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Abstract

This research tackles the issue of selecting variables and making predictions in high-dimensional

datasets by employing a range of regression techniques, such as Bayesian regression, Lasso, Elastic

Net, Orthogonal Matching Pursuit, and RANSAC Regression. The main aim is to determine the most

efficient method for forecasting a dependent variable using a large array of independent variables and

to identify the key predictors. To assess these techniques, we use synthetic data with one dependent

variable and 1627 independent variables. Each model undergoes testing and training 50 times, with

performance measured by the average Mean Squared Error (MSE) across various data splits and cross-

validation. The results have crucial implications for domains that require reliable methods for variable

selection and prediction. Future research will aim to apply these methods to real-world datasets and

further refine them to boost their predictive accuracy.

Keywords: High-dimensional data, Variable selection, Bayesian regression, Lasso, Elastic Net,

Orthogonal Matching Pursuit, RANSAC Regression, Mean Squared Error (MSE), Model evaluation,

Synthetic data.
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Chapter 1

Introduction

Infrared (IR) and Fourier transform infrared (FTIR) spectroscopy have broad applications, rang-

ing from analyzing small molecules and molecular complexes to examining cells and tissues. A re-

cent advancement in this field is the imaging of tissues, which leverages infrared microscopy and

synchrotron IR radiation. This technique allows for the detailed mapping of cellular components,

such as carbohydrates, lipids, and proteins, facilitating the identification of abnormal cells [1].FTIR

spectroscopy is increasingly utilized in protein studies, focusing on protein conformation and fold-

ing. It also provides molecular insights into protein active sites during enzymatic reactions through

reaction-induced FTIR difference spectroscopy.FTIR difference spectroscopy has become a key tool

in photosynthesis research and related fields. This method provides complementary insights to the

three-dimensional structural data obtained from X-ray diffraction or Nuclear Magnetic Resonance

(NMR). Using reaction-induced FTIR difference spectroscopy to analyze protein active sites reveals

subtle structural changes, hydrogen-bonding interactions, and proton transfer reactions, which often

elude the sensitivity of X-ray diffraction. Additionally, time-resolved techniques, now reaching fem-

tosecond resolution, enable the observation of dynamic structural changes in active protein sites in

real time. [2]. Schiff bases hold significant importance across scientific and industrial domains due to

their diverse properties and applications. In catalysis, they serve as ligands in coordination chemistry,

forming stable metal ion complexes that enhance catalytic efficiency in various organic reactions such

as hydrogenation, hydroformylation, and oxidation. In the biological realm, many Schiff bases ex-

hibit potent antimicrobial, antifungal, and anticancer properties, making them valuable in medicinal

chemistry. Their ability to bind metal ions underpins their effectiveness, prompting research into

their potential as enzyme inhibitors and therapeutic agents.[3].In materials science, Schiff bases are
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integral to developing advanced materials with tailored optical and electronic properties. They are

instrumental in synthesizing polymers and materials for electronics, photonics, and sensors, thanks to

their structural versatility and capacity to form complexes with various metal ions. The wide-ranging

applications of Schiff bases in catalysis, biological research, and material science underscore their sig-

nificance in both academic and industrial settings, highlighting their role as fundamental compounds

in organic chemistry.[4].

The retention factor is an essential parameter in chromatography, crucial for monitoring chemical

reactions and identifying and analyzing compounds. It quantifies the distance a compound travels on

the stationary phase relative to the solvent front, aiding chemists in tracking reaction progress. By

comparing the retention factors of different substances, scientists can identify unknown compounds

and evaluate sample purity. This straightforward yet powerful metric provides vital insights into

compound behavior during separation processes, making it indispensable for routine analyses and

advanced research in various chemistry fields. [5]. Regression analysis is a statistical technique used

to determine the relationship between a dependent variable and one or more independent variables.

This method allows for the prediction of a continuous dependent variable based on the values of

several independent variables. [6].The lasso (least absolute shrinkage and selection operator) method

[7] is a novel approach for estimation in linear models that reduces some coefficients to zero, aiming

to preserve the beneficial aspects of subset selection. Subsequently, Zou and Hastie introduced the

elastic net, which promotes a grouping effect where strongly correlated independent variables are

likely to be included or excluded together. Simulation studies have demonstrated that the elastic

net surpasses the lasso in performance. Both of these techniques are variable selection methods that

estimate parameters based on penalty functions and tuning parameters[8].Bayesian regression is a

statistical method that combines prior knowledge with observed data to estimate model parameters.

Unlike traditional regression, which gives single value estimates, Bayesian regression provides full

distributions for parameters, highlighting the uncertainty in these estimates. It starts with a prior

distribution that represents initial assumptions about the parameters[9] As new data is observed, this

prior is updated via the likelihood function to form posterior distributions, which reflect revised beliefs.

For making predictions, Bayesian regression uses these posterior distributions to produce a predictive

distribution, accounting for uncertainty. For variable selection, Bayesian regression uses sparse priors,

like spike-and-slab or Laplace priors, which push irrelevant variable coefficients towards zero, making
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it clear which variables are unimportant. Moreover, Bayesian methods can compare different models

using criteria like the Bayesian Information Criterion (BIC) or Bayes factors, considering both model

accuracy and simplicity. This method is especially useful with small datasets or when prior information

is important, such as in finance, medicine, and environmental studies. In summary, Bayesian regression

offers a comprehensive approach for prediction and variable selection, improving both the performance

and understanding of the model[10].Orthogonal matching pursuit (OMP)[11] is a widely used feature

selection method because it is simple and fast. OMP is typically used for binary classification and

often picks only one feature from a set of correlated features. This happens because each new feature

is chosen based on the residuals that are orthogonal to previously selected features. However, since

many important features are strongly correlated, OMP might miss good combinations of features in

these cases[12].RANSAC (RANdom SAmple Consensus) regression is a robust statistical method used

to estimate model parameters by iteratively selecting random subsets of the data and fitting a model

to these subsets. This approach is particularly effective in the presence of outliers. The algorithm

repeatedly selects a random sample of the data points, fits a model to this subset, and then determines

how many of the remaining data points fall within a certain distance (inliers) of this model. The process

is repeated for a predefined number of iterations, and the model with the highest number of inliers

is chosen as the final model.[13] For prediction, RANSAC uses this robust model to make predictions

on new data, effectively minimizing the impact of outliers on the prediction accuracy. In terms

of variable selection, RANSAC can be combined with other techniques to identify the most relevant

variables. By fitting models to different subsets of variables and evaluating their performance in terms

of inliers, RANSAC helps to highlight which variables consistently contribute to robust models. This

dual capability of handling outliers and aiding in variable selection makes RANSAC a powerful tool

in predictive modeling.[14] Infrared (IR) and Fourier transform infrared (FTIR) spectroscopy have

extensive applications, from small molecule analysis to tissue imaging, enhanced by techniques like

infrared microscopy and synchrotron IR radiation for detailed cellular mapping. FTIR is increasingly

used to study protein structures and dynamics, offering insights into protein folding and enzyme

active sites through reaction-induced FTIR difference spectroscopy, which complements structural

data from X-ray diffraction and NMR. Schiff bases, essential in catalysis, biological research, and

material science, form stable metal complexes, demonstrating significant antimicrobial and anticancer

properties, and are crucial in developing advanced materials. The retention factor in chromatography
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is vital for tracking chemical reactions and assessing sample purity. Regression analysis, including

advanced methods like lasso and elastic net, facilitates variable selection and prediction, with Bayesian

regression incorporating prior knowledge for enhanced model performance. Orthogonal matching

pursuit (OMP) and its Bayesian extension (BOMP) are efficient feature selection methods, although

they may struggle with correlated features. RANSAC regression offers robust parameter estimation

and prediction, especially in the presence of outliers, by fitting models to random data subsets, making

it a powerful tool for predictive modeling and variable selection.
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Chapter 2

Literature Review

The proliferation of high-dimensional datasets, where the number of variables (features) significantly

exceeds the number of observations, presents unique challenges and opportunities in various scien-

tific and practical domains. High-dimensional data are common in fields such as genomics, pro-

teomics, finance, text mining, and image analysis. The primary challenges include overfitting, compu-

tational complexity, and multicollinearity, which necessitate robust prediction and variable selection

techniques. This literature review explores the advancements in machine learning techniques for

high-dimensional data, focusing on LASSO, Elastic Net, Bayesian Regression, Orthogonal Matching

Pursuit (OMP), RANSAC, and other relevant methods. LASSO (Least Absolute Shrinkage and Se-

lection Operator) regression, introduced [7], has been a cornerstone in statistical learning, especially

for high-dimensional data. LASSO performs both variable selection and regularization to enhance

the prediction accuracy and interpretability of statistical models. By imposing an L1 penalty on

the coefficients, LASSO effectively shrinks some coefficients to zero, thus selecting a simpler model.

Applied LASSO to genome-wide association studies,[15] demonstrating its capability to handle the

high-dimensional genetic data by selecting significant gene expression predictors related to cancer.

Extended LASSO[16] to penalized regression models for genome-wide association studies, illustrating

its effectiveness in identifying genetic variants associated with complex traits. The use of LASSO in

financial econometrics,[17] particularly for asset pricing and portfolio selection. Their study showed

that LASSO could handle the multicollinearity among financial predictors, leading to more stable and

interpretable models. Tibshirani further explored LASSO in financial applications, highlighting its use

in modeling asset returns and volatility. Sun et al utilized LASSO for environmental modeling, specif-

ically in predicting air quality based on high-dimensional atmospheric data. The study highlighted
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LASSO’s ability to select relevant predictors from a large set of environmental variables.

Elastic Net,[8], combines the penalties of LASSO (L1) and Ridge Regression (L2). This dual

regularization approach addresses the limitations of LASSO, particularly when dealing with highly

correlated variables.Zou and Hastie’s seminal paper demonstrated Elastic Net’s superior performance

over LASSO in genomic studies involving correlated gene expressions. The method’s ability to se-

lect groups of correlated variables made it particularly useful in these contexts.Applied Elastic Net

[18]to survival analysis with microarray data, highlighting its effectiveness in selecting relevant genes

associated with patient survival times.Elastic Net for analyzing near-infrared spectroscopy data,[19]

finding it effective for handling collinearity and improving prediction accuracy.The use of Elastic

Net in chemometrics [20]for variable selection and prediction in multiblock data analysis, showcas-

ing its versatility in handling complex chemical data.De Mol et al. Elastic Net in macroeconomic

forecasting,[21] demonstrating its ability to handle multicollinearity among economic indicators and

improve forecast accuracy.Applied Elastic Net to estimate economic models with a large number of

predictors, highlighting its robustness in selecting relevant variables in high-dimensional settings.[22]

Bayesian regression integrates prior distributions with observed data to form posterior distri-

butions, offering a probabilistic framework for variable selection and prediction in high-dimensional

datasets. This approach naturally handles multicollinearity and uncertainty in model parameters.Applied

Bayesian methods to air quality data,[23] showcasing their robustness in managing complex and noisy

datasets. Bayesian regression allowed the incorporation of prior knowledge about environmental pro-

cesses, improving model predictions.The application of Bayesian regression in ecological modeling,[24]

highlighting its flexibility in handling high-dimensional ecological data and providing robust parame-

ter estimates. Bayesian regression for economic forecasting,[25] demonstrating its ability to improve

model accuracy by incorporating prior distributions on economic indicators.A comprehensive overview

of Bayesian econometrics, [26]discussing various Bayesian techniques for high-dimensional data and

their applications in economic modeling.Bayesian regression in genetic association studies,[27] demon-

strating its power in identifying significant genetic variants associated with complex traits by incor-

porating prior biological knowledge. Bayesian variable selection methods for genome-wide association

studies,[28] highlighting ability to manage high-dimensional genetic data and improve the detection

of relevant genetic markers.

OMP is a greedy algorithm that incrementally selects the most significant variables to construct a
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sparse solution. It is particularly useful in signal processing and computer vision for sparse signal recov-

ery and feature selection.OMP in the context of compressive sensing,[29] demonstrating its efficiency

in reconstructing signals from incomplete measurements. Their work highlighted OMP’s capability

to recover sparse signals accurately.Further explored the theoretical foundations of OMP,[30] provid-

ing a rigorous analysis of its performance in sparse signal recovery and showcasing its effectiveness

in high-dimensional settings. Rubinstein et al. OMP’s utility in sparse coding for image denoising

and reconstruction tasks.[31] This study highlighted OMP’s ability to select the most relevant im-

age features, improving the quality of image reconstruction.Applied OMP to image classification[32],

showcasing its effectiveness in selecting a sparse set of features that accurately represent the image

content.OMP for gene expression analysis,[33] demonstrating its ability to select a sparse set of rele-

vant genes from high-dimensional genetic data. This work highlighted OMP’s potential in identifying

significant genetic markers associated with complex traits.

RANSAC,[34], is known for its robustness to outliers, making it highly effective in fields such as

computer vision and robotics. This iterative method estimates parameters of a mathematical model

from a dataset containing outliers, selecting the best subset of data points that fit the model.Applied

RANSAC [35] in wide-baseline stereo, significantly improving robust model fitting. This study demon-

strated RANSAC’s effectiveness in handling datasets with a high proportion of outliers.RANSAC

for image stitching,[36] showing its robustness in estimating homographies between images. This

work highlighted RANSAC’s capability to accurately fit models in the presence of noise and out-

liers.RANSAC for robust 3D mapping and localization in autonomous navigation systems.[37]. This

study showcased RANSAC’s ability to accurately model environments with outliers, improving the

reliability of robotic navigation. RANSAC for automated cartography, demonstrating its robustness

in model fitting applications.[34] This seminal work remains a cornerstone in the literature for outlier-

resistant modeling techniques.Pitiot et al. Applied RANSAC to medical image segmentation,[38]

illustrating its robustness in identifying anatomical structures from noisy and incomplete data. Their

study highlighted RANSAC’s potential in improving the accuracy of medical imaging applications.

In addition to LASSO, Elastic Net, Bayesian Regression, OMP, and RANSAC, other machine

learning techniques have also been widely used for prediction and variable selection in high-dimensional

datasets. These include Random Forests, Support Vector Machines (SVM), and Principal Component

Analysis (PCA)-based methods.
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Random Forests,[39], are ensemble learning methods that build multiple decision trees and aggre-

gate their predictions. They are particularly effective in high-dimensional settings due to their ability

to handle large feature spaces and provide variable importance measures.

SVMs, developed [40], are powerful classification and regression tools that can handle high-

dimensional data by finding the optimal hyperplane that separates data points into different classes.

SVMs with feature selection methods have been widely applied in various domains.

PCA, introduced by[41] and Hotelling[42], is a dimensionality reduction technique that transforms

high-dimensional data into a lower-dimensional space while preserving most of the variance. PCA-

based methods have been extensively used for variable selection and prediction in high-dimensional

datasets.

The reviewed literature underscores the versatility and effectiveness of LASSO, Elastic Net, Bayesian

Regression, OMP, RANSAC, and other relevant machine learning techniques in handling high-dimensional

data across various domains. Each technique offers unique advantages, making them suitable for differ-

ent types of data and research objectives. The success of these methods in previous studies provides a

solid foundation for their application in contemporary research, including high-dimensional predictive

modeling and variable selection in your study.

This literature review highlights the continuous advancements in machine learning techniques and

their critical role in addressing the challenges posed by high-dimensional datasets. By leveraging these

methods, researchers can achieve more accurate predictions, better variable selection, and ultimately,

more insightful and interpretable models.
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Chapter 3

Methodology

3.1 LASSO

The least absolute shrinkage and selection operator (Lasso) [7] is a method used to estimate parameters

in a linear model. It operates by minimizing the residual sum of squares in addition to the sum of

the absolute values of the coefficients. This shrinkage technique sets some coefficients to zero, thereby

maintaining the beneficial aspects of variable selection. The Lasso estimate, denoted as β̃, is defined

through this optimization process:

β̃j(L) = argmin
β

 n∑
i=1

yi − β0 −
k∑

j=1

βjxij

2

+ λ

k∑
j=1

|βj |

 (3.1)

This can also be expressed as:

β̂lasso = argmin
β

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

, (3.2)

subject to
p∑

j=1

|βj | ≤ t, (3.3)

Lasso applies a constant component λ to each coefficient, truncating them at zero, which makes it

a forward-looking variable selection approach for regression. It minimizes the residual sum of squares

while ensuring the sum of the absolute values of the coefficients remains below a specified threshold.

Originally developed for least squares regression, Lasso can be extended to various other models.
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By integrating the benefits of ridge regression and subset selection, Lasso enhances both prediction

accuracy and model interpretability. In cases where there is high correlation among predictors, Lasso

selects one predictor and reduces the others to zero. This method decreases the variability of the

estimates by setting some coefficients exactly to zero, resulting in models that are straightforward to

interpret [43].

3.2 Elastic Net

Lasso is not resilient to extreme correlations among predictors and exhibits three main drawbacks.

Here, p denotes the number of predictor variables, and n represents the number of response variables

[44].

1. When p is significantly larger than n, Lasso can select fewer than n variables, leading to an

overly sparse model.

2. If predictor variables are grouped with high interaction within each group, Lasso tends to select

only one variable from each group.

3. In the presence of collinear variables, Lasso’s estimates resemble those of ridge regression,

resulting in models with subpar predictive accuracy.

To overcome these limitations, Zou and Hastie introduced an enhanced method known as Elastic

Net [8], which merges the properties of Lasso and ridge regression. Elastic Net utilizes a combination

of L1-penalty and L2-penalty, offering a more robust variable selection technique.

βelasticnet = argmin


∥Y −Xβ∥

+λ1

∑
j

|βj |+ λ2

∑
j

β2
j

 (3.4)

where

λ2

∑
j

|βj |+ λ2

∑
j

β2
j ≤ t

3.3 Bayseian Regression

Bayesian regression is a statistical method that incorporates Bayesian principles into regression anal-

ysis. Unlike traditional regression methods, which provide point estimates of parameters, Bayesian

regression estimates the entire distribution of parameters, allowing for more nuanced uncertainty

quantification.[45]
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In Bayesian regression, the process begins by assigning prior distributions to the parameters,

representing initial beliefs about their values before any data is observed. The likelihood function

then quantifies the probability of observing the data given these parameters. Using Bayes’ theorem,

the prior distribution is combined with the likelihood to form the posterior distribution, which updates

the beliefs about the parameters after considering the observed data. Finally, predictions are made

by integrating over the posterior distribution, thus accounting for the uncertainty in the parameter

estimates.

Mathematical Formulation:For a simple linear regression model:

y = Xβ + ϵ (3.5)

where y is the response vector, X is the matrix of predictors, β is the vector of coefficients, and ϵ is

the error term assumed to be normally distributed N(0, σ2).[46] Suppose we place a prior distribution

on β:

β ∼ N(µ0,Σ0) (3.6)

and on σ2:

σ2 ∼ Inverse-Gamma(α0, β0) (3.7)

Likelihood:The likelihood of the data given the parameters is:

p(y | X,β, σ2) = N(y | Xβ, σ2I) (3.8)

Posterior:Using Bayes’ theorem, the posterior distribution is proportional to the product of the

prior and the likelihood:

p(β, σ2 | y,X) ∝ p(y | X,β, σ2)p(β)p(σ2) (3.9)

Prediction:To make predictions for a new data point xnew, we use the posterior predictive distri-

bution:

p(ynew | xnew, y,X) =

∫
p(ynew | xnew, β, σ

2)p(β, σ2 | y,X) dβ dσ2 (3.10)

High-Dimensional Data and Variable Selection:In high-dimensional settings (where the number of

predictors p is much larger than the number of observations n), Bayesian regression can be extended

to perform variable selection and improve prediction accuracy.[47]
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Shrinkage Priors:Shrinkage priors, such as the Laplace prior (leading to Bayesian Lasso) or the

Horseshoe prior, can be used to encourage sparsity in the parameter estimates:

Bayesian Lasso:Places a Laplace prior on the coefficients, which can shrink some coefficients to

exactly zero.

βj ∼ Laplace(0, b) (3.11)

Horseshoe Prior:Particularly effective in high-dimensional scenarios due to its heavy tails and

strong shrinkage towards zero.

βj ∼ N(0, λ2
jτ

2) (3.12)

λj ∼ C+(0, 1), τ ∼ C+(0, 1) (3.13)

Model Averaging and Selection:Bayesian model averaging (BMA) considers multiple models and

averages their predictions weighted by their posterior probabilities. This approach accounts for model

uncertainty and provides robust predictions.[48]

Advantages:1.Uncertainty Quantification:Provides full posterior distributions for the parameters,

allowing for better uncertainty quantification.2.Regularization:Naturally incorporates regularization

through priors, preventing overfitting in high-dimensional settings.3.Variable Selection:Can perform

variable selection through appropriate priors, leading to simpler and more interpretable models.

Bayesian regression offers a powerful framework for regression analysis, especially in high-dimensional

data sets. By leveraging prior distributions and Bayesian inference, it provides robust predictions,

uncertainty quantification, and effective variable selection.[49] This makes it particularly valuable in

settings where traditional regression methods may struggle.

3.4 Orthogonal Matching Persuit(OMP)

Orthogonal Matching Pursuit (OMP)[12] is a greedy algorithm used for sparse approximation and

variable selection in high-dimensional data sets. It is particularly useful when dealing with linear

models where the number of predictors (p) is much larger than the number of observations (n).[50]

OMP aims to represent a signal (or response variable) as a sparse linear combination of a dictionary

of basis functions (or predictor variables).[51].OMP selects the most relevant predictors iteratively,

adding one predictor at a time to improve the model fit.
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Start with an empty set of selected predictors and initialize the residual (the difference between the

observed response and the current model prediction) to the observed response.[52].At each step, select

the predictor that has the highest correlation with the current residual.Add the selected predictor to

the set of chosen predictors and update the coefficients by solving a least squares problem restricted

to the selected predictors.[53].Update the residual to reflect the new approximation.The algorithm

stops when a predefined number of predictors have been selected or when the residual error is below

a certain threshold.

Given a response vector y ∈ Rn and a predictor matrix X ∈ Rn×p, the goal is to approximate y

using a sparse linear combination of the columns of X.[54]

R0 = y, S0 = ∅, β = 0 (3.14)

For k = 1, 2, . . . , until stopping criterion is met:

jk = argmax
j∈{1,...,p}

∣∣XT
j R

k−1
∣∣ (3.15)

Here, Xj is the j-th column of X.

Sk = Sk−1 ∪ {jk} (3.16)

Solve the least squares problem:

β̂S = argmin
βS

∥y −XSβS∥22 (3.17)

where XS is the submatrix of X with columns indexed by S.

Rk = y −XS β̂S (3.18)

The algorithm stops when the number of selected predictors reaches a predefined limit kmax or

when the residual norm ∥Rk∥2 is below a certain threshold.[55]

Prediction and Variable Selection:Once the model is built, predictions for new data can be made

using the selected predictors and their corresponding coefficients.OMP inherently performs variable

selection by selecting a subset of predictors that contribute most to reducing the residual error.[56]

In high-dimensional settings, where the number of predictors (p) greatly exceeds the number of

observations (n), Orthogonal Matching Pursuit (OMP) offers several advantages, making it a valuable

13



technique for regression and variable selection tasks.OMP[57] is particularly beneficial due to its ability

to efficiently find sparse solutions. This efficiency is crucial when the underlying true model is expected

to involve only a few predictors out of many available. In high-dimensional data, sparsity helps in

reducing the complexity of the model, making it more manageable and easier to interpret.

OMP’s computational efficiency is another key advantage, especially when compared to exhaustive

search methods. High-dimensional datasets pose significant computational challenges, and methods

that can quickly identify the most relevant predictors without exploring all possible combinations are

highly desirable. OMP achieves this by iteratively selecting the predictor that most improves the

model, leading to a substantial reduction in computational time and resources.

Furthermore, the interpretability of models generated by OMP is a significant benefit. By selecting

a small subset of predictors, OMP produces models that are easier to understand and interpret.

This is particularly important in fields such as bioinformatics and finance, where understanding the

relationship between variables is as crucial as the prediction itself. An interpretable model can provide

insights into the underlying mechanisms driving the observed data, thereby facilitating better decision-

making and hypothesis generation.

In summary, OMP’s ability to efficiently find sparse solutions, its computational efficiency, and

the interpretability of its models make it a powerful tool in high-dimensional data analysis. These

attributes allow researchers and analysts to tackle complex datasets effectively, extracting meaningful

patterns and relationships without being overwhelmed by the sheer volume of variables. As a result,

OMP continues to be a preferred method in high-dimensional settings, offering a balance between

performance and practicality.

Orthogonal Matching Pursuit (OMP) stands out for its efficiency in sparse approximation and

variable selection, particularly in high-dimensional datasets where traditional methods struggle. Its

greedy algorithmic approach ensures computational feasibility by iteratively selecting predictors that

best reduce residual error, making it suitable for scenarios with numerous predictors but relatively

few relevant ones. OMP’s ability to produce interpretable models is another key advantage, as it

emphasizes a sparse set of predictors, which enhances model transparency and interpretability.

However, OMP is not without limitations. Its greedy nature, while efficient, may not always

guarantee finding the globally optimal solution, potentially leading to suboptimal model performance.

The effectiveness of OMP also heavily relies on the stopping criterion used and the quality of initial
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predictors chosen. These factors can influence the model’s accuracy and stability, impacting its prac-

tical applicability across different datasets and problem domains. Despite these limitations, OMP

remains a valuable tool in fields like signal processing, machine learning, and statistics, where balanc-

ing computational efficiency with interpretability is critical in analyzing complex and high-dimensional

data.[58]

Orthogonal Matching Pursuit (OMP) is a highly effective technique for sparse approximation and

variable selection, making it especially valuable in high-dimensional contexts. This method iteratively

selects predictors that most effectively minimize the residual error, constructing models that are both

interpretable and computationally efficient. OMP’s iterative approach ensures that the most relevant

variables are chosen, providing a clear and concise model that avoids the complexity and overfitting

often associated with high-dimensional data.

In practical applications, OMP has shown significant utility across various domains such as signal

processing, machine learning, and statistics. In signal processing, for example, OMP is employed to

identify the most significant components of a signal, enabling efficient compression and noise reduction.

In machine learning, it helps in feature selection, ensuring that models are not only accurate but also

interpretable by focusing on the most critical features. In statistics, OMP aids in identifying key

variables in large datasets, facilitating more robust and reliable inferential analyses.[59]

One of the primary advantages of OMP is its ability to handle scenarios where the number of

predictors (p) greatly exceeds the number of observations (n). This high-dimensional setting is com-

mon in modern data analysis, where datasets often contain thousands of variables but relatively few

observations.[60] OMP’s sparse solution approach is particularly well-suited for these situations, as it

efficiently identifies the few predictors that truly matter, thereby reducing the dimensionality of the

problem and enhancing the model’s generalizability.

Overall, Orthogonal Matching Pursuit stands out as a robust method for high-dimensional data

analysis. Its capacity to produce sparse, interpretable, and computationally efficient models makes

it an indispensable tool in the data scientist’s arsenal, applicable across a broad range of fields and

applications.
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3.5 RANSAC (RANdom SAmple Consensus) Regression

RANSAC, short for RANdom SAmple Consensus,[61] is an iterative method for robust regression,

particularly effective in the presence of outliers. It is used to estimate the parameters of a model from

a data set containing outliers. RANSAC is popular in computer vision and other applications where

robustness to noise is essential.[14]

Random Sample Consensus (RANSAC) is a robust algorithm used for fitting models to data con-

taminated by outliers. Its foundational concepts include random sampling, consensus determination,

iterative refinement, and robustness against outliers.

RANSAC begins by randomly selecting a subset of data points to form an initial model hypothesis.

This random sampling allows the algorithm to explore potential models efficiently across the dataset.

Next, the model’s performance is evaluated by measuring how well it fits the remaining data points,

typically using a predefined threshold distance. Data points that fit the model within this threshold

form the consensus set.

The algorithm then iterates through a fixed number of iterations or until it finds a model that

meets predefined criteria. During each iteration, RANSAC refines the model by re-fitting it to the

consensus set—those points that fit the model well. This iterative process continues until a model

with a sufficient number of inliers, points that fit well with the model, is found.

A critical aspect of RANSAC’s effectiveness lies in its robustness against outliers. By focusing

on the consensus set rather than all data points, RANSAC can tolerate a significant proportion of

outliers without compromising the model’s accuracy. This property makes it particularly useful in

practical scenarios where datasets may contain noise or erroneous data points.

To implement RANSAC, one initializes parameters such as the number of iterations N , the thresh-

old distance t, and the minimum number of inliers d. During each iteration, the algorithm performs

random sampling, model fitting, consensus set determination, and model validation based on the num-

ber of inliers found. The stopping criterion triggers the algorithm to halt either after a fixed number

of iterations or when a model with a satisfactory number of inliers is identified, ensuring efficient and

effective model fitting in the presence of outliers.

Consider a dataset {(xi, yi)}ni=1 and a linear model y = Xβ. The process begins with initialization,

where the number of iterations N , the threshold t, and the minimum number of inliers d are set. The
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iteration phase then proceeds for k = 1 to N , systematically applying the algorithm to refine the

model.Randomly select a subset

Sk ⊆ {1, . . . , n}, |Sk| = m (3.19)

Sk ⊆ {1, . . . , n} with |Sk| = m (minimal subset, typically m points for a linear model).

Fit the model parameters βk using Sk:

βk = (XT
Sk
XSk

)−1XT
Sk
ySk

(3.20)

Compute the set of inliers Ik where the residuals are below the threshold t:

Ik =
{
i | |yi − xT

i βk| < t
}

(3.21)

If |Ik| > d : βk = (XT
Ik
XIk)

−1XT
Ik
yIk (3.22)

Stop after N iterations or if a satisfactory model is found. (3.23)

In predictive modeling, once optimal model parameters β are determined through techniques like

RANSAC, predictions for new data points xnew are straightforwardly computed using the linear model

ŷ = xT
newβ. This approach ensures that the model can generalize well to unseen data, leveraging the

learned coefficients to make accurate predictions, as outlined in various studies [13].

Regarding variable selection, RANSAC itself doesn’t directly perform this task but rather focuses

on identifying the best subset of data points (inliers) that align well with the model, effectively

discounting outliers [62]. This characteristic makes RANSAC valuable in scenarios where robustness to

outliers is crucial, ensuring that the selected subset represents the underlying data pattern accurately.

In scenarios with a high number of predictors (p) relative to observations (n), RANSAC’s pri-

mary strength lies in its robust regression capabilities rather than direct variable selection. Despite

this, RANSAC remains a valuable tool in broader data analysis pipelines tailored to handle outlier-

contaminated data. Its adaptability proves advantageous across diverse fields such as finance, en-

gineering, and environmental sciences[63]. By incorporating RANSAC into these workflows, both

researchers and practitioners can effectively mitigate the disruptive influence of outliers. This inte-

gration not only safeguards the robustness of models but also preserves their predictive accuracy in
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complex, high-dimensional datasets. RANSAC’s ability to identify and leverage inliers ensures that

the selected subset accurately reflects the underlying data structure, thereby enhancing the reliability

and applicability of statistical analyses in real-world scenarios.

In assessing its advantages, RANSAC stands out for its robustness in handling datasets with a

substantial presence of outliers, making it a reliable choice across various domains. Its straightforward

methodology and intuitive approach contribute to its appeal, particularly in applications such as

computer vision where fitting geometric models is paramount for accurate object recognition and

scene understanding. These qualities underscore RANSAC’s effectiveness in scenarios demanding

resilience against noisy data points that could otherwise skew model outcomes.

However, RANSAC also presents notable limitations that warrant consideration. Its computational

demands can become prohibitive when applied to large-scale datasets, requiring substantial computing

resources and time to execute. Moreover, the algorithm’s performance hinges significantly on parame-

ter settings such as the number of iterations, distance threshold, and minimum required inliers. Poor

choices in these parameters may compromise the model’s accuracy and efficiency, necessitating careful

tuning and validation during implementation.

Critically, while RANSAC excels in robust regression tasks, it lacks inherent capabilities for variable

selection in high-dimensional settings where the number of predictors far exceeds the sample size. This

limitation restricts its utility in contexts requiring explicit feature subset identification, where other

methods like Lasso or Elastic Net may be more suitable due to their specific regularization mechanisms.

Therefore, while advantageous in its robustness and simplicity, practitioners must navigate RANSAC’s

computational demands and parameter sensitivity judiciously, particularly in applications demanding

precise model selection and performance optimization amidst complex data landscapes.

RANSAC emerges as a robust regression technique uniquely suited for scenarios characterized by

the presence of outliers within the data. Its iterative approach involves fitting models to randomly

sampled subsets of the dataset and subsequently validating these models against a consensus set of

inliers. This methodology enables RANSAC to effectively identify and prioritize data points that align

with the modeled pattern, thereby mitigating the influence of outliers that could otherwise distort

traditional regression outputs.

While primarily recognized for its robust regression capabilities rather than variable selection,

RANSAC can be integrated into broader data analysis pipelines aimed at managing high-dimensional
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datasets. By leveraging its ability to isolate inlier data, RANSAC contributes to the creation of

more reliable and interpretable models in complex environments. This integration is particularly

advantageous in applications where data integrity is crucial, such as in computer vision tasks involving

geometric model fitting or in environmental studies dealing with noisy sensor data.

Nevertheless, the utility of RANSAC is tempered by practical considerations. Its effectiveness

hinges on the careful selection and tuning of parameters, including the number of iterations and the

threshold for identifying inliers. Moreover, while it excels in handling outliers, RANSAC’s compu-

tational demands may pose challenges when applied to large-scale datasets, necessitating efficient

implementation strategies and computational resources.

In conclusion, while RANSAC’s primary strength lies in robust regression, its versatility allows it

to play a pivotal role within comprehensive data analysis frameworks. By combining RANSAC with

complementary techniques tailored to specific data characteristics, researchers and practitioners can

harness its benefits to achieve resilient and accurate modeling outcomes across diverse application

domains..[64]

Prediction and Variable Selection using RANSAC with Ridge Regression in High-Dimensional

Data:

In high-dimensional datasets, where the number of predictors p is much larger than the number of

observations n, traditional regression methods can struggle due to multicollinearity and overfitting.[65]

Combining RANSAC (RANdom SAmple Consensus) with ridge regression can help address these

issues by providing robust model estimation while handling multicollinearity through regularization.

Ridge Regression

Ridge regression[66] adds a penalty to the least squares estimate to shrink the coefficients, thus

handling multicollinearity and preventing overfitting. The ridge regression objective function is:

β̂ = argmin
β

(
∥y −Xβ∥22 + λ∥β∥22

)
where λ is the regularization parameter.

Now,Combining RANSAC with Ridge Regression.By combining RANSAC with ridge regression,

we can achieve robust model fitting in the presence of outliers and multicollinearity.[67] The combined

approach can be summarized as follows:
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N, t, d, λ (3.24)

Set the number of iterations N , the threshold distance t, the minimum number of inliers d, and

the regularization parameter λ.

Sk ⊆ {1, . . . , n}, |Sk| = m (3.25)

Randomly select a subset Sk of the data. Fit a ridge regression model to the selected subset:

βk = argmin
β

(
∥ySk

−XSk
β∥22 + λ∥β∥22

)
(3.26)

Determine the set of inliers Ik where the residuals are below the threshold t:

Ik =
{
i | |yi − xT

i βk| < t
}

(3.27)

If the number of inliers |Ik| is greater than d, re-fit the ridge regression model using all inliers:

If |Ik| > d : βk = argmin
β

(
∥yIk −XIkβ∥22 + λ∥β∥22

)
(3.28)

Stop after N iterations or if a satisfactory model is found. (3.29)

To make predictions for new data points xnew,[68] use the final model parameters β:

ŷ = xT
newβ

In the context of combining RANSAC with ridge regression for robust model fitting and regulariza-

tion, the integration of variable selection strategies enhances the flexibility and interpretability of the

modeling process. One effective approach involves leveraging shrinkage priors, such as those offered by

LASSO or elastic net regularization, in place of traditional ridge regression. These methods prioritize

the inclusion of only the most relevant predictors by imposing penalties that drive less influential

coefficients towards zero, thereby promoting sparsity within the model.
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Additionally, post-processing techniques further refine the variable selection process after isolating

inliers through RANSAC. Once the subset of data points that align with the modeled pattern is

identified, methods like LASSO or forward selection can be applied to the reduced dataset. This step

focuses on selecting predictors that contribute significantly to the model’s predictive power, enhancing

its interpretability by emphasizing the most informative variables.

By combining these strategies, researchers and practitioners can effectively tailor their modeling

approaches to suit the characteristics of complex datasets, particularly those plagued by outliers or

high-dimensional features. This integrated approach not only improves the robustness of the model

against outliers but also streamlines the selection of variables, ensuring that the resulting models are

both accurate and parsimonious in their representation of the underlying data relationships.
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Chapter 4

Results

4.1 Lasso Regression Analysis

Lasso regression, or Least Absolute Shrinkage and Selection Operator, is a robust linear regression

method that enhances both prediction accuracy and interpretability by performing variable selection

and regularization simultaneously. By introducing a penalty (lambda) on the regression coefficients,

Lasso effectively shrinks some coefficients to zero, excluding them from the model and thus simplifying

the model by retaining only the most significant predictors. To prepare the data for Lasso regression,

the dataset was first loaded and then separated into the dependent variable (Y) and independent

variables (X). To ensure a robust evaluation, the dataset was split into training and testing sets 50

times, with each split using 80 percent of the data for training and 20 percent for testing.

The Lasso regression model was tuned by exploring a range of lambda values: [0.1, 0.5, 1.0, 1.5,

2.0]. For each lambda value, the Mean Squared Error (MSE) was evaluated over the 50 train-test

splits to determine the best lambda. For each of the 50 train-test splits, a Lasso model was trained

using the training data for each lambda value, then used to predict the dependent variable on the test

data. The MSE was computed for each lambda value on the test data, and the average MSE across

all 50 splits for each lambda value was then calculated to assess the model’s performance.

The average MSE for both training and testing across all lambda values was found to be 0.0226,

indicating that the Lasso model performs well in predicting the dependent variable. Using LassoCV,

which performs cross-validation to find the optimal lambda, the best lambda value was determined to

be 0.2836. This value represents the best balance between model complexity and prediction accuracy.

The Lasso model with the best lambda selected the following important variables with their respective
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coefficients: Feature 354 with a coefficient of -0.1117, Feature 601 with a coefficient of 0.0523, Feature

606 with a coefficient of 0.0140, and Feature 1483 with a coefficient of -0.0027.

The low average MSE values for both training and testing indicate that the Lasso model is effec-

tive in predicting the dependent variable with high accuracy. The optimal lambda value of 0.2836,

determined through cross-validation, ensures an appropriate trade-off between model complexity and

prediction accuracy, thereby preventing overfitting. The identified important features, indicated by

their non-zero coefficients, provide valuable insights into the most influential predictors in the dataset.

These features have a significant impact on the dependent variable, highlighting key underlying re-

lationships within the data. This integration of variable selection and regularization makes Lasso a

powerful tool for high-dimensional data analysis, offering both precision and interpretability in model

building.

Figure 4.1: "Plot of Lasso regression coefficients showing the sparse selection of important features,
with most coefficients shrunk to zero and only a few significant non-zero values indicating key predic-
tors."
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This plot displays the coefficients of features selected by a Lasso (Least Absolute Shrinkage and

Selection Operator) regression model. The x-axis denotes the feature index, spanning from 0 to

roughly 1600, while the y-axis shows the coefficient values assigned to these features. In this plot,

the majority of feature coefficients are exactly zero, a hallmark of Lasso regression. Lasso performs

both variable selection and regularization, improving the prediction accuracy and interpretability of

the statistical model it generates. By imposing a penalty on the absolute values of the coefficients,

Lasso effectively reduces less important feature coefficients to zero, retaining only the most significant

ones with non-zero values. There are several notable non-zero coefficients in the plot: A positive

coefficient around feature index 500, indicating this feature positively influences the target variable.

A significant negative coefficient around feature index 400, indicating this feature has a strong negative

impact on the target variable. A few smaller positive and negative coefficients around other feature

indices, indicating other important features, albeit to a lesser extent. This plot clearly illustrates

Lasso’s ability to select a sparse set of important features while eliminating the rest, resulting in a

more interpretable model.
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Figure 4.2: "Bar plot of Lasso regression coefficients showing the most influential features. Positive
bars indicate features with a positive impact, while negative bars indicate a negative impact on the
target variable. Lasso’s sparsity highlights only the most critical predictors."

This graph displays the coefficients of important features identified by a Lasso (Least Absolute

Shrinkage and Selection Operator) regression model. Each bar on the x-axis corresponds to a specific

feature, indexed numerically from 36 to 1609, while the y-axis represents the coefficient values assigned

to these features. The bars illustrate the magnitude and direction of each feature’s impact on the target

variable, with positive coefficients extending upwards indicating a positive influence, and negative

coefficients extending downwards indicating a negative influence. The height of each bar reflects the

strength of this relationship. Lasso regression is known for its ability to perform feature selection by

shrinking less important feature coefficients to zero, leaving only the most significant features with

non-zero coefficients. This graph highlights the features that have a substantial impact on the model’s

predictions, allowing for a clear visualization of which features contribute positively or negatively to

the target variable. Features with coefficients near zero have minimal influence, while those with

larger positive or negative values are more influential in the predictive model.
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Figure 4.3: "Hyperparameter tuning for Lasso regression showing the relationship between lambda and
Mean Squared Error (MSE). The optimal lambda value minimizes MSE, balancing model complexity
and prediction accuracy, with error bars indicating variability."

This graph illustrates the process of hyperparameter tuning for Lasso regression, focusing on the

relationship between the regularization parameter λ (Lambda) and the Mean Squared Error (MSE).

The x-axis represents different values of λ on a logarithmic scale, ranging from 10−4 to 102. The

y-axis shows the corresponding Mean Squared Error, which measures the average of the squares of

the errors, indicating the model’s prediction accuracy.

The blue line connects points representing the Mean Squared Error for each λ value. As λ increases,

the Mean Squared Error initially decreases, indicating an improvement in the model’s predictive

performance. This trend continues until a certain point, after which the Mean Squared Error stabilizes

and does not decrease further, suggesting that increasing λ beyond this point does not significantly

improve model performance.

The vertical orange bars represent the error bars, providing a visual indication of the variability

or uncertainty around the Mean Squared Error for each λ value. Larger error bars indicate greater
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variability in the model’s performance, while smaller error bars suggest more consistent results.

In summary, this graph helps identify the optimal λ value that minimizes the Mean Squared Error,

balancing model complexity and prediction accuracy. The optimal λ is typically found where the Mean

Squared Error is lowest and stable, with minimal variability indicated by the error bars.

Figure 4.4: "Mean Squared Error (MSE) for different train-test splits and lambda values in Lasso
regression, showing performance variability and consistency across splits."

This plot depicts the Mean Squared Error (MSE) for different splits and lambda values in a Lasso

regression model. The x-axis represents the split number, ranging from 0 to 50, indicating different

train-test splits used during cross-validation. The y-axis represents the Mean Squared Error, which

measures the average squared difference between observed and predicted values.

Each colored line corresponds to a different lambda value used for regularization in the Lasso

regression model:Blue: Lambda =0.1, Orange: Lambda = 0.5,Green: Lambda = 1.0,Red: Lambda =

1.5,Purple: Lambda = 2.0 The fluctuations in the lines represent the variability in MSE across different

splits for each lambda value. High variability suggests that the model’s performance is sensitive to the

particular train-test split, while lower variability indicates more consistent performance across splits.
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This plot helps to visualize how different regularization strengths (lambda values) affect the sta-

bility and performance of the Lasso regression model. By comparing the lines, we can identify which

lambda value provides the most consistent and lowest MSE across various splits.
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Figure 4.5: "Mean Squared Error (MSE) for different trials and lambda values in Lasso regression
hyperparameter tuning, showing performance variability and consistency across trials."

This plot shows the Mean Squared Error (MSE) for different trials and lambda values during the

hyperparameter tuning process for Lasso regression. The x-axis represents the trial number, ranging

from 1 to 10, while the y-axis represents the Mean Squared Error, which measures the average squared

difference between the observed and predicted values.

Each line in the plot corresponds to a different lambda value:Blue: Lambda = 0.1,Orange: Lambda

= 0.5,Green: Lambda = 1.0,Red: Lambda = 1.5,Purple: Lambda = 2.0

The plot illustrates how the MSE changes across different trials for each lambda value. The

fluctuations in the lines indicate the variability in model performance depending on the chosen lambda

and the specific trial. This helps in understanding which lambda values provide more consistent and

lower MSE across multiple trials.

By comparing these lines, we can determine which lambda value generally yields the lowest MSE,
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suggesting better model performance. The variability also indicates how sensitive the model is to the

choice of lambda and the trial conditions.
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Figure 4.6: "Histogram showing the distribution of Mean Squared Errors (MSE) obtained from Lasso
regression across multiple dataset splits, illustrating the variability and frequency of MSE values in
the range of 0.01 to 0.04."

The plot is a histogram depicting the distribution of Mean Squared Errors (MSE) obtained from

Lasso regression over multiple splits of the dataset. The x-axis represents the MSE values, while the

y-axis shows their corresponding frequency. The histogram bins divide the MSE values into ranges,

with each bar’s height indicating the frequency of MSE values within that range. Most MSE values fall

around 0.02, as evidenced by the highest bar in this range. The MSE values vary from approximately

0.01 to 0.04, illustrating the variability of errors across different dataset splits. This histogram helps

in understanding the performance and consistency of the Lasso regression model by showing how often

certain MSE values occur.
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4.2 Elastic Net Regression Analysis

Elastic Net regression is a powerful technique that combines Lasso (L1) and Ridge (L2) penalties to

address issues of multicollinearity and perform effective feature selection. In this research, this method

was applied to a dataset containing 1627 features (X) with the aim of predicting a target variable

(Y). The data preparation phase involved loading the dataset and splitting it into training and testing

sets, with 80 percent of the data allocated for training and 20 percent for testing. This approach is

crucial as it ensures that the model’s performance can be evaluated on unseen data, providing a more

accurate assessment of its generalization ability.

To determine the optimal regularization parameters, alpha and l1-ratio, cross-validation was em-

ployed. Cross-validation is a robust technique that divides the training data into several folds (five

folds in this case) and iteratively trains the model on different combinations of these parameters.

Specifically, the ElasticNetCV function from scikit-learn was used to automate this process. Elastic-

NetCV systematically explores various combinations of alpha and l1-ratio, using Mean Squared Error

(MSE) as the evaluation metric, with the goal of minimizing prediction errors.

During model training and parameter tuning, the MSE for each combination of alpha and l1-

ratio was calculated across multiple splits of the data. This comprehensive evaluation allowed for the

computation of the average MSE for both the training and testing sets, providing insights into the

model’s performance. The training MSE measures the error between predicted and actual values on

the training set, while the testing MSE indicates how well the model generalizes to unseen data.

The results from ElasticNetCV were quite revealing. After evaluating different combinations of

alpha and l1-ratio, the optimal parameters identified were an alpha (lambda) of 0.5672 and an l1-ratio

of 0.5. These parameters strike a balance between the Lasso (L1) and Ridge (L2) penalties, ensuring

adequate regularization while promoting sparsity in feature selection. This balance is essential as it

helps in selecting the most relevant features while controlling for multicollinearity, thereby enhancing

the model’s predictive power and interpretability.

The model’s performance was robust, as indicated by the average MSE values. The training MSE

was found to be 0.0226, and the testing MSE was also 0.0226. The close proximity of these values

suggests that the model generalizes well to new data, which is a critical aspect of any predictive model.

This near equivalence in MSE values between the training and testing sets indicates that the model
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is not overfitting and has robust predictive capabilities.

Furthermore, Elastic Net regression identified several important features that significantly influ-

ence the prediction of the target variable. The most influential features were identified with their

corresponding coefficients: Feature 354 with a coefficient of -0.0870, Feature 601 with a coefficient of

0.0392, Feature 606 with a coefficient of 0.0165, Feature 1056 with a coefficient of 0.0019, and Feature

1483 with a coefficient of -0.0036. These features contribute the most to the model’s predictions,

providing valuable insights into the underlying relationships within the data.

In summary, Elastic Net regression proved to be an effective method for handling high-dimensional

data with multicollinearity issues. The use of ElasticNetCV for parameter tuning ensured that the

model was well-regularized and capable of selecting the most relevant features. The resulting model

demonstrated strong predictive performance, as evidenced by the low and consistent MSE values

across training and testing sets. The identified important features offer a deeper understanding of the

key predictors within the dataset, highlighting the significant relationships that drive the prediction

of the target variable. This comprehensive approach underscores the utility of Elastic Net regression

in high-dimensional data analysis, providing both precision and interpretability in model building.
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Figure 4.7: "Plot of Elastic Net regression coefficients showing the sparse selection of significant
features, with most coefficients shrunk to zero and a few non-zero values indicating key predictors."

This plot shows the coefficients of features selected by an Elastic Net regression model. The x-axis

represents the feature index, ranging from 0 to approximately 1600, while the y-axis represents the

coefficient values assigned to these features. Elastic Net regression combines the properties of both

Lasso and Ridge regression by applying both L1 and L2 regularization. This allows it to handle corre-

lated features and maintain a sparse selection of features.In the plot, we see that most of the feature

coefficients are zero, which is a result of the regularization applied by the Elastic Net. This indicates

that many features are not significant predictors in the model.However,there are a few non-zero co-

efficients:A notable positive coefficient around feature index 500, suggesting that this feature has a

positive impact on the target variable.A significant negative coefficient around feature index 400, indi-

cating a strong negative impact on the target variable.A couple of other smaller positive and negative

coefficients at different feature indices, indicating other important predictors.This plot demonstrates

Elastic Net’s ability to select a sparse set of important features while managing multicollinearity,

thereby providing a balance between feature selection and model stability.
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Figure 4.8: Hyperparameter Tuning for Elastic Net: Mean Squared Error vs. Lambda for Various
L1 Ratios. The plot shows how lambda and L1 ratio values impact the MSE, with colored lines
representing different L1 ratios and error bars indicating MSE variability. As lambda increases, MSE
decreases and stabilizes, especially for higher L1 ratios.

This graph presents the hyperparameter tuning results for the Elastic Net regression, illustrating

the relationship between the regularization parameter (lambda) and the Mean Squared Error (MSE)

for various L1 ratios. The x-axis represents different values of lambda, ranging from 10−4 to 102,

while the y-axis shows the corresponding MSE values. Each colored line represents a different L1

ratio value, which controls the balance between L1 (LASSO) and L2 (Ridge) regularization, with the

L1 ratio values ranging from 0.1 to 1.0 as indicated in the legend. The error bars indicate the variability

(standard deviation) of the MSE for each combination of lambda and L1 ratio. Observations reveal

that for higher lambda values, the MSE decreases and stabilizes across all L1 ratios. Lower lambda

values show higher variability and MSE, indicating less effective regularization. As lambda increases

from 10−4 to 102, the MSE generally decreases, reaching a point of stability, particularly for L1 ratios

closer to 1.0, indicating stronger LASSO regularization.
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Figure 4.9: "Bar plot of Elastic Net regression coefficients showing important features with positive and
negative impacts on the target variable, highlighting the model’s ability to balance feature selection
and regularization."

This bar plot depicts the coefficients of important features selected by an Elastic Net regression

model. The x-axis represents the feature indices, labeled numerically from 32 to 1609, while the y-axis

shows the coefficient values assigned to these features by the model.

The Elastic Net regression model combines L1 (Lasso) and L2 (Ridge) regularization, which allows

it to manage multicollinearity among features and maintain a sparse set of significant predictors.

In this plot Positive Coefficients are the bars extending above the x-axis indicate features with a

positive impact on the target variable. Negative Coefficients are the bars extending below the x-axis

indicate features with a negative impact on the target variable. Magnitude is the height of each bar

reflects the strength of the feature’s impact, with taller bars representing more significant effects.

The distribution of coefficients highlights which features have the most substantial positive or

negative influences on the model’s predictions. Features with coefficients close to zero have minimal

impact and are less critical for the model’s performance.

This visualization underscores Elastic Net’s ability to select a balanced set of important features

while penalizing less important ones, resulting in a more interpretable and robust model.
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Figure 4.10: "Mean Squared Error (MSE) for different train-test splits and lambda values in Elastic
Net regression, illustrating performance variability and consistency across splits."

This plot illustrates the Mean Squared Error (MSE) for different train-test splits and lambda

values in an Elastic Net regression model. The x-axis represents the split number, ranging from 0 to

50, indicating different iterations of train-test splits used during cross-validation. The y-axis shows

the Mean Squared Error, which measures the average of the squares of the errors between predicted

and observed values.Each line in the plot corresponds to a different lambda value:,Blue: Lambda =

0.1,Orange: Lambda = 0.5,Green: Lambda = 1.0,Red: Lambda = 1.5, Purple: Lambda = 2.0

The lines show the variability in MSE across different splits for each lambda value. High variability

and frequent crossing of lines indicate that the model’s performance changes significantly depending

on the train-test split and the chosen lambda value. Lower and more stable lines represent better and

more consistent performance.By examining this plot, we can determine which lambda value generally

yields the lowest MSE and is the most stable across different splits. For example, if the green line

(Lambda = 1.0) frequently stays lower than the other lines, it suggests that this lambda value might

offer better model performance and consistency.
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Figure 4.11: "Mean Squared Error (MSE) for different trials and lambda values in Elastic Net regres-
sion hyperparameter tuning, showing performance variability and consistency across trials."
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This plot shows the Mean Squared Error (MSE) for different trials and lambda values during the

hyperparameter tuning process for an Elastic Net regression model. The x-axis represents the trial

number, ranging from 1 to 10, while the y-axis represents the Mean Squared Error, which measures

the average squared difference between the observed and predicted values.

Each line in the plot corresponds to a different lambda value:,Blue: Lambda = 0.1,Orange: Lambda

= 0.5,Green: Lambda = 1.0,Red: Lambda = 1.5,Purple: Lambda = 2.0

The lines illustrate how the MSE changes across different trials for each lambda value. The

fluctuations in the lines indicate the variability in model performance depending on the chosen lambda

and the specific trial.

To determine which lambda value generally yields the lowest MSE, you should look for the line

that tends to stay lower on the y-axis across most trials. This indicates that the corresponding lambda

value consistently results in lower MSE, suggesting better model performance. Additionally, a line

with less fluctuation indicates more stable performance across trials.

For example, if the purple line (Lambda = 2.0) generally stays lower than the others and exhibits

fewer spikes, it suggests that Lambda = 2.0 might be the best choice for yielding the lowest and most

consistent MSE, indicating better model performance.
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Figure 4.12: "Histogram showing the distribution of Mean Squared Errors (MSE) from Elastic Net
regression across different trials and lambda values, highlighting the frequency and central tendency
of model performance."

This histogram shows the distribution of Mean Squared Errors (MSE) obtained from an Elastic

Net regression model across different trials and lambda values. The x-axis represents the range of MSE

values, spanning from approximately 0.015 to 0.035. The y-axis indicates the frequency of occurrences

for each MSE value within this range.

The bars in the histogram illustrate how often each MSE value appears across the different trials.

Higher bars represent MSE values that occur more frequently, indicating common performance levels

of the Elastic Net regression model.

From the histogram, we can observe that the MSE values are clustered around the central range,

with a peak frequency around the 0.020 to 0.025 interval. This suggests that the majority of the MSE

values fall within this range, indicating a consistent model performance. The distribution appears to

be somewhat symmetric, with fewer occurrences of extremely low or high MSE values.

This visualization helps in understanding the variability and central tendency of the model’s errors,

providing insights into the overall performance and reliability of the Elastic Net model.
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4.3 Bayesian Regression

Bayesian Regression is a linear regression technique that incorporates Bayesian inference, making

it particularly useful for high-dimensional datasets by automatically determining regularization pa-

rameters to prevent overfitting. In this thesis, Bayesian Ridge Regression was applied to a dataset

containing one dependent variable (Y) and 1627 independent variables (X). To ensure robustness in

the results, the dataset was split into training and testing sets 50 times. Each split was done randomly,

with 80 percent of the data used for training and 20 percent for testing. This repeated splitting process

helps validate the consistency of the model’s performance by evaluating it across multiple scenarios.

The parameter tuning process involved defining a range of lambda values for tuning the hyper-

parameters of the Bayesian Ridge Regression model. GridSearchCV was employed to perform cross-

validation and identify the best combination of alpha and lambda values. The best hyperparameters

identified through this rigorous process were α1 at 1 × 10−6, α2 at 0.0001, λ1 at 0.0001, and λ2 at

1× 10−6. These specific hyperparameters were found to effectively minimize the mean squared error

(MSE), indicating their suitability for the given dataset.

Model training and evaluation were carried out on the test set for each of the 50 splits. The MSE

was computed for each split to assess the model’s performance comprehensively. The average MSE for

the testing sets across all splits was found to be 0.0259, while the average MSE for the training sets was

0.0241. These closely aligned values suggest that the model performs similarly on both the training

and testing sets, indicating good generalization to unseen data. Such consistency across multiple data

splits underscores the robustness of the model.

The results of the Bayesian Ridge Regression model highlighted several important variables based

on the coefficients assigned to them. Variables with non-zero coefficients were considered significant,

with the threshold for considering a coefficient as important set to 1×10−6. This approach to variable

selection is crucial in high-dimensional datasets where identifying the most relevant predictors can

significantly impact the model’s interpretability and predictive power. By focusing on variables that

meet this threshold, the model can provide insights into the underlying relationships in the data,

helping to identify key factors that drive the dependent variable.

In conclusion, the Bayesian Ridge Regression model proved to be a reliable method for variable

selection and prediction in high-dimensional data. The model’s ability to automatically determine
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regularization parameters helps in preventing overfitting, ensuring that the predictions are both accu-

rate and generalizable. The identified key variables, based on the coefficients, contribute significantly

to the prediction of the dependent variable, offering valuable insights into the data. The robust per-

formance of the model, as evidenced by the similar MSE values across multiple splits, indicates its

effectiveness in handling high-dimensional datasets. This comprehensive approach to data splitting,

parameter tuning, and evaluation highlights the strength of Bayesian Ridge Regression in producing

reliable and interpretable results in complex data scenarios.
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Figure 4.13: Hyperparameter Tuning for Bayesian Regression: Mean Squared Error vs. Lambda. This
plot shows the mean MSE (blue line) and its variability (orange error bars) across different lambda
values. The choice of lambda has minimal impact on the mean MSE, but significant variability in
model performance is observed.

This graph illustrates the hyperparameter tuning results for Bayesian Regression, focusing on the

effect of the regularization parameter (lambda) on the Mean Squared Error (MSE). The x-axis repre-

sents different values of lambda, ranging from 10−6 to 10−1, while the y-axis shows the corresponding

MSE values. The blue line with points represents the mean MSE for each lambda value, and the or-

ange error bars denote the variability (standard deviation) of the MSE. Observations from the graph

indicate that the mean MSE remains relatively constant across all lambda values, suggesting that

the regularization parameter does not significantly affect the model’s performance within this range.

However, the large error bars highlight substantial variability in the MSE, implying that the model’s

performance is highly sensitive to the choice of lambda.
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Figure 4.14: "Scatter plot of actual vs. predicted values from a Bayesian regression model. The
red line represents perfect predictions. Points clustered around the line indicate accurate predictions;
deviations show errors."

This scatter plot illustrates the relationship between actual values and predicted values generated

by a Bayesian regression model. The x-axis represents the actual values, while the y-axis displays the

predicted values. Each blue dot signifies a pair of actual and predicted values. The red diagonal line

symbolizes the ideal scenario where the predicted values precisely match the actual values. Points on

this line indicate perfect predictions, while points above or below the line indicate deviations from

the actual values. The clustering of points around the red line suggests that the model’s predictions

are generally close to the actual values, with some scatter indicating prediction errors. A few points

deviate more significantly from the line, highlighting instances where the model’s predictions were less

accurate. This plot visually assesses the model’s predictive accuracy and reliability by comparing how

well the predicted values align with the actual values.

44



Figure 4.15: "Histogram showing the distribution of Mean Squared Errors (MSE) from a Bayesian
regression model across 50 different train-test splits, highlighting the frequency and central tendency
of model performance."

This histogram displays the distribution of Mean Squared Errors (MSE) obtained from a Bayesian

regression model across 50 different train-test splits. The x-axis represents the range of MSE values,

spanning from 0.01 to 0.06, while the y-axis indicates the frequency of occurrences for each MSE value

within this range.

The bars in the histogram illustrate how often each MSE value appears across the 50 splits. Higher

bars represent MSE values that occur more frequently, indicating common performance levels of the

model. From the histogram, we can observe that most of the MSE values are clustered around 0.01

to 0.03, with the highest frequency around 0.03. This suggests that the majority of the model’s

performance metrics are relatively low MSE values, indicating good predictive accuracy. There are

fewer occurrences of higher MSE values, which indicates that the model performs consistently well

across different splits.

This distribution helps in understanding the variability and central tendency of the model’s errors,
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providing insights into the overall performance and reliability of the Bayesian regression model.

Figure 4.16: "Effect of λ1 on Mean Squared Error (MSE) for different combinations of α1 and α2 in a
Bayesian regression model, illustrating the stability of model performance with respect to variations
in λ1."

This graph illustrates the effect of the hyperparameter λ1 on the Mean Squared Error (MSE) for

different combinations of α1 and α2 in a Bayesian regression model. The x-axis represents the values

of λ1, ranging from approximately 0 to 0.00010, while the y-axis shows the Mean Squared Error,

measuring the average squared difference between predicted and actual values. Each line corresponds

to a different pair of α1 and α2 values, as indicated in the legend. The flatness of the lines suggests

that variations in λ1 have little to no impact on the MSE, indicating stable model performance across

these changes. The different positions of the lines on the y-axis reveal that various combinations of

α1 and α2 result in different MSE levels, with some combinations achieving lower MSE and better

predictive accuracy. Notably, the combination of α1 = 0.0001 and α2 = 1e− 05 results in a relatively

higher MSE compared to others. Overall, the graph highlights the stability and variability of model

performance with respect to λ1 and different α combinations.
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4.4 Orthogonal Matching Pursuit Analysis

The application of Orthogonal Matching Pursuit (OMP) in this study focused on identifying signif-

icant variables influencing the target variable, Y , within a chemistry dataset characterized by high-

dimensional predictor variables. OMP, known for its effectiveness in sparse approximation and feature

selection, was employed following meticulous data preparation steps to ensure thorough analysis and

computational efficiency.

Initially, the dataset was loaded with X representing predictors and Y representing the response

variable. To manage the dataset’s high dimensionality, Principal Component Analysis (PCA) was

utilized, reducing X to its most significant components while preserving variance. This preprocessing

not only streamlined subsequent modeling but also improved interpretability by focusing on critical

features.

The model training involved rigorous procedures to ensure robustness. The dataset was split into

training and testing sets across 50 iterations, allowing comprehensive evaluation of OMP’s predictive

performance. Each iteration involved training an OMP model on the training set and evaluating it

on the testing set using Mean Squared Error (MSE) as the primary metric. The average MSE across

all iterations was 0.0300, with a standard deviation of 0.0142, indicating consistent and accurate

predictive performance.

The MSE analysis revealed a stable pattern across iterations, demonstrating OMP’s reliability in

predicting Y . Notably, feature selection by OMP consistently identified Feature 3436 as significant,

emphasizing its role in predicting the response variable.

In conclusion, the application of OMP to the chemistry dataset effectively identified crucial vari-

ables influencing Y . Through PCA and rigorous evaluation across multiple splits, OMP demonstrated

reliable predictive accuracy with low MSE values. This approach not only enhances understanding of

dataset dynamics but also validates OMP as a robust tool for feature selection in high-dimensional

datasets.
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Figure 4.17: "Bar plot of Orthogonal Matching Pursuit (OMP) regression coefficients showing im-
portant features with positive and negative impacts on the target variable, highlighting the model’s
ability to select significant predictors."

This bar plot displays the coefficients of important features selected by the Orthogonal Matching

Pursuit (OMP) regression model. The x-axis represents the feature indices, labeled numerically from

30 to 1543, while the y-axis shows the coefficient values assigned to these features by the model.

The bars extending above the x-axis represent positive coefficients, indicating features that have a

positive impact on the target variable. Conversely, bars extending below the x-axis represent negative

coefficients, indicating features that have a negative impact on the target variable. The height of each

bar indicates the magnitude of the feature’s impact, with taller bars representing stronger effects.

OMP is a type of linear regression model that selects a subset of features by iteratively choosing

the feature that most improves the model’s fit. This results in a sparse set of important features, with

many coefficients being zero.

The distribution of coefficients highlights which features have the most significant positive or

negative influences on the model’s predictions. Features with coefficients close to zero have minimal

impact and are less critical for the model’s performance. This visualization underscores OMP’s ability

to select a focused set of important features, making the model more interpretable.
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Figure 4.18: "OMP hyperparameter tuning graph showing the relationship between the number of non-
zero coefficients and Mean Squared Error (MSE), illustrating how model complexity affects prediction
accuracy and variability."

This graph illustrates the relationship between the number of non-zero coefficients and the Mean

Squared Error (MSE) during the hyperparameter tuning process for Orthogonal Matching Pursuit

(OMP). The x-axis represents the number of non-zero coefficients, indicating the complexity of the

model, while the y-axis shows the MSE, measuring the average squared difference between predicted

and actual values. The blue line connects points representing the MSE for each number of non-

zero coefficients, and the vertical orange bars represent the error bars, indicating the variability or

uncertainty around the MSE. As the number of non-zero coefficients increases, the MSE initially

remains low and stable but begins to rise gradually, suggesting that adding more coefficients initially

does not significantly impact the error but eventually leads to overfitting, where the model becomes too

complex and performs worse on unseen data. The error bars, which grow larger for higher numbers of

non-zero coefficients, indicate increased variability and less reliable performance as model complexity

increases. The optimal number of non-zero coefficients is likely where the MSE is lowest and the error
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bars are smallest, indicating a balance between model complexity and prediction accuracy.

Figure 4.19: "OMP Histogram showing the distribution of Mean Squared Errors (MSE) from a re-
gression model across different trials and tuning parameters, highlighting the frequency and central
tendency of model performance."

This histogram shows the distribution of Mean Squared Errors (MSE) obtained from a regression

model across different trials and tuning parameters. The x-axis represents the range of MSE values,

spanning from 0.0 to 0.2. The y-axis indicates the frequency of occurrences for each MSE value within

this range. The bars in the histogram illustrate how often each MSE value appears across the different

trials. Higher bars represent MSE values that occur more frequently, indicating common performance

levels of the model. From the histogram, we can observe that most of the MSE values are clustered

around the lower end of the range, specifically between 0.0 and 0.05. This suggests that the majority

of the model’s performance metrics are low MSE values, indicating good predictive accuracy. There
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are a few occurrences of higher MSE values, but they are much less frequent. This distribution helps

in understanding the variability and central tendency of the model’s errors, providing insights into

the overall performance and reliability of the regression model.

Figure 4.20: "Mean Squared Error (MSE) for different train-test splits and tuning parameters, illus-
trating performance variability and consistency across splits in a regression model."

This plot shows the Mean Squared Error (MSE) for different train-test splits and tuning parameters

in a regression model. The x-axis represents the split number, ranging from 0 to 50, indicating different

iterations of train-test splits used during cross-validation. The y-axis shows the Mean Squared Error,

which measures the average of the squares of the errors between predicted and observed values.

Each line in the plot corresponds to a different tuning parameter, labeled from 1 to 10. These

tuning parameters could represent different settings or hyperparameters in the model, such as different

lambda values or other regularization strengths.

The lines illustrate the variability in MSE across different splits for each tuning parameter. High

peaks and fluctuations indicate that the model’s performance varies significantly depending on the

train-test split and the chosen tuning parameter. Lines that stay consistently low on the y-axis indicate
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better and more stable performance.

By examining this plot, we can determine which tuning parameter generally yields the lowest MSE

and is the most stable across different splits. A tuning parameter that results in consistently lower

MSE across splits is likely the best choice for optimal model performance.
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4.5 RANSAC (RANdom SAmple Consensus) Regression Anal-
ysis

To robustly estimate regression coefficients, we employed a technique that iteratively identifies a subset

of inliers from the data and fits the model to this subset, thereby minimizing the influence of outliers.

This approach involved several key steps, beginning with data preparation. The dataset was loaded

and separated into dependent (Y ) and independent (X) variables. Missing values were handled using

mean imputation to ensure that the dataset was complete and ready for analysis. Additionally, the

features were standardized to have zero mean and unit variance, which is a crucial step in ensuring

that all features contribute equally to the model and that the algorithm performs optimally.

For modeling, Ridge regression was used as the base estimator within a RANSACRegressor frame-

work. A pipeline was implemented to standardize the data and apply RANSAC with Ridge regression.

Hyperparameter tuning was performed using GridSearchCV with a range of lambda (alpha) values,

ensuring that the best parameters for the model were selected. This model was evaluated over 50

train-test splits to ensure that the performance metrics were robust and reliable.

Evaluation of the model involved calculating the mean squared error (MSE) for each split, deter-

mining the best lambda value for each iteration, and calculating the average MSE across all splits for

both training and testing sets. The distribution of MSEs was plotted, and feature importance was

analyzed to understand which variables had the most significant impact on the dependent variable,

Y .

The results showed that the best lambda values ranged from 0.1 to 1000 across different iterations,

with 1000 being the most frequently selected best value. This suggests that strong regularization

was often required to prevent overfitting and maintain model robustness. The MSE varied across

iterations, reflecting the robustness of the RANSAC approach. The average MSE for training was

0.0269, while the average MSE for testing was 0.0205. The lower testing MSE compared to the training

MSE suggests good generalization capability, indicating that the model performs well on unseen data.

Feature importance analysis revealed the top 20 features with the highest importance values in the

RANSAC regression model. These features, identified by their coefficients, provide insights into the

key predictors in the dataset. The most important features included Feature 926 with an importance

score of 0.029478, Feature 924 with a score of 0.026453, Feature 928 with a score of 0.020508, and

Feature 1554 with a score of 0.018152. Other significant features included Feature 1330 (0.017659),
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Feature 822 (0.017242), Feature 802 (0.017072), Feature 904 (0.016705), Feature 1328 (0.016683), and

Feature 824 (0.016661).

The predominance of lambda = 1000 in the best model selection implies that strong regularization

was often required to maintain model robustness and prevent overfitting. This indicates that the

model needs to penalize large coefficients heavily to achieve optimal performance, particularly in a

high-dimensional setting where multicollinearity is a concern.

In conclusion, RANSAC regression combined with Ridge regression proved to be an effective

method for handling outliers, providing a robust model with consistent performance across multi-

ple splits. The identified feature importance helps in understanding the key predictors in the dataset,

offering valuable insights into the variables that significantly impact the dependent variable, Y . This

approach ensures that the model is not unduly influenced by outliers, thereby enhancing its predictive

accuracy and reliability. The robust performance of the model, as indicated by the consistent MSE

values across iterations, demonstrates its effectiveness in handling high-dimensional data and provid-

ing reliable predictions. The use of strong regularization, as evidenced by the frequent selection of

lambda = 1000, underscores the importance of addressing multicollinearity and preventing overfitting

in high-dimensional regression analysis. Overall, the combination of RANSAC and Ridge regression

offers a powerful tool for robust regression analysis, ensuring accurate and interpretable results in the

presence of outliers.
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Figure 4.21: "Histogram showing the distribution of Mean Squared Errors (MSE) from a regression
model across 50 different train-test splits, highlighting the frequency and central tendency of model
performance."

This histogram displays the distribution of Mean Squared Errors (MSE) obtained from a regression

model across 50 different train-test splits. The x-axis represents the range of MSE values, spanning

from 0.00 to 0.08, while the y-axis indicates the frequency of occurrences for each MSE value within

this range.

The bars in the histogram illustrate how often each MSE value appears across the 50 splits. Higher

bars represent MSE values that occur more frequently, indicating common performance levels of the

model. From the histogram, we can observe that most of the MSE values are clustered around the

lower end of the range, specifically between 0.01 and 0.04. This suggests that the majority of the

model’s performance metrics are low MSE values, indicating good predictive accuracy. There are

fewer occurrences of higher MSE values, but they are much less frequent.

This distribution helps in understanding the variability and central tendency of the model’s errors,

providing insights into the overall performance and reliability of the regression model.
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Figure 4.22: Important Features Selected by RANSAC . Features with coefficients above 0.001 are
plotted on the x-axis, with their coefficient values on the y-axis.

The bar chart reveals several critical insights into the features deemed important by the RANSAC

regression model. Upon analyzing the coefficient values, it becomes evident that the model identifies

both positive and negative relationships among the features, suggesting a nuanced and multifaceted

influence on the target variable. First, the presence of significant positive coefficients indicates features

that strongly drive the target variable upwards. These features are vital as they contribute positively

to the predictive capability of the model. For example, feature indices such as 444, 706, and 865

exhibit higher positive coefficients, suggesting they play a critical role in positively influencing the

outcome. This insight can be particularly useful for identifying key drivers that should be prioritized

in strategic decision-making or further investigation.

Conversely, features with negative coefficients, such as those at indices 170, 350, and 1372, highlight

aspects that negatively impact the target variable. Understanding these negative influences is crucial

for risk management and mitigation strategies. By identifying and addressing the factors that detract

from the desired outcome, steps can be taken to either control or adjust these features, thereby

potentially improving the model’s accuracy and reliability. The wide range of coefficient values,

both positive and negative, indicates a complex interplay of factors affecting the target variable.

56



This complexity suggests that a simplistic or one-dimensional approach to modeling would likely

be insufficient. Instead, a more holistic and multi-faceted strategy is necessary to fully capture the

dynamics at play. This can involve further refining the model, incorporating additional features, or

employing more advanced analytical techniques to better understand and leverage these relationships.

Moreover, the presence of numerous features with coefficients close to zero suggests that not all

features contribute equally to the model’s predictions. This observation underscores the importance

of feature selection and dimensionality reduction techniques in model building. By focusing on the

most impactful features, the model’s efficiency and interpretability can be significantly enhanced.

In summary, the importance of identifying and understanding the key features that drive the target

variable both positively and negatively. It highlights the necessity for a comprehensive approach to

model building that considers the complex interplay of various factors. Additionally, it emphasizes

the value of feature selection in enhancing model performance and interpretability.
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Figure 4.23: The plot shows that increasing lambda reduces MSE, with an optimal value around 100.
The shaded area represents the standard deviation, indicating decreased variability at higher lambda
values.

The x-axis of the graph represents different values of the regularization parameter lambda on a

logarithmic scale, ranging from 10−1 to 103, while the y-axis shows the mean squared error (MSE) of

the model. The trend in MSE indicates that as lambda increases from 10−1 to 102, the MSE decreases,

suggesting that increasing regularization initially helps improve the model by preventing overfitting.

Around a lambda value of 102, the MSE stabilizes, indicating that further regularization does not

significantly impact the model’s performance. The shaded region around the mean line represents

the standard deviation of the MSE over multiple iterations, showing higher variability in MSE at

lower lambda values (around 10−1) and reduced variability as lambda increases, reflecting more stable

model performance with stronger regularization. The optimal lambda value appears to be around 102

(100), where the MSE is at its lowest and most stable. Larger lambda values lead to more stable

performance, as indicated by the narrower shaded region, while very low lambda values (10−1) result

in higher error and variability, suggesting overfitting. Overall, the plot suggests that a lambda value
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of around 102 (100) provides the best balance between minimizing the MSE and ensuring stability in

the model’s performance.
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Figure 4.24: "Mean Squared Error (MSE) for different train-test splits and lambda values in a regres-
sion model, illustrating performance variability and consistency across splits."

This plot shows the Mean Squared Error (MSE) for different train-test splits and lambda values

in a regression model, possibly RANSAC (RANdom SAmple Consensus). The x-axis represents the

split number, ranging from 0 to 50, indicating different iterations of train-test splits used during cross-

validation. The y-axis shows the Mean Squared Error, which measures the average squared difference

between the predicted and actual values.

Each line in the plot corresponds to a different lambda value:,Blue: Lambda = 0.1,Orange: Lambda

= 1,Green: Lambda = 10,Red: Lambda = 100,Purple: Lambda = 1000

The lines show the variability in MSE across different splits for each lambda value. Peaks and

troughs in the lines indicate how the model’s performance varies with different train-test splits and

the chosen lambda value. Generally, lower lines indicate better performance with lower MSE values.

By examining this plot, you can determine which lambda value generally yields the lowest MSE

and is the most stable across different splits. For example, the purple line (Lambda = 1000) often stays

lower than the other lines, suggesting it might provide better and more consistent model performance.
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Sr no. Methods MSE Testing MSE Training Best Lambda/ Component Importanat Variables

1. LASSO 0.0226 0.0226 0.2836 354 601 606 1483

2. Elastic Net 0.0226 0.0226 0.5672 354 601 606 1056 1483

3. Bayesian Regression 0.0259 0.0241 0.0001 ALL

4. Orthogonal Matching Pursuit(OMP) 0.0300 0.0271 1 3436

5. Random Sample Consensus(RANSAC)Regression 0.0205 0.0269 10 1535 926 1536 924 1534 928 1221 1554 1333 1330 1587 822 1597 802 1546 904 1334 1328 1586 824

Table 4.1: Summary of performance metrics and key variables for different regression methods.

Each regression method demonstrates varying degrees of prediction accuracy (MSE) and identifies

different important variables, influenced by the method’s unique characteristics and the dataset ap-

plied. LASSO and Elastic Net exhibit identical MSE values for both testing and training, with Elastic

Net selecting a marginally larger set of important variables. Bayesian Regression includes all vari-

ables, which leads to higher MSE values compared to the other methods. OMP and RANSAC present

unique features in terms of MSE and the number of important variables they select, showcasing the

trade-offs between model complexity and prediction accuracy.
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Sr no. Important Variables Functional Class Vibration Intensity Assignment Detail

1. 802 Alkenes bending medium out-of-plan

2. 822 Alkenes bending medium out-of-plan

3. 824 Alkenes bending medium out-of-plan

4. 904 Alkenes bending strong =C-H and =CH2

5. 924 Alkenes bending strong =C-H and =CH2

6. 926 Alkenes bending strong =C-H and =CH2

7. 928 Alkenes bending strong =C-H and =CH2

8. 1221 Alcohols and Phenols Stretching strong C-O

9. 1328 Alcohols and Phenols bending medium O-H(in-plane)

10. 1330 Alcohols and Phenols bending medium O-H(in-plane)

11. 1333 Alcohols and Phenols bending medium O-H(in-plane)

12. 1334 Alcohols and Phenols bending medium O-H(in-plane)

13. 1534 Carboxylic Acids and Derivatives bending medium O-H(in-plane)

14. 1535 Carboxylic Acids and Derivatives bending medium O-H(in-plane)

15. 1536 Carboxylic Acids and Derivatives bending medium O-H(in-plane)

16. 1546 Carboxylic Acids and Derivatives bending medium O-H(in-plane)

17. 1554 Carboxylic Acids and Derivatives bending medium-strong O-H(in-plane)

18. 1586 Amines bending medium NH2(1*-amines)

19. 1587 Amines bending medium NH2(1*-amines)

20. 1597 Amines bending medium NH2(1*-amines)

Table 4.2: IR Spectroscopy Functional Compounds

This table titled "IR Spectroscopy Functional Compounds" provides a comprehensive summary of

various important variables identified using infrared (IR) spectroscopy. Each variable is characterized

by its wavenumber, functional class, type of vibration, intensity of the absorption band, and a detailed

assignment of the absorption.

The table is organized into several columns: serial number (Sr no.), important variables (wavenum-

ber in cm−1), functional class, type of vibration (bending or stretching), intensity (medium, strong,

medium-strong), and assignment detail. The rows represent specific absorption bands, listing a total

of 20 such bands identified in the IR spectrum.
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Several variables are associated with alkenes, primarily showing bending vibrations with medium to

strong intensity. For instance, the variables at 802, 822, 824, 904, 924, 926, and 928 cm−1 are detailed

with assignments like out-of-plane bending and =C-H and =CH2 groups. Alcohols and phenols are

represented by variables such as 1221, 1328, 1330, 1333, and 1334 cm−1, exhibiting strong stretching

vibrations (C-O) and medium in-plane bending vibrations (O-H).

Carboxylic acids and their derivatives are identified by variables at 1534, 1535, 1536, 1546, and

1554 cm−1, showing medium to medium-strong bending vibrations for O-H groups in-plane. Lastly,

amines are characterized by variables at 1586, 1587, and 1597 cm−1, demonstrating medium intensity

bending vibrations for NH2 groups (1°-amines).

Overall, this table serves as a valuable reference for identifying and characterizing functional groups

in organic compounds through IR spectroscopy. It aids researchers and chemists in interpreting IR

spectra by providing detailed information on the absorption bands associated with different functional

groups.
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Chapter 5

Conclusion

In analyzing dataset with one dependent variable and 1627 independent variables, we applied five

different regression methods and compared their performance. The key metrics for evaluation included

the Mean Squared Error (MSE) for both testing and training data, the complexity of the model (as

indicated by the number of important variables), and the optimal parameter settings. Conclusion

Based on Testing MSE Random Sample Consensus (RANSAC) Regression emerges as the best method

due to its lowest testing MSE of 0.0205. This indicates superior predictive accuracy on unseen data

compared to the other methods. However, RANSAC does select a relatively large number of important

variables (20), making the model more complex. Based on the lowest testing MSE, Random Sample

Consensus (RANSAC) Regression is recommended for its superior performance in predictive accuracy.
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