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ABSTRACT 

The Novel Coronavirus (COVID-19), which emerged in late 2019, was first identified in 

Wuhan, China. It rapidly escalated into a global pandemic, affecting millions and causing 

unprecedented social and economic disruptions. In response, countries worldwide adopted 

various containment strategies, including lockdowns, social distancing, and mandatory 

masks. Notably, China's rigorous Quarantine Management System (QMS) was 

instrumental in curbing the virus's spread. This system enforced mandatory quarantines, 

utilized contact tracing, and established centralized quarantine facilities for confirmed 

cases. Technological advancements, such as health QR codes and facial recognition, were 

pivotal in monitoring individuals and ensuring adherence to quarantine protocols. The 

system's effectiveness in containing the virus was notable and was widely mentioned in 

media worldwide. 

To ensure the reliability and effectiveness of the health code app, formal verification 

methods such as model checking were employed. The PRISM model checker, a state-of-

the-art probabilistic model checker was utilized to perform formal verification of the app's 

algorithms. This process involved creating a detailed mathematical model of the app's 

behavior and using PRISM to verify that the app adhered to the desired properties of 

accuracy and efficiency. The use of PRISM allowed for a rigorous analysis of the health 

code app, ensuring that it functioned correctly within the QMS. 

Keywords: COIVD-19; Pandemic, PRISM model checker, Chinese Quarantine 

Management System (QMS)  
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CHAPTER 1: INTRODUCTION 

In December 2019, a novel coronavirus, later named COVID-19, emerged from the city of 

Wuhan in China's Hubei province, marking the beginning of an unprecedented global 

health crisis. The virus, characterized by its highly contagious nature, rapidly transcended 

borders, leading to the World Health Organization declaring it a pandemic. This thesis 

looks at the many ways the COVID-19 pandemic affected the world, how different 

countries responded, and the new technologies created to combat this crisis. 

The pandemic's reach was indiscriminate, affecting individuals and communities across 

every continent. As the virus spread, it laid bare the vulnerabilities of even the most robust 

healthcare systems, disrupted economies, and altered the very fabric of society. 

Governments worldwide were compelled to implement stringent measures, ranging from 

complete lockdowns to social distancing and mandatory masks, in an effort to control the 

viral transmission. 

A focal point of this thesis is the analysis of China's Quarantine Management System 

(QMS)1, which became a cornerstone in the country's response to the pandemic. The QMS 

leveraged technology, including a health code app, to monitor and regulate the movement 

of people, thereby effectively managing the spread of the virus.  

The Chinese health code system, as shown in Figure 1.1, also known as the Green Health 

QR Code, is a digital platform that was launched in early 2020 to track and control the 

spread of COVID-19 in China. The main features of the app includes health declaration in 

which user is required to fill out a health declaration form which includes their travel 

history, current health status, and other relevant information. The data is collected and 

analyzed by the system to determine the user's risk of being infected with COVID-19. The 

system generates a QR code based on the user's health status, which is color-coded based 

on the user's risk level. Green means low risk, yellow means medium risk, and red means 

high risk. The QR code is used to verify a person's health status when entering public places 

                                                
1 Health QR code system implemented in Shanxi (chinadaily.com.cn) 

http://shanxi.chinadaily.com.cn/2020-03/04/c_460307.htm
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such as public transportation, shopping malls, and restaurants. The system allows for the 

sharing of health information between different departments and agencies, such as health 

authorities, transportation authorities, and law enforcement agencies. This enables the 

government to track the movement of individuals who may have been exposed to the virus 

and to quickly respond to any outbreaks. The system is enforced by law, and individuals 

who are found to have provided false information or who have violated quarantine rules 

may face fines or other penalties. 

Figure 1.1 Color Guideline of Shanxi Health Code2, Green Health Code App an example 

1.1 Motivation 

COVID-19 Pandemic once again demonstrated how crucial is the involvement of 

technology while combating such challenges to public health. The most important 

technological innovations that were employed was the use of the Green health code app 

from China where the virus was first discovered, to track and contain the virus to avoid 

further spread. However, it is far from being insignificant since its efficiency and actual 

applicability depends upon the realization of correctly functioning algorithms that occupy 

a significant part in the contemporary technological world.  

                                                
2 China’s Novel Health Tracker: Green on Public Health, Red on Data Surveillance | Trustee China Hand | 

CSIS 

https://www.csis.org/blogs/trustee-china-hand/chinas-novel-health-tracker-green-public-health-red-data-surveillance
https://www.csis.org/blogs/trustee-china-hand/chinas-novel-health-tracker-green-public-health-red-data-surveillance
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Given the high-stakes nature of these applications, which can significantly impact public 

life and economy, it is imperative to ensure their flawless operation. Governments and 

public health agencies cannot afford the risk of system failures in tools designed to protect 

citizens. This thesis is driven by the necessity to develop rigorous verification 

methodologies to instill confidence in the algorithms powering these critical systems. By 

ensuring the correctness and reliability of these algorithms, we can maximize the benefits 

of digital health solutions while minimizing potential risks. 

Moreover, the complexity and dynamism of real-world environments, coupled with the 

potential for adversarial attacks, necessitate robust verification techniques. Traditional 

testing methods often fall short in guaranteeing system correctness, especially in the 

context of safety-critical applications. Formal verification offers a systematic and 

mathematically grounded approach to identify potential vulnerabilities and ensure system 

reliability. This research aims to contribute to the development of advanced verification 

techniques tailored to the unique challenges posed by public health applications. 

The motivation of this thesis is the critical nature of the system, that there should be no 

chance the health code app fails to work as designed under certain circumstances. 
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CHAPTER 2: LITERATURE REVIEW 

The overall literature has been shortlisted after thoroughly searching relevant papers of 

renowned publishers. The shortlisted papers are mostly related to health-code apps and 

Model checking with PRISM.  

2.1 Literature Review 

Here in this section, we will discuss the related work done so far. The first part covers 

details of Chinese Health code App and its role in the society, the second part contains the 

verification techniques used for health-related applications and third part is about the use 

of formal verification specially, model checking for different systems.  

The Health Code app has been effective in controlling the spread of COVID-19 by 

identifying and managing individuals’ exposure risks through color-coded statuses [4], [5], 

[6]. The app has allowed China to restore social and economic activities by providing a 

reliable method for monitoring and controlling the movement of people [6]. Public opinion 

on the Health Code app is mixed, with a majority supporting moderate use post-pandemic, 

while a significant minority supports its expansive use for broader purposes [5]. Trust in 

government and perceived convenience are major factors influencing public acceptance of 

the app [7]. The Health Code app is seen as a tool for digital surveillance, extending beyond 

pandemic control to broader governance and population control measures [8], [9]. The 

app's integration into daily life has led to its gradual acceptance as part of the digital 

infrastructure, despite ongoing concerns about privacy and surveillance [9]. There is a push 

from both government and tech firms to expand the use of the Health Code app beyond 

pandemic control, potentially normalizing its use for various public health and governance 

purposes [5], [10]. The app's role in future health surveillance and governance will depend 

on addressing and ensuring informed consent from users[11]. 

The paper by Fan Liang examines the Health Code initiative as a case study of digital 

platforms[4] involvement in health surveillance and the management of the COVID-19 

pandemic in China. The paper discusses the rapid implementation of contact-tracing apps 
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worldwide, with a focus on China's Health Code system developed by Alipay and WeChat, 

it highlights the Health Code's role in assessing contagion risks based on travel history, 

time spent in risky areas, and contact with potential carriers. It suggests that the Health 

Code represents a shift towards platform-mediated visibility of citizens during a health 

crisis. The paper posits that the adoption of tracing apps like Health Code may become a 

standard practice for health surveillance in many countries. This indicates a potential future 

where digital platforms could play a significant role in global health governance.  

The paper introduces HCAs (Health code App’s) as more than just tracking tools [4]; it is 

a part of China's digital governance and reshape state-society relations through digital and 

human surveillance. Most people support moderate use of Health Code Apps after the 

pandemic, with many also supporting broader use, showing cautious openness to 

technology. The paper concludes that HCAs may evolve into an integral part of China's 

digital infrastructure with significant social implications. 

Model checking is a formal verification technique that systematically checks whether a 

model of a system meets a given specification. In the realm of health code apps, model 

checking is employed to validate the correctness of the app's algorithms and their 

implementation. Büyükkaramikli et al. [12] introduce the TECH-VER (Technical 

verification) checklist, which aims to reduce errors in models and improve their credibility. 

This checklist provides a structured approach to verifying the technical implementation of 

health economic decision analytical models, ensuring their correctness and effectiveness 

model checking is a formal method used to verify the correctness of systems with respect 

to certain specifications. In the context of health code apps, model checking ensures that 

the app behaves as expected under various scenarios, including user interactions and data 

processing. The PRISM model checker, a probabilistic model checker, is particularly suited 

for this task due to its ability to handle systems exhibiting random behavior, which is often 

the case with health-related applications. 

A systematic approach to evaluating health apps is essential to ensure their quality and 

effectiveness. Gasteiger et al. [13] provide a methodological guide for conducting 

commercial smartphone health app reviews, introducing the TECH approach to developing 
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review questions and eligibility criteria. Similarly, a scoping review by Lagan, Sandler, 

and Torous (2023) [14] identifies 45 frameworks for assessing health apps, highlighting 

the variability in target users and conditions. 

Wiep van et al.[15] proposes an intra-host SARS-CoV-2 (severe acute respiratory 

syndrome coronavirus 2) dynamics model to assess the effectiveness of testing and 

quarantine strategies for incoming travelers, contact person management, and de-isolation. 

The authors highlight the importance of a combination of testing, quarantine, and isolation 

measures to reduce the spread of SARS-CoV-2. Alberto et al. [16] presents a mathematical 

model to investigate the impact of testing, contact tracing, and household quarantine on 

second waves of COVID-19. The authors suggest that a combination of targeted testing, 

contact tracing, and household quarantine could effectively reduce the transmission of 

SARS-CoV-2. Marcel et al. [17]discusses the impact of testing, contact tracing, and 

isolation on the COVID-19 epidemic in Switzerland. The authors highlight the importance 

of early testing, rapid contact tracing, and effective isolation measures in controlling the 

spread of SARS-CoV-2. Fan Yang et al.[18] emphasizes the complexities of the space and 

goals of these systems, and their implications for larger systems of democratic and 

economic control. 

The effectiveness of model checking in medical applications extends beyond theoretical 

validation; it has practical implications for patient care and medical decision-making. 

Martins et al. [19] propose a framework for online verification of medical critical 

intelligent systems through model checking. Their work demonstrates the application of 

model checking to qualify medical risk scores, thereby aiding medical teams in making 

better-informed decisions. 

The field of software model checking has evolved significantly over the past two decades. 

An overview of the development of software model checking highlights the integration of 

static analysis, model checking, and deduction to verify properties of critical systems. This 

evolution underscores the importance of model checking in ensuring the correctness and 

effectiveness of software systems, including health code apps effectiveness of model 
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checking in medical applications extends beyond theoretical validation; it has practical 

implications for patient care and medical decision-making.  

Usman Pervez et al. [20] employed two formalisms; the Markov Decision Process (MDP) 

and Continuous Time Markov Chain (CTMC) to determine failure probabilities of the e-

health system under the FHIR (Fast Healthcare Interoperability Resources) standard, 

utilizing the PRISM model checker. The system was employed in hospitals and from the 

analysis process it assisted in the determination of the reliability of the system. The study 

of J. Smith et al.[21] is based on the PRISM conceptual framework and corresponding 

PRISM tools intended for the development, improvement, and assessment of the RHIS 

(Routine Health Information System) practice. It focuses on improving the performance of 

the RHIS through enhanced data quality, and its utilization.  

The literature underscores the importance of model checking in the development and 

validation of health code apps. The PRISM model checker, in particular, stands out as a 

robust tool for ensuring the correctness and effectiveness of these apps. As health code 

apps continue to play a vital role in public health management, the insights from model 

checking research will be invaluable in guiding their development and ensuring their 

reliability. software model checking has evolved significantly over the past two decades. 

An overview of the development of software model checking highlights the integration of 

static analysis, model checking, and deduction to verify properties of critical systems. This 

evolution underscores the importance of model checking in ensuring the correctness and 

effectiveness of software systems, including health code apps effectiveness of model 

checking in medical applications extends beyond theoretical validation; it has practical 

implications for patient care and medical decision-making. 

Kwiatkowska M et al. [22]outline the significant contingency in the subject of probabilistic 

model checking with particular emphasis on the model checking and strategic reasoning 

processes in PRISM. It examines its relevance, and this part of the study provides examples 

of autonomous systems that could relate to the framework. In one another paper[23], they 

focused on its features regarding continuous-time Markov chains and Markov reward 

models.  
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The QMS model by Ahmed et al. (a thesis) [27] is a probabilistic model designed to 

simulate a quarantine management system within a single hospital. It focuses on tracking 

patient health conditions and bed availability for a specific set of diseases. While the model 

uses statistical methods to estimate the likelihood of various events, its scope is limited to 

a single hospital and a predetermined set of diseases and users. 

In conclusion, the Chinese health code system, while indispensable in contemporary life, 

necessitates stringent verification to maintain public trust and safety. This study has 

explored the potential of model checking, specifically using PRISM, as a rigorous approach 

to analyzing the system's behavior. By applying model checking techniques, we aim to 

identify potential vulnerabilities, enhance system reliability, and contribute to the 

development of more secure and trustworthy health-related applications. 

2.2 Problem Statement 

“The Chinese Quarantine Management System (QMS) also known as Green Health-code 

system has been effective in controlling virus spread and it has a safety critical nature. 

Despite of this fact that there are potential loopholes3. The challenge is to evaluate and 

analyze the QMS’s safety, correctness, effectiveness, reliability and reachability in 

managing infectious diseases like COVID-19.”  

  

                                                
3 COVID-19 and healthcare system in China: challenges and progression for .... 

https://globalizationandhealth.biomedcentral.com/articles/10.1186/s12992-021-00665-9. 
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CHAPTER 3: BACKGROUND MATERIAL 

 This chapter aims at developing an understanding and appreciation of the 

Probabilistic model checking as well as the PRISM model checker. It provides also a 

general description of the algorithm of the Chinese health code system that is formally 

verified in the thesis. 

3.1 Probabilistic Model Checking 

Probabilistic Model checking[24] is one of the techniques of formal verification process 

which aim at the use of tools in checking the correctness of a system with pre-defined 

characteristics. Since then it has been used widely in theory and modeling of architectures 

of embedded hardware-software and communication systems. The existing model 

checking procedures are designed and used usually for deterministic systems, where the 

system behavior is fully determined. 

Systems exhibiting the probabilistic behavior can be modeled using various formalisms 

like Discrete Time Markov Chains (DTMC’s), Continuous Time Markov Chains 

(CTMC’s) Markov Decision Process (MDP) and Probabilistic Timed Automata (PTA’s). 

While DTMC describes a direct transition between states with the probability label 

attached to the arcs, CTMC informs not only the probability of making the transitions from 

state to state but also the time delays occurred while making the transitions. These random 

delays are expressed through exponential probability distributions. While MDPs are 

DTMC with non-deterministic transitions, PTAS are CTMC with non-deterministic 

transitions[25]. illustrates the distinction between the aforementioned Markov models. 
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Figure 3.1: The family tree of automata-based quantitative formalisms 

When the markovian model of the system under verification is exercised and standardized, 

the probabilistic characteristics of that system are determined formally. Probabilistic model 

checking is mainly based on the specification language of Probabilistic Linear Temporal 

Logic (PLTL). The Markovian model and probabilistic property of the system is the next 

to be translated into the language of the probabilistic model checker and submitted to the 

model checking tool. The tool carries out an analysis of the model up to its degrees of 

freedom ensuring that all the possible executions have been covered then the queries are 

solved through numerical solutions methods [24], [26]. 

There are a host of probabilistic model checking tools, and each of them is outstanding for 

one or several application areas [26]. For instance INFAMY[27] is specifically designed 

for model checking of innite-state CTMCs whereas PARAM [28] is used for the parametric 

probabilistic model checking of DTMCs. The first three model checkers, namely PASS 

[29] and RAPTURE [30], are intended to work with the Markov decision processes only. 

The Fortuna [31] model checker evaluates maximum probabilistic reachability for PTAs, 

and reward bounds properties of linearly priced PTAs. PRISM on the other hand supports 
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model checking for every given in Figure 3.1 markovian model. It is a generic tool and 

hence we think it is appropriate for our research objectives. 

 

Figure 3.2: An overview of the model-checking framework with PRISM Model Checker 

3.2 Markov Decision Processes 

Markov Decision Processes (MDPs) are often viewed as an extension of Discrete Time 

Markov Chains (DTMCs). MDPs have the ability to encapsulate both nondeterministic and 

probabilistic behaviors. Nondeterminism is a powerful tool for modeling concurrent 

systems, and MDPs enable us to represent the actions of multiple probabilistic systems 

functioning simultaneously [32]. Nondeterminism proves to be beneficial when the precise 

probability of a transition is either unknown or deemed insignificant. An MDP is defined 

as a tuple ((S,s ,̅Steps,L), where: 

 sS is a finite set of states 

 ss ̅∈ S is the initial state 

 sSteps : S →2^Distinct(S)   is the transition function 

 sL: S →2^APis the labeling function 
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3.3 The PRISM Model Checker and its Language 

In this section, we delve into the practical specification of probabilistic models using 

PRISM, probabilistic model checker[32]. Real-life applications often yield models with an 

extensive number of states, making it unfeasible to explicitly list each state and transition. 

To address this, we employ a high-level specification formalism that captures the essence 

of these models. Examples of such probabilistic models include stochastic process algebras 

and stochastic Petri nets. PRISM’s property specification language encompasses well-

known probabilistic temporal logics, including PCTL, CSL, probabilistic LTL, and PCTL. 

This enables us to analyze various quantitative properties of the models, such as 

probabilities of failure, expected queue sizes, and termination times. 

The PRISM is a powerful tool in the field of formal verification, it has its own system 

description language. Inspired by the Reactive Modules formalism, this language provides 

an elegant and intuitive means of specifying few fundamental model types: Discrete-Time 

Markov Chains (DTMCs), Continuous-Time Markov Chains (CTMCs) and Markov 

Decision Processes (MDPs). 

PRISM has two essential components, Modules and Variables. Modules are building 

blocks encapsulate functionality. Each module contains localized variables, often integers, 

with well-defined roles. Think of them as the system's actors, each contributing to the grand 

narrative. Whereas PRISM variables serve as the threads connecting modules. Their 

valuations—snapshots of the system's state—reveal the bigger picture. Transitions occur 

when local variables change within a module, and the entire system evolves as modules 

interact.  

Whether asynchronous, where modules transition independently, or synchronous, where 

they move in dependence, PRISM manages the division of probabilities. As we explore the 

Chinese health code system, we glimpse its inner workings—one transition at a time. 

The following are some screenshots of PRISM Model Checker. Figure 3.3 shows the 

modeling area where users create models using the modeling language of PRISM. Figure 
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3.4 shows the properties writing area, here users define properties for the created model. 

Figure 3.5 shows the simulation window, here the behavioral testing of the model is done. 

 

Figure 3.3: Modeling window of PRISM Model Checker 

 

Figure 3.4: Properties window of PRISM Model Checker 
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Figure 3.5: Simulation window of PRISM Model Checker 

The capacity of a module to move from one state to another, or the transitions that are 

permissible in a given state are identified by a set of commands Some of the system 

dependent features of the language are as follows – Each command contains a guard that 

determines its identity, a sub portion of the global state space and one or more a value, each 

of which corresponds to an example of how the same course module might transform. 

Conceptually, in general, it seems quite reasonable, if the model is in a state resulting in 

the guard of a command then the module can make the transitions defined by the updates 

of that command. The likelihood of each transition being made is also specification 

individual transition probabilities by the command. The nature of this information is 

extremely specific and depends on the type of model being used. This will be made clearer 

in the subsequent sections by means of several small-yet-significant examples. 
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Pseudocode: A Generic module pseudocode 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

module Usern 

Sn← [1 … 22] ; 

Zn← [0 … . 1 ] ; 

Timern← [0 … . 7]; 

[𝑢𝑛]   𝑠𝑛 = 𝑃1  → 1 ∶ (𝑆′𝑛 =  𝑃2); 

[𝑢𝑛]   𝑠𝑛 = 𝑃2  → 1 ∶ (𝑆′𝑛 =  𝑃3); 

[𝑢𝑛]   𝑠𝑛 = 𝑃3  → 𝑥 ∶ (𝑆′𝑛 =  𝐶𝑟𝑡) & (𝑍𝑛 =  0) +   1 −  𝑥 ∶ (𝑆′𝑛 =  𝑃𝑡𝑟); 

if ( (𝑈𝑛𝑊𝑖𝑡ℎ𝑈2) =1) & (𝑍2 =1)) | ( (𝑈𝑛𝑊𝑖𝑡ℎ𝑈3) =1) & (𝑍3 =1) 

 𝑞′𝑛 = 1 ;   

endif 

if ( (𝑆𝑛 =1) | (𝑞𝑛 =1)) &  (𝑇𝑖𝑚𝑒𝑟1 < 𝑇𝑚 ) 

1 ∶ (𝑆′𝑛 =  𝐶𝑐ℎ𝑒𝑐𝑘) & (𝑍′𝑛 =  1) &  (𝑞′4 =  1)&  (𝑇𝑖𝑚𝑒𝑟′𝑛

= 𝑇𝑖𝑚𝑒𝑟𝑛 + 1); 

endif 

if (𝑆𝑛 =𝐶𝑐ℎ𝑒𝑐𝑘)  &  (𝑇𝑖𝑚𝑒𝑟1 = 𝑇𝑚 ) 

1 ∶ (𝑆′
𝑛 =  𝑃𝑡𝑟) & (𝑞′

𝑛
=  0) &  (𝑇𝑖𝑚𝑒𝑟′

𝑛 = 0); 

endif 

𝐫𝐞𝐩𝐞𝐚𝐭 

[𝑢𝑛]  ( 𝑠𝑛 = 𝑃𝑡𝑟) & (𝑞′
𝑛

=  0) → 0.25: (𝑆′
𝑛 =  𝑃𝑙𝑡)  + 

0.25 ∶ (𝑆′
𝑛 =  𝑃𝑠𝑐)  +  

0.25 ∶ (𝑆′
𝑛 =  𝑃𝑟𝑒𝑠)  +  0.25 ∶ (𝑆′

𝑛 =  𝑃𝑐𝑜𝑚) ; 

   
[𝑢𝑛]  ( 𝑠𝑛 = 𝑃𝑙𝑡) → 1 − 𝑦: (𝑆′

𝑛 =  𝑃𝑙𝑡1)  +  𝑦: (𝑆′
𝑛 =  𝑃𝑙𝑡2); 

[𝑢𝑛]  ( 𝑠𝑛 = 𝑃𝑙𝑡1) → 1: (𝑆′
𝑛 =  𝑃𝑡𝑟) &  (𝑌′

41 =  1); 
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24: 

25: 

26: 

[𝑢𝑛]  ( 𝑠𝑛 = 𝑃𝑙𝑡2) → 1: (𝑆′
𝑛 =  𝑃𝑡𝑟); 

[𝑢𝑛]  ( 𝑠𝑛 = 𝑃𝑐𝑜𝑚)
→ 𝑥: (𝑆′

𝑛 =  𝑃ℎ𝑜𝑚𝑒) &  (𝑍′
𝑛 =  1)

+  𝑥: (𝑆′
𝑛 =  𝑃ℎ𝑜𝑚𝑒); 

[𝑢𝑛]  ( 𝑠𝑛 = 𝑃ℎ𝑜𝑚𝑒) → 1: (𝑆′
𝑛 =  𝑃ℎ𝑜𝑚𝑒); 

until   𝑠𝑛 = 𝑃ℎ𝑜𝑚𝑒 

endmodule 

Table 3.1: The Pseudocode for PRISM model 

 

3.4 The Chinese Health-Code App for Quarantine Management 

The Chinese health code app4, known as the Green Health Code (Chinese: 健康码, 

Jiànkāngmǎ), was widely used during the COVID-19 pandemic in mainland China.  

The Health Code served as an e-passport that reported an individual’s risk level based on 

their travel history, residence, and medical records. It helped manage quarantine measures 

and track potential exposure to infection. After providing relevant information, the app 

generated a QR code with one of three colors: Green: Allowed unrestricted movement. 

Yellow or Red: Indicated the need to report to authorities or quarantine. 

By April 2020, over 200 cities and 20 provinces employed health codes supported by 

Alipay (a digital platform). Different localities had their own versions of health codes. 

Despite assumptions that health codes would phase out post-pandemic, research suggests 

their continued use beyond the health crisis. 

                                                
4 Health Code: What and how? | govt.chinadaily.com.cn 

 

https://govt.chinadaily.com.cn/s/202004/10/WS5e8fe78f498ea01b9aea24a2/health-code-what-and-how.html
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The Health Code ran through platforms like Alipay and WeChat as shown in Figure 3.6, 

requiring real-name registration and personal data related to travel history and health 

records5. It played a crucial role in managing COVID-19 risks and ensuring public safety.  

 

Figure 3.6: Screenshot of Health code in Alipay6 

  

                                                
5 China’s Health Code app showcases the extreme smart surveillance regime | by Yuki Yuen | Assay | Medium 
6 China’s Novel Health Tracker: Green on Public Health, Red on Data Surveillance | Trustee China Hand | 

CSIS 

https://medium.com/assay/chinas-health-code-app-showcases-the-extreme-smart-surveillance-regime-282d11acb4bf
https://www.csis.org/blogs/trustee-china-hand/chinas-novel-health-tracker-green-public-health-red-data-surveillance
https://www.csis.org/blogs/trustee-china-hand/chinas-novel-health-tracker-green-public-health-red-data-surveillance
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CHAPTER 4: PROPOSED METHODOLGY 

Every Chinese health code system should meet generic requirements for proper/complete 

operation. Its architecture should be comprised of the following, it should be generic, 

scalable, and be able to cope with faults. In terms of safety, it should not allow the health 

code to be issued or used outside the specified parameters. The architecture should be 

generic and scalable, accommodating various use cases and scenarios. It must be fault-

tolerant, handling unexpected situations or errors effectively. The health code system must 

operate within a specified range to ensure accurate health status representation. 

4.1 Modeling Chinese Health-Code App in PRISM 

Our Proposed methodology will help us verify the Chinese Health-Code App that can 

possibly behave unexpectedly or can be bypassed by user who’s contract tracing path is 

not valid for certain paths. The Health Code, as stated above, is an ever-evolving code that 

is developed in the context of a mobile-app. 

It consists of three colors green, red, and yellow. From the disclosed data, users input 

information by passing through the application, their travel history, their domicile and their 

medical history. This self-declared data then is integrated with disease control related big 

data. From the data gathered, the program creates codes in the form of QR code for each 

person. The QR code reflects the user’s risk level: The QR code reflects the user’s risk 

level: Green: Certainly, one can move from one place to another safely without being 

harassed or attacked by the inhabitants of the area. Yellow: They have had possible 

exposure or are at a low risk of infection. Red: High risk (for example contact with people 

who are infected). 

The Green Health Code acts as a permit to move between places such as public transport, 

working places, and the supermarkets. Ideas may include if a user gets close to an infected 

person, a certain code on the screen could change color, say red, and the user would be 

cautioned to self-isolate. 
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4.2 Proposed Methodology 

 

Figure 4.1: Proposed Methodology 

4.2.1 Probabilistic Formal Model 

The first step in the proposed methodology is, depicted in Figure 4.1, for formal verification 

of Chinese Health Code system is to develop a formal model for its system behavior. Here 

we have taken an idea from the proposed methodology of   Iram Bhatti et. al[33], they used 

the same modeling tool and verification techniques in their work. Now for our work 

selecting a suitable model for the modeling is one of the most important tasks. In our case 

we propose to use MDP as the nature of system is non-deterministic. The proposed 

modeling is based on the modular approach. Each user and its working are combined in a 

single module, the number of modules is equal to the number of users in this system.   

Components of a Probabilistic Formal Model 

The following steps will be used to model the Chinese Health-Code system in PRISM: 

4.2.1.1 Identifying Modules 

In the context of the Chinese quarantine management system, the first step of modeling 

involves identifying the modules within the system. Each module corresponds to a specific 
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functionality, such as health status management, keeping a trace of contact, quarantine 

management, and User Management. These modules are then implemented as Finite-State 

Machines (FSMs) with certain probabilities. The behavior of each block within a module 

is expressed using a Markov Chain Model. This approach ensures efficient and reliable 

management of quarantine protocols, contributing to effective pandemic control. 

4.2.1.2 Model Construction 

For this, one should use the PRISM language and create modules reflecting various aspects 

of the system. Enumerate and assign variables that suit the various states a user should be 

going through such as ‘healthy’, ‘infected’ or ‘quarantined’. Define transitions from one 

state to another with connected probabilities, these can be derived from possible statistical 

data or assumption. 

4.2.1.3 Setting constants for States 

Every user within this system has a state to reside in, a user starting from a state must 

traverse these states. Here, the concept is to map every state on a constant (constant 

variables) and make it as a representation of state.  

4.2.1.4 Identifying Inputs/Outputs (Variables) 

Sharing the trace of different modules is very important and crucial, in our case each 

module represents the user, and their actions are controlled by variables. In the Control 

Algorithm, data sharing occurs between different modules through variables created within 

each module. These variables act as global variables and can be accessed from any module. 

Additionally, these variables are defined with upper and lower limits and support common 

data types. 

4.2.1.5 Initialization 

In the context of a control algorithm, data sharing occurs among various modules through 

the use of variables. Each module initializes its own set of variables, which act as global 
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entities accessible from any other module. These variables hold data relevant to the 

module’s specific tasks, such as quarantine, positivity, or control parameters. For example, 

a user control module might have variables like timer and positivity. These variables are 

defined with upper and lower limits and support common data types (such as integers, 

floats, or booleans). Importantly, PRISM executes these modules in parallel, allowing for 

efficient processing. Additionally, you can create multiple instances of the same module 

by changing the variable names, ensuring flexibility and scalability within the system. 

Component Name Count 

Module Type MDP 

Total Modules 3 

Number of Constants for States representation 21 

Number of Constants for probability distribution 2 

Number of Formulas 3 

Number of variables in each module 7 

Number of global variables 1 

Table 4.1: Table containing some insights of the model to be created in PRISM 

4.2.2 Simulation 

 After modeling is done in PRISM, it undergoes compilation to identify any errors while 

implementation. The compilation process also assesses whether any state probabilities are 

not realistic. Subsequently, the model should be evaluated using PRISM’s random and 

interactive simulator. This simulation, which employs random test vectors, often reveals 

invalid functioning. These issues can then be addressed in the model. The primary purpose 

of the model simulation is to identify flaws that has been made during implementation, 

before undertaking comprehensive and relatively time-consuming formal verification. 
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Furthermore, after simulating the model, it’s essential to analyze the results. This analysis 

involves examining the behavior of the system under different scenarios, checking for 

unexpected outcomes, and ensuring that the model aligns with the intended specifications. 

Additionally, any discrepancies or discrepancies between the simulated behavior and the 

expected behavior should be thoroughly investigated and resolved. 

4.2.3 Deadlock Freedom 

Ensuring the absence of deadlocks in a system model constitutes a fundamental verification 

step. By conducting this check, we identify states or scenarios where users are unable to 

take further actions. This property serves as a safeguard, guaranteeing that our 

implemented model remains free from programming flaws. Consequently, this verification 

is valuable across a wide range of applications. 

4.2.4 Optimization 

Model optimization involves simplifying a complex model without losing crucial 

information. This is crucial for managing the state space explosion problem. Key 

parameters for abstraction in this step include the number of places user visit, number of 

days a user is quarantined and iteration of user activities. By abstracting these elements, 

the model becomes more manageable while preserving essential characteristics. 

4.2.5 Out of Boundary Operation 

The paramount consideration for any system is to remain within its designated operational 

boundaries at all times. If it ventures beyond these boundaries, it can lead to unintended 

operations and disrupt the expected processes. To prevent this, the system undergoes 

rigorous checks for boundary crossovers, assessing the likelihood of such occurrences. 

These probabilities are then analysed to understand and mitigate potential crossover 

scenarios. 

4.2.6 Property Specification and Functional Verification 
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The next phase involves defining and evaluating the performance metrics of the Chinese 

health code system. Key areas of focus include the system's effectiveness in preventing 

disease spread, fairness in data handling, the ability to handle simultaneous user 

interactions, the accessibility of places within the system, and the accuracy of health status 

determination. These properties are formally defined and analyzed to ensure the system's 

reliability. If performance issues arise, the system's data structure or processing logic is 

optimized. In case of errors, system logs are analyzed to identify and rectify problems. 
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CHAPTER 5: MODEL THE CHINESE HEALTH-CODE APP 

In this section we will discuss about the formal modeling of potential model of Chinese 

Health-code system, as mentioned in figure 5.1. 

5.1  Potential Flowchart diagram of Chinese Health-code App 

This is the first step in this modeling process, here each state represents some actions made 

by the user. This is the flow for each user. The second step after the flow diagram 

conceptual modeling, as shown in figure 4.1, is to develop the model for Chinese Health-

code Algorithm.  

 

Figure 5.1: Potential Flowchart of Chinese Health-code App 

Here, the most appropriate model type for our system is MDP, so we opted this model type 

for our model. Here, a user starts his journey in this system by registering on this app and 

integrating his health condition in App.  
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Let’s discuss this model and its states. Each state represents a scenario, we have used 

constants instead of numeric values for simplicity as shown in Table 5.1.  This is a case 

study and we have picked some limited scenarios like local transport, shopping center, 

restaurant and community. Here, a trace of each user is kept who visits any of these places. 

We will discuss each part of this system in parts in the following sections. 

Sr.

No 

Abbreviation Meaning 

1 s1,s2,… State of user 1 and respectively user 2 etc 

2 P1 Process P1 shows the process of adhering to regular routine 

3 P2 Process P2 shows conducting regular covid-19 tests 

4 P3 Process P3 shows checking health status on health code app 

5 Crt Process Crt shows the critical scenario where user is covid-19 

positive 

6 Plt Process Plt shows process local transport 

7 Psc Process Psc shows process of visiting shopping center 

8 Psc1 following path of the process of scanning QR code while entering 

in the shopping center 

9 Psc2 Process Plt2 shows the process of uploading QR code image while 

being in the shopping center 

10 Plt2 Process Plt2 shows the process of uploading QR code image while 

being in of local transport  

11 Pres Process Pres shows the process of entering the restaurant. 

12 Pres1 Pres1 shows the process of entering the restaurant scenario 

13 Pres2 Pres2 shows the Process of uploading QR code gallery image while 

being in the restaurant 

14 Ccheck Process for COVID-19 test 

15 Ptr Process for general entry into any of the scenarios 

16 Phome Process of reaching home safely 

17 Tm Maximum timer limit 

18 U1 ∪ U2 For syncing contact tracing of user 1 with user 2 

19 U1 ∪ U3 For syncing contact tracing of user 1 with user 3 

20 timer1, timer2 timer for quarantine of user 1, user 2 and so on 

21 Y11 Trace of User 1 in local transport 

22 Y12 Trace of User 1 in Shopping center 

23 Y13  Trace of User 1 in restaurant  

24 z1 Health status of user 1 (z1 means user1 is COVID-19 positive) 

25 u1 For keeping few states of user1 synchronous  

26 Plt1 following path of the process of scanning QR code while being in 

of local transport  

27 x Positivity Rate 

28 y Fraud rate 
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Table 5.1: Table containing the details of constants, variables and formulas of model 

5.2 Model details and Pseudocode of different functionalities 

The system developed in PRISM contains functions in each module. Each module is named 

as User and each module contains same set of functions like, handling of success scenarios, 

critical paths, quarantine related transitions, handling valid and invalid path for each 

scenario e.g visiting local transport, shopping center and restaurant. In the following 

section we will discuss the functions and its pseudocode. 

5.2.1 Variables 

 S1: Represents the current state of User 1 (P1, P2, ..., Phome) - This is the core 

variable defining User 1's progress through the model. 

 Z1: Indicates user's health status (0 - Healthy, 1 - Positive) - Tracks if the user is 

infected. 

 timer1: Timer for quarantine period (0 to Tm)7 - Keeps track of the quarantine 

duration. 

5.2.2 Flags 

 U1 ∪ U2: Flag indicating contact with infected User 2 (True/False) - Used for 

contact tracing. 

 U1 ∪ U3: Flag indicating contact with infected User 3 (True/False) - Used for 

contact tracing. 

 Y11, Y12, Y13: Flags set during local transport, shopping, or restaurant visit (0 or 1) 

- Track specific activity flags. 

5.2.3 Initial State: 

                                                
7 Isolation and Precautions for People with COVID-19 | CDC 

https://archive.cdc.gov/www_cdc_gov/coronavirus/2019-ncov/your-health/isolation.html


27 

 

‘init’ keyword is used to assign initial values to variables. 

 S1  =  𝐏𝟏: User starts in the initial state P1. 

 Z1  =  0: User is healthy initially. 

 timer1 = 0: Quarantine timer starts at 0. 

5.2.4 Transitions 

Each transition represents a possible change in state based on conditions and probabilities. 

Defined using square brackets [] and a label u1,u2,u3 respectively, based on the module. 

 The general format is: [Guard] -> [Probability]: (Next State) & (Variable 

Updates). 

 Guard: A Boolean expression that determines if the transition can occur (e.g., 

current state, flag values). 

 Probability: A numerical value between 0 and 1 indicating the likelihood of the 

transition happening (not always present). 

 Next State: The state the module moves to if the transition fires. 

 Variable Updates: Updates to other variables within the module that occur along 

with the state change. 

5.2.5 Functionality of Starting States/ A Pseudocode 

This part of code simply making transition with probability equals to 1 in first two states 

i.e P1 to P3, there is no guard on these states. Furthermore, when it reaches state P3, it then 

go to state Crt with probability ‘x’ or goes to state Ptr with probability ‘1-x’ 

Pseudocode: Starting States 
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1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

if   𝑠𝑛 = 𝑃1 

1 ∶ (𝑆′𝑛 =  𝑃2); 

endif 

if   𝑠𝑛 = 𝑃2 

1 ∶ (𝑆′
𝑛 =  𝑃3); 

endif 

if   𝑠𝑛 = 𝑃3 
[𝑢𝑛]   𝑠𝑛 = 𝑃3  → 𝑥 ∶ (𝑆′𝑛 =  𝐶𝑟𝑡) & (𝑍𝑛 =  0) +   1 −  𝑥 ∶ (𝑆′𝑛 =  𝑃𝑡𝑟); 

endif 

 

5.2.6 Functionality of Critical Path/ A Pseudocode 

In this part of module, the colour code of user is set ‘red’ and user is quarantined for a 

specific time. These all operations are managed through variables z, q and timer, each 

representing health status, quarantine status and timer for the quarantine. If the user 

completes the maximum timer limit he/she is set to default value, he/she is allowed to enter 

any scenario without any restriction. 

Pseudocode: The Critical Path 

1: 

2: 

3: 

4: 

if  (𝑆′𝑛 =  𝐶𝑟𝑡) | (𝑍𝑛 =  1) 

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒𝑟 𝑏𝑦 1 𝑑𝑎𝑦 ; 

1 ∶ (𝑆′𝑛 =  𝐶𝑐ℎ𝑒𝑐𝑘) & (𝑍′𝑛 =  1)   

endif 

 

5.2.7 Functionality of Checking Quarantine Status/ A Pseudocode 

It is regularly checked for a user if he/she is in quarantine. In such cases if the user 

completes the maximum timer limit, he/she is set to normal user, assigned with green code 

and now they are allowed to enter the normal routine. 
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Pseudocode: The Critical Path 

1: 

2: 

3: 

if  (𝑆′𝑛 =  𝐶𝑐ℎ𝑒𝑐𝑘) & (𝑞𝑛 =  𝑇𝑚) 

1 ∶ (𝑆′𝑛 =  𝑃𝑡𝑟) & (𝑞′
𝑛

=  0) &  (𝑇𝑖𝑚𝑒𝑟′
𝑛 = 0) & (𝑍′

𝑛 =  0);   

endif 

 

5.2.8 Functionality of Normal Routine 

A user is allowed to enter a normal routine if he/she clears some checks, like colour code 

is green and he/she has not come in contact with Covid-19 positive user. 

Pseudocode: Normal Routine 

1: 

2: 

3: 

4: 

if  ( 𝑠𝑛 = 𝑃𝑡𝑟) & (𝑞′
𝑛

=  0) 

0.25 ∶  (𝑆′
𝑛 =  𝑃𝑙𝑡)  + 0.25 ∶ (𝑆′

𝑛 =  𝑃𝑠𝑐)  +  0.25 ∶ (𝑆′
𝑛 =  𝑃𝑟𝑒𝑠)  

+ 0.25 ∶ (𝑆′
𝑛 =  𝑃𝑐𝑜𝑚) ; 

endif 

 

5.2.9 Functionality of Entering Local transport/ Shopping Centre/ Restaurant 

As all the scenarios have the same mechanism i.e. local transport, shopping center and 

restaurant, so will cover a single scenario. In this scenario a user is opting for local 

transport, there are two options. Firstly he/she can either use a live camera to scan the QR 

code for which it will take the data of user and allow/disallow him/her from entering and 

record his/her entry. Secondly, a user can upload an image of QR code from gallery, which 

will record the entry against the QR code which has been scanned. 

Pseudocode: Entering Local transport/ Shopping Centre/ Restaurant 
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1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

if  ( 𝑠𝑛 = 𝑃𝑙𝑡)  

1 − 𝑦: (𝑆′
𝑛 =  𝑃𝑙𝑡1)  +  𝑦: (𝑆′

𝑛 =  𝑃𝑙𝑡2); 

if  ( 𝑠𝑛 = 𝑃𝑙𝑡1)  

1: (𝑆′
𝑛 =  𝑃𝑡𝑟) &  (𝑌′

41 =  1); 

if  ( 𝑠𝑛 = 𝑃𝑙𝑡2)  

1: (𝑆′
𝑛 =  𝑃𝑡𝑟); 

 

0.25 ∶  (𝑆′
𝑛 =  𝑃𝑙𝑡)  + 0.25 ∶ (𝑆′

𝑛 =  𝑃𝑠𝑐)  +  0.25 ∶ (𝑆′
𝑛 =  𝑃𝑟𝑒𝑠)  

+ 0.25 ∶ (𝑆′
𝑛 =  𝑃𝑐𝑜𝑚) ; 

   

 

5.2.10 Community to Home 

A user entering a community after visiting different scenarios/places will eventually reach 

his/her home. Here, a user will remain stay at home with no further transitions. There is a 

possibility that a user who has visited any or all places will get Covid-19 positive at any 

time, the probability for his/ her possible infection is set to ‘x’. 

Pseudocode: Community to Home 

1: 

2: 

3: 

if  ( 𝑠𝑛 = 𝑃𝑐𝑜𝑚)  

 𝑥: (𝑆′
𝑛 =  𝑃ℎ𝑜𝑚𝑒) &  (𝑍′

𝑛 =  1) +  𝑥: (𝑆′
𝑛 =  𝑃ℎ𝑜𝑚𝑒); 

elseif 
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CHAPTER 6: RESULTS AND DISCUSSION 

In this chapter, we rigorously verify the formal model of the Chinese health code system. 

To achieve this, we employ property specifications outlined in our proposed methodology. 

For verification purposes we have set two variables positivity rate ‘x’ and fraud rate ‘y’, 

now we have used a set of values for them both i.e. started value of x and y from 0, 0 then 

0, 0.2 and so on till 1, 1. Now their combination gave us 36 different combinations. 

So, our experimental setup contains probabilities for 36 combinations. This helps us 

understand the pattern and behavior of property against different combinations of 

probabilities. The below tables show the specifications of system we have used for our 

experiments, shown in Table 6.1 and the second one, Table 6.2 shows some insights of our 

experimental setup.  

System Specs Value 

OS  Ubuntu 20.04.4 LTS x86_64  

Host  PowerEdge T320  

Kernel  5.15.0-113-generic  

Shell  bash 5.0.17  

Resolution  1600x900  

Terminal  gnome-terminal  

CPU  Intel Xeon E5-2407 v2 (4) @ 2.4  

GPU 6:00.0 Matrox Electronics Syst 

Memory 1072MiB / 32017MiB 

Table 6.1: The details of Computer System used for thesis 



32 

 

 

Constants/ Variables Count 

Number of Users  3 

Positivity Rate (Starting point)  0 

Positivity Rate (End point)  1 

Jump 0.2 

Fraud Rate (Starting point)  0 

Fraud Rate (End point)  1 

Jump 0.2 

Total Experiments for each property 36 

Table 6.2: Experimental setup for Property verification 

6.1 Deadlock Freedom 

In the context of Chinese health-code modules, a crucial requirement is that they avoid 

getting stuck in any particular state. To verify this property, we focus on deadlock 

freedom—the assurance that the underlying control algorithm never leads to a deadlock 

situation. 

E [F “deadlock”] 

We leveraged the PRISM model checker, specifically its built-in deadlock property 

verification. This property examines whether, for certain states, transitioning from the 

present state to a future state would result in a deadlock. Our findings were reassuring: the 

algorithm demonstrated deadlock freedom. The failing property check confirmed that no 

deadlocks exist within the model. 

6.2 Reachability 
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Beyond ensuring deadlock freedom, another essential characteristic for any user within a 

system is the ability to reach desired states while adhering to valid and permissible 

conditions. Notably, the movement of users across different areas within a society, 

following valid paths, is of utmost importance. Consequently, verifying the reachability 

property becomes even more critical. 

Specifically, we must address scenarios where the algorithm restricts a user’s movement—

especially during quarantine or, more critically, when they test positive. The reachability 

property can be rigorously verified by checking whether, when a user is quarantined for a 

specified duration, they can move from their initial location to the required destination 

within a finite number of steps. Our verification process involves associating this property 

with the system’s behavior. 

6.2.1 Reachability of all Users in a State 

Max probability that in future all uses are visiting restaurant and any of them is following 

the alternate path and getting positive 

Property: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹 ((𝑠1 =  𝑃𝑟𝑒𝑠 & 𝑠2 =  𝑃𝑟𝑒𝑠 & 𝑠3 =  𝑃𝑟𝑒𝑠 ) & (𝑠1 =  𝑃𝑟𝑒𝑠2 & 𝑠2 =

 𝑃𝑟𝑒𝑠2 & 𝑠3 =  𝑃𝑟𝑒𝑠2 )& (𝐹 (𝑧1 = 1 | 𝑧2 = 1 | 𝑧3 = 1)) ]” 

Empirical Data: 

 

X (Positivity Rate) 

0 0.2 0.4 0.6 0.8 1 

Y
 (

F
ra

u
d

 R
a
te

) 0 0 0 0 0 0 0 

0.2 0 0.0968 0.2149 0.3110 0.3580 0.3666 

0.4 0 0.0868 0.1830 0.2596 0.2978 0.3053 

0.6 0 0.0759 0.1476 0.2015 0.2286 0.2344 

0.8 0 0.0657 0.1138 0.1446 0.1591 0.1622 

1 0 0.0610 0.0980 0.1170 0.1240 0.1250 

Table 6.3: Data of Reachability Property 1 
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Graphical Representation: 

 

Figure 6.1: Graphical Representation of Reachability Property 1 

Discussion on results: 

The probability values show an increasing trend for each values of Y (0.2 to 1) as X 

increases from 0.0 to 1.0. This means that the probability of a specific outcome increases 

as the positivity rate of a user increases, regardless of the fraud rate. The probability values 

show decreasing trend for Y=0.2 to Y=1.0 for values of X (0.2 to 1) . The results shows 

that fraud rate will affect the reachability of users to valid paths, as he/she will restrict the 

possible valid paths. 

6.2.2 Ensuring the Contract Tracing 

It calculates the maximum probability (Pmax=?) of a path where the model eventually 

reaches a state with: 

 All flags (Y11, Y21, Y31) set to 1, indicating potential contact with infected users 1, 

2, and 3. 

 User1 being healthy initially (z1=0). 

However, reaching this state doesn't guarantee that User1 will eventually become infected 

(F (z1=1)) because the second F operator is independent. Infection could happen later 

through other paths. 

Fraud

Rate:
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Property: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹 (( 𝑌11 =  1  & 𝑌21 =  1 &  𝑌31 =  1 &  𝑍1 =  0 ) & (𝐹 𝑍1 =  1) )]” 

Empirical Data: 

 

X (Positivity Rate) 

0 0.2 0.4 0.6 0.8 1 
Y

 (
F

ra
u

d
 R

a
te

) 0 0 0.1988 0.3220 0.3876 0.4137 0.4184 

0.2 0 0.1633 0.2653 0.3204 0.3429 0.3473 

0.4 0 0.1202 0.1964 0.2384 0.2564 0.2601 

0.6 0 0.0700 0.1155 0.1415 0.1533 0.1561 

0.8 0 0.0206 0.0345 0.0430 0.0473 0.0485 

1 0 0 0 0 0 0 

Table 6.4: Data of Reachability Property 2 

Graphical Representation: 

 

Figure 6.2: Graphical Representation of Reachability Property 2 

Discussion on results: 

The probability values show an increasing trend for each values of Y (0.0 to 0.8) as X 

increases from 0.2 to 1.0. This means that the probability of a specific outcome increases 

as the positivity rate of a user increases, regardless of the fraud rate. The probability values 

show decreasing trend for Y=0.2 to Y=1.0 for values of X (0.2 to 1). The result is making 

Y=0

Y=0.

2
Y=0.

4

Y=0.

6

Y=0.

8Y=1

Fraud

Rate:
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it clear that maximum fraud rate will affect the system and an infected user will not be 

traced due to following invalid path.  

6.3 Correctness of System 

The correctness of the system is one of the most crucial parts. This is checked through 

different ways, lets discuss few of them.  

The transitions between states within module User1 should accurately reflect the intended 

behavior based on conditions (e.g., transitioning to quarantine upon testing positive). 

Changes to variables like health status and flags (infected user contact) should be consistent 

with the state transitions and model logic. The model should correctly represent how users 

come in contact with each other and how that contact is reflected in the infected user flags. 

The quarantine logic (entering Ccheck state, timer updates) should function the same way 

for all users regardless of their specific path through the model. The model shouldn't have 

situations where all users get stuck in a state with no possibility of progressing further. 

The model shouldn't have situations where users keep repeatedly entering and exiting 

specific states without making meaningful progress (e.g., endlessly looping in the local 

transport states). The combined behavior of all user modules and the environment should 

achieve the intended purpose of the system being modeled. For example, if the goal is to 

simulate disease spread, the model should accurately depict user interactions and infection 

probabilities. 

6.3.1 Property 1 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹(( 𝑌11 =  0  & 𝑌12 =  0 &  𝑌13 =  0 &  𝑍1 =  1  )& ( 𝑞1 =  1))]” 

Description: This property focuses on the correctness of individual user behavior (User1) 

and can be seen as a violation of the expected behavior. It calculates the maximum 

probability (Pmax=?) of a path existing in the model where eventually (F) all the following 

conditions hold true for User1: 



37 

 

 Y11=0: User1 did not visit a local transport location (flag not set). 

 Y12=0: User1 did not go shopping (flag not set). 

 Y13=0: User1 did not visit a restaurant (flag not set). 

 z1=1: User1 is infected (health status flag). 

 q1=1: User1 is in a quarantine-related state (quarantine flag). 

Empirical Data: 

 

X (Fraud Rate) 
0 0.2 0.4 0.6 0.8 1 

Y
 (

Fr
au

d
 R

a
te

) 

0 0 0.2 0.4 0.6 0.8 1 
0.2 0 0.2 0.4 0.6 0.8 1 

0.4 0 0.2 0.4 0.6 0.8 1 
0.6 0 0.2 0.4 0.6 0.8 1 

0.8 0 0.2 0.4 0.6 0.8 1 
1 0 0.2 0.4 0.6 0.8 1 

Table 6.5: Data of Correctness Property 1 

Graphical Data: 
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Figure 6.3: Graphical Representation of Correctness Property 1 

Discussion on result: 

This property indicates a potential correctness issue because: 

User1 becomes infected (z1=1) despite not engaging in any of the potentially risky activities 

(Y11=0, Y12=0, Y13=0) that would normally set the corresponding flags. 

User1 is quarantined (q1=1), which might not be justified if there's no apparent reason for 

quarantine based on the listed conditions. 

6.3.2 Property 2: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹 ((𝑠1 =  𝑃𝑟𝑒𝑠 & 𝑠2 =  𝑃𝑟𝑒𝑠 & 𝑠3 =  𝑃𝑟𝑒𝑠 ) & (𝐹 (𝑠1 =  𝑃𝑟𝑒𝑠1 & 𝑠2 =

 𝑃𝑟𝑒𝑠1 & 𝑠3 =  𝑃𝑟𝑒𝑠1) ) ]” 

Description: This property addresses the correctness of multi-user system interactions, 

specifically related to restaurant visits. It calculates the maximum probability (Pmax=?) of 

a path where eventually (F) the following conditions hold true for Users 1, 2 and 3: 

P
ro

b
a
b

il
it

y

Positivity Rate

Y=0.2
Y=0.4
Y=0.6
Y=0.8
Y=1

Y=0

Fraud Rate:
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 (s1 = Pres & s2=Pres & s3 = Pres ): All User1, User2 and User3 are simultaneously in 

the restaurant state (Pres). 

 (F (s1=Pres1&s2=Pres1&s3=Pres1)): Eventually (F), both users transition to the 

"restaurant visit complete" state (Pres1). 

Empirical Data: 

 

X (Positivity Rate) 

0 0.2 0.4 0.6 0.8 1 

Y
 (

F
ra

u
d

 R
a
te

) 0 0.1250 0.2162 0.3092 0.3793 0.4124 0.4184 

0.2 0.0878 0.1526 0.2330 0.3038 0.3404 0.3473 

0.4 0.0527 0.0926 0.1538 0.2170 0.2531 0.2601 

0.6 0.0233 0.0415 0.0768 0.1211 0.1501 0.1561 

0.8 0.0046 0.0081 0.0169 0.0322 0.0454 0.0485 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 6.6: Data of Correctness Property 2 

Graphical Representation: 

 

Figure 6.4: Graphical Representation of Correctness Property 2 

Discussion on result: 

Y=0
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The probability values show an increasing trend for each values of Y (0 to 1) as X increases 

from 0 to 1.0. This means that the probability of a specific outcome increases as the 

positivity rate of a user increases, regardless of the fraud rate. The probability values show 

decreasing trend for Y=0 to Y=1.0 for values of X (0 to 1) . The results shows that with 

frequent increase in fraud rate the capability of system to make user follow valid path also 

decreases. 

6.4 Fairness in a System 

Each user of our system must have to have equal opportunity to visit any place. Like, we 

might want to ensure all users have a fair chance of eventually visiting a restaurant. This 

avoids situations where specific users are perpetually blocked from entering the restaurant 

state due to other users constantly occupying those slots. Properties could be written to 

reason about the frequency or distribution of restaurant visits across all users.  

The spread of infection spread should be balanced, while not strictly fairness, analyzing 

the overall infection spread across users is relevant. Properties should be there to compare 

the probability of infection or the time it takes for each user to become infected. This could 

help identify potential biases in the model regarding infection risk. 

Fairness considerations are extended to the entire system, including interactions between 

all users. Ensuring all infected users have an equal chance of being identified by others. 

Verifying a similar average quarantine time across users who test positive. 

6.4.1 Property 1 

This property ensures that the user keeps making progress through the model and doesn't 

get stuck in an infinite loop within certain states. This might be relevant to avoid cases 

where the user stays indefinitely in any state. 

Property: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹(( 𝑌11 =  1  & 𝑌12 =  1 &  𝑌13 =  1  )& ( 𝑞1 =  1)|( 𝑌21 =  1  & 𝑌22 =

 1 &  𝑌23 =  1  )& ( 𝑞2 =  1) |( 𝑌31 =  1  & 𝑌32 =  1 &  𝑌33 =  1  )& ( 𝑞3 =  1))]” 
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Description: Max probability that in future any of User 1,2 or 3 will visit all the places 

and getting Quarantined. 

Empirical Data: 

 

X (Positivity Rate) 

0 0.2 0.4 0.6 0.8 1 
Y

 (
F

ra
u

d
 R

a
te

) 0 0 0.3282 0.5520 0.6895 0.7587 0.7778 

0.2 0 0.2921 0.4943 0.6209 0.6864 0.7050 

0.4 0 0.2412 0.4115 0.5207 0.5790 0.5962 

0.6 0 0.1689 0.2912 0.3721 0.4169 0.4306 

0.8 0 0.0724 0.1267 0.1641 0.1856 0.1926 

1 0 0 0 0 0 0 

Table 6.7: Data of Fairness Property1 

Graphical Representation: 

 

Figure 6.5: Graphical Representation of Fairness Property 1 

Discussion on result: 

The probability values show an increasing trend for each values of Y (0 to 0.8) as X 

increases from 0.2 to 1.0. This means that the probability of a specific outcome increases 

as the positivity rate of a user increases, regardless of the fraud rate.On the other hand, the 

probability values show decreasing trend for Y=0 to Y=0.8 for values of X (0.2 to 1) . In 

this case, the chances of getting quarantined even after visiting all places decreases with 

the increase in fraud rate. 

Y=0.2
Y=0.4

Y=0.6

Y=0.8

Y=1

Y=0

Fraud

Rate:
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6.4.2 Property 2: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹 (( 𝑌11 =  1  & 𝑌21 =  1 &  𝑌31 =  1  )&(( 𝑧1 =  0  &  𝑞1 =  1)|( 𝑧2 =

 0  &  𝑞2 =  1)| ( 𝑧3 =  0  &  𝑞3 =  1))]” 

Description: Max probability that in future any of the user are using same local transport 

and any of them is getting Quarantined without being Covid-19 positive. 

Empirical Data: 

 

X (Positivity Rate) 

0 0.2 0.4 0.6 0.8 1 

Y
 (

F
ra

u
d

 R
a
te

) 0 0 0.198847 0.322027 0.387623 0.413719 0.418402 

0.2 0 0.163292 0.265312 0.320413 0.342947 0.347272 

0.4 0 0.120221 0.196378 0.238437 0.256363 0.260126 

0.6 0 0.070022 0.115459 0.141493 0.153312 0.1561 

0.8 0 0.020553 0.034511 0.043038 0.047301 0.048464 

1 0 0 0 0 0 0 

Table 6.8: Data of Fairness Property 2 

Graphical Representation: 

 

Figure 6.6: Graphical Representation of Fairness Property 2 
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Discussion on result: 

The probability values show an increasing trend for each values of Y (0 to 0.8) as X 

increases from 0.2 to 1.0. This means that the probability of a specific outcome increases 

as the positivity rate of a user increases, regardless of the fraud rate. The probability values 

show decreasing trend for Y=0 to Y=0.8 for values of X (0.2 to 1). According to the above 

results, the chances for a user with COVID-19 negative result will increase with the 

decrease in fraud rate, while the user had previously visited any place. 

6.5 Concurrency 

In the context of the multi-user system, concurrency refers to the ability of the model to 

handle the execution of multiple user processes (modules) potentially in parallel.  

Concurrency allows the model to simulate situations where users can perform actions (e.g., 

visiting restaurants, using local transport) concurrently or interleaved with each other. 

Individual users might be in different states (e.g., shopping, quarantined) at the same time, 

and their transitions between states can potentially happen in parallel. Concurrency 

becomes crucial when users compete for shared resources (e.g., limited space in 

restaurants). The model should handle scenarios where multiple users might try to access 

the same resource concurrently. Concurrency allows the model to capture the real-world 

behavior of multiple users interacting in a dynamic environment. The model can be 

extended to handle more users without significant changes, as concurrency enables parallel 

execution of user processes. It can be used for the model to analyze the impact of 

concurrency on system performance (e.g., waiting times, resource utilization). 

6.5.1 Concurrent Quarantine Completion 

This property is relevant to concurrency because it considers multiple users potentially 

completing quarantine concurrently. The property checks for scenarios where any of the 

three users (s1, s2, s3) could be in quarantine and eventually leave concurrently (through the 

three branches). The OR operator suggests that the quarantine completion for each user can 

happen independently through potentially different paths. 
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Property: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹 ((𝑠1 =  𝑃𝑙𝑡  & 𝑞1 = 1) & (𝐸 [𝐹 (𝑞1 = 0)]) | ( 𝑠2 =  𝑃𝑙𝑡  & 𝑞2 =

1) & (𝐸 [𝐹 (𝑞2 = 0)])  )|( 𝑠3 =  𝑃𝑙𝑡  & 𝑞3 = 1) & (𝐸 [𝐹 (𝑞3 = 0)]) ]” 

Empirical Data: 

 

 

X (Positivity Rate) 

0 0.2 0.4 0.6 0.8 1 

Y
 (

F
ra

u
d

 R
a
te

) 0 0 0.3282 0.5520 0.6895 0.7587 0.7778 

0.2 0 0.2921 0.4943 0.6209 0.6864 0.7050 

0.4 0 0.2412 0.4115 0.5207 0.5790 0.5962 

0.6 0 0.1689 0.2912 0.3721 0.4169 0.4306 

0.8 0 0.0724 0.1267 0.1641 0.1856 0.1926 

1 0 0 0 0 0 0 

Table 6.9: Data of Concurrency Property 1 

Graphical Representation: 

 

Figure 6.7: Graphical Representation of Fairness Property 1 

Discussion on result: 
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The probability values show an increasing trend for each values of Y (0 to 0.8) as X 

increases from 0.2 to 1.0. This means that the probability of a specific outcome increases 

as the positivity rate of a user increases, regardless of the fraud rate. The probability values 

show decreasing trend for Y=0 to Y=0.8 for values of X (0.2 to 1). The results shows that 

the user will eventually get out of quarantine with high chances, if the fraud rate is kept 

low.  

6.5.2 Users Concurrently Visiting Restaurant 

This property focuses on a specific scenario involving three users entering a restaurant 

together (s1=Pres & s2=Pres & s3=Pres) and at least one user finishing their visit immediately 

in the next state (X (s1=Pres1 | s2=Pres1 | s3=Pres1)). 

It only considers a single situation where all three users enter a restaurant together. It 

doesn't explore other concurrent activities users might be engaged in or how they interact 

with resources concurrently. The property emphasizes the timing of state transitions, 

specifically that at least one user finishes their visit immediately after entering (X). This 

doesn't necessarily reflect overall concurrency across the system. 

Property: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹 ((𝑠1 =  𝑃𝑟𝑒𝑠 & 𝑠2 =  𝑃𝑟𝑒𝑠 & 𝑠3 =  𝑃𝑟𝑒𝑠 ) & (  𝑋  (𝑠1 =  𝑃𝑟𝑒𝑠1  | 𝑠2 =

 𝑃𝑟𝑒𝑠1  |  𝑠3 =  𝑃𝑟𝑒𝑠1))) ]” 

Empirical Data: 

 

X (Positivity Rate) 

0 0.2 0.4 0.6 0.8 1 

Y
 (

F
ra

u
d

 R
a
te

) 0 0.1250 0.2162 0.3092 0.3793 0.4124 0.4184 

0.2 0.1111 0.1821 0.2609 0.3254 0.3582 0.3647 

0.4 0.0937 0.1424 0.2028 0.2583 0.2899 0.2970 

0.6 0.0714 0.0967 0.1334 0.1741 0.2015 0.2090 

0.8 0.0417 0.0476 0.0584 0.0750 0.0910 0.0970 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 6.10: Data of Concurrency Property 2 
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Graphical Representation: 

 

Figure 6.8: Graphical Representation of Concurrency Property 2 

Discussion on result: 

The probability values show an increasing trend for each values of Y (0 to 0.8) as X 

increases from 0 to 1.0. This means that the probability of a specific outcome increases as 

the positivity rate of a user increases, regardless of the fraud rate. The probability values 

show decreasing trend for Y=0 to Y=0.8 for values of X (0 to 1). It is very clear from the 

results that the decrease in fraud rate will help users to follow valid path and avoid the 

invalid paths. 

6.6 Safety of System 

In n the context of the multi-user system you've described, safety refers to ensuring the 

model operates within desired boundaries and avoids harmful or unintended behavior.  

These are constraints that the system must always satisfy, regardless of the specific 

execution path taken. They often focus on preventing undesirable states or sequences of 

events. In PRISM, they are typically expressed using temporal logic operators like F 

(eventually), G (always), and negation (!). 

The model should prevent scenarios where infection spreads rapidly and uncontrollably 

through the user population. These are situations where users get stuck waiting for each 

other or constantly engage in unproductive interactions, hindering progress. If the model 
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includes limited resources (e.g., hospital beds), safety properties might ensure they don't 

become completely depleted. (e.g., waiting times, resource utilization). 

6.6.1 System Ensuring Safety of System 

This property uses F (eventually), which means it checks for the maximum probability of 

a path where User1 eventually becomes infected (z1=1). The property doesn't guarantee 

that infection is prevented. It only looks for the maximum probability of a path leading to 

infection. 

 It calculates the maximum probability (Pmax=?) of a path where User1 eventually 

gets infected (z1=1). 

 The contact flags (Y11, Y12, Y13) set to 1 indicate potential exposure to infected 

users 1, 2, or 3. 

Property: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹(( 𝑌11 =  1  |  𝑌12 =  1 |  𝑌13 =  1  &  𝑧1 =  1)) ” 

Empirical Data: 

 

X (Positivity Rate) 

0 0.2 0.4 0.6 0.8 1 

Y
 (

F
ra

u
d

 R
a
te

) 0 0.0000 0.3053 0.5142 0.6454 0.7178 0.7500 

0.2 0.0000 0.2752 0.4683 0.5944 0.6685 0.7059 

0.4 0.0000 0.2349 0.4058 0.5235 0.5990 0.6429 

0.6 0.0000 0.1792 0.3174 0.4206 0.4946 0.5455 

0.8 0.0000 0.1023 0.1893 0.2628 0.3242 0.3750 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 6.11: Data of Safety Property 1 

Graphical Representation: 
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Figure 6.9: Graphical Representation of Safety Property 1 

Discussion on result: 

The probability values show an increasing trend for each values of Y (0 to 0.8) as X 

increases from 0.2 to 1.0. This means that the probability of a specific outcome increases 

as the positivity rate of a user increases, regardless of the fraud rate. The probability values 

show decreasing trend for Y=0 to Y=0.8 for values of X (0.2 to 1). The results shows that 

the user will eventually get out of quarantine with high chances, if the fraud rate is kept 

low. The results shows the safety of system is all related to fraud rate, the user visitig a 

place will be accurately quarantined, if all the users follow the valid path and get infected 

at any stage. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

In this chapter, we will sum up our discussion and give an overall idea of our system and 

conclude it. Moreover, we have presented the future work which is mainly based on the 

limitations of our work. 

7.1 Conclusion 

Our thesis presents the use formal verification for the Chinese health code system, which 

proved to be an effective tool for controlling the spread of infectious diseases, including 

COVID-19. The system's success can be attributed to the use of technology, including 

health QR codes and facial recognition, to monitor the movements of individuals and 

ensure compliance with quarantine measures. However, the system also has some 

loopholes, and it is important to address these concerns when implementing similar systems 

in other countries. Formal analysis of the Chinese health code system using PRISM 

provides us some valuable insights into its effectiveness and help identify limitations and 

areas for improvement.  

Areas for Improvement: 

 Enhanced Validation: Implement rigorous validation checks for user input and 

chosen paths. Ensure these checks align with the intended system design and 

functionality. 

 Review State Transitions: Carefully review the logic governing transitions 

between states. Eliminate any unintended paths or inconsistencies that users could 

exploit. 

 Enhanced Enforcement: Location data can be used to verify user compliance with 

designated paths or restrictions within the system. 

 Improved Monitoring: Knowing user locations allows for better monitoring of 

user interactions and potential risks. 
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 Data-driven Insights: Location data can be analyzed to understand user movement 

patterns and inform system optimization. 

We have explored various aspects of the system, focusing on concurrency, safety, 

reachability, reliability and fairness and potential areas for improvement. 

While verifying different properties in the context of the above-mentioned points, we have 

some concluding remarks for them all. These findings suggest the importance of 

considering both user progress and the logic behind quarantine protocols within the model. 

In the context of system Fairness, we verified property that focuses on preventing 

unrealistic user behavior by avoiding infinite loops within states. Secondly, identifying a 

potential issue with quarantine logic related to shared transport. As, this system is for 

multiple users so, we worked on their concurrent behavior and focused on a specific context 

(quarantine completion) and shows the system's ability to handle it. Secondly, highlights a 

limitation in the analysis scope for broader concurrency aspects.  

This thesis highlights the importance of considering both the probability of infection and 

the potential sources of exposure when designing and evaluating the system. It suggests 

that further investigation might be needed to explore how to minimize the probability of 

such paths or identify additional factors influencing users’ infection risk. 

Key areas for improvement include enhanced validation, reviewing state transitions, 

refining the state representation, and formal verification. Adding location tracking offers 

benefits like enhanced enforcement and improved monitoring, but it also introduces 

challenges like privacy concerns and technical complexities. One can consider factors like 

technology choice, data management, rule definition, and data analysis when implementing 

location tracking. 

7.2 Verifying a sample property for Some Insights: 

In this part we will discuss the setup for experimentation and the limitations we are facing 

at this stage. As, the model insights can be gained by verifying a property for different 

combinations of positivity rate for COVID-19 and fraud rate at a particular area. Table 7.1 
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shows the statistics of model checking, here each row shows stats for different number of 

users. We have verified the same property, while keeping different number of users, sample 

property is given below.  Here, the growth of states is increasing enormously with the 

increment in users count, and it is very clear that the increase in the number users will 

demand high computer resources. This is making it difficult for us to verify properties of 

this model for more than 3 users at this stage of development. 

Sample Property: 

“𝑃𝑚𝑎𝑥 = ? [ 𝐹(( 𝑌11 =  1  |  𝑌12 =  1 |  𝑌13 =  1 ) & ( 𝑞1 =  1)) ” 

RAM Consumption: 

Memory consumption is growing exponentially with the increase in count of users. It can 

be seen in Figure 7.1 

 

Figure 7.1: RAM consumed against the count of users 

Time for model construction and model Checking: 

Time required for model checking varies with different properties. It can be seen in Figure 

7.2, that it is growing exponentially. Here, in our case it has taken 2 days (172,800 

 Seconds) and the process was killed by OS.  

0

5

10

15

20

25

30

35

0 1 2 3 4 5

Memory Consumption

CUDD Memory Java (Heap)

R
A

M
 in

 G
B

's

Users Count



52 

 

 

Figure 7.2: Increase in time consumption with increase in Users 

Growth of States/ Transitions: 

The growth of Sates and Transitions is also exponential, as shown in Figure 7.3 and Figure 

7.4. This growth results in a state-based explosion while verifying property for 5 users. 

 

Figure 7.3: Growth of States with increase in User count 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 1 2 3 4 5

Time For Model Checking

Model Construction time (S):

Model Checking time(S):
T

im
e

in
 S

e
c
o

n
d

s

Users

0

5E+11

1E+12

1.5E+12

2E+12

2.5E+12

3E+12

3.5E+12

0 1 2 3 4 5

Growth of States

States

St
a

te
s

Users Count



53 

 

 

Table 7.4: Growth of Transitions with increase in User count 

7.3 Future Work 

Further research is needed to evaluate the long-term impact of the Chinese health code 

system and its potential as a model for other countries to adopt in their efforts to control 

the spread of infectious diseases. Overall, the system demonstrates the potential of 

technology in public health surveillance, and its success highlights the importance of 

balancing public health objectives with individual privacy concerns. 

Here are some specific areas for future work that build on the initial foundation laid in this 

research: 

7.3.1 Converting the model to real-time (PTA) 

Currently, the model is not designed for real-time operation. Future work should explore 

how the model can be converted to a real-time probabilistic timing analysis (PTA) 

framework. This would allow for more immediate verification and improve the system's 

responsiveness to changes in the environment. The PTA framework could incorporate 

probability distributions of factors like disease transmission rates and testing turnaround 

times. 
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7.3.2 Covering more aspects of the model through diverse properties 

The current model focuses on a limited set of properties. Future work should investigate 

how to incorporate additional properties into the model to provide a more comprehensive 

verification process. This could involve considering factors such as device security, data 

privacy, and user compliance with quarantine measures. Additionally, the model could be 

expanded to analyse the probability distributions of various outcomes based on these 

properties. For example, the model could assess the likelihood of a data breach under 

different security protocols. 

7.3.3 Enhancement of the model for more than 3 users 

The current model is designed for three users. Future work should investigate how the 

model can be adapted to handle verification for more than three users, such as entire more 

than a single community. This would require addressing scalability challenges and 

ensuring the efficiency of the verification process, while also incorporating probabilistic 

distributions of user behaviour. For instance, the model could account for the likelihood of 

different user compliance levels with health protocols ring the absence. 

By addressing these areas of future work, we can continue to improve the effectiveness and 

robustness of formal verification techniques for public health applications, while also 

gaining a deeper understanding of the probabilistic nature of such systems. 

 

 

 

 

 

 

 

 



55 

 

REFERENCES 

[1] H. Bohnenkamp, P. R. D’Argenio, H. Hermanns, and J.-P. Katoen, “MODEST: A 

Compositional Modeling Formalism for Hard and Softly Timed Systems,” IEEE 

Transactions on Software Engineering, vol. 32, no. 10, pp. 812–830, Oct. 2006, doi: 

10.1109/TSE.2006.104. 

[2] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, “Automatic verification 

of real-time systems with discrete probability distributions,” Theor Comput Sci, vol. 

282, no. 1, pp. 101–150, Jun. 2002, doi: 10.1016/S0304-3975(01)00046-9. 

[3] C. Eisentraut, H. Hermanns, and L. Zhang, “On Probabilistic Automata in 

Continuous Time,” in 2010 25th Annual IEEE Symposium on Logic in Computer 

Science, IEEE, Jul. 2010, pp. 342–351. doi: 10.1109/LICS.2010.41. 

[4] F. Liang, “COVID-19 and Health Code: How Digital Platforms Tackle the 

Pandemic in China,” Soc Media Soc, vol. 6, no. 3, p. 205630512094765, Jul. 2020, 

doi: 10.1177/2056305120947657. 

[5] W. Chen, G. Huang, and A. Hu, “Red, yellow, green or golden: the post-pandemic 

future of China’s health code apps,” Inf Commun Soc, vol. 25, no. 5, pp. 618–633, 

Apr. 2022, doi: 10.1080/1369118X.2022.2027502. 

[6] X. Zhang, “Decoding China’s COVID-19 Health Code Apps: The Legal 

Challenges,” Healthcare, vol. 10, no. 8, p. 1479, Aug. 2022, doi: 

10.3390/healthcare10081479. 



56 

 

[7] G. Huang, A. Hu, and W. Chen, “Privacy at risk? Understanding the perceived 

privacy protection of health code apps in China,” Big Data Soc, vol. 9, no. 2, p. 

205395172211351, Jul. 2022, doi: 10.1177/20539517221135132. 

[8] W. Cong, “From Pandemic Control to Data-Driven Governance: The Case of 

China’s Health Code,” Front Polit Sci, vol. 3, Apr. 2021, doi: 

10.3389/fpos.2021.627959. 

[9] J. Shang, S. Wei, J. Jin, and P. Zhang, “Mental Health Apps in China: Analysis and 

Quality Assessment,” JMIR Mhealth Uhealth, vol. 7, no. 11, p. e13236, Nov. 2019, 

doi: 10.2196/13236. 

[10] Y. Zou and J. Di, “Health Code as ‘access infrastructure’: Innovative practices and 

concerns of mediated governance,” Global Media and China, vol. 8, no. 3, pp. 381–

413, Sep. 2023, doi: 10.1177/20594364231184110. 

[11] J. Jiang and Z. Zheng, “Personal Information Protection and Privacy Policy 

Compliance of Health Code Apps in China: Scale Development and Content 

Analysis,” JMIR Mhealth Uhealth, vol. 11, pp. e48714–e48714, Nov. 2023, doi: 

10.2196/48714. 

[12] N. C. Büyükkaramikli, M. P. M. H. Rutten-van Mölken, J. L. Severens, and M. Al, 

“TECH-VER: A Verification Checklist to Reduce Errors in Models and Improve 

Their Credibility,” Pharmacoeconomics, vol. 37, no. 11, pp. 1391–1408, Nov. 2019, 

doi: 10.1007/s40273-019-00844-y. 



57 

 

[13] N. Gasteiger et al., “Conducting a systematic review and evaluation of commercially 

available mobile applications (apps) on a health-related topic: the TECH approach 

and a step-by-step methodological guide,” BMJ Open, vol. 13, no. 6, p. e073283, 

Jun. 2023, doi: 10.1136/bmjopen-2023-073283. 

[14] S. Lagan, L. Sandler, and J. Torous, “Evaluating evaluation frameworks: a scoping 

review of frameworks for assessing health apps,” BMJ Open, vol. 11, no. 3, p. 

e047001, Mar. 2021, doi: 10.1136/bmjopen-2020-047001. 

[15] W. van der Toorn et al., “An intra-host SARS-CoV-2 dynamics model to assess 

testing and quarantine strategies for incoming travelers, contact management, and 

de-isolation,” Patterns, vol. 2, no. 6, p. 100262, Jun. 2021, doi: 

10.1016/j.patter.2021.100262. 

[16] A. Aleta et al., “Modelling the impact of testing, contact tracing and household 

quarantine on second waves of COVID-19,” Nat Hum Behav, vol. 4, no. 9, pp. 964–

971, Aug. 2020, doi: 10.1038/s41562-020-0931-9. 

[17] M. Salath et al., “COVID-19 epidemic in Switzerland: on the importance of testing, 

contact tracing and isolation,” Swiss Med Wkly, Mar. 2020, doi: 

10.4414/smw.2020.20225. 

[18] F. Yang, L. Heemsbergen, and R. Fordyce, “Comparative analysis of China’s Health 

Code, Australia’s COVIDSafe and New Zealand’s COVID Tracer Surveillance 

Apps: a new corona of public health governmentality?,” Media International 



58 

 

Australia, vol. 178, no. 1, pp. 182–197, Feb. 2021, doi: 

10.1177/1329878X20968277. 

[19] J. Martins, R. Barbosa, N. Lourenço, J. Robin, and H. Madeira, “Online Verification 

through Model Checking of Medical Critical Intelligent Systems.” 

[20] Institute of Electrical and Electronics Engineers., 2014 IEEE 16th International 

Conference on e-Health Networking, Applications and Services (Healthcom).  

[21] “tl-18-13”. 

[22] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic Model Checking and 

Autonomy,” 2022. [Online]. Available: www.annualreviews.org 

[23] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic model checking in 

practice: Case studies with PRISM 1.” 

[24] M. Thesis and I. S. Zapreev David N Jansen Mariëlle IA Stoelinga, “Probabilistic 

model checking A comparison of tools,” 2007. 

[25] G. Norman and D. Parker, “Quantitative Verification Formal Guarantees for 

Timeliness, Reliability and Performance A Knowledge Transfer Report from the 

London Mathematical Society and Smith Institute for Industrial Mathematics and 

System Engineering QUANTITATIVE VERIFICATION Formal Guarantees for 

Timeliness, Reliability and Performance,” 2014. 

[26] M. Kwiatkowska, G. Norman, and D. Parker, “LNCS 6806 - PRISM 4.0: 

Verification of Probabilistic Real-Time Systems.” 



59 

 

[27] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “INFAMY: An Infinite-State 

Markov Model Checker,” Springer-Verlag, 2009. [Online]. Available: 

http://depend.cs.uni-sb.de/ 

[28] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “A Model Checker for 

Parametric Markov Models,” Springer-Verlag, 2010. 

[29] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “LNCS 6015 - <TEX>{\sf 

PASS}</TEX>: Abstraction Refinement for Infinite Probabilistic Models,” 

Springer-Verlag, 2010. 

[30] B. Jeannet, P. R. D’argenio, and K. G. Larsen, “Rapture: A tool for verifying 

Markov Decision Processes.” [Online]. Available: 

http://www.irisa.fr/prive/bjeannet/prob/prob.html. 

[31] J. Berendsen, D. N. Jansen, and F. Vaandrager, “Fortuna: Model checking priced 

probabilistic timed automata,” in Proceedings - 7th International Conference on the 

Quantitative Evaluation of Systems, QEST 2010, 2010, pp. 273–281. doi: 

10.1109/QEST.2010.41. 

[32] D. A. Parker, “IMPLEMENTATION OF SYMBOLIC MODEL CHECKING FOR 

PROBABILISTIC SYSTEMS,” 2002. 

[33] I. T. Bhatti and O. Hasan, “Formal Verification of a Fully Automated Out-of-Plane 

Cell Injection System,” in 2020 21st International Symposium on Quality Electronic 

Design (ISQED), IEEE, Mar. 2020, pp. 111–116. doi: 

10.1109/ISQED48828.2020.9137036. 



60 

 

 


