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ABSTRACT 

Attribute and class noise is a pervasive issue in software quality interpretation that has 

caught ample consideration due to its substantial impression on classification algorithms. 

This study delves into composite interplays amidst attribute and class noise as regards to 

software quality datasets and demonstrates advancements in model performance that 

originated from enquiring effective means for reducing specific forms of noise. It uses a 

broad-spectrum of field research, applying random forest as key classification approach 

and uniting various data sampling methods, to review the significance of attribute and class 

noise. This study delves into the intricacies of attribute noise along with the domain of 

class noise, examining its effects on model performance. Comparable changes in accuracy, 

precision, recall and F-score are observed as attribute noise levels increase. The 

experimental data points out quantifiable merits of skillful noise reduction when assessing 

software quality. In particular, the study demonstrates that significant gains in recall, 

accuracy, precision, and F-score are closely correlated with noise reduction. Eminently, 

important advances are observed by converting from unclean data to class-noise cleaned 

data. The results demonstrate the importance of noise handling approaches and the effect 

of noise on the accuracy and dependability of machine learning models. The proposed 

algorithm achieves significant gains 94.59%, 97.74%, 94.79% and 96.24% in accuracy, 

precision, recall and F-score respectively, that exhibit how necessary noise reduction 

strategies are and how extensive of an effect they have on the performance of an ML model. 

Keywords: Class Noise, Attribute Noise, Noise Reduction Strategies, Random Forest, 

Continuous Integration.
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CHAPTER 1: INTRODUCTION 

System code quality and reliability are particularly important for continuously 

developing and maintaining the software systems eventually. Noise, in any of its forms, is 

a serious problem as it not only negatively affects the quality but also the validity of the 

entire process of development as well as the maintenance phase. There are several reasons 

for the existence of noise in the code such as incorrect code changes, lack of documentation 

or the difference in coding standards of team members. It makes it difficult for the 

developers to understand the functionality required and therefore its behaviour. It also 

increases the likelihood that issues will be introduced in subsequent code versions and 

complicates the process of finding and fixing faults. Hence, software development 

proposals might display reduced output, prolonged development times, and additional 

costs, thus, dealing with the subject of attribute and class noise is critical for the 

development of secure and tenable software systems. 

1.1. Background and Context 

Software engineering tasks are rapidly being automated using machine learning 

(ML) models [1], [2], [3], [4]. To determine which test cases ought to be added to test suites 

following each build in continuous integration (CI), to optimize software regression testing, 

is one of the instances machine learning is used for. Regression testing is routinely carried 

out (after each commit), producing huge amounts of data that contain test execution 

outcomes. When such vast amounts of data are accessible for study, this presents an 

opportunity to use ML.  

Several different strategies, in the literature, have addressed the subject matter of 

predicting defects and selection of test cases during CI. Static code analysis [5], [6], NLP 

[7], [8] and static code metrics [9], [10] are some of the examples. Code is either identified 

as defective (in need of testing) or functional or predicted if test cases will be unsuccessful 

using ML models trained on datasets with historical flaws. 
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For predicting the results of test case execution, while developing an algorithm, one 

complication that arises is the volume of noise present in the data. This problem is usually 

significant in the field of testing as many automated test case executions might 

unintentionally produce noise. Research on a comprehensive vocabulary of noise subtypes 

is still ongoing [11]. The research [12], [13], [14], [15], however, mainly discusses two 

types of noise namely attribute and class noise. Contrary to attribute noise, which results 

from choosing attributes that are irrelevant for describing the training instances and their 

connections to the target class or from using redundant or empty attribute values [12], [16], 

class noise is caused by either contradictory entries or incorrect labelling of training entries 

[12]. 

The class noise may be seen in the CI build prediction domain, for instance, when 

the identical code line occurs many times in the data with distinct class labels (build 

outcomes) for the same build. For predictors, these repeated occurrences of the same line 

cause class noise, which lowers the accuracy of their classification. In similar terms, Van 

Hulse et al [17] asserts that the reason attribute noise arises is when at least one of its 

characteristics differ from the average dissemination of other attributes. In other words, 

attribute noise emerges when code lines are created using distinct coding patterns. Code 

lines drafted in the less common pattern will have characteristics that differ from lines of a 

similar nature written in the majority styles in terms of frequency. These variances might 

cause code lines created using less common coding styles to stand out in the data at hand, 

which can have a detrimental effect on learning performance. 

Numerous research studies suggested a variety of methods for dealing with attribute 

and class noise [15], [17], [18], [19]. These fall into three groups: toleration, eradication or 

filtration, and alteration or polishing. In the case of tolerance, errors residing within the 

data are addressed by preserving the noise and constructing machine learning algorithms 

that can withstand specific levels of noise. Eradication approaches aim to find noisy data 

and eradicate it from the dataset. Entries that are believed to be fabricated (such as those 

with incorrect labels or duplicates) are rejected and eradicated from the training set. In the 

last group, the noisy entries are fixed by having their values changed to more suitable ones 

rather than being removed. With each of these strategies, there are a variety of benefits and 
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drawbacks. In the tolerance category, cleaning the data is not necessary but building a 

learner using unclean data will result in a learner that may perform poorly. To save cleaner 

instances of the data, we sacrifice information loss by filtering noisy instances. By 

correcting noisy instances, we run the danger of showing unwanted qualities while 

maintaining the most information possible in the data. 

1.2. Problem Statement 

The existence of attribute and class noise in code lines substantially impedes software 

system development and maintenance. Noise, in code fragment, unfavorably affects the 

balance of final software product and the entire characteristic of the generated code. The 

challenges of existing noise control methods depend on human code checks, scalability 

problems, and reduced fidelity when handling complex noise patterns. These limitations, 

besides limiting the proficiency of software development, raise the prospect of proposing 

software defects into the system. A novel and useful outcome is surely required to identify 

and deal with attribute and class noise in arrays of code, diminishing its adverse impacts 

and improving software development methods. 

Noise, attribute, or class, in lines of code poses significant challenges for software 

engineers. The negative impacts noise may have on code quality, software reliability, and 

development efficiency make it essential to design an automated and efficient technique 

for noise identification and removal. The proposed method should be able to forecast CI 

build results with high reliability, even in the presence of attribute and class noise. 

Therefore, the main objective of this research is to present a novel and clever method that 

can successfully handle noise at several levels of code granularity and adapt to different 

noise patterns. This will be accomplished by utilizing advanced machine learning, natural 

language processing, and data mining techniques to provide a solid and complete solution. 

This project will address the following research question for managing attribute and 

class noise: 

RQ: How can we create a machine learning algorithm with nominal computational 

and execution time costs that can handle attribute and class noise in actual datasets? 



4 

 

The software engineering society would benefit substantially from dealing with the 

problem of noise in lines of code. By managing attribute and class noise, the suggested 

technique will lead to persistent software systems. Furthermore, it will upgrade 

development methods by diminishing the chance of noise-induced flaws and reducing 

debugging efforts. Long-term maintenance requirements will be decreased, and 

productivity of programmers will rise because of automating noise detection and removal. 

In conclusion, this study aims to provide useful information to the area of software 

engineering and push the sector into better and authentic software development 

applications. 

1.3. Proposed Approach 

In machine learning literature, the obstacle of accomplishing good learning outcomes 

in noisy settings has been extensively discussed. For better learning potential of ML 

classifiers, various proposals have been drafted [12], [13], [21]. Although it has been 

determined that attribute and class noise still have a negative consequence on learning, 

hence it should be tackled ahead of practice. We present our proposed procedures regarding 

attribute and class noise in this part. 

We suggest handling class noise by relabeling code lines that are repeated and have 

distinct class values. This proposed approach was presented by Al-Sabbagh et al [8]. The 

repeated lines in the code may be the result of a variety of circumstances, including copying 

code [22] and merging transactions [14]. The first case occurs when code that has already 

passed testing and integration is reused by simply "copy-pasting" it. The second situation 

occurs when developers from one or more teams utilize code that is comparable to that 

which has been committed and merged from separate branches while working on dedicated 

branches for feature development [14]. A minor fraction of the total chunk of code 

modifications is frequently taken up by defective lines. As a result, it is more likely that a 

line, selected at random, from the chunk of code that was overall deemed failed was not 

the reason for the failure. As a result, our choice is to reclassify lines as "passed" if they 

had previously been identified as components of segments that did not fail before. 
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Attribute noise occurs because of selecting attributes that are unnecessary for 

identifying training instances. The code snippet being analyzed, for instance, contains 

fragments that are drafted using different coding syntax or if several conditions, function 

declaration or statements differ in syntax from other similar lines of code. For addressing 

the problem of attribute noise, we propose a novel approach called Attribute Noise 

Detection algorithm (ATNODE). The proposed approach is derived from Pairwise 

Attribute Noise Detection Algorithm (PANDA), which was introduced by Van Hulse et al 

[17], [23]. The PANDA technique was modified considering the computational expense 

suffered by the dimensions of the dataset. A method is proposed for detecting and reducing 

attribute noise in datasets. This method iterates through each column of the dataset and 

applies different operations to each column. When the dataset is partitioned, the values of 

each column are used for sorting. Each section is statistically analyzed to determine the 

presence of noise, and the algorithm repeats this process for each column in the dataset. In 

the process, the noise values for the various sections are quickly calculated. Given the 

circumstances, this method enhances the quality of the data and makes additional analysis 

easier by offering a methodical framework for evaluating and tracking noise in recorded 

data. More information on sound processing techniques is provided in Chapter 3. 

1.4. Significance of Research 

Software is rendered less efficient, and mistakes are more likely to occur due to 

shortcomings in current noise management techniques, such as vulnerabilities, scalability 

challenges with human programming, and limited accuracy in controlling complicated 

noise forms. The reliability of the final product and the overall standard of the product are 

significantly harmed by noise in code fragments. Sometimes it is challenging to build the 

technology and locate the real fault in the code during debugging because of the noise that 

exists between the lines of code. 

This study suggests a novel strategy for efficiently detecting, controlling, and 

removing noise to get rid of incorrect code and enhance program performance. It does this 

by utilizing machine learning methods, natural language processing, and recent data mining 

techniques. By efficiently locating and eliminating noise between lines of code, this 
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technique should provide clean, maintainable code. It can assist programmers in locating 

live issues in code, saving a substantial amount of development time, increasing overall 

programming productivity, and requiring less diagnostic work. Reducing maintenance 

needs, raising customer satisfaction and product reliability, and directly enhancing the 

stability and dependability of software systems are just some advantages of improving code 

quality. 

The objective of the study is to evaluate the effectiveness of the platform approach 

as well as its applicability and scalability for multiple software systems using a real code 

base. The dataset of Al-Sabbagh et al [24], [25], which allows increasing the importance 

of this study, provides practical validation, and the most probable and best proposed 

approach will have a positive impact on real software systems. Insights from this study can 

help practitioners and researchers in the Industrial Electronic Noise Program at LOC. 

1.5. Aims and Objectives 

The objectives for this scientific survey are listed below: 

• Utilizing a dataset of Build Prediction in CI Using Textual Analysis of Source 

Code for experimentation, develop a method for addressing attribute and class 

noise in lines of code. 

• Enhance code feature by virtually finding and eliminating noise in lines of code. 

• Minimize the effect of noise (on the source code integrity to improve software 

maintenance activities), reduce debugging efforts and increase development 

efficiency through noise handling. 

• Validate the effectiveness of the proposed approaches in handling attribute and 

class noise in real-world codebases and compare their performances with existing 

methods to identify its strengths and contributions. 

1.6. Structure of the Research 

Four key chapters are discussed in this study. A detailed review of the literature is 

discussed in chapter 2, enlightening on the advanced attribute and class noise in software 
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quality datasets. The data processing and machine learning techniques used, as well as the 

experimental research approach, are covered in detail in chapter 3. The results of the 

experimental studies as well as the impact of noise and how to reduce it on model 

performance is presented in chapter 4. When it comes to managing attribute and class noise 

in software quality datasets, chapter 5 concludes with a comprehensive review and 

recommendations for further study. 
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CHAPTER 2: LITERATURE REVIEW 

To enhance expected accuracy of machine learning models, various research 

dissertations have been dedicated to problem resolution led by attribute and class noise. 

The usage of machine learning models themselves to recognize and thoroughly monitor 

depictions of attribute and class noise has acquired substantial focus in this domain. To 

identify noisy data points and whether overcome them or handle them accurately, these 

attempts require the start of algorithms and methods that harness the benefit of machine 

learning. In later sub-headings, we will provide information regarding dealing with class 

noise, attribute noise and both attribute and class noise correspondingly. 

2.1. Class Noise Handling Research 

This study [26] exhibited an innovative technique for determining and rectifying 

instances with invalid labels in large or scattered datasets and utilized a unique Partitioning 

Filter method to resolve this matter and was aimed to handle obstacles led by the data 

range. Finding instances that could have had inaccurate labels due to labelling errors was 

the primary goal. Step one was to segregate the dataset into more convenient sets for 

induction algorithm processing. Practical standards were produced per subset and 

implemented to assess the entire dataset. The error count variable for each instance is used 

to track the number of times all classes are classified as noise. Samples with incorrect labels 

are likely to show a higher number of errors. Two different strategies were used to classify 

cases as noise, majority, and non-objection. While the no-objection approach focused on 

situations where noise requirements were not met regularly, the policy of majority 

approach limited the frequency of what was classified as noise across all categories. In 

each iteration of the process, some correctly labeled samples and detected noise cases were 

removed. This process is repeated until the specified stopping condition is met, improving 

classification accuracy, and reducing the negative impact of mislabeled examples on 

training. The effectiveness and ability of the proposed Partitioning Filter method to identify 

mislabeled cases and thereby improve the confidence of clusters is demonstrated using real 

datasets and empirical analysis. The research provided a substantial contribution to the 
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domains of data preparation and machine learning and underlined the need of efficiently 

managing big or distributed datasets around noise detection. 

Table 2.1: Class noise handling approaches 

Ref. Title Year Technique 

[26] 
Eliminating Class Noise in Large 

Datasets 
2003 Partitioning Filter (PF) 

[27] 

An Empirical Comparison of 

Three Boosting Algorithms on 

Real Data Sets with Artificial 

Class Noise 

2003 Adaboost, Logitboost, Brownboost 

[11] 
Rule-Based Noise Detection for 

Software Measurement Data 
2004 

Rule-Based Classification Model 

(RBCM) 

[13] 
Identifying And Handling 

Mislabeled Instances 
2004 

Removal Technique, Relabeling 

Technique 

[28], 

[29] 

Cost-guided class noise handling 

for effective cost-sensitive 

learning 

Class Noise Handling for 

Effective Cost-Sensitive 

Learning by Cost-Guided 

Iterative Classification Filtering 

2004, 

2006 

Cost-Guided Iterative Classification 

Filter (CICF) 

[19] 
Identifying Noise in An Attribute 

of Interest 
2005 PANDA 

[30] 

Bridging Local and Global Data 

Cleansing: Identifying Class 

Noise in Large, Distributed Data 

Datasets 

2006 
Classification Filter (CF) 

Partition Filter (PF) 

[31] 
Class noise detection using 

frequent itemsets 
2006 Frequent Itemsets 
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[32] 

Classification in the presence of 

class noise using a probabilistic 

Kernel Fisher method 

2007 
Probabilistic Fisher 

Probabilistic Kernel Fisher 

[33] 
Class Noise Mitigation Through 

Instance Weighting 
2007 

Pair-Wise Expectation Maximization 

(PWEM) 

[34] 

Robustness of learning 

techniques in handling class noise 

in imbalanced datasets 

2007 C4.5, Naïve Bayes, k-NN 

[35] 

Software quality modeling: The 

impact of class noise on the 

random forest classifier 

2008 Random Forest (RF), C4.5, Naïve Bayes 

[36] 
Genre-based decomposition of 

email class noise 
2009 

Dynamic Markov Compression 

Algorithm (DMC), Relaxed Online SVM 

(ROSVM), BogoFilter 

[37] 
Advances in Class Noise 

Detection 
2010 Naïve Bayes, Random Forest, SVM 

[15] 

Identifying Mislabeled Training 

Data with The Aid of Unlabeled 

Data 

2011 CFAUD, MFAUD 

[38] 
Class noise detection based on 

software metrics and ROC curves 
2011 ROC, Naïve Bayes 

[39] 
A Study on Class Noise Detection 

and Elimination 
2012 

Ensemble Classifier (SVM, k-NN, 

CART, C4.5, Random Forest, Naïve 

Bayes, MLP), Edited Nearest Neighbor 

(ENN), Repeated ENN (RENN) 

[40] 
Bagging schemes on the presence 

of class noise in classification 
2012 Bagging Credal Decision Tree 

[41] 

Noise in Bug Report Data and the 

Impact on Defect Prediction 

Results 

2013 FS-ID3, Fuzzy-Logic Decision Tree 
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[42] 

An empirical study of the 

classification performance of 

learners on imbalanced and noisy 

software quality data 

2014 

C4.5, Random Forest (RF), k-NN, 

RIPPER, Logistic Regression (LR), 

Naïve Bayes (NB), Multilayer Perceptron 

(MLP), Support Vector Machine (SVM) 

[43] 

Relating ensemble diversity and 

performance: A study in class 

noise detection 

2015 

Support Vector Machine (SVM), CN2, 

Random Tree (RT), J48, Naïve Bayes, 

JRip, Multilayer Perceptron (MLP), 

Random Forest (RF), SMO, k-NN 

[44] 

Modelling Class Noise with 

Symmetric and Asymmetric 

Distributions 

2015 

Boundary Conditional Class Noise 

(BCN), Logistic Regression (LR), Probit 

Regression (PR), Linear SVM 

[45] 

Class noise removal and 

correction for image 

classification using ensemble 

margin 

2015 
Classification and Regression Trees 

(CART), k-NN, AdaboostM1 

[21] 

Evaluating The Classifier 

Behavior with Noisy Data 

Considering Performance and 

Robustness: The Equalized Loss 

of Accuracy Measure 

2016 C4.5, Support Vector Machine (SVM) 

[46] 

On the Influence of Class Noise 

in Medical Data Classification: 

Treatment Using Noise Filtering 

Methods 

2016 
Support Vector Machine (SVM), C4.5, 

Nearest Neighbor (NN) 

[47] 

Complete Random Forest Based 

Class Noise Filtering Learning 

for Improving the 

Generalizability of Classifiers 

2019 

Complete Random Forest (CRF), CRF 

based Noise Filtering Learning 

framework (CRF-NFL), Support Vector 

Machine (SVM), k-NN, Decision Tree 

(DT), Logistic Regression (LR), 

XGBoost 
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[48] 

The Effect of Class Noise on 

Continuous Test Case Selection: 

A Controlled Experiment on 

Industrial Data 

2020 

Bi-Gram Bag of Words Model, Random 

Forest (RF), Mathew Correlation 

Coefficient (MCC) 

[8] 

Improving Data Quality for 

Regression Test Selection by 

Reducing Annotation Noise 

2020 
Method Using Bag of Words for Test 

Case Selection (MeBoTS) 

[49] 

Improving class noise detection 

and classification performance: A 

new two-filter CNDC model 

2020 
Class Noise Detection and Classification 

(CNDC) model 

[50] 

A Novel Class Noise Detection 

Method for High-Dimensional 

Data in Industrial Informatics 

2021 
Sequential Ensemble Noise Filter 

(SENF) 

The aim of the research [27] was to correlate how three popular boosting algorithms, 

Adaboost, Logitboost, and Brownboost, performed when implemented with monitored 

algorithmic learning. Boosting methods integrate various flawed ideas to develop potent 

ensemble classifiers. The performance of the algorithms was assessed analytically applying 

five actual datasets, especially to test error rates. The boosting algorithms were trained on 

the rest of two-thirds of the data in every trial applying binary stumps as core learners, with 

one-third of the data being arbitrarily selected as a test set. Outcomes were highlighted with 

a 95% confidence rate, and the last practice and trial error values were recorded. The 

researchers also randomly altered 20% of the class labels in the datasets to provide fake 

class noise to assess the noise tolerance of the algorithms. 

The main outcomes of the research were listed as follows: 

• In every dataset, Logitboost outperformed Adaboost in terms of test error rates 

when fake class noise was removed. 

• It was suggested that because Logitboost places a maximum limit on weight 

changes, it may be less susceptible to overfitting, which accounts for its higher 

performance. 
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• As a result of Adaboost's strong sensitivity to class noise, generalization 

performance suffered when noise was present. 

• In line with prior findings, Brownboost demonstrated resilience in the presence of 

class noise. 

• The study done with prior knowledge of noise levels revealed the difficulty in 

assessing noise levels in actual situations. 

Given the circumstances, the study provided valuable insights into the relative 

performance of various boosting methods as well as their susceptibility to class noise, 

which have implications for machine learning applications in the real world. 

In this study [11], data quality was mentioned as an important factor in the 

classification of tasks, especially in the category of defective and working parts of the 

software. A novel noise detection method, based upon Boolean logic rules, was presented 

for detecting and removing noise from the training data. Different attributes containing 

noise were introduced at various noise levels to evaluate this proposed method. The C4.5-

based classification filter and the proposed approach were compared, and the results 

showed that as the noise increases the latter approach operates more efficiently than the 

former approach. The findings show that the proposed model is a great alternative to 

common noise filtering techniques due to its simplicity and Boolean logic. 

The main goal of this work [13] was to increase the classification accuracy in the 

presence of noisy data and untrained training samples. A new method is proposed for noise 

identification using a graph of geometric parameters as a pre-filter. The classification 

results can be improved by removing or reclassify such fuzzy patterns. The deletion 

procedure performs better than the reclassifying test using the restricted 1-NN method by 

the UCI Machine Learning Repository, especially when the classes are clearly separated. 

By detecting and resolving outliers, this method increases class separation and reduces 

noise in performance estimation. The results showed the effectiveness of this strategy in 

developing accurate class distributions. 

Recent advances in machine learning and data mining have led to many methods 

using cost-sensitive classification. These methods are usually used under the expectation 
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that no significant noise is present in the dataset, which is often not true in real-world 

datasets. To tackle this issue, the authors of [28], [29] proposed a Cost-guided Iterative 

Classification Filter (CICF) for investigating the effect class noise has on cost-sensitive 

learning. CICF is adaptable enough to include the rejection of misclassification costs by 

focusing on detailed classes and is more vigilant as compared to other approaches. The 

noise detection method of CICF consists of a classification filter and cost estimation 

method. It has been proven to be more effective on datasets with large noise-to-cost ratio 

and it can help researchers reduce the misclassification cost by using cost-sensitive 

categories in environments containing noise. 

A novel noise detection method, using the user defined Attribute of Interest (AOI) 

method, in [19] which was developed considering the poor quality of data in data mining. 

It provided a flexible way to improve data quality by allowing specific noise conditions to 

be classified into functions. The use of this technique is illustrated by an example of class 

noise detection, where AOI classes are used to classify noise structure at high resolution. 

The proposed method demonstrated its effectiveness by outperforming hierarchical and 

clustering filters in the dataset under question. It has proven to be a useful tool for 

improving data quality in real-world datasets with various integrity issues, especially noise. 

Separating the dataset into a testing and training subgroups is an approach mostly 

used by set-oriented approaches when cleaning data for efficient extrapolation, and then 

using a classifier trained on the training subgroup to detect noise in the testing one. 

However, as the amount of data increases, the drawbacks of this approach make memory 

pretraining intensive, time-consuming, or impossible, limiting its usefulness. To address 

these issues, this study [30] presents a denoising technique for large or distributed datasets 

that combines local and global analysis. Instead of using one large data set, several smaller 

data sets are used, each treated as a local subset of the inductive process. High-quality rules 

are then generated from these local subsets and used to evaluate the entire dataset. An error 

count variable is created that tracks instances of noise in each dataset. An instance is more 

likely to be faulty when the error count is high, and accuracy is low. The majority and safe 

thresholds are analyzed to detect and remove noise. To reduce the noise in a partitioned 

dataset, partition filtering techniques are proposed to divide the dataset into smaller 
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partitions and organize each instance according to local rules. The main features of this 

method are small datasets, focusing on the local condition and using good samples in each 

round of cleaning and each local source sample as its own noise detection matrix. 

Experimental evaluations and reliability tests show that this noise detection method is 

dependable and effectively improves classification accuracy. 

Each event in the dataset is assigned a noise variable that uses a frequency function 

to assign the probability of the event to the noise class. The importance of voice recognition 

in intelligent analysis tasks is demonstrated by this paper [31], which also proposes a new 

method for detecting noise types in datasets to be used for classification tasks. Itemsets are 

frequently described as a collection of items that satisfy a user-specified minimal support 

condition and share attribute values. The feature structure and its interactions were 

explained by these itemsets. Based on the quantity of each sort of item it included, a class 

was assigned to each continuous group of objects. There were occurrences marked as noise 

in itemsets that were dominated by the opposite class. Several case studies using practical 

software measurement datasets with both induced and inherent noise were used to evaluate 

the effectiveness of the proposed technique. The results demonstrated how successfully the 

new algorithm identified situations with class noise. The study placed a strong emphasis 

on the need of noise identification since conclusions drawn from noisy data may not be 

dependable. By putting the algorithm to the test on several datasets with various noise-

generating methods, a thorough evaluation was produced. The study focused on how 

applicable the approach was since it offered accurate class noise detection and was not 

affected by changes in parameters. The proposed approach was also compared with two 

popular class noise detection methods, Ensemble Filter and Classification Filter, and the 

unique method outperformed both filters in class noise identification. 

The focus of this study [32] was to address the issue of class noise in machine 

learning, which may significantly reduce classifier performance if it exists in a dataset. The 

paper introduced two new classifiers that were built on a probabilistic model that Lawrence 

and Schölkopf first put out in 2001 [51]. These suggested methods build on the earlier work 

of Lawrence and Schölkopf in two essential aspects, with the goal of tolerating and 

managing class noise effectively. First, they altered the distribution assumptions used in 
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the prior work, and second, they included a special integration of the probabilistic noise 

model into the Kernel Fisher discriminant. Using simulated noisy datasets and actual 

comparative genomic hybridization (CGH) data, these approaches' efficacy was assessed. 

PF and PKF, two noise-tolerant classifiers that were based on the probabilistic noise model 

of Lawrence and Schölkopf, were introduced in this paper's conclusion after a 

comprehensive investigation of the class noise problem. These classifiers produced linear 

and non-linear classifiers in the original feature space by optimizing the projection 

direction in noisy data. They made an important decision by not relying on explicit 

distribution assumptions in the input space. The study also included a component-based 

probabilistic algorithm (CPA) to the probabilistic model to handle non-Gaussian datasets. 

The potential of the suggested noise models was shown by the experimental findings. In 

general, these models outperform conventional classifiers when used properly. When 

dealing with non-Gaussian datasets and datasets with a disproportionately large number of 

features in comparison to the sample size, PKF showed notable benefits. Notably, PKF 

accurately identified mislabeled samples when used on the BRCA1 dataset. It was 

important to note that kernel-based approaches, like the ones suggested in this study, have 

computational difficulties, particularly when dealing with huge datasets. For bigger 

datasets with several repetitions, kernelization techniques can get quite complicated and 

may not be practical. 

In this study [33], a brand-new method for dealing with class noise in machine 

learning datasets was presented. This method assigns a class membership probability 

vector to each training instance and weighs the learning process based on the current label 

confidence. The goal is to provide an example of a correctly classified sample with low 

confidence in the existing label and high confidence in the true label, and an example of a 

clean sample with high confidence in the existing label. This method considers two special 

cases of instance weighting: instance deletion and instance correction. The method 

described in this article uses clustering to determine the probability distribution of naming 

classes for each case. Experiments showed that this scheme improves classification 

accuracy compared to the original scheme. The article also explains that instance weighting 

is a better way to reduce class noise than noise elimination. This study proposed Probability 

Weighted Expectation Maximization (PWEM), a probabilistic strategy to reduce the 
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impact of class noise. PWEM produces a probability distribution of class labels for each 

condition and uses clustering to learn the true class label of the training set. According to 

the practical data, PWEM and instance weighting considerably improved classifier 

accuracy, even coming close to the theoretical optimal performance under different noise 

levels. 

The problem of unbalanced datasets, where one class considerably outnumbers the 

other(s), was the main topic of this research [34]. Although there are various methods for 

dealing with unbalanced datasets, most of them presuppose that the incoming data is noise-

free. In real-world situations, data frequently contain noise that can have an impact on the 

accuracy of the data, the models based on it, and the judgements drawn from it. The study 

assessed how well-suited current methods are at managing unbalanced datasets with added 

class noise. Seven unbalanced datasets were used in the assessment, and the findings 

revealed that the MetaCost technique seemed to be more dependable as the amount of class 

noise increased. The paper's conclusion emphasized the need for more study in dealing 

with multi-class unbalanced datasets and suggested the creation of more durable 

approaches to deal with class noise in such datasets. 

In this study [35], the influence of rising amounts of artificial class noise on the 

categorization of software quality was investigated. The performance of three distinct 

classifiers was inspected, namely Naïve Bayes, C4.5 and Random Forest (RF100), which 

were tested on seven software engineering measurement datasets subjected to class noise 

in the study. The RF100 classifier was chosen, given its superior performance, especially 

in contrast to leasing classifiers like Naïve Bayes and C4.5, which were frequently 

employed in the field of software quality classification. The two main experimental 

variables of this study were the volume of class noise and the proportion of few occurrences 

that were infused with noise. No matter the amount of noise, the proportion of minority 

cases with noise, the performance metric (AUC or KS), or the degree of noise in the tests, 

the empirical data consistently showed that the random forest classifier (RF100) beat the 

other classifiers. The study found that RF100 was an exceptionally reliable classifier for 

identifying software quality, particularly when there was class noise. Although the building 

and combining of 100 decision trees increased the execution time, software quality 
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classification tasks often included relatively modest datasets in terms of both the number 

of instances and characteristics, thus this was generally not a significant problem. The study 

also highlighted how class noise significantly affects how well software quality 

classification algorithms work. Particularly in cases where instances should have been 

classified as not-fault-prone when they were falsely classified as fault-prone, it brought 

attention to the need of data quality and the necessity to examine and revise class labels. 

The problem of class noise (label noise) in email spam filtration and its effects on 

classification issues were the main subjects of this study [36]. It challenged the uniform 

distribution assumption assumed by many data cleaning techniques, which is often 

incorrect in practical settings. According to the study, class noise can display significant 

content-specific bias based on email spam filtering data; in other words, certain email 

genres or types were more likely to be incorrectly classified than others. The study also 

examined classifier-confidence based noise detection techniques and found that these 

approaches often identify examples that human evaluators would also likely mislabel. The 

study suggested using genre modelling to quantify the content bias in the class noise 

distribution depending on email genres. It was suggested that other text categorization 

problems might display similar patterns of content-based bias. The results demonstrated 

that classifier confidence-based data cleaning methods could effectively identify cases that 

were mislabeled, providing a less expensive solution than human review. To increase spam 

filtering accuracy, the research also recommended using genre membership signals in the 

classifier learning process. For the benchmark collections, the performance findings of the 

study outperformed previously released figures. 

Finding noisy examples in data preparation to be reviewed by domain experts at the 

data comprehension stage was the aim of this research [37]. Unlike traditional noise 

filtering methods that aim to increase classifier accuracy, the purpose of this study was to 

obtain high precision in class noise detection. The F-Score was used to represent the trade-

off between accuracy and recall. The F0.5 measure provided a trade-off between recall and 

noise detection accuracy, was used to evaluate several applications of noise filtering 

algorithms based on classification. According to the research results, the new highly 

consistent random forest filter was found to be the most effective strategy with a 70% 
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agreement rate between decision tree classifiers using random forest methods. In the case 

of F0.5 score and accuracy, these well-connected random forests outperformed other 

simple classification filters. 

This work [15] proposes a unique approach to efficiently detect and correct 

mislabeled training sessions, which can improve the accuracy of supervised learning 

systems. This unique approach improves the performance by utilizing unlabeled instances 

to help discover cases that are incorrectly classified, unlike previous systems that rely only 

on labeled data. With some modifications, this strategy can easily be used with common 

noise detection techniques such as majority filtering (MF) and consensus filtering (CF). 

New versions of MF and CF are released as MFAUD and CFAUD, respectively, using 

unlabeled data to improve accuracy. Experimental studies confirm the effectiveness of this 

strategy and show that MF and CF are better than before, especially in noisy environments. 

The purpose of this paper [38] was to present a technique especially for detecting 

class noise. The noise features and classes included in this scenario can reduce the 

performance of the machine learning classifier, so it was important to find the noise entries 

to improve the overall performance. Examining software metrics, called Receiver 

Operating Characteristic (ROC), allowed them to determine the threshold values used in 

the proposed voice detection method. Five public NASA datasets were used in the case 

studies, and a Naïve Bayes model was created to predict software failures both after and 

before the use of noise detection techniques. Empirical results showed how effective this 

noise detection method was in detecting class noise. As seen by lower false positive, false 

negative, and error rates, the Naïve Bayes based software fault prediction models 

performed substantially better when the class labels of modules having noise were 

amended. The technique for detecting noise conditional to threshold values of software 

metrics, which successfully enhanced the functionality of software fault prediction models, 

was the main contribution of this study. 

This work [39] focused on noise in classification datasets, specifically in the class 

labels of the target attribute. Various factors, such as errors in data collection, transmission, 

and storage, might introduce noise into the data. Machine learning models may perform 
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worse when there is noisy data present, with longer training durations and worse predicted 

accuracy. To solve classification challenges, the study presented and empirically tested 

several noise detection and removal methodologies. In the trials, five UCI datasets that 

were initially clean and consistent were subjected to regulated noise levels. The 

experiment's findings showed that the methods for managing noise suggested were 

potentially useful. While conservative, the consensus voting method performed worse at 

locating noisy data instances. However, for some pre-processed datasets, the original data 

categories show high classification performance and accurate detection rate even with 

noisy data. The study also shows how clustering techniques affect data quality and how 

reclassification algorithms can be used to remove randomness and noise. 

The authors of this study [40] used Bagging Cradle decision trees to classify noisy 

datasets. These uncertainty and probability measures are used to analyze these decision 

trees. To generate reliable decision trees, this study performed continuous attribute analysis 

and improved the flexibility and ease of use of the original method [52] by incorporating 

missing data. For noisy datasets, this experimental study shows that a Bagging credal 

decision tree, using measures of error probability and uncertainty, performs well in 

handling noisy data. Extensive research and conflicting results show that decision tree 

recognition significantly reduces the number of different sources of error when processing 

datasets with high classification noise. This performance advantage is achieved through a 

simpler design with fewer features than previous approaches. 

The question of evaluating noise defect prediction in bug report data and how it can 

affect the accuracy of the defect classification process was answered, in this study [41], 

and the impact of different sources of noise on the accuracy of error prediction was also 

investigated. Some of the common causes of noise in bug report data are wrong bug reports, 

ignored or overlooked problems, incorrect measurements, missing links between modules 

and other software errors. These components increased the overall "dirtiness" of the real-

world information that was used to predict defects. The effect of class noise on defect 

prediction was tested by using an industrial software system. Surprisingly, the defect 

prediction findings remained accurate, with over 95% in most cases, even at noise levels 

of up to 20%. The models could occasionally even handle noise levels of 30% or more. 
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The study [42] looked closely at the impact of class differences and class noise on 

the classification models that are used to identify program modules that are prone to errors 

in software quality datasets. 12 datasets generated from actual software quality data were 

used to assess different levels of class noise and imbalance. Eleven classification 

algorithms and seven data sampling strategies were assessed using noisy and imbalanced 

datasets. Initially, as the degree of class imbalance increased, most classification 

algorithms and sampling techniques outperformed one another. This improvement was 

attributed to the decrease in data noise with increasing degrees of imbalance. Severe 

imbalance might still have a detrimental effect on classifier performance, it was discovered. 

Second, various classification algorithms' responses to the use of sampling strategies 

differed considerably. When sampling was used, several algorithms showed notable gains, 

especially when there was more imbalance. As an illustration, the Radial Basis Function 

(RBF) classifier showed notable improvement with sampling, particularly in circumstances 

with high imbalance. The Naïve Bayes (NB) classifier, in contrast, seems to be mostly 

unaffected by sampling. Thirdly, the study pinpointed sampling methods that consistently 

outperformed others in a range of imbalance and noise levels. Notably, across all datasets, 

the Random Under-Sampling (RUS) method consistently produced excellent results. 

Additionally, the Weighted Ensemble (WE) method performed well, especially as the 

degree of imbalance rose. However, other methods, such as One-Sided Sampling (OSS) 

and Cluster Based Over Sampling (CBOS), produce inconsistent results. This study also 

focuses on applying classification algorithms using sampling techniques. For each dataset, 

Naïve Bayes (NB) and support vector machine (SVM) were the most efficient classifiers, 

consistently outperforming other techniques. Unlike many other methods, increasing 

imbalance has a significant impact on the Radial Basis Function (RBF) classification. The 

results of this study demonstrated a complex relationship between noise and the types of 

differences between categories of software quality attributes. This provides useful 

information about the robustness of sampling strategies and classification algorithms in 

these complex environments. 

The purpose of this work [43] was to determine whether diversity metrics helps in 

selecting the efficient ensembles for noise detection and to study the relationship between 

ensemble variation and class noise detection in an ensemble-based environment. In an 
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experimental study involving the detection of multiple sets of heterogeneous noise 

detection ensembles, two voting systems were considered: a majority voting system and a 

consensus voting system. The results were surprising, especially in the group with more 

noise, which showed better memory but lower accuracy in identifying noisy conditions. 

While increasing ensemble diversity was found to have no beneficial effect on noise 

detection ability—in fact, in some cases, it had the opposite effect—the majority voting 

system, which placed a higher priority on high recall than precision, was found to be 

successful for expert-guided noise detection. Despite efforts to link diversity values with 

noise detection performance, there was not enough information available in this scenario 

to choose effective noise detection ensembles. However, consensus-based noise detection 

ensembles, which demonstrated high noise detection precision but potentially worse recall, 

benefited more from ensemble variation. These ensembles were suitable for unsupervised 

noise detection where precision was crucial, and the probability of false noise identification 

was to be minimized. Less ensemble diversity improved recall and F-scores, but more 

ensemble diversity improved class noise detection precision, according to the experiments. 

Diversity metrics can be used as a guide to select effective ensembles for noise detection, 

as demonstrated by the significant relationships that the ambiguity diversity measure and 

Kohavi-Wolpert measures shown with F-Score and noise recall, while the diversity 

measure for noise detection accuracy was regarded as “bad" during this process. 

The investigation of class noise in classification problems was the goal of this work 

[44]. The researchers created the concept of boundary-conditional class noise (BCN), 

which depends upon the hypothesis that samples near the class border are more likely than 

those farther away to have erroneous annotations. To mimic how class noise is created, 

they proposed symmetric and asymmetric noise models using unnormalized Gaussian and 

Laplace distributions. Furthermore, the newly proposed models taking class noise into 

account was reinterpreted and compared to Logistic regression and Probit regression. 

Empirical studies used to test these models showed that asymmetric noise models 

consistently outperformed benchmark linear models. In terms of overall performance, the 

asymmetric Laplacian noise model outperformed other proposed models. 
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In the research study [45], the problem of incorrect classification of training data was 

solved, which presented a challenge for classifiers including ensembles. A method for 

identifying, removing, or correcting mislabeled educational articles using four different 

ensemble margins was proposed. This approach was based on thresholding misclassified 

data instances and the concept of hierarchical noise classification. To demonstrate the 

effectiveness of this strategy, it was applied to image classification. A comparative study 

between the majority filter, that is, the class noise filter, and the proposed method was 

conducted. The results showed that the proposed margin-based method outperforms most 

filters in detecting and correcting mislabeled entries. The study concludes with a 

demonstration of a margin-based clustering method for detecting and processing erroneous 

training data, including removal and optimization of noise labels. Two commonly used 

ensemble margin definitions were evaluated, and an unsupervised alternative was proposed 

to address the mislabeling problem. It seemed that this method could improve the accuracy 

of image classification. 

In real datasets, noise often degrades classification performance, necessitating the 

use of noise-tolerant classifiers. However, discussing classifier efficiency and its resilience 

separately can lead to different perspectives. To overcome this limitation, this study [21] 

developed a unique metric that takes power and performance into account: the Equalized 

Loss of Accuracy (ELA). The limitations of existing metrics made it difficult to evaluate 

different methods on the same data or interpret concepts correctly. Because of these 

challenges, ELA was developed to provide a comprehensive understanding of the behavior 

of a classifier in a noisy environment. This study demonstrated the advantages of ELA over 

other reliability measures and how it could accurately predict classifier behavior in the 

presence of noise. Real-world examples and empirical analysis were used to accomplish 

this. About comparing multiple classifiers on the same dataset, the proposed measure 

enhanced the process and yielded useful information for selecting classifiers in scenarios 

when noise is present. 

This article [46] focused on the impact of class noise on medical data classification 

algorithms. The study showed that categorization algorithms are essential for automated 

data analysis in medical decision support. However, the accuracy of the training dataset 
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used to create the classification models determines how well these systems perform. When 

instances are wrongly labelled, class label noise arises, which can negatively impact 

training and ultimately classification performance. The study investigated the use of noise 

filtering techniques to deal with class label noise in the context of classifying medical data. 

On real-world medical datasets that were known to be impacted by class noise, many tests 

were carried out. The study emphasized that class noise in medical data might be caused 

by mistakes made by human experts or inaccurate data gathering techniques. Even if steps 

like double-checking data or obtaining expert consensus might decrease labelling mistakes, 

they are frequently time and money consuming. The effectiveness of three classification 

algorithms; C4.5, SVM, and NN; both with and without the use of noise filtering was 

examined in the study. The results showed that even low amounts of class noise might 

dramatically impair classification performance across twelve medical datasets with various 

degrees of noise. SVM performed best when noise filtering was not used. However, it was 

discovered that noise filtering was essential, particularly when dealing with loud noise. The 

most successful noise filters in the research's tests were EF, IPF, and NCNE. It was 

emphasized that using noise filters would not always result in better performance than 

doing no preprocessing at all. It was urged to carefully evaluate various classifiers and 

noise filters as a result, as their efficacy can be affected by the unique features of the 

medical data being analyzed. 

This research [47] developed a noise filtering learning framework (CRF-NFL) that 

efficiently identifies class noise in complicated data situations and offered a complete 

random forest-based technique for class noise identification. Compared to other 

approaches that depend on distance measurements, overall distribution, or classifiers, the 

voting mechanism made the proposed system robust for datasets with feature noise and 

suitable for various machine learning techniques. The study developed the framework to 

incorporate numerous widely used classifiers, including k-means tree, GBDT, and 

XGBoost, and produced a distributed version for large-scale data. The performance of 

classical classifiers and a relative density-based (RD) method was contrasted with that of 

CRF-NFL-based classifiers on UCI datasets and high-dimensional ImageNet datasets. The 

outcomes proved the effectiveness of CRF-NFL-based classifiers, which showed 

appreciable improvements in test accuracy across different datasets. On UCI datasets, these 
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classifiers increased test accuracy by an average of 0.7% to 11.54% and, at their highest 

test accuracy, by up to 30.60%. Notably, their advantage was much more obvious on high-

dimensional datasets with class noise, with improvements in average test accuracy ranging 

from 1.08% to 30.60% and in maximum test accuracy reaching 30.60%. 

The study [48] dug into the continuous integration and testing space, concentrating 

on utilizing rich data on code flaws to train predictive learners for efficient test suite 

selection. The noise included in training data, which has an impact on classification 

performance, was a major problem. The impact that class noise has on test case selection 

was examined, during this study, using a controlled experiment on an industrial dataset. A 

substantial correlation between classroom noise levels and learner performance was 

discovered using stringent criteria like Precision, Recall, F-score, and MCC. Increased 

class noise ratios led to test suite absence and a rise in false alarms when the noise ratio 

was above 30%, highlighting the trade-offs and complexity in noise treatment. By 

providing a formula to estimate class noise levels, the study enhanced practical insights 

and helped testers make decisions about noise management tactics. Even though class noise 

management procedures had some success, difficulties persisted, necessitating more 

research into effective handling techniques and comparison with attribute noise effects. 

The study's consequences included assessing the effectiveness of machine learning in 

foretelling test case failures, looking at the impact of code formatting on noise collection, 

and researching how well various learning models can categorize and assign noise. 

Research [8] on the integration of machine learning and big data models in software 

engineering focuses on the selection of test cases for continuous integration. New noise 

reduction techniques solve the problem of inconsistent learning methods. A case study of 

the proposed method using sampled data for regression testing showed a significant 

improvement of 70% recall, 59% F-score, and 37% precision. By renaming rather than 

systematically deleting, this new approach improves test case suggestion, class noise, and 

pattern recognition. 

This work [49] attempts to address the problem of noise in the classification process, 

which can have serious consequences such as reduced accuracy and increased model 
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complexity. A novel Class Noise Detection and Classification (CNDC) model was 

proposed that used two filters, noise detection and noise classification, to effectively handle 

class noise. To solve the embedded noise identification problem using the distance filter 

and the removal and reclassification (REM-REL) method to improve the overall 

performance was used for noise detection and noise classification, respectively. Six 

original datasets were used to evaluate the efficiency of CNDC where F0.5 index, precision 

and recall rate were calculated for each dataset. The results showed that simulated CNDC 

model identified noisy data effectively and provided flexible filtering methods. The 

findings also showed that the REM-REL method significantly improved content quality 

compared to traditional deletion and renaming methods. It also showed that the CNDC 

model outperformed the existing approaches, and its stability was tested using ROC curves. 

The big data misclassification problem and how noise and unwanted artifacts affect 

the noise detection performance of an algorithm was discussed in this research study [50]. 

Earlier approaches used a two-dimensional approach to separate important signals from 

noise, yet they do not provide sufficient performance for noise detection as both, feature 

selection and noise detection, are performed separately. A novel approach called Sequential 

Ensemble Noise Filter (SENF) was proposed to resolve this issue. It combines noise 

detection and reduction into one package. Tested on a variety of high and low noise 

datasets, the suggested SENF algorithm performs noticeably better than the advanced noise 

detection techniques. This advantage is most obvious when it comes to complexity and 

high class noise ratios. Statistical analyses were performed to confirm the results of this 

study and compare the performance of SENF with conventional methods. However, it 

showed that in cases where the class noise ratios and feature counts are the same, the 

majority filtering (MF) method is the best choice due to its simplicity and efficiency. 

2.2. Attribute Noise Handling Research 

Reliability and optimization of algorithms for training accuracy requires overcoming 

issues such as noise, unpredictability, and novelty, as these issues significantly affect 

algorithm training, storage requirements, and overall accuracy. These issues are addressed 

by three improved nearest neighbor algorithms, described in this study [53], which served 
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as dependable incremental learners. The presented approach was aimed at combating noise, 

measuring the significance of lines, and analyzing observed differences. Algorithms can 

be contaminated with noise, redundant features can hinder learning, new features can 

destroy the learning process. The proposed algorithm tries to solve these problems by 

combining methods to increase the flexibility of the algorithm. A common feature of these 

algorithms is their ability to perform well in support of learning. The effects of noise, 

novelty, and uncertainty are eliminated, resulting in reliable and accurate classification. 

Using the induction method, filtering algorithms have been improved and new functions 

have been added. 

Table 2.2: Attribute noise handling approaches 

Ref. Title Year Technique 

[53] 

Tolerating noisy, irrelevant, and 

novel attributes in instance-

based learning algorithms 

1992 
Instance Based Leaning (IBL) 

Algorithms 

[23] 

Identifying noisy features with 

the Pairwise Attribute Noise 

Detection Algorithm 

2005 
Pairwise Attribute Noise Detection 

Algorithm (PANDA) 

[17] 
The Pairwise Attribute Noise 

Detection Algorithm 
2006 

Pairwise Attribute Noise Detection 

Algorithm (PANDA) 

[54] 
Attribute Noise Detection Using 

Multi-Resolution Analysis 
2006 Discrete Wavelet Transforms, PANDA 

[55] 
Empirical Case Studies in 

Attribute Noise Detection 
2009 

Pairwise Attribute Noise Detection 

Algorithm (PANDA) 

[56] 

Classification algorithm 

sensitivity to training data with 

non-representative attribute 

noise 

2009 
J4.8, AdaBoostM1, SMO, IBk, Logistic 

(Ridge logistic regression) 

[57] 
Pairwise attribute noise 

detection algorithm for detecting 
2016 

Pairwise Attribute Noise Detection 

Algorithm (PANDA), SVM 
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noise in surface 

electromyography recordings 

[58] 

Attribute Noise, Classification 

Technique, and Classification 

Accuracy 

2017 

SVM, Principal Component Analysis 

(PCA), Robust Principal Component 

Analysis (RPCA), Random Forest (RF) 

[59] 

Clustering data with the 

presence of attribute noise: a 

study of noise completely at 

random and ensemble of 

multiple k-means clustering 

2019 

LCE, HBGF, EAC-SL, EAC-AL, 

CSPA, HGPA, MCLA, AggF, AggLF, 

AggLR, QMI, MM, IVC, TOME, 

LWEA 

[60] 
Attribute Noise Robust Binary 

Classification 
2019 

Symmetric Dependent Attribute Noise 

Model (Sy-De), Asymmetric 

independent Attribute Noise Model 

(Asy-In) 

[61] 

Can machine learning paradigm 

improve attribute noise problem 

in credit risk classification? 

2020 

PCA, Linear Discriminant Analysis 

(LDA), Multidimensional Scaling 

(MDS), Kernel PCA (KPCA), 

Restricted Boltzmann machine (RBM), 

Classification and Regression Tree 

(CART) 

[62] 

ANCES: A novel method to 

repair attribute noise in 

classification problems 

2022 
Attribute Noise Corrector based on 

Error Scores (ANCES) 

A critical issue in knowledge mining and discovery is data quality. This work [23] 

provided useful information about quality characteristics in electronic data and a unique 

technique for detecting noise characteristics. To detect instances of noisy objects, this 

method uses the excellent Pairwise Attribute Noise Detection Algorithm (PANDA) to 

detect instances that contain attribute noise. Case studies were conducted to evaluate how 

the method detects noise using real-time software measurement data and simulated noise 

injection. The primary goal of this study was to find noise patterns associated with classes 
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or attributes that could be modified or removed prior to analysis. However, to assess 

alternative analyses, this study emphasized the need to understand the noise field in certain 

properties. The proposed technique continuously determines the noise classification 

characteristic using PANDA. Attribute noise is detected by carefully removing noise from 

each instance and evaluating its effect on the classification of the sample. By establishing 

a relationship between noisy data and attributes, this method provides domain experts with 

valuable information about the quality of those attributes. Experiments with data 

measurement software have demonstrated the effectiveness of this technique in detecting 

sound characteristics. The case of noise classification has a significant effect, and this 

method is effective when identifying noise sources. 

The assessment of data quality is the main goal in the development of data mining 

algorithms. Since the accuracy of the input data has a significant impact on the performance 

of these models, an efficient noise detection technique is required. Although much attention 

has been paid to noise detection, significant results have not been achieved because high 

noise levels are difficult to detect. This paper [17], introduces a new method for finding 

noise attributes, namely the Pairwise Attribute Noise Detection Algorithm (PANDA). 

Using a real-time measurement software case study, the proposed method was validated 

and compared to the distance-based detection method (abbreviation DM). This study 

focuses on general noise problems in class and focuses on the details of sound perception. 

The PANDA method was developed to find occurrences of the attribute noise, which has 

the advantage that it does not require class identifier information. The effectiveness of this 

approach is evaluated through a case study, using software measurement datasets of 

NASA, and its applicability to several domains. Software engineering experts have 

continuously tested the PANDA and DM algorithms and found noise in the samples of 

both methods. The results show that PANDA is more effective than DM in finding noisy 

entries. Furthermore, this study highlights the importance of using real noise rather than 

artificially produced noise when evaluating real data. 

Research shows how important data quality is to extract knowledge from database 

information. Finding noise in a dataset is important as it can distort and devalue the 

information found. In this study [54], a new approach to identify noisy features in software-
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metrics using multi-resolution discrete wavelet transforms. To validate the proposed 

approach, data collected by Military Command, Control and Communications System 

(CCCS) and Metrics Data Program (MDP) of NASA were used. Comparing the 

experimental results of the method with those of the PANDA and MDP datasets, the latter 

appears to be more appropriate, but comparing 300 datasets shows different results. 

Through several case studies, including the deliberate introduction of known generated 

noise into certain properties without adding class noise, all results were thoroughly 

validated. The importance of data quality in decision-making processes involving data 

across a variety of areas was highlighted in the article. The study's empirical methodology 

was built on meticulously calibrated datasets, guaranteeing the existence of noise. It is 

noteworthy that the suggested solution did not rely on a particular attribute, like a class 

attribute. The JM1 dataset’s results showed good comparisons to PANDA, with only a few 

slight differences in attribute noise ranks. The results of the CCCS, however, did not agree 

with PANDA as well, most likely because the dataset’s multivariate normality varied. The 

case study 5 resulted in a 100% similarity ratio when a "De-noising" technique was used 

to support the premise that CCCS demonstrates greater multivariate normality than JM1 in 

the research. Case Study 6 looked at non-normal data, notably the JM1 data subsets, to 

further confirm the theory of dataset normality. This study's contradictory findings 

prevented attribute ranking. In conclusion, this study made significant contributions to our 

understanding of the use of discrete wavelet transforms and other linear signal processing 

techniques to attribute noise detection in data mining. 

To emphasize the significance of data quality in domain-specific data mining, this 

research [55] introduced a novel method for sorting characteristics in a dataset according 

to the amount of noise present in the data. Data analysts received insights for efficient data 

treatment, such as removing or cleaning noisy features, specific to the data mining 

application, by recognizing and rating noisy attributes. The efficiency of the method was 

demonstrated in several case studies utilizing synthetic and real-world datasets, exhibiting 

correct attribute noise rankings and possible applicability in classification scenarios. Data-

driven algorithms and knowledge discovery projects stand to gain from the empirical 

investigation's potential to improve data quality and enhance data cleaning techniques. 
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In this work [56], an empirical comparison of classification algorithms was done 

where attribute noise levels in the training data were not accurate representations of field 

data. The goal of the study was to determine how sensitive various classification algorithms 

were to different noise levels and if it was beneficial to make the necessary expenditures 

to get realistic noise levels. The experimental design was creative and covered elements 

like the algorithm, training set size, noise intensity, and noise condition. The relative 

performance change was the performance metric employed. The study's findings 

confounded common knowledge by arguing that it might not always be required to make 

investments to reach representational noise levels. Overrepresenting training noise was 

more of a risk compared to underrepresenting, the study revealed, which should be avoided. 

Field data cleaning frequently led to performance gains. Due to the interplay between the 

training set size, the algorithm and level of noise, it was highlighted that there could be 

exceptions to these general conclusions. Internal validity was the focus of this study, but it 

was concluded that it could not be applied to all fields. In conclusion, this study shed light 

on how variations in attribute noise levels within training and real world settings are reacted 

upon by classification algorithms and it also brought to attention the understanding of 

considering the environment and the relationships between variables while evaluating 

algorithm sensitivity to noise. 

The primary objective of [57] was to tweak an existing algorithm, first created for 

data mining software metrics, for the appraisal of surface electromyography (sEMG) 

signals. The PANDA algorithm was utilized to differentiate between noisy and clear sEMG 

signals with an emphasis on distinct forms of noise. The three phases of this study were 

configuration and testing using recorded and baseline data. Boundary settings, the amount 

of baseline signals, the feature set and the number of bins were the variables that were 

investigated to create an algorithm that worked efficiently. After initial testing using 

artificial sEMG data, a shift to recorded data was made for further consideration which 

marked constraints resulting from the differences with real data. Another element 

(normalcy) was added to the design of the algorithm for recorded data after which receiver 

operation characteristic testing was used to choose the correct boundary settings and bin 

numbers. PANDA was then evaluated using five distinct types of noise, i.e., motion 

artifact, saturation, powerline interference and their combinations, at diverse contamination 
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levels. PANDA could correctly detect clean signals with a false alarm rate of either 9.1% 

or 4.2%, according to the results. Additionally, depending on the kind of noise, it showed 

a high sensitivity of 100% in recognizing different noise types and combinations until 

transition points. The Support Vector Machine (SVM), another tool for evaluating quality, 

and PANDA's performance were evaluated in the study. All noise types could be 

distinguished more accurately by PANDA than by the SVM, although blended noise types 

(such as power line interference and motion artefact or power line interference, motion 

artefact, and saturation) were particularly well-identified. PANDA's success in identifying 

signals with numerous noise sources was a noteworthy accomplishment given that Clean 

EMG usually deals with single sources of noise. 

In cyber-security, where many response variables have a binary character, binary 

data categorization is critical. The selection of the classification method and the caliber of 

the data are important drivers of classification accuracy, among other variables. The 

necessity of choosing the right classification approach as well as recognizing and reducing 

noise is highlighted by the fact that noise in the data may considerably reduce classification 

accuracy. These issues were addressed, and classification accuracy was improved in this 

study [58]. Creating a noise reduction algorithm and analyzing the influence of noise on 

classification accuracy were the primary objectives of this study. The dataset used 

comprised of online credit card transactions to check for fraudulent transactions. The 

negative effect of noise on the categorization was seen in the experimental results. Random 

forest algorithm typically surpassed the other classification algorithms indicating its 

flexibility in the face of noise, however SVM algorithm performed adequately with low 

levels of noise but robust principal component analysis (RCPA) algorithm surpassed SVM 

when noise levels were high. The effect of data skewness on classification accuracy was 

also investigated and it was concluded that it had a varying effect on accuracy relying on 

the method used. SVM was prone to while random forest algorithm was resilient to skewed 

data and it became clear that principal component analysis algorithm can be used to 

effectively classify noisy and skewed data. To improve the classification accuracy in the 

presence of noise, a novel noise removal technique was proposed which produced 

promising results when compared to Cook's distance method. Optimal sample size ratios 
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for the training and testing dataset were also investigated which demonstrated a direct 

correlation between ratios and classification accuracy. 

The primary clustering algorithm k-means was utilized to perform a detailed 

experimental investigation of the effectiveness of consensus clustering approaches in the 

analysis of noisy data during the study [59]. The primary inspiration behind this study was 

based upon the conclusion that ensemble methods may deliver precise findings when 

working with noisy data even though the noise is added instantly. Two main research topics 

were the focus of their study. The authors' first goal was to comprehend how consensus 

clustering technique’s function when used on data with various amounts of noise. Second, 

when used in the context of cluster ensembles, they investigated the effects of adding 

negligible amounts of noise to data on centroid-based clustering methods like k-means. 

Eight UCI datasets, thirteen well-known cluster ensemble techniques, and two distinct 

quality metrics were used in a wide range of studies. They conducted several trials for each 

noise ratio and experimental condition to generalize their findings. The findings showed 

that while most approaches performed well at low noise levels (between 1 and 5 percent), 

they became less effective at higher noise levels. To increase accuracy, it was advised to 

apply data pretreatment techniques to cut down on noise before using consensus clustering 

approaches. It was interesting to see that several algorithms, such as EAC-AL, LCE, and 

TOME, performed quite well even in the presence of minimal noise. In several cases, they 

even provided better clustering results than the original, noise-free data. Experiments 

employing both uniform random and Gaussian-based noise creation provided evidence in 

favor of this conclusion. 

The intricacies of learning linear classifiers while working with labels and binary 

features also the difficulty of noisy features, was the purpose of this study [60], where 

features may be reversed with an unknown frequency. The two attribute noise models that 

were tested were the ASY-In model (which allows more independence in distribution over 

a 2-dimensional feature space) and the Sy-De model (in which every feature has an equal 

chance of being noisy). It was revealed that the loss function was not flexible enough to 

noise in the Sy-De model while the widely used squared loss function was which disclosed 

that squared loss could be better for learning in the presence of attribute noise when the 
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features are binary. In the case of ASY-In model the loss function is flexible enough 

towards noise with a distribution across a 2-dimensional feature space while squared loss 

is not. The experimental results supported the flexibility of squared loss in the Sy-De model 

for low to moderate noise rates. 

By introducing a dual voting based learning model, the issue of attribute noise in 

credit risk classification was focused upon in this study [61]. To deal with attribute noise 

in a profitable manner a three step model was proposed. During the initial step, four indexes 

were created to assess the noise levels in the datasets which was the starting point for 

determining the severity of attribute noise. The proposed learning model focused on the 

noise level results of dual voting model and divided the features with different noise levels 

into assorted feature groups based on the noise level, in the second stage. The training 

dataset was generated using several denoising methods to determine the performance of 

the Classification and Regression Tree (CART) model. Finally, the dataset is compared to 

the set of unique features using different denoising techniques and learning algorithms. 

Experimental data demonstrated that the dual voting model outperformed the baseline 

method in terms of stability, speed, attribute noise resistance in credit risk classification, 

and accuracy. The study looked at how scattered data affected attribute noise, and it was 

found that it might boost the accuracy and stability of a particular noise reduction approach, 

and it also evaluated how well the algorithm performed on two publicly accessible credit 

datasets which demonstrated its success in both instances in reducing attribute noise. The 

proposed dual voting based learning model consistently outperformed benchmark 

techniques even though the datasets were diverse. 

A novel attribute noise correction method (ANCES) was developed in this research 

[62], that alters attribute noise instead of removing noisy models. Most of the errors that 

affect class label are treated by typical noise filtering methods, whereas ANCES suggested 

another approach to settle attribute level noise. Every value in the dataset was assigned an 

error score in an iterative method to help in identifying potential noise. Afterwards, an 

optimization meta-heuristic was used to settle these values to get better quality of data. To 

improve noise detection, the study also considered various iterations of the initial dataset. 

Thorough experimental research comparing ANCES to alternative noise preprocessing 
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methods, including without preprocessing the data, was done to confirm the efficiency of 

ANCES. For assessment, real-world datasets with varying degrees of attribute noise were 

employed. The outcomes of the studies showed that using ANCES has advantages over 

preparing the data. It was made clear that reducing attribute-level noise might improve 

classification performance. Furthermore, ANCES often performed better than noisy 

sample removal preprocessing methods. It was discovered that, with some datasets and 

noise levels, deleting noisy samples might still produce promising results, particularly 

when the noise was associated with class label data. 

2.3. Attribute and Class Noise Handling Research 

Concentrating on the improvement of selecting test cases for continuous integration, 

using predictive models, the study [63] considered the integration of ML models and big 

data in software engineering. The issue of data noise was addressed, especially attribute 

and class noise that affects the test selection model's capacity for prediction. The study 

used domain expertise to reduce class noise by relabeling inconsistent data and eradicating 

duplicates, and it also conducted an experiment to test how reducing attribute noise affects 

learning. The investigation highlighted how class-noise cleansed data promotes optimum 

learning and results in considerable improvements in accuracy, recall, and f-score 

measures. This study's intriguing conclusion, which controlling attribute noise may not be 

as important as previous research suggests, prompted additional investigation of attribute 

noise's subtle effects in various scenarios. This research laid the groundwork for a greater 

comprehension of noise reduction techniques and their implications for improving test case 

selection models. 

The research [64] explored how noise management methods and data defects affect 

data analysis, and it offered three different approaches: robust algorithms, filtering, and 

polishing. Experimental research was done to gauge their effect. Moreover, the results 

showed that filtering and polishing may both reduce the negative effect of noise to avoid 

overfitting. It was notable that polishing regularly beat the other techniques, proving its 

ability despite more complications. However, due to the large occurrence of noisy instances 

(for example, at 10% noise level, over 50% of instances are noisy), the authors noted that 
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utilizing fully filtered data as a baseline was unfeasible. This fraction also expanded rapidly 

with the rising of the noise levels. The research proposed combining many noise handling 

methods to reduce noise. Generally, the study highlighted that a better understanding of 

the behaviour is needed before increasing the efficiency of these methods when combined. 

Table 2.3: Class and attribute noise handling approaches 

Ref. Title Year Technique 

[63] 

Improving Test Case Selection 

by Handling Class and Attribute 

Noise 

2021 

Class Noise: 

Relabeling (for handling contradictory 

entries) 

Attribute Noise: 

Pairwise Attribute Noise Detection 

Algorithm (PANDA) 

[64] 
A Comparison of Noise 

Handling Techniques 
2001 C4.5 Algorithm 

[16] 
Combining Noise Correction 

with Feature Selection 
2003 C4.5 Algorithm 

[12] 
Class Noise Vs. Attribute Noise: 

A Quantitative Study 
2004 

Classification Filter (CF) 

Partitioning Filter (PF) 

[65] 
Noise identification with the k-

means algorithm 
2004 C4.5 Algorithm 

[66] 

Enhancing software quality 

estimation using ensemble-

classifier based noise filtering 

2005 
Ensemble created from 25 Diverse Base 

Classifiers 

[67] 

Improving Software Quality 

Prediction by Noise Filtering 

Techniques 

2007 

Partitioning Filter (PF) 

=> Multiple-Partitioning Filter 

=> Iterative-Partitioning Filter 

[68] 
Data Cleaning Techniques for 

Software Engineering Data Sets 
2010 

C4.5, Classification and Regression 

Trees (CART) 

[69] 
Reasoning with Noisy Software 

Effort Data 
2014 

Artificial Neural Network (ANN), 

Decision Tress (DT), k-NN, Logistic 
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Discrimination Analysis (LgD), Naïve 

Bayes (NB), RIPPER, STOCHS, Support 

Vector Machine (SVM) 

[70] 

FECS: A Cluster Based Feature 

Selection Method for Software 

Fault Prediction with Noises 

2015 
Feature Clustering with Selection 

(FECS) strategies 

[71] 

A Promising Method for 

Correcting Class Noise in the 

Presence of Attribute Noise 

2023 

Principal Component Analysis (PCA), 

Decision Tree (DT), Support Vector 

Machine (SVM), Naïve Bayes (NB) 

The research [16] explored the usage of the polishing noise reduction method on a 

dataset referring to amino acid orders and pointed change of the COLIA1 gene to classify 

the signs of the genetic disorder Osteogenesis Imperfecta (OI). Polishing particularly found 

and corrected noisy elements by using the connection between attribute and class values. 

Polishing could boost classification validity according to initial results of the study. The 

research also examined the impact of polishing on classifier performance when used as an 

attaining procedure for quality choice. Research on the OI dataset showed that feature 

selection and polishing both improved prediction accuracy separately. Notably, combining 

the two methods produced even better outcomes, demonstrating their ability to jointly 

enhance data quality by removing unnecessary features and correcting noisy values. 

This study [12] examined ways to deal with noise in machine learning, specifically 

attribute noise, and assessed its effects. Using 17 datasets, the study categorized noise into 

two categories, attribute, and class noise, and determined the impact of each on system 

performance individually. Both attribute and class noise were discovered to have a 

considerable effect on learning algorithms. The classification accuracy was improved when 

class noise was reduced by eradicating instances that included it. Although often less 

destructive than class noise, attribute noise might still cause issues for learning systems. 

When tackling attribute noise, noise correction techniques had been demonstrated to 

increase the accuracy of learnt classifiers. Even though the model had been trained using a 

noise-corrupted training set, addressing attribute noise in the test set typically yielded more 

substantial advantages regarding classification accuracy. When addressing the test set's 



38 

 

noise was not an option, clearing the training set's attribute noise nevertheless greatly 

increased classification accuracy. Depending on how closely an attribute correlated with a 

class, the effect of attribute noise changed. Attribute noise was more pronounced for 

attributes with stronger correlations. It was recommended to apply learning techniques to 

train a noise filter to detect and fix attribute noise. However, it was essential to identify 

which traits were foreseeable by others and the class beforehand by looking at relationships 

among attributes. 

The noise problem in measurement datasets and its detrimental effects on 

classification models are the main topics of this research [65]. Erroneous or corrupted 

examples within the dataset are referred to as noise in this context, and they can cause 

mistakes in the learnt hypothesis and decreased classification accuracy. The study's main 

objective was to present a clustering-based noise detection method that used the k-means 

algorithm to locate and remove possibly noisy occurrences. For each instance in the dataset, 

the proposed method entails computing a novel measure known as the noise factor. This 

noise factor measured the likelihood that an instance will be noisy. The dataset was then 

divided using the k-means clustering method to find instances with high noise factors. 

These examples were eliminated from the dataset because they were believed to be most 

probable to be noisy. During the study, two case studies were presented, using software 

measurement data acquired from NASA software projects, to assess the efficacy of this 

method. In addition to thirteen software metrics, these statistics provided a class label for 

each program module i.e., 'fault-prone' or 'non-fault-prone'. The trials showed a clear 

increase in the accuracy of the C4.5 learner when more potentially noisy cases were 

eliminated from the dataset. This improvement implied that the initial reduction in 

classification accuracy noticed was really caused by the eliminated occurrences. In 

conclusion, the study presented a noise detection method based on clustering that 

efficiently located and removed possibly noisy occurrences from measurement datasets. 

This greatly improved the classification precision of machine learning models, especially 

when it came to estimating software quality. The method made a significant contribution 

to solving the problems brought on by noise in real-world datasets. 
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In this work [66], a method to improve the quality of training data by removing noise 

was presented to increase the accuracy of classification models. To eliminate noisy 

examples, the suggested method used an ensemble classifier made up of 25 distinct 

classification methods. To achieve the necessary level of conservatism in noise filtering, 

the ensemble filter's employment of a relatively large number of base-level classifiers 

allows for different degrees of noise reduction. Data from a highly guaranteed software 

project was used as the empirical case study in this study to highlight the competence of 

noise elimination method in revamping the classification accuracy. Given the difference 

between two types of misclassifications frequently seen in software quality classification 

and related areas, the study used the Normalized Expected Cost of Misclassification as a 

practical performance metric. The study showed that the predicted accuracy of software 

quality classification models increased when more inherent noise was eliminated. The 

possibility of unintentional learning bias from a small number of algorithms impacting the 

outcomes was decreased by using more classifiers in the noise removal phase. Furthermore, 

the research hypothesized that the most restrictive level of filtering could be able to manage 

exceptions to some extent as at least three of the 25 base-level classifiers could properly 

categorize instances that were regarded as "hard-to-classify" or "exceptions". In the 

discussion of classifier clustering, which was discussed in the paper's conclusion, two 

coherent clusters were found among the 25 classifiers. While retaining the efficiency and 

confidence in the ensemble classifier with 25 base classifiers, this clustering technique 

might be utilized to decrease the number of base-level classifiers. 

To increase the precision of machine learning models, the quality of training datasets 

was the main emphasis of this work [67]. The method involves removing instances that the 

Partitioning Filter had classified as noisy. This filter divided the dataset into subgroups and 

induced several base learners on each subset. If a given number of base learners continually 

misclassified an instance, the combination of predictions was used to classify the instance 

as noisy. The Multiple-Partitioning Filter and the Iterative-Partitioning Filter were both 

used as partitioning filters. Comparing the prediction performance of final models created 

using filtered and unfiltered training datasets was the main objective of the study. Software 

measurement data from a high assurance software project were used in a case study to 

perform the research. The results showed that models developed on noisy, unfiltered 
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training datasets consistently underperformed models generated on filtered training 

datasets and assessed on noisy test datasets. The assessment dataset's noise, however, had 

an impact on certain harsh filtering techniques. The research showed how final learners 

who had been educated on supposedly noise-free datasets and assessed on noisy test 

datasets performed, according to the paper's conclusion. By deleting instances from the 

training dataset that the Partitioning Filter had deemed noisy, the training dataset's quality 

was improved. The amount of noise removal may be altered by adjusting the filtering level 

or iteration count. The results showed that the final learners performed better on the test 

dataset for the majority of the investigated cost ratios when employing the Multiple-

Partitioning Filter (MPF) without cross-validation restrictions or the Iterative-Partitioning 

Filter with a consensus method (IPFConS). The test dataset's quality did not significantly 

increase when the fit dataset was filtered using the Multiple-Partitioning Filter with Cross-

Validation Constraints (MPFCV) or the Iterative-Partitioning Filter with Majority Voting 

(IPFMaj). Even with a noise-free training dataset, learners could still perform badly on 

noisy test datasets, according to the study, even while performance increase on the test 

dataset was less evident than on the fit dataset. Resources should be devoted to ensuring 

error-free data gathering to reduce noise in datasets. The study's analysis of the relative 

efficacy of various filtering levels led to the conclusion that MPF-23 and IPFConS-5 were 

reasonably effective filters for the software measurement dataset under consideration. 

The article [68] discusses the importance of data quality in empirical software 

engineering and how it affects the reliability and completeness of the results. Despite its 

significance, data quality had often been overlooked in this area of study, casting a doubt 

on the accuracy of the findings. The research focused on the approaches for handling noise 

and how to use them to boost the quality of data. Three different recommendation tree-

based noise control methods were proposed and examined on large real-world software 

engineering dataset in detail. These findings assessed how well the approaches improved 

predicted accuracy and reduced doubtful value samples. More information was gathered 

by an imitation exercise even though different approaches showed hopeful results by using 

known noise levels thoroughly to examine the capability of the system to settle noise. This 

study defined the impact of noise and outliers on data survey and stressed the importance 

of making this different. It provided a realistic approach for including noise settling 
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methods into a larger data cleaning procedure while focusing on the need of documentation 

and repeatability for verifying the accuracy of the findings. Finally, the research pointed 

out the need for valid noise management algorithms and an exhaustive approach to data 

analysis while highlighting the problems with data quality in experimental software 

engineering. 

The research [69], noticed how noisy data affected eight machine learning statistical 

design recognition methods that were used to predict software effort. The purpose of this 

study was to test the effectiveness of these methods in different noise orders and types. It 

has been shown that the performance of machine learning and pattern recognition 

algorithms can be significantly affected by the amount of noise in the data used to evaluate 

software performance. The performance of a classifier under increasing noise mainly 

depends on the noise relationship between the class labels and their features. The accuracy 

of the classifier is affected by noise in the test set attribute values or class labels. The study 

found that RIPPER had the lowest reliability of the classifiers evaluated, although 

STOCHS generally performed well on noisy data. In terms of throughput, the next best 

model, decision trees, performs better than Support Vector Machines (SVM). These results 

show that noise must be considered when designing machine learning systems that are 

being built to handle noise. Since the capabilities of noise classification techniques have a 

large impact on prediction accuracy, they must be thoroughly understood and mastered to 

make effective predictions in real-world software development environments. 

The research [70] analyzes the problem of noise in software error estimation. An 

innovative denoising strategy is proposed: the Feature Clustering with Selection (FECS) 

method. The two main stages of FECS (feature selection and feature collection) use 

different detection methods. Real-world databases, such as the NASA and Eclipse datasets, 

simulate noisy datasets using feature and class level noise. The effectiveness of the FECS 

method is evaluated in comparison with traditional feature selection methods. The results 

show how FECS improves software failure prediction by emphasizing its fault tolerance 

and flexibility. In addition, this work provides useful suggestions for the implementation 

of FECS systems by investigating the impact different levels of noise or characteristic 

coefficients have on the efficiency of the system. 
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The study [71] presented a new technique for denoising in the presence of feature 

noise. To remove features, the proposed models consider how the feature is interpreted as 

part of the class label. To this end, local feature reduction and stepwise PCA were used in 

subsequent iterations. In addition, this heterogeneous method has been used to solve noise 

classification problems using a variety of filtration models, Decision Trees (DT), Support 

Vector Machines (SVM), and Naïve Bayes (NB). Later, most of the filtration processes 

were replaced by the traditional method. The researchers compared the proposed method 

with three datasets for binary classification problems using RF Majority Vote Filter (RF-

MV-F). Different classification models, Random Forest (RF), AdaBoost, SVM and NB 

were used to evaluate these methods. Experimental results showed that the proposed 

technique can improve the prediction accuracy of the classifier even in a noisy environment 

in most RF-MV-F characteristics. This improvement has been demonstrated on numerous 

examples of clinical and non-clinical classifications and datasets. The recommended 

technique worked well in terms of optimizing the RF and AdaBoost models, both of which 

are known to be affected by noise to varying degrees. Moreover, the proposed strategy 

produced more consistent results for the SVM model, which was sensitive to noisy data 

due to its cost function. In datasets with high noise levels, the suggested technique 

outperformed RF-MV-F in terms of Naïve Bayes. 
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CHAPTER 3: METHODOLOGY 

ML literature has extensively addressed the challenge of obtaining a satisfactory 

learning performance in the face of noise conditions. Numerous methods [12], [13], [21] 

have been developed to improve ML classifiers’ learning capabilities. However, it has been 

shown that attribute and class noise still have an adverse effect on learning, therefore it 

must be addressed prior to training. To focus on the issue that the class noise poses in this 

first section, we will discuss the method [72], that Al-Sabbagh et al [8] introduced and was 

used in the research [63]. After that, a method based on [17] will be discussed which deals 

with attribute noise. 

3.1. Proposed Class Noise Handling Approach 

As previously pointed out, relabeling code lines with different class values that are 

repeated is the suggested method for addressing class noise. Al-Sabbagh et al [8] offered 

this suggested method. There are several possible reasons for the repeated LOC, such as 

code duplication [22] or code merging [14]. The first scenario involves "copy-pasting" 

code that has previously passed integration and testing to be reused. The second scenario 

arises when developers working on feature development-specific branches from one or 

more teams use code that looks like the code that has been committed and merged from 

other branches. Of the entire block of code revisions, a small portion sometimes contains 

lines of code that have some kind of defects. Consequently, it is more likely that the failure 

was not caused by a single line from a fragment that was considered failed overall. 

Therefore, in cases where lines were previously recognized as parts of segments that did 

not fail, we have decided to reclassify them as "passed". 

Here is a detailed explanation of the methodology (Figure 3.1 & Algorithm 1): 

• Data Preprocessing: To guarantee data quality, the method first loads the dataset 

and then performs preprocessing operations. The dataset is cleaned up and made 
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easier to work with by removing trailing spaces from column names and removing 

any duplicate columns. 

• Hash Calculation: Hashing is a method that allows for effective data comparison 

by transforming data into a fixed-length string of characters. The proposed 

technique creates a distinct 8-digit hash value for every row using the lines of code 

(given in the dataset). 

• Dictionary Creation: The algorithm creates a dictionary to associate hash values 

with class verdicts. Every dictionary entry indicates a unique hash value together 

with the corresponding class verdict. The dictionary enables the algorithm to 

efficiently track the relationship between hash values and class verdicts. 

  

Figure 3.1: Flow Chart for Class Noise Handling Algorithm 
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Algorithm 1: Pseudocode for handling Label Noise 
define class CRowInfo: 

 iHash & iVerdict ← 0 

define function generateHash(): 

 for each row in class_noise_dataset as CND: 

  iHash ← 8-digit Hexadecimal Hash of LOC content 

  CND ← iHash 

 end for each 

rowDict ← {} 

define function generateDictionary(): 

 iLineIndex ← 0 

 for row in class_noise_dataset as CND: 

  if iLineIndex ≠ 0: 

   iObj ← CRowInfo() 

   iObj.iHash ← int(CND['hashed_line']) 

   iObj.iVerdict ← int(CND['class_noise']) 

   if iObj.iHash in rowDict: 

    old_verdict ← rowDict[iObj.iHash].iVerdict 

    if (old_verdict ≠ iObj.iVerdict) & (iObj.iVerdict = 1): 

     rowDict[iObj.iHash] ← iObj 

    end if 

    else: 

     Continue 

    end else 

   end if 

   else: 

    rowDict[iObj.iHash] ← iObj 

   end else 

  end if 

  iLineIndex += 1 

 end for 
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• Relabeling Rows: The algorithm goes over the dataset iteratively, checking to see 

if the hash value of each row matches an item in the dictionary for that row. The 

verdicts for that row in the dataset and dictionary are checked if a match is 

discovered. If the outcome in the dataset is 1 (passed) and the same instance has 

0 (failed) in the dictionary, the value in the dictionary is updated to 1 (passed). If 

both values are 1 (passed), then that occurrence is skipped. In essence, this phase 

relabels rows based on the majority class selection for rows that have the same 

hash value. 

• Data Cleanup and Export: Following the analysis of each row, the algorithm 

eliminates unnecessary columns from the data. After the dataset has been cleaned, 

it is saved to a new CSV file, which contains the final version of the data that 

includes the most current class verdicts. 

• Data Processing & Result Generation: The initial and final version of the 

cleaned dataset are passed onto the learning algorithm (discussed in section 3.3). 

This helps to compare the improvements that were achieved from our proposed 

approach. 

In summary, the unclean dataset is imported and cleaned of null values, duplicate 

columns, or trailing spaces in column names. An 8-digit hash is calculated for each code 

line, to uniquely identify a line-of-code even if it is repeated multiple times. A dictionary 

is created to store the hashes and class verdicts of each code line. Before adding a new 

entry in the dictionary, it is first compared to the elements already present in the dictionary. 

If the entry is already present and the verdict in the dictionary is ‘passed’ and the dataset 

has a ‘failed’ verdict, then the verdict in the dictionary is left as it is. On the other hand, if 

the scenario is reversed (i.e., dictionary verdict is ‘failed,’ and dataset has ‘passed’) then 

the verdict in the dictionary is relabeled to ‘passed.’ If the entries in the dataset and 

dictionary have the same verdict, then the entry is skipped. This process occurs in a loop 

to create an updated / relabeled dictionary of all the code lines from the dataset. The new 

verdicts are then mapped to their specific row in the dataset which results in a new class 

noise cleaned / relabeled dataset. This class noise cleaned dataset will be later used to 

handle attribute noise. To evaluate the progress of this proposed approach, the initial 
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dataset and class noise cleaned dataset are evaluated using a ML model. The results of the 

class noise handling approach will be discussed in the next chapter. 

3.2. Proposed Attribute Noise Handling Approach 

As was already indicated, choosing attributes that are unnecessary for characterizing 

the training cases might lead to attribute noise. For instance, the code fragments that make 

up the analyzed code are written in diverse coding styles, or there are a few condition 

statements, code lines, function declaration, etc., whose structure differs from most lines 

that are comparable in the code. We provide a novel solution known as the Attribute Noise 

Detection algorithm (ATNODE) to deal with the attribute noise issue. Van Hulse et al [17], 

[23]. presented the Pairwise Attribute Noise Detection Algorithm (PANDA), from which 

the suggested method is derived. The PANDA technique was modified due to the 

computational expense suffered by the dataset's size. The suggested method has been 

developed to analyze the dataset to identify and address attribute noise. The method iterates 

through each column in the dataset, performing different actions on each one. The dataset 

is divided into sections and sorted based on the values of each column. Before allocating a 

noise score to each data point based on how far off it is from the mean in proportion to the 

standard deviation, it computes the mean and standard deviation of the data points in each 

division. This process is repeated by the algorithm for every column in the dataset. It 

computes noise ratings for different partitions rapidly and manages indices with care 

throughout the process. Given the circumstances, this methodology provides a systematic 

way to assess and control attribute noise in a dataset improving the quality of the data. 

The proposed approach (Figure 3.2 & Algorithm 2) is detailed in the steps below: 

• Data Initialization: The algorithm begins by doing preliminary data preparations 

by importing the class noise cleaned dataset from the CSV file. To make sure the 

dataset is tidy and well-organized, this involves deleting any extraneous or 

duplicate columns as well as trailing spaces from column names. 
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• Data Partitioning: To make the noise score computation more efficient, the 

dataset is partitioned. In this instance, a predetermined number of segments, each 

with a comparable number of rows. 

• Noise Score Computation (ATNODE): The iterative mechanism at the heart of 

the method determines noise ratings for every column (or attribute) in the dataset. 

After the mean and standard deviation of data within a partition are calculated, the 

ratio of mean-over-standard deviation for each column is also calculated. Based 

on the deviance of each data point from the estimated mean-over-standard 

deviation value, it uses this ratio to generate a noise score for each data point in 

the column. 

• Collecting & Sorting by Noise Scores: The noise scores corresponding to every 

data point in the column are combined and kept in a new column which contains 

noise score for every row (“max noise”). Considering all columns, this aggregated  

 

Figure 3.2: Flow Chart for Attribute Noise Handling Algorithm 
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Algorithm 2: Pseudocode for handling Attribute Noise 
define function run_ATNODE(): 

 bins_counter ← 0 

 partition_values ← DataFrame() 

 j_col ← DataFrame() 

 

 for j in range(len(dataset.columns)): 

  start_j ← time.now() 

  clstrd_att ← dataset.sort(by=dataset.columns[j]) 

  bins_counter ← 0 

   

  parition_mean ← mean(clstrd_att.iloc[0,j].values) 

  partition_sd ← std(clstrd_att.iloc[0,j].values) 

  if partition > 0: 

   mean_over_sd ← parition_mean / partition_sd 

  end if 

  else: 

   mean_over_sd ← 0 

  end else 

  noise_score ← DataFrame(for x in clstrd_att.iloc[0, j]:  

                         return abs(x - mean_over_sd)) 

   

  partition_values ← concat([partition_values, noise_score], 

axis=0) 

   

  bins_counter ← bins_counter + bin_size 

  j_col ← concat([j_col, partition_values], axis=1) 

   

  end_j ← time.now() 

  time_df ← end_j - start_j 

 end for 

 return j_col 
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noise score represents the total noise level connected to each row. Subsequently, 

the max noise values are used to sort the dataset in descending order. It is now 

simpler to recognize and manage noisy data instances due to this design, which 

places rows with higher noise ratings at the front of the collection. 

• Data Processing & Result Generation: The attribute noise-sorted dataset was 

subsequently assessed at ten distinct levels of treatment, specifically from 5% to 

50% with each level being a 5% increment of the previous one. In other words, 

the quantity of top noisy cases that corresponded to the treatment level were 

removed from the dataset and the remaining data was assessed again but now with 

less noise. 

To recap, the class noise cleaned dataset is initialized, and data cleaning steps are 

taken to ensure that the data is clean of impurities. The dataset is divided into partitions, to 

improve the efficiency of the noise score computation, into a fixed number of segments, 

with a similar number of rows in each. Following the computation of the mean and standard 

deviation of the data inside a partition, the mean-over-standard deviation ratio is 

determined for each column. It utilizes this ratio to produce a noise score for each data 

point in the column based on how different each data point is from the predicted mean-

over-standard deviation value. A new column with a noise score for each row is created by 

combining the noise scores for each data point in the column. The dataset is then sorted in 

decreasing order using the attribute noise score values. After sorting, the dataset was 

analyzed at 10 different levels of attribute noise. The dataset is then analyzed again after 

removing a certain number of high-noise events corresponding to the level of attribute 

noise. The next section describes the results of the proposed method. 

3.3. Learning Model for Evaluation 

The aim of this study is to extend the work of Al-Sabbagh et al [63] who used 

Random Forest (RF) as the learning model for evaluation. It Combines the results of 

multiple decision trees to get a single result. Its popularity is due to its adaptability, ease of 

use, and ability to solve classification and regression problems. The main reasons for 

choosing this were its white box architecture and lower processing costs compared to other 
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deep learning models. The way it handles complex datasets and reduces overfitting makes 

it a valuable tool for solving a variety of machine learning prediction problems. It works 

efficiently even if the data contains zero or missing values and is not affected by the curse 

of dimensionality, because not all trees represent every feature. 

The hyper parameters of the evaluation algorithm were maintained at the default 

configuration using the scikit-learn package. The n_estimator value in the RF model was 

not adjusted as this study was aimed to evaluate the impact attribute and class noise had on 

build predictions rather than to maximize the predictive performance of the model. We 

experimented using a version of the n_estimator, having the value 300, in the RF model to 

find out if this would have an impact on the predictive ability of the model. Appendix 

contains the generated results of the model's performance using n_estimator at 300.
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CHAPTER 4: EXPERIMENTAL STUDIES AND RESULTS 

We get into the fundamentals of our study in this chapter, where we outline the 

research topic, the extensive dataset analysis, and the fascinating findings from our studies. 

This chapter's main goal is to give a thorough description of the real-world experiments 

and evaluations carried out to gauge the viability of the suggested approaches. The results 

and discoveries covered in this chapter are crucial pieces of evidence that help to shape our 

perception of the efficiency, performance, and practicality of the techniques covered in 

previous chapters. 

4.1. Dataset Analysis 

Al-Sabbagh et al [24], [25] previously used the dataset that is being used in this work. 

The dataset includes results from build predictions made during source code integration. 

The dataset consists of lines of code (LOC) from a Java-written system. Initially, the 

dataset had 2816 dimensions, some of which were duplicates. At the time of execution, 

duplicate columns and null values were removed from the dataset. The final dataset had 

4994 LOC with 1941 different dimensions and construct forecasts for each item. 

4.2. Research Question 

One of the biggest challenges for software developers is dealing with attribute and 

class noise in code segments. Designing an automated and effective method for noise 

identification and removal is crucial due to the detrimental effects noise may have on 

software dependability, code quality, and development productivity. This study aimed to 

give new and creative approaches—described earlier—that can manage noise at various 

granularities of code and accommodate a range of noise patterns. To give a strong and 

comprehensive solution, this was achieved by combining data mining, natural language 

processing, and sophisticated machine learning algorithms. In the present effort to manage 

attribute and class noise, the following research topic will be addressed: 
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RQ: How can we create a machine learning algorithm with nominal computational 

and execution time costs that can handle attribute and class noise in actual datasets? 

4.3. Results 

In the following section, we summarize and discuss the findings of our research. We 

give a comprehensive analysis of the collected data and draw significant implications from 

the results. The focus is on analyzing the data, identifying trends, and drawing conclusions 

from the data. Through the presentation and analysis of the data, we seek to foster a deeper 

comprehension of the experimental results and their implications. 

4.3.1. Class Noise Approach 

Figure 4.1 shows the comparison between the expected and actual values of the 

verdicts of build prediction for each instance in the dataset as unnormalized matrices. It 

uses confusion matrices to illustrate performance indicators for the Random Forest (RF) 

classifier, which was built using both uncleaned and class-noise cleansed data. The 

diagonal of the matrix (right) shows how many lines (691, as opposed to 396 in the original 

 

Figure 4.1: RF Results on Original (left) & Class Noise Cleaned (right) Dataset 
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dataset) were correctly identified as non-defective as well as how many lines (254, as 

opposed to 432 in the original dataset) were correctly identified as defective without 

needing additional testing. The number of lines that are incorrectly categorized is reflected 

in the matrix's off-diagonal entries. 

The performance of the classifier is shown in the bar graph (Figure 4.2) using class 

noise cleaned and the initial datasets. Learning from the class noise cleaned data shows a 

significant improvement in learning performance compared to learning from the original 

data. When compared to the original data, the class-noise cleaned data shows 16.37% 

improvement in recall, 11.71% improvement in accuracy, 14% improvement in F-score 

and 11.28% improvement in precision. 

4.3.2. Attribute Noise Approach 

This section focuses on assessing the RF classifier's performance using the dataset 

we were able to get through a methodical class noise reduction technique. The dataset is 

processed at different attribute noise levels (sometimes called treatment levels), from 0% 

to 50%. Here 0% treatment level will serve as the baseline (control group) for class noise 

 

Figure 4.2: Learning Performance before and after Removing Class Noise 
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cleaned data. Each level corresponds to a distinct treatment scenario. To obtain an 

understanding of how the level of noise reduction affects the classifier's prediction skills, 

we evaluate its accuracy, precision, recall, and F-Score at these different treatment levels. 

The findings offer insightful details on the trade-offs between classifier performance and 

attribute noise removal, illuminating the ideal ratio between data purification and model 

correctness. 

Table 4.1 lists the F-score, accuracy, precision, and recall values for the various noise 

reduction thresholds, which range from 0% to 50%. The performance indicators show a 

discernible pattern of improvement as the noise reduction percentage rises. Accuracy rises 

steadily up to 10% noise reduction and then stays mostly constant. Noise reduction usually 

leads to an improvement in precision, which peaks at 50%. Recall varies during the noise 

reduction process, but it consistently maintains high levels. The F-Score improves with 

more noise reduction, following a similar trend to accuracy. 

Table 4.1: Performance Metrics at Different Treatment Levels of Attribute Noise 

Attribute Noise Removed Accuracy Precision Recall F-Score 

0% 0.972 0.981 0.981 0.981 

5% 0.980 0.985 0.987 0.986 

10% 0.972 0.982 0.980 0.981 

15% 0.972 0.983 0.979 0.981 

20% 0.962 0.979 0.970 0.974 

25% 0.965 0.982 0.972 0.977 

30% 0.969 0.978 0.978 0.978 

35% 0.969 0.984 0.971 0.978 

40% 0.972 0.985 0.973 0.979 

45% 0.956 0.978 0.956 0.967 

50% 0.970 0.988 0.967 0.978 

 



56 

 

4.4. ATNODE vs PANDA 

A notable disparity in growth rates is seen between the suggested innovative 

algorithm, ATNODE, and the baseline approach, PANDA, when comparing their time and 

spatial complexities. PANDA shows a sharp rise in runtime as the input size, n, increases, 

with a cubic time complexity of O(n3). Conversely, ATNODE has a quadratic temporal 

complexity of O(n2), indicating a more advantageous development rate in contrast to 

PANDA. This disparity implies that when input size increases, performance loss of 

PANDA is substantially more than that of ATNODE. Consequently, it has been 

demonstrated that ATNODE outperforms PANDA in terms of runtime efficiency for large 

input sizes. 

Also, the space complexity of PANDA is O(n2) whereas ATNODE has O(n) which 

means that the latter requires less memory, based on the square of the input size, which 

indicates that it can process large amounts of data in limited memory space. Therefore, 

ATNODE has great advantages in increasing time and space efficiency. 

In summary, the comparison between PANDA and ATNODE shows that both 

algorithms have polynomial complexities, but ATNODE is significantly better than 

PANDA in terms of time and space complexity. Given these differences, ATNODE 

provides a competitive alternative to PANDA when memory capacity and processing 

power are limited, or large amounts of data are involved. It also appears to be a more 

resource-efficient and scalable performance choice. 

4.5. –Discussions 

In this section, findings presented in 4.3.1 and 4.3.2 are discussed to address the 

research question, how can we create a machine learning prototype with nominal 

computational and execution time costs that can handle attribute and class noise in actual 

datasets? Also, a comparison is made of the efficiency of managing attribute noise against 

class noise. By looking at the accuracy, recall, and f-score in Figure 4.1, Figure 4.2 and 

Table 4.1, comparative findings are obtained. Remember from Section 4.3.2 that the 

baseline measurements are the performance metrics obtained for the control group at 0% 
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treatment level. The impact handling attribute noise has on the performance of the Random 

Forest ML model at various levels, is investigated using the remaining treatment levels. 

Observations regarding class noise removal showcase that in the original data, the 

confusion matrix presents that the number of false negatives (FN) and false positives (FP) 

exceed those of true negatives (TN) and true positives (TP). Once the class noise is 

removed from the data, the matrix shows a significant decrease in both FN and FP and a 

significant increase in TN and TP, suggesting enhanced model performance. Significant 

gains are exhibited in recall, accuracy, F-score, and precision of class noise cleaned data 

indicating the efficacy of class noise management. 

While observations regarding attribute noise removal showcase that for different 

attribute noise reduction levels, which range from 0% to 50% shown in the Table 4.1, 

accuracy, precision, recall, and F-score all show a discernible improvement with increasing 

percentages of attribute noise reduction. The performance of the model improved by a 

larger proportion of attribute noise reduction, based on enhanced accuracy and other 

performance indicators, as revealed by the data. The highest performance metrics are 

obtained after 5% of attribute noise is eliminated, with peak values being reached for F-

score, recall, accuracy, and precision. 

Overall, the findings demonstrate how crucial noise management is for enhancing 

the performance of classification models, both for attribute and class noise. Removing class 

noise improves performance measures such as model accuracy dramatically. Additionally, 

attribute noise removal improves the performance of the model; the biggest gains are 

shown at 5% noise removal. 

4.6. Threats to Validity 

In the context of software engineering experiments [73], addressing threats to validity 

is crucial to ensure the reliability and credibility of the research results. Here are some 

suggested ideas with reference to conclusion, internal, construct and external validities. 
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Internal Validity: It refers to the extent of how much may be implied about the 

causal link between dependent and independent variables. 

• Causal Relationship: Making sure that the noise handling strategies are the true 

cause of the observed causal links between model performance and class noise 

treatment, and that no other confounding factors have an impact. 

• Experimental Design: This type of threat can be minimized by carefully 

organizing our study and considering possible bias, random variation, and other 

factors that may affect the results. 

• Measurement Validity: This is the process of confirming that the tools used to 

measure performance metrics such as F-score, accuracy, precision, and recall are 

dependable. 

External Validity: It refers to the degree to which research findings can be 

generalized to other situations, people, contexts, and scales. 

• Sample Representativeness: We can avoid this risk by ensuring that experimental 

datasets accurately reflect actual software quality data and by considering the 

possibility that results in other environments or regions may not be realistic. 

• Generalizability: We can avoid this risk by agreeing to the fact that the results may 

not generalize across models or methods and may relate only to the specific 

classification algorithms and denoising techniques used. 

• Task Representativeness: It is important to consider the possibility that the 

evaluation tasks used in the study may not adequately reflect the scope of software 

quality evaluation and that the results may not be generalizable to other systems. 

Construct Validity: This is used to determine how well the test measures what it is 

supposed to measure. 

• Operationalization: This risk can be avoided by making sure that the concepts 

being measured (such as model performance or separation noise handling) are 

clearly defined and implemented in a way that is consistent with the existing 

literature. 
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• Experiment Setup: It can be avoided by ensuring that all treatments and controls 

are exposed to the same experimental conditions as any number of configuration 

irregularities could jeopardize the reliability of the test design. 

Conclusion Validity: It is used to judge whether the inferences we make about the 

relationships in our data are valid and dependable. 

• Statistical Analysis: This risk can be avoided by evaluating the possibility that the 

statistical methods used to validate the data may affect the accuracy of the results 

and making sure that we select and use the correct statistical test. 

• Extraneous Variables: Determining and taking into consideration any unrelated 

factors that might affect the validity of the inferences made from the studies.
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CHAPTER 5: CONCLUSION 

The investigations and empirical results of this study provide valuable insights into 

the key area of noise management in software quality dataset. The quality of training data 

can have a significant influence on the efficiency of a classification model and our results 

highlight the significance of managing noise in machine learning and data mining 

scenarios. 

The accuracy of classification models can be improved using research-based 

denoising techniques. Relabeling significantly reduces class noise and improves model 

performance, as evidenced by high recall, precision, and precision values, as well as high 

F-scores. To make more accurate predictions, you need to use pre-processed data so that 

the machine learning model can easily distinguish between broken and working modules. 

Our study advances our understanding of the complex relationship between attribute and 

class noise through careful analysis of datasets with different noise levels in the context of 

software quality evaluation. 

The need for preprocessing methods is highlighted to ensure the accuracy of the 

predictive model, since inaccurate data can significantly impact the results to begin with. 

By reducing noise and applying it to real world scenarios, we can see significant 

improvement in the performance of any model. The methods discussed in this study 

ultimately make the quality assessment more accurate and dependable. 

5.1. Future Work 

We expect that much work will be needed on further research on noise reduction in 

software quality datasets. This exciting topic for developing automatic noise detection 

systems requires further research. Advances in machine learning and artificial intelligence 

have made it possible to automatically detect and remove noise from systems using more 

efficient methods. Our goal is to improve software quality assessment by focusing on 

developing intelligent algorithms that improve noise control and automatically recognize 
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and process noisy events and activities, reducing the need for significant human 

intervention. 

In addition, the active role of noise in software quality dataset may be searched in 

succeeding study. Noise is an important fact that can alter with the passage of time and 

influence the accuracy and credibility of classification methods. It might be beneficial to 

explore dynamic noise control algorithms that revise the shifting noise design. These 

flexible techniques would constantly pay attention to the dataset recognizing changes in 

noise levels and to deal with the changing of  the classification models. This procedure 

makes models more suitable for software engineering framework in the real world by 

verifying their flexibility to changing noise levels. By pursuing these research paths, we 

may improve software quality dataset’s noise reduction capabilities and open the door to 

the development of classification models that are more precise, dependable, and resilient.
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APPENDIX 

Attribute Noise 

Removed 
Performance Metrics 

Random Forest (RF) 

n-estimator = 100 n-estimator = 300 

0% 

Accuracy 0.972 0.972 

Precision 0.981 0.981 

Recall 0.981 0.981 

F-Score 0.981 0.981 

5% 

Accuracy 0.980 0.980 

Precision 0.985 0.985 

Recall 0.987 0.987 

F-Score 0.986 0.986 

10% 

Accuracy 0.972 0.972 

Precision 0.982 0.982 

Recall 0.980 0.980 

F-Score 0.981 0.981 

15% 

Accuracy 0.972 0.969 

Precision 0.983 0.982 

Recall 0.979 0.976 

F-Score 0.981 0.979 

20% 

Accuracy 0.962 0.962 

Precision 0.979 0.979 

Recall 0.970 0.970 

F-Score 0.974 0.974 

25% 

Accuracy 0.965 0.965 

Precision 0.982 0.982 

Recall 0.972 0.972 

F-Score 0.977 0.977 



 

30% 

Accuracy 0.969 0.970 

Precision 0.978 0.978 

Recall 0.978 0.980 

F-Score 0.978 0.979 

35% 

Accuracy 0.969 0.969 

Precision 0.984 0.984 

Recall 0.971 0.971 

F-Score 0.978 0.978 

40% 

Accuracy 0.972 0.973 

Precision 0.985 0.985 

Recall 0.973 0.975 

F-Score 0.979 0.980 

45% 

Accuracy 0.956 0.956 

Precision 0.978 0.978 

Recall 0.956 0.956 

F-Score 0.967 0.967 

50% 

Accuracy 0.970 0.970 

Precision 0.988 0.988 

Recall 0.967 0.967 

F-Score 0.978 0.978 

 


