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ABSTRACT 

Water contamination in Pakistan is a serious public health concern made worse by the country's 

growing population. Few studies have been conducted to relate remote sensing data to model 

the water quality parameters. This study used the multispectral and hyperspectral data to relate 

and model the water quality parameters. Twenty-five randomly selected surface water quality 

samples were collected from the Khanpur Dam. The spectral data was collected using Landsat 

8 and ASD spectroradiometer. Water quality samples were analyzed in the laboratory, using 

standard analytical techniques for physico-chemical properties (EC, pH, turbidity, nitrates and 

phosphates) and the regression analysis were applied for model development. The water qaulity 

parameters turbidity and phosphate indictaes above persmissible limits however paramters pH, 

EC and nitrates were found to be within permissible limits. The nitrate had a high correlation 

with turbidity(r=0.71) and phosphate (r=0.68), similarly turbidity with phosphate indicates 

significant correlation(r=0.81). The results of regression models for water quality prediction 

reveal compelling insights. ASD ratio 560/891 nm for predicting turbidity, yields coefficient 

of determination (R2=0.75) and root mean square (RMSE) of 0.68. In comparison, the 

application of the OLI ratio Band3/Band5 within the green spectral range produces an RMSE 

of 1.04 and R2=0.41. For phosphates prediction, the ASD ratio 600/820 nm resulted in RMSE 

of 0.09 and an R2 of 0.69, while the OLI ratio Band4/Band5 within the corresponding spectral 

range (i.e., red), shows similar performance with an RMSE of 0.09 and R2 of 0.49. Furthermore, 

for nitrates prediction, the ASD ratio 465/729 nm yielded R2 = 0.74 and an RMSE of 0.27, 

whereas, the OLI ratio Band2/Band5 in blue spectral range produced R2 = 0.45 and an RMSE 

of 0.38. In summary, the findings show that for all three water quality criteria, ASD ratios 

consistently performed better than OLI ratios. These generated models may help in informed 

decision making in water resource management, emphasizing the relevance of established 

spectral ratios in shaping effective strategies. 
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Chapter 1  

INTRODUCTION 

1.1 Background 

A country must have high-quality freshwater water resources, such as ponds, wetlands, 

dams, and rivers that sustain its citizens' daily routines and economic growth-promoting 

industries like transportation, farming, manufacturing, and recreational. The ecological 

systems of reservoirs and water quality have been impacted by industrialization and population 

growth (Murugan et al., 2016). Intense agricultural practices significantly impact the water 

quantity and quality of water bodies due to rapid population growth and unpredictable 

environment. The development of dams is an example of how human activities continue to 

change and impact hydrological operations, such as the movement of sediments and the 

consequently changed morphology of rivers (Mazhar et al., 2023). The root cause of water 

contamination in developing countries like Pakistan is the resource shortage and awareness. 

The origin or habitat where water is found, human activity including the use of water for 

diverse reasons, and management actions made to preserve that water resource are three 

variables that have an impact on the quality of water as a whole. Many physical and chemical 

parameters govern quality of water. One major problem is that the entire globe is now 

experiencing is water pollution. Drinking polluted water can be hazardous. Untreated sewage 

discharges, industrial chemicals spilled into the water, and herbicide leaks from farming areas 

are all potential sources of water pollution (Akbar et al., 2022). 

In Pakistan, water pollution is the main health risks to the community. Drinking water 

quality is not adequately controlled or observed and is deteriorating daily. Pakistan is classed 

80th out of 122 nations in terms of the quality of their drinking water. Hazardous minerals, 

pesticides, and bacteria are present in drinking water sources across the nation, including 

groundwater and surface waters. The WHO has developed several drinking water quality 
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standards that are often broken (Khan et al., 2018). In the past 20 years, Islamabad, the capital 

of Pakistan, has experienced tremendous urban expansion, which has impacted the number and 

quality of water bodies. Islamabad is a highly populated urban region that has had a 73% rise 

of inhabitants over the last 15 years, according to data from the World Bank. With a collective 

population of 1.3 million, Islamabad and Rawalpindi share a climate and natural resources. 

Freshwater is becoming scarce due to several human activities that pollute water (Sohail et al., 

2023). One of the major reservoirs of fresh water near Islamabad is the Khanpur dam, which 

has been built on the Haro River in the district of Haripur, on the border between the provinces 

of Punjab and Khyber Pakhtunkhwa (KPK). The twin towns of Rawalpindi and Islamabad, 

which are situated downhill, receive drinking water from the dam. It is very important because 

surface water quality affects aquatic ecosystems and human health. The rushing water of the 

Haro River, which feeds into the Khanpur Dam, is extremely susceptible to contamination 

because of its function in removing runoff from farmland and industrial and urban effluent 

from its large drainage basins (Jadoon et al., 2012). There are several advantageous 

environmental considerations linked to the dam's construction. They serve as a supply of 

drinking water and are a crucial component of water management. Because during draughts 

they hold onto water and help to enhance the water's conditions and minimize flood flows 

(Dębska et al., 2021).  Also, the main purpose of its construction was to supply Rawalpindi and 

Islamabad's citizens with clean water to drink. But as time went by, tourists started coming 

from across the nation and overseas for leisure activities. In addition, hotels and restaurants 

were constructed in the vicinity for the benefit of visitors. This has led to the dumping of 

sewage and animal remains by those restaurants, and farm residences are steadily depleting the 

water in the reservoir. This is poisoning the water for human consumption in addition to aquatic 

life. The main cause of contaminated water was construction in the water reservoir's catchment 

regions without an appropriate sewage infrastructure. Upstream of the dam, relentless 
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development is a constant source of water contamination that might significantly harm the 

consumer's health (Mir, 2022). 

1.2 Significant Water Quality Parameters 

Increased sediment and nutrient fluxes brought about by human-induced perturbations 

in watershed areas and intensified land use practices contribute to the eutrophication and 

deterioration of basin-scale hydrological regimes and water quality. Human-caused nutrient 

and sediment flows affect human consumption and biodiversity while acting as a pollution 

stressor (Harrison et al., 2010). Current climate change, anthropological behaviors such as 

urbanization, farming techniques, and industrialization, as well as environmental phenomena 

like the eroding process, rainfall rate, and particle transportation, all contribute to the 

introduction of sediment into reservoirs, which has an impact on the overall quality of 

reservoir's water and its capability for storing at the same time (Koronkevich et al., 2019). The 

time the reservoir retains its water and storage capacity in proportion to the annual volume of 

water that charges the dam determines how much the quality of the water declines (Elhag et 

al., 2019). From the standpoint of its optical properties, turbidity is a significant water quality 

metric. In both space and time turbidity fluctuates over vast waterbodies. The primary effect of 

particles is the modification of the water column's basic optical qualities, which include angular 

distribution, absorption, backscattering, and downwelling irradiance. This might impact the 

amount and spectrum characteristics of light or energy consumed or bounced off the top of the 

water. Furthermore, aquatic biodiversity, primary productivity, and the development of 

underwater plants may all be negatively impacted by the shift in light absorption caused by the 

water layer (Garg et al., 2017). Human communities built close to reservoirs greatly influence 

their turbidity levels and sedimentation patterns. The closest body of water is heavily impacted 

by these communities' fine suspended sediments, which eventually build up in the reservoir's 

bottom and produce muddy water (Rutherfurd et al., 2020). In addition to lowering the 
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reservoir's water quality and decreasing its capacity to store water, sediments from both natural 

and man-made sources can potentially trigger further natural catastrophes (Petkovšek, 2017). 

Secondly, increased amounts of chlorophyll-a, present in all phytoplankton organisms, often 

indicate a shift in the trophic status of a body of water. They are mostly linked to low 

biodiversity and deteriorated water quality, which negatively impact the ecosystem's services 

and functions (Mazhar et al., 2023). In costal river catchments, agronomy often significantly 

impacts the water quality, which increases the availability and levels of nutrients in rivers. 

Nitrates and phosphates harm the quality of the water in the rivers and lakes they pass through 

(Górski et al., 2017). Since these nutrients have more time to remain in the water, the water's 

residence duration in the reservoirs contributes to eutrophication indirectly (Calijuri, 2002). 

Agronomic, manufacturing and domestic expulsions triggers cultural eutrophication, even 

though eutrophication is a natural phenomenon. The presence of phytoplankton in an aquatic 

system indicates increased primary production and increased greenhouse gas emissions.  

Chlorophyll, a pigment actively involved in photosynthetic processes, may be used to measure 

the biomass of phytoplankton (Mazhar et al., 2023). Excessive amounts of nutrients like 

phosphorus and nitrogen can also have negative ecological effects, such as algal blooms, lower 

dissolved oxygen (DO) amounts, and higher mortality among fish even though they are 

necessary for the survival of animals and plants (Duan et al., 2013b). Both transparency and 

water clarity are indirectly correlated with phosphates and nitrates and directly correlated with 

chlorophyll-a content (Swanson et al., 2006). Rivers that traverse diverse land use activities 

may include various materials and compounds, including nutrients, fallout from residential 

areas, total suspended sediments, and others. For example, when a river or stream flows 

through an agricultural region, the concentration of phosphorus load in the surface water may 

be larger than other characteristics. Excessive amounts of nitrogen and phosphorus in surface 

waters are the primary causes that endanger several biomes worldwide are agrarian runoffs 
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loaded with fertilizer and sewage treatment facility discharges in large quantities. Phosphates 

are generally carried by total suspended material (Gholizadeh et al., 2016). The overabundance 

of silt can cause turbidity, lower water quality, and damage ecological systems. Furthermore, 

catastrophic occurrences like floods can result in enormous silt accumulations that seriously 

impair phosphorus retention and change the distribution of nitrates (Duan et al., 2013b). 

1.3 Laboratory Analysis and Remote Sensing of Water Quality Parameters 

Extensive data relevant to comprehending essential ecosystem attributes like physical 

and chemical, may be obtained by in the field measurements and recording, which serve as the 

foundation for long-term monitoring records required to evaluate the current state and water 

quality patterns. Regretfully, point-based illustrations of intricate and dynamic systems are the 

only ones that can be used with in situ methods (Hestir et al., 2015). Moreover, constraints that 

limit systematicity, including the labor-intensive and time-consuming nature of in-situ 

measurement, render the provision of a simultaneous regional water quality database 

impractical, despite its high accuracy. Moreover, for orthodox point sampling techniques it is 

difficult to pinpoint the temporal and geographical variabilities present in the water body, 

which is crucial for carefully gauging and managing them. For the management and monitoring 

of water quality, chronological and cohesive sampling and the challenges associated with them 

pose a serious threat (Duan et al., 2013; Duan et al., 2013b).  

Waterbodies and extensive areas with qualitative problems may be identified and 

monitored more effectively and efficiently thanks to remote sensing tools. For computer 

handling, the digital format in which remotely sensed data is collected makes it simple to 

interpret. Since the 1970s, remote sensing techniques have been widely employed in the 

modern world to assess water quality (Gholizadeh et al., 2016). Various sensors installed on 

platforms (airplanes) and satellites measures the amount of radiation at different wavelengths 

reflected off the water's surface. Various water quality indicators, including turbidity, pH, EC, 
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nitrates, and chlorophyll-a content, may be found directly or indirectly using these reflections. 

Water quality monitoring and evaluation depend heavily on the continuum characteristics of 

contaminants and water, which are products of water's chemical, biotic, and hydrological 

properties, among other variables (Seyhan et al., 1986). Remote sensing tools can provide data 

for the spectral reflectance approach. Turbidity and other minerals in lake water combine to 

produce a body of water's brightness in optical remote sensing. Lake-to-lake variations occur 

in spectral regions appropriate for turbidity and Chl-a assessment, just as in minerals and other 

components. Several research have looked at and reported on this reflectance variance. A 

model's appropriate spectral channels are chosen by contrasting the estimated values with 

measured values acquired using a lab technique (Dall’Olmo et al., 2006). The excavation 

effects may be evaluated using satellite-borne photographs, and turbidity currents can identify 

flat-bed patterns in reservoir bottoms (Garg et al., 2017). Because it can be seen in satellite 

photography, chlorophyll-a is our reliable source for water quality and may also be used as an 

indicator of the existence of an algal bloom. Many bio-optical processes have been formed 

using different band combinations to recover chlorophyll-a's concentration in inshore 

waterways (Mishra et al., 2012). Radiation in satellite remote sensing must traverse vast 

amounts of the atmosphere. The radiation's strength and direction are altered along its journey 

because of atmospheric phenomena including dispersion and absorption from various 

atmospheric molecules. Therefore, the atmospheric impacts should be eliminated before 

utilizing the data to estimate the parameters related to water quality (Murugan et al., 2016).  

As a conventional technique, multispectral remote sensing has been a main mode for 

classifying water quality in recent years. These days, multispectral imagery analytic techniques 

for quantitatively determining water quality parameters are costly and time-consuming, 

although producing generally reliable findings. Due to practical demands for both time- and 

money-saving quantitative analysis of water quality indicators and classification of the water 
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quality level, another hyperspectral remote sensing technology has emerged very swiftly 

(Harvey et al., 2015). High-frequency resolution (hyperspectral) remote sensing allows for 

precise measurements of the environment properties and operations by providing evaluations  

among thousands of distinct ranges, producing connected wavelengths that facilitate the 

recognition of topographic materials (Hestir et al., 2015).  Thus, finer-scale spectrum patterns 

may be identified thanks to the advancement of hyperspectral radiometry, which increases the 

capacity of ocular radars to handle water’s biodiversity issues like algal abundance and 

composition (Goyens et al., 2022).  

To classify the water’s quality or evaluate the significance degree of factors associated 

with it there are many different approaches by using remote sensing. These approaches mainly 

encompass machine learning, semi-analytical, and empirical techniques to  measure water 

quality constraints and  categorize the degree of water quality using hyperspectral records 

(Zhang et al., 2020). Above-water sensors need relatively little labor and offer high temporal 

resolution water reflectance data when installed on automated pointing systems. The primary 

motivation behind the creation of these systems was the verification of satellite data. However, 

to efficiently monitor water quality autonomous sovereign  procedures may also be utilized due 

to their extremely high temporal resolution data (Goyens et al., 2022). 

1.4 Spectral Response of Water Bodies 

Satellite remote sensing equipment may optically measure water turbidity as it enhances 

light backscattering. In fact, the kinds, quantities, and presence of many elements and 

chemicals in water significantly impact the transmission, absorption, and reaction of 

electromagnetic radiation (Hafeez et al., 2019). The spectral responses of objects in water are 

determined by the energy reflected from them at various wavelengths. The surface 

characteristics and their attributes may be determined by utilizing the distinct spectral response, 

often referred to as spectral signature, that each form of object possesses (MOORE, 1980). In 
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the green, blue, and red bands, clean waters often exhibit modest reflectance, whereas the NIR 

spectrum shows no reflection. Because they obstruct transmittance from and to lower depths, 

significant quantities of suspended sediments in water result in high reflectance readings in the 

red and near-infrared bands (A. Pisanti et al., 2022). High absorbance in the blue and red bands 

is owing to photosynthetic activity, while elevated reflectance readings in the green band 

correlate with levels of chlorophyll, as described in the Figure 1.1. 

In Figure 1.2, a distinct reflection spike appears in the reflection spectrum at around 

570 nm, after which it progressively drops. It peaks again at around 706 nm. The curves exhibit 

less variety as the wavelength approaches 730 nm. The poor absorption of algal pigments or 

the dispersion of inorganic suspended materials and phytoplankton cells may be the origin of 

the reflectance peak at 570 nm, according to prior research. The highest absorption of 

chlorophyll-a in the red band may be the reason for the absorption valley between 670 and 686 

nm. The luminescence of Chl-a might cause of the other reflectance peak at about 706 nm. The 

reflectance curves' overall shape and are comparable to those of ordinary turbid water, as 

described in the image below (Huang et al., 2010). 

Figure 1.3 shows low reflectivity (<2%) between 400 and 450 nm in the reflectance 

spectra. This results from both the attenuation of colored dissolved organic matter (CDOM) 

and chlorophyll absorption. The poor absorption of algal pigments and the significant scattering 

by all particulate matter are the causes of the reflectance peak at 570 nm (>3%). Water 

absorption causes a wavelength drop between 670 and 675 nm. The florescence effect of Chl-

a is responsible for a peak around 700–705 nm. A rise in chlorophyll is connected with this 

peak's migration towards longer wavelengths. Water absorption accounts for the low 

reflectance observed after 750 nm (Murugan et al., 2016). 
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In Figure 1.4 The reflection peak in the green area was highlighted by the significant 

absorption seen in all of the curves at the red and blue spectrum regions. The peak at the 

beginning of the near-infrared (NIR) (area associated with red edge), at around 710 nm to 720 

nm, was another finding linked to the presence of Chl-a. At 810 nm, a different reflected 

characteristic linked to organic materials and chlorophyll was noticed. Apart from the Chl-a 

characteristics, each Rrs spectra showed a prominent absorption signature between 620 and 

630 nm, which is linked to the existence of phycocyanin, a pigment found in cyanobacteria. 

The fluorescence of phycocyanin was connected to the reflectance peak at around 650–660 nm. 

One of the properties of phytocyanin is that it absorbs less in blue and green areas (Watanabe 

et al., 2015). 

1.5 Significance of the Study 

Chemical alterations brought about by damming modify the water's physical and 

chemical qualities, which impactswater's physical and chemical qualities, which impacts 

nearby wetlands and rivers downstream. It is also the primary source of water for homes, which 

may have adverse health effects on residents. Second, at the watershed level, a sizable sample 

size is needed to test the quality of the water, a need that may be satisfied by using remote 

sensing applications. In the absence of ground data, it aids in determining the fundamental 

elements of water quality. Thirdly, it may be costly, time-consuming, and labor-intensive to 

check water quality using traditional methods. A more economical and successful option for 

these techniques is remote sensing. Finally, to examine the water quality and to monitor its 

condition in hard-to-reach places remote sensing may be used to detect pollution events or algal 

blooms early on. This may make prompt mitigation and intervention possible. 
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Figure 1.1.Spectral response of different elements in clear water body. 

 

Figure 1.2.Spectral response of Tangxun lake, China. 
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Figure 1.3.Spectral response of Krishnarajapuram lake, Banglore. 

 

Figure 1.4.Spectral response of Barra Bonita hydroelectric reservoir. 
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1.6 Research Gap 

• Limited researches have been performed to model relationships between water quality 

parameters and Hyperspectral data.  

• Previous studies in Pakistan didn’t include Landsat multispectral data for comparison 

with the hyperspectral data.  

1.7 Objectives 

The following were the objectives of the study: 

• To analyze water quality parameters (pH, EC, Turbidity, Nitrates & Phosphates) of 

Khanpur Dam. 

• To generate the multivariable statistical model using ASD hyperspectral 

spectroradiometer and multispectral Landsat data, with physiochemical parameters of 

water quality. 
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Chapter 2  

LITERATURE REVIEW 

2.1 Water Quality Modeling in Pakistan 

Iqbal et al., (2014) conducted the study in Khanpur Lake, Pakistan to evaluate the risk 

assessment, source allocation, and seasonal fluctuations of heavy metals in its suspended 

sediments. Flame atomic absorption spectrophotometry is used to assess the amounts of heavy 

metals in mixed specimens. Fe and Mn had high levels, whereas Cd had lowest values. PCA 

and cluster analysis show the primary human caused  inputs of Cd, Pb, Cr, and Zn. The lowest 

impact values of the sediment quality standard are not met by the computed quantities of Pb, 

Cr, Mn, and Cd in the deposits. Furthermore, according to the ERM ratio, the sediments have 

a 21% chance of contamination. 

One of Pakistan's lagest water reservoirs, Mangla Dam, is utilized for electricity 

generation, agriculture, and consumption. This study evaluates the physical and chemical 

features and specific metals in water samples taken from the Mangla dam to determine the 

water's suitability for irrigation and consumption. A flame atomic absorption 

spectrophotometer was used to measure their concentration. Substantial anthropogenic 

involvements of Cd, Pb, Ni and Cr which were above  tolerable limits, were demonstrated using 

multivariate statistical techniques in water samples from the reservoir. The pH , TDS, TA, EC, 

Cl–, Mg/Ca, KR, PI and PS measured values were all within allowable bounds. The water 

samples were classified as somewhat hard depending on the TH, yet they were deemed unfit 

for agricultural usage relying on HCO3- and RSBC results. Future planning and management 

techniques were recommended to target metal pollution to restore the reservoir's water quality 

(Saleem et al.,  2015). 

Khan et al., (2018) conducted the research in Khanpur Dam, Pakistan to investigate its 

water quality features. Water samples were gathered from the dam's midsection, runoff, 
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agricultural, and society during the pre- and post-monsoon seasons. Standard techniques were 

employed to determine the physicochemical characteristics. The pH levels varied between 6.1 

and 7.2, the conductivity between 448 to 507 µS/cm and 363 and 505 µS/cm, the total dissolved 

solid levels between 240 and 270 mg/L, the chloride levels between 10.635 to 26.5875 mg/L 

and 17.725 to 53.175 mg/L , and the fluoride levels between 0 and 2.4 mg/L. The samples' 

levels of heavy metals were also evaluated using a conventional procedure and an atomic 

absorption spectrophotometer. The Pak-EPA standard limit was compared to the obtained 

findings. It was discovered that most post-monsoon samples had concentrations of heavy 

metals (such as nickel, cadmium, chromium, and lead) and fluoride were higher than allowed. 

Before its supply, regulatory bodies and relevant agencies should keep an eye on the water 

quality. 

An innovative method of judging water quality is the water quality index (WQI). 

However, most of the indices are not relevant to all types of water since they rely on 

fundamental physio-chemical water characteristics, which can cause them to be biased and 

sensitive to certain features. These variables include time, location, sample frequency and 

quantity, and variable weight assignment.  Five WQIs were computed for two temporal periods 

in the current study: Data acquired in real-time from June to December using Internet of Things 

nodes at Rawal Dam's entrance and exit streams. Using GIS-based grab sampling from 2012 

to 2019 data was collected from the Rawal Dam Water Filtration Plant. The compiled datasets 

were classified as Very Poor by the calculated WQIs. Furthermore, this study looks at how 

machine learning algorithms may be used to classify water quality. With a 99% accuracy in 

classification, the analysis statistics demonstrated that the DT method functioned better than 

the rest of the models. Even though WQI is a broadly used technique for estimating water 

quality, it is important to consider the prejudices and ambiguities brought about by the 

constraints of data collection that result in class imbalance (Ahmed et al., 2021). 
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The depletion of freshwater reservoirs can have negative consequences on water quality 

due to overexploitation and insufficient upkeep. In this work, the initial evaluation of the 

water's cleanliness and ecological circumstances in Pakistan's Khanpur reservoir is conducted 

through the practical retrieval of two transparency markers, TSS and Secchi disc depth (SDD), 

using Sentinel-2 satellite imagery. To understand the behavior of water transparency trends in 

the created reservoir spatially and temporally, the study used two separate designs 

(semiempirical remote sensing algorithms and regional coast color ANN-analytical neural 

network model). Three of the five months that were analyzed have excessive turbidity and poor 

eutrophic conditions in the reservoir water. When the outcomes of the two computer models 

are compared, there is a strong statistical correlation. This technique is especially helpful in 

areas lacking regular ground sampling and ecological parameter monitoring (Faizi et al., 2022). 

Muhammad et al., (2022) conducted the study on the Gomal Zam Dam and its branches 

in south Waziristan District, Pakistan. The study examined the water's condition and seasonal 

variations in the area. Water samples were taken for this reason in both summer and winter 

from Dam and its associated rivers.  Except for turbidity, water samples were determined to be 

within the World Health Organization's (WHO) secure drinking water limits. Because of 

increased pollution, the water quality is somewhat worse in the winter than it is in the summer. 

The corrosion of foundation was the primary characteristic of the water quality of Dam. In the 

summer and winter, the investigated water is categorized as Mg-HCO3 type and Na-Cl type, 

respectively. Geogenic causes of rock weathering mostly control the area's water 

qualityAccording to statistical assessments, the area's water quality is mostly controlled by 

geogenic causes of rock weathering. 

Akbar et al., (2022) conducted the research in of the Rawal and Khanpur Dams to gauge 

their microbiological characteristics and water quality. 5 sampling locations were selected. 

Conventional approaches were used to test a variety of physico-chemical limitations. The 
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amounts of heavy metals were evaluated using atomic absorption spectroscopy. Using the SPC 

technique the total coliform count and total viable count in water samples were determined. 

Water samples were used to isolate distinct bacteriological colonies, which were then identified 

by Gramme staining test. Numerous physicochemical parameters were found to be within 

WHO criteria. However, several samples had higher conductivity ratings than the WHO 

allowed. The Rawal Dam was confirmed to provide safe drinking water, except a few areas 

where elevated microbiological counts were discovered. To guarantee that customers receive 

safe water to consume, more research on water quality is necessary. 

Globally, human activities have a significant impact on lake ecosystems. The effects of 

human activity are most noticeable when it comes to light, nutrients, and deposition.  The 

purpose of this research is to investigate how the water quality of Tarbela Reservoir changed 

amid 1990 and 2020. LULC, NDCI, NDTI, and NDWI in Tarbela Reservoir and its environs 

were observed using Landsat images. The built-up area in the reservoir's western and eastern 

regions has significantly increased, according to the data, but the turbidity level has decreased 

a 4% drop over the past ten years, confirming the water quality improvement. Also, the research 

showed the water extent water and chlorophyll indexes, indicating a rise in the water's 

residence duration. It is determined that although the water condition declined over the years, 

the dam's overall water quality improved and its ecology recovered in 2020 (Mazhar et al., 

2023). 

2.2 Remote Sensing of Water Quality Assessment Across the Globe 

Senay et al., (2002) conducted the study to assess of the temporal and geographical 

variability of optical water quality measures, containing turbidity, TSS, and chlorophyll a, in 

the Greater Miami River, Ohio, that has been accomplished with effectiveness through remote 

sensing data. Aerial hyperspectral detectors, a laboratory spectrometer, and a portable 

spectroradiometer were used to gather spectral data in the summer of 1999. On the same days 
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as the cross-section, observations of water quality variables, including turbidity and 

chlorophyll concentrations were taken. A handful of wide spectral bands and ocular water 

quality measures were shown to correlate. A further, theoretically more robust association 

between a water quality measure and nearby wave zones is represented by derivative 

reflectance. There is a high correlation between the ratio of wavebands 705 and 672 and 

turbidity with R2 = 0.79 and chlorophyll a with R2 = 0.7, and the first derivative of wavebands 

700 and 675. These connections made predictions of turbidity and chlorophyll concentrations 

in areas of the Greater Miami River where only hyperspectral data were collected possible. 

Maps of the relative distribution and turbidity of chlorophyll were created using hyperspectral 

photos of the river. 

To assess how humic colour affected satellite-inferred water quality conditions, 

researchers employed Landsat TM data from the same lakes and ground-based observations on 

15 lakes in Minnesota with a variety of optical characteristics. Except at extremely high levels 

(> ~ 300 chloroplatinate units, CPU), colour (C440), as determined by absorbance at 440 nm, 

only slightly biases estimations of Secchi disc transparency (SDT) using Landsat TM data. 

Similar to this, low-to-moderate levels of humic colour have no effect on the association 

between SDT and chl a concentration when chlorophyll a (chl a) levels are moderate or high 

(> 10 μg/L), but they have a significant effect at high levels of C440 (e.g., > ~200 CPU). On 

the other hand, when chl-a levels are low, departures from the overall Chl a-SDT connection 

happen at significantly lower C440 values (~ 60 CPU). Strong statistical correlations were 

discovered between the observed brightness of several Landsat TM bands and the optical 

characteristics of lake water, which are often linked to algal abundance (SDT, Chl a, turbidity). 

Based on R2 and the lack of statistical outliers or lakes with significant leverage, combinations 

of bands 1, 2, or 4 with the band ratio 1:3 (R2 = 0.88) showed the best associations for chl a. 

Multiple regression analyses between ln(C440) and combinations of bands 1-4 and band ratios 
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produced several relationships with R2 ≥ 0.70, suggesting that C440 can be estimated with fair 

reliability from Landsat TM data, despite the fact that TM bands 1-4 alone or as simple ratios 

were poor predictors of C440 (Brezonik et al., 2005). 

Lin et al., (2009) conducted the research on the largest freshwater lake called 

Baiyangdian Wetland, in northern China. This area's water quality has been declining recently. 

At Baiyangdian Wetland, 67 water quality samples were taken in September. The variables 

measured were pH, DO, chlorophyll-a, blue-green algae, and total dissolved solid. The 

outcomes of the assessment indicate that Baiyangdian Wetland was severely polluted. The 

northern region has a greater amount of chlorophyll than the southern region. A field 

spectroradiometer (ASD FieldSpec) was used to simultaneously gauge the water upwelling 

radiance at eighteen sample points. By contrasting the spectrum profiles of water and the 

amount of chlorophyll, it was discovered that the reflectance maxima decrease in the 560–575 

nm range as chlorophyll levels rise. Reflectance maxima grow at the band scope of about 700 

nm as the levels of chlorophyll rise. The correlation coefficient for chlorophyll shows that the 

maximum positive correlation is 0.9133 for the 722 nm band. There is an adverse association 

between the bands at 550 nm and 670 nm and an upward trend between the bands at 700 nm. 

Using data from remotely sensed sensors, these bands can be selected to recover chlorophyll 

saturation. 

The aim of this research is to evaluate how well hyperspectral metrics can identify Chl-

A intensities in Tangxun Lake, China. Reflectance ratio, the first derivative of reflectance, and 

single-band reflectance, three different types of hyperspectral methods were recovered. The 

outcomes of the assessment showed a strong correlation (R2 > 0.8) between the observed 

amounts of Chl-a and both techniques: the reflectance ratio and the first derivative of 

reflectance. Thus, these hyperspectral techniques might be a handy way of recording both 

temporal and geographic fluctuations of Chl-a accumulation (Huang et al., 2010). 
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Wu et al., (2014) carried out the study to reveal the importance of total suspended solids 

as water quality indicator. A spectroradiometer was used in this investigation, and a few water 

quality measurements were examined both at the research locations and in the lab for additional 

examination. The findings of the water quality were connected. Additionally, data was 

modelled using artificial neural networks and multiple-regression. The findings showed a 

substantial positive correlation between TSS and turbidity throughout the wavelength.  The 700 

and 900 nm 700 and 900 nm regions are where the best wavelengths are discovered for 

measuring turbidity and TSS, respectively. However, by applying MR, the ANN technique can 

enhance the TSS retrieval. Because the transformation model is nonlinear, the precision of the 

TSS estimate using ANN is R2 = 0.66 was superior to that of the MR technique (R2 = 0.58). 

Water quality is gauged by algal quantity, obtained by estimating the Chl-a content. 

Using an analytical approach to estimate Chl-a requires a lot of labor and reagents.  However, 

spectral reflectance techniques such as satellite remote sensing and in-situ hyperspectral 

spectroradiometer studies are less costly and yield quicker outcomes.  This study aims to 

quantify the amount of chlorophyll-a by using data from Landsat-7 (ETM+) and hyperspectral 

spectroradiometers. To ascertain the correlation between quantified levels of Chl-a and band 

reflectance ratios regression model was used. It was discovered that spectroradiometer data, as 

opposed to multispectral data, offered a stronger connection with observed levels of Chl-a. 

Since satellite data offers complete coverage, it was used to map the lake's content of Chl-a 

(Murugan et al., 2016). 

The eutrophic level is raised by excessive nutrient concentrations and water retention 

time. Eutrophication and phytoplankton primary productivity are directly connected. There 

may be issues with public health if these species are present in large quantities. Therefore, 

mapping chl-a present in these species using remote sensing is practical substitute.  This study 

aimed to assess how well Landsat 8 (OLI) satellite photos performed in identifying Chl-a levels 
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and calculating the eutrophication level in a humid reservoir. Data for fitting experimental 

models, 2 field visits were performed in May and October of 2014 provided. A temporal 

sequence of OLI pictures was subjected to model application. The atmospheric correction most 

certainly hindered the performance of the Chl-a concentration models, even though they 

produced respectable findings. Therefore, better results were not achieved by categorizing 

trophic levels (Watanabe et al., 2015). 

Elhag et al., (2019) carried out the research on Wadi Baysh dam, Saudi Arabia for water 

quality analysis. The water quality metrics of nitrate levels, chlorophyll levels and turbidity 

were employed. Over two years, water quality measurements were gathered daily from the 

water treatment plant near the dam and subsequently compared to those measured remotely. 

Sentinel-2 was used to gather remote sensing data. The MCI, GNDVI, and NDTI were 

estimated using data processing. The regression analysis between the non-spatial data collected 

from the water treatment plant and the spatial data inferred from the remote sensing photos was 

enhanced by applying zonal statistics. Real-time readings of chlorophyll showed a strong 

association with MCI values (R2 = 0.96), real-time levels of nitrate demonstrated a significant 

relationship with GNDVI values (R2 = 0.94), and real-world water turbidity observations 

demonstrated a strong connection with NDTI values (R2 = 0.94). The study results provide 

credence to the estimation of water quality variables in dry situations using Sentinel-2 remote 

sensing data. 

The amount of nutrients in coastal water has increased dramatically over the past 

several decades, causing an overabundance of algae bloom. The number of algae is frequently 

determined using chlorophyll-a as a marker. This research aims to track the amount of 

chlorophyll-a in Dubai Creek using WorldView-2 imagery and investigate the correlation 

between chlorophyll-a and other eutrophication indices. With interposed ground levels of 

chlorophyll-a, a spectral model of the WorldView-2 multispectral picture was used to monitor 
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the concentration of chlorophyll-a. The model produced an R2 of 0.82. The reliability of the 

WorldView-2 model was demonstrated using Landsat 7 (ETM+) pictures, which addressed the 

temporal gap between the image and ground data. A different model that was created to show 

the connection between total nitrogen and orthophosphate levels and spectral chlorophyll-a 

levels had an R2 of 0.97, indicating strong agreement. Additionally, it was discovered that the 

produced models may be used for identifying orthophosphate, total nitrogen, and chlorophyll-

a minus the requirement for expensive on-site data collection procedures (Mortula et al., 2020). 
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Chapter 3  

MATERIALS AND METHODS 

3.1 Study Area 

Situated on the Haro River in the Haripur district of Khyber Pakhtunkhwa province, 

Khanpur Dam is a sizable multifunctional structure (Figure 3.1). The Haro River traverses 

portions of the Khyber Pakhtunkhwa and Punjab states. Lora Haro and Stora Haro empty it 

after it flows from Changla Gali and Nathia Gali. While the Stora Haro falls from the slopes of 

Nathia Gali, the Lora Haro flows through the Murree slopes.  The Lora Haro becomes Stora 

Haro at Jabri. The Haro River is dammed in Khanpur after flowing through steep, tight canyons. 

Early in the 1980s, a reservoir was constructed. The Khanpur Dam was designed  to store water 

for irrigation, supply potable water to the downstream twin towns of Rawalpindi and 

Islamabad, and supply power to the Taxila manufacturing complex (Nauman et al., 2019). The 

springs and streams meet the residential water supply throughout the year. Given its 1,06,000-

acre feet of overall space for storage, the dam is regarded as big in terms of its ability to store 

water. The dam has had several difficulties recently, such as siltation and reduced water supply 

due to climate change and rising water demand. Additionally, the release of unprocessed 

commercial and household wastewater into the Haro River, which feeds into the dam, 

contributes to the river's rising pollution. When drinking water and using it for other household 

needs, the water quality in the dam is impacted, which may have negative health effects (Mir, 

2022). Ariel photograph of the dam is shown in Figure 3.2. 

3.2 Brief Description of Methodology 

Figure 3.3 shows methodology flow chart. Firstly, in-situ water quality measurement 

was done using hyperspectral spectroradiometer by recording its spectra. Secondly, surface 

water samples were collected from the exact location in dark water bottles (500ml) and then its 



 23 

 

Figure 3.1.Study area.

 

Figure 3.2.Khanpur dam ariel photograph. (Source: 

https://twitter.com/amazing_pk/status/947384075156885504) 

https://twitter.com/amazing_pk/status/947384075156885504
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physiochemical parameters were analysed in the laboratory. Furthermore, Landsat 8 image was 

downloaded from the USGS website and its pre-processing parameters were applied using 

ENVI software. Then different spectral indices (chlorophyll index to check eutrophication, 

turbidity index to check suspended solids amount) were applied. A statistical multivariate 

model was developed to predict the water quality parameters using remote sensing (Landsat & 

ASD Hyperspectral data) and allied water quality parameters. Lastly, root means square error 

(RMSE) metric is applied on results for model validation. Table 3.1 describes the dataset 

characteristics, like the source and specifications of the data used in the study. 

3.2.1 Field Water Sampling 

Prior to entering the field, a sample guideline was made in which the following details were 

recorded: date, time, location, number and summary of the spectroradiometer recordings, and 

coordinates. On July 11, 2023, sampling was conducted under sunny conditions (Figure 3.4). 

The essential physical attributes were recorded in a table. After that, an appropriate sample was 

done. At the Khanpur Dam, 25 water samples were taken at various locations. Firstly, ASD 

spectroradiometer was used to collect the data in a vertical downward orientation above the 

water's surface. Two of these devices were used: one to gather the water's upwelling brightness 

and the other to gather its downwelling radiance. The water body's upwelling radiances were 

recovered with about 100% reflectivity throughout the whole spectrum. The ratio of 

downwelling irradiance to upwelling radiance coming from the water's surface is known as 

reflectance. For every sample, ten distinct sets of scans were measured. Above the water's 

surface the probe was manually held at 0.5 m and pointed vertically downward towards the 

water, and around 1m away from the boat during the spectra measurement. After arriving at its 

new place, the boat was halted for 1 minutes before taking measurements to even out the waves 

and ripples.  
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Table 3.1. Dataset characteristics. 

 

No. 

 

Data Type 

 

Specification 

 

Source 

 

1. 

 

Satellite Imagery 

 

Landsat 8 (OLI) 

30 m spatial resolution 

 

USGS 

 

2. 

 

Hyperspectral 

data 

 

ASD spectroradiometer (220nm- 

2500nm) 

 

Field samples 

 

3. 

 

Water Quality 

parameters 

 

pH, EC, turbidity, nitrates, 

phosphates 

 

Field samples & 

laboratory 

analysis 

 

 

Figure 3.3. Methodology flow chart  
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Since the spectroradiometer was positioned less than two meters from the water's surface, air 

dispersion and light absorption effects were deemed insignificant. Following spectrum 

measurements, surface water samples were taken vertically and collected with 500 ml dark 

polyethylene water bottles at a depth of 50cm. The sample process was carried out carefully. 

The bottles were then promptly sealed by placing the lid on top of them. Bottles were then 

dried after their thorough cleaning. In order to prevent contact with sunshine, specimens were 

promptly stored in an ice box. After the sample collection was completed, samples were 

analyzed for different parameters. The sampling location’s coordinates are given in table1-A in 

appendix.  

3.2.2 Laboratory Analysis 

Physiochemical parameters like pH, EC and Turbidity were examined in the Institute 

of Environmental Sciences and Engineering (IESE), NUST laboratory (figure 3.5) and for the 

examination of other parameters like nitrates and phosphates samples were sent to the Pakistan 

Council of Research in Water Resources (PCRWR) laboratory. Table 3.2 describes the 

permissible limits set by WHO and Pak-EPA for these parameters. 

3.2.2.1 pH 

A cylindrical piece of glass containing a layer of hydrated gel, an analog electrode, a 

standard solution, and a reference connector make up a pH electrode. The electrode generates 

a current that measures the difference in charge between the solution inside the bulb and the 

solution outside the gel layer after it is immersed in the sample. For analysis, firstly, pH meter 

was calibrated using three different buffer solutions and then pH of every sample was recorded 

by using the pH meter and washing it with distilled water after every sample analysis to achieve 

more accurate results. 
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Figure 3.4 (a, b, c, d) Field sampling 

(a) (b) 

(c) (d) 
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3.2.2.2 EC 

For EC measurement of water samples two electrode probe EC meter was used, which 

was built such that both probes would come into simultaneous touch with the sample and were 

composed of non-reactive material. Higher EC readings are obtained when more ions are 

present in the sample because these two electrodes transmit a current at a specified frequency. 

During the analysis EC meter was washed with distilled water after every recording for better 

results. Micro Siemens per centimeter (u/S/cm) and milli Siemens per centimeter (mS/cm) are 

the units used to measure conductivity. 

3.2.2.3 Turbidity 

Similarly, the turbidity meter was calibrated first, using standards of known turbidity. 

The water sample that is to be examined is put into a clean cuvette. The device measures the 

amount of light scattered after exposure to a water sample; the amount of scattering is directly 

related to the sample's turbidity. The device gives a reading in nephelometric turbidity units 

(NTU).  

3.2.2.4 Nitrates 

While the PCRWR conducted nitrate analysis of water samples, the overall 

experimental procedure for their examination is outlined as follows: 

• A 50 cm3 volumetric flask was pipetted with 0 cm3 of the water sample.  

• After adding and whirling 10 cm3 of 13N sulfuric acid, the flask was left in a cold-water 

bath (0–10) °C to reach thermal equilibrium.  

• After adding and diluting 0.5 cm3 of brucine-sulfanilic acid to the mark with deionized 

water, the solution was heated to 1000C for approximately 25 minutes to maximize 

color development.  

• The flask was then allowed to cool to room temperature. Including the blank, the 

absorbance was measured at 410 nm using UV-spectrophotometer. 



 29 

• These steps were repeated for all samples (Sa'id and Mahmud, 2013). 

3.2.2.5 Phosphates 

Similarly, phosphate analysis of water samples was done by PCRWR, a general 

experimental procedure is as follows: 

• After pipetting 50 cm3 of water sample into a 500 cm3 volumetric flask, 3.0 cm3 of 

ascorbic acid and 5 cm3 of ammonium molybdate solution were added while swirling.  

• The mixture was then diluted with deionized water to the appropriate level and left for 

30 minutes to allow for the maximum development of color.  

• The absorbance was then measured at 660 nm, including the blank using UV-

spectrophotometer. 

• Steps will be repeated for remaining samples (Sa'id and Mahmud, 2013). 

3.2.3 ASD-Hyperspectral Spectroradiometer Data Analysis 

Spectral signatures of water samples were collected using ASD Field Spectroradiometer 

during the sample process. For each water sample, ten separate spectra were obtained. The 

integrated RS3 program was used to record the spectral signatures. The recorded signatures 

were in the form of ASD binary files. In View Spec Pro software these ASD files were then 

imported and from there these files were converted into text files. Then these text files were 

opened in excel and an average of ten spectra of each sample was then taken. Figure 3.6 shows 

the mean twenty-five raw spectral signatures collected from Khanpur dam. 

Prior to building a model, the spectra were transformed by applying Savitzky-Golay 

smoothing with 3rd derivative and twenty smoothing points in SpectraGryph software (figure 

3.7). This transformation is necessary for smoothing spectra and to remove particle size effects 

and noise produced due to illumination variations as stated by (Tsai and Philpot, 1996). Even 

after smoothing and baseline corrections only 400-950 nm of the wavelength range was used 

because of low signal to noise ratio over water body. 
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Table 3.2. Permissible limits of water quality parameters. 

 

Parameters 

 

NSDWQ 

(National Standards for 

Drinking Water Quality) 

 

WHO Standards 

(World Health Organization) 

pH 6.5-8.5 6.5-8.5 

EC 300-500 

micro-Siemens/cm 

<400 

micro-Siemens/cm 

Turbidity <5 NTU <5 NTU 

Nitrates <50 mg/L <11.3 mg/L 

Phosphates 0.05mg/L NGVS (No Guideline Value 

Set) 

 

Figure 3.5. (a, b) Laboratory analysis in IESE lab, NUST. 

(a) (b) 
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Figure 3.6. Raw reflectance signatures collected from ASD spectroradiometer. 

 

 

Figure 3.7. Post-processed reflectance signatures. 
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3.2.4 Multi-spectral Landsat 8 OLI Data 

With a panchromatic band providing data at 15 meters, the Operational Land Imager 

(OLI) sensor records images in nine spectral bands, covering the coastal/aerosol, blue, green, 

red, near-infrared, short wavelength infrared (SWIR), with most bands providing a spatial 

resolution of 30 meters. Furthermore, Landsat OLI collects thermal data with a 100-meter 

resolution using its Thermal Infrared Sensor (TIRS). Landsat 8 OLI Level-2, Collection-2 

image of Khanpur dam was downloaded from USGS website. The image was of the same day 

sampling was done, for more accurate results. To get bottom-of-atmosphere (BOA) reflectance 

values, pre-processing of Landsat image was carried out before to analysis. Software called 

ENVI was utilized for this. After that, indices like the NDTI and NDCI were applied to detect 

turbidity and chlorophyll index which is directly or indirectly related to presence of nitrates 

and phosphates in the water body as they are the major contributors of eutrophication. 

Chlorophyll index is applied as the resolution of multispectral Landsat data is not high enough 

to detect presence of nutrients like nitrates and phosphates in the water. Furthermore, band 

ratios were chosen from this atmospherically adjusted data, and their values were extracted 

with the help of Arc map for each sample point. Band ratio method highlights or enhance 

specific geographic features based on the selected band’s reflectance. Mainly green and red 

bands were selected for their reflectance and NIR band for its absorbance characteristics in 

water body, to get variable data. 

3.2.5 Multiple Linear Regression Model 

At the end of the analysis, correlation matrix and MLR models of ASD hyperspectral 

spectroradiometer and multispectral Landsat data with ground data were generated. Regression 

is a statistical method used to model the relationship between one dependent variable and one 
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or more independent variables. A simple linear regression has one dependent variable and one 

independent variable, and the relationship is represented by a straight line (Kenton, 2022).  

The equation for a simple linear regression model is often written as: 

Y= α + β1x +ε 

Where: 

• Y is dependent variable,  

• X is independent variable, 

• α is the y-intercept (the value of Y when X is 0), 

•  β1x is the slope of the line (the change in Y for a one-unit change in X), 

• ε is the error term (representing unobserved factors or random noise). 

3.2.6 Model Validation 

Following metrices are used for MLR model validation: 

• Root means square error (RMSE) is a standard metric used to calculate the precision of 

regression model. It computes average magnituted of errors between actual and 

predicted values. The more results are closer to zero and more accurate (Tyagi et al., 

2022). 

  𝑅𝑀𝑆𝐸 =  
√∑ (𝑦𝑖−𝑦𝑖̂  )2𝑛

𝑖=1

𝑛
                                      

 Where 𝑛 is the number of observations, 𝑦𝑖is the actual observed value and 𝑦𝑖̂ is the 

predicted value.  

• R2: A metric that indicates how well a model fits data sets is the coefficient of 

determination. It is a statistical indicator of how closely the regression line resembles 

the real data in the context of regression. Range from 0-1, the closer the value to 1 the 

more accurate are the results. 
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• r: The correlation or relationship between a dependent and an independent variable is 

which is expressed by r known as the correlation coefficient, in a regression analysis. 

It has a range of -1 to +1, which shows a perfect negative or positive association 

between the independent and dependent variables, respectively. Consequently, the 

absence of a link between these variables is shown by value of 0 (Kasuya, 2018). 

• p-value: The null hypothesis that the coefficient is equal to zero (no effect) is tested by 

the p-value for each element. A p-value of less than 0.05 suggests that the null 

hypothesis may be rejected. Stated differently, a predictor with a low p-value will 

probably be a useful addition to your model as variations in the predictor's value 

correspond with variations in the response variable. On the other hand, a higher 

(insignificant) p-value indicates that variations un the predictor has no bearing on 

variations in the responder (Bevans, 2020). 
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Chapter 4  

RESULTS AND DISCUSIONS 

4.1 Results of Laboratory Analysis 

Table 4.1 shows the summary statistic results of water quality parameters. Three key 

water quality parameters, nitrates, phosphates and turbidity, have exceeded the WHO 

permissible limits s. It was found that concentration of phosphates ranges from 0.03 mg/L to 

0.58 mg/L while, nitrates ranges from 0.39mg/L to 2.19 mg/L. Turbidity ranges from 4.36 

(NTU) to 8.95 (NTU). Also, EC ranges 376 s/m to 414 s/m whereas, pH ranges from 7.28 to 

8.94. These parameters' average concentration was 0.34mg/L for phosphates and 7.02 for NTU 

turbidity. The NSDWG prescribed limits for these parameters are <0.05 and <5, respectively. 

These results highlight an important deviation from the advised guidelines for these water 

quality parameters, which calls for prompt attention and corrective measures to address any 

possible risks to the public's health and the environment. While other three parameters, pH 

level recorded in the Khanpur Dam samples averages 7.88, aligning with the NSDWG-

recommended range of 6.5-8.5. Similarly, the EC was measured at 388.48, falling below the 

permissible limit of < 500 and 1.22 mg/L for nitrates which are within the permissible limit of 

< 50.These results indicate a satisfactory adherence to the specified guidelines for pH and EC, 

underscoring a degree of balance in these particular facets of water quality within the studied 

context. Phosphates and nitrates have 0.173 and 0.529 values of standard deviation. These 

findings indicate that phosphates have a low standard deviation, which suggests some stability 

or consistency in their readings. When compared to phosphates, nitrates have a larger standard 

deviation, which indicates more measurement variability. Turbidity has a moderate to high 

standard deviation, i-e 1.396, this shows considerable variability. EC has high standard 

deviation of 7.633 which indicates substantial variability. Meanwhile, pH has low variability 

as its standard deviation is 0.340. Overall standard deviation results show that EC exhibits the 
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highest parameter variability. Phosphates and pH show low variability while, turbidity and 

nitrates fall in between. Nitrates and pH present positive skewness, specifying the existence of 

outliers with high values, while phosphates, turbidity and EC show negative skewness, 

indicating the presence of outliers with low values. EC and pH reveal high positive kurtosis, 

signifying the presence of extreme values, whereas phosphates, nitrates and turbidity show 

negative kurtosis, implying the existence of fewer extreme values. 

Then the correlation matrix of these parameters was made better to understand the effect 

of one variable on another variable. Table 4.2 shows the correlation matrix of water quality 

parameters. Its shows significance at 0.05 significance level, indicated by (*) sign. Nitrate have 

a strong positive correlation with phosphate r = 0.68 and turbidity r = 0.173 whereas weak 

positive correlation with pH r= = 0.168 and weak negative correlation with EC r = -0.212. 

Turbidity exhibits a strong positive correlation with phosphates r = 0.806, weak positive 

correlation with pH r = 0.108 and weak negative correlation with EC r = 0.194. EC shows no 

correlation with phosphates r = -0.005 and moderate positive correlation with pH 0.472. 

Phosphates show weak positive correlation with pH r = 0.235. Overall, these results suggest 

that, the significant correlations indicated between nitrate and phosphate, as well as nitrate and 

turbidity, indicates that rising phosphate and turbidity levels accompany rising nitrate 

concentrations. There is a minor tendency for nitrate levels to fall as EC increases, which the 

weak negative association between nitrate and EC indicates. There appears to be a tendency 

for electrical conductivity to rise along with pH, as shown by the somewhat positive correlation 

seen between the two variables. Turbidity and phosphate as well as turbidity and pH have 

substantial positive correlations, indicating a relationship between turbidity variations and 

phosphate and pH variations. 
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Table 4.1. Summary statistics of water quality parameters 

 

 

Table 4.2. Correlation matrix of water quality parameters 

Variables Phosphate 

(mg/L) 

Nitrate 

(mg/L) 

Turbidity 

(NTU) 

EC  

(S/cm) 

pH 

Phosphate  

(mg/L) 

1 
    

Nitrate  

(mg/L) 

0.684* 1 
   

Turbidity  

(NTU) 

0.806* 0.713* 1 
  

EC  

(S/cm) 

-0.005 -0.212 -0.194 1 
 

pH 0.235 0.168 0.108 0.472 1 

 

Statistics* 

 

Phosphate 

(mg/l) 

 

Nitrate  

(mg/l) 

 

Turbidity 

(NTU) 

 

EC 

(s/m) 

 

pH 

 

Min 

0.03 0.39 4.36 376 7.28 

 

Max 

0.58 2.15 8.95 414 8.94 

 

Mean 

0.34 (< 0.05) 1.22 (< 50) 7.02 (< 5) 388.48 (≤ 500) 7.88 (6.5 - 8.5) 

 

St. dev 

0.173 0.529 1.396 7.633 0.340 

 

Skewness 

-0.243 0.332 -0.562 1.266 0.874 

 

Kurtosis 

-1.114 -0.936 -0.671 4.264 2.766 

*Values in brackets represent the standard limits as defined by NSDWG 
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4.2 ASD Spectral Signatures Processing 

Figure 4.1 shows ASD spectra computed from in situ data collected on 11th July 2023. 

A few of the sample signatures show a small trough 400nm – 440 nm, this may suggest the 

presence of nitrates and phosphates as they both absorb light in blue and ultraviolet spectra. 

Also, the presence of algae or phytoplankton in blue spectrum absorbs light in this region. 

Secondly, turbidity is often associated with suspended particles in the water, such as organic 

matter, algae or sediments. 

Higher turbidity levels influence reduced reflection in this spectrum due to increased 

scattering. Furthermore, all of the curves highlight the significant reflectance peak at the green 

region, i.e., 550- 600 nm, which is often associated with the red edge of chlorophyll absorption, 

as described by previous studies. Red edge is a point at which chlorophyll absorbs less strongly, 

leading to a peak in reflectance. This peak suggests the potential for algae or other 

photosynthetic organisms in water body. While nitrates and phosphates may not directly 

contribute to this peak, their presence can influence algae and phytoplankton growth, indirectly 

contributing to the observed chlorophyll related reflectance. 

Similarly, the presence of turbidity impacts the absorption characteristics of water. In 

the 550 – 600nm range, chlorophyll absorption peaks are common, turbidity contribute to 

reducing absorption by scattering incident light away from particles with absorption features. 

This reduction in absorption, coupled with increased scattering, leads to a higher level of 

reflectance in the green spectrum. This trend can be observed in the sample 1 reflectance 

signature (top most signature in red color), it was taken near the edge of the dam where 

sediment concentrations were high due to this a small peak can also be observed in the NIR 

spectrum from 700 – 750 nm, also an overall increase of reflectance from other sample points. 

The downward trend toward the NIR region indicates an increase in absorption and reduced 

scattering in this region. Water typically exhibits higher NIR absorption absorption due to water 

molecules' strong bands.  
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4.3 Comparison Between Multispectral and Hyperspectral Data 

4.3.1 Bands Selection 

To develop MLR models between Hyperspectral, Multispectral and Water quality 

parameters, different bands and wavelength ranges were selected, to get variable data, their 

ratios were extracted to reduce the noise and improve reflectance information. Table 4.3 details 

the selected bands of Landsat OLI and ASD wavelength ranges.  

Correlation analysis between the reflectance ratios of various bands and turbidity and 

nutrient concentration of field data was used to identify the best bands and wavelengths for the 

approach for predicting the reflectance ratio in turbidity and nutrients concentration in Khanpur 

dam. For a correlation study, reflectance ratios between the 350–1000 nm wavelength range of 

ASD and bands 2–5 of Landsat were computed. The reflectance ratios 560/891nm, 600/820 

nm and 465/729nm of ASD and Band3/Band5 and Band4/Band5 of OLI, had the highest 

correlation between turbidity and nutrient content, and were chosen for linear modelling based 

on the findings of the correlation study. 

4.3.2 Regression Model 

For regression analysis, linear polynomial model is used and for the dependent variable, 

the associated turbidity and nutrients (phosphates and nitrates) concentrations were considered, 

while the independent variables were the spectral reflectance wavelength ratios for ASD data 

and band ratios for multispectral data. Results and graphs of the predicted models are given 

below. 

4.3.2.1 Turbidity 

Turbidity concentration in Khanpur dam is estimated using ASD ratio 560/891nm and 

OLI ratio Band3/Band5 giving the value of r = 0.86 and 0.64 respectively as describe in Figure: 

4.2 (a) & (b). While ASD ratio 600/820nm and OLI ratio Band4/Band5 gives the value of r = 

0.71 and r = 0.84 as explained in Figure: 4.2 (c) & (d). 
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Figure 4.1. ASD-hyperspectral reflectance signatures from 25 different locations of Khanpur 

dam. 

 

Table 4.3. Selected wavelengths and their ranges. 

Landsat 8 OLI Bands & Their Ranges 

(nm) 

ASD-Hyperspectral VNIR Spectrum 

Wavelength Ranges (nm) 

Band 2 Blue (450-510) Blue 400-500 

Band 3 Green (530-590) Green 500-600 

Band 4 Red (640-670) Red 600-700 

Band 5 NIR (850-880) NIR 700-1000 
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In comparison to OLI ratio Band3/Band5 the ASD ratio 560/891nm showed a much better 

correlation coefficient, indicating a greater linear relationship between the turbidity 

concentration and the selected spectral ratio for the ASD spectroradiometer. 

Similarly, the OLI ratio Band4/Band5 revealed a greater connection with turbidity than 

the ASD ratio 600/820nm, suggesting that the OLI sensor is effective in assessing turbidity 

based on this particular ratio. Overall, ASD ratio 560/891nm gives better linear fit model than 

OLI for turbidity. 

4.3.2.2 Phosphate 

Figure 4.3 (a) predicts the linear model for phosphate with ASD ratio 560/891 and gives 

the value of r = 0.83 whereas, Figure (b) describes the regression model for phosphate with 

OLI ratio of band3/band5 gives r = 0.72. In contrast, figure (c) shows the linear model which 

predicts phosphate concentration with ASD ratio 600/820nm and gives the value of r = 0.83 

and Figure (d) depicts the value of r = 0.70 for phosphates with OLI band4/band5 ratio. Overall, 

it can be seen that both ratios of hyperspectral data give better results than multispectral data 

for phosphate estimation in Khanpur dam. 

4.3.2.3 Nitrate 

For the prediction of nitrate concentration instead of the green spectrum, wavelength 

range of blue spectrum is being used as it was described in literature that nitrate ions respond 

strongly to blue wavelength range. So, Figure 4.4 (a) gives us the value of r = 0.86 for linear 

model of nitrate and ASD ratio 465/729nm whereas Figure (b) gives us value of r = 0.67 for 

model between nitrate and OLI band2/band5. On the contrary, regression model of nitrate with 

ASD ratio 600/820 nm gives r = 0.73 and linear model of nitrate and OLI band4/band5 gives r 

= 0.76 as shown in Figure (c) & (d). Particularly, ASD predicts best line fit model for nitrate 

concentration with ratio 465/729 nm. 
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Figure 4.2 (a) Regression Model of Turbidity and Wavelength ratio 560/891nm ratio of ASD; 

(b) Regression Model of Turbidity and OLI_Band3/Band4 ratio; (c) Regression Model of 

Turbidity and ASD Wavelength 600/820nm ratio; (d) Regression Model of Turbidity and 

OLI_Band4/Band5 
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Figure 4.3 a) Regression Model of Phosphate and ASD Wavelength 560/891nm ratio; (b) 

Regression Model of Phosphate and OLI_Band3/Band5 ratio; (c) Regression Model of 

Phosphate and ASD Wavelength 600/820nm ratio; (d) Regression Model of Phosphate and 

OLI_Band4/Band5 
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Figure 4.4 a) Regression Model of Nitrate and ASD Wavelength 465/729nm ratio; (b) 

Regression Model of Nitrate and OLI_Band2/Band5 ratio; (c) Regression Model of Nitrate and 

ASD Wavelength 600/820nm ratio; (d) Regression Model of Nitrate and OLI_Band4/Band5 
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4.4 Model Validation 

Different matrices like r, R2 and RMSE are used for linear model validation. 

4.4.1 Turbidity 

Table 4.4 shows the regression equation obtained from the linear model predicted for 

turbidity concentration and its validation parameters like root mean square error and 

determination of coefficient R2, with selected ASD reflectance ratios. Table 4.5 shows the 

above-mentioned parameters with Landsat OLI-selected ratios. Among all the calibrations 

tested, the best fit model using ASD wavelengths was obtained from Ratio 560/891 nm with a 

value of R2 = 0.75 and RMSE 0.68. Comparably, among the models using OLI ratios, the best 

fit model was obtained using ratio Band4/Band5 having the value of R2 = 0.71 and RMSE 0.96. 

These results concluded that, although both of these ratios of ASD and OLI gave best fit 

models. But ASD model gave more accurate findings than OLI. 

4.4.2 Phosphate 

Table 4.6 shows the regression equation for phosphate concentration prediction that 

was obtained using the linear model via specific ASD reflectance ratios, along with validation 

metrics like root mean square error (RMSE) and the determination coefficient (R2). On the 

other hand, Table 4.7 uses Landsat OLI selected ratios to provide the previously suggested 

attributes. Among the various calibrations examined, the optimal model employing ASD 

wavelengths was identified based on Ratio 560/891 nm and 600/820 nm. These ratios 

demonstrated minimal disparity in prediction but yielded R2 values of 0.69 for both, 

accompanied by respective RMSE values of 0.10 and 0.09. On the other hand, the 

Band4/Band5 ratio was the best-fitting model among those that used OLI ratios; it had an R2 

value of 0.49 and an RMSE of 0.09. In addition, an R2 value of 0.57 with an RMSE of 0.11 was 

obtained from the Band2/Band5 ratio. The ASD and OLI ratios produced well-fitting models, 

the ASD model demonstrated superior predictive accuracy for phosphate concentration.  
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Table 4.4. Model validation results of turbidity with ASD ratios. 

Ratios Model R2 RMSE 

465/729 y =116.3(465/729) + 0.04 0.47 0.99 

560/891 y = 39.0(560/891) -0.45 0.75 0.68 

600/820 y =124.3(600/820) -1.55 0.50 0.96 

 

Table 4.5. Model validation results of turbidity with OLI ratios. 

Ratios Model R2 RMSE 

Band2/Band5 

(450-510/850-880) 

y = 11.06(Band2/Band4) -2.77 0.51 0.96 

Band3/Band5 

(530-590/850-880) 

y = 925.1(Band3/Band5) -3.57 0.41 1.04 

Band4/Band5 

(640-670/850-880) 

y =16.4(Band4/Band5) -8.14 0.71 0.73 
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Table 4.6. Model validation results of phosphate with ASD ratios. 

Ratios Model R2 RMSE 

465/729 y =15.70(465/729) -0.60 0.56 0.11 

560/891 y =4.64(560/891) -0.55 0.69 0.10 

600/820 y =18.17(600/820) -0.91 0.69 0.09 

 

Table 4.7. Model validation results of phosphate with OLI ratios. 

Ratios Model R2 RMSE 

Band2/Band5 

(450-510/850-880) 

y = 1.46(Band2/Band4) -0.22 0.57 0.11 

Band3/Band5 

(530-590/850-880) 

y =128.0(Band3/Band5) -1.12 0.51 0.12 

Band4/Band5 

(640-670/850-880) 

y =1.69(Band4/Band5) -1.22 0.49 0.09 
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4.4.3 Nitrate 

To predict nitrate concentration given particular ASD reflectance ratios, a linear model 

yielded the regression equation shown in Table 4.4.3(a). This table also includes validation 

measures to evaluate the model's accuracy, such as the determination coefficient (R2) and the 

root mean square error (RMSE). On the other hand, Table 4.4.3(b) presents the previously 

described regression model equation and validation metrics using Landsat OLI chosen ratios, 

providing a different viewpoint on the model's prediction ability. Using ASD wavelengths, the 

Ratio 465/729 nm was the best model among the calibrations. This led to a low root mean 

square error (RMSE = 0.27) and a significant correlation (R2 = 0.74) for the prediction of 

nitrate levels. In contrast, with an R2 value of 0.58 and an RMSE of 0.96, the Band4/Band5 

ratio was found to be the most appropriate model when employing Landsat OLI ratios. These 

findings indicate that in terms of accuracy in forecasting nitrate concentration, the ASD-derived 

model that is, the model based on Ratio 465/729 nm performs better than the OLI-based model. 

Higher R2 and lower RMSE values highlight the ASD model's better prediction ability in this 

investigation by pointing to a stronger association between the target variable and particular 

spectral ratios.  

For all three water quality parameters, ASD ratios consistently surpassed Landsat ratios 

over a wide range of wavelengths.  The superiority of ASD ratios over a wide range of 

wavelengths highlights their adaptability and extensive spectrum coverage, making it possible 

to derive precise models for various water quality indicators. Because of its competency in the 

Band4/Band5 area, Landsat is useful for some metrics, but its application to a larger variety of 

water quality indicators may be limited due to its absence of the wider spectrum coverage 

offered by ASD. The precise water quality metrics under consideration and the spectral features 

that best capture their fluctuation will determine whether ASD and Landsat ratio are the best 

options. 
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Table 4.8. Model validation results of nitrate with ASD ratios. 

Ratios Model R2 RMSE 

465/729 y =54.88(465/729) -2.07 0.74 0.27 

560/891 y =12.15(560/891) -1.10 0.50 0.36 

600/820 y =48.85(600/820) -2.14 0.54 0.35 

 

Table 4.9. Model validation results of nitrate with OLI ratios. 

Ratios Model R2 RMSE 

Band2/Band5 

(450-510/850-880) 

y =3.93(Band2/Band5) -0.28 0.45 0.38 

Band3/Band5 

(530-590/850-880) 

y =282.1(Band3/Band5) -2.00 0.26 0.44 

Band4/Band5 

(640-670/850-880) 

y =5.60(Band4/Band5) -3.94 0.58 0.34 
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4.5 Water Quality Indices 

Remote sensing water quality indices taken from (Mazhar et al., 2023) were applied on 

Landsat 8 image to visually represent the overall quality of Khanpur dam. 

4.5.1 Normalized Difference Chlorophyll Index (NDCI) 

Eutrophication is the main indicator of water quality, as chlorophyll-a is present in all 

types of phytoplankton thus NDCI helps to map chlorphyll content present in water.  

Formula: 

NDCI = NIR/GREEN-1 

Figure 4.5 shows that high value of 0.72 in NDCI represents presence of vegetation as 

this value is closer to 1. Meanwhile, the low value of -0.24 represents clear water as this value 

is closer to -1. From this map it is clear that if any of the eutrophication or algal blooms are 

present in the water body, they are present on the edges of the dam. This is because 

eutrophication concentrates at the dam edges due to shallower waters, limited circulation, and 

increased exposure to runoff, promoting sediment resuspension and nutrient accumulation in 

these areas. Moreover, NDCI is applied on the image to detect chlorophyll concentration. This 

approach and due to the absence of established indices in existing literature that are capable of 

directly quantifying nutrient levels, such as nitrates and phosphates, within water bodies. These 

nutrients are known to foster the proliferation of algal blooms. The utilization of NDCI serves 

as a robust method for indirectly gauging the nutrient content in water, providing valuable 

insights into potential algal bloom development. 

4.5.2 Normalized Difference Turbidity Index (NDTI) 

NDTI is used to detect turbid water with the help of remotely sensed images. Negative 

values indicate clear water, whereas positive values indicate turbid water.  

Formula:   

NDTI = Red-Green/Red+Green 
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In Figure 4.6 the values closer to the negative range represent clear water, thus, the high 

value of 0.03 in NDTI map output is closer to zero and the low value of -0.08 indicates very 

low amounts of turbidity that is present in the water body. Similarly, as in NDCI, turbidity is 

observed predominantly along the peripheries of the dam, attributed to the shallowness of the 

water in these zones, resulting in heightened reflection of the underlying soil surface. 

Additionally, the accumulation of runoff from upstream contributes to increased turbidity levels 

in these specific areas. Notably, the influx and outflow of water within the dam mitigate this 

accumulated turbidity by facilitating the removal of sediments and suspended particles, thereby 

influencing the overall water clarity in the reservoir. 
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Figure 4.5. Normalized difference chlorophyll index map of Khanpur Dam. 
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Figure 4.6. Normalized difference turbidity index map of Khanpur Dam. 
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Chapter 5  

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The findings derived from laboratory analysis of water quality parameters indicate that 

the water quality of Khanpur dam is deemed satisfactory. pH, EC and nitrates are within the 

permitted threshold set by NSDWG. While concentrations of phosphates and turbidity surpass 

the permissible limits, their magnitudes are exceedingly minute, rendering them negligible in 

practical terms.  

By comparing the regression model results, it was concluded that band ratios that 

correlate with the ground data vary from one study area to another. The analysis of selected 

wavelength ratios from ASD-hyperspectral data revealed noteworthy correlations. Specifically, 

the ratio 560/891 demonstrated a correlation coefficient (r) of ≥ 0.8 for both turbidity and 

phosphates. Meanwhile, the ratio 600/820 exhibited a correlation coefficient of r = 0.7 across 

all three parameters. Meanwhile, the ratio 465/729 yielded a substantial correlation (r = 0.86) 

for the nitrate parameter. Meanwhile, from OLI/Landsat 8 data, the red/NIR ratio yielded a 

robust correlation (r ≥ 0.7) for nitrates, phosphates, and turbidity, while the blue/NIR and 

green/NIR ratios achieved a correlation coefficient of r = 0.6. These findings underscore the 

effectiveness of specific wavelength ratios in capturing distinct water quality parameters, with 

the OLI/Landsat 8 red/NIR ratio demonstrating notable consistency across multiple 

parameters. Although satisfactory fits were obtained, validation of the models showed that 

fitted models of ASD ratios achieved more accurate results than OLI bands using RMSE, as 

ASD collects spectra in a narrower wavelength range, thus allowing more targeted and precise 

analysis of parameters and helps discern subtle variations in the water quality. Turbidity 

achieved best-fit model with a ratio 560/891nm having RMSE of 0.68 and R2 = 0.75 for ASD 

data. In comparison, the OLI ratio of Band3/Band5 gives RMSE of 1.04 and R2 = 0.41. For 
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phosphates, ASD ratio 600/820 nm having RMSE of 0.09 and R2 = 0.69 achieved better-suited 

model than OLI ratio Band4/band5 whose RMSE is 0.09 but R2 is 0.49. Similarly, for nitrates, 

ASD ratio 465/729 nm achieved R2 = 0.74 and RMSE of 0.27, whereas OLI ratio Band2/Band5 

gave R2 = 0.45 and RMSE of 0.38. 

Utilizing Landsat indices and ASD reflectance spectra, the investigation determined 

that the dam predominantly exhibits clear water. As shown in NDCI and NDTI maps 

representing water body having predominantly negative values, attribute with low turbidity and 

chlorophyll concentration. When identified, instances of turbidity or eutrophication are 

localized at the edges of the dam, and their dissipation is facilitated through the natural inflow 

and outflow of water.  

5.2 Recommendations 

1. The dam's Water quality parameters must be checked regularly using remote sensing 

and laboratory analysis. 

2. Traditional water sampling analysis methods are expensive and time-consuming, so 

there is a need of inexpensive and accurate methods. This is where the remote sensing 

methods come in handy for site-specific management and water quality variability 

mapping. 

3. Once a robust remote sensing model is developed, it should be utilized in future water 

quality monitoring. 

4. There is a compelling need to explore commercially available remote sensing data 

characterized by high spectral and spatial resolution than Landsat OLI, as such data 

may potentially enhance the development of more effective models. This exploration 

aligns to continually advance the precision and reliability of water quality assessment 

methodologies. 



 56 

5. Climate change may influence the quality of water and adaptation measures to climate 

change must be taken into account in water management plans based on this precise 

modeling. This is particularly crucial in areas where precipitation patterns may 

fluctuate, like Pakistan. 

6. The study's findings provide important new information to policymakers by 

emphasizing the need to plan how to create policies that prioritize long-term sustainable 

urban development planning in the upstream urban centers and regulate anthropogenic 

activities that impact the reservoir's water quality. With the help of these policy actions, 

the reservoir's ability to retain water will be improved, guaranteeing its continuous use 

for the benefit of future generations. 
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