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ABSTRACT 

As liver cancer ranks among the top cancer-related fatalities worldwide, 

prognostic indicators and treatment targets for this disease need to be 

improved. This study attempts to ascertain whether the Krüppel-like 

factor 15 (KLF15) gene and its variants are linked to liver cancer through 

use of in-silico and lab-based analysis. Using in silico techniques including 

SIFT, PolyPhen, CADD, REVEL, Mutation Assessor, MetaLR, 

MutPred2, DynaMut, MUpro, MAESTRO, Project HOPE, and 

FATHMM, two pathogenic missense variants rs7557194 and rs7686768 

were identified. Structural and functional analyses suggest that these 

variants most likely disrupt the protein's structure and function. 

Following statistical analysis and tetra ARMS-PCR investigation, it 

became apparent that in a population from Pakistan the rs7557194 

variant was notably linked to liver cancer. The study underlines that a 

target for treatment and a marker for liver cancer diagnosis could be the 

R364P mutation of KLF-15. These findings show the potential for the use 

of the KLF15 R364P mutation as a liver cancer biomarker, therefore 

enabling more precise treatments and improved diagnostics. Future 

research with larger sample sizes and different populations should 

investigate the functional mechanisms of KLF15 variants in liver cancer 

progression utilizing in vitro and in vivo studies, therefore validating our 

results. 

Keywords: Liver cancer, Krüppel-like factor 15 (KLF15), rs755719419, rs768676875, in 

silico analysis, SIFT, PolyPhen, CADD, REVEL, Mutation Assessor, MetaLR, AlphaFold, 



 xvii 

MutPred2, DynaMut, MUpro, MAESTROweb, Project HOPE, FATHMM, tetra ARMS-

PCR, genetic testing, diagnostic marker, therapeutic target. 
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1. INTRODUCTION  

1.1 Cancer  

The extracellular matrix represents a vital and integral element within all tissues and 

organs, playing a crucial role in the functioning of multicellular organisms. Its influence 

spans from the initial phases of organism development to the final stages of life, overseeing 

and refining various cellular functions within the body. In the context of cancer, alterations 

occur within the extracellular matrix at the biochemical, biomechanical, architectural, and 

topographical levels. Recent years have witnessed a notable surge in research and 

acknowledgment of the matrix's significance in solid tumor studies (Cox, 2021). The 

destructive agents of cancer are human cells that have been enlisted and somewhat altered 

into pathological entities or the foundational units of tumors. Cancers disrupt and capitalize 

on the mechanisms of multicellular structure, leading to complex philosophical dilemmas 

when seeking to comprehend them (Hausman, 2019). 

1.2 Types of cancer 

In a wider context, cancer encompasses over 277 various types of disease. Researchers 

have distinguished multiple stages of cancer, revealing that numerous gene mutations 

contribute to the development of cancer. These mutations result in atypical cell growth. 

Genetic disorders triggered by hereditary factors play a crucial part in the escalation of cell 

proliferation (Hassanpour & Dehghani, 2017). Among men, the most prevalent cancer 

types are found in the prostate, lung and bronchus, colon and rectum, and urinary bladder. 

Conversely, in women, the highest rates of cancer are observed in the breast, lung and 

bronchus, colon and rectum, uterine corpus, and thyroid. These statistics highlight the 

significant presence of prostate and breast cancer among men and women, respectively 

(Siegel et al., 2016). For children, the predominant types of cancer are those affecting the 

blood, as well as cancers linked to the brain and lymph nodes (Schottenfeld & Fraumeni 

Jr, 2016). 
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1.3 Incidence of cancer 

The study by (Sung et al., 2021) provides a recent overview of the global cancer situation, 

based on the GLOBOCAN 2020 evaluations conducted by the International Agency for 

Research on Cancer. In the previous year, there were approximately 19.3 million new 

instances of cancer worldwide (excluding nonmelanoma skin cancer), resulting in nearly 

10.0 million deaths (excluding nonmelanoma skin cancer). Female breast cancer has 

surpassed lung cancer as the most often diagnosed type, with over 2.3 million new cases 

(11.7%). Lung cancer follows closely behind with 11.4% of new cases, followed by 

colorectal cancer (10.0%), prostate cancer (7.3%), and stomach cancer (5.6%). Despite 

improvements in knowledge and medical care, lung cancer remained the leading cause of 

cancer-related deaths, accounting for around 1.8 million fatalities (18%). This was 

followed by colorectal cancer (9.4%), liver cancer (8.3%), stomach cancer (7.7%), and 

female breast cancer (6.9%). Significantly, the incidence rates were considerably higher in 

developed countries compared to underdeveloped countries, for both males and females. 

However, there was less variation in fatality rates between genders. By 2040, it is estimated 

that there will be a significant increase in the global cancer burden, with a predicted total 

of 28.4 million cases. This represents a 47% jump compared to the number of cases in 

2020. The anticipated rise is projected to be more significant in nations undergoing 

transition (from 64% to 95%) compared to countries that have already transitioned (from 

32% to 56%). This is primarily attributed to demographic changes and the widespread 

increase in risk factors linked to globalization and economic expansion (Sung et al., 2021). 

1.4 Therapeutic resistance in cancer 

Significantly, the genetic makeup of tumors often interlinks with non-genetic ways utilized 

to resist treatment (Marine et al., 2020). Notably, certain cancer-causing mutations enable 

the cells to swiftly adjust their transcriptional and metabolic schemes to withstand and 

survive the pressures of therapy. Conversely, other oncogenic drivers confer an inherent 
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adaptability to the cancer cell, facilitating lineage switching and/or evading the body's 

anticancer immune surveillance. The widespread occurrence and diverse spectrum of non-

genetic resistance mechanisms present a new challenge for the field, demanding innovative 

approaches to monitor and counter these adaptive processes. In this Perspective, we 

investigate the fundamental concepts of cancer therapeutic resistance that is not hereditary. 

Tumors develop resistant to antiangiogenic treatment by altering several biological 

processes including invasiveness, metastases, stemness, autophagy, and metabolic 

reprogramming (Marine et al., 2020). Among these pathways are VEFGs, GM-CSF, G-

CSF, and IL17. A hallmark of this resistance is increasing mobilization of bone marrow-

derived cells including myeloid-derived suppressive cells, tumor-associated macrophages, 

and tumor-associated neutrophils. Among local stromal cells whose function is changed 

include pericytes, cancer-associated fibroblasts, and endothelial cells. Furthermore, 

interesting biomarkers for antiangiogenic treatment response prediction, among these 

biomarkers include imaging biomarkers, certain proteins, bone marrow-derived cells, 

stromal cell composition, non-coding RNAs in serum and plasma (Nisar et al., 2022). 

1.5 Diagnosis of cancer 

The application of cancer diagnosis techniques offers benefits in accurately identifying the 

exact location of the cancer site and distinguishing the boundary between the diseased and 

healthy tissue regions. This facilitates precise cancer diagnosis. Fluorescence imaging 

technology utilizes small-molecule fluorescent probes to enable visual diagnosis. The 

technology provides a non-invasive approach, with a high level of sensitivity and improved 

resolution in both space and time. Several fluorescent probes have been developed to 

identify biomarkers, differentiate between malignant and normal cells/tissues, and 

facilitate the imaging of solid tumors. Given this, it specifically examines the design 

strategies and uses of these small-molecule fluorescence probes in the diagnosis of cancer. 

In addition, assemblage and  identification of  biomarkers that are appropriate for cancer 

diagnosis, emphasizing their important functions in medical imaging (Wang et al., 2023). 

Only a few notable advancements have been made in the treatment of cancer, but much is 
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already known about the causes of, prevention from, and management of the disease. Early 

detection is clearly the only approach to raise life expectancy and quality of living. To 

detect circulating tumor cells (CTCs), biomarkers, or tumor-derived vesicles released 

rather early from the tumor into the blood which will significantly change the morbidity 

and mortality of the disease, Nano sensors and highly sensitive nanomaterial-based devices 

have been developed (Khazaei et al., 2023). According to the World Health Organization 

(WHO), liver cancer is the sixth most common cancer worldwide (WHO, 2024). 

 

Figure 1: Incidence of cancer 

1.6 Liver cancer 

Hepatic fibrogenesis is a result of chronic liver injury and is characterized by an abnormal 

accumulation of proteins in the extracellular matrix. Hepatocytes, which are the main 

functional cells of the liver, interact with other types of cells such as hepatic stellate cells, 
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sinusoidal endothelial cells, and immune cells (both resident and invading) during the 

complex process of fibrosis, the review focuses on the key cellular components responsible 

for liver fibrosis, the specific cytokines and chemokines that influence its progression, and 

the circumstances in which fibrosis might reverse, the regulation of the fibro genic process 

in hepatic stellate cells by mitochondria and metabolic changes. In addition,  there is an 

impact of fibrosis on the development of hepatocellular carcinoma (Dhar et al., 2020). 

In this study Rizvi et al. (2021) , it is stated that  the fundamental processes influencing the 

progression of liver fibrosis, including its associated complications such as cirrhosis, portal 

hypertension, and liver failure, often necessitating liver transplantation. Additionally, it 

underscore the significant contribution of hepatic stellate cells (HSCs) in the development 

of liver fibrosis. Emphasizing the role of oxidative stress, mitochondrial dysfunction, and 

metabolic reconfiguration, it is highlighted that how these factors impact HSC activation, 

thereby indicating potential avenues for therapeutic intervention (Rizvi et al., 2021). 

1.7 Biomarkers and genetic alterations in liver cancer 

Biomarkers play a crucial role in the effective clinical management of cancer patients, 

significantly contributing to enhanced survival rates and the optimization of medical 

interventions (refer to Figure 2). Within the context of hepatocellular carcinoma (HCC), 

there is an urgent demand for biomarkers in the following clinical domains: (1) the 

categorization of risk and early detection of HCC, (2) the prediction of prognosis, and (3) 

the anticipation of systemic therapy response. Conversely, in cholangiocarcinoma (CCA), 

several unmet requirements persist, including: (1) improved diagnosis of CCA, particularly 

in individuals with primary sclerosing cholangitis; (2) enhanced prognostic capabilities 

post-curative treatment to guide adjuvant therapy; and (3) the identification of biomarkers 

that can predict responses and resistance to first and second-line systemic treatments (Nault 

& Villanueva, 2021). 
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Figure 2: The primary somatic alterations in key driver genes within hepatobiliary 

cancers, specifically hepatocellular carcinoma (HCC) and cholangiocarcinoma 

(CCA), were summarized, establishing their association with risk factors implicated 

in tumor. Source :(Nault & Villanueva, 2021) 

Instances of an enrichment of genetic alterations linked to specific risk factors were 

denoted by the symbols *, #, %, and $. Several important genes and risk factors were 

highlighted, including AAV2 (adeno-associated virus type 2), CDKN2A (cyclin-dependent 

kinase inhibitor 2A), ELF3 (E74-like ETS transcription factor 3), MLL (myeloid/lymphoid 

leukemia), NFE2L2 (nuclear factor, erythroid 2 like 2), PRKACA/B (protein kinase 

cAMP-activated catalytic subunit alpha/beta), PSC (primary sclerosing cholangitis), RB1 

(RB transcriptional corepressor 1), RPS6KA3 (ribosomal protein S6 kinase A3), and 

TSC1/2 (TSC complex subunit 1/2).  
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1.8 Krüppel-like factors (KLFs) and KLF15 

The Krüppel-like factors (KLFs) represent a group of 17 transcription factors characterized 

by conserved zinc finger domains. Several of these proteins are found in various tissues 

and exhibit specific activities and functions unique to each tissue (Y. Zhao et al., 2019). 

KLFs play a critical role in regulating numerous physiological processes, including growth, 

development, differentiation, proliferation, and embryogenesis. Among these, KLF15, 

identified as a kidney-enriched member of the KLF family, is also commonly known as 

KKLF (Uchida et al., 2019). Previous research Zhao et al. (2021) indicates that KLF15 is 

involved in a number of mammalian systems, including the transcription of KLF3 in  

adipocytes and the state of rhodopsin. Additionally, it has been linked to both promoting 

and inhibiting gastric (GC) cell growth and metastasis, as well as lung adenocarcinoma. 

The study Zhao et al. (2021) also demonstrates how KLF15 inhibits human cancers, as 

shown by the upregulation of TFAP2A-AS1. 

1.9 KLF15 and cancer 

Among the transcription factors that have endured over time are Krüppel-like factors 

(KLF) and specificity proteins (SP). Three zinc finger domains define these proteins from 

the C-terminus. Among all the members of the SP/KLF family, these domains are unique 

for being the only ones displaying significant homogeneity. The patterns these proteins 

show in their middle and N-terminal areas control protein interactions and determine the 

selectivity of DNA binding, hence there is great variety in them (Orzechowska-Licari et 

al., 2022). (Rane et al., 2019) report that eighteen KLFs have been found across several 

taxa. Member of the KLF family, KLF15 has been connected to several diseases. KLF15, 

belonging to the KLF family, has been implicated in a range of diseases, such as diabetes 

(Patel et al., 2017), cardiac hypertrophy (Y. Zhao et al., 2019), , muscle atrophy (Hirata et 

al., 2019), and specific types of cancer  (Yoda et al., 2015). Still, there is a dearth of present 

studies on how KLF15 fuels the tumorigenicity of breast cancer (BrCa). Although the 
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precise anti-tumor mechanism is currently unknown, Yoda et al. (2015) discovered that 

KLF15 could help to lower the growth of tumors. (Liu et al., 2020) argued that managing 

breast cancer (BC) depends critically on the "LUCAT1/miR-181a-5p axis". In comparison, 

LUCAT1 stimulates tumor growth but miR-181a-5p reduces it. Direct links between 

LUCAT1 and miR-181a-5p have lately been discovered. Moreover, it has been discovered 

that downregulation of KLF6 and KLF15 is a main control of miR-181a-5p activity in 

breast cancer. The LUCAT1/miR-181a-5p axis (Liu et al., 2020) seems to be a good 

therapeutic target for BC, miR-376a-3p, (Y. Wang et al., 2020) found that TTN-AS1 

favorably controls KLF15. In vivo testing validated these findings. TTN-AS1 increased in 

tissues and cell lines from colorectal cancer (CRC). Functional studies using TTN-AS1 

inhibition found that cell mortality was increased while CRC cell invasion and proliferation 

were lowered. Computational analysis pinpointed miR-376a-3p as a target of TTN-AS1. 

The introduction of a miR-376a-3p inhibitor via transfection mitigated the effects triggered 

by TTN-AS1 knockdown (Y. Wang et al., 2020) . Although the aforementioned research 

has indicated the involvement of KLF15 in the advancement, growth, and varying levels 

of expression in cancer, the overall impact of KLF15 polymorphism on tumor development 

remains unclear. 

 The existence of a genetic connection between KLF15 SNPs and an elevated susceptibility 

to liver cancer remains unknown.  The main objective of this research is to identify the 

potentially detrimental SNPs present in KLF15 and establish a connection between them 

and liver cancer. By conducting further research on KLF15, we can gain a deeper 

understanding of its characteristics. This knowledge may potentially result in the 

identification of a new therapeutic target and a prognostic marker for the early detection of 

liver cancer. 
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1.10 Problem statement 

The challenging prognosis, chemotherapy resistance, and substantial morbidity and 

mortality linked with liver cancer have considerably hampered patient outcomes. 

Consequently, this study's principal aim is to identify unique variations in the KLF15 gene 

that could serve as a promising target for diagnostics. 

1.11 Aims and objective 

• To investigate the structure and function of the KLF15 genetic variant. 

• To determine the association of KLF15 variant with liver cancer in Pakistani 

population. 

 

1.12 Rationale and significance of study 

Often referred to as liver cancer, hepatic carcinoma is one of the primary causes of cancer-

related fatalities worldwide. The complexity of its pathophysiology demands a complete 

awareness of the genetic elements influencing its beginning and progression. Among the 

several biological mechanisms under recognized regulation of KLF15 (Krüppel-like factor 

15) are cell proliferation, inflammation, and metabolism. Variations in the KLF15 gene 

might alter the way the protein is handled, thereby influencing the rate of liver cancer 

development and the probability of occurrence. Finding the function of KLF15 

polymorphisms in the etiology of liver cancer might inspire the detection of unique 

therapeutic approaches and diagnostic instruments. The current study is significant as it 

may close a research gap on the genetic elements causing liver cancer. By defining the role 

of KLF15 polymorphisms, this work has the potential to promote cancer medicine; this 

will open the path for more focused methods of illness prevention and treatment 

considering genetic composition. Furthermore, by creating focused treatments based on the 

found pathways and processes by which KLF15 influences hepatic cancer, one can improve 

patient outcomes and reduce the global burden of this disease. 
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2. LITERATURE REVIEW 

2.1 Introduction to cancer 

The extracellular matrix is an essential component found in all tissues and organs, playing 

a critical role in the survival of multicellular organisms. The body's regulatory system 

governs and optimizes all cellular activities, spanning from the initial phases of organism 

growth to the end of life. Solid tumors in cancer cause changes to the extracellular matrix 

at various levels, including biochemical, biomechanical, architectural, and topographical. 

In recent years, there has been a significant increase in research and knowledge of the 

importance of the matrix (Cox, 2021). The characteristic of cancer conceptualization is the 

development of a framework that aims to simplify the immense complexity of cancer 

phenotypes and genotypes into a preliminary set of guiding principles. As our 

understanding of the mechanisms behind cancer has increased, other facets of the disease 

have emerged as potential areas for improvement. The paper by (Hanahan, 2022), discusses 

the potential distinction between disturbed differentiation and phenotypic flexibility as 

hallmark capacities. Non-mutational epigenetic reprogramming and polymorphism 

microbiomes are proposed as unique facilitating features that contribute to the development 

of hallmark capacities (Hanahan, 2022).  The existing group of eight hallmarks, shown in 

Figure 1 (on the left), includes the acquired abilities related to maintaining cell division 

signaling, evading growth inhibitors, resisting programmed cell death, enabling unlimited 

replication, initiating and accessing blood vessel formation, activating invasion and spread 

to other parts of the body, reprogramming cellular metabolic processes, and avoiding 

destruction by the immune system. In a more recent update of this paradigm (2), two 

specific traits, namely the disruption of cellular metabolism and the ability to avoid 

immunological responses, were identified as "emerging hallmarks." Nevertheless, it is now 

clear that these two distinguishing characteristics, similar to the initial six, can be seen as 
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essential and inherent attributes of cancer. Consequently, they are included as such in the 

current depiction. In 2012, the International Agency for Research on Cancer (IARC) 

calculated that there were 8.2 million deaths caused by cancer and 14.1 million new cases 

of cancer worldwide (Sarwar & Saqib, 2017).  In Pakistan, the prevalence of cancer has 

been steadily rising, according to the World Health Organization. The five most common 

cancers, according to the study (Tufail & Wu, 2023), were breast cancer (24.1%), oral 

cancer (9.6%), colorectal cancer (4.9%), esophageal cancer (4.2%), and liver cancer 

(3.9%). Oral cavity cancer (14.9%), colorectal cancer (6.8%), liver cancer (6.4%), prostate 

cancer (6.0%), and lung cancer (6.0%) were all more common in men than in women. 

Breast (6.9%), oral cavity (5.5%), cervix (4.7%), and uterus (4.1%) cancers were the most 

prevalent among women (41.6%). The highest risk group for cancer development was 

middle-aged people (43.0%), followed by seniors (30.0%) and adults (20.0%). 

 

Figure 3: Eight hallmark skills and two enabling traits are currently embodied by the 

Hallmarks of Cancer (left). 

The two initial "emerging hallmarks" introduced in 2011, namely cellular energetics (now 

commonly known as "reprogramming cellular metabolism") and "avoiding immune 
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destruction," have been thoroughly validated and are now considered integral components 

of the core set, along with the six acquired abilities proposed in 2000, known as the 

Hallmarks of Cancer. This attribute is also commonly described as the capacity to stimulate 

or otherwise gain entry to blood vessels that facilitate the expansion of tumors, as it is now 

recognized that tumors can acquire sufficient blood supply either by initiating the 

formation of new blood vessels or by taking over existing ones in healthy tissues (128). 

Furthermore, the 2011 update introduced "tumor-promoting inflammation" as an additional 

enabling characteristic, alongside the primary factors of "genome instability and mutation." 

These factors are crucial in activating the eight hallmark capabilities necessary for tumor 

growth and progression. This review also considers additional potential emergent 

characteristics and facilitating qualities such as "activating phenotypic flexibility," 

"nonmutational epigenetic reprogramming," "diverse microbiomes," and "senescent cells." 

The picture depicting the symptoms of cancer was modified from (Hanahan, 2022).  

2.2 Introduction to liver cancer 

The liver is the sixth most frequent site for primary cancer in people and often develops 

when there is cirrhosis and inflammation. Additionally, due to the liver's physical position 

and architecture, as well as its distinct metabolic milieu and immunosuppressive 

environment, metastases from malignancies of other organs (especially the colon) typically 

infiltrate it (Li et al., 2021). Liver cancer stands as one of the most prevalent lethal 

malignancies on a global scale; however, within the United States, it holds the fifth position 

in terms of incidence  (Anwanwan et al., 2020). A frequent challenge in managing liver 

cancer lies in the late-stage diagnosis that often ensues, consequently contributing to its 

unfavorable prognosis (Siegel et al., 2018). Hepatocellular carcinoma (HCC) constitutes 

more than 90% of all liver cancer cases, with chemotherapy and immunotherapy serving 

as the foremost therapeutic options (El-Serag et al., 2019). Given the critical need for 

enhanced treatment modalities for liver cancer patients, there is a pressing requirement to 

explore novel avenues. The utilization of natural compounds in conjunction with 

nanotechnology presents a promising avenue that holds the potential to deliver improved 



13 

 

 

patient outcomes while mitigating systemic toxicity and minimizing adverse effects (Li et 

al., 2019). The pursuit of advanced treatments could herald a brighter outlook for liver 

cancer patients, ultimately resulting in more favorable prognoses.  Chronic hepatitis B and 

C (HBV/HCV) infection is responsible for a sizable share of liver malignancies. If 

established measures like immunization can be applied on a wide scale, liver cancer may 

become the second cancer after cervical to be effectively controlled globally. The predicted 

global mortality rate for liver cancer in 2018 was 8.5 per 100 000 people  (Shi et al., 2021).  

The findings  (Foda et al., 2023) were verified in a separate population. In liver cancer, 

chromatin and genomic alterations, particularly those resulting from transcription factor 

binding sites, were reflected in altered cfDNA fragmentation. These findings offer a 

biological explanation for modifications in cfDNA fragmentation in liver cancer patients 

and a practical method for noninvasive cancer detection.  

(Wu et al., 2021)  investigated in their research how closely TLSs are to cancer cells 

influences their distinctive composition. They so proposed a TLS-50 capability for precise 

TLS spatial detection. By clarifying the complex PLC tumour environment, (Wu et al., 

2021)   discovered fresh data that might support cancer treatment. Since there are no 

medications that target important dependencies, treating liver cancer remains challenging. 

People with hepatocellular carcinoma gain little from broad-spectrum kinase inhibitors 

including sorafenib. Combining senolysis, a second medicine meant to target and destroy 

old cancer cells, with senescence induction may help cancer patients (Wang et al., 2019). 

2.3 KLF Family Proteins 

The liver serves as a focal point and regulates a number of crucial physiological functions, 

including metabolism and xenobiotic detoxification. These pleiotropic effects are made 

possible at the cellular level via hepatocyte transcriptional regulation. Hepatic disorders 

emerge as a result of defects in hepatocyte function and its transcriptional regulatory 

mechanisms, which have a negative impact on liver health (Yerra & Drosatos, 2023). This 
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study (Yerra & Drosatos, 2023) covers the role that  Krüppel-like factors (KLF), members 

of the zinc finger family of transcription factors, play in physiological hepatocyte functions 

as well as their role in the beginning and progression of hepatic disorders (Yerra & 

Drosatos, 2023).   

 

Figure 4: demonstrating the transcriptional control of hepatocytes and several cell 

types in the liver: Each of the four lobes of the human liver contains many hepatic 

lobules. 

Different types of epithelial, endothelial, and immunological cells can be found in each 

hepatic lobule. A specialized parenchymal epithelial cell known as a hepatocyte is capable 

of producing various blood proteins, clotting factors, metabolic enzymes, etc. The 
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day/night cycle, dietary intake, endocrine hormones, metabolites from other metabolically 

active organs, and other environmental factors all have an impact on the gene 

transcription in hepatocytes.  Source: (Yerra & Drosatos, 2023) 

Investigating in mice gave a basic understanding of the function of Krüppel-like factors 

(KLFs) in embryonic liver development. Recently discovered is a major role of the 

Erythroid Krüppel-like factor (EKLF) transcription factor in controlling foetal liver RBC 

production. Researchers saw foetal anaemia in EKLF1-deficient mice to support this (Nuez 

et al., 2018). Later studies revealed the function of KLF6 in mouse blood cells and 

embryonic stem cells as well as in liver development. (Matsumoto et al., 2019) claimed 

that embryos lacking Klf6 had poor hematopoiesis and insufficient yolk sac 

vascularization, hence lacking clearly defined liver development. Laboratory findings 

confirmed those in the wild: stem cells extracted from these embryos showed slowed blood 

cell development (Matsumoto et al., 2019). Apart from its participation in early 

hematopoiesis, these studies revealed the particular function of KLF6 in hepatogenesis 

remained unknown. 

More research on zebrafish revealed that klf6 (zebrafish: copeb) is necessary for 

appropriate liver development during the early phases of endodermia, in which case the 

liver is either entirely or partially absent. When Klf6 was absent from mouse embryonic 

stem cells, endoderm marker genes—including Hnf3β, Gata4, Sox17, and CxCr4—found 

their expression down. On the other hand, the expression levels of these genes were 

recovered upon Klf6's overexpression (Zhao et al., 2021). Moreover, at E14.5 researchers 

have discovered KLF13 expression in blood vessels of the developing liver; the precise 

role of this gene is currently unknown (Lavallée et al., 2019). Studies have indicated that 

KLF15 helps to regulate the differentiation of embryonic hepatoblasts produced from 

mouse liver into mature hepatocyte-like cells. The paper reports that hepatocyte marker 

genes Tat, Cps1, Cyp1a2, and Cyp2e1 were triggered when KLF15 was overexpressed in 

hepatoblasts produced from induced pluripotent stem cells (iPSCs) by retrovirus-mediated 
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techniques. This indicates that a lineage unique to hepatocytes cannot develop without 

KLF15 (Anzai et al., 2021).  

Among the several physiological and biological events influenced by Krüppel-like factors 

(KLF), a family of conserved transcription factors containing zinc fingers, cell division, 

proliferation, development, and death. Among the bioinformatics approaches suggested to 

help to better grasp KLF proteins include phylogenetic reconstruction, gene synteny 

analysis, sequence similarity searches, multiple sequence alignment, and phylogenetic 

reconstruction (Le et al., 2021). Post-translational modifications can either change the 

metabolic activity or induce KLFs to alter their metabolism. The Krüppel protein regulates 

thorax and front abdomen segmentation in an embryo developing in a fruit fly (Drosophila 

melanogaster). This protein bears rather close resemblance to KLFs (Preiss et al., 2018). 

Like the KLF family, the transcription factor Sp1 binds to GC-rich areas of DNA using 

three C2H2-type zinc fingers (Brayer & Segal, 2018). The Sp1/KLF family incorporates 

these zinc fingers as they are discrete domains seen in KLF proteins (Kadonaga et al., 2019. 

Sp1/KLF family members have been shown to regulate the intricate interactions of multiple 

genes involved in the development and maintenance of different types of tissue. However, 

initially, this family was believed to be a general transcription factor responsible for 

controlling the basic expression of essential genes (McConnell & Yang, 2010). 

2.4 KLF15 – a unique member of KLF family 

The study (Suzuki et al., 2022) demonstrate that Krüppel-like factor 15 (Klf15) coregulates 

regeneration enhancers identified by the ATAC-seq and H3K27ac landscape analysis for 

transposase-accessible chromatin. Furthermore, it was demonstrated that the adrenergic 

receptor gene is a downstream target of Klf15, and that therapy with an agonist for this 

receptor promotes the regeneration of nephric tubules and restores organ size. According 

to these findings, the regeneration pathway heavily depends on Klf15-dependent 

adrenergic receptor signaling. Through altering O6-methylguanine-DNA 

methyltransferase expression, KLF15 improved glioma sensitivity to temozolomide 
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cytotoxicity. According to this study (Huang et al., 2022), KLF15 expression was higher 

in healthy tissues than it was in CRC tissues, and low KLF15 expression was associated 

with poor CRC patient outcomes. The degree of methylation of Cg sites in CRC was 

negatively correlated with the expression of KLF15. Therefore, it is simple to conclude 

that hypermethylation of its promoter region is a contributing factor in the reduction of 

KLF15 expression. The findings (Kanyomse et al., 2022) demonstrated that promoter 

methylation of KLF15 partially explains the substantial downregulation of KLF15 in breast 

cancer cell lines and tissues. When KLF15 was expressed exogenously, it caused TNBC 

cells to go into apoptosis and the G2/M phase of the cell cycle, which reduced cell growth, 

metastasis, and in vivo carcinogenesis. The CCL2 and CCL7 chemokine ligands were 

specifically targeted by KLF15, according to investigations on the mechanism.  

Transcriptome and metabolomic analyses show that KLF15 is implicated in important 

metabolic and anti-tumor regulating pathways in TNBC, according to (Kanyomse et al., 

2022). Reducing CCL2 and CCL7 is the primary method by which KLF15 slows the spread 

and development of TNBC cells. KLF15 is one possible prognostic biomarkener for 

TNBC. Recent studies ((X. Zhao et al., 2019) show that KLF15 modulates molecules like 

myocardin, GATA-binding protein 4 (GATA4), transforming growth factor (TGF), and 

myocyte enhancer factor 2 (MEF2), hence suppressing pathogenic cardiac hypertrophy and 

fibrosis. KLF15 is one likely therapeutic target for heart failure and other cardiovascular 

illnesses. SFe therapy reduced p-CREB and KLF15 expression in muscle tissue, according 

to  (Choi et al., 2021). This implies that by cAMP-PKA/CREB-KLF15 signalling, SFe 

could control atrogin-1 and MuRF1, hence preventing protein breakdown. Hyperglycemia 

was seen to raise the expression of the KLF15 protein in the skeletal muscles of diabetic 

rats ((Hirata et al., 2019). We thus prevented the ubiquitin-dependent degradation of 

KLF15 and lowered the E3 ubiquitin ligase WWP1 to reach this. These data indicate that 

the WWP1/KLF15 pathway causes muscle atrophy in hyperglycemia, a major diabetes 

consequence. Preventing the loss of skeletal muscle mass brought on by diabetes could 

make this pathway a therapeutic target. Transfection of miR-181a-5p produced 

overexpression of miR-181a-5p, which in turn reduced LUCAT1's capacity to induce cell 



18 

 

 

proliferation. Furthermore shown by bioinformatics and a luciferase reporter test was miR-

181a-5p's targeting of the 3′-UTR region of the tumours suppressor genes KLF6 and 

KLF15. The LUCAT1/miR-181a-5p axis controlled KLF6 and KLF15 expression in both 

living organism and laboratory environments (Liu et al., 2020). This study (Wang et al., 

2020b) revealed that in tissues and cell lines connected to CRC-related disease TTN-AS1 

was overexpressed. Downregulating TTN-AS1 reduced CRC cell growth and invasion and 

increased cell death, according studies of functional components. Target of TTN-AS1 is 

MiR-376a-3p according a bioinformatics analysis. Transfecting with an inhibitor of miR-

375a-3p helped to offset the effects of TTN-AS1 knockdown. Furthermore positively 

regulated by TTN-AS1 was miR-376a-3p. Furthermore supported by in vivo studies were 

all these findings (Wang et al., 2020b).  Ultimately, TTN-AS1's promotion of CRC 

invasion and spread depends critically on the miR-376a-3p/KLF15 axis. TTN-AS1 shown 

promise as a possible target for CRC treatment (Y. Wang et al., 2020).  

2.5 KLF15 in Disease: Implications for Cardiomyocyte Hypertrophy  

Many organs, including the kidney, show transcription factors of the Krüppel-like family. 

Acute kidney injury alters the expression of many KLFs in either an adaptive or 

maladaptive manner, therefore influencing multiple cellular pathways (Anwanwan et al., 

2020). Ang II activated p38 kinase via TAK1 kinase, therefore inducing the TGF-β 

expression and blocking KLF15 expression. E2 and -LGND2 both dropped all rather 

dramatically. E2's anti-hypertrophic effects as well as -LGND2's reduced myocyte 

hypertrophy generated by KLF15 knockdown. Important elements were validated with an 

in vivo model of heart hypertrophy. More ER anti-hypertrophic properties discovered by 

(Anwanwan et al., 2020) could be investigated in humans to stop the spread of heart disease 

from development. The main goal was to find in cultured neonatal rat cardiomyocytes how 

oestrogenic compounds and AngII affected KLF15 expression. AngII substantially 

lowered the protein and messenger RNA of the anti-hypertrophic transcription factor. ER 

abolished the E2-suppressed AngII effects on KLF15 protein observed in presence of 

control siRNA. The effects of ER and TGF on the reduction in KLF15 expression were 
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then investigated. TGF synthesis and AngII lower KLF15 mRNA and protein in a p38 

kinase-dependent manner, which causes cardiomyocyte hypertrophy (Leenders et al., 

2012). The KLF15 protein shows a strong association with the anti-hypertrophic 

transcription factor. This TF physically interacts with and inhibits the myocardin protein 

function in the nucleus of cardiomyocytes, inhibiting the increased production of genes 

that promote hypertrophy (Leenders et al., 2012) . Here expanded to encompass AngII and 

TGF-induced TAK1 signaling. The TAB family of proteins (TAB 1-3) complexing with 

TAK1 closely regulates its activity, and all of its activities are affected by a variety of post-

translational changes (Hirata et al., 2017). Through its effects on elements including 

myocyte enhancer factor 2 (MEF2), GATA-binding protein 4 (GATA4), transforming 

growth factor (TGF), and myocardin, recent investigations have also indicated a crucial 

role for KLF15 as an inhibitor of pathological cardiac hypertrophy and fibrosis. Therefore, 

KLF15 might be a useful therapeutic target for treating heart failure and other 

cardiovascular illnesses (Y. Zhao et al., 2019). 

 

2.6 KLF15 in Liver Disease: Implications and Insights 

Forkhead box protein O1 and insulin-targeting SREBP1c moreover inhibited TWIST2 

expression, but dexamethasone-targeting Krüppel-like factor 15 increased it through direct 

interactions with the Twist2 promoter DNA. Together, our studies show that TWIST2 

plays a critical role and regulates hepatic homeostasis by reducing steatosis, inflammation, 

and oxidative stress via the NF-B-FGF21 or SREBP1c-FGF21 pathway, which may offer 

a novel treatment option for nonalcoholic fatty liver disease (Zhou et al., 2019). Through 

transcriptional regulation of important metabolic processes, glucocorticoids can coordinate 

systemic metabolic balance by targeting the transcription factor KLF15 (Hsieh et al., 2019). 

KLF15 expression in adipose tissue was decreased in obese patients, and KLF15 is linked 

to an elevated body mass index in obesity (Hsieh et al., 2019). The glucocorticoid receptor 

downstream is well known to be mediated by KLF15. KLF15 affects the supply of 
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gluconeogenic carbon substrates from skeletal muscle as well as their usage in the liver. 

This includes both direct control of hepatic gluconeogenic enzymes and indirect control of 

these processes (Gray et al., 2017).  The metabolism of the liver is significantly impacted 

by KLF15. Deletion of the KLF15 gene in mice fed a high-fat diet (HFD) has no effect on 

endoplasmic reticulum stress, insulin resistance, or hepatic inflammatory response. 

Animals on a high-fat diet show improvements in indices of endoplasmic reticulum stress 

(Tian et al., 2020), even if the deletion of the KLF15 gene in mice has no impact on 

endoplasmic reticulum stress or the inflammatory response in the liver connected with 

insulin resistance. The liver responds well from KLF15's anti-apoptotic properties. 

Treating ALI brought on by LPS or DGaIN using exogenous KLF15 Moreover, KLF15 

can lower ALI  by blocking the p38MAPK/ERK1/2 signalling pathway and so lowering of 

sepsis-induced inflammation (Tian et al., 2020). Teneligliptin, a mechanism mediated by 

phosphatidylinositol 3-kinase (PI3K)/AKT/Krüppel-like factor 15 (KLF15), clearly 

affected the expression of the BA synthesis inhibitory factor Fgf15. KLF15's inhibition 

neutralised this impact. Teneligliptin increases BA generation, hence improving the 

treatment of metabolic diseases (G. Wang et al., 2020).   

 

2.7 KLF 15-Role in cancer 

Stomach cancer tissues show significantly less KLF15 than surrounding normal tissues. 

Furthermore inversely linked to clinical stage, lymphatic metastases, and distant metastases 

was KLF15 expression. Moreover, KLF15 expression can be a prognostic indicator for GC 

patients. Furthermore, as (Sun et al., 2017) point out, an overabundance of KLF15 

expression may possibly lower cell proliferation by changing CDKN1A/p21 and 

CDKN1C/p57.  TTN-AS1 used overarchingly the miR-376a-3p/KLF15 axis to encourage 

CRC invasion and spread. Potential target for treating colorectal cancer, TTN-AS1 showed 

promise according to (Y. Wang et al., 2020). Reports state that KLF15 is linked to higher 

cancer risk. Think of the study of (Gao et al., 2017), who discovered that aberrant KLF15 
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expression was present in lung cancer tissue and increased cell proliferation and metastases 

in vitro. Researchers in this work identified KLF15 as a target of miR-376a-3p by 

bioinformatics means. Confirming this was done with a luciferase test. Most often used 

method of control by lncRNA is sponging target miRNAs upregulates the genes controlled 

by those miRNAs. LncRNA CRNDE modulated the miR-384/IRS1 axis to act as an 

oncogene in pancreatic cancer, hence illustrating the concept (Wang et al., 2017). 

Expression of KLF15 was shown to be elevated in CRC tissues and positively correlated 

with TTN-AS1 expression. Then, by positively controlling KLF15 through sponging miR-

376a-3p, TTN-AS1 might have limited CRC advancement. TTN-AS1 was therefore found 

for the first time as a colorectal cancer biomarkers. Targeting the TTN-AS1/miR-376a-

3p/KLF15 pathway,  (Y. Wang et al., 2020)propose as advance method to treat colorectal 

cancer. 

2.8 KLF-15- Signaling pathway 

The negative regulatory elements of cardiac hypertrophy have gotten less attention, despite 

the fact that we are learning more about the signaling pathways that encourage it. By 

modulating the transcriptional pathways that control heart metabolism, Krüppel-like factor 

15 (KLF15) appears to play a significant role in sustaining cardiac function. The actions of 

KLF15 on molecules including myocyte enhancer factor 2 (MEF2), GATA-binding protein 

4 (GATA4), transforming growth factor (TGF)- (TGF-), and myocardin have been linked 

to a critical role for KLF15 as an inhibitor of pathological cardiac hypertrophy and fibrosis. 

For the treatment of heart failure and other cardiovascular illnesses, KLF15 may therefore 

be a useful therapeutic target (Y. Zhao et al., 2019). 
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Figure 5: it depicts the diverse functions of KLF15 in the heart. Initially, KLF15 

maintains cardiac equilibrium by regulating adipocyte lipid metabolism, systemic 

energy balance, managing ER stress, controlling autophagy signaling, and 

modulating cardiac function. Source : (Y. Zhao et al., 2019) 

In terms of countering fibrosis, KLF15 inhibits key factors in cardiac fibroblasts, reducing 

myocardial fibrosis and improving cardiac function. KLF15 also serves as a transcriptional 

inhibitor of left ventricular hypertrophy (LVH) by strongly inhibiting myocardin. 

Furthermore, it is regulated reciprocally by AngII/TGFβ and E2/β-LGND2, and it is 

directly targeted by miR-133 and miR-223-3p. Lastly, the KLF15-p300-p53 pathway holds 

potential as a therapeutic target for congestive heart failure and aortic aneurysm.  

When KLF15 levels are elevated, as can occur during fasting, they promote the recruitment 

of p300 to specific metabolic targets. Conversely, reduced KLF15 levels, which may 

happen during pressure overload, lead to a decrease in the expression of these metabolic 

genes. At the same time, this reduction in KLF15 levels frees up p300 molecules, allowing 

them to co-activate prohypertrophic transcription factors like GATA-binding protein 4 

(GATA4) and myocyte enhancer factor 2 (MEF2) (Prosdocimo et al., 2014).  
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Figure 6: Uncertainty exists regarding the peripheral circadian clock's role in the 

biology of adipocytes. Source: (Aggarwal et al., 2017) 

According to (Aggarwal et al., 2017) adipocyte precursor cells have a circadian clock that 

includes context-sensitive components. Period 3 (Per3), in particular, plays a significant 

role in the clock of adipocyte precursor cells and defines an output pathway to Klf15 that 

controls adipogenesis. 
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Figure 7: The proliferation and migration of GC cells are inhibited by TFAP2A-AS1. 

MiR-3657 was identified as TFAP2A-AS1's downstream gene and NISCH as its target 

in the downstream regulation pathway. Source: (Zhao et al., 2021) 

Additionally, NISCH reduces GC cell migration and proliferation. Transcriptional factor 

KLF15 favorably mediates TFAP2A-AS1 to inhibit GC cell proliferation and migration in 

the upstream regulatory process.  
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3. MATERIAL AND METHODS 

3.1. Structure Prediction of KLF15 

KLF15 gene protein sequence was obtained from the ENSEMBL database. The format of 

the protein sequence obtained was in FASTA format with the transcript ID: 

ENSG00000163884. The obtained sequence consists of 416 amino acids. Other than the 

protein sequence the ENSEMBLE database provides information about the variants of the 

gene, linkage to the disease, and a prediction of protein function (Cunningham et al., 2019). 

The structure of the protein KLF was obtained from AlphaFold by submitting the amino 

acid sequence of the protein the FASTA format to the tool (Jumper et al., 2021). The 3-D 

protein structure provided by the AlphaFold was subsequently applied in the analysis. 

KLF-15's FASTA amino acid sequence was submitted in InterProScan for domain 

prediction of the protein (Blum et al., 2021). 

3.2. Retrieval of Pathogenic SNP 

ENSEMBLE yielded variants of KLF15; the variant table was obtained from which 4483 

variant were found. Then pathogenicity prediction was based on filtered missense variants. 

Strong link with the disease guided the choice of these selected SNPs depending on the 

pathogenicity score of the in-silico tools. 

3.3. Analysis of missense SNPs 

These missense SNPs were further analyzed through different tools like REVEL (Ioannidis 

et al., 2016) Mutation Accessor (Bott et al., 2011) , metaLR (Wickramarachchi et al., 

2020), SIFT  (Sim et al., 2012), Polyphen2  (Adzhubei et al., 2013) and CADD (Rentzsch 

et al., 2019). These tools helped in screening the deleterious SNPs. These tools assisted to 
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screen the potentially disease-causing SNPs. Two SNPs in all were obtained for the study 

for the further analysis. 

 

 

3.4. Protein stability analysis 

Protein structural stability was investigated in response to KLF15 variants using MUpro, 

MAESTRO, MutPred-2, DynaMut, and HOPE. We investigated how selected SNPs will 

influence protein stability. We acquired delta delta G (DDG) values to project the effect on 

protein stability resulting from a single nucleotide modification. A lower DDG value 

suggests decreased stability of the protein, which changes its typical pathways. The DDG 

value between roughly 0.5 and 50.5 increases both protein flexibility and stiffness. 

3.5. Structural and functional study of SNP 

The structural and functional effect of the single nucleotide polymorphisms on the protein 

was determined through Project Hope. The Project Have Our Protein Explained (Project 

Hope) tool was used to study the change in protein structure because of any mutation. 

Project Hope considers physicochemical alterations based on the size, by hydrophobicity, 

and charge of amino acids, as well as the ensuing loss of salt-bridge or hydrogen-bonding- 

based intra- or inter-residual contacts. Project Hope detect the heritable disease because of 

change in the structure and function of the protein due to its mutation (Zheng et al., 2022).  

3.6. Association of KLF15 with cancer 

The computational technique FATHMM was applied (Rogers et al., 2018) to ascertain 

whether the KLF15 missense variants correlated with the disease. This method forecasts 

the protein's link with disease using knowledge about protein sequence and function. We 

investigated the noted variations for any possible cancer-related connections using this 

approach. Whether human cancer was linked to the KLF15 missense mutations was 
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ascertained. The tool would note either a passenger or cancer once all the mutations were 

verified. 

3.7.  KLF15 flexibility analysis 

The tool named DynaMut was used to identify the fluctuation and distortion in protein 

because of the missense variants. It was also used to check the effect of mutation on the 

molecular motion of the protein. In this regard, this tool uses the Normal Mode Analysis 

approach which analyzes the vibrational entropy change in the protein because of the single 

nucleotide polymorphisms (Rodrigues et al., 2018). 

3.8. In-Situ Mutagenesis 

The mutation was induced in the original KLF15 structure by changing the amino acids in 

the wild-type structure with the variant amino acid. The structure of the protein was 

predicted and aligned through PyMOL. For this in-situ mutagenesis a tool named 

mutagenesis wizard tool in the PyMOL v4.0.4 (Ogun et al., 2023) was used. 

3.9. Molecular Dynamic Simulations of wild type and variant of KLF15 

The molecular dynamic simulation for the wild-type structure of KLF-15 and its variant of 

the proteins is performed. The conformational changes on the inside of the protein structure 

because of the missense mutations can be checked by performing the simulation of 20ns. 

The stability of the model for molecular dynamic simulation will be obtained by using 

GROMACS 2016 (Abraham et al., 2015) and the force-field of OPLS-AA (Kulig et al., 

2015). The initial energy minimization of the MD simulation was carried out at the 50,000 

steps along with the NVT and NPT equilibration of 100 ps. The built-in programs of 

Gromacs were used for constructing trajectories (gmx_triconv) and also to carry out 

structural analysis. The trajectory coordinates were saved every 10ps. The time of 20ns is 

enough to check different parameters such as Radius of gyration (Rg), Root means square 

fluctuations (RMSF), the total number of intra- molecular hydrogen bonds, Solvent 

Accessibility Surface Area (SASA), and Root mean square deviations (RMSD). Also, the 
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rearrangements in the side chains of the wild-type structure of a protein can be completely 

understood. The Gromacs commands such as gmx_rms, gmx_rmsf, gmx_gyrate, 

gmx_hbond, and gmx_sasa were used to calculate the above-mentioned parameters. For 

the backbone of the structure RMSD was calculated. The protein and sidechains analysis 

will be done through RMSF. The radius of gyration was calculated for the protein and 

backbone. The results were plotted on scatter smooth line graphs. 

 

 

3.10. Experimental Analysis 

3.10.1. Sample Collection 

For the study of liver cancer, the samples were collected from the patients above 18 years 

of age and without any co-morbidity. The patients were asked to sign a consent form that 

they are giving the samples by their own choice and are being part of the study. Also, 

ethical approval from the institutional review board of Atta-ur Rehman School of Applied 

Biosciences NUST was obtained. 

3.10.2. Primer Designing 

The primers for tetra ARMS PCR are designed computationally by a tool named Primerl 

(Zhong et al., 2018). To get the ARMS PCR primers from Primer1 the input in the form 

upper layer of supernatant was discarded, and the lower pellet layer was kept safe for 

further processing. Then the pellet was resuspended in 500ul of solution A, shaken 

vigorously, and a second centrifugation was carried out for 1 minute at the speed of 13,000 

pn. Again, the supernatant after the centrifugation was discarded, and in the nuclear pellet 

solution B of volume, 400μl was added. After that again 400ul of the solution was added 

to the pellet separated. The other compounds that were added in the above solution of 

nuclear pellet and solution B are Sul of proteinase K (20µl/ml stored at -20°C) and 12μl of 

20% SDS. It was then kept overnight in an incubator at 37°C. 
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On the following day, 250µl of solution C and 250µl of the solution were added. After 

inward mixing of the tube several times, it was centrifuged at 13.000 rpm for 10 minutes. 

On completion of centrifugation, two layers were observed in the tube. The upper layer 

containing DNA was separated very carefully into another Eppendorf tube. In it, 55μl of 

Sodium acetate and 500ul of isopropanol were added for the precipitation of the DNA. 

These tubes were then centrifuged again for 10 minutes at 13,000 rpm. After the 

centrifugation, the supernatant was discarded, and the pellet collected at the bottom was 

suspended in 200μl of 100% ethanol (chilled at -20°C). Centrifugation was carried out for 

8 minutes at 13,000 rpm. After centrifugation, the DNA was dried at room temperature. 

75μl of Tris-EDTA buffer was added to the DNA pellet. 

Forward inner primer (T allele):              

 

215 CACCTCAAGGCCCACCGGT 233                           

 

Reverse inner primer (C allele): 

 

250 CTCACCCGTGTGCCGTCG 233                            

 

Forward outer primer (5' - 3'): 35 AAGTTTGTGCGCATTGCCCC 54                          

 

Reverse outer primer (5' - 3'): 

 

410 CCCCTCCCTCCCCTCCCT 393                           

 

 

3.10.4. Gel Electrophoresis 

The quality of the extracted DNA was analyzed on agarose gel electrophoresis. For this 

purpose, 1% agarose gel was used. To prepare 50ml of agarose gel, Sml 10X TAE buffer 

was mixed with 45ml of distilled water. Then 0.5g of agarose was added to the above 

solution in a beaker. This mixture was microwaved for 1-2 minutes, and Sul of ethidium 

bromide was then added. The gel mixture was poured into the gel tank and after removing 

the bubbles the comb was placed in the tank. The gel was placed at room temperature for 
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30 minutes to solidify. For 100ml of the gel, 10ml of 10X TAE buffer was added to 90ml 

of distilled water and Ig of agarose was added to the solution and the amount of ethidium 

bromide added was Sul. The next step after the solidification of the gel was to load the 

DNA samples into the wells. 8μl of DNA was mixed with 0.5µl of the loading dye; this 

mixing was carried out on the parafilm. After mixing, 8.5ul of the sample was added to the 

wells in the gel that was placed in the electrophoresis tank containing the IX TAE buffer. 

The gel was run at 100 volts for 15 minutes. The gel was visualized under the UV- 

Transilluminator. After visualization of the bands, the DNA samples were stored at 4°C 

for further use. Amplified PCR products were analyzed on 2% agarose gel. The agarose 

gel was prepared as described above. 

 

3.10.5. Polymorphic genotyping 

To detect the point mutation in the DNA extracted from the blood samples, Tetra ARMS 

PCR (Amplification-refractory mutation system polymerase chain reaction) was used. For 

ARMS PCR two inner (inner forward and inner reverse,) and two outer (outer forward and 

outer reverse) sets of primers are used. The inner primers are specific for the allele, but the 

outer primers are to detect the SNP by the amplification of the gene. For PCR 20μl of 

reaction was prepared with 1µl of all four primers, 8 ul of Solis BioDyne master mix, 2ul 

of the sample, and 6ul of water. To mix the PCR samples properly they were given a short 

spin before going for PCR. The reaction was optimized at 60°C of the annealing 

temperature. To carry out the samples at multiple temperatures simultaneously, a Gradient 

PCR machine was used. This machine has a specialty of using different temperatures for 

one go as each row in it has a different temperature. It will take 1.5-2 hours to complete 

the 35 cycles of the reaction. 

PCR Steps and Conditions 
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Step 1: In the first step of the reaction the hydrogen bonds between the strands of the DNA 

are broken for the denaturation of the DNA molecule. This denaturation was carried out at 

95°C for 5 minutes which will completely melt the molecule of DNA. The next step will 

not repeat the above step of denaturation, but it will complete the 35 cycles of denaturation 

of DNA at 94°C for 30 seconds. 

Step 2: Multiple temperatures were set at this step as we were using gradient PCR. This 

step will also take 30 seconds. 

Step 3: In this step, just after annealing the DNA will be polymerized for 30 seconds at 

72°C and after that, the final polymerization of DNA will occur at 72°C for 7 minutes. 

3.10.7. Statistical Analysis 

The genotype data that was obtained through the ARMS PCR was further analysis by 

applying some statistical tools. Here the Graphpad Prism software 9 (Mavrevski et al., 

2018) was used to obtain the significance values for the genotypes to show their link with 

the breast cancer. The p-value of 0.005 or less was regarded as statistically significant. In 

this tool the chi square method was used for the analysis and to obtain graphs between the 

desired values. 
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4. RESULTS 

4.1 KLF-15 Structure Prediction 

The 3D modelling was done through Alpha Fold online. The structure was visualized in 

PyMOL. The structure shows all the main regions including the kinase domain, regulatory 

domain as well as the hinge domain in a 3D manner. The protein structure was verified 

using InterPro, a web-based technology that classifies proteins into families and predicts 

their individual domains. The four predicted domains of the KLF 15 protein are the color 

red for the PE/DAG-bd domain, orange for the C2 domain, magenta for the protein kinase 

domain, and blue for the AGC kinase C domain that can be seen in figure 8. This gave us 

information related to the amino acids and their spatial arrangement. It also provides us 

with the information for designing experiments related to in-situ mutagenesis. 

Transcriptional regulator that binds to the GA element of the CLCNKA promoter. Binds 

to the KCNIP2 promoter and regulates KCNIP2 circadian expression in the heart (By 

similarity). Is a repressor of CCN2 expression, involved in the control of cardiac fibrosis. 

It is also involved in the control of cardiac hypertrophy acting through the inhibition of 

MEF2A and GATA4 (By similarity). Involved in podocyte differentiation (By similarity). 

Inhibits MYOCD activity. Is a negative regulator of TP53 acetylation. Inhibits NF-kappa-

B activation through repression of EP300-dependent RELA acetylation (NCBI). 
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Figure 8: 3D- Structure Representation of KLF-15. The image represents all different 

regions of KLF-15. Each color represents a different region. 

The optimized structure was validated in SAVES, and PROCHECK analysis revealed that 

63.2 percent of amino acid residues had phi-psi angles in the most preferred regions, 25.8 

percent in additionally allowed regions, 7.5 percent in generously allowed regions, and 3.5 

percent residue had phi-psi angles in the disallowed regions of the Ramachandran plot. 

83.607% is the quality factor of predicted structure analysis of KLF-15 (Figure 10).  
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Figure 9 : Ramachandran Plot showing the measurements of angles in KLF15 

 

Figure 10:Quality prediction analysis of predicted KLF-15 3D model 

PyMOL was used for highlighting the various regions of KLF15 i.e homologous 

superfamily and zinc finger domains, Figure 10 shows homologous superfamily was 

highlighted via PyMol software, 335-404 (Red).  

 

Figure 11: Homologous superfamily was highlighted via PyMol software 

Homologous superfamily:  

▪ 335-404 (Red) 
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Figure 12: Zinc finger domains, 261-290 (red), 291-320(blue), 321-348(yellow) 

 

4.2 Subcellular localization and phylogenetic tree 

DEEPLOC 1.0 was able to anticipate where the KLF15 would be found subcellularly. Here 

we can see the KLF15 localization path in Figure 12. The red line represents the protein's 

pathway to its intracellular compartment. The score indicates the 40th percentile of the 

event's probability or likelihood. The score suggests that KLF15 is located in the nucleus. 

Figure 13 shows the evolutionary tree of KLFs, which shows that all KLFs have a common 

ancestor. The score quantifies the number of substitutions made at each site, providing 

insight into the relative evolutionary history of different proteins in the same family. The 

evolutionary link between KLFs families was found using Clustal Omega program. 
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Prediction: Nucleus, Soluble 

Table 1: Subcellular localization 

Localization Likelihood 

Nucleus 0.9997 

Cytoplasm 0.0003 

Cell membrane 0 

Mitochondrion 0sg 

Endoplasmic reticulum 0 

Golgi apparatus 0 

Peroxisome 0 

Extracellular 0 

Lysosome/Vacuole 0 

Plastid 0 

Type Likelihood 

Soluble 0.6948 

Membrane 0.3052 
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Figure 13: Shows the KLF15 protein’s localization route as well as the likelihood 

score. The path of localization is shown in red. 

 

 

 



39 

 

 

 

 

 

Figure 14: Represents the Phylogenetic Tree of the KLFs proteins. All the KLFs 

originated from a common root and then evolute into three different classes  

Using Clustal Omega to align the sequences of the KLFs family's isoforms reveals that 

whereas some parts are shared by all members of the family, others differ. The Krüppel-

like factor (KLF) family is characterized by highly conserved C-terminal regions 

containing three C2H2 zinc fingers, which are critical for DNA binding, while the N-

terminal regions show significant variability and are involved in transcriptional regulation 

and protein interactions. A study (Ling et al., 2023) demonstrate their conserved nature and 
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show that the C2H2 zinc fingers are essential for nuclear localization and DNA-binding 

capabilities across several KLFs. Emphasizing this conserved role, KLF1, KLF4, and 

KLF8 use their zinc fingers for nuclear localization. On the other hand, the N-terminal 

areas show great variety, which helps to define different regulating roles and interactions 

with other cellular proteins. As Figure 15 shows, this diversity allows KLFs to engage in a 

broad spectrum of cellular activities including differentiation, cell cycle control, and 

responsiveness to extracellular signals. 
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Figure 15: Sequence allignment through clustal omega 
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Figure 16:  ConSurf investigation of KLF-15 . The diagram depicts the evolutionary 

conservation scale and showcases the PKC γ residues categorized as buried (b), 

exposed (e), functional (f), and structural (s).  

 

4.3 In silico mutagenesis 

Insilco mutagenesis induced via PyMol software, where the amino acid arginine at position 

364 R is altered to P. 
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Figure 17:  Insilco mutagenesis induced via PyMol software, where the amino acid 

arginine at position 364 R is altered to P. 

 

 

 

Figure 18:   Insilco mutagenesis induced via PyMol software, where the amino acid 

arginine at position 343 R is altered to C. 

4.4 Identification of KLF Variants 

R 364 P 

R343C 
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We used three tools for data retrieval: ENSEMBLE, GENOMAD, and COSMIC. 

ENSEMBLE revealed that the transcript has three exons, twenty-eight domains and 

features, forty-48 variant alleles, and maps to two hundred and eighty-two oligo probes and 

four hundred and sixteen amino acids. COSMIC also supplied a variant table. Ensemble 

has the most entries (4982 to be exact), according to the data gathered from different 

sources. The number of entries in the GenomAD database is substantially lower at 418. 

Out of the three databases, the cosmic database has the fewest entries 298 to be exact. 

When contrasted with the more niche collections included in GenomAD and cosmic, the 

Ensemble database stands out for its comprehensive breadth. 

 

Figure 19: Total variants from all the selected data bases 
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Figure 20: Non-synonymous variants from all the selected data bases 

 

The data illustrates the number of missense variants reported across different databases. 

The missense category itself has a total of 422 entries. Among the specific databases, 

Ensemble has recorded 330 missense variants, while GenomAD has documented 212, and 

cosmic has reported 131. This distribution underscores the varying levels of missense 

variant documentation across these databases. 
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Figure 21: Unique missense variants from all the selected databases 

The data from various databases highlight the total number of entries for different types of 

genetic variations. Missense variants are the most prevalent, with a total of 422 entries. 

Frameshift variants follow with 17 entries, while nonsense variants are the least common, 

with only 11 entries. This summary provides a clear comparison of the frequency of these 

genetic variations across all databases. 
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Figure 22: Total frameshift variants from the selected databases 

The total number of frameshift variants across all databases is 17. Among these, Ensemble 

has recorded 8 frameshift variants, GenomAD has documented 4, and cosmic has reported 

6. This data indicates the distribution of frameshift variants within these specific databases. 

In analyzing the data provided, the term "nonsense" appears most frequently, with a count 

of 11, indicating its significant relevance or focus in the given context. "Cosmic" follows 

with a count of 7, suggesting it also plays a notable role but to a lesser extent. "Ensemble" 

is mentioned 5 times, showing a moderate level of importance. Lastly, "Genom AD" 

appears only once, implying it is the least emphasized term among the four. This 

distribution highlights a primary focus on "nonsense" and "cosmic," with secondary 

attention to "ensemble," and minimal mention of "Genom AD." 
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KLF15 has 4 exons, one exon has codes for 42% AA and 68% variants frequency, exon 2 

codes for 38 % AA and 62% variant frequency, exon 3 codes for 40% AA and 60% variants 

frequency, exon 4 codes for 45 % AA and 55% variants frequency. 
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Figure 23: SNP frequency per exon 

4.5 Pathogenicity analysis  

In order to focus on one SNP for additional analysis, the missense data was filtered. 

Initially, the SNPs were sorted according to the percentage of pathogenicity. The 

pathogenicity percentages were calculated using SIFT, PolyPhen, CADD, REVEL, 

Mutation Assessor, and MetaLR. Following that, the pathogenicity percentage for each 

variant was calculated and displayed graphically. 

Table 2: Filtered SNPs for analysis 

Variant ID Alleles Conseq. 

Type 

AA AA 

coord 

sift_class Polyphen Cadd Revel meta_lr Mutation 

Accessor 

rs755719419 C/G missense 

variant 

R/P 364 deleterious probably 

damaging 

likely 

deleterious 

likely 

disease 

causing 

Tolerated Medium 

rs768676875 G/A missense 

variant 

R/C 343 deleterious probably 

damaging 

likely 

deleterious 

likely 

disease 

causing 

Tolerated Medium 
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The missense data was sifted through to isolate one SNP for further investigation. The 

SNPs were initially filtered based on their pathogenicity percentages. SIFT, PolyPhen, 

CADD, REVEL, Mutation Assessor, and MetaLR pathogenicity percentages were 

determined using the pathogenicity scores provided by the tools stated in the methodology. 

After that, the percentage pathogenicity for all variants was determined and plotted in a 

clustered column graph. The above-mentioned techniques were used to filter all data about 

KLF-15 missense SNPs. Missense SNPs above the 75% threshold were selected, and 

further filtration was done to sort out the most pathogenic SNPs. The SIFT; harmful SNPs 

(score: 0 0.01), PolyPhen; certainly, damaging and maybe damaging SNPs (score: 0.983-

1), Revel; likely disease-causing SNPs (score: 0.804-0.978), MetaLR; damaging SNPs 

(0.77-1), CADD score cutoff value was maintained at 27, and Mutation Assessor (score: 

0.5-0.9); medium and high scoring SNPs were maintained in the filtration process. After 

the filtration, twenty-three highly deleterious variants were sorted out. After all the 

screening the SNPs with variant IDs rs755719419 and rs768676875 were selected for 

further in silico analysis and wet lab validation. The missense variants per amino acid 

residue were determined to see the abundance of variants present in the coding region. 
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                                         nsSNPs 

Figure 24 : Pathogenicity Percentage above Threshold Level 

 

 

4.6 Stability analysis 

MUpro was done for both variants and results are given below. MUpro analysis was 

conducted for two variants, rs755719419 and rs768676875, employing SVM and Neural 

Network models with sequence-only inputs. For rs755719419, SVM predicted a decrease 

in stability with a ΔΔG value of -1.5224059 kcal/mol, corroborated by Neural Network's 

prediction with a confidence score of -0.502399548128. Similarly, for rs768676875, SVM 

indicated decreased stability, supported by both the ΔΔG value of 0.8825882 kcal/mol and 

Neural Network's prediction with a confidence score of -0.945564764538754. These 

findings suggest potential destabilizing effects associated with the analyzed variants. 
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Table 3 : Variant ID: rs755719419 results from MUpro 

Method Model Input Prediction Confidence Score 

1 SVM Sequence 

only 

DECREASE stability 

-1.5224059 (Delta 

delta G Value) 

-1.9224059 

2 SVM Sequence 

only 

DECREASE stability -0.32174172 

3 Neural 

Network 

Sequence 

only 

DECREASE stability -0.502399548128 

 

Table 4: Variant ID: rs768676875 results from MUpro 

Method Model Input Prediction Confidence Score 

1 SVM Sequence 

only 

-Delta delta 

G 

=0.8825882 

(DECREASE 

stability) 

-1.5224059 



53 

 

 

2 SVM Sequence 

only 

DECREASE 

stability 

-0.90835183 

3 Neural 

Network 

Sequence 

only 

DECREASE 

stability 

-

0.945564764538754 

For variant rs755719419, characterized by the substitution R364P in the KLF15_Human 

gene, MutPred2 assigned a score of 0.881. Notably, the mutation affects multiple 

PROSITE and ELM motifs, including ELME000053, ELME000062, ELME000136, 

ELME000159, PS00006, and PS00028. Molecular analysis indicates probable alterations 

in DNA binding, supported by a probability of 0.35 and a significant p-value of 0.05. 

Additionally, a potential loss of helical structure is suggested, with a probability of 0.32 

and a p-value of 0.05. Conversely, variant rs768676875, featuring the substitution R343C 

in KLF15_Human, received a MutPred2 score of 0.733. These variants influences various 

PROSITE and ELM motifs, including ELME000008, ELME000012, ELME000062, 

ELME000102, ELME000108, ELME000334, PS00004, and PS00028. With a p-value of 

0.05 and a chance of 0.35, molecular analysis points to possible loss of inherent disorder. 

Furthermore, indicated alterations in DNA binding give a p-value of 0.05 and a likelihood 

of 0.15. These investigations help to clarify the possible functional results of the changes 

in protein structure and molecular mechanisms. 

 

Table 5: Variant ID: rs755719419 results from MutPred2 

ID Substitution MutPred2 Score Remarks Affected Prosite 

and ELM Motife 
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KLF15_Human R364P 0.881 - ELME000053, 

ELME000062, 

ELME000136, 

ELME000159, 

PS00006, 

PS00028 

Molecular mechanism with P-values <= 0.05 Probability P-value 

Altered DNA binding 

  

0.35 

  

  

0.05 

  

  

Loss of Helix 0.32 0.05 

 

Table 6: Variant ID: rs768676875 results from MutPred2 

ID Substitution MutPred2 

score           

Remarks Affected 

PROSITE 

and ELM 

Motifs 

KLF15_HUMAN R343C 0.733   ELME000008, 

ELME000012, 

ELME000062, 

ELME000102, 

ELME000108, 
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ELME000334, 

PS00004, 

PS00028 

Molecular 

mechanisms with 

P-values <= 0.05 

Probability P value   

Loss of Intrinsic 

disorder  

  

0.35 0.05 

Altered DNA 

binding  

0.15 0.05 

4.7 MAESTRO web 

We obtained prediction insights for the variant rs7557194 which is denoted by the 

substitution R364A using MAESTRO web. The expected ΔΔG value of 1.5160718 for this 

mutation suggests a possible destabilizing influence on the protein structure. Attached 

furthermore to this forecast is a confidence score of 0.76848. Conversely, S343A was 

evaluated as a substitute and displayed a ΔΔG value of 0.3760340 and a higher confidence 

score of 0.970638 (c_pred). These predictions provide vital information on how amino acid 

substitutions may influence protein stability, so helping us to learn more about the effects 

of variations on protein structure and function. In MAESTRO, if ΔΔG value is less than 

0.0, it is stabilizing. 
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Table 7: Variant ID: rs755719419 results from MAESTRO web 

Substitution ddG_pred c_pred 

R364.A(P} 1.516071863 0.76848 
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Table 8: Variant ID: rs768676875 results from maestro 

substitution; ddG_pred; c_pred 

S343.A(A} 0.376034087 0.970638 

4.8 DYNAMUT 

From their ΔΔG values, both variation 1 and variant 2 exhibit destabilizing effects. The 

ΔΔG value of variation 1, -0.996 kcal/mol, shows a clear drop in stability when compared 

to the wild-type protein. With a ΔΔG value of -0.437 kcal/mol, variation 2 also shows a 

tendency towards destabilization. As our data show that these polymorphisms may 

influence protein stability, more investigation on the functional consequences of these 

variants and their putative relationships with disease phenotypes is required. 

   

Wild type KLF-15                                                     Mutant 1                    Mutant 2 

 4.9 Hope 

The effects on size, hydrophobicity, and charge mean that substituting cysteine for arginine 

at position 343 will interfere with the DNA-binding zinc-finger domain. The mutation will 
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affect the Zinc Finger C2H2-type and Superfamily domains since the residue is highly 

conserved and close to another conserved site. This suggests the mutation will destroy 

domains. 

 

Table 9: Variant ID: rs768676875 results from ProjectHOPE 

Category Information 

Amino Acid Mutation: Arginine to Cysteine at position 343 

Structures Original (left) and mutant (right) amino acid structures provided. Mutant is smaller, has a neutral 

charge, and is more hydrophobic. 

Structure Mutation disturbs a Zinc-finger domain known to bind DNA. 

Conservation Residue is 100% conserved; mutation is likely damaging based on conservation. Mutant residue 

is near a highly conserved position. 

Domains Zinc Finger C2H2-Type and Zinc Finger C2H2 Superfamily domains affected. 

Amino Acid 

Props 

Charge loss in mutant, size difference (smaller mutant), and increased hydrophobicity. 

Images No structural information available, so no images generated. 
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Figure 25: Mutation of Arginine to Cysteine 

The size and charge of an amino acid changes from positively charged to neutral and 

hydrophobicity increases as glycine is converted to alanine. This mutation affects the Zinc 

Finger C2H2-Type and Superfamily domains, which may impair DNA binding. The 

mutation's closeness to a conserved location and high conservation suggests it's harmful. 

This may affect protein folding, size, hydrophobicity, charge, and interactions. Table 

shows results from HOPE rs755719419.  

Table 10: Variant ID: rs755719419 results from MAESTROweb 

Category  Information 

Amino Acid properties Mutation from Glycin to Alanin 

Charge  Positive to neutral 

Size  Larger to small 

Hydrophobicity Less hydrophobic to more hydrophobic 

Zinc finger C2H2-type Affected 
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Zinc finger C2H2 

superfamily 

Affected 

Wild type consistency highly conserved  

Mutation impact Likely damaging based on conservation scores 

Mutant residue Located near a highly conserved position 

Impact on charge Loss of charge may impact interactions 

Impact on size Smaller size may lead to loss of interactions 

Impact on 

hydrophobicity 

Increased hydrophobicity can disrupt hydrogen bonding and 

folding 

 

 

 

Figure 26:  Mutation of Glycin to Alanin 
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4.10 FATHMM 

 

Table 11: FATHMM analysis of variant ID (rs755719419) 

Chromosome Position Variant Coding 

score 

Noncoding 

score 

Messages 

3 126343887 A/G 

 

0.537127 oncogenic 
 

 

Table 12: FATHMM analysis of variant ID (rs768676875) 

Chromosome Position Variant Coding score Noncoding score Messages 

3 126351896 G/A 

 

0.442581 Benign 
 

 

The first table describes a variant located on chromosome 3 at position 126343887, with 

an A/G substitution. This variant has a noncoding score of 0.537127, indicating a moderate 

potential impact on gene regulation. The variant is classified as "oncogenic," suggesting it 

may contribute to cancer development. In contrast, the second table features a variant on 

chromosome 3 at position 126351896, with a G/A substitution. This variant has a 

noncoding score of 0.442581, indicating some potential impact, though less significant 

than the first variant. It is labeled as "benign," implying that it is not associated with cancer 

or harmful effects. 
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4.11 RNA fold 

The variant exhibits a Free Energy of -15.23 kcal/mol, indicating the Gibbs free energy of 

the thermodynamic ensemble. This value suggests a certain level of stability; however, it's 

essential to note that lower values signify greater stability in the system at constant 

temperature and pressure. The MFE Structure Frequency stands at 26.09%, indicating the 

prevalence of the Minimum Free Energy (MFE) structure within the ensemble. Ensemble 

Diversity is measured at 4.58, indicating a relatively diverse ensemble of structures. 

Comparatively, the Centroid Structure Energy is -14.10 kcal/mol, representing the energy 

of the centroid secondary structure in dot-bracket notation, which is the structure with the 

minimum free energy within the ensemble. This variant's MFE and structural parameters 

differ from those of the wild type, suggesting potential effects on stability and structural 

dynamics. Further analysis is warranted to elucidate the functional implications of these 

differences in the variant. 
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Figure 27: MFE of variant is -14.10 kcal/mol (left) and the wild type is of -15.23 

kcal/mol (right) 

The variant under scrutiny exhibits a Free Energy of -102.62 kcal/mol, reflecting the Gibbs 

free energy of the thermodynamic ensemble. Lower values suggest greater stability within 

the ensemble. The MFE Structure Frequency is notably low at 0.13%, indicating a sparse 

occurrence of the Minimum Free Energy (MFE) structure within the ensemble, implying a 

diverse set of structures. Ensemble Diversity is high at 37.05, signifying a broad spectrum 

of possible structures present within the ensemble. The Centroid Structure Energy is -95.80 

kcal/mol, denoting the energy of the centroid secondary structure in dot-bracket notation, 

which represents the most thermodynamically stable structure within the ensemble. These 

parameters collectively highlight the variant's distinct RNA secondary structure 

characteristics compared to the wild type, suggesting potential alterations in stability and 

structural dynamics. Further investigation is warranted to comprehend the functional 

implications of these differences in the variant's RNA structure. 
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Figure 28: MFE is -95.80 kcal/mol for a variant (left)  --102.62 kcal/mol for a wild 

type (right) 

 

 

 

4.12 Molecular Dynamics 

a)  
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b)  

c)  

d)  
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e)  

Figure 29: Molecular dynamics of KLF-15 and its SNPs. a) Root mean square 

deviation (RMSD), b) Root mean square fluctuation (RMSF), c) Radius of gyration, 

d) Number of hydrogen bonds, and e) Solvent accessibility surface area (SASA). 

 

The first graph (a) displays the RMSD (Root Mean Square Deviation) with time, therefore 

displaying the structural stability of the proteins. The Wild Type protein indicates more 

stability by having the lowest RMSD values over the simulation when compared to the 

R364P and R343C variants. Emphasizing how flexible each residue is, the second graph 

(b) displays the link between the number of residues and the root mean square fluctuation 

(RMSF). The R343C variety exhibits higher fluctuations than the Wild Type and R364P, 

which would indicate that it is perhaps more flexible and unstable in some places. 

 

Plotting the Radius of Gyration with time in the third graph (c) helps one to demonstrate 

the simplicity of the protein structures. Unlike R343C and R364P, which show more 

variability, the Wild Type maintains mostly constant radius, implying a strong compact 
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structure. The Wild Type generates more stable hydrogen bonds, which keeps it together, 

as seen in the fourth graph (d), which displays the quantity of hydrogen bonds with time. 

Finally, graph (e) displays the Solvent Accessible Surface Area (SASA) with time; a lower 

SASA for the Wild Type denotes less solvent exposure and more robust stability. Based 

on the whole analysis, the Wild Type protein shows greater stability, compactness, and 

structural integrity than the variants in R364P and R343C. 

 

 

 

 

 

 

 

 

 

 4.13 Laboratory based Experimentation Results  

Genotype Data of Hepatic Cancer in Patients and Healthy Control Samples 
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Table 13: Genotype Data of Patient and Control of R364P(rs755719419) Mutation 

 Patien

ts 

% 

Controls 

% 

Odds 

ratio 

95% 

CI 

(odds 

ratio) 

Relati

ve risk  

95% CI 

(relative 

risk) 

P value 

Genotypes CC 18.18

% 

 

61.46% 

 

0.139 0.0749

2 to 

0.2642 

 

0.3572 

 

0.2370 to 

0.5171 

 

 

 

 

 

<0.005 

 GG 19.09

% 

 

2.08% 

 

2.933 

 

 

2.772 

to 

48.66 

 

1.651 

 

1.460 to 

2.253 

 

CG 62.73

% 

 

36.46% 

 

11.09 

 

1.658 

to 

5.150 

 

1.877 

 

1.266 to 

2.190 

 

 

Alleles 

C 49.09

% 

 

80.21% 

 

0.2379 

 

 

0.1298 

to 

0.4431 

 

0.5521 

 

0.4310 to 

0.7040 

 

 

 

 

<0.005 

 G 50.91

% 

 

19.79% 

 

4.203 

 

2.257 

to 

7.705 

 

 

 

1.811 

 

1.421 to 

2.320 

 

 

 

Table 13 shows for both patients and controls the genotyping data for the R364P 

(rs755719419) mutation. Looking at the relative risk (RR) and odds ratio (OR), the control 

group clearly differs from the patients for several genotypes and alleles. Given their 

statistically significant RR and OR values, the distribution of these genotypes and alleles 

between the two groups likewise follows. P-values below 0.05 also help to corroborate this. 

The CG genotype and G allele of the patient group raise their risk of the disease since their 

RR and OR values far exceed 1. These results suggest that, given its distribution across 

patients and controls, the R364P mutation might have a function in disease susceptibility. 

GG and CG genotype is significantly associated with disease due to high OR and RR. while 

genotype CC is significant and has a protective role. 
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Table 14: Association of R364P(rs755719419) SNP with Clinical Features of hepatic 

Cancer Patients. 

 Positive family 

history 

Negative family history 

 P value Positive 

FH 

% 

Negative 

FH 

% 

Odds 

ratio 

(95% CI) 

Relative 

risk 

(95% CI) 

Odds ratio 

(95% CI) 

Relative risk 

(95% CI) 

Genotypes CC  

 

 

 

 

<0.005 

 

 

 

21.05% 

 

2.63% 

 

9.867 

(1.604 to 

108.3) 

 

1.682 

(1.175 to 

2.141) 

0.1014 

(0.009230 to 

0.6234) 

 

0.5945 

(0.4671 to 0.8514) 

 

GG 21.05% 

 

2.63% 

 

 

9.867 

(1.604 to 

108.3) 

 

 

1.682 

(1.175 to 

2.141) 

 

0.1014 

(0.009230 to 

0.6234) 

 

0.5945 

(0.4671 to 0.8514) 

 

CG 94.74% 

 

57.89% 

 

13.09 

(3.305 to 

58.40) 

 

 

1.93 

(1.462 to 

2.567) 

 

0.07639 

(0.01712 to 

0.3026) 

 

 

0.5181 

(0.3896 to 0.6839) 

 

 

Table 14 shows that, overall, family history significantly influences the connection 

between genotypes and disease risk. Higher OR and RR values indicate an increasing risk 

in cases of a positive family history; lower OR and RR values show a protective impact in 

cases of a negative family history. The results show their robustness since statistical 

significance across all genotypes and family histories supports them. 



70 

 

 

Table 15: Association of R364P(rs755719419) SNP with Clinical Features of hepatic 

Cancer Patients. 

 Fatty liver Non-Fatty liver 

 P value Fatty 

liver 

% 

Non-

Fatty 

liver 

% 

Odds 

ratio 

(95% 

CI) 

Relativ

e risk 

(95% 

CI) 

Odds ratio 

(95% CI) 

Relative risk 

(95% CI) 

Genotype

s 

CC 0.7896 

 

20.59% 

 

17.11% 0.7959 

(0.2835 

to 2.067) 

 

0.9286 

(0.6076 

to 

1.236) 

 

1.256 

0.4838 to 

3.527 

 

1.077 

(0.8093 to 1.646) 

 

GG 0.6008 

 

 

21.05% 

 

14.71% 

 

0.884 

(0.3993 

to 1.970) 

 

 

1.13 

(0.7961 

to 

1.437) 

 

1.131 

(0.5076 to 

2.505) 

 

0.8848 

(0.6961 to 1.256) 

 

CG 0.8334 

 

 

 

64.71% 

 

 

61.84% 

 

1.547 

(0.5254 

to 4.135) 

 

0.963 

(0.7517 

to 

1.273) 

 

0.6466 

(0.2419 to 

1.903) 

 

1.038 

(0.7856 to 1.330) 

 

 

Table 15 shows that none of the genotypes (CC, GG, CG) statistically correlate with either 

non-fatty or fatty liver diseases. Since the P-values for all conditions and genotypes are 

non-significant (Ns), fatty liver disease is not much affected by these genotypes. 

Table 16: Genotype Data of Patient and Control of R364P(rs755719419) Mutation 

Genotype Gender Patient 

 % 

Control 

% 

Odds 

ratio 

95% CI  

Odds 

ratio 

Relative 

risk 

95% CI 

Relative 

risk 

 P value 

CC  

 

 

 

Female  

24.62% 

 

60.00% 

 

0.2177 

 

0.09269 

to 

0.5197 

 

0.556 

 

0.3624 to 

0.7895 

 

<0.005 

GG 18.46% 

 

5.71% 

 

2.533 

 

0.8172 

to 17.44 

 

1.375 

 

 

0.9499 to 

1.760 

 

CG 56.92% 

 

34.29% 

 

3.736 

 

1.120 to 

5.694 

1.391 

 

1.030 to 

1.884 



71 

 

 

  

CC  

 

 

 

Male 

8.89% 

 

62.30% 

 

0.05905 

 

0.02111 

to 

0.1918 

 

0.1487 

 

0.05792 

to 0.3527 

 

GG 20.00% 

 

2.00% 

 

4.067 

 

3.981 to 

5.964 

 

2.283 

 

1.810 to 

6.822 

 

CG 71.11% 

 

37.70% 

 

4.9725 1.762 to 

8.910 

 

2.694 

 

 

1.394 to 

3.900 

 

Table 16 shows that gender influences the variation in the connection between genotypes 

and disease risk. In both sexes the CC genotype has a statistically significant protective 

effect. With the CG and GG genotype, both sexes show a rather higher risk, while the 

relationship is more evident in men. The statistical significance of the P-values gives strong 

proof for the conclusions. 
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5. DISCUSSION 

According to the World Health Organization (WHO), liver cancer is the sixth most 

common cancer worldwide (WHO, 2024). The incidence of liver cancer is significantly 

higher in sub-Saharan African and Southeast Asian countries compared to the United 

States. It is the predominant form of cancer in many of these countries. Over 800,000 

individuals worldwide receive a diagnosis of this illness annually. Liver cancer is a 

prominent contributor to global cancer mortality, resulting in over 700,000 fatalities 

annually (Society, 2024). The risk factors for this condition encompass hepatitis B virus, 

hepatitis C virus, fatty liver disease, cirrhosis caused by alcohol consumption, smoking, 

obesity, diabetes, iron overload, and other dietary exposures. The outlook for liver cancer 

is unfavorable. Only a small percentage, ranging from 5% to 15% of people meet the 

criteria for surgical removal. This procedure is only suited for patients in the early stages 

of the disease and who have a reduced ability for their liver to regenerate, often without 

cirrhosis. It is important to note that the right hepatectomy poses a greater risk for post-

operative complications compared to left hepatectomy. For more advanced phases, the 

available treatment options are as follows: (a) Trans-arterial chemoembolization (TACE) 

results in a 23% increase in the 2-year survival rate compared to conservative therapy for 

patients with intermediate stage hepatocellular carcinoma (HCC). (b) Administering 

sorafenib orally is the preferred treatment for advanced cases, as it is a kinase inhibitor. 

However, less than 33% of patients experience positive outcomes from the treatment, and 

the development of drug resistance becomes apparent within six months after starting the 

regimen(Anjum et al., 2021) . Extended usage of chemotherapeutic medications, such as 

sorafenib, might lead to additional problems such as toxicity and/or drug ineffectiveness. 

Consequently, both current ablation treatments and chemotherapy have limited 

effectiveness in enhancing outcomes of this debilitating condition (Anwanwan et al., 

2020). Hepatocellular carcinoma (HCC) was once regarded as an orphan illness. 

Nevertheless, due to significant advancements in comprehending its cancer-causing 
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mechanisms and innovative therapeutic choices, HCC has become a subject of extensive 

translational and clinical investigations, leading to substantial scientific advancements. 

Various subclasses of hepatocellular carcinoma (HCC) have been suggested according on 

molecular profiles. These subclasses have been associated with pathological 

characteristics, clinical symptoms, and the aggressiveness of the illness (Wege et al., 2021). 

The aim of our study is to evaluate the prognostic significance of the KLF 15 

polymorphism in liver cancer patients. The two unique SNP variants in KLF-15 are 

identified and linked with liver cancer to analyze its effect on the Pakistani Population. 

More and more biomarkers are appearing that could be of benefit, it is highly probable that 

KLF15's function in increasing cell proliferation is responsible for its association with 

enhanced tumor growth in pancreatic, endometrial, and breast malignancies (Gao et al., 

2017). On the other hand, researchers have paid little attention to the fundamental functions 

of KLF15. In light of this, we set out to determine what part KLF15 plays in liver cancer 

and how it works in the present study. A study by (Gao et al., 2017) showed that EMT-

related markers revealed that KLF15 knockdown triggered EMT by decreasing N-cadherin 

and Vimentin levels and increasing E-cadherin expression, This show that KLF15 

controlled EMT in LADC cancer cells, which resulted in metastasis (Gao et al., 2017). 

Found in eukaryotic life, the KLFs are a family of transcription factors. Among the several 

physiological and pathogenic mechanisms in which they are involved are cell 

differentiation, angiogenesis, organ and tissue development, protooncogene mutations, and 

early embryonic growth and development. Researchers have so discovered seventeen 

different KLF components in mammals, which makes them an essential regulator up to 

now. Based on their discovered sequence, they were allocated numerals KLF 1–17. Made 

by many different types of cells in many different sorts of animals, the KLF factors have 

many various purposes. These purposes include regeneration of tissues, promoting vascular 

regeneration, causing phenotypic alterations in cells, so preventing blood cell production, 

aiding in cancer growth, and so fostering stem cell differentiation. KLF15 brings about 

notable modifications in hepatic metabolism. Though it has no effect on endoplasmic 

reticulum stress or hepatic inflammatory response (Tian et al., 2020), deleting the KLF15 
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gene in mice increases insulin resistance in response to a high-fat diet (HFD).  (Tian et al., 

2020) claim that by either transcriptional or post-transcriptional pathways, KLF15 can 

regulate cell differentiation, proliferation, death, and fibrosis. KLF15-/-mice lower hepatic 

steatosis by blocking the motorC1 signaling pathway by raising fatty acid oxidation. The 

KLF15 gene is thereby absolutely vital. Controlling liver metabolism depends on the 

KLF15 gene; changes in its expression account for the hepatic pathologies induced by a 

high-fat diet (HFD) (Fan et al., 2018). 

Research indicates that the expression profiles of the KLF isoenzymes differ depending on 

the type of cancer. Many studies have shown that some genetic variations can change 

protein expression, structure, and function (Robert & Pelletier, 2018). Found in the 

functional areas of genes, missense SNPs have demonstrated in studies to enhance 

oncogene function and cause structural changes (Choi et al., 2019). Missense SNPs in 

particular genes may increase cancer risk. Certain SNPs in the KLF family have been 

associated to some forms of cancer (Marrero-Rodríguez et al., 2014). 

The results of DeepLoc 1.0 analysis of KLF15 imply that its nuclear localization is accurate 

with a probability of 0.9997. This corresponds with the function of KLF15 as a 

transcription factor in the nucleus. In addition, the protein is projected to be soluble with a 

likelihood of 0.6948. This aligns with its function in regulating gene expression, indicating 

that it is not expected to be bound to the cell membrane. The results depicted in Figure 2 

align with the evolutionary lineage of KLF proteins, which can be traced back to a shared 

ancestor, as seen by the evolutionary tree generated using Clustal Omega. The evolutionary 

analysis measures the number of substitutions at each site, giving us information about the 

relative evolutionary divergence within the KLF family. This prediction highlights the fact 

that KLF15 is likely to be found in the nucleus and is soluble, which is consistent with its 

known biological roles. KLF15 evolution was analyzed by aligning the sequences of all 

KLF family proteins to indicate conserved areas among the proteins in this family. The 

phylogenetic tree that shows that all members of the KLF family descended from a 

common ancestor and have some conserved regions present in all KLF isoforms. KLF15 
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is located on chromosome 3q21.3 in humans and encodes a transcription factor protein that 

is composed of 416 amino acids. Previous studies have shown that KLF15 acts as a 

transcriptional activator for multiple significant target genes (Marrero-Rodríguez et al., 

2014).  

The KLF 15 protein structure was first searched in Protein Data Bank (PBD). No data was 

retrieved from the database that gives us  the structure, so we have used AlphaFold to 

predict the structure of KLF15, structure retrieved from AlphaFold was viewed via PyMol 

to validate the structure obtained, It has previously been proven that the highly accurate 

protein structure prediction via AlphaFold has done in a variety of researches (Jumper et 

al., 2021).  The latest AlphaFold model exhibits a substantial enhancement in accuracy 

compared to previous specialized tools. It surpasses the docking tools in accuracy for 

protein-ligand interactions, outperforms nucleic-acid-specific predictors in accuracy for 

protein-nucleic acid interactions, and demonstrates significantly improved accuracy in 

antibody-antigen prediction compared to AlphaFold-Multimer v2.37,8 (Abramson et al., 

2024). These demonstrate that it is feasible to achieve excellent accuracy in modeling 

across the entire range of biomolecular structures using a single integrated deep learning 

framework. The study aimed to establish a connection between single nucleotide 

polymorphisms (SNPs) and Liver cancer. SNPs in the KLF15 gene were acquired via the 

Ensemble Genome Browser. Only missense single nucleotide polymorphisms (SNPs) were 

selected due to their direct influence on the structure of proteins and their potential to 

modify protein function to some degree. In order to forecast the impact of a single 

nucleotide polymorphism on a protein, the collected non-synonymous SNPs underwent 

several filtration techniques, relying on their scores in SIFT, PolyPhen, Revel, MetaLR, 

CADD, and Mutation Assessor. SNPs that were deemed extremely pathogenic were 

filtered.  Following extensive filtration, a total of 25 missense single nucleotide 

polymorphisms (SNPs) were selected from a large pool of 429 missense SNPs that exhibit 

a detrimental impact. Afterwards, the list was narrowed down to two options, specifically 

rs755719419 and rs768676875 which were selected for further examination. KLF15 is 

composed of multiple functional domains, which include the C-terminal DNA-binding 
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domain, the N-terminal transactivation domain, and the zinc finger motifs that are crucial 

for DNA binding. KLF15 possesses a DNA-binding domain that enables it to specifically 

attach to particular DNA sequences located in the promoter regions of target genes. This 

interaction ultimately governs the expression of these genes. 

The stability analysis of the selected variants rs755719419 (R364P) and rs768676875 

(R343C) was performed using the tools named MutPred 2, DynaMut and HOPE, MUpro, 

MAESTRO, which  predict that the mutation at this site may impair protein by decreasing 

its stability. SVM and Neural Network models with sequence-only inputs were used for 

MUpro analysis of rs755719419 and rs768676875. A decrease in stability was predicted 

for rs755719419 by SVM with a ΔΔG value of -1.5224059 kcal/mol and confirmed by 

Neural Network with a confidence score of -0.502399548128. SVM showed lower stability 

for rs768676875, verified by ΔΔG value of 0.8825882 kcal/mol and Neural Network's 

confidence score of -0.945564764538754. These results indicate that the variations may 

destabilize the protein. MutPred2 gave variation rs755719419, defined by KLF15_Human 

gene substitution R364P, molecular investigation suggests DNA binding changes with a 

probability of 0.35 and a significant p-value of 0.05. Helical structural loss is also possible 

with a chance of 0.32 and a p-value of 0.05. Variant rs768676875, which replaced 

KLF15_Human with R343C, scored 0.733 on MutPred2 and molecular analysis suggests 

intrinsic disorder loss with a likelihood of 0.35 and a significant p-value of 0.05. DNA 

binding changes are also suggested with a likelihood of 0.15 and p-value of 0.05. The 

results offer understanding of the possible effects of variations on protein structure and 

molecular dynamics. We obtained prediction insights for the variant rs7557194, which is 

denoted by the substitution R364P, by means of MAESTRO web. Given the expected ΔΔG 

value of 1.5160718, this mutation most certainly has a destabilising effect on the protein 

structure. The projection also features a 0.76848 confidence score. On the other hand, 

S343A was considered as a possible replacement having a ΔΔG value of 0.3760340 and a 

greater confidence score of 0.970638 (c_pred). This provides important information on 

how amino acid changes could affect protein stability, therefore helping one to better grasp 

the consequences of differences on protein structure and function. Their ΔΔG values help 
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to show the destabilizing consequences of both variants 1 and 2. Stability is considerably 

reduced in the ΔΔG value of -0.996 kcal/mol for rs7557194 when compared to the wild-

type protein. Similar to rs768676875, a destabilizing trend is observed with a ΔΔG value 

of -0.437 kcal/mol. These variations may affect protein stability, indicating the need for 

further research into their functional effects and disease manifestations. Replacement of 

arginine with cysteine at position 343 should dramatically impair the DNA-binding zinc-

finger domain. A bigger, positively charged, hydrophilic arginine is replaced with a 

smaller, neutral, hydrophobic cysteine. The modification is anticipated to be particularly 

harmful because the residue at this position is 100% conserved and next to another highly 

conserved site. The DNA-binding zinc-finger C2H2-Type and Superfamily domains are 

severely damaged. Loss of charge, size difference, and enhanced hydrophobicity of mutant 

cysteine destabilize the domain. Although no structural images are available, the data 

shows the mutation's profound impact on protein function. The mutation from glycine to 

alanine increases hydrophobicity, neutralizes charge, and reduces size. This change may 

decrease DNA binding in the Zinc Finger C2H2-Type and Superfamily domains. The 

mutation's proximity to and location at a highly conserved region suggest it's deleterious. 

Mutations may affect protein folding, size, hydrophobicity, charge, and interactions. 

Alanine's hydrophobicity and smaller size than glycine may disrupt hydrogen bonding and 

folding, causing essential interactions to be lost. Based on conservation scores, the 

mutation's loss of charge affects protein interactions, indicating its potential harm. The 

effect of mutant KLF15 SNPs (R364P and R343C) on protein structure and function is 

evaluated by observing the stability of mRNA secondary structure. The variant exhibits a 

Free Energy of -102.62 kcal/mol, suggesting greater stability compared to the wild type's 

Free Energy of -15.23 kcal/mol. Despite this, the variant shows a low MFE Structure 

Frequency of 0.13%, indicating a diverse ensemble of structures, while the wild type has 

an MFE Structure Frequency of 26.09%. The Ensemble Diversity is 37.05 for the variant, 

much higher than the wild type's 4.58, signifying a broader spectrum of possible structures. 

The Centroid Structure Energy for the variant is -95.80 kcal/mol, compared to the wild 

type's -14.10 kcal/mol. These differences imply that, although the variant appears more 
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stable thermodynamically, its increased structural diversity might affect stability and 

structural dynamics differently than the wild type. Further investigation is needed to 

understand the functional implications of these changes.  Structural stability and dynamics 

vary greatly across Wild Type, R364P, and R343C protein variants according to molecular 

dynamics (MD) simulation study. Plotting RMSD and RMSF shows that the Wild Type 

protein has less flexibility and higher structural stability; nonetheless, the R343C variant 

shows larger fluctuations and probable instability in some regions. The Radius of Gyration 

shows more evidence that the Wild Type protein preserves a more compact structure over 

time than the R364P and R343C variants, whose compactness is more changeable. A higher 

number of stable hydrogen bonds which are necessary for maintaining the stability of the 

protein is linked with the enhanced structural integrity of the Wild Type protein. Given its 

reduced SASA values, the Wild Type protein may be more stable as it is less exposed to 

solvents. The findings show that among mutations in the R364P and R343C, the Wild Type 

protein is more stable and structurally complete. This result could influence the proteins' 

performance under physiological conditions as well as their general integrity. These results 

could clarify the molecular foundations of the mutations as well as their possible influence 

on protein stability and function. 

The association between allele change and hepatic cancer was studied since the in-silico 

study indicated that a mutation in KLF-15 (R364P) could modify the structure and 

consequently the function of the protein. Two sets of primers “two outer and two inner” 

were planned for this objective utilizing Primer1 against both the variations followed by 

DNA extraction. Tetra ARMS-PCR followed the extraction. PCR using variant produces 

the same results. Distribution of this mutation, R364P, among patients and controls follows 

the genotypes and alleles indicated in table 13. The major P-values (<0.05) for all 

genotypes (CC, GG, CG) and alleles (C, G) demonstrate statistically significant variations 

between the two groups. Particularly, the greatly higher odds ratio (OR) and relative risk 

(RR) indicate a strong association between disease susceptibility and the CG, GG genotype 

and G allele. If the statistics are to be taken, people with the G allele or the CG, GG 

genotype are much more likely than those without to get the illness. This indicates that the 
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R364P mutation is a main cause of disease pathogenesis. Table 14 shows how genotype 

distribution varies depending on genetic background. The CG and GG genotypes are 

connected to a somewhat higher risk for persons with a positive family history based on 

odds ratios (OR) larger than 1 and statistically significant p-values (0.013). On the other 

hand, a negative family history for these genotypes (OR and RR values less than 1) points 

to a lower risk, which is validated by noteworthy P-values as well. The CG genotype shows 

a more complex link whereby a positive family history is linked with a higher risk. The 

results indicate how family risk interacts with hereditary elements, therefore highlighting 

the importance of genetic predisposition in view of a person's family tree. Table 15 

examines the relationship between genotypes and fatty liver. The non-significant P-values 

(Ns) suggest that neither fatty liver nor non-fatty liver disorders have a statistically 

significant correlation between any of the genotypes (CC, GG, CG). This information 

suggests that the R364P mutation has no effect on the likelihood of fatty liver. The absence 

of statistical significance of the R364P mutation in this environment suggests that other 

environmental or genetic factors might be more crucial in the beginning of fatty liver. Table 

16 shows genotype distributions by gender. The fact that the CC genotype is connected to 

a rather reduced risk of disease in females (P-value 0.001) suggests a preventive influence. 

Conversely, the CG, GG genotype in women carries a higher risk (P=0.0373). Whereas the 

CC genotype shows a clear protective impact (P-value <0.0001) in men, the GG and CG 

genotypes are substantially related with an enhanced risk of illness (P-values 0.0003 and 

0.0008, respectively). These results support the theory that genetic counseling and risk 

assessments customized to each gender would be beneficial given the significant 

differences in genetic risk profiles between the sexes. 
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SUMMARY OF RESEARCH WORK 

This study aims to determine, with a focus on the Pakistani population especially, whether 

or not Krüppel-like factor 15 (KLF15) polymorphisms have any predictive power for liver 

cancer outcomes. Though it is a major global issue, liver cancer is more common in 

Southeast Asia and sub-Saharan Africa. Examining the likely role of several KLF15 single 

nucleotide polymorphisms (SNPs) in the gene helps this study test the hypothesis that some 

variations influence cancer risk and development. 

This work extensively applied in silico and lab-based analysis. We validated the estimated 

KLF15 protein structure obtained using AlphaFold, PyMOL and InterPro. Pathogenicity 

prediction was done utilising programmes like SIFT, PolyPhen, CADD, REVEL, and 
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Mutation Assessor after extracting missense SNPs from databases including ENSEMBLE, 

GENOMAD, and COSMIC. Two pathogenic variants rs755719419 (R364P) and 

rs768676875 (R343C) were investigated further. For stability studies, we applied MUpro, 

MAESTRO, and DynaMut; for structural and functional impact evaluations, Project HOPE 

and RNAfold. We investigated patient and control samples using Tetra ARMS-PCR, then 

investigated the association between these SNPs and liver cancer. 

Preliminary in silico investigations suggested that changes in R364P and R343C might 

lower protein stability, therefore affecting the function of KLF15. Comparative secondary 

structures of the mutant and wild-type proteins in RNA exposed clear structural changes. 

Particularly in those with a positive family history and unique gender-based genotype 

distributions, genotyping data revealed a strong association between the R364P mutation 

with an increased risk of liver cancer. Although the CC genotype appeared to offer some 

protection, those with the GG and CG genotypes clearly had a much higher risk of liver 

cancer. 

The results show that the R364P mutation of KLF15 is a major actor in the evolution of 

liver cancer. This study underlines the importance of inherited inclination, especially in 

populations where liver cancer is rather widespread. The thorough analysis of KLF15's 

anatomy and physiology clarify how these variations in DNA could affect cancer growth, 

therefore guiding the path towards new opportunities in focused treatment and tailored 

healthcare. 
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This dissertation presents a complete analysis of the function of KLF15 polymorphisms in 

liver cancer by including in silico predictions with validation in the lab. The intensity of 

the association between the R364P mutation and the incidence of liver cancer emphasizes 

the potential of KLF15 as a target for therapy and a prognostic marker. Future research on 

the molecular mechanisms underlining KLF15's participation in cancer could help to 

evaluate the practical relevance of these findings. 
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CONCLUSIONS AND FUTURE RECOMMENDATION 

In Silico identification of KLF-15 disease related variants led to the selection of a most 

likely pathogenic SNP. Whereas the selected KLF-15 protein missense mutation Variant 

ID (rs755719419) variation was found to be detrimental and substantially linked with 

hepatic cancer, the statistics shows that persons with the G allele or the GG genotype are 

much more likely than those without to get the illness. This indicates that the R364P 

mutation is one of the causes of disease pathogenesis. Examining the statistical analysis 

closely demonstrates that, with other factors including gender and family history also 

influencing disease susceptibility, the several risks associated to distinct genotypes clearly 

highlight the effect of the mutation, the GG and CG genotypes in particular exhibit a 

significant correlation with a higher risk of disease. The protective influence of the CC 

genotype in both sexes provides the complexity of genetic connections. These findings 

enable more exact genetic testing and tailored medical treatments, therefore advancing our 

understanding of the hereditary foundation of illness. Small sample size can be the limiting 

factor; so, it is advisable to see the influence of the mutation sample size by raising it. 

Moreover, the sample requirements include the population from a specific place, diverse 

ethnicity throughout the globe displays distinct allele distribution which can be connected 

to liver cancer advancement. Predicting the structure of the R364P mutant protein, 

structural and functional studies of that mutation produced lower general stability. In 

general, the Wild Type protein is less flexible, more compact, and structurally stable than 

the R364P and R343C variants. Reduced RMSF, consistent RMSD, and more stable 

hydrogen bonds all point to Wild Type proteins as more stable and whole than mutants. 

These findings highlight the need of protein stability in performance and the possible 

functional consequences of the R364P and R343C mutations. 

Additionally displaying relationship with hepatic cancer in wet lab experiments is the 

R364P mutation. Acting as a new possible therapeutic target and a prognostic marker to 

help in early Hepatic cancer identification, the found SNP could affect the expression of 
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KLF-15 after this mutation may open new directions in the field of cancer treatment. 

Moreover, more investigation should be done for better validation of the conclusions on 

the large sample size. The sample criteria could be expanded, and with any other advanced 

technique to check the significance of this mutation. In order to close existing gaps, more 

in vitro and in vivo research is required. The KLF-15 association with various coding and 

non-coding variants can be examined in other cancer types as well. Comprehensive studies 

are necessary to offer proof of how mutant KLF-15 influences the interaction path. This 

knowledge helps one to better grasp the precise mechanisms and potential effects of KLF-

15 mutations in several biological processes. Using both animal and cell-based models 

helps one to grasp the whole extent of these mutations' consequences on cellular 

performance and organismal health. These kinds of research is essential for advancing our 

knowledge in this field and offer tailored treatment options. 
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