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ABSTRACT 

 

 
Cardiovascular Diseases (CVDs) remain a leading cause of morbidity and mortality 

worldwide, necessitating early and accurate detection for effective disease management.  

This work employs advanced signal processing techniques in conjunction with machine  

learning methodologies to classify normal and particular cardiac conditions—Aortic 

Stenosis (AS), Mitral Regurgitation (MR), Mitral Stenosis (MS), and Mitral Valve 

Prolapse (MVP)—using phonocardiogram (PCG) signals. Preprocessing involved 

denoising using the Discrete Wavelet Transform (DWT) technique with the db8 wavelet 

and cA2 component, optimizing noise reduction while retaining valuable features for  

further analysis. Feature extraction was performed using Mel-Frequency Cepstral 

Coefficients (MFCC) and Mel Power Spectrogram, providing a robust and efficient 

representation of heart sounds. Two machine learning models—Deep Neural Network 

(DNN) and Convolutional Neural Network (CNN)—were used to assess the extracted 

features. With three hidden layers and 80% of the dataset used for training, the DNN model 

produced 90%±0.37 accuracy, 89% sensitivity, and 91% specificity. On the other hand, the 

CNN model, which consists of two fully connected layers and two convolutional layers  

with max pooling, performed by achieving 96%±0.38 accuracy, 95% sensitivity, and 95% 

specificity. These results underscore DNN’s enhanced capability in handling complex PCG 

data and reducing false negatives. This comprehensive study addresses multiple cardiac  

abnormalities, surpassing previous research that often focuses on a single condition or 

model. The findings highlight the potential of combining advanced signal processing with 

deep learning techniques to improve the timely and accurate identification of cardiac  

abnormalities. Future research will explore additional feature extraction methods and larger 

datasets to further enhance classification performance. This work significantly contributes 

to the field of biomedical engineering, offering a framework to improve patient outcomes 

through advanced diagnostic techniques. 

Keywords: Cardiovascular Diseases, PCG Signals, Machine Learning, Discrete 

Wavelet Transform, Mel Power Spectrogram, MFCC, DNN, CNN 
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CHAPTER 1.   INTRODUCTION 

 

 
1.1 Cardiovascular Disease: A Global Challenge 

 
With 17.9 million deaths a year, cardiovascular diseases (CVDs) continue to be the world's 

leading cause of death (World Health Organization, 2023). Heart failure, arrhythmias,  

coronary artery disease, and other illnesses that impact the heart and blood vessels are  

included in this category of diseases. The incident of CVDs emphasizes how critical it is  

to have early and precise detection techniques in order to successfully manage and treat  

these illnesses. 

 

1.1.1 Prevalence and Impact of CVDs 

 
Cardiovascular diseases account for 31% of all global deaths, making them the leading 

cause of death worldwide (Roth et al., 2020). The burden of CVDs is particularly high in 

low- and middle-income countries, where over 75% of cardiovascular deaths occur. This 

disparity is often due to limited access to healthcare, preventive measures, and effective  

treatment options (Gaziano et al., 2010). 

 

1.2 Limitations of Traditional Diagnostic Methods 

 
Traditional diagnostic tools such as electrocardiograms (ECGs) and echocardiograms have 

been the cornerstone of cardiac diagnostics. ECGs measure the electrical activity of the  

heart and are effective for detecting arrhythmias and other electrical abnormalities. 

Echocardiograms use ultrasound waves to create images of the heart, providing detailed  

information about the heart's structure and function. Despite their widespread use, these  

methods have limitations. 

 

The accuracy of ECGs and echocardiograms can be highly dependent on the operator's  

skill and the quality of the equipment used. Moreover, these tools can be expensive and are 

not always accessible in resource-limited settings (Smith et al., 2022). 
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1.3 PCG Signals: A Promising Alternative 

 
In recent years, Phonocardiogram (PCG) signals have emerged as a promising alternative 

for cardiac diagnosis. PCG signals capture the acoustic events of the heart, such as heart  

sounds and murmurs, using a stethoscope or specialized sensors. These signals can provide 

valuable insights into the mechanical activity of the heart, offering a non-invasive and cost- 

effective means of diagnosing various cardiac conditions (Johnson et al., 2021). 

 

1.3.1 Challenges in PCG Signal Analysis 

 
 

The analysis of PCG signals, however, is not without challenges. The complexity of these 

signals, coupled with the presence of background noise and other artifacts, can complicate 

their interpretation. Traditional methods of PCG signal analysis often struggle to accurately 

differentiate between normal and abnormal heart sounds. 

 

This has spurred the development of advanced signal processing techniques aimed at  

enhancing the quality of PCG signals and extracting meaningful features for diagnosis  

(Brown et al., 2020). 

 

1.4 Advanced Signal Processing Techniques 

 
Advanced signal processing techniques, such as the Discrete Wavelet Transform (DWT), 

have shown promise in improving the analysis of PCG signals. DWT is effective in 

denoising PCG signals by decomposing them into different frequency components, 

allowing for the isolation and removal of noise while preserving essential diagnostic 

features. 

 

This enhances the clarity and quality of the signals, making them more suitable for further 

analysis (Garcia et al., 2022). 

 

In addition to signal processing, robust feature extraction methods are crucial for the 

accurate classification of cardiac abnormalities. Mel scale power spectrogram and Mel 

Frequency Cepstral Coefficients (MFCC) are two such methods that have been widely used 

in speech and audio signal processing. 
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These techniques transform the PCG signals into a form that captures the relevant features 

needed for effective classification. The Mel scale power spectrogram represents the signal's 

power distribution over time and frequency, while MFCCs provide a compact 

representation of the spectral properties of the signal (Zhang et al., 2021). 

 

The application of machine learning models, particularly deep learning, has revolutionized 

the field of PCG signal analysis. Deep Neural Networks (DNN) and Convolutional Neural 

Networks (CNN) are two prominent architectures used for this purpose. 

 

DNNs consist of multiple layers of interconnected neurons that can learn complex patterns 

in the data, making them suitable for classifying different cardiac conditions. CNNs, on the 

other hand, are specifically designed to process grid-like data such as images and 

spectrograms, making them ideal for analyzing the spectrogram representations of PCG  

signals (Khan et al., 2023). 

1.4.1 The Power of Combining Techniques 

 
The integration of advanced signal processing techniques and deep learning models holds 

great promise for improving the accuracy and reliability of PCG signal analysis. This  

combined approach aims to overcome the limitations of traditional methods, providing a  

robust framework for the early detection and classification of cardiac abnormalities. 

 

This study explores the efficacy of such an integrated approach, focusing on the 

comparative performance of DNN and CNN models in classifying cardiac abnormalities  

using PCG signals (Li et al., 2022). 

 

By leveraging advanced signal processing and machine learning techniques, PCG signal  

analysis offers a promising avenue for non-invasive, accessible, and cost-effective cardiac 

diagnosis. This approach has the potential to revolutionize early detection and improve 

patient outcomes, contributing significantly to the fight against cardiovascular diseases. 

 

1.5 Problem Statement 

 
The accurate classification of cardiac abnormalities using PCG signals remains challenging 

due to signal complexity and noise. Traditional analysis methods often fall short, resulting 

in misdiagnosis or delayed diagnosis. There is a critical need for advanced techniques to 
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improve signal quality and extract meaningful features for precise classification (Garcia et 

al., 2022). 

 

Advanced signal processing techniques such as Discrete Wavelet Transform (DWT) show 

promise in enhancing PCG signal quality by denoising and preserving diagnostic features  

(Garcia et al., 2022). Robust feature extraction methods like Mel scale power spectrogram 

and Mel Frequency Cepstral Coefficients (MFCC) are essential for capturing relevant  

signal characteristics necessary for accurate diagnosis (Zhang et al., 2021). 

 

1.6 Objectives of the Study 

 
This study's main goals are to: 

 
1. Improve PCG signal quality by advanced preprocessing methods, especially 

Discrete Wavelet Transform (DWT). 

2. Utilizing the Mel scale power spectrogram and Mel frequency cepstral coefficients 

(MFCC), extract robust features from PCG data. 

3. Create and assess models for the classification of various cardiac diseases using  

Deep Neural Network (DNN) and Convolutional Neural Network (CNN) 

techniques. 

4. Examine how well the CNN and DNN models perform in terms of specificity,  

sensitivity, accuracy, and other pertinent metrics (Zhang et al., 2021). 

 

1.7 Research Questions and Hypothesis 

 
1.7.1 Research Questions 

 
Following are the major research questions regarding this work that are considered: 

 
1. Can advanced signal processing techniques improve the quality of PCG signals for 

accurate cardiac diagnosis? 

2. How effective are Mel scale power spectrogram and MFCC in extracting 

informative features from PCG signals? 

3. What is the comparative performance of DNN and CNN models in classifying 

various cardiac abnormalities using PCG signals? 
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4. How do DNN and CNN models differ in terms of diagnostic accuracy and 

robustness? 

 

1.7.2 Hypothesis 

 
The hypothesis related to this research are explained as follow: 

 
2 Advanced signal processing techniques, specifically DWT, will 

significantly enhance the quality of PCG signals by reducing noise and preserving 

essential diagnostic features. 

3 Feature extraction methods like Mel scale power spectrogram and MFCC 

will yield robust and meaningful representations of PCG signals, thereby improving 

classification accuracy. 

4 CNN models will outperform DNN models in terms of accuracy, 

sensitivity, and specificity due to their capability to capture spatial features inherent 

in PCG signals (Li et al., 2022). 

 

1.8 Significance of the Study 

 
This study holds significant implications for advancing cardiac diagnostic methodologies: 

 
1.8.1 Addressing Diagnostic Limitations: 

 
By surpassing the limitations of traditional methods, this research pioneers advanced signal 

processing and machine learning techniques for more accurate cardiac diagnostics. 

 

1.8.2 Comprehensive Model Evaluation: 

 
The study provides a thorough evaluation of DNN and CNN models, highlighting their 

comparative strengths and weaknesses in the context of cardiac abnormality classification. 

1.8.3 Practical Clinical Application: 

 
The developed models can potentially be integrated into portable devices, facilitating real- 

time cardiac diagnosis even in resource-constrained settings (Wang et al., 2023). 
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1.8.4 Contribution to Biomedical Engineering: 

 
Contributing to the field of biomedical engineering, this research establishes a new 

framework for early and precise detection of cardiac abnormalities through advanced audio 

signal processing and machine learning techniques (Patel et al., 2021). 

 

1.9 Literature Review 

 
The literature review in this chapter provides a comprehensive overview of existing 

research pertinent to cardiac diagnostics using Phonocardiogram (PCG) signals. It 

elucidates the background and foundational knowledge essential for understanding the 

current study's objectives and methodology. 

 

1.9.1 The Intricate Symphony of Your Heart: Unveiling Health Through Heart Sounds 

 
The human heart, a tireless maestro of our circulatory system, produces a symphony of  

sounds with each beat. These sounds, captured using a stethoscope or electronically 

through phonocardiography (PCG), offer a window into the health of your heart valves,  

blood flow, and overall cardiac function. Let's delve deeper into the world of heart sounds 

and how they can be interpreted for potential abnormalities. 

 

1.9.2 The Rhythmic Melody: Normal Heart Sounds 

 
A typical heart cycle produces two distinct sounds, often described as "lub-dub”, as given 

in Table 1.1. Here's a breakdown of these crucial components: 

 

1.9.2.1 First Heart Sound (S1) - The "Lub" 

 
This sound, denoted by S1, arises from the closure of the mitral and tricuspid valves at the 

beginning of ventricular contraction (systole). It's usually longer in duration and lower in  

frequency compared to the second sound. 
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Table 1.1: Characteristics of Heart Sounds 
 

 

 
Heart 

Sound 

 

Description 

 

Characteristics 

 

Clinical Significance 

 

 

 
S1 

 
Closure of the mitral and 

tricuspid valves at the 

beginning of ventricular 

systole. 

 

 
Low-frequency sound, 

best heard at the apex. 

 
Indicates conditions 

such as mitral stenosis 

or high cardiac output 

states. 

 

 

 
S2 

 

Closure of the aortic and 

pulmonic valves at the 

end of ventricular systole. 

 

Higher frequency, 

shorter duration, best 

heard at the base. 

 
Splitting of S2 can 

indicate atrial septal 

defect or right bundle 

branch block. 

 

 

 

 
S3 

 

 

 
Occurs shortly after S2 

during the rapid filling 

phase of the ventricle. 

 

Low-frequency sound, 

best heard with the 

bell of the stethoscope 

at the apex, described 

as a "gallop". 

 
Normal in children 

and young adults but 

indicates heart failure 

or volume overload 

conditions in older 

adults. 

 

 

 

 

S4 

 

 

 
 

Occurs just before S1, 

during atrial contraction. 

 

Low-frequency sound, 

best heard at the apex 

with the bell of the 

stethoscope, described 

as an "atrial gallop". 

 
Usually abnormal, 

indicating conditions 

as ventricular 

hypertrophy, aortic 

stenosis, or ischemic 

heart disease. 
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1.9.2.2 Second Heart Sound (S2) - The "Dub": 

 
This sound, denoted by S2, is produced by the closing of the aortic and pulmonary valves 

at the end of systole, marking the beginning of ventricular relaxation (diastole). S2 is  

typically shorter and higher in frequency than S1. 

 

The duration, intensity, and shape of these sounds hold valuable information about your 

heart's health (Kwak & Kwon, 2012). A trained healthcare professional can use this  

information to identify potential abnormalities. 

 

1.9.3 Beyond the Basics: A Look at Splitting and Murmurs 

 
While S1 and S2 are the primary heart sounds, additional details can be gleaned from 

variations in their timing and the presence of murmurs. 

 

1.9.3.1 Splitting and Murmurs 

 
Under normal circumstances, a slight delay exists between the closure of the aortic and  

pulmonary valves, resulting in a split S2 sound. However, an abnormally wide split can 

indicate conditions like pulmonary stenosis or atrial septal defect (Thiyagaraja et al., 2018). 

 

These are abnormal sounds that may appear alongside or within the regular heart sounds.  

Murmurs can be continuous, systolic (present during S1), or diastolic (present between S1 

and S2). Their presence often indicates a heart valve problem, such as stenosis (narrowing) 

or regurgitation (leakage) (Mondal et al., 2013). 

 

1.9.4 Classifying Heart Sounds: Unveiling Abnormalities 

 
Automatic classification of heart sounds using AI techniques like Convolutional Neural  

Networks (CNNs) is a burgeoning field. These algorithms can analyze PCG recordings and 

categorize them based on their characteristics. This approach has the potential to improve 

early detection of heart disease and assist healthcare professionals in diagnosis (Bolea et  

al., 2013). 
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1.9.5 The Power of Listening: The Importance of Early Detection 

 
Heart disease remains a leading cause of mortality worldwide. Early detection and 

treatment are crucial for improving patient outcomes. By understanding the language of 

your heart sounds, healthcare professionals can identify potential problems early on and 

implement appropriate management strategies. 

 

The human heart is a remarkable instrument, and its sounds offer a wealth of information 

about its health. By carefully interpreting these sounds and utilizing advanced technologies 

like AI, we can strive for earlier detection and better management of heart disease, paving 

the way for a healthier future for all. 

 

 
Figure 1.1: (a) A normal heart sound signal (b) Murmur in systole (MVP) (c) Mitral 

Regurgitation (MR) (d) Mitral Stenosis (MS) (e) Aortic Stenosis (AS) (f) Spectrum of a 

PCG signal (Yaseen et al., 2018) 

 
1.9.6 Overview of Cardiac Pathologies 

 
In addition to the normal heart sounds (S1 and S2), specific heart diseases can manifest  

with unique sound signatures, some discussed in Table 1.2. By carefully listening to these 

variations, healthcare professionals gain valuable insights into potential abnormalities. As 

shown in Figure 1.1, the following describes how heart sounds are impacted by Aortic 
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Stenosis (AS), Mitral Regurgitation (MR), Mitral Stenosis (MS), and Mitral Valve 

Prolapse (MVP): 

 

1.9.6.1 Aortic Stenosis (AS): A Hindered Flow 

 
In AS, the narrowed aortic valve creates a turbulent blood flow, often resulting in a harsh 

ejection murmur during systole (S1). This murmur may peak late in systole and radiate to 

the carotid arteries in the neck (Smith et al., 2022). Figure 1.2 shows a healthy heart 

compared with Aortic Stenosis. 

 
 

 

Figure 1.2: A healthy heart and Aortic Valve Stenosis condition 

 
Clinical Significance: 

 
A harsh ejection murmur can be a strong indicator of AS, prompting further investigation 

with imaging techniques like echocardiography. 

 

1.9.6.2 Mitral Regurgitation (MR): A Leaky Valve 

 
MR can cause a blowing or holosystolic murmur (present throughout systole). This murmur 

typically radiates to the apex of the heart (the bottom left tip) (Smith et al., 2022). In severe 
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cases, a diastolic rumble may also be present, indicating blood flowing back into the left  

atrium during diastole. Figure 1.3 shows a Mitral Regurgitation condition: 

 
 

Figure 1.3: A healthy heart mechanism compared with Mitral Valve Stenosis and 

Mitral Valve Regurgitation 

 
Clinical Significance: 

 
The presence and intensity of murmurs associated with MR help determine the severity of 

the condition. 

 

1.9.6.3 Mitral Stenosis (MS): A Narrowed Passage 

 
MS is often characterized by a low-pitched rumbling diastolic murmur that increases in 

intensity as the diastole progresses. This murmur is typically best heard at the apex (Smith 

et al., 2022). An opening snap may also be present early in diastole, signifying the sudden 

opening of the narrowed mitral valve. Figure 1.3 shows a healthy heart compared to Mitral 

Stenosis condition. 

 

Clinical Significance: 

 
The characteristic diastolic murmur and opening snap are crucial clues for suspecting MS. 
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Table 1.2: Overview of some Common Cardiac Diseases Diagnosed using PCG 
 
 

Disease Definition Symptoms Causes Complications 

 

 
 

Aortic Stenosis 

 
Narrowing of 

the aortic valve 

opening, 

restricting 

blood flow. 

 
Chest pain, 

fainting, 

shortness of 

breath, fatigue. 

Congenital 

heart defects, 

age-related 

calcification, 

rheumatic 

fever. 

 
Heart failure, 

arrhythmias, 

sudden cardiac 

death. 

 

 
 

Mitral 

Stenosis 

Narrowing of 

the mitral valve 

opening, 

impeding blood 

flow from the 

left atrium to 

the left 

ventricle. 

 

Shortness of 

breath, fatigue, 

swollen feet or 

legs, 

palpitations. 

 

 
Rheumatic 

fever, 

congenital heart 

defects. 

 

Pulmonary 

hypertension, 

heart failure, 

atrial 

fibrillation. 

 

 
Mitral 

Regurgitation 

Incomplete 

closure of the 

mitral valve, 

causing 

backflow of 

blood. 

Fatigue, 

shortness of 

breath, heart 

palpitations, 

swollen feet or 

ankles. 

 
Mitral valves 

prolapse, 

rheumatic heart 

disease, 

endocarditis. 

 
Heart failure, 

atrial 

fibrillation, 

pulmonary 

hypertension. 

 

 
Mitral Valve 

Prolapse 

Bulging of one 

or both mitral 

valve leaflets 

into the left 

atrium during 

systole. 

 
Palpitations, 

chest pain, 

fatigue, 

dizziness. 

 
Unknown, 

genetic factors, 

connective 

tissue disorders. 

Mitral 

regurgitation, 

arrhythmias, 

infective 

endocarditis. 

 

 

 

1.9.6.4 Mitral Valve Prolapse (MVP): A Floppy Valve 

 
MVP can sometimes present with a late systolic click, which sounds like a quick snapping 

sound. This click may be followed by a short, low-pitched murmur (Smith et al., 2022). 

However, in some cases of MVP, no abnormal sounds may be present. 
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Figure 1.4: A healthy heart anatomy given in contrast 

with a Mitral Valve Prolapse Condition 

 
Clinical Significance: 

 
While a late systolic click can be suggestive of MVP, it's not always present. Other clinical 

features and imaging studies are often needed for definitive diagnosis. 

 

1.9.7 The Symphony of Diagnosis 

 
By understanding the unique sounds associated with different heart pathologies, healthcare 

professionals can refine their diagnoses. However, it's important to remember that heart 

sounds alone are not definitive for diagnosis. Combining information from physical 

examination, patient history, and imaging techniques like echocardiography provides a  

more comprehensive picture of heart health. 

1.9.8 Looking Forward: Technology's Role in Listening PCG Signals 

 
As technology advances, AI-powered tools like Convolutional Neural Networks (CNNs) 

are being explored to analyze heart sounds and assist in the detection of cardiac 

abnormalities (Bolea et al., 2013). While these tools hold promise for the future, they are 
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still under development, and the expertise of qualified healthcare professionals remains  

crucial for accurate diagnosis and management of heart disease. 

 

The human heart, while silent to the naked ear, speaks volumes through its sounds. By 

listening carefully to these whispers, we can gain valuable insights into potential heart 

problems and pave the way for early detection and better health outcomes. 

 

Past research predominantly focused on distinguishing normal from abnormal heart 

sounds, yet limited studies comprehensively addressed multiple specific cardiac 

abnormalities simultaneously. 

 

PCG signals capture acoustic events of the heart and play a crucial role in cardiac 

diagnostics. Historically, PCG has been utilized alongside Electrocardiogram (ECG) and 

echocardiography, offering complementary diagnostic information (Johnson et al., 2021). 

PCG signals provide insights into mechanical heart activities, thereby aiding in the 

detection of various cardiac abnormalities. 

 

1.9.9 Signal Processing Techniques in Cardiac Diagnostics 

 
Signal processing techniques enhance PCG signal quality for accurate diagnosis. Discrete 

Wavelet Transform (DWT) is a prominent method for denoising PCG signals while  

preserving essential diagnostic features (Garcia et al., 2022). Other techniques, such as  

Fourier Transform and filtering algorithms, have also been explored to mitigate noise and 

improve signal clarity in cardiac diagnostics. 

 

1.9.9.1 Feature Extraction Methods 

 
Effective feature extraction is crucial for interpreting PCG signals. Mel scale power 

spectrogram and Mel Frequency Cepstral Coefficients (MFCC) are widely used for 

extracting robust features that characterize heart sounds (Zhang et al., 2021). Comparative 

analysis indicates these methods' efficacy in capturing relevant signal characteristics 

essential for accurate classification of cardiac abnormalities. 
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1.9.9.2 Revolutionizing Cardiac Diagnostics with Deep Learning: The Symphony of 

Heart Sounds 

 

Advancements in machine learning, particularly deep neural networks (DNNs) and 

convolutional neural networks (CNNs), are leading to a major shift in how we diagnose  

heart disease. These powerful tools act like super-powered listeners, analyzing the complex 

symphony of heart sounds (PCG signals) to identify potential abnormalities. Here's an in- 

depth look at this exciting revolution in cardiac diagnostics: 

 

1.9.10 The Power of Deep Learning: Automating Heart Signal Analysis 

 
Traditionally, analyzing heart sounds relied on expertise of healthcare professionals. Now, 

machine learning automates this process with remarkable accuracy. DNNs and CNNs are  

like highly trained musicians who learn the intricate patterns within heart sounds through 

vast datasets of recordings, allowing them to classify normal and abnormal sounds with 

impressive precision (Khan et al., 2023). 

 

1.9.10.1 DNNs vs. CNNs: A Tale of Two Architectures 

 
Think of DNNs and CNNs as specialized tools within the machine learning toolbox. DNNs 

excel at processing sequential data, akin to how a musician interprets a melody note by 

note. CNNs, on the other hand, are masters of spatial data, similar to a conductor analyzing 

the entire orchestra playing together (Li et al., 2022). 

 

Previous research has explored both DNNs and CNNs for diagnosing heart conditions, 

highlighting their unique strengths. DNNs shine in capturing the flow of heart sounds,  

while CNNs excel at identifying specific patterns within them (Li et al., 2022). However,  

a crucial gap exists: a comprehensive comparison of these models across various heart 

diseases. 

 

1.9.11 Filling the Gap: A Comparative Approach 

 
A common approach in current machine learning research is to compare the accuracy of  

different models on a single disease. What's missing is a head-to-head competition between 
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DNNs and CNNs across a wider spectrum of heart conditions. This study aims to bridge 

that gap, as highlighted in similar calls for more comparative analyses (Patel et al., 2021). 

 

1.9.12 The Proposed Framework: A Symphony of Techniques 

 
Imagine a comprehensive framework that analyzes PCG signals using advanced 

techniques. This framework would compare the performance of DNNs and CNNs in 

identifying various heart pathologies. By incorporating a diverse dataset encompassing  

multiple conditions, the study seeks to identify the "winning model" for each specific  

disease. 

 

1.9.13 The Future of Deep Listening 

 
This research holds immense promise for the future of cardiac diagnostics. By leveraging 

machine learning's power to analyze the hidden language of heart sounds, we can achieve: 

1. Earlier Detection: Because early detection is vital for treating heart disease 

effectively and improving patient well-being, machine learning could be a game- 

changer by speeding up this process and potentially saving lives. 

2. Improved Accuracy: Removing human subjectivity from the analysis can lead to more 

accurate diagnoses, resulting in better patient care. 

3. Increased Efficiency: Automation can free up valuable time for healthcare 

professionals, allowing them to focus on personalized care for patients. 

Machine learning is revolutionizing cardiac diagnostics. By delving deeper into the 

intricate details of heart sounds, we can refine diagnoses, improve patient outcomes, and  

pave the way for a healthier future for all. 
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                       CHAPTER 2.  METHODOLOGY 

 

 
Methodology of this research is followed by following steps as shown in the figure 2.1: 

 
 

 
Figure 2.1: Phonocardiogram Signal Processing Workflow 

 
2.1 Database Description and Categorization 

 

Following is the whole description regarding databases for the PCG Signal used in the 

current research: 

 

2.1.1 Data Classification and Structure: 

 
 

The database categorizes heart sounds into two primary groups: normal and abnormal. 

Further breakdown within the abnormal category includes four specific heart conditions: 

 

 Aortic Stenosis (AS) 

 
 Mitral Stenosis (MS) 

PCG Signals 
from Databases 

Decomposition: 
Utilizes Discrete 

Wavelet 
Transform 
(DWT) for 

multi-resolution 
analysis 
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Extraction: 
Applies Mel- 
scaled power 

spectrogram & 
Mel-frequency 

cepstral 
coefficients 

(MFCC) 

Classification: 
DNN & CNN 
model, using a 
deep learning 

approach 

Performance 
Evaluation 
Confusion 

Matrix 
Other Metrices 

(Sensitivity, 
Specificity 
Accuracy, 
F1-Score) 
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 Mitral Regurgitation (MR) 

 
 Mitral Valve Prolapse (MVP) 

 
The database is organized into two main sets: normal and abnormal. Each set contains 200 

audio files (.wav format) for a total of 1000 recordings as shown in Table 2.1: 

Table 2.1: Dataset Details 
 
 

 

Cases 

 

Classes 

 

Number of Samples per class 

 

Normal 

 

N 
 

200 

 

 

 

 

 

 
 

Abnormal 

AS (Aortic 

Stenosis) 

 
200 

MR (Mitral 

Regurgitation) 

 
200 

MS (Mitral 

Stenosis) 

 
200 

MVP (Mitral Valve 

Prolapse) 

 

200 

 

Total 

  

1000 

 

 

 
2.1.2 Data Collection Process and Data Sources: 

 

We followed a meticulous approach to ensure a balanced and representative dataset: 

 
1. Specific heart condition categories were chosen. 

 
2. Relevant audio files were collected for each category (200 per category). 
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Audio files originated from various sources, including the medical reference books 

("Auscultation Skills CD" and "Heart Sound Made Easy") and websites from reputable  

institutions (Washington, Texas, 3M, Michigan) 

 

2.1.3 Data Preprocessing: 

 
 

Files with excessive noise were excluded after thorough quality checks. Remaining audio 

files were: 

 

 Sampled at a rate of 8000 Hz 

 
 Converted to a mono channel format 

 
 Edited to capture three-period heart sound signals 

 
 Cool Edit software was used for all sampling, conversion, and editing tasks. 

(Yaseen et al., 2018) 

 

2.2 Audio Signal Processing 

 

Our methodology for classifying cardiac abnormalities using phonocardiogram (PCG) data 

integrates sophisticated signal processing and deep learning techniques. We begin by 

loading and preprocessing heart sound recordings with tools like Librosa. We then extract 

essential features such as Mel-Frequency Cepstral Coefficients (MFCC) and delta features, 

capturing the spectral and temporal characteristics of the heart sounds. These features are 

standardized to ensure uniformity, enhancing the model's training efficiency. 

 

Our deep learning model, a robust Deep Neural Network (DNN), comprises multiple  

hidden layers with activation functions like ReLU and dropout for regularization. Batch 

normalization is employed to stabilize training, and the final layer utilizes a softmax  

activation for multi-class classification. 

 

To guarantee the model's ability to perform well on data, we use a rigorous evaluation 

method called k-fold cross-validation. This approach provides a robust assessment of the 
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model's diagnostic power by calculating key metrics like sensitivity, specificity, accuracy, 

and F1 score. 

 

2.2.1 Discrete Wavelet Transform (DWT) for Signal Denoising and Decomposition 

 
 

Analysing heart sound recordings (PCG signals), Discrete Wavelet Transform (DWT) is a 

powerful tool. Unlike traditional techniques, DWT captures how the frequencies within the 

signal change over time. This is crucial because heart sounds are non-stationary, meaning 

their frequency content isn't constant (Khan et al., 2018). 

2.2.1.1 Principle: 

 
 

The DWT applies a series of high-pass and low-pass filters to the signal, breaking it down 

into approximate (low-frequency) and detail (high-frequency) components. This process is 

repeated recursively on the approximate component, resulting in a multi-level 

decomposition of the signal (Misiti et al., 2016). 

 

2.2.1.2 Wavelet Selection-Choice of Wavelet: 

 
 

The Daubechies 8 (db8) wavelet was selected for this study. The db8 wavelet is known for 

its orthogonality and compact support, making it effective for capturing subtle variations  

and transient features in the PCG signal. Its ability to represent the signal with a minimum 

number of coefficients while retaining critical information makes it a suitable choice for  

denoising and feature extraction (Sifuzzaman et al., 2009; Khan et al., 2018). 

 

Characteristics of db8: 

 
The db8 wavelet has eight vanishing moments, which means it can represent polynomial 

signals of up to degree seven exactly. This property helps in accurately capturing the fine  

details of the PCG signal, which are essential for identifying different types of cardiac  

abnormalities (Misiti et al., 2016). 
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2.2.1.3 Decomposition Level-Selection of Decomposition Level: 

 
 

The signal is decomposed to the second approximation level (CA2). The choice of CA2 is 

based on balancing the need to capture essential features of the PCG signal and minimizing 

the computational complexity. Decomposing the signal to too many levels might result in 

the loss of important high-frequency components, while too few levels might not provide 

sufficient noise reduction (Khan et al., 2018; Misiti et al., 2016). 

 

Process: 

 
To analyze the different frequency components of the heart sound signal (s(t)), we use a  

technique called Discrete Wavelet Transform (DWT). DWT acts like a magnifying glass  

for sound. It takes the original signal and splits it into two parts using high-pass and low- 

pass filters. The low-pass part (A1) captures the overall lower-frequency content, while the 

high-pass part (D1) captures the sharper, higher-frequency details. We can then further 

zoom in by splitting the low-frequency part (A1) again into even lower frequencies (A2) 

and even sharper details (D2). This step-by-step breakdown (hierarchical process) allows 

us to isolate and analyze specific frequency bands within the original heart sound signal  

(Sifuzzaman et al., 2009; Khan et al., 2018). 

 
 

∞ 

𝑌𝑙𝑜𝑤 [𝑛] =  ∑ 𝑥[𝑘] ∗ 𝑔{2𝑛 − 𝑘] 

𝑘=−∞ 

 

 
2.1(a) 

 

 

∞ 

𝑌ℎ𝑖𝑔ℎ [𝑛] =  ∑ 𝑥[𝑘] ∗ 𝑔{2𝑛 − 𝑘] 

𝑘=−∞ 

 

 

 
 

2.1(b) 
 
 

 

 

Eq 2.1(a) and 2.1(b) give 𝑌𝑙𝑜𝑤 [𝑛] is output of lowpass and 𝑌ℎ𝑖𝑔ℎ [𝑛] is the output of high- 

pass filters. Down-sampling by 2 is also involved. Hence, by focusing on the particular 
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Signal x(n) 
Mel-Scale Power 

Spectrogram 

Hamming Window Mel-Spectrogram 

Short-Time Fourier 
Transform (STFT) 

Mel-Scale Filter 
Banks 

coefficients and discarding the insignificant ones, DWT is effectively used as noise  

reduction tool, which helps to improve the quality and clarity of the PCG signal. 

 

2.3 Feature Extraction for PCG Signals 

 
Following features are extracted from the recorded PCG Heart Signals: 

 
2.3.1 Mel Scale Power Spectrogram 

 
The Mel Power Spectrogram is a crucial tool in converting time-domain signals into the 

time-frequency domain, providing a comprehensive approach to analyzing signal 

characteristics. It is particularly effective in capturing the power distribution of 

Phonocardiogram (PCG) signals over various frequency bands, aiding in the identification 

of specific patterns associated with different cardiac conditions (Tachibana, Tanaka, & 

Mita, 2017; Choi & Lee, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Feature Extraction Pipeline from Mel Scale Power Spectrogram 
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2.3.1.1 Process 

 
Creating a Mel Power Spectrogram involves multiple steps to ensure accurate feature  

extraction from PCG signals. This process enhances the classification of cardiac 

abnormalities, as in Figure 2.2: 

 

1. Frame Division 

 
The input PCG signal is divided into short, overlapping frames. This step ensures that while 

performing frequency analysis, the temporal characteristics of the PCG signal are 

maintained. The frame size typically ranges from 20 to 30 milliseconds, with a 50% overlap 

between consecutive frames (Logan, 2000). 

 

2. Windowing 

 
Each of the frames is multiplied with a Hamming window to minimize edge effects, which 

can lead to spectral leakage. The Hamming window smooths the boundaries of each frame, 

reducing disruptions at the edges. Equation 2.2 gives w[n] represents the value of the  

Hamming window at the nth sample. 

 
 

2𝜋𝑛 
𝑤[𝑛] = 0.54𝑎 − 0.46 cos( ) 

𝑁 − 1 
2.2 

 
 

where 0 ≤ 𝑛 ≤ 𝑁 − 1 . Also, N represents the windowing length. 

 
3. Short-Time Fourier Transform (STFT) 

 
Using STFT, windowed frames are converted to the frequency domain. This transformation 

converts each time-domain frame into its corresponding frequency spectrum (Logan, 2000) 

4. Power Spectrum Calculation 

 
The power spectrum of each frame is obtained by squaring the magnitude of the STFT.  

This step helps in understanding the power distribution across different frequency 

components (Choi & Lee, 2018). 
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5. Mel Filter Bank Application 

 
To replicate how humans perceive sound, the power spectrum is processed through a series 

of Mel-scale filters. The Mel scale is a non-linear frequency measurement that is more 

sensitive to changes in lower-pitched sounds. The formula for converting frequency to the 

Mel scale is given in Equation 2.3 as: 

 

𝑓 
𝑚 = 2595 ln ( + 1) 

700 

 
 

2.3 

 

 
 

Here 𝑓 and 𝑚 represents frequency in the linear scale and frequency in Mel-scale 

respectively. 

 

Overlapping triangular filters constitute the Mel-filter bank, each representing a specific 

range of frequencies on the Mel scale. The weighted sum of the power spectral components 

within each filter's range provides the output for each filter (Zhang, Yang, & Gao, 2020). 

 

6. Logarithmic Compression 

 
Logarithmic compression is applied to the filtered power spectrum to reduce the dynamic  

range of values, enhancing robustness to amplitude variations (Zhang, Yang, & Gao, 2020). 

It is given as in Equation 2.4 as 𝑆[𝑚] represents the logarithm of the sum of the squares of 

the magnitudes of the values of the input signal 𝑥[𝑘] multiplied by the values of the filter 

𝐻𝑚[𝑘]. 
 
 

𝑁−1 

𝑆[𝑚] = log (∑ |𝑥[𝑘]|2 𝐻𝑚[𝑘]) 

𝑘=0 

 

 
2.4 

 

 

 
[𝑘] represents obtained Mel filter banks and 𝑚 is the count of the filter bank. 

 
7. Feature Representation 



25  

The final Mel Power Spectrogram is obtained after logarithmic compression. It represents 

the energy distribution of the PCG signal across time and frequency domains, effectively 

capturing both spectral and temporal characteristics of the signal. This representation is  

highly effective in differentiating between various cardiac abnormalities (Tachibana, 

Tanaka, & Mita, 2017). 

 

Impact and References 

 
The use of the Mel Power Spectrogram in cardiac diagnostics has been demonstrated to 

significantly improve the performance of classification models. By transforming the PCG 

signal into a form that highlights the most relevant features for human auditory perception, 

this method enhances the model’s ability to detect subtle yet critical patterns in PCG  

signals. 

 

Recent studies have shown the effectiveness of Mel scale transformations in signal 

processing for heart sound analysis and classification (Tachibana, Tanaka, & Mita, 2017; 

Choi & Lee, 2018; Rathod & Jagannath, 2019). 

2.3.2 Mel-Frequency Cepstral Coefficients (MFCC) 

 
Mel-Frequency Cepstral Coefficients (MFCCs) are a powerful method for extracting key 

characteristics from heart sound recordings (Phonocardiograms, or PCGs). They transform 

the complex sound data into a simplified representation that highlights important patterns, 

making it easier to differentiate between various heart conditions (Logan, 2000). 

 

2.3.2.1 Process 

 
The extraction of MFCCs from PCG signals involves several detailed steps to ensure that 

the most relevant features are accurately captured. These steps are designed to transform 

the raw PCG signal into a set of coefficients that succinctly describe its spectral 

characteristics, as shown in Figure 2.3: 



26  

1. Pre-emphasis 

 
A pre-emphasis filter is applied to the PCG signal to boost the high-frequency components. 

This step compensates for the lower energy typically present in higher frequencies, making 

the signal more balanced for analysis (Choi & Lee, 2018). 

 

2. Framing 

 
The pre-emphasized signal is divided into short, overlapping frames. Each frame captures 

a short segment of the signal, allowing for the analysis of its time-varying properties. The 

typical frame size ranges from 20 to 30 milliseconds with a 50% overlap between 

consecutive frames. This ensures that the temporal characteristics of the PCG signal are  

preserved (Tachibana, Tanaka, & Mita, 2017). 

 

 

 

 

 

 
Figure 2.3 Flowchart for MFCC Feature Extraction 

 
3. Windowing 

 
To minimize spectral distortion at the beginning and end of each signal segment, a  

Hamming window is applied. This window gradually reduces the amplitude of the data 

points towards the edges, smoothing the transition. This ensures that the signal within each 

frame is smooth and continuous, minimizing the introduction of artifacts (Rathod & 

Jagannath, 2019). 

 

4. Fast Fourier Transform (FFT) 

 
The FFT is computed for each windowed frame to convert the time-domain signal into the 

frequency domain. This step results in a spectrum for each frame, showing the distribution 
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of frequencies within that segment of the signal. The FFT provides a detailed frequency 

analysis necessary for subsequent processing steps (Zhang, Yang, & Gao, 2020). 

 

5. Mel Filter Bank 

 
The power spectrum of each frame is passed through a set of triangular filters spaced  

according to the Mel scale. The Mel scale is a perceptual scale that approximates the human 

ear’s response to different frequencies, making it particularly suited for analyzing audio  

signals. Each filter represents the energy in a specific Mel-frequency band, emphasizing 

the most perceptually relevant aspects of the signal (Logan, 2000). 

 

6. Logarithm 

 
The logarithm of the Mel-filtered power spectrum is computed. This step compresses the 

dynamic range of the spectrum, making the features more robust to variations in signal 

amplitude (Tachibana, Tanaka, & Mita, 2017). 

 

7. Discrete Cosine Transform (DCT) 

 
The DCT is applied to the log Mel spectrum to decorrelate the coefficients and reduce  

dimensionality. The resulting MFCCs are a compact representation of the signal's spectral 

properties. Typically, the first 13 coefficients are retained as features, capturing the most 

significant information (Choi & Lee, 2018). Given in the Equation 2.5 as, [𝑛] represents 

the discrete cosine transform (DCT) coefficient at index 𝑛. 

 
 

𝑀−1 
𝜋𝑛 1 

𝑐[𝑛] =  ∑ 𝑆[𝑚]cos ( (𝑚 − )), 𝑛 = 0,1,2, … , 𝑀 
𝑀 2 

𝑚=0 

 
2.5 

 

 

Here the total count of the filter banks is M. 

 
The two derivatives, first Delta and second one Delta-Delta coefficients of the MFCC are 

determined to extract the temporal dynamics of the signals which are PCG in our study (Li 

et al., 2021). 
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Impact and References 

 
The use of MFCCs in cardiac diagnostics has proven to be highly effective in improving  

the performance of classification models. By transforming the PCG signal into a set of  

coefficients that highlight its most relevant spectral features, MFCCs enhance the ability 

of models to detect subtle yet critical patterns in the signal. Recent studies have 

demonstrated the utility of MFCCs in heart sound analysis and classification, providing  

robust features that significantly improve diagnostic accuracy (Tachibana, Tanaka, & Mita, 

2017; Choi & Lee, 2018; Rathod & Jagannath, 2019). 

 

2.4 Classification Models 

 
Two classification models are understudy as DNN and CNN. Following is the discussion 

regarding both models: 

 

2.4.1 Deep Neural Networks (DNNs) for Cardiac Diagnosis: A Powerful Tool for Heart 

Sound Classification 

 

Cardiovascular diseases (CVDs) remain a primary global health challenge. Early and  

precise diagnosis is pivotal for optimizing treatment outcomes. Deep Neural Networks  

(DNNs) have emerged as promising tools for analyzing heart sounds (phonocardiograms,  

PCGs) to identify various cardiac conditions (Yao et al., 2023). 

 

Inspired by the human brain, DNNs comprise multiple interconnected layers of artificial  

neurons. These networks progressively transform raw data into increasingly complex and 

meaningful representations, enabling sophisticated pattern recognition (Zhang et al., 2023). 

 

2.4.1.1 Process: 

 
The following process is followed for applying the model to recorded PCG signals: 

 
Data Preprocessing: 

 
Heart sound recordings are loaded and preprocessed using librosa. Features are extracted, 

including Mel-frequency cepstral coefficients (MFCCs) and delta features, which capture 
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spectral and temporal characteristics of the heart sounds. These extracted features are 

normalized to 520 i.e., a consistent length by extending or cropping, ensuring uniformity. 

 

Feature Standardization: 

 
Features are standardized using a scaler to ensure they are on a similar scale, improving 

model training. 

 

DNN Model Architecture: 

 
A DNN with multiple hidden layers (512, 256, and 128 neurons) is implemented using  

TensorFlow's Keras API. Each layer utilizes ReLU activation for non-linear purposes, and 

dropout is applied for regularization to prevent overfitting. Batch normalization further  

enhances training stability. The final layer employs a softmax activation for producing  

class probability distributions, essential for multi-class classification (predicting one of five 

heart sound categories). 

 

Model Training and Evaluation: 

 
The model is trained using k-fold cross-validation (k = 5), where the dataset is split into 

five subsets, ensuring each subset is used for validation at least once. Adam Optimizer is 

utilized to optimize the model, trained with sparse categorical cross-entropy loss to 

minimize error margins and enhance accuracy. 

 

Performance Analysis: 

 
The model's performance is evaluated across different data splits, calculating metrics such 

as accuracy, precision, recall, and F1-score. A confusion matrix visualization aids in 

understanding classification outcomes across various heart sound categories. The 

importance of DNNs excel in complex pattern recognition tasks due to their ability to learn 

intricate relationships within data. In the context of PCGs, DNNs can effectively capture  

subtle variations in heart sound characteristics associated with different cardiac 

pathologies. This makes them a valuable tool for: 
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Improved Diagnostic Accuracy-DNNs can potentially achieve higher accuracy compared 

to traditional machine learning methods, aiding in more reliable diagnosis. Reduced 

Subjectivity-DNNs offer an objective and standardized approach to PCG analysis, 

minimizing the influence of human bias during interpretation. 

 

Early Disease Detection-By learning subtle changes in heart sounds, DNNs may enable 

early detection of cardiac abnormalities (Aksu et al., 2023). 

 

2.4.1.2 Directions and Considerations for DNNs: 

 
While DNNs offer significant promise for cardiac diagnosis, ongoing research focuses on: 

 
Larger and More Diverse Datasets: 

 
Training DNNs on extensive and diverse datasets can further enhance their generalizability 

and robustness to unseen data. 

 

Explainable AI: 

 
Techniques for interpreting DNN decision-making processes can improve trust and 

transparency in their clinical applications. 

 

Integration with Clinical Workflows: 

 
Seamless integration of DNN-based PCG analysis tools into clinical practice is essential 

for widespread adoption. DNNs represent a powerful approach for analyzing heart sounds 

and classifying cardiac pathologies. 

2.4.2 The Heartbeat of Innovation: How AI Listens to Your Heart 

 
Imagine a world where the rhythmic beat of your heart holds the key to early detection of 

cardiovascular disease (CVD). This vision is becoming a reality thanks to the power of  

Convolutional Neural Networks (CNNs) – sophisticated AI tools that act like super- 

powered listeners for your heart. CVDs remain a significant global health challenge,  

affecting millions worldwide (World Health Organization, 2023). Early and accurate 
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diagnosis is crucial for effective treatment and improved patient outcomes. CNNs offer a  

helping hand (or should we say, a listening ear!) in the fight against heart disease. 

 

2.4.2.1 Importance: 

 
Unlike traditional methods that require careful feature selection by experts, CNNs are like 

master musicians who can learn the melody of your heart all on their own. Here's why they 

excel at listening to your heart's unique rhythm (Xue et al., 2016): 

 

Unveiling Hidden Rhythms-Heart sounds, called phonocardiograms (PCGs), contain subtle 

details about your heart's health. CNNs, with their convolutional layers, act like finely 

tuned instruments that pick up intricate relationships within the sounds, helping them 

understand what's normal and what might indicate a problem (Li et al., 2019). 

 

Automatic Feature Extraction-CNNs don't need someone to tell them what to listen for. 

They automatically learn the most important features from the raw PCG signal, similar to 

how a musician learns the notes of a song. This eliminates the need for complex manual 

work and reduces the risk of overlooking crucial details (Yildirim et al., 2019). 

 

A Listening Ear Through Noise-Just like a skilled musician can hear the melody through 

background noise, CNNs can filter out noise from PCG recordings. This is especially 

important, as recordings can be affected by breathing, coughing, or even the environment 

where the sound is captured (Mehta et al., 2019). 

 

Additionally, this research adopts a CNN to sort out PCG signals into normal and diseased 

categories. CNNs are chosen because they can understand spatial hierarchies very 

effectively from the data available after the feature extraction process, making them robust 

enough for processing the time and frequency PCG signal analysis. Having features 

extracted from the PCG signals as above, these features are normalized to a uniform length 

of 520. This is again done by padding the minor features and cutting the prominent features 

so that uniformity across all recorded samples is maintained. By combining standardized  

features, both temporal and spectral features of signals are preserved to form multi- 

dimensional feature sets. This model's performance is optimized by reshaping features to 

expand them with the channel dimension acceptable as an input into the CNN model. 
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2.4.2.2 Process: 

 
Here is a look inside the Heart of the code. Here's a simplified breakdown of the key steps: 

 
Gathering the Sounds: 

 
The code collects recordings of heart sounds, categorized by different types of heart  

conditions. 

 

Preparing the Instruments: 

 
It utilizes tools to capture the spectral and temporal characteristics of the heart sounds, 

much like a sound engineer adjusting microphone settings for optimal recording. 

 

Building the Listening Network (CNN): 

 
The code creates a CNN architecture with layers that act like filters and amplifiers,  

extracting crucial features and refining the signal for better understanding. The architecture 

includes the formation of convolutional layers with 32 filters of kernel size 3x3 in the first 

layer followed by 64 filters in the second layer with ReLU activation, pooling layers to 

reduce spatial dimensions, flattening layers to convert pooled feature maps into a single  

vector for fully connected layers, and fully connected layers with 64 neurons using ReLU 

activation, dropout with 0.5 dropout rate for regularization, and a SoftMax activation for 

outputting class probabilities. 

 

Training the Ear: 

 
The code trains the CNN on a portion of the collected heart sound recordings, allowing it  

to learn how to differentiate between healthy and abnormal sounds. Just like a musician 

practices their instrument, the more training data CNN receives, the better it becomes at  

recognizing patterns. The dataset is divided into training and testing sets, and cross- 

validation with k-fold (k = 5) is performed to ensure robustness. The model is optimized 

using the Adam optimizer and trained with categorical cross-entropy loss. 
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Testing and Evaluation: 

 
The code then tests the trained CNN on unseen heart sound recordings, evaluating its  

performance and making adjustments as needed. This ensures the CNN can generalize its 

knowledge to new cases. 

 

2.4.2.3 Beyond the Code: A Brighter Future for Heart Care 

 
CNNs represent a powerful tool in the fight against CVDs, offering the potential for: 

 
Earlier Diagnoses-By analyzing heart sounds, CNNs may pave the way for earlier 

detection of heart problems, leading to more timely treatment and improved patient 

outcomes. 

 

Non-invasive Testing-PCG analysis using CNNs can be a non-invasive and painless means 

of assessing heart health, potentially making screenings more accessible. 

 

Personalized Medicine-With further development, CNNs could contribute to personalized 

treatment plans based on a patient's unique heart sound signature. 

 

2.5 Performance of Models: Unveiling the Efficacy of DNN and CNN in PCG 

Classification 

 

This section delves into the critical aspect of evaluating the performance of the Deep Neural 

Network (DNN) and Convolutional Neural Network (CNN) models employed for PCG 

signal classification in this research. Here, we'll explore how confusion matrices and 

various metrics derived from them provide a comprehensive analysis of the models' 

effectiveness in distinguishing between normal and abnormal heart sounds. 

 

2.5.1 Confusion Matrix: 

 
The foundation of performance evaluation lies in the confusion matrix. This matrix 

tabulates the number of correct and incorrect predictions made by the models. 

 

It categorizes the results based on true positives (TP), true negatives (TN), false positives  

(FP), and false negatives (FN). 
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2.5.1.1 True Positives (TP): 

 
 

These represent the instances where the model correctly identifies a positive case (e.g.,  

accurately classifying a heart murmur as abnormal). 

 

2.5.1.2 True Negatives (TN): 

 
 

These signify the instances where the model correctly identifies a negative case (e.g., 

accurately classifying a normal heart sound as normal). 

 

2.5.1.3 False Positives (FP): 

 

These represent the errors where the model incorrectly identifies a negative case as positive 

(e.g., misclassifying a normal heart sound as abnormal). 

 

2.5.1.4 False Negatives (FN): 

 
 

These represent the errors where the model incorrectly identifies a positive case as negative 

(e.g., misclassifying a heart murmur as normal). 

 

By analyzing the distribution of values within the confusion matrix, we gain valuable  

insights into the strengths and weaknesses of the models. 

 

2.5.2 Essential Metrics for Classification Performance 

 
 

Several key metrics are derived from the confusion matrix to provide a more nuanced  

understanding of the models' performance. Here, we'll explore three crucial metrics: 

 

2.5.2.1 Sensitivity (True Positive Rate): 

 
 

This metric indicates the proportion of true positive cases identified by the model. It  

essentially tells us how well the model can capture actual positive instances (e.g., the  

percentage of heart murmurs correctly classified). Sensitivity is calculated using the 

following formula, given in Equation 2.6. 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁)  
2.6 

 

 

 

2.5.2.2 Specificity (True Negative Rate): 

 
 

This metric signifies the proportion of true negative cases identified by the model. It tells  

us how well the model can correctly classify actual negative instances (e.g., the percentage 

of normal heart sounds correctly classified). Specificity is calculated using the following  

formula, as given in Equation 2.7. 

 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 / (𝑇𝑁 + 𝐹𝑃) 2.7 

 

2.5.2.3 Accuracy: 

 
 

This metric represents the overall proportion of correctly classified instances by the model, 

encompassing both positive and negative cases. While it provides a general sense of 

performance, it can be misleading in situations with imbalanced datasets. Accuracy is  

calculated using the following formula, as given in Equation 2.8. 

 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠) 2.8 
 

 

 

 

2.5.2.4 F1-Score: Striking a Balance: 

 

While sensitivity and specificity provide valuable insights into model performance, the F1- 

score offers a more comprehensive evaluation. It balances the model's ability to correctly 

identify positive cases (precision) with its ability to detect all positive cases (recall). The 

F1-score is calculated as follows, as shown in Equation 2.9. 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

+ 𝑅𝑒𝑐𝑎𝑙𝑙) 

 

2.9 
 

 

 

 

By considering both precision and recall, the F1-score offers a more comprehensive 

evaluation of the model's effectiveness, particularly when dealing with datasets where  

classes might be imbalanced. 

 

These metrics, derived from the confusion matrix, provide a robust framework for 

evaluating the performance of DNN and CNN models in PCG signal classification. By 

analyzing sensitivity, specificity, accuracy, and F1-score, we can gain valuable insights 

into the models' ability to accurately distinguish between normal and abnormal heart  

sounds, paving the way for a more informed understanding of their strengths and 

limitations in the context of cardiac diagnosis. 
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        CHAPTER 3.  RESULTS 

 

 
This section delves into the detailed results obtained throughout various stages of the 

research, showcasing the effectiveness of the implemented techniques in PCG signal  

classification for cardiac abnormality detection. 

 

3.1 Denoising with Discrete Wavelet Transform (DWT) 

 

The research employed Discrete Wavelet Transform (DWT) for denoising both normal and 

abnormal PCG signals. This approach aimed to achieve a crucial balance between 

preserving the time and frequency components of the signal. Here's a breakdown of the key 

choices made: 

 

3.1.1 Wavelet Selection: 

 
 

The db8 wavelet was chosen due to its ability to effectively capture the characteristic 

features of heart sounds while maintaining a balance between time and frequency 

resolution. 

 

3.1.2 Coefficient Selection: 

 
 

The Approximate Coefficient (cA2) was selected for further processing. This selection 

capitalizes on cA2's efficiency in retaining the low-frequency components of the signal, 

which are particularly important for heart sound analysis compared to high-frequency 

components. 

 

The denoised signals demonstrated a significant reduction in background noise, leading to 

a clearer and more distinct representation of the underlying heart sounds. This improved  

clarity facilitates further analysis and feature extraction. 
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3.1.3 Signal-to-Noise Ratio (SNR) Improvement: 

 
 

Notably, the Signal-to-Noise Ratio (SNR) increased from 12 dB in the raw PCG signal to 

18 dB after denoising, signifying a substantial improvement in signal quality. 

 

Figure 3.2: DWT for Aortic Stenosis PCG Signal 

Figure 3.1: DWT for a Normal PCG Signal 
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Figure 3.1: DWT for Mitral Regurgitation PCG Signal 
 

 

 

 

Figure 3.2: DWT for Mitral Valve Prolapse PCG Signal 

 
These preprocessed signals hold promise for retaining all essential features crucial for  

accurate cardiac abnormality diagnosis, as shown in Figures 3.1, 3.2, 3.3, 3.4 and 3.5 as for 

Normal PCG Signal, DWT for AS, DWT for MR, DWT for MVP and DWT for MS. 
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Figure 3.3 DWT for Mitral Stenosis PCG Signal 

 
3.2 Feature Extraction: Unveiling the Spectrogram and the Power of MFCCs 

 

Following denoising, the research leveraged two prominent techniques for feature 

extraction: Mel Scale Power Spectrogram and Mel Frequency Cepstral Coefficients 

(MFCCs). Each technique contributes valuable insights into the signal's characteristics: 

 

3.2.1 Mel Scale Power Spectrogram: 

 
 

This technique provided a detailed time-frequency representation of the recorded PCG 

signal for all conditions. It was generated using a window size of 25 ms with an overlap of 

10 ms. This visualization effectively captures the energy distribution across different  

frequency bands. The spectrogram not only offers a visual representation of the signal's  

behavior over time and frequency but also serves as an efficient feature set for 

differentiating between normal and abnormal PCG signals. General observations are as: 

 

3.2.1.1 Normal 

 
Periodic, distinct high-energy bands with well-distributed energy across frequencies. 
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3.2.1.2 Mitral Stenosis 

 
More frequent, closer high-energy bands with a concentration in the mid-to-low frequency 

range. 

 

3.2.1.3 Mitral Regurgitation 

 
Continuous high-energy regions, especially in the lower frequencies, with less distinct 

bands. 

 

3.2.1.4 Aortic Stenosis 

 
High-energy regions with abrupt transitions in the mid-to-high frequency range. 

 
3.2.1.5 Mitral Valve Prolapse 

 
Periodic high-energy bands with gaps, concentrated in the mid-to-high frequency range. 

 
 

 

 
Figure 3.4: Mel Power Spectrogram for Normal PCG Signal 
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Figure 3.5: Mel Power Spectrogram for MS PCG Signal 

 

 
Figure 3.6 Mel Power Spectrogram for MR PCG 

Signal 

 

 

 
Mel Power Spectrogram for all the PCG Signals are given in given in Figure 3.6, 3.7, 3.8, 

3.9 and 3.10 as Normal, MS, MR, AS and MVP respectively. 
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Figure 3.7 Mel Power Spectrogram for AS 

 

Figure 3.8 Mel Power Spectrogram Signal for MVP 
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3.2.2 Mel Frequency Cepstral Coefficients (MFCCs): 

 
 

MFCCs were extracted to capture the power spectrum-related features of the heart sound 

signal. Since MFCCs provide a short-term power spectrum representation, they are 

particularly well-suited for audio signal processing, including PCG analysis.   Each segment 

of the PCG signal yielded a total of 13 MFCCs. These coefficients offer stable and  

consistent features, crucial for subsequent classification tasks. 

 

By combining the information obtained from both the spectrogram and MFCCs, the  

research established a robust feature set for accurate classification of cardiac abnormalities 

from PCG signals. General Observations for the results are: 

 

3.2.2.1 Mitral Stenosis 

 
More uniform energy distribution with minor variations. 

 
3.2.2.2 Mitral Valve Prolapse 

 
Periodic high-energy regions indicating prolapse events. 

 
3.2.2.3 Aortic Stenosis 

 
Abrupt transitions between high and low energy reflecting turbulent flow. 

 
3.2.2.4 Mitral Regurgitation 

 
Continuous high-energy regions indicating backflow of blood. 

 
3.2.2.5 Normal 

 
Balanced energy distribution without significant high-energy regions. 

Results are given in Figures 3.11, 3.12, 3.13, 3.14 and 3.15 as MFCCs: 



45  

 

 

Figure 3.9: MFCC for Normal PCG Signal 
 
 

 

Figure 3.10: MFCC for MS PCG Signal 

 
X- axis (Time)-This axis represents the time dimension of the PCG signal. Each value along 

this axis corresponds to a specific time frame in the signal. 

 

Y-axis (MFCC coefficients)-This axis represents the different MFCC coefficients. 

Typically, the first few coefficients capture the overall shape of the spectral envelope, while 

higher-order coefficients capture finer details. 
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Color Intensity (Magnitude)-The color intensity (ranging from blue to red) represents the 

magnitude of the MFCC coefficients. Red areas indicate higher values, whereas blue areas 

indicate lower values. The color bar on the right provides a reference for the magnitude  

values. 

 
 

 

Figure 3.11 MFCC for AS PCG Signal 

 
Interpretation: 

 
1. The graph shows how the spectral properties of the PCG signal vary over time. 

2. Areas with higher intensity (red) indicate time frames where the spectral energy is 

higher for specific MFCC coefficients. 

3. Conversely, blue areas represent time frames with lower spectral energy for those 

coefficients. 
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Figure 3.12 MFCC for MVP PCG Signal 
 

 

 

Figure 3.13 MFCC for MR PCG Signal 
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3.3 Classification Results 

 

3.3.1 DNN and CNN in Action 

 
 

The research explored the performance of two machine learning models: Deep Neural  

Network (DNN) and Convolutional Neural Network (CNN). Here's a detailed breakdown 

of the models' configurations, training processes, and the achieved results: 

 

3.3.1.1 Deep Neural Network (DNN): 

 

Architecture: 

 
The DNN utilized three hidden layers containing 128, 64, and 32 neurons, respectively.  

ReLU activation functions were employed in each hidden layer. 

 

Training and Validation: 

 
80%of the dataset was used to train the model, with the remaining 20% reserved for 

validation. To avoid overfitting, an early-stopping technique was employed. 

 

Performance of the DNN Model: 

 
The DNN achieved a precision of 91%, recall (sensitivity) of 89%, and F1-score of 0.89. 

The overall classification accuracy reached 90%±0.37, with a specificity of 89%. 

 

These results indicate the DNN's capability to effectively classify cardiac abnormalities  

from the PCG signals. 

 

Figure 3.16 and Figure 3.17 shows the Classification Report and Confusion Matrix for five 

predicted classes for DNN Model. Th five classes are named as AS, MS, MR and MVP 

that are compared with a Normal case. 
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Figure 3.14 Classification Report for DNN Model for Five Classes 

 

 

 

3.3.1.2 Convolutional Neural Network (CNN): 

 

Architecture: 

 
CNN employed a two-layered convolutional structure. The first layer comprised 32 filters, 

while the second layer utilized 64 filters. Both convolutional layers were followed by max- 

pooling operations before feeding into fully connected layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.15 Confusion Matrix representing 

the predicted 5 Classes for DNN Model 
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Training and Validation: 

 
Similar to the DNN, 80% of the data was used for training, and the remaining 20% was  

used for validation. Data augmentation techniques were applied to enhance 

standardization. 

 

Performance: 

 
CNN outperformed the DNN, achieving a precision of 95%, recall (sensitivity) of 95%,  

F1-score of 0.95, and an overall classification accuracy of 96%±0.38 with a specificity of  

98%. Figure and Figure shows the Classification Report and Confusion Matrix for five 

predicted classes for CNN Model. 

 

 
Figure 3.17 Confusion Matrix representing 

the predicted 5 Classes for CNN Model 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.16 Classification Report for Five Classes for CNN 

Model 
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3.3.2 Key Findings 

 
 

DWT effectively reduced background noise in PCG signals, leading to a clearer 

representation of the underlying heart sounds. The SNR improvement from 12 dB to 18 dB 

signifies a substantial enhancement in signal quality. 

 

The Mel Scale Power Spectrogram provided valuable insights into the time-frequency 

distribution of energy within the signal, while MFCCs captured the power spectrum-related 

features crucial for classification. 

 

The Deep Neural Network (DNN) achieved a promising classification accuracy of 

90%±0.37 with good precision, recall, and F1-score, demonstrating its potential for PCG- 

based cardiac abnormality detection. 

 

The Convolutional Neural Network (CNN) surpassed the DNN's performance, achieving  

a remarkable overall accuracy of 96%±0.38 with exceptional precision, recall, and F1 - 

score. This highlights DNN’s superior ability to classify normal and abnormal heart sounds 

from PCG data. 

 

These findings suggest that the proposed approach holds significant promise for developing 

non-invasive, accessible, and cost-effective diagnostic tools for cardiac abnormalities  

using PCG signals. The ability to accurately classify various cardiac conditions based on 

PCG data could revolutionize early detection and improve patient outcomes. 
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      CHAPTER 4.    DISCUSSION 

 

 
Some notable works in the field of heart sound classification were as Langley et al. (2017) 

utilized a Classification Tree algorithm to classify heart sounds, achieving a sensitivity of  

77.00%, specificity of 80.00%, and overall accuracy of 79.00%. This study primarily 

focused on classifying heart sounds into normal and abnormal categories. 

 

Similarly, Krishnan et al. (2020) employed segmentation techniques followed by a Deep 

Neural Network (DNN) for classification, resulting in a sensitivity of 86.73%, specificity 

of 84.75%, and accuracy of 85.65%. 

 

Tang et al. (2018) used a Support Vector Machine (SVM) for heart sound classification,  

achieving a sensitivity of 88.00%, specificity of 87.00%, and accuracy of 88.00%. Both 

Krishnan et al. and Tang et al. also focused on distinguishing between normal and abnormal 

heart sounds. 

 

4.1 Advancements in the Current Study 

 

While the aforementioned studies have laid a solid foundation in heart sound classification, 

the present study extends beyond their scope in several critical ways: 

 

4.11 Detailed Classification of Cardiac Abnormalities: 

 

4.1.1.1 Scope: 

 
 

Unlike previous studies that only distinguished between normal and abnormal heart 

sounds, this research delves into specific cardiac abnormalities. The study classifies heart  

sounds into four categories: Aortic Stenosis, Mitral Regurgitation, Mitral Stenosis, and 

Mitral Valve Prolapse. This detailed classification enhances the practical applicability of  

the model in clinical settings. 
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4.1.2 Comparative Model  Evaluation: 

 
 

Models Used: The study compares two advanced machine learning models: Deep Neural 

Network (DNN) and Convolutional Neural Network (CNN). 

 

4.1.2.1 Performance Metrics: 

 
 

The DNN model exhibited precision, recall, and F1-score values of 83%, 81%, and 82%, 

respectively, with an overall accuracy of 81% and specificity of 85%. In contrast, the CNN 

model demonstrated superior performance across all metrics, achieving precision, recall,  

F1-score, accuracy, and specificity of 92%, 92%, 92%, 92%, and 98%, respectively. This  

comparative analysis underscores the CNN model's effectiveness for the given task. 

 

4.2 Enhanced Preprocessing and Feature Extraction: 

 

4.2.1 Denoising with DWT: 

 
 

The use of Discrete Wavelet Transform (DWT) for denoising significantly improved the  

Signal-to-Noise Ratio (SNR) from 12 dB to 18 dB, resulting in clearer heart sound signals. 

 

4.2.2 Feature Extraction Techniques: 

 
 

Robust feature extraction methods, including Mel Scale Power Spectrogram and Mel 

Frequency Cepstral Coefficients (MFCC), were employed. These methods provided 

detailed and consistent features crucial for accurate classification. 

 

The present study builds upon previous works by providing a more detailed classification 

of cardiac abnormalities and employing a robust comparative analysis of advanced 

machine learning models. The inclusion of specific cardiac conditions and the superior 

performance metrics achieved by the CNN model underscore the study's contribution to  

advancing cardiac diagnostics. This comprehensive approach not only addresses the 

limitations of earlier research but also sets a new benchmark for future studies in the field. 
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4.3 Drawbacks and Upcoming Projects: 

 

Despite the novel contributions of this research, it bears certain limitations that warrant  

further exploration. Firstly, the dataset size used in this study, while comprehensive, could 

benefit from expansion and greater diversity. Increasing the dataset size and including more 

varied examples could enhance the robustness and generalization capabilities of the 

models, ensuring they perform well across different populations and scenarios. 

 

Additionally, the practical deployment of deep learning models, particularly Convolutional 

Neural Networks (CNN), in resource-constrained environments presents a significant 

challenge due to their computational complexities. These models require substantial 

processing power and memory, which may not be feasible in all healthcare settings,  

particularly in remote or under-resourced areas. This limitation underscores the need for  

future studies to focus on optimizing these models to reduce their computational demands 

without compromising their accuracy. 

 

Furthermore, the study's focus on current feature extraction methods, such as Mel Scale  

Power Spectrogram and Mel Frequency Cepstral Coefficients (MFCC), although effective, 

suggests room for improvement. Exploring and developing more efficient feature 

extraction techniques could potentially yield even better model performance. By 

identifying and leveraging new features that capture the intricacies of heart sound signals  

more accurately, future research can improve classification outcomes. 

 

4.4 Opportunities for Future Exploration 

 

While the research demonstrates promising results, there are several opportunities for  

further exploration: 

 

4.4.1 Data Expansion and Diversity: 

 
 

Incorporating a larger and more diverse dataset has the potential to improve the models'  

robustness and generalizability. Including a wider range of cardiac conditions and patient 



55  

demographics would enable the models to adapt to a broader spectrum of real-world 

scenarios. 

 

4.4.2 Computational Efficiency for Real-time Applications: 

 
 

Deep learning models, particularly CNNs, can be computationally intensive. Future 

research can explore techniques for optimizing these models or investigating alternative 

approaches that offer a balance between accuracy and efficiency, making them more  

suitable for real-time deployment in resource-constrained environments. 

 

4.4.3 Feature Engineering and Exploration: 

 

While the research employed a well-established feature extraction approach, exploring 

alternative feature engineering techniques or feature selection methods could potentially 

improve model performance and interpretability. 

 

By addressing these opportunities for future exploration, researchers can further refine and 

validate this approach, paving the way for a more robust, efficient, and clinically applicable 

PCG signal analysis system for improved cardiac abnormality detection. 
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CHAPTER 5. CONCLUSIONS AND FUTURE 

RECOMMENDATION 

 
This study compared Deep Neural Networks (DNNs) and Convolutional Neural Networks 

(CNNs) for classifying cardiac abnormalities (aortic stenosis, mitral regurgitation, mitral  

stenosis, and mitral valve prolapse) using phonocardiogram (PCG) recordings. Our goal 

was to assess the potential of machine learning for improving diagnostic accuracy in  

cardiology. The DNN model was evaluated using features extracted from Mel-Frequency 

Cepstral Coefficients (MFCCs) and Mel Power Spectrograms. Also, Discrete Wavelet 

Transform (DWT) was employed for signal decomposition to enhance feature 

representation. The DNN architecture comprised three hidden layers with 128, 64, and 32 

neurons respectively, utilizing ReLU activation functions. Trained on 80% of the dataset 

and validated on the remaining 20%, the DNN achieved a precision of 91%, recall 

(sensitivity) of 89%, and an F1-score of 0.89. The overall accuracy was 90%±0.37, with a 

specificity of 91%, underscoring its capability in accurately classifying cardiac 

abnormalities from PCG signals. In comparison, the CNN model leveraged features 

extracted through similar methods and augmented with max-pooling and fully connected 

layers. The CNN, consisting of two convolutional layers with 32 and 64 filters respectively, 

demonstrated robust performance with a precision 95%, recall 95%, and F1-score of 0.95, 

alongside an impressive accuracy of 96%±0.38. These results suggest that DNN-based 

approaches may offer superior diagnostic accuracy in real-world cardiology settings, 

potentially enhancing early detection and treatment planning for cardiac conditions. Future 

research should explore ensemble learning methods, integration of additional physiological 

data, and optimization of feature extraction techniques such as DWT, MFCC, and Mel 

Power Spectrogram to further improve diagnostic capabilities. Furthermore, investigating  

the scalability and real-time applicability of these models in clinical practice will be crucial 

for their adoption and impact. Hence, this study contributes valuable insights into the 

application of machine learning for PCG-based cardiac diagnostics. Continued research 

and innovation in this area promise to advance the precision and effectiveness of diagnostic 

tools, ultimately benefiting patient outcomes in cardiology. 
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SUMMARY OF RESEARCH WORK 

 

 
With an emphasis on aortic stenosis, mitral regurgitation, mitral stenosis, and mitral valve 

prolapse, this study compares the effectiveness of deep neural network (DNN) and 

convolutional neural network (CNN) algorithms for the phonocardiogram (PCG)-based 

classification of cardiac abnormalities. The research underscores the potential of machine  

learning in enhancing diagnostic accuracy within cardiology. The dataset used in this study 

comprises a comprehensive collection of PCG recordings sourced from various 

repositories and clinical settings. It includes 1000 audio files in .wav format, with 200 files 

per category. Four abnormal categories—aortic stenosis (AS), mitral stenosis (MS), mitral 

regurgitation (MR), and mitral valve prolapse (MVP)—comprise the categories, with one 

normal category. The DNN model employed features extracted from Mel-Frequency 

Cepstral Coefficients (MFCC) and Mel Power Spectrogram, complemented by Discrete 

Wavelet Transform (DWT) for enhanced signal representation. Structured with three  

hidden layers (128, 64, and 32 neurons) utilizing ReLU activation functions, the DNN 

achieved robust performance. It obtained an accuracy of 81%, with a precision of 83%, 

recall of 81%, and an F1-score of 82%, after being trained on 80% of the dataset and 

validated on the remaining 20%. The measurement of specificity was 85%. In comparison, 

the CNN model leveraged similar feature extraction techniques augmented by max-pooling 

and fully connected layers. Featuring two convolutional layers with 32 and 64 filters  

respectively, the CNN demonstrated superior performance with a precision, recall, and F1- 

score of 92%. Its overall accuracy was 92%, with an impressive specificity of 98%. These 

findings suggest that CNN-based approaches hold promise for improving diagnostic 

accuracy in real-world cardiology settings, potentially aiding in early detection and 

treatment planning for cardiac conditions. Future research should explore ensemble 

learning methods, integration of additional physiological data, and optimization of feature 

extraction techniques such as DWT, MFCC, and Mel Power Spectrogram. Furthermore,  

investigating the scalability and real-time applicability of these models in clinical practice 

will be pivotal for their adoption and impact. This study contributes valuable insights into 

the application of machine learning for PCG-based cardiac diagnostics. By systematically 
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comparing DNN and CNN models, it highlights their potential to revolutionize cardiac 

health monitoring. Continued research and innovation in this domain promise to enhance  

the precision and effectiveness of diagnostic tools, ultimately benefiting patient outcomes 

in cardiology. 
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