0. Note that the pulse width is much
larger than the carrier lifetime τn. The carrier concentration n increases from
a bias value nb with a time constant τn and reaches the threshold carrier
concentration nth at t = td, as shown in Fig. 5.37 (b). This td is called the
turn-on delay time, and at t = td laser oscillation starts. After the start of
laser oscillation, the carrier concentration n and the photon density S show
relaxation oscillations, as shown in Fig. 5.37 (b) and (c).

Let us calculate the turn-on delay time td using the rate equations. For
simplicity, we neglect coupling of the spontaneous emission to the lasing
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Fig. 5.37. Turn-on delay time and relaxation oscillation: (a) current density, (b)
carrier concentration, and (c) photon density

mode. Therefore, when n < nth, the photon density is S = 0. As a result,
(5.20) reduces to

dn

dt
=

J

ed
− n

τn
. (5.82)

From the assumption, the current density J is given by

J = Jp · u(t) + Jb,

u(t) =
{

0 (t < 0),
1 (t ≥ 0).

(5.83)

Substitution of (5.83) into (5.82) is followed by the Laplace transform.
If we express a Laplace transform of n(t) as N(s) and let n(0) = nb =
τnJb/(ed), we obtain

sN(s) − n(0) = sN(s) − τnJb

ed
=

Jp + Jb

ed

1
s

− 1
τn

N(s). (5.84)
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Hence, N(s) is written as

N(s) =
(

1
s

− 1
s + τn

−1

)
τn(Jp + Jb)

ed
+

τnJb

ed

1
s + τn

−1 . (5.85)

When we take an inverse Laplace transform of N(s), we have

n(t) =
τn(Jp + Jb)

ed
u(t) − τn(Jp + Jb)

ed
e−t/τn +

τnJb

ed
e−t/τn

=
τn(Jp + Jb)

ed
u(t) − τnJp

ed
e−t/τn . (5.86)

In t ≥ 0, we have u(t) = 1, and then (5.86) is expressed as

n(t) =
τnJ

ed
− τnJp

ed
e−t/τn , (5.87)

where

Jp + Jb = J. (5.88)

At t = td, the carrier concentration n reaches the threshold carrier con-
centration nth, and from (5.35) we have

n(td) = nth =
τnJth

ed
. (5.89)

Using (5.87)–(5.89), the turn-on delay time td is obtained as

td = τn ln
J − Jb

J − Jth
. (5.90)

For Jb = 0.8Jth, J = 1.2Jth, and τn = 2.5 ns, we have td = 1.7 ns.
To generate high speed optical signals by modulating the injection current

into the semiconductor lasers, the turn-on delay time td should be short.
From (5.90), it is found that a large bias current density Jb, a low threshold
current density Jth, and a short carrier lifetime τn are suitable for high-speed
modulations.

It is also considered that (5.90) shows a relationship between td and τn.
Hence, by measuring td as a function of J or Jb, we can obtain the carrier
lifetime τn from (5.90). This measured result is shown in Fig. 5.38, where the
bias current Ib is zero.

(ii) Relaxation Oscillation

Let us calculate a decay coefficient and an oscillation frequency of the relax-
ation oscillation.

For brevity, by neglecting coupling of the spontaneous emission to the
lasing mode, we solve the rate equations (5.20) and (5.21). Because there
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are no exact analytical solutions, Fig. 5.37 was drawn by numerically ana-
lyzing (5.20) and (5.21). However, if we use the small-signal analysis, we can
obtain approximate analytical solutions, which clearly give us their physi-
cal meanings. To perform the small-signal analysis, we express the carrier
concentration n, the photon density S, and the current density J as

n = nc0 + δn, S = S0 + δS, J = J0 + δJ > Jth,
nc0 � δn, S0 � δS, J0 � δJ,

(5.91)

where nc0, S0, J0 are the carrier concentration, the photon density, and the
current density in a steady state, respectively, and δn, δS, and δJ are de-
viations from each steady-state value. If we assume Jb � Jp and exclude
several initial sharp peaks in the relaxation oscillation, the conditions for the
small-signal analysis are satisfied. Here, we put J0 = Jb and δJ = Jp.

Neglecting coupling of the spontaneous emission to the lasing mode, (5.20)
and (5.21) reduce to

dn

dt
=

J

ed
− G(n)S − n

τn
, (5.92)

dS

dt
= G(n)S − S

τph
. (5.93)

In a steady state (d/dt = 0), from (5.91)–(5.93), we have

J0

ed
− G(nc0)S0 − nc0

τn
= 0,

G(nc0) =
1

τph
.

(5.94)

Substituting (5.91) into (5.22) results in
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G(n) = G(nc0 + δn) = Γag0(nc0 + δn − n0)

= Γag0(nc0 − n0) + Γag0δn = G(nc0) +
∂G

∂n
δn, (5.95)

where we have introduced the differential gain, which is defined as

Γag0 ≡ ∂G

∂n
. (5.96)

Inserting (5.91) into (5.92) and(5.93) with the help of (5.94) and (5.95)
and then neglecting the second-order small term δn · S, we have the rate
equations on the deviations δn and δS as

d
dt

δn =
δJ

ed
− δS

τph
− ∂G

∂n
S0δn − δn

τn
, (5.97)

d
dt

δS =
∂G

∂n
S0δn. (5.98)

From (5.98), δn is expressed as

δn =
1

(∂G/∂n)S0

d
dt

δS. (5.99)

Substituting (5.97) and (5.99) into a time derivative of (5.98), we have

d2

dt2
δS +

(
∂G

∂n
S0 +

1
τn

)
d
dt

δS +
∂G

∂n

S0

τph
δS =

∂G

∂n

S0

ed
δJ. (5.100)

This equation shows a relaxation oscillation on the deviation of the pho-
ton density δS. As a result, if we write the decay coefficient as γ0 and the
oscillation angular frequency as ωr, we obtain

γ0 =
∂G

∂n
S0 +

1
τn

, (5.101)

ωr
2 =

∂G

∂n

S0

τph
. (5.102)

From (5.102), the relaxation oscillation frequency fr is given by

fr =
1
2π

√
∂G

∂n

S0

τph
. (5.103)

Note that the decay coefficient γ0 is related to the decay time τre as

γ0 =
1
τre

. (5.104)

To generate high-speed optical signals by modulating the injection cur-
rents into the semiconductor lasers, the optical pulses have to quickly return
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to their steady-state values. Therefore, the decay coefficient γ0 and the re-
laxation oscillation frequency fr have to be large. From (5.101) and (5.103),
it is found that a large differential gain ∂G/∂n, a large photon density S0 in
a steady state, a short carrier lifetime τn, and a short photon lifetime τph are
suitable for high-speed modulations.

Here, we consider a relationship between high-speed modulations and
other characteristics. As found in (5.40) and (5.96), a large ∂G/∂n leads
to a low Jth, while short τn and τph increase Jth. Hence, for simultaneous
low-threshold and high-speed operations, we need to obtain a large ∂G/∂n,
which is achieved in the quantum well LDs (see Chapter 7). With regard to
system applications, if S0 is large, light intensity is detected by a receiver
even when optical pulses are not transmitted. As a result, an extinction ratio
decreases and a signal-to-noise (S/N ) ratio degrades. Therefore, S0 should
be limited to satisfy specifications of applications.

The decay coefficient γ0 and the relaxation oscillation frequency fr can
also be expressed using the current density J . From (5.34), the threshold
carrier concentration nth and the transparent carrier concentration n0 are
written as

nth =
τn

ed
Jth, n0 =

τn

ed
J ′

0, (5.105)

where J ′
0 is the transparent current density, in which a material is transparent.

From (5.39), we have

nth − n0 =
1

Γag0τph
. (5.106)

Substituting (5.96) and (5.105) into (5.106), we obtain

∂G

∂n
=

ed

τnτph (Jth − J ′
0)

. (5.107)

Inserting (5.42) and (5.107) into (5.101) and (5.103), the decay coefficient γ0
and the relaxation oscillation frequency fr are expressed as

γ0 =
1
τn

J − J ′
0

Jth − J ′
0
, (5.108)

fr =
1
2π

√
1

τnτph

J − Jth

Jth − J ′
0
. (5.109)

(b) Relationship between the Relaxation Oscillation and the
Longitudinal Modes

As shown in Fig. 5.37 (b), during the relaxation oscillation, the carrier con-
centration n deviates from nth by about ±10%. Due to this modulation in n,
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the optical gain and the refractive index simultaneously change, which alters
the longitudinal modes.

First, we consider the optical gain. When the carrier concentration n is
larger than nth, the optical gain g exceeds the threshold gain gth and the longi-
tudinal modes with the optical gain g ≥ gth show laser operations. Therefore,
in the beginning of the relaxation oscillation, multimode laser oscillations are
observed. With a decay in the relaxation oscillation, the number of the lasing
longitudinal modes decreases.

Secondly, we treat the refractive index. The refractive index is modulated
by the free carrier plasma effect. When a deviation in the carrier concentration
δn is 2×1017 cm−3, the positions of the longitudinal modes shift to a shorter
wavelength by about 4 Å from steady-state values. Such dynamic changes in
the longitudinal modes due to modulations of n are called chirping . When the
chirping takes place, the linewidth of the time-averaged light output spectra
broaden, as shown in Fig. 5.39. Multimode laser operations and chirping
are not suitable for long-haul, large-capacity optical fiber communication
systems, because the optical fibers have dispersions, as described earlier.

It should be noted that the decay time of the relaxation oscillation is on
the order of nanoseconds. Therefore, the effect of Joule heating with time
scale longer than microseconds is negligible.
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5.12 Modulation Characteristics

5.12.1 Lightwave Transmission Systems and Modulation

From the viewpoint of light modulations in lightwave transmission systems,
there are an intensity-modulation/direct-detection system and a coherent sys-
tem. With regard to the modulations of laser beams, there are a direct mod-
ulation of semiconductor lasers and an external modulation using optical
modulators.

(a) Intensity-Modulation/Direct-Detection System

Figure 5.40 shows the intensity-modulation/direct-detection system. In this
system, a transmitter sends optical signals by modulating the light inten-
sity, while a receiver directly detects changes in the light intensity, and
transforms these optical signals into electric signals. This system is sim-
pler and more cost-effective than the coherent one. Therefore, this intensity-
modulation/direct-detection system is used in contemporary optical fiber
communication systems. A problem with transmission distance, which was
inferior to the coherent system, has been solved by the advent of optical fiber
amplifiers.

Optical fiber

Optical
signals

Semiconductor
         laser Photodetector

Fig. 5.40. Intensity-modulation/direct-detection system

(b) Coherent System

In coherent systems, there are amplitude shift keying (ASK), frequency shift
keying (FSK), and phase shift keying (PSK) systems according to modula-
tions of the laser beam. As shown in Fig. 5.41, the modulated light from a
master light source LD1 and a light from a slave (local) light source LD2 are
simultaneously incident on a receiver. In the receiver, interference of these
two laser beams generates an optical beat signal, which is converted to an
electric signal.

With an increase in the light output of LD2, the S/N ratio is improved,
which leads to long-haul optical fiber communication systems. However, to
obtain the optical beat, we have to prepare two semiconductor lasers, whose
laser lights have narrow spectral linewidths, almost common wavelengths, and
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the same polarizations. Moreover, we need polarization controllers to achieve
the same polarizations, because the polarization of the lightwave changes
with an increase in the propagation distance due to contortion of the laying
optical fibers. Also, electronic circuits in the receiver are complicated. As
a result, the cost of the coherent system is much higher than that of the
intensity-modulation/direct-detection system.

Photodetector

Optical fiber

Coupler
LD 1

LD 2

Fig. 5.41. Coherent system

(c) Direct Modulation

In direct modulation of semiconductor lasers, the injection currents into semi-
conductor lasers are modulated. During direct modulations, multimode oper-
ations, chirping, and changes in the turn-on delay time take place. In short-
haul optical fiber communication systems, as in a building, these problems
are not as serious, and the Fabry-Perot LDs can be used as light sources. In
contrast, for long-haul optical fiber communication systems with a transmis-
sion distance of more than several tens of kilometers, the Fabry-Perot LDs
cannot satisfy the system specifications. Therefore, the DFB-LDs showing
stable single-longitudinal-mode operations are used as light sources.

In the coherent system, we would like to modulate only one of the ampli-
tude, frequency, or phase of light. However, they all simultaneously change,
when conventional semiconductor lasers are directly modulated. To overcome
these problems, semiconductor lasers containing phase-control regions have
been developed.

(d) External Modulation

In external modulation of laser beams, the injection currents into semicon-
ductor lasers are kept constant, and the optical modulators modulate laser
beams emitted from semiconductor lasers. Because the injection currents into
semiconductor lasers are constant, relaxation oscillations do not exist, as op-
posed to direct modulation. Therefore, we can avoid multimode operations.
Also, with a small change in the refractive index in the optical modulators,
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chirping is low. However, there are problems such as costs and optical cou-
pling efficiencies between the optical modulators and semiconductor lasers.
To overcome these problems, integrated light sources of the DFB-LDs and
optical modulators have been developed and used in contemporary long-haul,
large-capacity optical fiber communication systems.

Optical modulators often use Franz-Keldysh effect or quantum confined
Stark effect (QCSE) as their operating principles. Franz-Keldysh effect is
a shift of a fundamental absorption edge to a longer wavelength with an
increase in the bias voltage of bulk semiconductors. Quantum confined Stark
effect is a shift of an exciton absorption peak to a longer wavelength with an
increase in the bias voltage of the semiconductor quantum structures.

In the following, we focus on direct modulation of semiconductor lasers,
because it is helpful to understand peculiar characteristics of semiconductor
lasers.

5.12.2 Direct Modulation

(a) Dependence on Modulation Frequency

The relaxation oscillations of semiconductor lasers are analogous to a tran-
sient response theory of electric circuits, while dependence on modulation
frequency corresponds to an alternating current theory .

When a deviation in the current density δJ is related to the steady-state
current density J0 as |δJ | � J0, we can use the small-signal analysis. We
assume that a deviation from J0 is expressed as δJ(ω)e i ωt. As a result, a de-
viation in the carrier concentration δn and that in the photon density δS are
expressed as δn = δn(ω)e i ωt and δS = δS(ω)e i ωt, respectively. Substituting
these into (5.97) and (5.98), we have

δn(ω) = − i ω
D(ω)

δJ(ω)
ed

, (5.110)

δS(ω) = −τph ωr
2

D(ω)
δJ(ω)

ed
, (5.111)

where

D(ω) = ω2 − ωr
2 − i ωγ0, (5.112)

γ0 =
∂G

∂n
S0 +

1
τn

, (5.113)

ωr
2 =

∂G

∂n

S0

τph
. (5.114)

Note that (5.113) and (5.114) are equal to (5.101) and (5.102), respectively.
If we define a modulation efficiency δ(ω) as the number of photons gen-

erated per injected electron, δ(ω) is written as
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δ(ω) =
∣∣∣∣ δS(ω)
δJ(ω)/(ed)

∣∣∣∣ =
τph ωr

2

|D(ω)| =
τph ωr

2√
(ω2 − ωr

2)2 + ω2γ0
2
, (5.115)

where (5.111) and (5.112) were used. From (5.115), we obtain

δ(ω)
δ(0)

=
ωr

2√
(ω2 − ωr

2)2 + ω2γ0
2
. (5.116)

As found in (5.116), the modulation efficiency δ(ω) shows resonance charac-
teristics, and the resonance angular frequency is identical to the relaxation
oscillation angular frequency ωr.

Figure 5.42 shows the modulation efficiency δ(f) as a function of the
modulation frequency f = ω/2π with the injection current density J as a
parameter. The modulation efficiency δ(f) has a maximum value at a reso-
nance frequency fr, and δ(f) drastically decreases with an increase in f over
fr. Therefore, the resonance frequency fr indicates the highest limit in the
modulation frequency. As shown in (5.109), with an increase in J , fr is en-
hanced, which results in a large modulation bandwidth. It should be noted
that electrical resistance and capacitance of semiconductor lasers also affect
the modulation bandwidth.
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Fig. 5.42. Resonance phenomena
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(b) Analog Modulation and Digital Modulation

In the direct modulations of semiconductor lasers, there are analog modula-
tion and digital modulation, as shown in Fig. 5.43.

Digital modulation Analog modulation
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Fig. 5.43. Analog modulation and digital modulation

Analog modulation transforms a change in the injection current into a
change in light intensity and requires a high linearity in the I-L curve. The
upper limit in the modulation frequency is the resonance frequency fr, and
the causes of high-frequency distortions are nonlinearity in the I-L curve and
Joule heating during large amplitude modulations. Typical noises are opti-
cal feedback noises induced by the lights reflected from edges of the optical
fibers and the modal noises generated in the optical fibers. Compared with
digital modulation, analog modulation can transmit more information with
lower modulation frequencies, but it is easily affected by distortions of opti-
cal signals during transmissions. As a result, analog modulation is used for
short-haul, large-capacity optical fiber communication systems such as cable
televisions (CATVs).

Digital modulation assigns the signal of 1/0 to ON/OFF of the light in-
tensity. To obtain the optical pulses, which immediately follow the pulsed
currents, DC bias currents are injected into semiconductor lasers to shorten
the turn-on delay time. Compared with analog modulation, digital modula-
tion is less affected by distortions of optical signals during transmission. As
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a result, digital modulation is used for long-haul, large-capacity optical fiber
communication systems. However, to transmit a lot of information, such as
motion pictures, higher modulation frequency than that of analog modulation
is required.

In the following, we will explain digital modulation in more depth. Ac-
cording to the original signals 1 and 0, there are return-to-zero (RZ) signal
and nonreturn-to-zero (NRZ) signal, as shown in Fig. 5.44. In the RZ signal,
a signal level is returned to zero after each signal is transmitted, which results
in a large S/N ratio. However, we need a short pulse width, which leads to a
high modulation frequency. In the NRZ signal, a signal level is not returned
to zero after each signal is transmitted. Hence, if the original signal 1 contin-
ues, the signal level is kept high until the original signal 0 appears. Therefore,
the S/N ratio is inferior to that of the RZ signal, but the modulation speed
is not as high as that of the RZ signal.

Original signal

RZ signal

NRZ signal

0 0 01 1 1

Fig. 5.44. RZ and NRZ signals

Now we consider high-speed modulations to transmit large-capacity in-
formation. When the modulation speed is higher than 400 Mb/s, the pulse
width is on the order of nanoseconds. In this case, the number of peaks in the
relaxation oscillation for each optical pulse is at most two, and a steady state
does not exist within each pulse. Hence, a decrease in average light intensity,
pattern effect, and multimode operation takes place.

When the relaxation oscillation is sharp, the light intensity pulses have
deep valleys and the averaged light intensity decreases, which restricts the
transmission distance.

The carrier concentration in the active layer changes according to exis-
tence or nonexistence of a preceding optical pulse, which is referred to as the
pattern effect . With a change in the remaining carrier concentration, the bias
level is altered, which modifies the turn-on delay time, as shown in Fig. 5.45.
In order to examine the changes in the optical pulses, an optical signal is
formed by superimposing the optical pulses with the electrical pulses as the
reference. This newly formed optical signal is called the eye pattern, because
its waveform resembles an eye when a duty of the pulse is 50%. When there
are large deviations in the turn-on delay time, resolutions in the receiver
degrade. In this case, the eye patterns collapse and a lot of jitters appear.
When the deviations in the turn-on delay time are small, the eye patterns are
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Fig. 5.45. Pattern effect: (a) pulsed injection current, (b) injected carrier concen-
tration, (c) pulsed light intensity, and (d) eye pattern

wide open. Therefore, by observing the eye patterns, we can evaluate quality
of the transmitted signals. Figure 5.46 shows examples of the eye patterns
for modulation speeds of 4 Gb/s and 2.4 Gb/s with a duty of 50%. In these
examples, the eye patterns are clearly open, and high-quality transmission
characteristics are obtained.

(b)

0 mA

50 mA

(a)

0 mA

50 mA

Fig. 5.46. Eye pattern: (a) 4 Gb/s and (b) 2.4 Gb/s

When the relaxation oscillation takes place, the Fabry-Perot LDs show
multimode operations, which restrict the transmission distance due to the
dispersions in the optical fibers. Here, we describe the dispersions in the
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optical fibers in detail and evaluate a relationship between the dispersions
and the transmission distance.

The optical fibers have mode dispersion, material dispersion, and struc-
tural dispersion. Mode dispersion is a change in the effective refractive index
of the optical fibers according to a mode, which corresponds to a distribution
of light fields. Material dispersion, or chromatic dispersion, is a variation in
the refractive index of the optical fibers with a wavelength of light. Struc-
tural dispersion is a change in the effective refractive index of the optical
fibers with a wavelength of light for a common mode; it is caused because
the refractive index of the core and that of the cladding of the optical fibers
depend on a wavelength of light.

In long-haul, large-capacity optical fiber communication systems, a fun-
damental mode is used and the material dispersion is dominant. Table 5.2
shows the material dispersions and the optical losses of the glass optical fibers
for typical wavelengths of semiconductor lasers.

Table 5.2. Material dispersions and optical losses in glass optical fibers

Wavelength (µm) Material Dispersion (ps/Å/km) Loss (dB/km)

0.85 9 2 − 3
1.30 ∼ 0 0.5
1.55 2 < 0.2

If five longitudinal modes lase during the relaxation oscillation, the dif-
ference in the longest and shortest wavelengths is approximately 50 Å for
semiconductor lasers with a wavelength of 1.55 µm. When this optical sig-
nal is transmitted through the optical fibers by 10 km, the lights arrive at a
receiver with a time difference of

2 ps/Å/km × 50 Å × 10 km = 1 ns, (5.117)

and the optical pulse shape degrades.
Here, we summarize key points for long-haul, large-capacity optical fiber

communication systems.
For long-haul optical fiber communication systems, we need to use optical

fibers with low material dispersions and low optical losses. A wavelength with
the lowest dispersion is 1.30 µm, and a wavelength with the lowest optical loss
is 1.55 µm. Hence, in the conventional optical fiber communication systems,
wavelengths of 1.30 µm and 1.55 µm are used. In Japan, the dispersion-shifted
optical fibers whose lowest dispersion wavelength is shifted from 1.30 µm to
1.55 µm are used in trunk-line systems. The light sources are required to
show highly stable single-longitudinal-mode operations with low chirping and
large average light output. Therefore, the DFB-LDs with excellent single-
longitudinal-mode operations are adopted.
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For large-capacity optical fiber communication systems, we need to shorten
the turn-on delay time and enlarge the relaxation oscillation frequency (res-
onance frequency). As a result, DC bias currents are injected into semicon-
ductor lasers. Also, semiconductor laser structures are designed to reduce
capacitance.

Finally, we briefly explain driving circuits of semiconductor lasers. The
threshold current, light output, and oscillation wavelength of semiconductor
lasers change with temperature. Hence, to prevent these changes in charac-
teristics, temperature control circuits are used in the conventional optical
fiber communication systems. Also, to keep the light output constant, a pho-
todiode is placed at a rear facet of each semiconductor laser to monitor the
light output, and automatic power control (APC) circuits are adopted.

5.13 Noises

Noises related to semiconductor lasers are as follows.

Noises Peculiar to Semiconductor Lasers
Quantum noises:

AM noise (fluctuation in an amplitude of a light)
FM noise (fluctuation in a frequency of a light)

Noises on longitudinal modes:
Mode partition noise
Mode hopping noise

External Noises
Optical feedback noise
Noise due to fluctuations in temperature,

driving current, and voltage.

5.13.1 Quantum Noises

(a) Fundamental Equations

Amplitude modulating (AM) noise and frequency modulating (FM) noise are
quantum noises. They are caused by the spontaneous emission in a free space
with random amplitudes, frequencies, and phases of the lights. Figure 5.47
shows a relationship between spontaneous emission and the quantum noises
such as AM noise and FM noise. In addition to spontaneous emission, FM
noise is affected by AM noise as follows: Due to AM noise, the amplitude of
the light field fluctuates, which modulates the carrier concentration in the
active layer and leads to carrier noise. As a result, through the free car-
rier plasma effect, the refractive indexes of semiconductors fluctuate, which
results in FM noise. Also, the carrier noise induced by AM noise generates
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electric current noise, which changes Joule heating in the active layer. There-
fore, the refractive indexes of semiconductors fluctuate, which results in FM
noise. AM noise is also altered by the carrier noise induced by AM noise itself.

AM noise Spontaneous emission FM noise

Carrier
  noise

Anomalous dispersion
Free carrier dispersion

 Fluctuation in 
refractive index

Current
  noise Thermal resistance Fluctuation in 

  temperature

Fig. 5.47. Quantum noises

To analyze the quantum noises, we use semiclassical theory , in which
electromagnetic fields are treated classically and atomic systems in the fields
are considered quantum mechanically [41].

From Maxwell’s equations, we have an equation for the electric field E in
an optical cavity for semiconductor lasers as

∇2E − µσ
∂E

∂t
− µε

∂2E

∂t2
= µ

∂2

∂t2
(P + p), (5.118)

where µ permeability; σ conductivity, which represents the optical losses; ε0
permittivity in a vacuum; nr a refractive index of the material (ε ≡ ε0 nr

2);
P a polarization of a medium contributing to the laser transition; and p a
polarization source for the spontaneous emission (Langevin source).

To derive (5.118), a vector formula

∇ × ∇ × E = ∇(∇ · E) − ∇2E (5.119)

was used, and ∇ · E = 0 was assumed.
We also suppose that the electric field E and the polarizations P and p

are expressed as

E = Re

[∑
m

Em(t)em(r)

]
,

P = Re

[∑
m

Pm(t)em(r)

]
, (5.120)

p = Re

[∑
m

pm(t)em(r)

]
.

Here, a spatial distribution function em(r) satisfies both the boundary con-
ditions of the optical cavity and the following relation
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∇2em(r) + ωm
2µεem(r) = 0. (5.121)

Also, em(r) is orthonormalized as∫
all volume

em
∗ · en dV = δmnV, (5.122)

where V is a mode volume. Substituting (5.120) into (5.118) with the help of
(5.121), taking the inner product with en

∗(r), and using (5.122), we obtain

Ën +
1

τph
Ėn + ωn

2En = − 1
ε

(P̈n + p̈n), (5.123)

where a dot and a double dot above En, Pn, and pn indicate a first derivative
and a second derivative with respect to a time t, respectively; ωn is the
resonance angular frequency of the nth mode; and τph = ε/σ is the photon
lifetime of the optical cavity. Here, we have also assumed µ = µ0, which is
usually satisfied in the optical materials.

The polarization of a medium Pn(t) is related to the electric field En(t)
as

Pn(t) = ε0

[
X(1) + X(3)|En(t)|2

]
En(t). (5.124)

Here, X(1) and X(3) are expressed as

X(1) =
χ(1)

V

∫
medium

en
∗ · en dV ≈ χ(1) l

L
,

X(3) =
χ(3)

V

∫
medium

(en
∗ · en)2 dV ≈ χ(3) 3l

2L
,

(5.125)

where χ(1) and χ(3) are the first and third optical susceptibilities, respectively;
l is the crystal length; L is the cavity length; and V is the mode volume.

Under the assumption of single-mode operation, we express the elec-
tric field En(t) and the polarization source for the spontaneous emission
(Langevin source) pn(t) as

En(t) = [A0 + δ(t)] e i [ωmt+φ(t)],

− 1
ε

∂2pn

∂t2
= ∆(t) e i [ωmt+φ(t)],

(5.126)

where A0 an averaged amplitude of the electric field, δ(t) a deviation in the
amplitude of the electric field from A0, φ(t) an instantaneous phase, ∆(t)
a random function representing spontaneous emission, and ωm an average
angular frequency of laser light.
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We also assume that δ(t), φ(t), and ∆(t) are slowly varying functions
compared with ωm. For brevity, we neglect the carrier fluctuations. We further
suppose that

δ(t) � A0, 〈δ(t)〉 = 〈φ(t)〉 = 〈∆(t)〉 = 0, (5.127)

where 〈· · · 〉 shows a time average or an ensemble average.
Substituting (5.124) and (5.126) into (5.123), we obtain

2 i ωm

(
∂δ

∂t
+ iA0

∂φ

∂t

)
+

3A0
2X(3)

nr
2

(
2 i ωm

∂δ

∂t
− ωm

2δ

)

+
[
ωn

2 − ωm
2 + i

ωm

τph
− (X(1) + A0

2X(3))
ωm

2

nr
2

]
A0 = ∆(t), (5.128)

where ε ≡ ε0 nr
2 (nr: a refractive index of the material) was used.

A real part and an imaginary part of the steady-state solution of (5.128)
are given by

ωm
2 = ωn

2

[
1 +

X
(1)
r + A0

2X
(3)
r

nr
2

]−1

: real, (5.129)

A0
2 = − 1

X
(3)
i

(
X

(1)
i +

nr
2

ωmτph

)
: imaginary, (5.130)

where X(1,3) = X
(1,3)
r − i X(1,3)

i .
Therefore, (5.128) reduces to

A0
∂φ

∂t
− 3A0

2X
(3)
i

nr
2

∂δ

∂t
+

3A0
2ωmX

(3)
r

2nr
2 δ = − ∆r(t)

2ωm
: real, (5.131)(

1 +
3A0

2X
(3)
r

nr
2

)
∂δ

∂t
+

3A0
2ωmX

(3)
i

2nr
2 δ =

∆i(t)
2ωm

: imaginary, (5.132)

where ∆(t) = ∆r(t)+ i∆i(t). These equations are the fundamental equations
for the noises in the laser light, when the carrier fluctuations are neglected. In
(5.131), the second term on the left-hand side is usually neglected because it
is much smaller than the other terms. As a result, the amplitude fluctuation
δ and the phase fluctuation φ are related to each other by the term including
X

(3)
r .

(b) Spectra of a Laser Light

Among the spectra of laser lights, there are a power fluctuation spectrum
expressing the AM noise, a frequency fluctuation spectrum indicating the
FM noise, and a field spectrum. Figure 5.48 shows a measurement system
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Fig. 5.48. Measurement system for spectra of a laser light

for these spectra. It should be noted that a spectral linewidth of laser light
usually represents a linewidth of the field spectrum.

To obtain the spectra of laser lights, we first calculate the autocorrelation
functions of the fluctuations using (5.131) and (5.132). Then, with the help
of Wiener-Khintchine theorem, we have spectral density functions.

(i) Autocorrelation Function of the Amplitude Fluctuation δ(t)

For a usual laser field, A0
2X

(3)
r /nr

2 � 1 is satisfied. As a result, (5.132)
reduces to

∂δ

∂t
+ ω1δ =

∆i(t)
2ωm

, ω1 =
3A0

2ωmX
(3)
i

2nr
2 > 0. (5.133)

Taking a Laplace transform of (5.133), we have

−δ(0) + sδ̃(s) + ω1δ̃(s) =
∆̃i(s)
2ωm

,

δ̃(s) ≡
∫ ∞

0
δ(t) e−st dt, (5.134)

∆̃i(s) ≡
∫ ∞

0
∆i(t) e−st dt.

Supposing δ(0) = 0, (5.134) results in

δ̃(s) =
∆̃i(s)

2ωm(s + ω1)
. (5.135)

Taking an inverse Laplace transform of (5.135), we obtain δ(t) as
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δ(t) =
1

2ωm

∫ t

0
∆i(λ)e−ω1(t−λ) dλ. (5.136)

From (5.136), the autocorrelation function 〈δ(t+ τ)δ(t)〉 of the amplitude
fluctuation δ(t) is given by

〈δ(t + τ)δ(t)〉 =
1

4ωm
2

∫ t+τ

0
dλ1

∫ t

0
dλ2〈∆i(λ1)∆i(λ2)〉

×e−ω1(t+τ−λ1)e−ω1(t−λ2). (5.137)

Here, we assume that the correlation functions of the Langevin sources are
written as

〈∆i(λ1)∆i(λ2)〉 = 〈∆r(λ1)∆r(λ2)〉 = W · D(λ1 − λ2),

〈∆i(λ1)∆r(λ2)〉 = 〈∆r(λ1)∆i(λ2)〉 = 0,
(5.138)

where D(x) is a δ function and W is a coefficient related to the spontaneous
emission, which will be calculated later. Substituting (5.138) into (5.137), we
obtain

〈δ(t + τ)δ(t)〉 =
W

8ωm
2ω1

e−ω1|τ |(1 − e−2ω1t). (5.139)

As a result, in a steady state where t is long enough, we have

〈δ(t + τ)δ(t)〉 =
W

8ωm
2ω1

e−ω1|τ |. (5.140)

(ii) Autocorrelation Function of the Phase Fluctuation φ(t)

The second term on the left-hand side of (5.131) is small enough compared
with the other terms. Therefore, (5.131) reduces to

A0
∂φ

∂t
+

3A0
2ωmX

(3)
r

2nr
2 δ = − ∆r(t)

2ωm
. (5.141)

When φ(0) = 0, integration of (5.141) with respect to t results in

φ(t) = − 3
4

X
(3)
r A0

nr
2ω1

[∫ t

0
∆i(λ) dλ −

∫ t

0
∆i(λ)e−ω1(t−λ) dλ

]

− 1
2A0ωm

∫ t

0
∆r(λ) dλ, (5.142)

where (5.136) was used.
From (5.133), (5.138), and (5.142), the autocorrelation function 〈φ(t1)φ(t2)〉

of the phase fluctuation φ(t) is given by
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〈φ(t1)φ(t2)〉 =
W

4ωm
2A0

2 (1 + α2) ×
{

t1 (t1 < t2),
t2 (t1 > t2).

(5.143)

Here, we have introduced

α ≡ X
(3)
r

X
(3)
i

, (5.144)

which is called the α parameter or the spectral linewidth enhancement factor .
Using the following relation

X = Xr − i Xi,

Xr = X
(1)
r + X

(3)
r |En|2,

Xi = X
(1)
i + X

(3)
i |En|2,

(5.145)

we can rewrite (5.144) as

α =
X

(3)
r

X
(3)
i

=
∂Xr

∂|En|2
(

∂Xi

∂|En|2
)−1

=
∂Xr

∂n

(
∂Xi

∂n

)−1

, (5.146)

where we have assumed that the light intensity, which is linearly proportional
to |En|2, is in proportion to the carrier concentration n. It should be noted
that this α parameter is important to characterize the spectral linewidth and
the optical feedback noise in the semiconductor lasers.

(iii) Autocorrelation Function of the Angular Frequency
Fluctuation ∆ω(t)

Using the averaged angular frequency ωm and the phase fluctuation φ(t), we
can express the instantaneous angular frequency ω(t) of a laser light as

ω(t) = ωm +
∂φ

∂t
. (5.147)

As a result, the fluctuation in the angular frequency ∆ω(t) is written as

∆ω(t) ≡ ω(t) − ωm =
∂φ

∂t
. (5.148)

Hence, the autocorrelation function 〈∆ω(t1)∆ω(t2)〉 of the angular frequency
fluctuation ∆ω(t) is obtained as

〈∆ω(t1)∆ω(t2)〉 = 〈φ̇(t1)φ̇(t2)〉

=
W

4ωm
2A0

2

[
D(t1 − t2) +

α2

2
ω1e−ω1|t1−t2|

]
, (5.149)

where (5.140), (5.141), and (5.146) were used, and a dot above φ represents
a first derivative with respect to time.
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(iv) Spectral Density Function

To obtain spectra of laser lights, we calculate the spectral density functions of
the amplitude fluctuation δ(t) and the angular frequency fluctuation ∆ω(t)
using Wiener-Khintchine theorem.

From (5.140), the spectral density function Wδ(Ω) of the amplitude fluc-
tuation δ(t) is obtained as

Wδ(Ω) =
1
π

∫ ∞

−∞
〈δ(t + τ)δ(t)〉 e−iΩτ dτ

=
W

4πωm
2(Ω2 + ω1

2)
. (5.150)

From (5.149), the spectral density function W∆ω(Ω) of the angular fre-
quency fluctuation ∆ω(t) is given by

W∆ω(Ω) =
1
π

∫ ∞

−∞
〈∆ω(t + τ)∆ω(t)〉 e−iΩτ dτ

=
W

4πωm
2A0

2

(
1 +

α2ω1
2

Ω2 + ω1
2

)
. (5.151)

(v) Coefficient W

The generation rate of the spontaneous emission is expressed as Ecv�ωm

where Ecv is the number of photons spontaneously emitted to an oscillation
mode per time. The dissipation rate of the spontaneous emission is given
by Ψs/τph where Ψs is an energy of the spontaneous emission coupled to
the oscillation mode and τph is the photon lifetime. In a steady state, the
generation rate is balanced with the dissipation rate. As a result, we have

Ψs = Ecv�ωmτph. (5.152)

The electric field of the spontaneous emission is given by a solution of the
following equation

Ën +
1

τph
Ėn + ωn

2En = [∆r(t) + i∆i(t)] e i ωmt, (5.153)

where the polarization due to the stimulated emission in (5.123) is neglected
and ωn ≈ ωm is assumed.

If we suppose E(0) = Ė(0), as a solution of (5.153), we have

E(t) =
1

ωm

∫ t

0
dτ [∆r(τ) + i∆i(τ)] e i ωmτ e−(t−τ)/(2τph) sin[ωm(t − τ)].

(5.154)
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Hence, 〈E∗(t)E(t)〉 is given by

〈E∗(t)E(t)〉 =
1

ωm
2

∫ t

0
dλ1

∫ t

0
dλ2 2WD(λ1 − λ2) e−t/τph e(λ1+λ2)/(2τph)

× sin[ωm(t − λ1)] sin[ωm(t − λ2)]

=
Wτph

ωm
2 , (5.155)

where (5.138) was used.
With the help of (5.155), a steady-state spontaneous emission energy Ψs

is expressed as

Ψs = εV 〈E∗(t)E(t)〉 =
εV Wτph

ωm
2 ,

V ≡
∫

|en(r)|2 dV ,

(5.156)

where ε is the dielectric constant of a material and V is the mode volume.
From (5.152) and (5.156), W is obtained as

W =
�ωm

3Ecv

εV
. (5.157)

(vi) Intensity Fluctuation Spectrum (AM Noise)

To obtain the intensity fluctuation spectrum, we first clarify a relationship
between the amplitude fluctuation δ(t) and the intensity fluctuation.

The light emission rate γ from the optical cavity through the mirrors is
given by

γ =
c

nr

1
L

ln
1
R

, (5.158)

where c is the speed of light in a vacuum, nr is the refractive index of a
material, L is the cavity length, and R is the power reflectivity of a facet
where both facets are assumed to have a common reflectivity.

Let the electric field of the laser light be En; then the light output P is
expressed as

P = εEn
2V γ. (5.159)

From (5.126) and (5.159), an averaged light output P0 and the fluctuation
in the light output ∆P = P − P0 are written as

P0 = εA0
2V γ, ∆P = 2εA0δV γ. (5.160)
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From (5.150), (5.157), (5.158), and (5.160), the spectral density function
W∆P (Ω) of the light output fluctuation ∆P is obtained as

W∆P (Ω) =
1
π

∫ ∞

−∞
〈∆P (t + τ)∆P (t)〉 e−iΩτ dτ

= 4ε2A0
2V 2γ2Wδ(Ω) =

�ωmεA0
2V Ecvγ

2

π(Ω2 + ω1
2)

=
�ωmEcvP0γ

π(Ω2 + ω1
2)

=
�ωmcEcvP0 ln(1/R)

π(Ω2 + ω1
2)nrL

. (5.161)

(vii) Frequency Fluctuation Spectrum (FM Noise)

From (5.151), (5.157), (5.158), and (5.160), the spectral density function
W∆ω(Ω) of the angular frequency fluctuation ∆ω(t) is given by

W∆ω(Ω) =
�ωmEcv

4πεV A0
2

(
1 +

α2ω1
2

Ω2 + ω1
2

)

=
�ωmcEcv ln(1/R)

4πP0nrL

(
1 +

α2ω1
2

Ω2 + ω1
2

)
. (5.162)

(viii) Field Spectrum

The field spectrum is most frequently used as the laser light spectrum. Contri-
bution of the amplitude fluctuation to the correlation function of the electric
field is negligibly small, and the correlation function 〈E(t + τ)E(t)〉 is given
by

〈E(t + τ)E(t)〉 =
1
4

〈[E(t + τ) + E∗(t + τ)][E(t) + E∗(t)]〉

=
A0

2

4
[e−i ωmτ 〈e i∆φ〉 + c.c.], (5.163)

∆φ ≡ φ(t + τ) − φ(t).

The phase fluctuation ∆φ, which is important to determine the correlation
function 〈E(t + τ)E(t)〉, is related to many independent spontaneous emis-
sion processes. As a result, the distribution of ∆φ is given by the Gaussian
distribution function g(∆φ), which is defined as

g(∆φ) =
1√

2π〈(∆φ)2〉 e− (∆φ)2

2〈(∆φ)2〉 . (5.164)

Therefore, we obtain
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〈e i∆φ〉 =
∫ ∞

−∞
g(∆φ) e i∆φ d(∆φ) = e− 1

2 〈(∆φ)2〉. (5.165)

Because (∆φ)2 on the right-hand side of (5.165) is independent of a time t,
we obtain

〈(∆φ)2〉 =
W

4 ωm
2A0

2 (1 + α2)|τ |, (5.166)

where we have assumed t1 = t2 = τ in (5.143). Substituting (5.165) and
(5.166) into (5.163) results in

〈E(t + τ)E(t)〉 =
A0

2

2
exp

[
− W

8ωm
2A0

2 (1 + α2)|τ |
]

cos(ωmτ). (5.167)

With the help of Wiener-Khintchine theorem, the spectral density func-
tion WE(ω) of the electric field is given by

WE(ω) =
1
π

∫ ∞

−∞
〈E(t + τ)E(t)〉 e−i ωτ dτ

≈ A0
2

4π

∆ω0

(ω − ωm)2 + (∆ω0/2)2
, (5.168)

∆ω0 ≡ �ωmcEcv ln(1/R)
4P0nrL

(1 + α2). (5.169)

From (5.168), the field spectrum is Lorentzian, and the FWHM of the field
spectrum ∆ω0 in (5.169), which is called modified Schawlow-Townes linewidth
formula, gives the spectral linewidth for semiconductor lasers. In solid-state
or gas lasers, the term α2 can be neglected because α2 � 1. In contrast, in
semiconductor lasers, the term α2 is needed because α2 > 1. It should be
noted that the fluctuation in the carrier concentration was neglected in the
derivation of (5.168) and (5.169).

(c) Spectral Linewidth Enhancement Factor α

The spectral linewidth enhancement factor α is an important parameter that
differentiates semiconductor lasers from other lasers. As shown in (5.146), α
is given by

α =
∂Xr

∂n

(
∂Xi

∂n

)−1

. (5.170)

Here, let us express α using the refractive index and the optical gain. Using
the complex refractive index ñ = nr − i κ, the complex dielectric constant ε̃
is written as
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ε̃ = ε0ñ
2 = ε0[(nr

2 − κ2) − i 2nrκ] = ε0(Xr − i Xi), (5.171)

where

Xr = nr
2 − κ2, Xi = 2nrκ. (5.172)

In the vicinity of the bandgap in semiconductors nr � κ is satisfied, and we
obtain

∂Xr

∂n
= 2nr

∂nr

∂n
− 2κ

∂κ

∂n
≈ 2nr

∂nr

∂n
, (5.173)

∂Xi

∂n
= 2nr

∂κ

∂n
+ 2κ

∂nr

∂n
≈ 2nr

∂κ

∂n
. (5.174)

Substituting (5.173) and (5.174) into (5.170) leads to

α =
∂nr

∂n

(
∂κ

∂n

)−1

. (5.175)

Using the extinction coefficient κ in (5.171), we can express the optical power
gain coefficient g as

g = − 2ωm

c
κ. (5.176)

Also, g is related to G(n) in the rate equations as

G(n) =
c

nr
g. (5.177)

Using (5.176) and (5.177), we have

∂κ

∂n
= − nr

2ωm

∂G

∂n
. (5.178)

Substituting (5.178) into (5.175) results in

α = − 2ωm

nr

∂nr

∂n

(
∂G

∂n

)−1

. (5.179)

When the optical gain increases with carrier injection (∂G/∂n > 0) and
Joule heating of the active layer is negligibly small, the refractive index de-
creases (∂nr/∂n < 0) due to the free carrier plasma effect. Hence, α defined
in (5.179) is positive, and the measured values are between 1 and 7. From
(5.179), it is found that we should increase ∂G/∂n to reduce the value of α,
which is achieved in the quantum well LDs explained in Chapter 7.
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(d) Suppression of Quantum Noises

The quantum noises derived earlier are summarized as

AM Noise (Intensity Fluctuation Spectrum)

W∆P (Ω) =
ωmcEcvP0 ln(1/R)
π(Ω2 + ω1

2)nrL
, (5.180)

FM Noise (Frequency Fluctuation Spectrum)

W∆ω(Ω) =
�ωmcEcv ln(1/R)

4πP0nrL

(
1 +

α2ω1
2

Ω2 + ω1
2

)
, (5.181)

Spectral Linewidth (of a Field Spectrum)

∆ω0 =
�ωmcEcv ln(1/R)

4P0nrL
(1 + α2). (5.182)

From (5.180)–(5.182), to suppress all the quantum noises, we should re-
duce the mirror loss (1/L) ln(1/R), for which long cavity length L and large
power reflectivity R are needed. However, the long cavities of the external cav-
ity lasers are less stable than the cavities of ordinary semiconductor lasers.
With a decrease in the spectral linewidth enhancement factor α, which is
achieved in the quantum well LDs, the FM noise and spectral linewidth are
simultaneously reduced. To suppress the quantum noises, it is also important
to stabilize driving circuits and environmental temperature.

5.13.2 Relative Intensity Noise (RIN)

When semiconductor lasers show two-mode operations, the rate equations on
the photon densities S1 and S2 and the carrier concentration n are written
as

dS1

dt
= (α1 − β1S1 − θ12S2) S1 + βsp1

n

τn
+ F1(t), (5.183)

dS2

dt
= (α2 − β2S2 − θ21S1) S2 + βsp2

n

τn
+ F2(t), (5.184)

dn

dt
=

I

eVA
− [G1(n) − β1S1 − θ12S2] S1

− [G2(n) − β2S2 − θ21S1] S2 − n

τn
+ Fn(t). (5.185)

Here, αi ≡ Gi(n) − 1/τphi is the net amplification rate, Gi(n) is the amplifi-
cation rate, τphi is the photon lifetime, βi is the self-saturation coefficient, θij
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is the cross-saturation coefficient, βspi is the spontaneous emission coupling
factor (i, j = 1, 2), τn is the carrier lifetime, I is the injection current, e is
the elementary charge, and VA is the volume of the active layer. Fluctuations
are expressed by the Langevin noise sources F1, F2, and Fn.

The amplification rate Gi(n) is given by

Gi(n) =
[
∂Gi

∂n

]
n=nthi

(n − n0i), (5.186)

where nthi is the threshold carrier concentration and n0i is the transparent
carrier concentration.

In a steady state with weak coupling (C < 1), there are a free-running
condition where two modes exist simultaneously and a mode-inhibition con-
dition where only one mode exists. In the neutral and strong couplings, there
exists only a mode-inhibition condition, where an oscillation mode suppresses
the other mode.

As described earlier, stable simultaneous two-mode operations are ob-
tained only in the weak coupling. In the following calculation,

β1 = β2 = β, θ12 = θ21 =
2
3
β (5.187)

is used as an example. Other typical physical parameters in the semiconductor
lasers are as follows: [∂Gi/∂n]n=nthi

= 10−6 cm3 s−1, n0i = 6.0 × 1017 cm3,
βspi = 10−5, τn = 10−9 s, and τphi = 10−12 s. It is supposed that the injection
current I is kept constant but the carrier concentration n fluctuates.

5.13.3 RIN with No Carrier Fluctuations

We express the photon densities S1 and S2 as

S1 = S10 + δS1(t), S2 = S20 + δS2(t), (5.188)

where S10 and S20 are the average photon densities of mode 1 and mode 2
in a steady state, respectively; and δS1 and δS2 are the fluctuations of mode
1 and mode 2, respectively.

When the Fourier transform of δSi(t) is written as δS̃i(ω), the self-
correlation functions 〈δS̃1(ω)δS̃1

∗
(ω′)〉 and 〈δS̃2(ω)δS̃2

∗
(ω′)〉 are given by

〈δS̃1(ω)δS̃1
∗
(ω′)〉 = S̃δS1(ω) · 2πδ(ω − ω′), (5.189)

〈δS̃2(ω)δS̃2
∗
(ω′)〉 = S̃δS2(ω) · 2πδ(ω − ω′). (5.190)

Using (5.189) and (5.190), we define the relative intensity noises (RINs)
per unit bandwidth as
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RIN1 =
2S̃δS1(ω)

S10
2 , (5.191)

RIN2 =
2S̃δS2(ω)

S20
2 . (5.192)

In the following, the RIN per unit bandwidth is expressed as the RIN for
simplicity. On the derivation of the RIN, see Appendix G.

Figure 5.49 shows the RIN for single-mode operations as a function of the
frequency with the light output P as a parameter for three different values of
the self-saturation coefficient β. Here, the carrier fluctuations are neglected,
that is, δn(t) = δñ(ω) = 0. With an increase in β, the RINs in a frequency
range less than 108 Hz are drastically reduced. Also, with an increase in P ,
a frequency region with a flat RIN is expanded, because the self-saturation
given by −βP cancels out a fluctuation in P .

Figure 5.50 shows the RINs for two-mode operations as a function of the
frequency for three values of the light output P1 of a main mode when the
carrier fluctuations are neglected. A parameter is the light extinction ratio
P2/P1 where P2 is the light output of a submode. With an increase in P1, the
RINs decrease similarly to single-mode operations. According to P2/P1, the
RINs show complicated behaviors, because the cross saturation by P2 also
affects a fluctuation in P1. In a high frequency range over 1010 Hz, however,
all lines overlap each other in contrast to Fig. 5.49.

Comparing Fig. 5.49 (c) with Fig. 5.50 where the self-saturation coefficient
β is common, it can be said that single-mode operations have lower RINs than
two-mode operations.

It should be noted that a peak in the RIN, which was already observed
experimentally, does not exist when the carrier fluctuations are neglected.
The effect of the carrier fluctuations on the RIN will be shown in the next
section.

5.13.4 RIN with Carrier Fluctuations

Figure 5.51 shows the RINs for single-mode operations as a function of the fre-
quency with the light output P as a parameter for three values of β when the
carrier fluctuations are included. It is found that the RIN has a peak, which
has been experimentally observed, as opposed to Fig. 5.49. Thus, the carrier
fluctuations are essential for a peak of the RIN. This resonance peak becomes
dull when β increases. Therefore, by measuring resonance bandwidths of the
RINs, we can determine a value of the self-saturation coefficient β. Compar-
ing Fig. 5.51 with Fig. 5.49, it is also revealed that the RINs are reduced by
the carrier fluctuations, and almost-constant RINs are obtained below the
resonance frequency.

A resonance frequency fr in the RIN for single-mode operations is given
by
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Fig. 5.49. RIN per unit bandwidth for single-mode operations when the carrier
fluctuations are neglected
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Fig. 5.50. RIN per unit bandwidth for two-mode operations when the carrier
fluctuations are neglected
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Fig. 5.51. RIN per unit bandwidth for single-mode operations when the carrier
fluctuations are included
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fr =
1
2π

√√√√[
∂G1

∂n

]
n=nth

S10

τph1
+ βS10

([
∂G1

∂n

]
n=nth

S10 +
1
τn

)
. (5.193)

When the light output is low enough or the self-saturation is negligibly
small, (5.193) reduces to

fr =
1
2π

√[
∂G1

∂n

]
n=nth

S10

τph1
, (5.194)

which is the same as the resonance frequency of single-mode semiconductor
lasers.

Figure 5.52 shows the RINs for two-mode operations as a function of the
frequency for three values of the light output P1 of a main mode when the
carrier fluctuations are considered. A parameter is the light extinction ratio
P2/P1, where P2 is the light output of a submode. It is shown that a peak in
the RIN is fairly vague in two-mode operations, compared with in single-mode
operations. With an increase in P1, the RINs decrease and show complicated
behaviors according to P2/P1 due to cross saturation.

Comparing Fig. 5.51 (c) with Fig. 5.52, where the self-saturation coeffi-
cient β is common, it is concluded that single-mode operations are superior
to simultaneous two-mode operations from the viewpoint of the RINs.

5.13.5 Noises on Longitudinal Modes

(a) Mode Partition Noise

The mode partition noise is observed when a longitudinal mode is selected
during multimode operation. This noise is large in low frequencies, as ex-
plained in the RINs for two-mode operations. In multimode LDs, such as
Fabry-Perot LDs under pulsed operations or the gain guiding LDs, a noise
for a total light intensity is comparable to the noise in single-mode LDs.
However, a noise for each longitudinal mode in the multimode LDs is much
larger than the noise in the single-mode LDs. As a result, the mode partition
noise causes a serious problem in mode selective systems such as the optical
fiber communication systems.

The cause of the mode partition noise is that the optical gain is randomly
delivered to each mode during multimode operation. Therefore, to prevent
the mode partition noise, we need single-mode LDs.

(b) Mode Hopping Noise

The mode hopping noise is generated when a longitudinal mode in the single-
mode LDs jumps to other modes. This mode hopping is closely related to
driving conditions such as temperature and the injection current. At the
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Fig. 5.52. RIN per unit bandwidth for two-mode operations when the carrier
fluctuations are included
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time of the mode hopping, random oscillations between multiple modes are
repeated and the noise increases due to a difference in light intensities be-
tween the relevant modes. When there are two competing modes, the noise is
large in a low frequency range below 50 MHz; when there are three or more
competing modes, the noise is large up to higher frequencies. Note that the
mode partition noise is also large during mode hopping.

For analog systems, such as video discs, the RIN has to be lower than
−140 dB/Hz, and for digital systems, such as compact discs (CD-ROMs),
the RIN should be lower than −120 dB/Hz.

The causes of the mode hopping noise are fluctuations of the spontaneous
emission and a propensity for the optical gain to concentrate on the oscillation
mode. To avoid the mode hopping noise, two opposite ways, such as single-
mode operations and multimode operations are used.

To achieve highly stable single-mode operations, bistable LDs or dynamic
single-mode LDs are adopted. Bistable LDs containing saturable absorbers
have hysteresis in I-L curves, which suppresses the mode competition. How-
ever, it is difficult for them to keep stable single-mode operations with large
extinction ratio during modulation. Hence, the bistable LDs are not catego-
rized in the dynamic single-mode LDs.

For systems without mode selectivity, such as video and compact discs,
multimode operations are also used to reduce mode hopping noise. Multi-
mode operations have a higher noise level than single-mode operations, but
the noise level is stable with changes in temperature or the injection current.
Therefore, the maximum noise level is lower than the mode hopping noise. To
obtain multimode operations, high frequency modulations and self-pulsations
are used. In high frequency modulation, electric current pulses with a fre-
quency over 600 MHz are injected into the Fabry-Perot LDs and the minimum
current is set below the threshold current. The self-pulsations, which are the
pulsed operations under DC bias, are obtained in the Fabry-Perot LDs with
saturable absorbers or combined structures of the index and gain guidings.
Due to the self-pulsations, multimode operations with low coherence take
place, which results in stable operations against the optical feedback noise.
As a result, they are widely used as light sources for video discs and compact
discs.

As described earlier, it is interesting that two contradictory methods,
such as single-mode operation and multimode operation are used to suppress
the mode hopping noise. In optical fiber communication systems, we need
dynamic single-mode LDs, because the optical fibers have mode selectivity
due to dispersions. In contrast, mode selectivity does not exist in video and
compact discs. In these applications, we have to set up optical systems in a
small volume, and we need to reduce optical feedback noise without using
optical isolators. Therefore, multimode operations are suitable for video and
compact discs.
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5.13.6 Optical Feedback Noise

Optical feedback noise [42] is generated when a laser light emitted from a
semiconductor laser is fed back to the semiconductor laser itself. A facet of
semiconductor lasers forms external cavities with reflective external objects,
such as optical components, optical fibers, and optical discs. These external
cavities and the internal cavity of the semiconductor laser compose coupled
cavities, which induce optical feedback noise.

The optical feedback noise is noticeable even when the relative feedback
light intensity is on the order of 10−6. Due to optical feedback noise, the light
output characteristics of the semiconductor laser change intricately, according
to the distance between reflective external objects and the semiconductor
laser, the feedback light intensity, and driving conditions. In static or time-
averaged characteristics, the light intensity, the number of lasing modes, and
the light output spectra are modified. In dynamic characteristics, a noise level
and the shape of the light pulse are altered.

(a) Fundamental Equations

We analyze the effect of the feedback lights on the characteristics of semicon-
ductor lasers. Figure 5.53 shows (a) the coupled cavity and (b) its equivalent
model. In the equivalent model, the effect of the external cavity is expressed
by the equivalent amplitude reflectivity reff.

Reflective
end

Internal cavity
         (LD)

External
  cavity

(a) (b)

{ {

LD

R1 R1R3R2  reff
2

Fig. 5.53. (a) Coupled cavity and (b) its equivalent model

First, we calculate reff. We assume that the power reflectivities for the
facets of the semiconductor laser are R1 and R2, and the power reflectivity
for the external reflector is R3. Let an angular frequency of a laser light be
Ω and the roundtrip time in the external cavity be τ ; then the electric field
of the reflected light Er e iΩt is expressed as

Er e iΩt = Ei e iΩt
[√

R2 + (1 − R2)
√

R3 e−iΩτ

+ (1 − R2)
√

R2R3 e−i2Ωτ + · · ·
]
, (5.195)

where Ei e iΩt is the electric field of the incident light.
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The third- and higher-order terms in [· · · ] of (5.195) correspond to multire-
flections in the external cavity. Usually, the power reflectivity of the external
reflector R3 is less than several percent. Therefore, we neglect multireflections
in the external cavity. As a result, reff is obtained as

reff =
Er

Ei
=
√

R2
(
1 + a e−iΩτ

)
,

a = (1 − R2)
√

R3

R2
� 1.

(5.196)

For R2 = 32%, R3 = 1%, we have a = 0.12.
Secondly, we consider the decay rate for the electric field. Let the power

decay rate in the semiconductor laser itself be γ0; then the decay rate for the
electric field γ0/2 is given by

1
2

γ0 =
1
2

c

nr0

(
αi +

1
2L

ln
1

R1R2

)
, (5.197)

where c is the speed of light in a vacuum, nr0 is the effective refractive index
of the semiconductor laser in a steady state, αi is the internal loss in the
semiconductor laser, and L is the length of the internal cavity.

Using (5.197), we can write the decay rate for the coupled cavity γ as

1
2

γ =
1
2

c

nr0

(
αi +

1
2L

ln
1

R1reff2

)

=
1
2

γ0 − κ e−iΩτ , (5.198)

κ =
c

2nr0L
a =

c

2nr0L
(1 − R2)

√
R3

R2
.

Here, κ is the coupling rate of a feedback light to the semiconductor laser ,
and for R2 = 32%, R3 = 1%, nr0 = 3.5, and L = 300 µm, we have κ = 1.7 ×
1010 s−1. This value is between the decay rate for the carrier concentration
1/τn ∼ 109 s−1 and that for the photon density 1/τph ∼ 1012 s−1. Using the
decay rate γ, we can express an equation for the electric field E as

d
dt

E e iΩt =
{

i ωN (n) +
1
2

[G(n) − γ]
}

E e iΩt, (5.199)

where ωN (n) is an angular frequency for the Nth-order resonance mode when
the carrier concentration is n. Substituting (5.198) into (5.199) results in

d
dt

E(t) =
{

i [ωN (n) − Ω] +
1
2

[G(n) − γ0]
}

E(t) + κE(t − τ) e−iΩτ ,

(5.200)

where the second term on the right-hand side shows a contribution of the
feedback light. Note that this equation includes the phase of the laser light.
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Because the optical feedback noise is highly dependent on the phase of the
feedback light, we use (5.200) instead of (5.21) to analyze the optical feedback
noise.

A rate equation for the carrier concentration n is given by

d
dt

n =
J

ed
− G(n)|E|2 − n

τn
. (5.201)

(b) Effect of the Feedback Light on Static Characteristics

We assume that the electric field E takes a steady-state value. From a real
part in (5.200), the amplification rate at the threshold Gth is given by

Gth ≡ G(nth) = γ0 − 2κ cos(Ωτ). (5.202)

From an imaginary part in (5.200), the oscillation angular frequency Ω at
the threshold is obtained as

ωN (nth) = Ω + κ sin(Ωτ). (5.203)

Assuming that the steady-state values ωN (nc0), Ω0, and κ0 satisfy (5.202)
and (5.203), we obtain

G(nc0) = γ0 − 2κ, (5.204)

where we have supposed nth = nc0 and ωN (nc0) = Ω0. Because of the car-
rier lifetime τn ∼ 10−9 s and the photon lifetime τph ∼ 10−12 s, the carrier
concentration n does not always take a steady-state value, even though the
electric field E is in a steady state. Hence, if we place

nth = nc0 + ∆n, (5.205)

then we can write Gth as

Gth = G(nc0) +
∂G

∂n
∆n. (5.206)

Substituting (5.206) into (5.202), and using (5.204) result in

∆n = 2κ

(
∂G

∂n

)−1

[1 − cos(Ωτ)], (5.207)

where we have assumed κ = κ0 because 1/τn ∼ 109 s−1 and κ ∼ 1010 s−1.
The resonance angular frequency at the threshold ωN (nth) is expressed

as

ωN (nth) = ωN (nc0) − ωN (nc0)
nr0

∂nr

∂n
∆n. (5.208)
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Inserting (5.179) and (5.207) into (5.208) leads to

ωN (nth) = ωN (nc0) + ακ[1 − cos(Ωτ)]. (5.209)

From (5.209), it is found that the spectral linewidth enhancement fac-
tor α plays an important role in the optical feedback noise, in addition to
the spectral linewidth of the semiconductor lasers. Substituting (5.209) into
(5.203), we obtain

ωN (nc0) = Ω + κ sin(Ωτ) − ακ[1 − cos(Ωτ)]. (5.210)

These results are summarized as follows: When the electric field E takes
a steady-state value, the amplification rate at the threshold Gth is given by

Gth ≡ G(nth) = γ0 − 2κ cos(Ωτ), (5.211)

and the oscillation angular frequency Ω is obtained as

ωN (nc0) = Ω + κ sin(Ωτ) − ακ[1 − cos(Ωτ)]. (5.212)

The optical feedback noise in semiconductor lasers is larger than that in
other lasers because semiconductor lasers have a larger α, a lower R2, and a
shorter L than other lasers, which leads to a larger κ. For example, a gas laser
with α � 1, R2 = 98%, and L ∼ 1 m has κ ∼ 105 s−1, while a semiconductor
laser with α = 1–7, R2 = 32%, and L ∼ 300 µm has κ ∼ 1010 s−1.

The terms including trigonometric functions in (5.211) and (5.212) indi-
cate interference between the light in the semiconductor laser and the feed-
back light. Due to this interference, hysteresis accompanies the changes in
both the oscillation angular frequency and the light intensity.

Figure 5.54 shows the resonance angular frequency ωN (nc0) as a function
of the oscillation angular frequency Ω for κτ = 1 and α = 3. Here, the arrows
indicate the points where Ω jumps due to the nonlinear relationship between
the interference condition and the oscillation angular frequency.

Figure 5.55 shows calculated I-L curves in DC operations with the spec-
tral linewidth enhancement factor α as a parameter. Here, Joule heating in
the active layer is also considered. Hysteresis in the light intensity, which is
shown in Fig. 5.55, is experimentally observed.

(c) Effect of Feedback Light on Dynamic Characteristics

Using (5.200) and (5.201), we can analyze the effect of the feedback light on
the dynamic characteristics of semiconductor lasers. According to the phase of
the feedback light, the dynamic characteristics show complicated behaviors,
such as chaos and enhancement or suppression of the relaxation oscillation.
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(d) Enhancement of Noise due to Feedback Light

The most serious problem caused by feedback light is enhancement of noises.
Due to the feedback light, the quantum noises increase in a certain frequency
region. Moreover, laser oscillations become unstable, and the noise increases
in a low frequency range, which is less than several hundred megahertz. The
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increase in this low frequency noise is caused by the random mode hopping
between the longitudinal modes in the internal cavity and those in the exter-
nal cavity.

(e) Reducing Optical Feedback Noise

To stabilize a longitudinal mode in the internal cavity, we need single-mode
LDs such as the DFB-LDs and the bistable LDs. To suppress the interference
between the feedback light and the internal light, we should reduce coherence
of the laser light by high frequency modulation or self-pulsation. To decrease
the feedback light intensity, we require a low coupling rate κ, which is achieved
by large facet reflectivity and a long cavity as shown in (5.198). However, a
large reflectivity leads to a low light output, and a long cavity results in a
large threshold current. Therefore, the optical isolators are used to decrease
the feedback light intensity in the optical fiber communication systems, but
the cost and size of the optical systems increase.

5.14 Degradations and Lifetime

Degradation of semiconductor lasers means that the threshold currents in-
crease and the external quantum efficiencies decrease, as shown in Figure 5.56.
If the degradation continues, CW laser operations stop.
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Fig. 5.56. Degradation of semiconductor lasers

The causes of the degradation, which depend on the properties of the
materials, are propagation of the crystal defects, changes in the surface con-
dition, destruction of facets, generation of the point defects, degradation of
the ohmic contacts or the contact layers with the heat sinks, and so on. The
speed of degradation is enhanced with increases in the temperature, the light
output, and the injection current.

In automatic power control (APC), the lifetime of semiconductor lasers
is usually defined as a time when the operating current increases up to twice
the initial value. In InGaAsP/InP LDs used in trunk-line optical fiber com-
munication systems, the expected lifetime is more than 27 years.
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5.14.1 Classification of Degradations

(a) Catastrophic Optical Damage

When the temperature at a facet of a semiconductor laser increases up to a
melting point, the light output from the melted facet rapidly falls, which is
referred to as the catastrophic optical damage (COD). The destructed facet
never returns to its original condition. Figure 5.57 schematically shows the
catastrophic optical damage. In AlGaAs/GaAs LDs, the critical light output
density of the COD in CW operations is on the order of 106 W/cm2. If the
active layer is 0.2 µm thick and 5 µm wide, the critical light output of the
COD is only 10 mW.
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Fig. 5.57. Catastrophic optical damage

The process of the catastrophic optical damage is as follows: Crystal sur-
faces have a lot of surface energy levels, which lead to nonradiative recom-
binations. As a result, the carrier concentration in the vicinity of the facet
is too low to generate optical gain, and this region absorbs laser light. Due
to absorption of the laser light, the temperature at the facet increases and
the bandgap shrinks. Hence, the absorption coefficient at the facet further
increases, which accelerates absorption of the laser light and Joule heating of
the facet. Such positive feedback increases the temperature at the facet up
to the melting point (about 1500◦C in AlGaAs), and the facet melts.

To suppress the COD, the vicinity of the facet should be transparent for
the laser light. Figure 5.58 shows window structures, which use a property
that a bandgap in n-AlGaAs is larger than that in p-AlGaAs. In CW opera-
tion, the critical light outputs of the window structure LDs are several times
higher than those of LDs without windows. In pulsed operations, the COD
level is improved by a factor of ten.

In materials with a low nonradiative recombination rate at the surface
or high thermal conductivity, the COD levels are high. For example, in
InGaAsP/InP LDs, the COD is not observed even in large light output over
100 mW.
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Fig. 5.58. Window-structure LD

(b) Dark Line Defects

The dislocations cause dark line defects, which are named after the dark
lines observed in light emission patterns. The dark line defects propagate by
growth of the dislocations with repetitive emissions and absorptions of the
point defects or extension of the dislocations due to movement of the slipped
dislocations. Once the dark lines are generated, the nonradiative recombina-
tions and the absorptions increase.

Among the dislocations, which are the sources of the dark lines, there exist
(1) the penetration dislocations, that is, the dislocations in a substrate ex-
tended to the epitaxial layers; (2) the dislocations generated at the interfaces
of the heterojunctions; (3) the dislocations based on some deposits, which
were formed during epitaxial growth; (4) the misfit dislocations generated
above critical thickness due to lattice mismatching; and (5) the dislocations
induced by external stresses. To suppress these dislocations, we need to use
high-quality substrates with few dislocations and optimize epitaxial growth
conditions. It should be noted that in InGaAsP/InP LDs, the dislocations
grow slowly and the dark lines do not appear frequently.

(c) Facet Degradation

In AlGaAs/GaAs LDs, even when they are placed in N2-ambient or air-proof
packages, the facets are easily oxidized by a fraction of remaining oxygen. In
contrast, the facets of InGaAsP/InP LDs are not readily oxidized. Figure 5.59
shows oxidization of the facets. If the facet is oxidized as shown in Fig. 5.59
(a), the laser light is scattered, which leads to a large radiation angle. Also,
the oxidized region and its neighbor have many point defects and impurities,
such as oxygen, which become nonradiative recombination centers. Hence, the
threshold current increases, and the external quantum efficiency decreases.
To avoid oxidization of the facets, dielectric thin films, such as SiO2, Al2O3,
and Si3N4, are often coated on the facet, as illustrated in Fig. 5.59 (b). It
should be noted that these dielectric thin films cannot reduce the dark lines,
but the window structures can suppress oxidization of the facets.
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Fig. 5.59. Oxidation of a facet: (a) degradation and (b) protection

5.14.2 Lifetime

There are two definitions of the lifetime according to the driving conditions.
In automatic power control (APC), the lifetime is a time in which a prede-
termined light output is not obtained. Considering the degradations in the
longitudinal modes, transverse modes, and relaxation oscillation, the lifetime
is often defined as a time when the operating current increases up to the
double of the initial value. In automatic current control (ACC), the lifetime
is frequently defined as a time when the light output decreases down to half
of the initial value.

In manufacturing processes of semiconductor lasers, intentionally acceler-
ating degradation tests called the screening tests are widely used. It is exper-
imentally confirmed that after the screening tests low degradation LDs have
long lifetimes.



6 Dynamic Single-Mode LDs

6.1 Introduction

In order to transmit signals, we modulate a laser light by direct modulation
or external modulation. Note that direct modulation is superior to external
modulation in terms of cost.

Dynamic single-mode LDs are semiconductor lasers, which show single-
longitudinal-mode operations in direct modulation. Because the optical fibers
have dispersions, dynamic single-mode LDs are key devices for long-haul,
large-capacity optical fiber communication systems. Therefore, the DFB-LDs,
the DBR-LDs, the surface emitting LDs, and the cleaved coupled cavity (C3)
LDs have been developed. Because the optical gain spectra of semiconduc-
tor lasers have a linewidth on the order of 10 nm, the optical cavities play
important roles to select only one resonance mode for dynamic single-mode
operations. It should be noted that the bistable LDs with saturable absorbers
are not categorized into dynamic single-mode LDs, because they show single-
mode operations only in a steady state and lead to multimode operation in
direct modulation.

6.2 DFB-LDs and DBR-LDs

Distributed feedback (DFB) LDs and distributed Bragg reflector (DBR) LDs
have diffraction gratings in the optical waveguides to achieve high mode se-
lectivity. As shown in Fig. 6.1, the DFB-LDs have the active layers in the
corrugated regions, and the DBR-LDs do not have the active layers in the
corrugated regions.

The DFB-LDs and DBR-LDs periodically modulate their complex refrac-
tive indexes to achieve optical feedback. The reflection points of the Fabry-
Perot LDs are only the facets, while those of the DFB-LDs and the DBR-LDs
are distributed all over the corrugated regions.
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Fig. 6.1. (a) DFB-LD and (b) DBR-LD

6.2.1 DFB-LDs

(a) Index-Coupled DFB-LDs

In an index-coupled grating , only a real part of the complex refractive index
is periodically modulated and an imaginary part is uniform. The real part
nr(z) is expressed as

nr(z) = nr0 + nr1 cos(2β0z + Ω). (6.1)

Here, z is a position, Ω is the grating phase at z = 0, and β0 is written as

β0 =
π

Λ
, (6.2)

where Λ is the grating pitch.
Figure 6.2 shows the index-coupled grating. If we form corrugations on

the interfaces of two layers with refractive indexes nA and nB(�= nA), we can
periodically modulate the refractive index. Due to this periodical modulation
of the refractive index, a forward running wave and a backward running
wave are coupled to each other, which is indicated by the grating coupling
coefficient κ given by

κ =
πnr1

λ0
. (6.3)

Here, we put α1 = 0 in (4.34). The grating coupling coefficient κ is an impor-
tant parameter, which represents resonance characteristics of the DFB-LDs
and the DBR-LDs.

nB

Λ

nA z

Fig. 6.2. Index-coupled grating
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(i) Uniform Grating

We consider the oscillation condition of the DFB-LD with a uniform grating,
in which both the depth and the pitch are constant all over the corrugated
region. As shown in Fig. 6.3, we assume that both facets are antireflection
(AR) coated, and reflections at both facets are negligibly low.

Laser beam

Antireflection films

Active layer

Laser beam

Fig. 6.3. DFB-LD with a uniform grating

When the transmissivity in (4.48) is infinity, the DFB-LD starts to lase.
As a result, from (4.45) and (4.47), the threshold condition of the DFB-LD
with a uniform grating is obtained as

cosh(γL) − α0 − i δ
γ

sinh(γL) = 0, (6.4)

where α0 is the amplitude gain coefficient, L is the cavity length, and

γ2 = (α0 − i δ)2 + κ2, (6.5)

δ =
β2 − β0

2

2β0
� β − β0. (6.6)

Here, β is the propagation constant of a light.
Figure 6.4 shows transmission spectra of a uniform grating for four values

of the optical gain, where αth is the threshold gain. As found in Fig. 6.4, the
DFB-LD with a uniform grating oscillates in two modes when the reflectivities
of both facets are negligibly low.

When the reflectivities of both facets are not negligible as in the cleaved
facets, the oscillation modes show complicated behaviors according to the
grating phases Ω at the facets. For a certain grating phase, single-mode op-
erations are obtained. However, the grating pitch is as short as about 0.2 µm,
and it is almost impossible to control the cleaved position of the gratings in
manufacturing. Therefore, it is difficult to obtain single-mode operations in
the DFB-LDs with a uniform grating, and a yield for single-mode operations
is less than several percent.

To achieve stable single-mode operations with a high yield, the phase-
shifted DFB-LDs and the gain-coupled DFB-LDs have been developed.
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Fig. 6.4. Transmission spectrum for a uniform grating

(ii) Phase-Shifted Grating

As shown in Fig. 6.5, the corrugations of the phase-shifted grating are shifted,
whereas the corrugations of the uniform gratings continue as indicated by a
broken line. Here, the phase shift is expressed as −∆Ω according to the
definition of the refractive index in (6.1).

Pitch Phase shiftΛ − 

z

∆ Ω

Fig. 6.5. Phase-shifted grating

Let us consider an analytical model that consists of two regions and in-
cludes the phase shift as a phase jump at the interface, as shown in Fig. 6.6.
We express a transfer matrix for region 1 with length of L1 as F 1, and that
for region 2 with length of L2 as F 2. Here, we assume that both the pitch
and the depth of the corrugations are constant except in the phase-shifted
region, and the optical gain is uniform all over the grating.

We suppose that both facet reflectivities are negligibly low. If we write
the grating phase Ω at the left edge of region 1 as θ1, the grating phase θ2
at the right edge of region 1 is given by
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Fig. 6.6. Analytical model for the phase-shifted grating

θ2 = θ1 + 2β0L1. (6.7)

Because of the phase shift ∆Ω at the interface of regions 1 and 2, the grating
phase θ3 at the left edge of region 2 is expressed as

θ3 = θ2 + ∆Ω = θ1 + 2β0L1 + ∆Ω. (6.8)

The threshold condition is given by F11 = 0, where F11 is a matrix element
of F = F 1 × F 2 and is written as[

cosh(γL1) − α0 − i δ
γ

sinh(γL1)
] [

cosh(γL2) − α0 − i δ
γ

sinh(γL2)
]

+
κ2

γ2 sinh(γL1) sinh(γL2) e i∆Ω = 0. (6.9)

When the phase-shifted position is located at a center of the optical cavity
(L1 = L2 = L/2), (6.9) reduces to[

cosh(γL) − α0 − i δ
γ

sinh(γL)
]

+
κ2

γ2 (e i∆Ω − 1)
[
sinh

(
γL

2

)] 2

= 0. (6.10)

The first term in (6.10) is the same as the left-hand side in (6.4) for the
DFB-LD with a uniform grating. The second term in (6.10) represents an
effect of the phase shift. Figure 6.7 shows calculated results of the amplitude
threshold gain αthL as a function of δL = δ × L for three phase-shift values.

Laser oscillation starts at a mode with the lowest αthL. If a difference in
the threshold gain of the oscillation mode and that of other modes is large
enough, highly stable single-mode operations are obtained. For the phase
shift ∆Ω = 0 as in the uniform grating, two modes have a common lowest
threshold gain αthL, as indicated by open circles. Therefore, ∆Ω = 0 results
in two mode operations. For the phase shift −∆Ω = π/2 shown by open
triangles, there is only one mode whose threshold gain is the lowest, and a
single-mode operation is expected. For the phase shift −∆Ω = π represented
by closed circles, there exists only one mode whose threshold gain is the
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Fig. 6.7. Calculated amplitude threshold gain αthL as a function of δL = δ × L
for three phase-shift values

lowest at Bragg wavelength. Note that the difference in the lowest threshold
gain and the second-lowest one is largest for −∆Ω = π, which leads to the
most stable single-mode operations.

From (4.41), Bragg wavelength λB in a vacuum, which satisfies δ = 0, is
given by

λB =
2nr0Λ

m
, (6.11)

where Λ is the grating pitch and m is a positive integer, which is called order
of diffraction.

When the phase shift −∆Ω is π in the first-order gratings (m = 1), the
corrugations are shifted by Λ/2. From (6.11), we have

Λ

2
=

λB

4nr0
=

λm

4
, λm =

λB

nr0
, (6.12)

where λm is a wavelength in a material. From (6.12), the phase shift of π
corresponds to a quarter of a wavelength in a material. Therefore, the phase-
shifted grating with −∆Ω = π is often called a λ/4-shifted grating or a
quarter-wavelength-shifted grating .

Figure 6.8 shows transmission spectra of the λ/4-shifted grating for four
values of the optical gain. As found in Fig. 6.8, the λ/4-shifted DFB-LD
oscillates at Bragg wavelength located at the center of the stop band and
shows highly stable single-mode operations when the reflectivities at both
facets are negligibly low.

According to the light intensity distribution along the cavity axis, the
radiative recombinations are altered and spatial distribution of the carrier
concentration is modified. This phenomenon is designated as the spatial hole
burning , and the distribution of the refractive index changes with that of the
carrier concentration, which may lead to a change in the phase shift. There-
fore, a grating with a phase shift slightly altered from π is used to achieve
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Fig. 6.8. Transmission spectrum for a λ/4-shifted grating

−∆Ω = π at the operating condition, or the chirped grating is adopted to
reduce the spatial hole-burning.

When there are reflections at both facets, as in the cleaved facets, the
oscillation modes of the phase-shifted DFB-LDs show complicated behav-
iors according to the grating phases at the facets, which is similar to the
DFB-LD with a uniform grating. In addition, stability of single-mode oper-
ations is lower than that of the phase-shifted DFB-LD without reflections
at the facets. Therefore, to achieve highly stable single-mode operations in
the phase-shifted DFB-LD, we need antireflection coated facets or window
structures to reduce reflections at the facets.

Due to the high stability of single-mode operations, the index-coupled
DFB-LDs are used in long-haul, large-capacity optical fiber communication
systems such as trunk-line optical fiber cable systems in Japan and submarine
optical fiber cable systems between Japan and the United States. Because the
phase-shifted DFB-LD has been developed after the DFB-LD with a uniform
grating, both DFB-LDs have been practically used. However, it is needless
to say that stability and reproducibility of single-mode operations in the
phase-shifted DFB-LD are better than those in the DFB-LD with a uniform
grating.



174 6 Dynamic Single-Mode LDs

Finally, we briefly explain the polarizations of the laser lights in the DFB-
LDs. Because the grating coupling coefficient κTE for the TE mode is larger
than that for the TM mode κTM, the threshold gain for the TE mode is lower
than that for the TM mode. Therefore, the DFB-LDs start to lase in the TE
mode. However, a difference in the threshold gains between the TE and TM
modes is smaller than that of the Fabry-Perot LDs if the reflectivities at both
facets are negligibly low. Hence, to stabilize the polarization of a laser light,
quantum well active layers are frequently adopted to obtain polarization-
dependent optical gains, which will be described in Chapter 7.

(b) Gain-Coupled DFB-LDs

In gain-coupled DFB-LDs [43], the optical gain or optical loss is periodically
modulated along the cavity axis. They are characterized by stable single-
mode operations even without the phase-shifted gratings and antireflection
films coated on the facets. Also, they are less sensitive to feedback lights than
the index-coupled DFB-LDs. However, there are still problems in fabrication
methods and reliability of the devices.

When only the optical gain or loss is periodically modulated, the grating
coupling coefficient κ is given by

κ = i
α1

2
, (6.13)

where α1 is a deviation from a steady-state amplitude gain coefficient α0.
If both the real and imaginary parts of the complex refractive index are
periodically modulated with the same phase, κ is given by (4.34).

6.2.2 DBR-LDs

In DBR-LDs, the optical gain regions and corrugated regions are separated
from each other. The corrugated regions function as reflectors. As a result, a
DBR-LD with a DBR and cleaved facets and one with two DBRs have been
developed, as shown in Fig. 6.9.

(a) (b)

Active layer Active layer

Fig. 6.9. DBR-LDs: (a) DBR and cleaved facets and (b) two DBRs

Figure 6.10 shows the reflectivities of the cleaved facet and the DBR. The
reflectivity R0 for the cleaved facet is considered to be almost independent of a
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light wavelength, although R0 is slightly modified by the material dispersion.
In contrast, the reflectivity R1 for the DBR is high only within the stop band.
Because the resonance condition is not always satisfied at Bragg wavelengths,
the DBR-LDs do not always lase at Bragg wavelengths.

(a) (b)

Stop band

R1

λ

R0

Fig. 6.10. Reflectivities of the (a) cleaved facet and (b) DBR

Note that the DFB-LDs are superior to the DBR-LDs in both stability of
single-mode operations and light-output intensity.

As wavelength tunable LDs, DFB- or DBR-LDs with phase-control sec-
tions have been demonstrated. If these LDs are biased just below the thresh-
old, they function as wavelength tunable resonant optical amplifiers (optical
filters).

6.3 Surface Emitting LDs

6.3.1 Vertical Cavity Surface Emitting LDs

Figure 6.11 shows the schematic structure of a vertical cavity surface emitting
LD (VCSEL) [44], in which the active layers and the cladding layers are
sandwiched by the reflectors with multilayers.

Laser beam

DBR

Active layer

DBR

Fig. 6.11. Vertical cavity surface emitting LD

A laser light propagates along a normal to the surface of the epitaxial lay-
ers. Therefore, the length of the optical gain region is equal to the active layer
thickness, which is on the order of ten nanometers to several micrometers.
In contrast, the length of the optical gain region in conventional Fabry-Perot
LDs or DFB-LDs is on the order of 300 µm. As a result, to achieve a low
threshold in VCSELs, we need high reflective reflectors, for example, with



176 6 Dynamic Single-Mode LDs

the power reflectivity of 99.5%. Such a high reflectivity is achieved by mul-
tilayer reflectors, which consist of alternately stacked layers with different
refractive indexes. As explained in Chapter 4, the operating principles be-
hind the multilayer reflectors and the waveguide DBRs are common, and the
multilayer reflectors used in the VCSELs are also called DBRs.

Note that the optical cavities of the VCSELs are short enough to obtain
dynamic single-mode operations. For example, when the refractive index is
3.5 and the cavity length is 4 µm, the oscillation wavelength is 1 µm and
the free spectral range is 36 nm from (4.15). This value is larger than the
linewidth of the optical gain spectra such as 10 nm. As a result, there exists
only one longitudinal mode in the gain spectrum.

Compared with other dynamic single-mode LDs, the VCSELs have the
following additional features:

1. It is possible to fabricate monolithic optical cavities, for which cleaving
is not needed.

2. It is easy to test devices on wafers before pelletizing.
3. It is easy to couple a laser light to optical components, because circular

beams with small radiation angles are obtained.
4. It is possible to integrate devices by stacking.
5. Because horizontal sizes can be less than several tens of micrometers,

a) extremely low threshold currents are expected and
b) the structures are suitable for high-density two-dimensional arrays.

Based on these features, the VCSELs take a lot of attention as key de-
vices for parallel optical information processing and parallel lightwave trans-
missions. Also, optical functional devices based on the VCSELs have been
demonstrated.

6.3.2 Horizontal Cavity Surface Emitting LDs

In the horizontal cavity surface emitting LDs [45, 46], some structures are
added to conventional edge-emitting semiconductor lasers to emit laser lights
along a normal to the epitaxial layer planes. Figures 6.12 (a) and (b) show
the structures where a part of the epitaxial layers is etched off to form re-
flection surfaces to emit laser lights. However, fabrication methods to form
low-damage reflectors have yet not been established. Figure 6.12 (c) has a
second-order grating, and a first-order diffracted laser beam is emitted up-
ward. However, the beam divergence angle is wide, and the diffraction effi-
ciency of the second-order grating is low.

6.4 Coupled Cavity LDs

The coupled cavity LDs use optical feedback to achieve single-mode oper-
ations. As shown in Fig. 6.13, the external cavity LD with a mirror and
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(a) (b) (c)

Fig. 6.12. Horizontal cavity surface emitting LDs

with a diffraction grating and the cleaved coupled cavity (C3) LD have been
developed.

(a) (b) (c)

Fig. 6.13. Coupled cavity LDs: (a) external cavity LD (mirror), (b) external cavity
LD (grating), and (c) cleaved coupled cavity LD

The external cavity LDs have long cavities, 10 cm or more, and their cav-
ities are sensitive to mechanical vibrations. Also, only a part of the optical
cavity contributes to modulation of laser lights, which leads to low modu-
lation efficiency. The C3 LDs, in which the Fabry-Perot LDs are placed in
series, have solved all the problems in the external cavity LDs. However, we
need precise control of the injection currents into the two constituent Fabry-
Perot LDs to obtain stable single-mode operations, and complicated driving
electronic circuits are required.

Among dynamic single-mode LDs, only the DFB-LDs are widely used in
practical applications for the reasons described earlier. There are various ap-
proaches to solve problems. However, we should keep in mind that practically
used technologies work for a reason.



7 Quantum Well LDs

7.1 Introduction

Quantum well (QW) LDs [47,48] are semiconductor lasers whose active layers
take quantum well structures. A QW-LD with one potential well is called the
single quantum well (SQW) LD, and that with plural QWs is named the
multiple quantum well (MQW) LD.

As explained in Chapter 1, the density of states of the QW is a step func-
tion of the energy. Therefore, excellent characteristics, such as a low threshold
current, a high differential quantum efficiency, high-speed modulation, low
chirping, and a narrow spectral linewidth are simultaneously obtained in the
QW-LDs.

7.2 Features of Quantum Well LDs

7.2.1 Configurations of Quantum Wells

Figure 7.1 shows the configurations of various QWs at the band edge. Fig-
ure 7.1 (a) illustrates the SQW, in which the optical confinement factor Γa is
reduced with a decrease in the active layer thickness Lz, as shown in Fig. 5.9.
This reduction in Γa leads to a drastic increase in the threshold current den-
sity Jth as illustrated in Fig. 5.10. Therefore, to obtain a larger Γa than that
of the SQW, structures (b)–(e) have been developed.

Figure 7.1 (b) shows the MQW, in which the optical confinement factor
Γa is enlarged by forming multiple QWs in the optical confinement region.
However, due to the energy barriers between the adjacent QWs, the carrier
injection efficiency decreases with an increase in the propagation distance of
the carriers. Hence, it is difficult to achieve uniform carrier distribution all
over the QWs.

To improve the carrier injection efficiency and the uniformity of the carrier
distribution in the MQW, the modified MQW in Fig. 7.1 (c) has been devel-
oped. The energy barriers between the adjacent QWs are lower than those
in the cladding layers, which results in a high carrier injection efficiency and
uniform carrier distribution all over the QWs.
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The separate confinement heterostructure (SCH) exhibited in Fig. 7.1 (d)
has been demonstrated to increase the optical confinement factor Γa in the
SQW. In the materials conventionally used for semiconductor lasers, the re-
fractive index increases with a decrease in the bandgap energy. Using this
property, the energy potential is modified by two steps in the SCH structure.
The outer potential confines a light to the QW active layer by the refractive
index distribution, while the inner potential confines the carriers by the en-
ergy barriers. Because the potentials to confine the light and the carriers are
separate, this structure is called the SCH.

Figure 7.1 (e) illustrates the graded index SCH (GRIN-SCH) whose po-
tential and refractive index distributions of the outer region are parabolic.
In the GRIN-SCH, the optical confinement factor Γa is proportional to the
active layer thickness Lz with a small Lz, while Γa in the SQW is in propor-
tion to Lz

2. Therefore, when the active layer is thin, a relatively large Γa is
obtained in the GRIN-SCH.

(a) (b) (c) (d) (e)

Ec

Ev

Fig. 7.1. Configurations of quantum wells: (a) SQW, (b) MQW, (c) modified
MQW, (d) SCH, and (e) GRIN-SCH

7.2.2 Characteristics of QW-LDs

(a) Low Threshold Current

It is important to achieve a low threshold current Ith in semiconductor lasers,
because a low Ith leads to low power consumption. The density of states ρ(E)
per unit energy per unit area in the SQW is written as

ρ(E) =
∞∑

n=1

m∗

π�2 H(E − εn), (7.1)

where E is the energy of the carrier, m∗ is the effective mass of the carrier, �

is the Dirac’s constant, and H(x) is the Heaviside function or a step function
given by

H(x) =
{

0 : x < 0,
1 : x ≥ 0.

(7.2)

If the barrier height or the barrier thickness is too large for each QW to be
independent of each other, the energy level of the nth subband εn is expressed
as
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εn =
(nπ�)2

2m∗Lz
2 . (7.3)

When the barrier height or barrier thickness is large enough to separate
each QW, the density of states ρ(E) per unit energy per unit area in the
MQW is obtained as

ρ(E) = N

∞∑
n=1

m∗

π�2 H(E − εn), (7.4)

where N is the number of QWs.
When the barrier height or barrier thickness is small, the wave functions

for the carriers penetrate into the adjacent QWs. Therefore, the QWs are
coupled to each other, and degeneracy is removed to generate N quantum
levels per degenerated quantum level. In this case, the density of states ρ(E)
is given by

ρ(E) =
∞∑

n=1

N∑
k=1

m∗

π�2 H(E − εnk), (7.5)

where εnk (k = 1, 2, · · · , N) is the energy of the quantum level, which is
produced by the removal of degeneracy.

As described earlier, the densities of states in the QW-LDs are step func-
tions, which results in narrow optical gain spectra. Hence, the optical gain
concentrates on a certain energy, and the peak gain is enhanced. As a re-
sult, a threshold current density Jth as low as 1/3 of that of a bulk double
heterostructure (DH) LD was obtained in a QW-LD.

Here, we consider the linear optical gains of the QW-LDs. We assume that
the nonradiative recombinations are negligibly low. Under the k-selection
rule, the linear optical gain g (in units of cm−1) is written as

c

nr
g(E, n) =

ω

nr
2 χI(E, n),

ω

nr
2 χI(E, n) =

∫ ∞∑
n=0

∑
j=l,h

ρj
red,n[fc(Ec,n) − fv(Ej

v,n)]χ̂n,j
I (E, ε) dε, (7.6)

χ̂n,j
I (E, ε) =

e2h

2m2ε0nr
2Eg

|Mn,j(ε)|2ave
�/τin

(E − ε)2 + (�/τin)2
,

where c is the speed of light in a vacuum; nr is the effective refractive index of
the semiconductor laser; E is the photon energy; ω is the angular frequency
of a light; χI is an imaginary part of the relative electric susceptibility, and
j = h, l represents the heavy hole (h) and the light hole (l), respectively. In
the second equation of (7.6), χ̂n,j

I (E, ε) is the imaginary part of the relative
electric susceptibility for a photon with the energy E and an electron-hole
pair with the energy ε. In the third equation of (7.6), e is the elementary
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charge, h is Planck’s constant, m is the electron mass in a vacuum, ε0 is
permittivity in a vacuum, Eg is the bandgap energy, |Mn,j(ε)|2ave is a square
of the momentum matrix element, and τin is the intraband relaxation time.
The reduced density of states for the nth subband ρj

red,n is given by

ρj
red,n =

(
1

ρc,n
+

1
ρj
v,n

)−1

, (7.7)

where ρc,n and ρj
v,n are the density of states for the nth subband in the

conduction band and that in the valence bands, respectively; fc(Ec,n) and
fv(Ej

v,n) are the Fermi-Dirac distribution function of the conduction band
and that of the valence bands, respectively. Here, Ec,n and Ej

v,n are the
energy of the conduction band and that of the valence bands, respectively,
and are expressed as

Ec,n =
mcε

j
v,n + mj

vE + mj
vεc,n

mc + mj
v

, (7.8)

Ej
v,n =

mcε
j
v,n − mcE + mj

vεc,n

mc + mj
v

, (7.9)

where mc and mj
v are the effective mass of the electron and that of the

holes, respectively; and εc,n and εj
v,n are the energy of the nth subband in

the conduction band and that in the valence bands, respectively. Figure 7.2
(a) shows the modal gain gmod = Γag as a function of the injection current
density J with the number of QWs N as a parameter. Here, Γa is the optical
confinement factor of the active layer.

It is found that gmod takes a different value according to N for a common
current density. Hence, the number of QWs to minimize Jth depends on the
optical loss in the optical cavity, which is equal to the threshold gain. Also,
in the SQW (N = 1), gain flattening is observed with an increase in the
injection current. As shown in Fig. 7.2 (b), the cause of the gain flattening
is that the density of states is a step function. Here, EL is a lasing photon
energy.

(b) Characteristic Temperature

Because the densities of states in the QWs are step functions, changes in
the characteristics of the QW-LDs with the temperature are expected to be
small. However, even in a bulk DH-LD, a characteristic temperature T0 as
high as 200 K is obtained, and an advantage of the QW-LDs over the bulk
DH-LDs has not been proved yet.

(c) Anisotropic Optical Gain

A difference in the optical gains for the TE and TM modes is about 20 cm−1

in the bulk DH-LDs, while it is as large as ∼ 140 cm−1 in the QW-LDs. In the
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Fig. 7.2. Modal gain and gain flattening

bulk DH-LDs, an anisotropic optical gain is generated by the configurations
of the optical waveguides, because the optical confinement factor Γa of the TE
mode is larger than that of the TM mode. In the QW-LDs, the anisotropic
optical gain is produced by the selection rule of the optical transitions, which
will be explained in the following.

As described in Chapter 1, in the bulk structures, the heavy hole (hh)
band with mj = 3/2 and the light hole (lh) band with mj = 1/2 are de-
generate at k = 0, while in the QWs this degeneracy is removed. Figure 7.3
schematically shows the energies of the valence band. Here, Ehh1 and Ehh2
(solid lines) represent the heavy hole bands; Elh1 and Elh2 (broken lines) in-
dicate the light hole bands where a subscript 1 or 2 is a principal quantum
number n.

Ehh1

Ehh2

Elh1

Elh2

k

E

0

Fig. 7.3. Valence band in a one-dimensional QW
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It should be noted that the effective masses of the holes in the QWs are
dependent on directions. As shown in Fig. 7.4, if we select a quantization axis
as the z-axis, the effective mass along the z-axis of the heavy hole mz,hh

∗ is
larger than that of the light hole mz,lh

∗, while the effective mass on the xy-
plane of the heavy hole mxy,hh

∗ is smaller than that of the light hole mxy,lh
∗.

This result is summarized as

along the z-axis: mz,hh
∗ > mz,lh

∗,
on the xy-plane: mxy,hh

∗ < mxy,lh
∗.

Because a wave function of the heavy hole distributes in the xy-plane
corresponding to the px- or py-like orbital, the heavy hole moves on the xy-
plane more easily than along the z-axis, which leads to mxy,hh

∗ < mz,hh
∗.

In contrast, a wave function of the light hole distributes along the z-axis
corresponding to the pz-like orbital, the light hole moves along the z-axis more
easily than on the xy-plane, which results in mz,lh

∗ < mxy,lh
∗. For example,

in GaAs, we have mz,hh
∗ = 0.377 m, mz,lh

∗ = 0.09 m, mxy,hh
∗ = 0.11 m, and

mxy,lh
∗ = 0.21 m, where m is the electron mass in a vacuum.

Lz

Lx

Ly

Fig. 7.4. Quantum well

(i) Wave Function and Momentum Matrix Element

We assume that a wave vector k is directed toward the z-axis and contribution
of the split-off band is negligible. Hence, we consider the heavy hole band and
the light hole band as the valence bands. If we express the up-spin and down-
spin as α and β, respectively, the wave functions of the conduction band are
written as

|sα〉, |sβ〉. (7.10)

Quantum states of the valence bands are indicated by j, which is a sum
of the angular momentum operator l and the spin operator s when the spin-
orbit interaction is considered. We can express the wave function |j, mj〉 as

For the heavy hole∣∣∣∣32 ,
3
2

〉
=

1√
2
|(x + i y)α〉,

∣∣∣∣32 ,−3
2

〉
=

1√
2
|(x − i y)β〉,

(7.11)
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For the light hole∣∣∣∣32 ,
1
2

〉
=

1√
6
|2zα + (x + i y)β〉,

∣∣∣∣32 ,−1
2

〉
=

1√
6
|2zβ − (x − i y)α〉,

(7.12)

where j is the eigenvalue of j and mj is the eigenvalue of jz.
In the following, we will consider the optical transitions between the con-

duction band and the valence bands. As shown in (2.41), the optical power
gain coefficient g is in proportion to a square of the momentum matrix ele-
ment 〈1|p|2〉2. Therefore, to examine the anisotropic optical gain, we compare
the momentum matrix elements for the optical transitions.

Along each axis, the momentum matrix elements between the conduction
band and the heavy hole band are given by

x-axis:
1√
2

√
3M,

y-axis: ±i
1√
2

√
3M,

z-axis: 0.

Here, from (1.6) and (1.42), M is defined as
√

3M ≡ 〈s|px|x〉 = 〈s|py|y〉 = 〈s|pz|z〉

= m

[
1

2me
∗

Eg(Eg + ∆0)
Eg + 2

3∆0

]1/2

, (7.13)

where m is the electron mass in a vacuum, me
∗ is the effective mass of the

electron in the conduction band, Eg is the bandgap energy, and ∆0 is the split-
off energy due to the spin-orbit interaction. A coefficient

√
3 is introduced so

that a matrix element averaged over all directions of the wave vector k may
be M .

(ii) Optical Transitions in QWs

As shown in Fig. 7.5, we assume that a quantization axis is the z-axis and a
QW layer is placed on the xy-plane. If a light is supposed to propagate along
a positive direction of the x-axis, an electric field E along the y-axis is the
TE mode, and an electric field E along the z-axis is the TM mode. Because
the wave vector k can take various directions, we express a direction of k in a
polar coordinate system, as shown in Fig. 7.5. In this QW, the z-component
of k is discrete, whereas the x- and y-components of k are continuous. For
example, if the energy barrier is infinite, we have kz = nπ/Lz with an integer
n.



186 7 Quantum Well LDs

k
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Fig. 7.5. Direction of a wave vector k

According to the directions of k, the momentum matrix elements between
the conduction band and the heavy hole band are given by

x-axis:
1√
2

√
3M(cos θ cos φ ∓ i sin φ),

y-axis:
1√
2

√
3M(cos θ sin φ ± i cos φ),

z-axis: − 1√
2

√
3M sin θ.

The square of the optical transition matrix elements is proportional to
〈1|E · p|2〉2, where E is the electric field. Therefore, only the momentum
matrix element with a component parallel to E contributes to the optical
transitions. We consider a wave vector kn for a quantum number n, and we
average the square of the momentum matrix element all over the directions
on the xy-plane by fixing the z-component knz of kn.

(iii) Momentum Matrix Elements between the Conduction Band
and the Heavy Hole Band in QWs

An average of the squared momentum matrix element 〈M2〉hh,TE for the TE
mode (E//y) is expressed as

〈M2〉hh,TE =
3M2

2
· 1
2π

∫ 2π

0
(cos2θ sin2φ + cos2φ) dφ

=
3M2

4
(1 + cos2θ) =

3M2

4

(
1 +

kz
2

k2

)

=
3M2

4

(
1 +

Ez,n

En

)
, (7.14)

where Ez,n is the quantized energy of the nth subband and En is the total
energy of the nth subband.

At the subband edge, Ez,n = En is satisfied; then we have

〈M2〉hh,TE =
3M2

2
. (7.15)
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An average of the squared momentum matrix element 〈M2〉hh,TM for the
TM mode (E//z) is given by

〈M2〉hh,TM =
3M2

2
sin2θ =

3M2

2
(1 − cos2θ)

=
3M2

2

(
1 − kz

2

k2

)
=

3M2

2

(
1 − Ez,n

En

)
. (7.16)

As a result, at the subband edge, we obtain

〈M2〉hh,TM = 0. (7.17)

As shown in (7.15) and (7.17), there is a selection rule between the con-
duction band and the heavy hole band at the subband edge, that is, only
the optical transition for the TE mode is allowed; that for the TM mode is
inhibited.

(iv) Momentum Matrix Elements between the Conduction Band
and the Light Hole Band in QWs

An average of the squared momentum matrix element 〈M2〉lh,TE for the TE
mode (E//y) is obtained as

〈M2〉lh,TE =
M2

4
(1 + cos2θ) + M2 sin2θ

=
M2

4

(
1 +

Ez,n

En

)
+ M2

(
1 − Ez,n

En

)
. (7.18)

Hence, at the subband edge, we have

〈M2〉lh,TE =
M2

2
. (7.19)

An average of the squared momentum matrix element 〈M2〉lh,TM for the
TM mode (E//z) is written as

〈M2〉lh,TM =
M2

2
sin2θ + 2M2 cos2θ

=
M2

2

(
1 − Ez,n

En

)
+ 2M2 Ez,n

En
. (7.20)

Therefore, at the subband edge, we obtain

〈M2〉lh,TM = 2M2. (7.21)
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(v) Optical Gains in QW-LDs

In Fig. 7.3, the vertical line shows the electron energy, and the hole energy
decreases with an increase in the height. As a result, the concentration of the
heavy hole is larger than that of the light hole. Thus, among the polarization-
dependent optical gain ge-hh,TE, ge-lh,TE, and ge-lh,TM, we have the following
relation

ge-hh,TE > ge-lh,TM > ge-lh,TE,

where subscripts e-hh and e-lh show the recombination of the electron and
the heavy hole and of the electron and the light hole, respectively. As shown
earlier, the optical gain for the TE mode has a maximum value in the optical
transition between the conduction band and the heavy hole band in the QW-
LDs.

(d) Low-Loss Optical Waveguides

In the QWs, the densities of states are step functions, and the absorption
coefficient at the band edge changes sharply with wavelength. Therefore, the
absorption loss in the optical waveguides with the QWs is lower than that
with the bulk DHs.

(e) High-Speed Modulation

As shown in (5.103), the relaxation oscillation frequency fr is given by

fr =
1
2π

√
∂G

∂n

S0

τph
. (7.22)

In the QW-LDs, based on the step-like densities of states, the differential
optical gain ∂G/∂n is larger than that in the bulk DH-LDs. Hence, fr in the
QW-LDs is larger than that in the bulk DH-LDs, which leads to high-speed
modulations in the QW-LDs. Figure 7.6 shows a calculated differential optical
gain (nr/c)∂G/∂n as a function of the quasi-Fermi level of the conduction
band EFc. It is clearly revealed that the differential optical gain in the QW-
LDs is larger than that in the bulk DH-LDs.

From (7.6), the optical gain is simplified as

g = |M |2ave ρ [fc − fv] . (7.23)

The QWs modify the density of states ρ in (7.23), while the intentionally
doped active layers can change [fc − fv]. For example, p-doped active layers
reduce fv, and a relaxation oscillation frequency of about 30 GHz has been
reported.
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(f) Narrow Spectral Linewidth

From (5.169), the spectral linewidth ∆ω0 of a laser light is expressed as

∆ω0 =
�ωmcEcv ln(1/R)

4P0nrL
(1 + α2), (7.24)

where the spectral linewidth enhancement factor α is given by

α = − 2ωm

nr

∂nr

∂n

(
∂G

∂n

)−1

, (7.25)

as shown in (5.179). Here, nr is the refractive index, n is the carrier concentra-
tion, and G is the amplification rate. As illustrated in Fig. 7.6, the differential
optical gain ∂G/∂n in the QW-LDs is larger than that in the bulk DH-LDs.
As a result, from (7.25), the absolute value of α in the QW-LDs is small,
which leads to a narrow spectral linewidth ∆ω0. Figure 7.7 shows calculated
α values as a function of the quasi-Fermi level of the conduction band EFc.
It is found that α in the QW-LDs is smaller than that in the bulk DH-LDs.
Moreover, a small α leads to low chirping during modulation, which is suitable
for long-haul, large-capacity optical fiber communication systems.

7.3 Strained Quantum Well LDs

7.3.1 Effect of Strains

According to group theory , with a decrease in symmetry of the crystals, de-
generacy of the energy band is removed. In the bulk structures for semicon-
ductor lasers, due to their high symmetry, the heavy hole band and the light
hole band are degenerate at Γ point (k = 0). In the QWs, due to their lower
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symmetry than that of the bulk structures, degeneracy at k = 0 is removed,
as shown in Fig. 7.3.

When the strains are applied to semiconductor crystals, symmetry of
the crystals is reduced, and degeneracy of the energy bands is removed. Ac-
cording to the compressive or tensile strains, the band structures change
in different ways. Based on this principle, band-structure engineering , which
modifies the band structures by intentionally controlling the strains, has been
developed. By introducing the strains into the active layers, we can obtain
excellent characteristics, such as a low threshold current, a high differential
quantum efficiency, high-speed modulation, low chirping, and a narrow spec-
tral linewidth in semiconductor lasers, as in the QW-LDs. With regard to
the optical gain for the TE mode gTE and that for the TM mode gTM, the
compressive strains in the active layer plane lead to gTE > gTM, while the
tensile strains result in gTE < gTM.

To induce the strains in semiconductor crystals, an external stress, a dif-
ference in the thermal expansion coefficients of the materials, and a difference
in the lattice constants are used. Especially, a difference in the lattice con-
stants, which is referred to as lattice mismatching , is frequently adopted,
because the most stable strains are obtained. The lattice mismatching takes
place when a semiconductor layer is epitaxially grown on the substrate with
a different lattice constant from that of the grown layer. If thickness of the
grown layer exceeds the critical thickness, the dislocations are generated in
the grown layer. If the layer thickness further increases up to about 1 µm,
which is much larger than the critical thickness, the dislocations are some-
times reduced, and such a thick grown layer can be used as the buffer layer .
However, this thick layer is not suitable for active layers, because the thresh-
old current is large. When the grown layer is thinner than the critical thick-
ness as in the QWs, the dislocations are not generated. Hence, the strained
QWs are suitable for band-structure engineering.
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7.3.2 Band-Structure Engineering

(a) Epitaxial Growth and Strains

When the epitaxially grown layers are thinner than the critical thickness,
the epitaxial layers are grown on the substrate with their lattice constants
matched to that of the substrate. Therefore, the elastic strains are induced in
the epitaxial layers. We assume that the lattice constant of an epitaxial layer
itself is a(x) and the lattice constant of the substrate is a0. For a(x) > a0,
the compressive strain is generated in the grown layer, while for a(x) < a0,
the tensile strain is produced in the grown layer.

The strain tensors are expressed by matrixes using their symmetrical
properties. The matrix elements of the strains εij consist of the diagonal
elements εii called the hydrostatic strains and the nondiagonal elements
εij (i �= j) named the shear strains.

(b) Low Threshold Current

The radii of the curvature of the energy bands, that is, the effective masses
of the carriers, are modified by the strains. With decreases in the effective
masses of the carriers, the carrier concentration to achieve the population
inversion decreases. Therefore, a low threshold current is obtained, as in the
following.

When the electric currents are injected in semiconductor lasers, many
electrons are generated in the conduction band, and many holes are simulta-
neously produced in the valence bands. In this case, the carrier distributions
are far from thermal equilibrium. Therefore, we cannot express the distri-
bution functions of the electron and the hole with a single Fermi level, EF.
As a result, regarding the electrons in the conduction band and the holes in
the valence band independently take the Fermi-Dirac distributions, and we
introduce the quasi-Fermi levels EFc and EFv, which are defined as

n ≡ Nc exp
(

−Ec − EFc

kBT

)
,

p ≡ Nv exp
(

−EFv − Ev

kBT

)
,

Nc = 2
(

2πme
∗kBT

h2

)3/2

,

Nv = 2
(

2πmh
∗kBT

h2

)3/2

,

(7.26)

where n and p are the concentrations of the electron and the hole, respec-
tively; Ec and Ev are the energies of the bottom of the conduction band and
the top of the valence band, respectively; kB is the Boltzmann constant; T is
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absolute temperature; Nc and Nv are the effective densities of states for the
electron and the hole, respectively; me

∗ and mh
∗ are the effective masses of

the electron and the hole, respectively; and h is Planck’s constant.
From (7.26), EFc and EFv are expressed as

EFc = Ec + kBT ln
(

n

Nc

)
,

EFv = Ev − kBT ln
(

p

Nv

)
.

(7.27)

Hence, we obtain

EFc − EFv = Eg + kBT ln
np

NcNv
, Eg = Ec − Ev. (7.28)

As shown in (2.29), the condition for the population inversion is given by

EFc − EFv > Eg, (7.29)

which reduces to

np > NcNv = 4
(

2πkBT

h2

)3

(me
∗mh

∗)3/2, (7.30)

where (7.26) and (7.28) were used. From (7.30), the transparent carrier con-
centration n0 is obtained as

n0 = 2
(

2πkBT

h2

)3/2

(me
∗mh

∗)3/4. (7.31)

Therefore, to achieve a low n0 leading to a low threshold, me
∗ and mh

∗ should
be light.

As shown in (1.11), the effective mass tensor mij of the carrier is written
as (

1
m

)
ij

=
1
�2

∂2E

∂ki∂kj
, (7.32)

which is related to the radius of the curvature of the band energy. The com-
pressive strains in the active layer decrease the radius of the curvature of the
heavy hole band in the vicinity of the band edge, which reduces the effective
mass of the heavy hole. As a result, the threshold carrier concentration de-
creases, and therefore the Auger recombination rate in (5.52) is also reduced.
Furthermore, from the momentum conservation law and the energy conser-
vation law, the Auger transitions are going to be inhibited. Hence, the Auger
processes are drastically reduced. As a result, a high light emission efficiency
and a low threshold current density are simultaneously obtained. The strains
in the active layers also enhance the differential optical gain ∂G/∂n, which
further reduces the threshold carrier concentration.



7.3 Strained Quantum Well LDs 193

(c) Anisotropic Optical Gain

The tensile strains make the energy of the light hole lower than that of the
heavy hole. When we draw the energy bands with the vertical line as the
energy of the electron, the band edge of the light hole is above that of the
heavy hole. As a result, concentration of the light hole is larger than that
of the heavy hole, and the optical gain for the TM mode is larger than that
for the TE mode, which results in laser oscillation in the TM mode. By
optimizing the tensile strains so that the optical gain for the TE mode and
that for the TM mode may take a common value, polarization-independent
semiconductor optical amplifiers have been demonstrated.

(d) High-Speed Modulation

The strains in the active layers enhance the differential optical gain ∂G/∂n,
which leads to high-speed modulations. The compressive strains result in
large gain saturation, while the tensile strains lead to low gain saturation
with a large optical gain. Hence, the tensile strains are expected to improve
high-speed modulation characteristics.

(e) Narrow Spectral Linewidth

The strains increase the differential optical gain ∂G/∂n and decrease α.
Therefore, a narrow spectral linewidth such as 3.6 kHz has been obtained
in a strained QW λ/4-shifted DFB-LD [49].

7.3.3 Analysis

(a) Fundamental Equations

We introduce the effect of strains into the Schrödinger equation as the per-
turbation, where the unperturbed Hamiltonian is assumed to include the k ·p
perturbation and the spin-orbit interaction. This unperturbed Hamiltonian
whose base wave function is |j, mj〉 is known as Luttinger-Kohn Hamilto-
nian [50], while the perturbation Hamiltonian representing the effect of the
strains is called Pikus-Bir Hamiltonian [51–53].

(i) Luttinger-Kohn Hamiltonian

In Chapter 1, to obtain the eigenenergies of the valence bands, we used the
following Hamiltonian

H = H0 + Hkp + Hso, (7.33)
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where H0 is the unperturbed Hamiltonian, Hkp is the k · p perturbation
Hamiltonian, and Hso is the spin-orbit interaction Hamiltonian. Using this
Hamiltonian H, we consider a 6 × 6 matrix expressed as⎡

⎢⎢⎢⎢⎢⎢⎣

H11 H12 H13 H14 H15 H16
H21 H22 H23 H24 H25 H26
H31 H32 H33 H34 H35 H36
H41 H42 H43 H44 H45 H46
H51 H52 H53 H54 H55 H56
H61 H62 H63 H24 H65 H66

⎤
⎥⎥⎥⎥⎥⎥⎦

, (7.34)

where Hij = 〈i|H|j〉 and 〈i| and |j〉 are written as

〈1| =
〈 3

2 , 3
2

∣∣ , 〈2| =
〈 3

2 , 1
2

∣∣ , 〈3| =
〈 3

2 ,− 1
2

∣∣ , 〈4| =
〈 3

2 ,− 3
2

∣∣ ,
〈5| =

〈 1
2 , 1

2

∣∣ , 〈6| =
〈 1

2 ,− 1
2

∣∣ , |1〉 =
∣∣ 3
2 , 3

2

〉
, |2〉 =

∣∣ 3
2 , 1

2

〉
,

|3〉 =
∣∣ 3
2 ,− 1

2

〉
, |4〉 =

∣∣ 3
2 ,− 3

2

〉
, |5〉 =

∣∣ 1
2 , 1

2

〉
, |6〉 =

∣∣ 1
2 ,− 1

2

〉
.

(7.35)

Equation (7.34) shows Luttinger-Kohn Hamiltonian for the valence bands,
and this Hamiltonian is used as the unperturbed Hamiltonian to analyze
the strains. When the split-off energy ∆0 is larger than 0.3 eV as in GaAs,
contribution of the split-off band can be neglected. In this case, Luttinger-
Kohn Hamiltonian for the valence bands HLK results in a 4×4 matrix, which
is given by

HLK =

⎡
⎢⎢⎣

H11 H12 H13 H14
H21 H22 H23 H24
H31 H32 H33 H34
H41 H42 H43 H44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a+ b c 0
b∗ a− 0 c
c∗ 0 a− −b
0 c∗ −b∗ a+

⎤
⎥⎥⎦ , (7.36)

where

a± =
�

2

2m

[−(γ1 ∓ 2γ2)kz
2 − (γ1 ± γ2)(kx

2 + ky
2)
]
,

b =
�

2

m

√
3 γ3(kx − i ky)kz, (7.37)

c =
�

2

2m

√
3
[
γ2(kx

2 − ky
2) − i 2γ3kxky

]
.

Here, γ1, γ2, and γ3 are Luttinger parameters, and they are related to the
effective masses mhh

∗ and mlh
∗ of the heavy hole and the light hole as

1
m

(γ1 − 2γ2) =
1

mhh
∗ (heavy hole), (7.38)

1
m

(γ1 + 2γ2) =
1

mlh
∗ (light hole), (7.39)
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where m is the electron mass in a vacuum.
We can also express (7.36) as

HLK =
�

2

2m

[
−
(

γ1 +
5
2

γ2

)
k2 + 2γ2(kx

2Jx
2 + ky

2Jy
2 + kz

2Jz
2)

+ 4γ3 [{kxky}{JxJy} + {kykz}{JyJz} + {kzkx}{JzJx}]
]

, (7.40)

where Jx, Jy, and Jz are the matrixes represented as

Jx =
1
2

⎡
⎢⎢⎣

0
√

3 i 0 0
−√

3 i 0 2 i 0
0 −2 i 0

√
3 i

0 0 −√
3 i 0

⎤
⎥⎥⎦ ,

Jy =
1
2

⎡
⎢⎢⎣

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎤
⎥⎥⎦ , (7.41)

Jz =
1
2

⎡
⎢⎢⎣

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎤
⎥⎥⎦ .

In (7.40), {kxky} and {JxJy} are defined as

{kxky} ≡ 1
2

(kxky + kykx), {JxJy} ≡ 1
2

(JxJy + JyJx). (7.42)

(ii) Pikus-Bir Hamiltonian

Pikus-Bir Hamiltonian Hs is given by a sum of the orbit-strain interaction
Hamiltonian Hos and the strain-dependent spin-orbit interaction Hamilto-
nian Hss. In the valence bands of the zinc-blende structure, the orbit-strain
interaction Hamiltonian Hos at Γ point (k = 0) is written as

Hos = −a1(εxx + εyy + εzz)

− 3b1

[(
Lx

2 − L2

3

)
εxx +

(
Ly

2 − L2

3

)
εyy +

(
Lz

2 − L2

3

)
εzz

]
−

√
3d1 (LxLy + LyLx) εxy −

√
3d1 (LyLz + LzLy) εyz

−
√

3d1 (LzLx + LxLz) εzx. (7.43)

The strain-dependent spin-orbit interaction Hamiltonian Hss is expressed
as



196 7 Quantum Well LDs

Hss = −a2(εxx + εyy + εzz)(L · s)

− 3b2

(
Lxsx − L · s

3

)
εxx − 3b2

(
Lysy − L · s

3

)
εyy

− 3b2

(
Lzsz − L · s

3

)
εzz

−
√

3d2 (Lxsy + Lysx) εxy −
√

3d2 (Lysz + szLy) εyz

−
√

3d2 (Lzsx + Lxsz) εzx, (7.44)

where Lx, Ly, Lz, and L are the orbital angular momentum operators; sx,
sy, sz, and s are the spin angular momentum operators; εij(i, j = x, y, z) is
a matrix element for the strain tensor; and ai, bi, and di (i = 1, 2) are the
deformation potentials.

Because the orbit-strain interaction Hamiltonian Hos is larger than the
strain-dependent spin-orbit interaction Hamiltonian Hss, the strained QWs
are often analyzed by considering only Hos.

(iii) Relationship between Strain and Stress

The strains ε and stresses σ are both tensors, which are related by

σij =
∑
k,l

cijklεkl = cijklεkl, (7.45)

where cijkl is the elastic stiffness constant. Also, on the right-hand side,
∑

is
omitted by promising that we take a sum with regard to a subscript appearing
twice, which is referred to as the Einstein summation convention.

It is useful to express the tensors by the matrixes, because of symmetry
in the tensors. As a coordinate system for the tensors, we use 1, 2, and 3
as indexes. For example, 1, 2, and 3 correspond to x, y, and z, respectively.
Here, we relate indexes 1, 2, and 3 of the tensors to indexes 1, 2, 3, 4, 5, and
6 of the matrixes as follows:

Tensor expression 11 22 33 23, 32 31, 13 12, 21
Matrix element 1 2 3 4 5 6

Therefore, we can rewrite (7.45) as

σi =
∑

j

cijεj = cijεj (i, j = 1, 2, 3, 4, 5, 6), (7.46)

where ⎡
⎣σ11 σ12 σ13

σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦ =

⎡
⎣σ11 σ12 σ31

σ12 σ22 σ23
σ31 σ23 σ33

⎤
⎦ =

⎡
⎣σ1 σ6 σ5

σ6 σ2 σ4
σ5 σ4 σ3

⎤
⎦ , (7.47)
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⎣ ε11 ε12 ε13

ε21 ε22 ε23
ε31 ε32 ε33

⎤
⎦ =

⎡
⎣ ε11 ε12 ε31

ε12 ε22 ε23
ε31 ε23 ε33

⎤
⎦ =

1
2

⎡
⎣2ε1 ε6 ε5

ε6 2ε2 ε4
ε5 ε4 2ε3

⎤
⎦ . (7.48)

In the zinc-blende structures with symmetry of 4̄3m or Td, (7.45) reduces
to [54,55] ⎡

⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7.49)

(b) Bulk Structures

Here, we consider a semiconductor crystal in which biaxial stresses are applied
to the crystal plane due to the lattice mismatching. We assume that the
epitaxial layers are grown along the z-axis, and the layer plane is on the
xy-plane. When the lattice constant of the substrate is a0 and that of the
epitaxially grown layer itself is a(x), the strains due to lattice mismatching
are given by

εxx = εyy =
a0 − a(x)

a(x)
= ε, εzz �= 0,

εxy = εyz = εzx = 0,

(7.50)

where ε < 0 corresponds to the compressive strain and ε > 0 shows the
tensile strain.

When the biaxial stresses are induced in the layer plane (xy-plane) due
to lattice mismatching, neither the stress along the growth axis (z-axis) nor
the shear stresses are imposed to the epitaxial layer. Therefore, the biaxial
stresses are expressed as

σxx = σyy = σ, σzz = 0,

σxy = σyz = σzx = 0.
(7.51)

If we relate indexes 1, 2, and 3 of the tensors to x, y, and z, respectively,
and substitute (7.50) and (7.51) into (7.49), we have⎡

⎢⎢⎢⎢⎢⎢⎣

σ
σ
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε
ε

εzz

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7.52)



198 7 Quantum Well LDs

From (7.52), we obtain

σ = (c11 + c12)ε + c12εzz,

0 = 2c12ε + c11εzz,
(7.53)

which leads to

εzz = −2c12

c11
ε,

σ =
(

c11 + c12 − 2c12
2

c11

)
ε.

(7.54)

Substituting (7.54) into (7.43) results in

Hos = −2a1

(
1 − c12

c11

)
ε + 3b1

(
Lz

2 − 1
3

L2
)(

1 +
2c12

c11

)
ε. (7.55)

Here, we consider a matrix Hsv such as

Hsv =

⎡
⎢⎢⎣

〈1|Hos|1〉 〈1|Hos|2〉 〈1|Hos|3〉 〈1|Hos|4〉
〈2|Hos|1〉 〈2|Hos|2〉 〈2|Hos|3〉 〈2|Hos|4〉
〈3|Hos|1〉 〈3|Hos|2〉 〈3|Hos|3〉 〈3|Hos|4〉
〈4|Hos|1〉 〈4|Hos|2〉 〈4|Hos|3〉 〈4|Hos|4〉

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

δEhy − ζ 0 0 0
0 δEhy + ζ 0 0
0 0 δEhy + ζ 0
0 0 0 δEhy − ζ

⎤
⎥⎥⎦ , (7.56)

where

δEhy = −2a1

(
1 − c12

c11

)
ε,

ζ = −b1

(
1 +

2c12

c11

)
ε,

(7.57)

and (7.35) were used. Equations (7.56) and (7.57) represent the energy shifts
at k = 0, which indicates that degeneracy of the valence bands is removed.

The orbit-strain interaction Hamiltonian for the conduction band Hsc is
given by

Hsc = C1(εxx + εyy + εzz), (7.58)

where C1 is the deformation potential of the conduction band. The energies
of the heavy hole band and the light hole band are given by the eigenvalues of



7.3 Strained Quantum Well LDs 199
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(a) (b) (c)

Fig. 7.8. Band structures for the bulk In1−xGaxAs layers grown on an InGaAsP
layer, which is lattice-matched to an InP substrate: (a) compressive, (b) lattice
matching, and (c) tensile

HLK + Hsv with the help of (7.36) and (7.56). The energy of the conduction
band is obtained as the eigenvalue of HLK + Hsc by using (7.36) and (7.58).

Figure 7.8 shows the band structures for the strained bulk In1−xGaxAs
layers grown on an InGaAsP layer, which is lattice-matched to an InP sub-
strate. Here, C1 = −2a1 is assumed, and the dislocations are neglected. From
Fig. 7.8, it is found that the compressive strains lower the energy of the heavy
hole more than that of the light hole, and the tensile strains lower the energy
of the light hole more than that of the heavy hole. It should be noted that the
energy of the hole is low with an increase in the height, because the vertical
axis represents the energy of the electron.

(c) Strained QWs

In the strained QWs, the Hamiltonian for the valence bands is given by

HLK + Hsv + V (z), (7.59)

where V (z) represents a potential of the QWs, which is expressed as

V (z) =
{

0 (well),
∆Ev − δEhy (barrier). (7.60)
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If the quantization axis is the z-axis, Schrödinger equation can be solved
by replacing kz → −i ∂/∂z, under the effective mass approximations. The
obtained results for the energy bands and the optical gains for the heavy
hole (HH) and light hole (LH) are illustrated in Fig. 7.9. Here, the oscilla-
tion wavelength is 1.3 µm, and the InGaAsP well is 10 nm thick for a 1.9%
tensile strain, lattice matching, and a 1.4% compressive strain. As found in
Fig. 7.9, the tensile strains enhance the optical gain for the TM mode, and
the compressive strains increase the optical gain for the TE mode.
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Fig. 7.9. Energy bands and optical gains in the strained QWs. Here, the oscillation
wavelength is 1.3 µm, and the InGaAsP well is 10 nm thick for (a) a 1.9% tensile
strain, (b) lattice matching, and (c) a 1.4% compressive strain
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7.4 Requirements for Fabrication

The QW-LDs have been in practical use. However, the quantum wire LDs and
the quantum box LDs, whose quantum effects are more significant than those
of the QW-LDs, are still under research because these quantum structures
require highly sophisticated fabrication technologies, which can produce

1. highly uniform,
2. highly integrated,
3. various shaped,
4. nanostructures whose quantum effects are significant,
5. with low damage,
6. in a short time.

Fluctuations in size obscure the density of states, and the quantum effects
are degraded. Therefore, uniform quantum structures are needed. When we
use quantum wires or quantum boxes in the active layers, the optical gain
length is short, because of their tiny size. However, as shown in (5.11), to
obtain a low threshold gain, we need long optical gain length L, which is only
achieved by highly integrated quantum structures. The fourth requirement is
indispensable to quantum structures; the others are common to all devices.

To satisfy these requirements, selective epitaxial growth and self-organized
epitaxial growth have attracted a lot of interest.



8 Control of Spontaneous Emission

8.1 Introduction

High energy states are unstable. As a result, the electrons in high energy
states transit to low energy states in a certain lifetime. The radiation associ-
ated with this transition is referred to as spontaneous emission.

Figure 8.1 schematically shows the spontaneous emission in semiconduc-
tors, which is the radiative recombination of the electrons in the conduction
band and the holes in the valence band. It should be noted that spontaneous
emission takes place regardless of incident light, whereas stimulated emission
and absorption are induced by incident light.

h−    ω

Ec

Ev

Electron

Hole

Fig. 8.1. Spontaneous emission in semiconductors

According to quantum mechanics, spontaneous emission takes place due
to interactions of atomic systems and the vacuum field. Therefore, the sponta-
neous emission is considered to be the stimulated emission induced by fluctu-
ations in the vacuum field (zero-point vibrations). It should be noted that the
term stimulated emission usually represents the stimulated emission induced
by incident light.

As described earlier, spontaneous emission is caused by the interactions
of atomic systems and the vacuum field. As a result, the mode and the life-
time of the spontaneous emission can be modified by controlling the vacuum
field with the optical cavities, which is referred to as cavity quantum electro-
dynamics (QED).
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8.2 Spontaneous Emission

8.2.1 Fermi’s Golden Rule

With regard to the spontaneous emission rate, we explain Fermi’s golden
rule. As shown in Fig. 8.2, we consider a two-level system, which consists
of a ground state |gr〉 with an energy Egr and an excited state |ex〉 with an
energy Eex. Here, we assume that a resonance spectral linewidth of the optical
cavity in units of an angular frequency ∆ωc is much larger than that of the
atomic system ∆ωa. When the spectrum is Lorentzian, the spectral linewidth
is inversely proportional to the lifetime. Hence, the assumption ∆ωc � ∆ωa
indicates τc � τa, where τc = τph is the photon lifetime and τa is the lifetime
of the atomic transition. Therefore, during the transitions of the atoms from
the excited state to the ground state, lights are readily emitted outward from
the optical cavity. Hence, this transition is irreversible, and absorptions do
not take place.

Spectrum
of the cavity

Spectrum
of the atom

Angular Frequency

Eex

Egr

|ex>

|gr>

∆ωc
∆ω a

h−    ω

Fig. 8.2. Fermi’s golden rule

From a perturbation theory in quantum mechanics, a transition rate W
of an atom is given by

W =
2π

�

∑
l

µl
2
(

�ωl

2V ε

)
sin2(kl · r)(nl + 1)F (Eex − Egr − �ωl), (8.1)

where � = h/2π is Dirac’s constant and h is Planck’s constant; µl is the
electric dipole moment for the lth cavity mode; ωl is the angular frequency of
the lth cavity mode; V is the volume of the optical cavity; ε is the dielectric
constant of a material in the optical cavity; kl is the wave vector of the lth
cavity mode; nl is the photon density; and F (Eex −Egr −�ωl) is a normalized
spectral function.

From (8.1), it is found that W > 0 is obtained even when the photons do
not exist in the optical cavity (nl = 0). A transition rate for nl = 0 in (8.1)
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is the spontaneous emission rate Wsp, which is expressed as

Wsp =
2π

�

∑
l

µl
2
(

�ωl

2V ε

)
sin2(kl · r)F (Eex − Egr − �ωl). (8.2)

8.2.2 Spontaneous Emission in a Free Space

A free space can be regarded as an optical cavity whose size is much larger
than a wavelength of a light. Therefore, a spectral distribution of the res-
onance modes in the free space is (quasi-)continuous. In this case, a sum
with respect to a resonance mode l in (8.2) is replaced by integration with
respect to k. Hence, the spontaneous emission rate in the free space Wsp, free
is written as

Wsp,free =
ω0

3nrc
3

3πc3�ε
µ̄2, (8.3)

where nrc is the refractive index of a material in the optical cavity, µ̄2 is the
squared electric dipole moment averaged over all directions of polarizations,
ω0 = (Eex − Egr)/� is the angular frequency of a light, and sin2(kl · r) is
replaced by the averaged value 1/2.

In this case, a transition rate for each mode is small, and it is inversely
proportional to the volume of the optical cavity V . The number of modes N
contributing to the optical transitions is proportional to V , and the value of
N for usual waveguide-type LDs is about 105. As a result, the spontaneous
emission rate in the free space Wsp,free is independent of V . Moreover, Wsp,free
is not affected by the positions of the atoms. Therefore, the spontaneous
emission in the free space seems to be governed by the properties of the
atoms themselves.

8.2.3 Spontaneous Emission in a Microcavity

The microcavity [56] is the optical cavity whose size is on the order of a
light wavelength. Hence, the resonance modes in the microcavity are discrete.
From (8.2), when the spontaneous emission coupling factor is βsp = 1, the
spontaneous emission rate in the microcavity Wsp,micro is given by

Wsp,micro =
π

�
µl

2
(

�ωl

V ε

)(
1

�∆ωc

)
sin2(kl · r), (8.4)

where ∆ωc is the spectral linewidth of the resonance mode of the optical
cavity in units of an angular frequency.

From (8.3) and (8.4), when the angular frequency of the light ω0 is equal
to that of the lth optical cavity mode ωl (ω0 = ωl), the spontaneous emission
rate in the microcavity Wsp,micro and the spontaneous emission rate in the
free space Wsp,free are related as
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Wsp,micro

Wsp,free
=

3
8π

λl
3

nrc
3

1
V

(
ωl

∆ωc

)
sin2(kl · r), (8.5)

where λl is the resonance wavelength in a vacuum for the lth optical cavity
mode.

From (8.5), it is found that enhancement of the spontaneous emission
(Wsp,micro > Wsp,free) happens when the following three conditions are satis-
fied: (1) The optical cavity is the microcavity whose size is on the order of
a light wavelength (V ≈ λl

3/nrc
3), (2) the Q-value of the optical cavity is

extremely large (ωl/∆ωc � 1), and (3) excited atoms are placed at antinodes
of the standing wave in the optical cavity where sin2(kl · r) = 1.

In contrast, the spontaneous emission is suppressed when the angular
frequency of the light ω0 and that of the lth optical cavity mode ωl are
different from each other (ω0 �= ωl). If the excited atoms exist at nodes of
the standing wave where sin2(kl · r) = 0, spontaneous emission is prohibited
because Wsp,micro = 0.

8.2.4 Fluctuations in the Vacuum Field

In a system consisting of the bosons, such as photons and phonons, the fluc-
tuations in the vacuum field are generated due to Heisenberg’s uncertainty
principle, even when the bosons do not exist (nl = 0). As a result, there
exists a zero-point energy �ωl/2 in a resonance mode. The spontaneous emis-
sion is induced by these fluctuations in the vacuum field, and a theory of
Cohen-Tannoudji and others [57] will be briefly explained in the following.

When atoms in the excited state interact with fluctuations in the vacuum
field, optical transitions take place from the excited state to the ground state.
The state of an atom (electron) |Ψ〉 is given by a linear combination of the
two eigenstates |ex〉 and |gr〉, which is written as

|Ψ〉 = Cex|ex〉 exp
(

−i
Eex

�
t

)
+ Cg|gr〉 exp

(
−i

Egr

�
t

)
. (8.6)

The expectation value of the electric dipole moment is expressed as

〈Ψ |er|Ψ〉 = Cex
∗Cg〈ex|er|gr〉 exp( iω0t) + h.c., (8.7)

where e is the elementary charge and h.c. shows the Hermite conjugate.
The electric dipole moment, which vibrates with the angular frequency

ω0, emits an electromagnetic wave with ω0. Also, the emitted electromagnetic
wave reacts on the electric dipole moment. When the atom is in the excited
state, the fluctuations in the vacuum field and the electromagnetic wave in-
teract with the same phase, which induces spontaneous emission. While the
atom is in the ground state, the interaction takes place with the antiphase
and spontaneous absorption never happens.
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8.3 Microcavity LDs

From (2.27), a low mode density and a large spontaneous emission rate result
in a large stimulated emission rate. Hence, a low threshold current is expected
in the microcavity LDs. As shown in (8.5), to enhance spontaneous emission,
we need microcavities with high Q-values. From this viewpoint, the vertical
cavity surface emitting LDs (VCSELs) explained in Section 6.3 are suitable
for microcavity LDs.

From (5.20) and (5.21), the rate equations for the carrier concentration n
and the photon density S are expressed as

dn

dt
=

J

ed
− G(n)S − n

τn
, (8.8)

dS

dt
= G(n)S − S

τph
+ βsp

n

τn
, (8.9)

where J is the injection current density, e is the elementary charge, d is the
active layer thickness, G(n) is the amplification rate due to the stimulated
emission, τn is the carrier lifetime, τph is the photon lifetime, and βsp is the
spontaneous emission coupling factor. It should be noted that G(n) includes
an effect of enhancement or suppression of the spontaneous emission caused
by the microcavities, and τr = τn is assumed.

When the mode distribution is continuous, from (5.32), the spontaneous
emission coupling factor βsp for a wavelength in a vacuum λ0 is given by

βsp =
Γa

4π2nrc
3V

λ0
4

∆λ
, (8.10)

where Γa is the optical confinement factor of the active layer and ∆λ is the
FWHM of the light emission spectrum in a wavelength region. From (8.10),
a small mode volume V and a narrow FWHM ∆λ lead to a large βsp. In
microcavities, the mode distribution is discrete, and βsp has a different form
from (8.10), but it is no change that βsp increases with a decrease in V .

Figure 8.3 shows the carrier concentration n and the photon density S in
the microcavity LDs as a function of the injection current density J . With
an increase in βsp, the threshold current density Jth decreases and becomes
indistinct.

In microcavity LDs, due to enhancement of spontaneous emission, the
carrier lifetime τn decreases and the stimulated emission rate increases, which
enhances ∂G/∂n. As shown in (5.103) and (5.109), the resonance frequency
fr is given by

fr =
1
2π

√
1

τnτph

J − Jth

Jth − J ′
0

=
1
2π

√
∂G

∂n

S0

τph
. (8.11)

Therefore, a large fr, which leads to high-speed modulation, is obtained in
microcavity LDs. Note that in the optical cavities with high Q-values, the
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Fig. 8.3. Characteristics of microcavity LDs

photon lifetime τph is large, which reduces fr. Hence, we have to design mi-
crocavity LDs according to the required modulation speed in application
systems.

From the preceding explanations, someone might think that the microcav-
ity LDs have only benefits. However, they have serious problems in electrical
resistance and light output. Because the size of microcavity LDs is on the or-
der of a wavelength of a light, their electrical resistances are extremely high.
Therefore, with an increase in injection current, large Joule’s heat is gener-
ated, which suppresses CW operations at room temperature. Even though
the threshold current is low, due to large electrical resistance, the power con-
sumptions are not always low, and sometimes they are large. Also, due to
small light emission regions, the light outputs are low.

8.4 Photon Recycling

When electric current is injected into semiconductor lasers, spontaneous emis-
sion takes place. A fraction of this spontaneous emission is used as the seed
of a laser light, and this seed is repeatedly amplified in the optical cavities
by the stimulated emission. When the optical gains exceed the optical losses
in the optical cavities, laser oscillations start.

In contrast, spontaneous emission other than the seed of the laser light is
readily emitted outward from the optical cavities. Therefore, the injected car-
riers consumed for such spontaneous emission does not contribute to laser os-
cillations. In photon recycling , this wasted spontaneous emission is absorbed,
and the carriers are generated [58–61]. Using photon recycling, the carrier
concentration in the active layer is larger than that without photon recycling
at the same current level, which results in a low threshold current. This con-
cept of photon recycling resembles the confinement of resonant radiation in
gas lasers.

Figures 8.4 (a) and (b) schematically show the light emission spectra and
the optical gain spectra of semiconductor lasers. A peak wavelength in the
optical gain spectra is longer than that in the spontaneous emission spectra.
Therefore, the active layer can absorb the spontaneous emission located in a
shorter wavelength region, which is indicated by slanted lines. Consequently,
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to achieve efficient photon recycling, we should confine the spontaneously
emitted lights to the optical cavities. To avoid wasting the injected carriers,
we should also reduce the nonradiative recombination rates and suppress the
Joule heating in the active layers so that the carriers may not overflow to the
cladding layers.

Wavelength

Wavelength

Gain

Light
Intensity

Laser light

Spontaneous emission

Absorption
     Loss

(a)

(b)

Fig. 8.4. (a) Light emission spectrum and (b) optical gain spectrum

From Fig. 8.4, it is found that a large absorption region in a wavelength
leads to efficient photon recycling. As shown in Fig. 8.5, with a decrease in
the threshold gain gth, an absorption wavelength region increases. Therefore,
semiconductor lasers with low threshold gain as in Fig. 8.5 (b) are suitable
for efficient photon recycling.

(a)

(b)
Wavelength

Gain

Absorption
     Loss

gth

Wavelength

Gain
gth

Absorption
     Loss

Fig. 8.5. Threshold gain and photon recycling

Figure 8.6 schematically shows the structure of a vertical cavity surface
emitting LD, which uses photon recycling. To efficiently confine the sponta-
neous emission in the optical cavity, the sidewalls of the optical cavity are
covered with highly reflective materials.

In photon recycling, limitations in the size of the optical cavities do not
exist, as opposed to in microcavity LDs. Consequently, when we use photon
recycling, we can avoid an increase in electrical resistance and a decrease in
the light output, which were shown in microcavity LDs.
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Fig. 8.6. Vertical cavity surface emitting LD with photon recycling



A Cyclotron Resonance

A.1 Fundamental Equations

Let us consider the motion of an electron in a magnetic field. As shown in
Fig. A.1, we assume that a uniform magnetic field is applied along the z-axis,
and a magnetic flux density is B(|B| = Bz). The Lorentz force acting on the
electron in this magnetic field has only x- and y-components and does not
have a z-component.

x

y

z

B

0

Fig. A.1. Cyclotron motion

When the relaxation term is neglected, an equation of motion for the
electron in the magnetic field is given by

m
dv

dt
= −e (v × B), (A.1)

where m, v, and e are the electron mass, velocity, and elementary charge,
respectively. From (A.1), we obtain

ẍ = −ωcẏ, ÿ = ωcẋ, (A.2)

where a double dot above x and y shows a second derivative with respect to
time, and

ωc =
eBz

m
(A.3)
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is the cyclotron angular frequency.
Assuming x = 0, y = −v0/ωc, ẋ = v0, and ẏ = 0 at t = 0 as an initial

condition, and then integrating (A.2) with respect to time result in

ẋ = −ωcy, ẏ = ωcx, (A.4)

where a dot above x and y shows a first derivative with respect to time.
Substituting (A.4) into (A.2), we have

ẍ = −ωc
2x, ÿ = −ωc

2y. (A.5)

As a result, the solutions are obtained as

x =
v0

ωc
sin ωct, y = − v0

ωc
cos ωct. (A.6)

These solutions show the cyclotron motion that is a circular motion with a
radius R = v0/ωc about the origin.

When an electromagnetic wave whose electric field is in the xy-plane and
the angular frequency ωc is incident on the semiconductors, the electromag-
netic wave is resonantly absorbed by the electrons with cyclotron motions.
This phenomenon is called the cyclotron resonance.

We assume that the effective mass of the carrier is m∗, the velocity of the
carrier is v, the charge of the carrier is q (q = −e < 0 for the electron and
q = + e > 0 for the hole), the electric field is E, the magnetic flux density is
B, and the relaxation time is τ . Then the equation of motion for the carrier
is written as

m∗ dv

dt
= q (E + v × B) − m∗v

τ
. (A.7)

Using the carrier concentration n, we can express the x- and y-components
of the current density as Ji = nqvi (i = x, y). From the Joule losses formula,
the absorbed energy density per unit time P is obtained as

P = Re(J) · Re(E) =
1
2

Re(J · E∗), (A.8)

where Re indicates a real part. In the following, we consider a right-handed
circularly polarized wave, a left-handed circularly polarized wave, and a lin-
early polarized wave. These electromagnetic waves are assumed to propagate
along the z-axis and to have the angular frequency ω.

A.2 Right-Handed Circularly Polarized Wave

The right-handed circularly polarized wave is expressed as

Ex = E0 exp( iωt), Ey = iEx = iE0 exp( iωt). (A.9)
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Substituting (A.9) into (A.7) and using (A.8) results in

P =
σ0E0

2

(ω − ωc)2τ2 + 1
, (A.10)

where

ωc =
qBz

m∗ , σ0 =
nq2τ

m∗ . (A.11)

A.3 Left-Handed Circularly Polarized Wave

The left-handed circularly polarized wave is written as

Ex = E0 exp( iωt), Ey = −i Ex = −i E0 exp( iωt). (A.12)

Substituting (A.12) into (A.7) and using (A.8) leads to

P =
σ0E0

2

(ω + ωc)2τ2 + 1
. (A.13)

A.4 Linearly Polarized Wave

When the linearly polarized wave has an electric field with only an x-
component, which is given by

Ex = E0 exp( iωt), (A.14)

the absorbed energy density per unit time P is represented as

P =
1
4

σ0E0
2
[

1
(ω − ωc)2τ2 + 1

+
1

(ω + ωc)2τ2 + 1

]
. (A.15)

Here, the first and second terms correspond to the right-handed circularly
polarized wave and the left-handed circularly polarized wave, respectively.

A.5 Relationship between Polarization of a Wave and
an Effective Mass

From (A.11), it is found that we can obtain the effective mass of the carrier by
measuring the cyclotron angular frequency ωc. The right-handed circularly
polarized wave is resonantly absorbed by the carrier, which has a positive
effective mass with a positive ωc, such as the electron in the conduction band
in the vicinity of the band edge. The left-handed circularly polarized wave is
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resonantly absorbed by the carrier, which has a negative effective mass with
a negative ωc, such as the hole in the valence bands in the vicinity of the
band edge.

Finally, we show an example of a value for the cyclotron angular frequency
ωc. When the observed effective mass in a magnetic field with the magnetic
flux density of 1 G = 10−4 T is 0.1m, where m is the electron mass in a
vacuum, ωc is 1.76 × 108 rad/s, and the cyclotron frequency fc = ωc/2π is
2.80 × 107 Hz.



B Time-Independent Perturbation Theory

We consider the following Schrödinger equation expressed as

Hψ = Wψ, H = H0 + H′, H0uk = Ekuk, (B.1)

where H0 is an unperturbed Hamiltonian whose solutions are already ob-
tained; H′ is a perturbation to H0; ψ and W are an eigenfunction (wave func-
tion) and an energy eigenvalue for a perturbed steady state, respectively; and
uk and Ek are an orthonormalized eigenfunction and an energy eigenvalue
for the unperturbed Hamiltonian H0, respectively.

B.1 Nondegenerate Case

The perturbed eigenfunction and the perturbed energy eigenvalue are as-
sumed to be expanded in power series of H′. Here, we replace H′ by λH′

where λ is a parameter, and we express ψ and W with the power series of λ.
In obtaining the final results, we set λ = 1. Under this assumption, ψ and W
are written as

ψ = ψ0 + λψ1 + λ2ψ2 + λ3ψ3 + · · · ,
W = W0 + λW1 + λ2W2 + λ3W3 + · · · .

(B.2)

Substituting (B.2) into (B.1) and replacing H′ by λH′, we have

(H0 + λH′)(ψ0 + λψ1 + λ2ψ2 + λ3ψ3 + · · · )
= (W0 + λW1 + λ2W2 + λ3W3 + · · · )(ψ0 + λψ1 + λ2ψ2 + λ3ψ3 + · · · ).

(B.3)

If we assume that (B.3) is satisfied for any value of λ, the terms with
the common power series of λ on both sides have to be the same, which is
expressed as

λ0 : (H0 − W0)ψ0 = 0,
λ1 : (H0 − W0)ψ1 = (W1 − H′)ψ0,
λ2 : (H0 − W0)ψ2 = (W1 − H′)ψ1 + W2ψ0,
λ3 : (H0 − W0)ψ3 = (W1 − H′)ψ2 + W2ψ1 + W3ψ0,

...

.

(B.4)
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From (B.1) and the first equation in (B.4), it is found that ψ0 is one of
the unperturbed eigenfunctions uks. Therefore, in the nondegenerate case,
we put

ψ0 = um, W0 = Em. (B.5)

As an eigenfunction ψs(s > 0) in a perturbed steady state, we consider a
solution satisfying the dot product given by

(ψ0, ψs) =
∫

ψ0
∗ψs d3r = 0. (B.6)

Under this condition, multiplying both sides of (B.4) by ψ0
∗ from the left

and then integrating with respect to all the space results in

Ws =
(ψ0,H′ψs−1)

(ψ0, ψ0)
= (um,H′ψs−1), (B.7)

where we have used that uks are orthonormal functions. From (B.5) and
(B.7), we have

W1 = (um,H′ψ0) = (um,H′um) = 〈m|H′|m〉, (B.8)

from which it is revealed that the first-order perturbation energy W1 is the
expectation value of H′ for the unperturbed state |m〉.

Here, by expanding with respect to un, we write the first-order perturbed
eigenfunction ψ1 as

ψ1 =
∑

n

a(1)
n un, (B.9)

where a
(1)
n is the expansion coefficient. If we calculate a

(1)
n , an eigenfunction in

the first-order perturbation is obtained. First, let us consider a dot product of
um and (B.9). Because un is an orthonormal function, we have the following
relation

〈m|n〉 = δmn, (B.10)

where δmn is the Kronecker delta. Using (B.6), we obtain

(um, ψ1) = 〈m|
∑

n

a(1)
n |n〉 =

∑
n

a(1)
n 〈m|n〉

= a(1)
m = (ψ0, ψ1) = 0. (B.11)

Substituting (B.9) into the second equation in (B.4) results in∑
n

a(1)
n (H0 − Em)un = (W1 − H′)um, (B.12)
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where (B.5) was used. Taking a dot product of uk and (B.12) with the help
of (B.1) leads to

a
(1)
k (Ek − Em) = −〈k|H′|m〉,

∴ a
(1)
k =

〈k|H′|m〉
Em − Ek

(k �= m).
(B.13)

As a result, ψ1 is written as

ψ1 =
∑

n

〈n|H′|m〉
Em − En

un. (B.14)

Therefore, to the first-order perturbation, the eigenfunction ψ is given by

ψ = ψ0 + ψ1 = um +
∑

n

〈n|H′|m〉
Em − En

un, (B.15)

where we have set λ = 1.
Putting s = 2 in (B.7), the second-order perturbation energy is obtained

as

W2 = (um,H′ψ1) =
∑

n

〈m|H′|n〉〈n|H′|m〉
Em − En

, (B.16)

where (B.14) was used. From (B.5), (B.8), and (B.16), to the second-order
perturbation, the energy eigenvalue is expressed as

W = W0 + W1 + W2

= Em + 〈m|H′|m〉 +
∑

n

〈m|H′|n〉〈n|H′|m〉
Em − En

. (B.17)

Finally, let us calculate an eigenfunction in the second-order perturbation.
The second-order perturbed eigenfunction ψ2 is expanded with un as

ψ2 =
∑

n

a(2)
n un, (B.18)

where a
(2)
m = 0. Substituting (B.5), (B.9), and (B.18) into the third equation

in (B.4) gives∑
n

a(2)
n (H0 − W0)un =

∑
n

a(1)
n (W1 − H′)un + W2um. (B.19)

Taking a dot product of uk(k �= m) and (B.19) with the help of (B.1) results
in
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a
(2)
k (Ek − Em) = a

(1)
k W1 − a(1)

n 〈k|H′|n〉. (B.20)

From (B.8), (B.13), and (B.20), we obtain

a
(2)
k =

∑
n

〈k|H′|n〉〈n|H′|m〉
(Em − Ek)(Em − En)

− 〈k|H′|m〉〈m|H′|m〉
(Em − Ek)2

. (B.21)

As a result, to the second-order perturbation with λ = 1, the eigenfunction
ψ is written as

ψ = ψ0 + ψ1 + ψ2

= um +
∑

k

uk

[ 〈k|H′|m〉
Em − Ek

(
1 − 〈m|H′|m〉

Em − Ek

)

+
∑

n

〈k|H′|n〉〈n|H′|m〉
(Em − Ek)(Em − En)

]
. (B.22)

In summary, the eigenfunction and the energy eigenvalue in the non-
degenerate case are expressed as

to the first-order perturbation

ψ = um +
∑

n

〈n|H′|m〉
Em − En

un, (B.23)

W = W0 + W1 = Em + 〈m|H′|m〉, (B.24)

to the second-order perturbation

ψ = um +
∑

k

uk

[ 〈k|H′|m〉
Em − Ek

(
1 − 〈m|H′|m〉

Em − Ek

)

+
∑

n

〈k|H′|n〉〈n|H′|m〉
(Em − Ek)(Em − En)

]
, (B.25)

W = Em + 〈m|H′|m〉 +
∑

n

〈m|H′|n〉〈n|H′|m〉
Em − En

. (B.26)

B.2 Degenerate Case

In the perturbation theory in the degenerate case, only the zeroth-order eigen-
function ψ0 is different from that of the perturbation theory in the nonde-
generate case; other processes are common.

Here, we assume that the unperturbed eigenfunctions ul and um (l �= m)
have the same unperturbed energy W0. As a result, we can write ψ0 and W0
as
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ψ0 = alul + amum, W0 = El = Em. (B.27)

Substituting (B.27) into the second equation in (B.4) and then taking dot
products with ul and um, we have

(〈l|H′|l〉 − W1) al + 〈l|H′|m〉am = 0,

〈m|H′|l〉al + (〈m|H′|m〉 − W1) am = 0.
(B.28)

In order that (B.28) may have solutions other than al = am = 0, the de-
terminant for the coefficients of al and am must be zero, which is expressed
as

(〈l|H′|l〉 − W1) (〈m|H′|m〉 − W1) − 〈l|H′|m〉〈m|H′|l〉 = 0. (B.29)

Solving (B.29) with respect to W1, we have

W1 =
1
2

(〈l|H′|l〉 + 〈m|H′|m〉)

± 1
2

[
(〈l|H′|l〉 − 〈m|H′|m〉)2 + 4〈l|H′|m〉〈m|H′|l〉

]1/2
. (B.30)

From (B.30), it is found that degeneracy is removed in the first-order per-
turbation, so long as the terms in [· · · ] do not vanish. When degeneracy is
removed and W1 has two solutions, al and am are obtained from (B.28),
and they are used to calculate the wave functions. Substituting (B.9) and
(B.27) into the second equation in (B.4) and then taking a dot product with
uk(k �= l, m), we obtain

a
(1)
k (Ek − Em) = −〈k|H′|m〉am − 〈k|H′|l〉al. (B.31)

If we assume that a
(1)
l = a

(1)
m = 0, (B.6) with s = 1 is satisfied. Using a

(1)
k in

(B.31), we can obtain the eigenfunction to the first-order perturbation.
To the second-order perturbation, substituting (B.27) into the third equa-

tion in (B.4) and then taking dot products with ul and um, we have∑
n

〈l|H′|n〉a(1)
n − W2 al = 0,

∑
n

〈m|H′|n〉a(1)
n − W2 am = 0.

(B.32)

Substituting (B.31) into (B.32) leads to(∑
n

〈l|H′|n〉〈n|H′|l〉
Em − En

− W2

)
al +

∑
n

〈l|H′|n〉〈n|H′|m〉
Em − En

am = 0,

∑
n

〈m|H′|n〉〈n|H′|l〉
Em − En

al +

(∑
n

〈m|H′|n〉〈n|H′|m〉
Em − En

− W2

)
am = 0.

(B.33)
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By solving (B.33), we can obtain the energy eigenvalues to the second-order
perturbation.



C Time-Dependent Perturbation Theory

C.1 Fundamental Equation

We consider a time-dependent Schrödinger equation such as

i �
∂ψ

∂t
= Hψ, H = H0 + H′(t), H0uk = Ekuk, (C.1)

where H0 is an unperturbed steady-state Hamiltonian whose solutions are
already obtained, H′(t) is a time-dependent perturbation to H0, ψ is a per-
turbed eigenfunction (wave function), and uk and Ek are an orthonormal
eigenfunction and an energy eigenvalue for H0, respectively. When H′(t) �= 0,
transitions take place between the eigenstates of H0.

Using a solution for an unperturbed wave equation given by

un e−i Ent/�, (C.2)

we can expand a solution ψ as

ψ =
∑

n

an(t)un e−i Ent/�, (C.3)

where an(t) is a time-dependent expansion coefficient. Substituting (C.3) into
(C.1) results in∑

n

i � ȧnun e−i Ent/� +
∑

n

anEnun e−i Ent/�

=
∑

n

an [H0 + H′(t)] un e−i Ent/�

=
∑

n

(
anEnun e−i Ent/� + an(t)H′(t)un e−i Ent/�

)
, (C.4)

where a dot above the expansion coefficient an denotes a first derivative with
respect to time. From (C.4), we have∑

n

i � ȧnun e−i Ent/� =
∑

n

an(t)H′(t)un e−i Ent/�. (C.5)
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Taking a dot product of (C.5) and uk leads to

i � ȧk e−i Ekt/� =
∑

n

〈k|H′(t)|n〉an e−i Ent/�. (C.6)

When we define the Bohr angular frequency ωkn as

ωkn ≡ Ek − En

�
, (C.7)

we can rewrite (C.6) as

ȧk =
1
i �

∑
n

〈k|H′(t)|n〉ane i ωknt. (C.8)

Replacing H′(t) in (C.8) by λH′(t), we expand an with λ as

an = a(0)
n + λa(1)

n + λ2a(2)
n + · · · . (C.9)

Substituting (C.9) into (C.8) gives

ȧ
(0)
k + λ ȧ

(1)
k + λ2ȧ

(2)
k + · · ·

=
1
i �

∑
n

〈k|λH′(t)|n〉(a(0)
n + λa(1)

n + λ2a(2)
n + · · · ) e i ωknt. (C.10)

In order that any value of λ may satisfy (C.10), we need

ȧ
(0)
k = 0, ȧ

(s+1)
k =

1
i �

∑
n

〈k|H′(t)|n〉a(s)
n e i ωknt. (C.11)

From the first equation in (C.11), it is revealed that ak is independent of time
in the zeroth-order perturbation. From the second equation in (C.11), once
a lower order a

(s)
k is obtained, a next higher order a

(s+1)
k can be calculated.

Here, we assume

a
(0)
k = 〈k|m〉 = δkm, (C.12)

which means that the initial state |m〉 is a definite unperturbed energy state.
Using (C.11) and (C.12), we obtain

ȧ
(1)
k =

1
i �

〈k|H′(t)|m〉 e i ωkmt. (C.13)

Assuming that a
(1)
k is zero before perturbation is applied, that is, a

(1)
k = 0

at t = −∞, integrating (C.13) with respect to time results in

a
(1)
k =

1
i �

∫ t

−∞
〈k|H′(t′)|m〉 e i ωkmt′

dt′, (C.14)

which is the expansion coefficient for the first-order perturbation.
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C.2 Harmonic Perturbation

When a harmonic perturbation is applied at t = 0 and removed at t = t0, we
have

〈k|H′(t′)|m〉 = 2〈k|H′|m〉 sin ωt′, (C.15)

where 〈k|H′|m〉 is independent of time. Substituting (C.15) into (C.14) leads
to

a
(1)
k (t ≥ t0) =

2
i �

〈k|H′|m〉
∫ t0

−∞
sin ωt′ e i ωkmt′

dt′

= −〈k|H′|m〉
i �

[
e i (ωkm+ω)t0 − 1

ωkm + ω
− e i (ωkm−ω)t0 − 1

ωkm − ω

]
. (C.16)

On the right-hand side of (C.16), the first term is dominant for ωkm ≈ −ω,
that is, Ek ≈ Em − �ω, and the second term is dominant for ωkm ≈ ω, that
is, Ek ≈ Em + �ω. In other words, to the first-order perturbation, due to the
harmonic perturbation (C.15), Planck’s quantum energy �ω is transferred to
or received from the system.

When the initial state is |m〉 and the final state is |k〉, let us calculate the
probability that the system is in the final state |k〉 after the perturbation is
removed.

For Ek < Em, the first term in (C.16) is dominant, which results in

|a(1)
k (t ≥ t0)|2 =

4|〈k|H′|m〉|2
�2(ωkm + ω)2

sin2
[
1
2

(ωkm + ω)t0

]
. (C.17)

For Ek > Em, the second term in (C.16) is dominant, which leads to

|a(1)
k (t ≥ t0)|2 =

4|〈k|H′|m〉|2
�2(ωkm − ω)2

sin2
[
1
2

(ωkm − ω)t0

]
. (C.18)

C.3 Transition Probability

Figure C.1 shows a plot of (C.18). Here, we assume that there is a group of
final states |k〉 whose energy Ek is nearly equal to Em + �ω, and 〈k|H′|m〉 is
roughly independent of |k〉. In this case, the probability of finding the system
in one of these states |k〉 is obtained by integrating (C.18) with respect to
ωkm. This integration is shown by an area enclosed by the horizontal line and
the curve in Fig. C.1. The height of the main peak is proportional to t0

2, and
the spectral linewidth is in proportion to t0

−1. As a result, the probability of
finding the system in one of these states |k〉 is proportional to t0.

It should be noted that the uncertainty principle is satisfied, because the
spectral linewidth, which represents uncertainty in the energy, is in propor-
tion to t0

−1. In addition, because of Ek ≈ Em + �ω, the energy conservation
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law is also satisfied. It is interesting that the uncertainty principle and the
energy conservation law are automatically obtained without particular as-
sumptions.

− − −6 π 4 π 2 π 2 π 4 π 6 π
t0 t0 t0 t0 t0 t0

4
t0

21

ω km − ω

ω km − ω(              )2

sin2  [ 1 ( ) t0]ω km − ω
2

0

Fig. C.1. Transition probability

The transition probability per unit time w is given by

w =
1
t0

∫
|a(1)

k (t ≥ t0)|2ρ(k) dEk, (C.19)

where ρ(k) dEk is the number of the final states with the energy between Ek

and Ek + dEk. With an increase in t0, the spectral linewidth decreases, and
〈k|H′|m〉 and ρ(k) are considered to be approximately independent of Ek.
In this case, 〈k|H′|m〉 and ρ(k) can be taken outside the integral in (C.19).
Therefore, the transition probability per unit time w is obtained as

w =
4|〈k|H′|m〉|2

�2t0
ρ(k)

∫ ∞

−∞

sin2[ 1
2 (ωkm − ω)t0

]
(ωkm − ω)2

� dωkm

=
2π

�
ρ(k) |〈k|H′|m〉|2. (C.20)

C.4 Electric Dipole Interaction (Semiclassical
Treatment)

A classical Hamiltonian Hc for a particle, which has a mass m and an electric
charge −e in an electromagnetic field, is written as

Hc =
1

2m
(p + eA)2 − eφ,

E = −∂A

∂t
− ∇φ,

(C.21)
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where E is the electric field, A is the vector potential , and φ is the scalar
potential .

First, before calculating the transition probability, we will derive (C.21).
The Lagrangian L for a particle with the mass m and the electric charge −e
in an electromagnetic field is given by

L =
1
2

mq̇2 + eφ(q) − eq̇ · A(q), (C.22)

where q is a generalized coordinate. Validity of (C.22) will be shown in the
following.

The Lagrange equation is expressed as

dt

dt

∂L

∂q̇
− ∂L

∂q
= 0. (C.23)

As an example, we consider an x-component in the xyz-coordinate system.
From (C.22), we have

∂L

∂ẋ
= mẋ − eAx, (C.24)

dt

dt

∂L

∂ẋ
= mẍ − e

(
∂Ax

∂t
+ ẋ

∂Ax

∂x
+ ẏ

∂Ax

∂y
+ ż

∂Ax

∂z

)
, (C.25)

∂L

∂x
= e

∂φ

∂x
− e

(
ẋ

∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

)
. (C.26)

Substituting (C.24)–(C.26) into (C.23) results in

mẍ − e
∂φ

∂x
− e

[
∂Ax

∂t
+ ẏ

(
∂Ax

∂y
− ∂Ay

∂x

)
+ ż

(
∂Ax

∂z
− ∂Az

∂x

)]
= 0 (C.27)

or

m
d2x

dt2
= −eEx − e(v × B)x,

Ex = −∂φ

∂x
− ∂Ax

∂t
, B = rotA,

(C.28)

which is known as the Lorentz equation, and validity of (C.22) has been
proved. Similar results are obtained for the y- and z-components.

Using the Lagrangian L, a momentum p of the particle is defined as

p ≡ ∂L

∂q̇
= mq̇ − eA. (C.29)

As a result, the Hamiltonian H for the particle is obtained as
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H(p, q) ≡ p · q̇ − L

= mq̇2 − e q̇ · A − 1
2

mq̇2 − eφ + e q̇ · A

=
1
2

mq̇2 − eφ

=
1

2m
(p + eA)2 − eφ, (C.30)

which is the same as (C.21).
When ∇ · A = 0 and φ = 0, the Schrödinger equation is written as

i �
∂ψ

∂t
= [H0 + H′(t)]ψ,

H0 = − �
2

2m
∇2 + V (r), H′(t) = − i e�

m
A · ∇,

(C.31)

where (C.21) was used. If we express an electric field E as

E = x̂ E0 exp[ i (ωt − kz)], (C.32)

where x̂ is a unit vector along the x-axis, the vector potential A is written
as

A = x̂
i E0

ω
exp[ i (ωt − kz)], (C.33)

which leads to

|A|2 = |A∗ · A| =
E0

2

ω2 . (C.34)

To consider the energy flow, we calculate the Poynting vector S. Using

B = rotA = µ0H, (C.35)

where B is the magnetic flux density and H is the magnetic field, we have

|S| = |E × H| =
1
2

E0
2 k

µ0ω
=

1
2

E0
2 nr

µ0c
=

1
2

ε0E0
2nrc. (C.36)

Here, nr is the refractive index of a material. Because (C.36) is equal to the
energy flow of nph�ω c/nr, we obtain

E0
2 =

2nph�ω

ε0 nr
2 , (C.37)

where nph is the photon density. From (C.34) and (C.37), we obtain

|A|2 =
2nph�

ε0nr
2 ω

. (C.38)
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Also, (C.31) gives

〈k|H′|m〉 = − i e�

m
A 〈k|∇|m〉 =

e

m
A 〈k|p|m〉

= eA
d
dt

〈k|r|m〉 = ωkm A 〈k|er|m〉, (C.39)

where the matrix element includes the electric dipole moment er. Therefore,
the transition due to this perturbation is referred to as the electric dipole
transition.

When the perturbation is applied at t = 0 and removed at t = t0, substi-
tuting (C.33) and (C.39) into (C.14) results in

a
(1)
k (t ≥ t0) =

eE0

�ωm
〈k|p|m〉 e−i kz e i (ωkm+ω)t0 − 1

ωkm + ω
. (C.40)

When there is a flow of a photon per unit volume, by substituting (C.40)
into (C.19), we can obtain the transition probability per unit time w as

w =
e2h

2m2ε0nr
2Ekm

|〈k|p|m〉|2 (Ekm ≡ �ωkm), (C.41)

where the spectral linewidth of |A|2 is assumed to be narrow.
It should be noted that the transition probability per unit time w in

(C.41) is the transition rate for the stimulated emission B in (2.35).



D TE Mode and TM Mode

D.1 Fundamental Equation

Figure D.1 shows a two-dimensional optical waveguide in which the guiding
layer is sandwiched between the cladding layer and the substrate. We assume
that each layer is uniform and the refractive indexes of the guiding layer,
the cladding layer, and the substrate are nf , nc, and ns, respectively, where
nf > ns ≥ nc is satisfied to confine a light in the guiding layer. In usual
optical waveguides, nf − ns is 10−3–10−1.

x

y z

Cladding layer  nc

Guiding layer  nf

Substrate  ns

Fig. D.1. Cross-sectional view of a two-dimensional optical waveguide

When the electric current does not flow, Maxwell’s equations are written
as

rotE = ∇ × E = −µ0
∂H

∂t
, rotH = ∇ × H = ε0nr

2 ∂E

∂t
, (D.1)

where E is the electric field, H is the magnetic field, µ0 is permeability in a
vacuum, ε0 is permittivity in a vacuum, and nr is the refractive index of a
material. We can also express (D.1) with each component as

∂Ez

∂y
− ∂Ey

∂z
= −µ0

∂Hx

∂t
,

∂Hz

∂y
− ∂Hy

∂z
= ε0nr

2 ∂Ex

∂t
,

∂Ex

∂z
− ∂Ez

∂x
= −µ0

∂Hy

∂t
,

∂Hx

∂z
− ∂Hz

∂x
= ε0nr

2 ∂Ey

∂t
, (D.2)

∂Ey

∂x
− ∂Ex

∂y
= −µ0

∂Hz

∂t
,

∂Hy

∂x
− ∂Hx

∂y
= ε0nr

2 ∂Ez

∂t
.

We assume that a light propagates toward a positive direction on the
z-axis with a propagation constant β, and its electric field E and magnetic
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field H are written as

E = E(x, y) exp[ i (ωt − βz)],
H = H(x, y) exp[ i (ωt − βz)]. (D.3)

In a two-dimensional optical waveguide with an abrupt index profile as
shown in Fig. D.1, the lightwave along the y-axis is uniform, which results in
∂/∂y = 0. Also, from (D.3), we have ∂/∂t = iω and ∂/∂z = −i β. Therefore,
(D.2) reduces to

i βEy = −i ωµ0Hx, i βHy = i ε0nr
2 ωEx,

−i βEx − ∂Ez

∂x
= −i ωµ0Hy, − i βHx − ∂Hz

∂x
= i ε0nr

2 ωEy, (D.4)

∂Ey

∂x
= −i ωµ0Hz,

∂Hy

∂x
= i ε0nr

2 ωEz.

If there are no electric charges, ∇·E = 0 is satisfied. Hence, with the help
of the vector analysis formula, we obtain

∇ × ∇ × E = ∇(∇ · E) − ∇2E = −∇2E. (D.5)

Substituting (D.1) and (D.3) into (D.5) leads to

−∇2E = −µ0
∂

∂t
(∇ × H) = −ε0µ0nr

2 ∂2

∂t2
E =

nr
2 ω2

c2 E, (D.6)

where c is the speed of light in a vacuum.

D.2 TE Mode

The electromagnetic wave whose electric field E does not have a component
Ez along the propagation direction is called the transverse electric (TE) wave.
For a TE wave with Ez = 0, (D.4) reduces to

i βEy = −i ωµ0Hx, i βHy = i ε0nr
2 ωEx,

−i βEx = −i ωµ0Hy, − i βHx − ∂Hz

∂x
= i ε0nr

2 ωEy, (D.7)

∂Ey

∂x
= −i ωµ0Hz,

∂Hy

∂x
= 0.

For brevity, if we put Hy = 0, (D.7) results in

Ex = 0, Hx = − β

ωµ0
Ey, Hz = − 1

i ωµ0

∂Ey

∂x
. (D.8)

Substituting the first equation in (D.8) into (D.6) leads to
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∂2

∂x2 Ey +
(

nr
2 ω2

c2 − β2
)

Ey =
∂2

∂x2 Ey + (k0
2nr

2 − β2)Ey = 0, (D.9)

where k0 = ω/c.
In summary, the electric field and the magnetic field for the TE mode

obey the following equations given by

Ex = Ez = 0,
∂2

∂x2 Ey + (k0
2nr

2 − β2)Ey = 0,

Hx = − β

ωµ0
Ey, Hy = 0, Hz = − 1

i ωµ0

∂Ey

∂x
.

(D.10)

We select a coordinate system, as illustrated in Fig. D.2, and assume that
the angle of incidence is θf , which is the same as the angle of reflection. If we
express the amplitudes of the electric fields in the cladding layer, the guiding
layer, and the substrate as Ec, Ef , and Es, respectively, the electric field Ey

is written as

Ey = Ec exp(−γcx) : cladding layer,
Ey = Ef cos(kxx + φc) : guiding layer,
Ey = Es exp[γs(x + h)] : substrate,

(D.11)

where

β = k0N, N = nf sin θf , (D.12)

γc = k0

√
N2 − nc

2, kx = k0

√
nf

2 − N2, γs = k0

√
N2 − ns

2. (D.13)

x = 0

x = − h

x

zy

Cladding layer

θ f
Guiding layer

Substrate

Fig. D.2. Cross-sectional view of a two-dimensional optical waveguide

At each interface, the tangent of the electric field Ey and that of the
magnetic field Hz are continuous. Therefore, we obtain

Ec = Ef cos φc, tanφc =
γc

kx
: x = 0, (D.14)

Es = Ef cos(kxh − φc), tan(kxh − φc) =
γs

kx
: x = −h. (D.15)
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From (D.14) and (D.15), the eigenvalue equation is expressed as

kxh = mπ + tan−1 γc

kx
+ tan−1 γs

kx
, (D.16)

where m is a nonnegative integer. Because the following relation

kx = k0nf cos θf , tan−1 γc

kx
= φc, tan−1 γs

kx
= φs (D.17)

is satisfied, (D.16) is the same as (3.16).

D.3 TM Mode

The electromagnetic wave whose magnetic field H does not have a component
Hz along the propagation direction is called the transverse magnetic (TM)
wave. For the TM wave with Hz = 0, (D.4) reduces to

i βEy = −i ωµ0Hx, i βHy = i ε0nr
2 ωEx,

−i βEx − ∂Ez

∂x
= −i ωµ0Hy, − i βHx = i ε0nr

2 ωEy, (D.18)

∂Ey

∂x
= 0,

∂Hy

∂x
= i ε0nr

2 ωEz.

For brevity, if we put Ey = 0, (D.18) results in

Hx = 0, Ex =
β

ε0nr
2 ω

Hy, Ez =
1

i ε0nr
2 ω

∂Hy

∂x
, (D.19)

Hy =
β

ωµ0
Ex +

1
i ωµ0

∂Ez

∂x
. (D.20)

Substituting (D.19) into (D.20) leads to

∂2

∂x2 Hy + (k0
2nr

2 − β2)Hy = 0. (D.21)

In summary, the electric field and the magnetic field for the TM mode
obey the following equation given by

Ex =
β

ε0nr
2 ω

Hy, Ey = 0, Ez =
1

i ε0nr
2 ω

∂Hy

∂x
,

Hx = Hz = 0,
∂2

∂x2 Hy + (k0
2nr

2 − β2)Hy = 0.

(D.22)

If we express the amplitudes of the magnetic fields in the cladding layer,
the guiding layer, and the substrate as Hc, Hf , and Hs, the magnetic field
Hy is written as
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Hy = Hc exp(−γcx) : cladding layer,
Hy = Hf cos(kxx + φc) : guiding layer,
Hy = Hs exp[γs(x + h)] : substrate.

(D.23)

At each interface, the tangent of the magnetic field Hy and that of the
electric field Ez are continuous, respectively. Therefore, we obtain

Hc = Hf cos φc,
γc

nc
2 Hc =

kx

nf
2 Hf sin φc : x = 0, (D.24)

Hs = Hf cos(kxh − φc),
γs

ns
2 Hs =

kx

nf
2 Hf sin(kxh − φc) : x = −h.

(D.25)

From (D.24) and (D.25), we obtain the following eigenvalue equation

kxh = mπ + tan−1

[(
nf

nc

)2
γc

kx

]
+ tan−1

[(
nf

ns

)2
γs

kx

]
, (D.26)

where m is a nonnegative integer.
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E.1 Fundamental Equation

Up to now, we have used MKSA units in electromagnetism. However, for
brevity, we use CGS-Gaussian units here.

When the electric current does not flow, Maxwell’s equations in a uniform
optical material with the refractive index nr and permeability µ are written
as

∇ × E = −1
c

∂H

∂t
, ∇ × H =

nr
2

c

∂E

∂t
, (E.1)

where E is the electric field, c is the speed of light in a vacuum, and H is
the magnetic field. We can also express (E.1) with each component as

∂Ez

∂y
− ∂Ey

∂z
= −1

c

∂Hx

∂t
,

∂Hz

∂y
− ∂Hy

∂z
=

nr
2

c

∂Ex

∂t
,

∂Ex

∂z
− ∂Ez

∂x
= −1

c

∂Hy

∂t
,

∂Hx

∂z
− ∂Hz

∂x
=

nr
2

c

∂Ey

∂t
, (E.2)

∂Ey

∂x
− ∂Ex

∂y
= −1

c

∂Hz

∂t
,

∂Hy

∂x
− ∂Hx

∂y
=

nr
2

c

∂Ez

∂t
.

We assume that a light propagates toward a positive direction on the
z-axis, and dependence of the electric field E and the magnetic field H on
time is expressed as e iωt. In this case, we obtain ∂/∂t = iω. Therefore, (E.2)
reduces to

∂Ez

∂y
− ∂Ey

∂z
= − i ω

c
Hx,

∂Hz

∂y
− ∂Hy

∂z
=

i ωnr
2

c
Ex,

∂Ex

∂z
− ∂Ez

∂x
= − i ω

c
Hy,

∂Hx

∂z
− ∂Hz

∂x
=

i ωnr
2

c
Ey, (E.3)

∂Ey

∂x
− ∂Ex

∂y
= − i ω

c
Hz,

∂Hy

∂x
− ∂Hx

∂y
=

i ωnr
2

c
Ez.

E.2 TE Mode

We consider the optical waveguide shown in Fig. D.1. Because the lightwave
is uniform along the y-axis, we have ∂/∂y = 0, which results in Ex = Ez = 0
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and Hy = 0 for the TE wave from (D.10). Therefore, (E.3) reduces to

∂Ey

∂z
=

i ω
c

Hx,
∂Ey

∂x
= − i ω

c
Hz,

∂Hx

∂z
− ∂Hz

∂x
=

i ωnr
2

c
Ey.

(E.4)

From (E.4), we obtain a wave equation as

∂2Ey

∂x2 +
∂2Ey

∂z2 =
i ω
c

(
∂Hx

∂z
− ∂Hz

∂x

)
= −ω2nr

2

c 2 Ey. (E.5)

x

z y

Propagation direction
           of light

θ

Fig. E.1. Definition of θ

Here, we assume a separation-of-variables procedure. Substituting Ey =
X(x)U(z) into (E.5) and then dividing both sides by Ey lead to

1
X

∂2X

∂x2 +
1
U

∂2U

∂z2 = −ω2nr
2

c 2 = −k0
2nr

2, (E.6)

where k0 = ω/c. From (E.6), if we put

1
X

∂2X

∂x2 = −k0
2nr

2 sin2θ,
1
U

∂2U

∂z2 = −k0
2nr

2 cos2θ, (E.7)

where θ is defined in Fig. E.1, we can express Ey as

Ey = U(z) exp[ i(ωt − k0nrx sin θ) ]. (E.8)

Similarly, we have

Hx = V (z) exp[ i(ωt − k0nrx sin θ) ],
Hz = W (z) exp[ i(ωt − k0nrx sin θ) ]. (E.9)

Substituting (E.8) and (E.9) into (E.4) results in
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dU

dz
=

i ω
c

V = i k0V, (E.10)

nr sin θ · U = W, (E.11)
dV

dz
+ i k0nr sin θ · W = i k0nr

2U. (E.12)

From (E.11) and (E.12), we obtain

dV

dz
= i k0nr

2 cos2θ · U. (E.13)

Differentiating (E.13) with respect to z with the help of (E.10), we have

d2V

dz2 + k0
2nr

2 cos2θ · V = 0. (E.14)

In summary, a relationship between U and V is written as

d2U

dz2 + k0
2nr

2 cos2θ · U = 0,
d2V

dz2 + k0
2nr

2 cos2θ · V = 0, (E.15)

dU

dz
= i k0V,

dV

dz
= i k0nr

2 cos2 θ · U. (E.16)

From (E.15) and (E.16), solutions for U and V are expressed as

U = A cos(k0nrz cos θ) + B sin(k0nrz cos θ), (E.17)
V = inr cos θ[A sin(k0nrz cos θ) − B cos(k0nrz cos θ)]. (E.18)

Because (E.15) is a linear differential equation of the second order, we can
express U and V as [

U(z)
V (z)

]
=
[

F (z) f(z)
G(z) g(z)

] [
U(0)
V (0)

]
, (E.19)

where

U1 = f(z), U2 = F (z), V1 = g(z), V2 = G(z). (E.20)

Also, from (E.16), we have the following relation

dU1

dz
≡ U1

′ = i k0V1,
dU2

dz
≡ U2

′ = i k0V2, (E.21)

dV1

dz
≡ V1

′ = i k0nr
2 cos2 θ · U1,

dV2

dz
≡ V2

′ = i k0nr
2 cos2 θ · U2, (E.22)

from which we obtain

U1V2
′ − V1

′U2 = 0, V1U2
′ − U1

′V2 = 0. (E.23)
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As a result, we have

d
dz

(U1V2 − V1U2) = 0. (E.24)

Therefore, the following determinant is satisfied:∣∣∣∣U1 U2
V1 V2

∣∣∣∣ = constant. (E.25)

As the matrix elements satisfying (E.25), we consider

f(0) = G(0) = 0, F (0) = g(0) = 1,

F (z)g(z) − f(z)G(z) = 1.
(E.26)

From (E.19) and (E.26), we define the transfer matrix M as[
U(0)
V (0)

]
= M

[
U(z)
V (z)

]
, M =

[
g(z) −f(z)

−G(z) F (z)

]
. (E.27)

Also, from (E.17), (E.18), and (E.26), we put

f(z) =
i

nr cos θ
sin(k0nrz cos θ),

F (z) = cos(k0nrz cos θ),

g(z) = cos(k0nrz cos θ),

G(z) = inr cos θ · sin(k0nrz cos θ).

(E.28)

If we place

βi = k0nrz cos θ, pi = nr cos θ, (E.29)

and substitute (E.28) and (E.29) into (E.27), we can express the transfer
matrix M as

M =

⎡
⎣ cos βi − i

pi
sin βi

−i pi sin βi cos βi

⎤
⎦ =

[
m11 m12
m21 m22

]
. (E.30)

As shown in Fig. E.2, we consider a light propagating along the arrow
in sequentially placed layers with different refractive indexes. The tangent of
the electric field Ey and that of the magnetic field Hx are continuous at each
interface. Therefore, if we write the tangent components of the electric fields
for the incident wave, the reflected wave, and the transmitted wave as A, R,
and T , respectively, the boundary condition is expressed as
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θ
θ0

θ1

z
z = 0 z = z 1

n0 n r n1

Fig. E.2. Propagation of light in a region with different refractive indexes

A + R = U(0), T = U(z1), (E.31)
p0(A − R) = V (0), p1T = V (z1), (E.32)

where

p0 = n0 cos θ, p1 = n1 cos θ. (E.33)

Here, n0 and n1 are the refractive indexes of the first and last media, respec-
tively. From (E.27) and (E.30)–(E.33), we obtain

A + R = (m11 + m12p1)T, (E.34)
p0(A − R) = (m21 + m22p1)T. (E.35)

From (E.34) and (E.35), the amplitude reflectivity r and the amplitude trans-
missivity t are given by

r =
R

A
=

(m11 + m12p1)p0 − (m21 + m22p1)
(m11 + m12p1)p0 + (m21 + m22p1)

, (E.36)

t =
T

A
=

2p0

(m11 + m12p1)p0 + (m21 + m22p1)
. (E.37)

Using the amplitude reflectivity r and the amplitude transmissivity t, the
power reflectivity R and the power transmissivity T are expressed as

R = r∗r, T =
p1

p0
t∗t. (E.38)

E.3 TM Mode

For the TM wave, we have Ey = 0 and Hx = Hz = 0 from (D.22). Other
components of the TM wave are written as

Hy = U(z) exp[ i (ωt − k0nrx sin θ) ],
Ex = −V (z) exp[ i (ωt − k0nrx sin θ) ],
Ez = −W (z) exp[ i (ωt − k0nrx sin θ) ].

(E.39)
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Also, from (E.3), we have

∂Hy

∂z
= − i ωnr

2

c
Ex = −i k0nr

2Ex,

∂Hy

∂x
=

i ωnr
2

c
Ez = i k0nr

2Ez, (E.40)

∂Ex

∂z
− ∂Ez

∂x
= − i ω

c
Hy = −i k0Hy.

Therefore, we obtain a wave equation

∂2Hy

∂x2 +
∂2Hy

∂z2 = −i k0nr
2
(

∂Ex

∂z
− ∂Ez

∂x

)
= −k0nr

2Hy. (E.41)

Substituting (E.39) into (E.41) gives

d2U

dz2 + (k0nr cos θ)2U = 0. (E.42)

Inserting (E.39) into (E.40) results in

dU

dz
= i k0nr

2V, (E.43)

sin θ · U = nrW, (E.44)
dV

dz
+ i k0nr sin θ · W = i k0U. (E.45)

From (E.44) and (E.45), we obtain

dV

dz
= i k0 cos2θ · U. (E.46)

Differentiating (E.46) with respect to z with the help of (E.43) results in

d2V

dz2 + (k0nr cos θ)2V = 0. (E.47)

In summary, a relationship between U and V for the TM mode is written
as

d2U

dz2 + k0
2nr

2 cos2θ · U = 0,
d2V

dz2 + k0
2nr

2 cos2θ · V = 0, (E.48)

dU

dz
= i k0nr

2V,
dV

dz
= i k0 cos2θ · U. (E.49)

For the TM mode, the transfer matrix M , the amplitude reflectivity r,
the amplitude transmissivity t, the power reflectivity R, and the power trans-
missivity T are obtained by replacing pi for the TE mode with

qi =
cos θ

nr
. (E.50)



F Free Carrier Absorption and Plasma Effect

An equation of motion for the electron in a crystal without a magnetic field
is given by

m∗ d2x

dt2
+

1
τ

m∗ dx

dt
= −eE, (F.1)

where m∗ is the effective mass of the electron, τ is the relaxation time such
as the mean free time of collision, e is the elementary charge, and E is the
electric field. If we assume x, E ∝ e i ωt where ω is the angular frequency of
a light, a position x of the electron is obtained as

x =
eE

m∗ (ω2 − i ω/τ)
. (F.2)

The polarization P of a material is written as

P = P0 + P1; P1 = −nex, (F.3)

where P0 is the polarization caused by ionization of atoms constituting the
crystal, and P1 is the polarization induced by the motion of the electrons.
Here, we express the electric flux density D as

D = ε0E + P = (ε0E + P0) + P1 = εε0E + P1 = ε′ε0E, (F.4)

where ε0 is permittivity in a vacuum and ε is the dielectric constant of the
crystal based on ionization of the atoms. The dielectric constant ε′, which is
modified by the motion of the electrons, is written as

ε′ = εr − i εi = ε − nex

ε0E
, (F.5)

where εr and εi are real and imaginary parts of ε′, respectively. Substituting
(F.2) into (F.5) leads to

εr − ε � − ne2

m∗ω2ε0
, (F.6)

εi � ne2

m∗ω3ε0τ
, (F.7)
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where ω � 1/τ was used.
Using the complex refractive index nr − i κ, we can express εr and εi as

εr = nr
2 − κ2, (F.8)

εi = 2nrκ. (F.9)

Therefore, the optical power absorption coefficient α due to free carrier ab-
sorption is obtained as

α =
2ω

c
κ =

ω

c

εi

nr
=

ne2

m∗ω2ε0nrcτ
, (F.10)

where c is the speed of light in a vacuum.
When the carrier concentration increases by n, we assume that εr and nr

change to εr + ∆εr and nr + ∆nr, respectively. In this case, we have

2nr∆nr = ∆εr. (F.11)

Hence, we obtain

∆nr =
∆εr

2nr
=

εr − ε

2nr
= − e2

2m∗ω2ε0nr
n, (F.12)

which is referred to as the free carrier plasma effect.



G Relative Intensity Noise (RIN)

G.1 Rate Equations with Fluctuations

When semiconductor lasers show two-mode operations, the rate equations on
the photon densities S1 and S2 and the carrier concentration n are expressed
as

dS1

dt
= (α1 − β1S1 − θ12S2) S1 + βsp1

n

τn
+ F1(t), (G.1)

dS2

dt
= (α2 − β2S2 − θ21S1) S2 + βsp2

n

τn
+ F2(t), (G.2)

dn

dt
=

I

eVA
− [G1(n) − β1S1 − θ12S2] S1

− [G2(n) − β2S2 − θ21S1] S2 − n

τn
+ Fn(t). (G.3)

Here, αi ≡ Gi(n) − 1/τphi is the net amplification rate, Gi(n) is the amplifi-
cation rate, τphi is the photon lifetime, βi is the self-saturation coefficient, θij

is the cross-saturation coefficient, βspi is the spontaneous emission coupling
factor (i, j = 1, 2), τn is the carrier lifetime, I is the injection current, e is
the elementary charge, and VA is a volume of the active layer.

Fluctuations are expressed by the Langevin noise sources F1, F2, and Fn.
In Markoffian approximation, time averages of F1, F2, and Fn satisfy

〈Fk(t)〉 = 0, (G.4)
〈Fk(t)Fl(t′)〉 = 2Dklδ(t − t′), (G.5)

where k, l = 1, 2, and n. The diffusion coefficients Dkl are given by

D11 = βsp1
n

τn
S10, D22 = βsp2

n

τn
S20, D12 = D21 = 0,

Dnn = βsp1
n

τn
S10 + βsp2

n

τn
S20 +

n

τn
, (G.6)

D1n = −βsp1
n

τn
S10, D2n = −βsp2

n

τn
S20,

where S10 and S20 are the average photon densities of mode 1 and mode 2,
respectively.
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The amplification rate Gi(n) is given by

Gi(n) =
[
∂Gi

∂n

]
n=nthi

(n − n0i), (G.7)

where nthi is the threshold carrier concentration and n0i is the transparent
carrier concentration.

G.2 RIN without Carrier Fluctuations

We express the photon densities S1 and S2 as

S1 = S10 + δS1(t), S2 = S20 + δS2(t), (G.8)

where S10 and S20 are the average photon densities in a steady state, and δS1
and δS2 are the fluctuations of mode 1 and mode 2, respectively. Substituting
Fourier transforms

δSi(t) =
1
2π

∫ ∞

−∞
δS̃i(ω) exp( iωt) dω, (G.9)

δS̃i(ω) =
∫ ∞

−∞
δSi(t) exp(−i ωt) dt, (G.10)

Fi(t) =
1
2π

∫ ∞

−∞
F̃i(ω) exp( iωt) dω, (G.11)

F̃i(ω) =
∫ ∞

−∞
Fi(t) exp(−i ωt) dt, (G.12)

into (G.1)–(G.3), and then neglecting Fn(t), we have

i ωδS̃1(ω) = −A1δS̃1(ω) − B1δS̃2(ω) + F̃1(ω), (G.13)

i ωδS̃2(ω) = −A2δS̃2(ω) − B2δS̃1(ω) + F̃2(ω), (G.14)

where

A1 = β1S10, A2 = β2S20, (G.15)
B1 = θ12S10, B2 = θ21S20. (G.16)

From (G.13) and (G.14), the self-correlation functions 〈δS̃1(ω)δS̃1
∗
(ω′)〉

and 〈δS̃2(ω)δS̃2
∗
(ω′)〉 are given by

〈δS̃1(ω)δS̃1
∗
(ω′)〉 = S̃δS1(ω) · 2πδ(ω − ω′), (G.17)

S̃δS1(ω) =
(ω2 + A2

2)W1 − 2A2B1W12 + B1
2W2

(A1A2 − B1B2 − ω2)2 + ω2(A1 + A2)2
, (G.18)

〈δS̃2(ω)δS̃2
∗
(ω′)〉 = S̃δS2(ω) · 2πδ(ω − ω′), (G.19)

S̃δS2(ω) =
(ω2 + A1

2)W2 − 2A1B2W21 + B2
2W1

(A1A2 − B1B2 − ω2)2 + ω2(A1 + A2)2
, (G.20)
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where

W1 = 〈F̃1(ω)F̃1
∗
(ω)〉, (G.21)

W2 = 〈F̃2(ω)F̃2
∗
(ω)〉, (G.22)

W12 = 〈F̃1(ω)F̃2
∗
(ω)〉. (G.23)

In the shot noise Langevin model, the correlation strengths 〈F̃k(ω)F̃k
∗
(ω)〉

and 〈F̃k(ω)F̃l
∗
(ω)〉 are given by

〈F̃k(ω)F̃k
∗
(ω)〉, =

∑
R+

k +
∑

R−
k (G.24)

〈F̃k(ω)F̃l
∗
(ω)〉 = −

(∑
Rkl +

∑
Rlk

)
, (G.25)

where R+
k and R−

k (k = 1, 2) are the rate for the photon to enter the photon
reservoirs and to leave them, respectively; R+

k and R−
k (k = n) are the rate for

the electron to enter the electron reservoirs and to leave them, respectively;
and Rkl and Rlk are the exchange rates.

As a result, the correlation strength 〈F̃1(ω)F̃1
∗
(ω)〉 is obtained as

W1 = 〈F̃1(ω)F̃1
∗
(ω)〉

=
1

VA

[(
α1 +

1
τph1

+ β1S10 + θ12S20

)
S10 + βsp1

n

τn

]

� 2
(

α1 +
1

τph1

)
S10

VA
. (G.26)

Similarly, we have

W2 = 〈F̃2(ω)F̃2
∗
(ω)〉 � 2

(
α2 +

1
τph2

)
S20

VA
, (G.27)

W12 = 〈F̃1(ω)F̃2
∗
(ω)〉 � (θ12 + θ21)

S10S20

VA
= W21. (G.28)

Using (G.18) and (G.20), we define the relative intensity noises (RINs)
per unit bandwidth as

RIN1 =
2S̃δS1(ω)

S10
2 =

2
S10

2
(ω2 + A2

2)W1 − 2A2B1W12 + B1
2W2

(A1A2 − B1B2 − ω2)2 + ω2(A1 + A2)2
, (G.29)

RIN2 =
2S̃δS2(ω)

S20
2 =

2
S20

2
(ω2 + A1

2)W2 − 2A1B2W21 + B2
2W1

(A1A2 − B1B2 − ω2)2 + ω2(A1 + A2)2
. (G.30)

G.3 RIN with Carrier Fluctuations

We express the carrier concentration n as
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n = nc0 + δn(t), (G.31)

where nc0 is the carrier concentration in a steady state and δn is the fluc-
tuation in the carrier concentration. Their Fourier transforms are written
as

δn(t) =
1
2π

∫ ∞

−∞
δñ(ω) exp( iωt) dω, (G.32)

δñ(ω) =
∫ ∞

−∞
δn(t) exp(−i ωt) dt, (G.33)

Fn(t) =
1
2π

∫ ∞

−∞
F̃n(ω) exp( iωt) dω, (G.34)

F̃n(ω) =
∫ ∞

−∞
Fn(t) exp(−i ωt) dt. (G.35)

Substituting (G.9)–(G.12) and (G.32)–(G.35) into (G.1)–(G.3), we have

i ωδS̃1(ω) = −A1δS̃1(ω) − B1δS̃2(ω) + C1δñ(ω) + F̃1(ω), (G.36)

i ωδS̃2(ω) = −A2δS̃2(ω) − B2δS̃1(ω) + C2δñ(ω) + F̃2(ω), (G.37)

i ωδñ(ω) = −G1(nc0)δS̃1(ω) − G2(nc0)δS̃2(ω)

+ C3δñ(ω) + F̃n(ω), (G.38)

where

C1 =
[
∂G1

∂n

]
n=nth

S10 +
βsp1

τn
, (G.39)

C2 =
[
∂G2

∂n

]
n=nth

S20 +
βsp2

τn
, (G.40)

C3 = C1 + C2 +
1
τn

. (G.41)

From (G.36)–(G.38), the self-correlation functions 〈δS̃1(ω)δS̃1
∗
(ω′)〉 and

〈δS̃2(ω)δS̃2
∗
(ω′)〉 are given by
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〈δS̃1(ω)δS̃1
∗
(ω′)〉 = S̃δS1(ω) · 2πδ(ω − ω′), (G.42)

S̃δS1(ω) =
1

|X1X2 − Y1Y2|2
× {|X2|2W1 − (X2

∗Y1 + X2Y1
∗)W12

+ |Y1|2W2 + |Z1X2 − Z2Y1|2Wn

+ [X2
∗(Z1X2 − Z2Y1) + X2(Z1X2 − Z2Y1)∗]W1n

− [Y1
∗(Z1X2 − Z2Y1) + Y1(Z1X2 − Z2Y1)∗]W2n}, (G.43)

〈δS̃2(ω)δS̃2
∗
(ω′)〉 = S̃δS2(ω) · 2πδ(ω − ω′), (G.44)

S̃δS2(ω) =
1

|X1X2 − Y1Y2|2
× {|Y2|2W1 − (X1

∗Y2 + X1Y2
∗)W12

+ |X1|2W2 + |Z2X1 − Z1Y2|2Wn

− [Y2
∗(Z2X1 − Z1Y2) + Y2(Z2X1 − Z1Y2)∗]W1n

+ [X1
∗(Z2X1 − Z1Y2) + X1(Z2X1 − Z1Y2)∗]W2n},

(G.45)

where

X1 = iω + A1 +
C1G1(nc0)
i ω + C3

, (G.46)

X2 = iω + A2 +
C2G2(nc0)
i ω + C3

, (G.47)

Y1 = B1 +
C1G2(nc0)
i ω + C3

, (G.48)

Y2 = B2 +
C2G1(nc0)
i ω + C3

, (G.49)

Z1 =
C1

i ω + C3
, (G.50)

Z2 =
C2

i ω + C3
, (G.51)

Wn = 〈F̃n(ω)F̃n
∗
(ω)〉 =

2I0

eVA
2 , (G.52)

W1n = 〈F̃1(ω)F̃n
∗
(ω)〉 = −W1, (G.53)

W2n = 〈F̃2(ω)F̃n
∗
(ω)〉 = −W2. (G.54)

Using (G.43) and (G.45), we obtain the RINs per unit bandwidth as
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RIN1 =
2S̃δS1(ω)

S10
2

=
2

S10
2

1
|X1X2 − Y1Y2|2

× {|X2|2W1 − (X2
∗Y1 + X2Y1

∗)W12

+ |Y1|2W2 + |Z1X2 − Z2Y1|2Wn

+ [X2
∗(Z1X2 − Z2Y1) + X2(Z1X2 − Z2Y1)∗]W1n

− [Y1
∗(Z1X2 − Z2Y1) + Y1(Z1X2 − Z2Y1)∗]W2n}, (G.55)

RIN2 =
2S̃δS2(ω)

S20
2

=
2

S20
2

1
|X1X2 − Y1Y2|2

× {|Y2|2W1 − (X1
∗Y2 + X1Y2

∗)W12

+ |X1|2W2 + |Z2X1 − Z1Y2|2Wn

− [Y2
∗(Z2X1 − Z1Y2) + Y2(Z2X1 − Z1Y2)∗]W1n

+ [X1
∗(Z2X1 − Z1Y2) + X1(Z2X1 − Z1Y2)∗]W2n}. (G.56)
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Index

absorption, 1, 28, 32
induced, 28
rate, 32

absorption loss, 78
ACC, see automatic current control

(ACC)
α parameter, 142
alternating current theory, 130
AM noise, see amplitude modulating

(AM) noise
amplitude modulating (AM) noise, 136
amplitude shift keying (ASK), 128
analog modulation, 132
angle of incidence, 46
antiguiding effect, 114
antireflection (AR), 169
anti-Stokes luminescence, 27
APC, see automatic power control

(APC)
AR, 169
aspect ratio, 54
astigmatism, 114
asymmetry measure, 52
Auger process, 25, 99
autocorrelation function, 140
automatic current control (ACC), 165
automatic power control (APC), 136,

162, 165
axial mode, 117

band edge emission, 28
band filling effect, 39
band offset, 14, 85
band-structure engineering, 190
bandgap, 1
base function, 15
beam waist, 114
Bernard-Duraffourg relation, 36

BH, see buried heterostructure (BH)
bias, 121
biaxial stress, 197
Biot-Savart’s law, 7
bistable LD, 156
blackbody radiation theory, 33
Bloch function, 3
Bloch oscillation, 21
Bloch theorem, 3
Bohr angular frequency, 222
Bohr magneton, 7
Boltzmann constant, 31
bra vector, 3
Bragg wavelength, 67, 172
Brillouin zone, 2

bending of, 21
buffer layer, 190
bulk, 2
buried heterostructure (BH), 116

(C3) LD, see cleaved coupled cavity
(C3) LD

carrier concentration
threshold, 93

carrier distribution, 30
carrier lifetime, 84, 91
carrier noise, 136
catastrophic optical damage (COD),

163
cathodoluminescence, 27
cavity

distributed feedback (DFB), 57
Fabry-Perot, 57
optical, 30

cavity quantum electrodynamics
(QED), 203

CGS-Gaussian units, 235
characteristic matrix, 69
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characteristic temperature, 98
chemiluminescence, 27
chirped grating, 72
chirping, 127
chromatic dispersion, 73, 135
cladding layer, 45
cleaved coupled cavity (C3) LD, 177
cleaved facet, 57
COD, see catastrophic optical damage

(COD)
coherent, 128
complex refractive index, 43
compressive strain, 191
confinement of resonant radiation, 208
coupled cavity, 157
coupled wave equation, 67
coupled wave theory, 67
coupling coefficient, 66
coupling rate of a feedback light to the

semiconductor laser, 158
critical angle, 45
critical thickness, 23, 190
crystal defect, 162
current versus light output (I-L), 90
cutoff, 46

condition, 52
cyclotron angular frequency, 212
cyclotron motion, 212
cyclotron resonance, 11, 212

dark line defect, 164
DBR, see distributed Bragg reflector

(DBR)
DBR-LD, see distributed Bragg

reflector (DBR) LD
decay coefficient, 125
decay rate, 158
decay time, 125
deformation potential, 196
degenerate, 4
degradation, 162
δ function, 141
density of states, 16

effective, 31
derivative

electrical resistance, 102, 103
light output, 102
measurement, 102

deviation, 124

DFB, see distributed feedback (DFB)
DFB-LD, see distributed feedback

(DFB) LD
diagonal element, 191
diamond structure, 4
dielectric film, 58
differential gain, 125
diffracted pattern, 108
diffraction grating, 57, 167
diffusion length, 115
digital modulation, 132
dipole moment, 37
Dirac’s constant, 2
direct modulation, 128, 129
direct transition, 11, 26
discrete, 1
discrete approach, 68
dislocation, 23
dislocations, 164
dispersion, 78, 118

chromatic, 73, 135
material, 135
mode, 135
structual, 135

dispersion curve, 51
distributed Bragg reflector (DBR), 57
distributed Bragg reflector (DBR) LD,

167
distributed feedback (DFB), 57
distributed feedback (DFB) LD, 167
double heterostructure, 22, 85
duty, 133
dynamic single-mode LD, 167

effective density of states, 31
effective mass, 4

approximation, 4
effective mass approximation, 15
effective refractive index, 50

method, 54
eigenvalue equation, 51
Einstein summation convention, 196
Einstein’s A coefficient, 34
Einstein’s B coefficient, 34
Einstein’s relation, 34
elastic strain, 23, 191
electric current noise, 137
electric dipole moment, 227
electric dipole transition, 227
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electroluminescence, 27
injection-type, 27

electron-beam exposure, 78
emission, 1

induced, 28
spontaneous, 28
stimulated, 28

energy band, 1
energy barrier layer, 14
energy barriers, 85
energy eigenvalue, 2
energy level, 1
ensemble average, 139
envelope function, 15
equivalent refractive index, 119
etching mask, 78
evanescent wave, 49
excitation, 25
excited state, 204
exciton, 27, 130
exciton recombination, 28
external cavity, 157
external cavity laser, 148
external cavity LD, 176
external differential quantum efficiency,

88
external modulation, 128, 129
extinction coefficient, 43
extinction ratio, 126
eye pattern, 133

Fabry-Perot cavity, 57
facet, 53
far-field pattern, 108
feedback, 29
Fermi level, 30

quasi-, 30
Fermi’s golden rule, 204
Fermi-Dirac distribution, 30
field spectrum, 139
finesse, 63
fluorescence, 27
FM noise, see amplitude modulating

(FM) noise
forward bias, 84
Franz-Keldysh effect, 130
free carrier absorption, 98
free carrier plasma effect, 113
free space, 43, 205

free spectral range, 61
frequency fluctuation spectrum, 139
frequency modulating (FM) noise, 136
frequency shift keying (FSK), 128
Fresnel formulas, 47, 104
full width at half maximum (FWHM),

62
fundamental mode, 111
FWHM, see full width at half maximum

(FWHM)

gain
optical, 30

gain flattening, 182
gain guiding, 43, 112
Gaussian distribution function, 145
Goos-Hänchen shift, 49
graded index SCH (GRIN-SCH), 180
grating

chirped, 72
phase-shifted, 72
tapered, 72
uniform, 72

GRIN-SCH, see graded index SCH
(GRIN-SCH)

ground state, 204
group theory, 189
guiding effect, 114

anti-, 114
guiding layer, 45

half width at half maximum (HWHM),
62

harmonic perturbation, 223
heat sink, 162
Heaviside function, 180
heavy hole band, 10
heterojunction, 85
heterostructure, 22

double, 22
high frequency modulation, 156
holographic exposure, 78
homojunction, 85
horizontal cavity surface emitting LD,

176
horizontal transverse mode, 108, 112
HWHM, see half width at half

maximum (HWHM)
hybrid orbital, 4
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hydrostatic strain, 191
hysteresis, 160
hysteresis loop, 120

I-L, see current versus light output
(I-L)

impurity recombination, 27
incident light, 46
index guiding, 43
index-coupled grating, 168
indirect transition, 11, 26
induced absorption, 28
induced emission, 28
injection locking, 54
injection-type electroluminescence, 27
intensity fluctuation spectrum, 144
intensity-modulation/direct-detection,

128
intentionally accelerating degradation

tests, 165
interaction energy, 7
interband transition, 117
interference fringe pattern, 78
internal loss, 88
internal quantum efficiency, 89
intraband relaxation time, 120, 182
intrinsic, 84
inverse Laplace transform, 123
inverted population, 28
I-V , 100

k-selection rule, 40, 181
ket vector, 3
kink, 114
k · p perturbation theory, 2

Lagrange equation, 225
Lagrangian, 225
λ/4-shifted grating, 172
Laplace transform, 122
laser, 29
lateral mode, 106
lattice mismatching, 190
left-handed circularly polarized wave,

213
lifetime, 162
light hole band, 10
linearly polarized light, 46
linearly polarized wave, 213

longitudinal mode, 117
Lorentz equation, 225
Lorentz force, 211
Lorentzian, 40, 92, 146
luminescence, 26

anti-Stokes, 27
cathodo-, 27
chemi-, 27
electro-, 27
injection-type electro-, 27
photo-, 27
Stokes, 27
thermo-, 27
tribo-, 27

Luttinger parameter, 194
Luttinger-Kohn Hamiltonian, 193, 194

magnetic flux density, 7
Marcatili’s method, 54
material dispersion, 135
Maxwell’s equations, 70, 229, 235
microcavity, 205
minizone, 21
mirror, 30, 57
mirror loss, 87
MKSA units, 235
modal gain, 182
mode competition, 115
mode density, 35
mode dispersion, 135
mode hopping, 115
mode number, 49
mode partition noise, 154
mode volume, 138
modified MQW, 179
modified Schawlow-Townes linewidth

formula, 146
modulation efficiency, 130
MQW-LD, see multiple quantum well

(MQW) LD
multimode operation, 117
multiple quantum well (MQW) LD, 179

near-field pattern, 108
negative resistance, 21
node, 64
noise, 136
nondiagonal element, 191
nonradiative recombination, 25
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nonradiative recombination lifetime, 91
nonradiative transition, 1
nonreturn-to-zero (NRZ), 133
nonthermal equilibrium, 30
normalized frequency, 51
normalized waveguide thickness, 51
NRZ, see nonreturn-to-zero (NRZ)

ohmic contacts, 162
optical cavity, 30, 57
optical confinement factor, 51
optical fiber, 43
optical fiber amplifier, 128
optical gain, 29, 30
optical isolator, 156
optical resonator, 30, 57
optical transition, 1
optical waveguide, 43

planar, 44
strip, 44
three-dimensional, 44
two-dimensional, 44

orbit-strain interaction Hamiltonian,
195

orbital angular momentum, 7
orbital angular momentum operator,

196
order of diffraction, 67, 172
orthonormalize, 138
oscillation, 86
overflow, 98

pattern effect, 133
Pauli exclusion principle, 1
Pauli’s spin matrices, 7
penetration depth, 49
periodic multilayer, 68
periodic potential, 13
perturbation, 215
perturbation parameter, 2
perturbation theory

k · p, 2
first-order, 3
second-order, 3

phase shift, 47
phase shift keying (PSK), 128
phase velocity, 48
phase-shifted grating, 72
phonon, 25

phosphorescence, 27
photoluminescence, 27
photon, 25
photon lifetime, 91
photon recycling, 208
photoresist, 78
Pikus-Bir Hamiltonian, 193, 195
planar optical waveguide, 44
Planck’s constant, 2
plane of incidence, 46
plane wave, 46
pn-junction, 115
pnpn structure, 115
point defect, 164
polarization, 46
polarization controller, 129
population inversion, 28
potential well, 14
power fluctuation spectrum, 139
Poynting vector, 226
propagate, 43
propagation constant, 48
propagation mode, 45

quantum box, 18
quantum confined Stark effect (QCSE),

130
quantum noise, 136
quantum number, 2
quantum structures, 12
quantum well (QW), 4, 14

one-dimensional, 15
three-dimensional, 18
two-dimensional, 18

quantum well (QW) LD, 179
quantum wire, 18
quarter wavelength shifted grating, 172
quasi-Fermi level, 30
QW, see quantum well (QW)

strained, 190
QW-LD, see quantum well (QW) LD

radiation, 28
radiative recombination, 25
radiative recombination lifetime, 91
radiative transition, 1
rate

absorption, 32
spontaneous emission, 33
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stimulated emission, 32
transition, 31

rate equations, 90, 91
reciprocal effective mass tensor, 4
recombination, 25

impurity, 27
nonradiative, 25
radiative, 25

reflected light, 46
reflector, 30
refracted light, 46
refractive index, 43

complex, 43
relative electric susceptibility, 181
relative intensity noise (RIN), 149, 245
relaxation, 25
relaxation oscillation, 121
resonance angular frequency, 131
resonance condition, 61, 86
resonant tunneling effect, 21
resonator, 30
return-to-zero (RZ), 133
rib waveguide, 115
ridge, 54
ridge-waveguide, 116
right-handed circularly polarized wave,

212
ring cavity, 57
running wave, 64
RZ, see return-to-zero (RZ)

S/N ratio, see signal-to-noise (S/N )
ratio

saturable absorber, 156
scalar potential, 225
SCH, see separate confinement

heterostructure (SCH)
Schrödinger equation, 2
screening tests, 165
selection rule, 187
self-pulsation, 156
semiclassical theory, 137
semimetal, 21
separate confinement heterostructure

(SCH), 180
separation-of-variables procedure, 236
shear strain, 191
signal-to-noise (S/N ) ratio, 126
single crystal, 2

single quantum well (SQW) LD, 179
single-mode operation, 117
slope efficiency, 88
small-signal analysis, 124
Snell’s law, 45
spatial hole burning, 172
spatial hole-burning, 113
spectral density functions, 140
spectral linewidth, 62, 140
spectral linewidth enhancement factor,

142
spherical polar coordinate systems, 8
spin

angular momentum, 7
magnetic moment, 7

spin angular momentum operator, 196
spin-orbit interaction, 6

Hamiltonian, 7
split-off band, 10
split-off energy, 10
spontaneous emission, 28, 33

rate, 33
spontaneous emission coupling factor,

91
SQW-LD, see single quantum well

(SQW) LD
standing wave, 64
steady state, 93
step function, 180
stimulated emission, 28, 32

rate, 32
Stokes luminescence, 27
stop band, 68
strain, 190

compressive, 191
elastic, 23
hydrostatic, 191
shear, 191
tensile, 191

strain-dependent spin-orbit interaction
Hamiltonian, 195

strained QW, 190
stress, 190
strip optical waveguide, 44
structural dispersion, 135
substrate, 45
super lattice, 20

Type I, 21
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Type II, 21
Type III, 21

surface emitting LD
horizontal cavity, 176
vertical cavity, 175

synchrotron radiation, 80

tapered grating, 72
TE mode, 46
tensile strain, 191
tensor, 191
thermal equilibrium, 28
thermoluminescence, 27
three-dimensional optical waveguide,

44, 54
threshold

carrier concentration, 93
threshold current

density, 93
thyristor, 115
time-average, 139
time-dependent quantum mechanical

perturbation theory, 37
time-dependent Schrödinger equation,

221
TM mode, 46
total reflection, 45
transfer matrix, 67, 238
transient response theory, 130
transition

direct, 26
indirect, 26
nonradiative, 1
optical, 1

radiative, 1
transition rate, 31
transmission characteristics, 58
transverse electric (TE) mode, 46
transverse magnetic (TM) mode, 46
transverse mode, 106

horizontal, 108, 112
vertical, 106, 109

transverse resonance condition, 49
triboluminescence, 27
tunneling effect, 21

resonant, 21
turn-on delay time, 121
two-dimensional optical waveguide, 44

undoped, 84
uniform grating, 72
unisotropic optical gain, 183
unperturbed Hamiltonian, 215

valence band absorption, 99
VCSEL, see vertical cavity surface

emitting LD (VCSEL)
vector potential, 225
vertical cavity surface emitting LD, 175
vertical transverse mode, 106

wave function, 2
wave vector, 2
Wiener-Khintchine theorem, 140
window structure, 163

X-ray exposure, 78

zinc-blende structure, 4
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