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Abstract

This research introduces a deep learning approach for detecting and localizing switch faults in

Photovoltaic (PV) systems, specifically targeting PV fed cascaded H-bridge 5-level inverters. The

study’s primary focus is on identifying both single short circuit faults and up to two open switch

faults, aiming to enhance the reliability of this inverter. The research utilizes a Residual Net-

work (ResNet) architecture with residual connections to effectively identify and localize faults.

Extensive testing across 48 unique fault classes and one non fault case demonstrated the model’s

robustness, achieving an accuracy of 92% at -20 dB noise, approximately 94% at -10 dB and 0

dB, and around 95% at 10 dB and 20 dB. The model was trained using NVIDIA A100 GPU.

This research highlights the development of a real-time fault detection system capable of oper-

ating under multiple modulation indices, ranging from 0.55 to 1, in the presence of both single

and double switch faults. By incorporating noise signals, the study addresses practical chal-

lenges in solar inverter operations and advances the methodology for detection of fault in PV

systems. The results underscore the potential of proposed methodology to markedly improve

upon the reliability and performance of renewable energy technologies, marking a progressive

step in fault detection for solar energy systems.
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CHAPTER 1

Introduction

This thesis delves into the multifaceted process of fault detection in solar inverters, highlight-

ing its significance in maintaining system safety and efficiency. As reliance on solar energy

shifts from convenience to necessity, the continuous operation of PV systems becomes crucial.

Early fault detection is vital to prevent catastrophic failures, electrical risks, and system break-

downs that pose dangers to human health and system integrity. Inverters are the core of solar

power systems, and any performance deviation can lead to reduced energy efficiency and output.

Rapid identification and rectification of faults are essential to keep solar installations running at

maximum efficiency.

Beyond performance and safety, fault detection techniques serve a preventive role, protecting

the system from extensive and costly damage caused by prolonged undetected issues. This not

only preserves the health of the solar inverter but also safeguards the broader investment in

solar infrastructure. Effective fault detection underpins good maintenance and troubleshooting

practices, enabling targeted and efficient interventions that reduce downtime and repair costs.

This approach provides maintenance teams with actionable insights for swift issue resolution.

Furthermore, prompt fault detection ensures grid stability by preventing solar power integration

from causing disruptions or variations that could impact the wider electrical grid.

The thesis is structured into several chapters, beginning with an introduction to the fundamen-

tal principles of PV systems and multilevel inverters. It then reviews existing methodologies

and technologies for fault detection, from traditional techniques to advanced machine learn-

ing approaches. Subsequent chapters present the research methodology, results, culminating in

a discussion of findings and their implications. The study emphasizes the importance of fault

detection techniques for enhancing the reliability and efficiency of solar power systems. This re-
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CHAPTER 1: INTRODUCTION

search contributes to the development of robust fault detection systems that ensure the longevity

and stability of solar energy infrastructure.

1.1 Background

Solar energy systems have become a cornerstone of sustainable energy production, utilizing

PV panels for the conversion of solar radiation into electricity. These systems are composed

of several interconnected components, including PV panels, electrical wiring, regulation and

conversion systems, and inverters. In particular, inverters play a vital role for the conversion

of DC output from solar panels into AC power, which is suitable for use in most electrical

applications.

While solar energy systems offer numerous benefits, they are not immune to faults and failures,

which can significantly impact their performance and reliability. Inverters mostly have faults

of open circuit and short circuit; these mainly occur in the H-bridge inverter and switches of

the DC-DC converter. These types of faults can disturb the flow of power and, in critical situ-

ations, also affect the whole-system stability. Detecting and diagnosing these faults are crucial

to ensure continuity in power generation, avoiding other system component damages, and most

importantly, for maximizing system efficiency.

Open switch faults are a situation in which some switches of the inverter fail to conduct properly

for a duration of time required. Conversely, short-circuit faults are usually unintended low-

resistance connections between two points that allow excessive current flow leading to heating

and damage. Any type of fault may result from various causes such as manufacturing defects,

aging, or environmental stresses.

To diagnosis open and short circuit faults for H-bridge inverters is a difficult task. Very high

complexity, large possibilities of switching states, and power semiconductor devices are the

main causes for detecting complications. Traditional fault diagnosis methods often depend on

complex mathematical modeling and are time-consuming, requiring extensive expert knowledge

that may not cover all the possible cases of fault occurrence. Therefore, there is a growing need

for more advanced fault detection techniques in real time with dependability and efficiency for

detecting various kinds of faults, including open and short-circuit faults.

A detection algorithm is designed in this work for fault diagnosis, which is primarily aimed at

locating and diagnosing open and short circuit faults in H-bridge inverters and DC-DC converter

2



CHAPTER 1: INTRODUCTION

switches of a PV system. The algorithm have high detection accuracy, automatically diagnose

and localize faults using techniques of deep learning. This research will enable better reliability

and safety of the solar system, proactive maintenance, and troubleshooting to support sustain-

able energy production.

1.2 Problem statement

In renewable energy systems, especially Cascaded H-Bridge Multi-Level Inverters (CHBMLIs)

fed by solar energy, achieving high-quality and efficient AC power is crucial. These systems

are essential for reducing harmonic distortion and meeting the strict standards required for grid

integration of solar power. However, their complexity introduces significant challenges, particu-

larly in detecting faults like open and short circuits in both the inverters and DC-DC converters.

Such faults can greatly compromise the stability and in turn, the reliability of the system.

One of the major issues in fault detection for 5-level Cascaded H-bridge (CHB) inverters and

DC-DC converter switches is the inherent variability in solar energy inputs. This variability

makes it difficult to accurately identify faults, as the systems’ complex designs involve numer-

ous switches configured to achieve higher voltage levels and better waveform quality. Each

switch’s condition must be meticulously monitored to prevent disturbances that could dam-

age the inverter, DC-DC converter, or the connected grid systems. If not properly addressed,

faults such as open or short circuits can lead to severe problems, including excess current flow,

overheating, and potentially catastrophic system failures. The main challenge is to distinguish

between normal operational fluctuations and actual fault conditions, which many existing de-

tection methods struggle to do.

To address these issues, advancements in fault detection frameworks for solar-fed 5-level CHB

inverters and DC-DC converters are needed. This research aims to enhance the robustness,

reliability, and real-time performance of fault detection systems, focusing on increasing system

uptime and operational efficiency. Quick and accurate detection of fault is key to minimize

downtime and maximize energy production. Properly identifying open and short-circuit faults

is critical for maintaining overall system stability, which is key to integrating renewable energy

sources into mainstream power grids.

This study is directed towards developing cutting-edge fault detection technologies for CHB in-

verters and DC-DC converters, making renewable energy systems more robust and efficient. By

3



CHAPTER 1: INTRODUCTION

overcoming fault detection challenges in these systems, this research will enhance the reliability

and sustainability of electricity generation from solar power, contributing to a more stable and

dependable energy infrastructure.

1.3 Objectives

The primary objectives of this research are:

• Detecting and localizing open and short circuit faults.

• Proposing a deep learning method that achieves high fault detection and localization ac-

curacy.

• Reducing time and cost of manual fault diagnosis.

• Improving reliability and robustness against different modulation indexes.

The main objective is to implement improvements in the efficiency and reliability of solar power

systems by detecting high-level faults in the local control system. One of the main objectives

is to develop a system for diagnosing and finding solar inverter faults. This is a critical aspect

as it ensures that errors are not only detected but also specific, enabling quick response and

correction.

To achieve this goal, this research aims to harness the prowess of deep learning methods. By

proposing and implementing a deep learning method, this research aims to achieve the accuracy

of fault detection and localization. Deep learning, with the ability to analyse complex and het-

erogeneous data, provides the ability to increment the accuracy and reliability of detecting faults

in the inverters, and thus reduce the risk of incorrect detection if it is a false alarm. Another ob-

jective of this study is time and cost-effectiveness. By using advanced fault detection methods,

this research aims towards reduction of time and cost of manual fault detection. Not only does

this make maintenance and troubleshooting easier, but it also makes solar power installations

more economical by reducing operating and maintenance expenses.

1.4 Contributions

This research addresses critical challenges in the fault detection of open and short-circuit switches

in 5-level CHB inverters, powered by solar energy. The contributions aim to bolster the robust-
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CHAPTER 1: INTRODUCTION

ness, reliability, and real-time performance of fault detection systems within these complex in-

verter configurations, including both the inverters and associated DC-DC converters. By focus-

ing on these areas, we seek to develop advanced detection techniques that can more effectively

manage the inherent complexities and variability of solar energy systems, thereby improving

overall system stability and efficiency.

1. Comprehensive Fault Detection Framework for 5-Level H-Bridge Multi Level Inverters:

Multi-Level Inverters (MLIs), more so of 5-level H-Bridge configurations, play a very critical

role in developing superior quality AC outputs that carry low harmonic distortion in renewable

energy systems. The fault detection of these systems is difficult because of their complexity

and variability in power sources. Thus, a fault detection structure has been designed for the

robustness of the 5-level CHB inverter in compliance with all probable configurations of the

power sources:

• Both Bridges Supported by Solar: Compensates for the variability and intermittency of

solar energy.

• Upper Bridge Supported by DC and Lower by Solar: Stability is first provided to the DC

sources, while reliability is improved with the variability of solar energy.

• Lower bridge is supported by DC and the upper by solar: It is a hybrid approach with an

application in equal power variability management and improving system reliability.

2. Single and Double Switch Fault Detection: Accurate detection of single and double switch

faults is a must to avoid instability in the system or cascading failure. Existing methods invari-

ably have some sort of shortcomings in classifying of these types of faults. Our model ensures

the smooth and continuous operation of an inverter for the uninterrupted power supply, since it

can detect single short circuit fault and upto two open switch faults with high reliability.

3. Robustness Across Different Modulation Indexes: The modulation index greatly affects

the inverter’s performance. Active fault detection should be viable under a spread of different

modulation indexes so that this method does not lose its viability over different working con-

ditions. We collected and analyzed data for different modulation indices, as this will increase

the model’s capacity to detect the faults with reliability across different situations. This ensures

robustness of the fault detection system and its implementability with regards to real-world set-

tings.

4. Simulation of Real-Time Scenarios by White Gaussian Noise: The conditions in real life

5



CHAPTER 1: INTRODUCTION

are always noisy and uncertain, making the environment very stochastic. The addition of white

Gaussian noise into our data thus simulates these real-time scenarios. Hence a fault detection

model is made robust. This ensures the model’s practical and noisy accuracy and reliability; it

separates real faults from anomalies caused by noise.

1.5 Applications areas

Techniques for open and short switch fault detection applied to CHBMLIs fed with solar energy

are crucial for enhancing the reliability, efficiency, and service life of solar power generation

and its grid integration. Here are detailed insights into the application areas:

1. Enhanced reliability of solar power systems:

• Continuous operation: The fault detection mechanisms protect solar power systems from

short and open switch faults and other disturbances, ensuring that electricity generation is

continuous with minimal reduction.

• Maintenance Schedule Optimization: Early fault detection supports the ability to proac-

tively schedule maintenance compared to a calendar- or usage-hour-based schedule. This

proactive approach ensures that the overall reliability and availability are maximized to

meet grid demand and stability requirements.

2. Grid stability and power quality improvement:

• Grid disturbance management: The fault-ride-through-capable inverters smooth the grid

disturbances caused by faulty switches, with consumers continually obtaining stable en-

ergy even when there is a fault.

• Harmonic reduction: Harmonics are reduced with fault detection systems, enhancing

power quality since the inverters provide a clean sine wave output without any electri-

cal noise or interference.

3. Optimized energy harvesting and efficiency:

• Maximization of energy yield: Fault detection enhances energy harvesting from solar

panels to maximize energy yield and system profitability.
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• Efficient conversion of energy: Fault-tolerant inverters are efficient in converting energy,

minimize the amount of energy lost during DC to AC conversion, and are therefore im-

portant for extracting as much as possible from any renewable energy system

4. Cost savings and operational efficiency:

• Low maintenance costs: Solar power fault detection systems lower maintenance occur-

rences dramatically, thus minimizing the cost involved in operation downtime.

• Real-time optimization: Quick detection and rectification of errors are undertaken to en-

sure maximum performance of solar PV systems with minimum opportunities lost.

5. Safety and compliance:

• Safety assurance: Fault detection systems increase safety in the system by averting haz-

ards caused by inverter malfunctions, hence proving conformity to all the safety regula-

tions of solar power installations.

• Reliable compliance: Reliability of the fault detection system ensures compliance with

grid codes and operating standards, building trust in utilities and regulatory authorities.

6. Integration into smart grids and with future technologies:

• Smart grid compatibility: The integration of solar-fed inverters with a smart grid envi-

ronment can be easily achieved when it comes to fault detection. Enable advanced grid

services, demand response, and dynamic interactions of the grid for improved system

flexibility and resilience.

• Future proofing: With technologies for fault detection in place, solar power systems would

be assuredly adaptive and resilient to further changes and demands that may come in the

energy landscape.

Thus, the implementation of detection of faults in multilevel inverters for solar-fed applications

will ensure reliable, efficient, and safe power generation and grid integration. Maximum power

harnessed, grid stability, cost reduction, and meeting the standards for regulation can all be

assured with the high level of advancement in the detection of the fault technology for these

appliances. Advancement in fault detection technologies should then continue to realize the

promise of solar and enable sustainable energy solutions in making a greener planet.
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CHAPTER 2

Fundamentals and Literature Review

This chapter is split into two main sections: the first covers the fundamental principles of PV

systems and inverters, and the second provides a thorough review of existing methods and tech-

nologies used for fault detection in these systems.

2.1 Power electronic converters

Power electronic converters are essential components in numerous applications, such as electric

vehicles, renewable energy systems, and power supplies. Converters can be broadly classified

depending on the area of application, function, and topology. Major classifications include DC-

DC converters, DC-AC inverters, AC-DC rectifiers, and AC-AC converters. A wide range of

subtypes are included in these major classes for different voltage, current, and power applica-

tions.

DC-DC converters

DC-DC converters are devices for changing one level of direct current (DC) to another. They

can also be classified as unidirectional or bidirectional, with each class available in both isolated

version and non-isolated version.

• Unidirectional DC-DC Converters: There are two types: isolated converters—push-pull,

full bridge, and flyback—and non-isolated converters which include Buck, Boost, and

Buck-Boost converters.

• Bidirectional DC-DC Converters: These are able to accommodate current in both di-
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rections of flow. Single-stage converters, multi-level converters, and interleaved boost

converters are included in this class.

DC-AC inverters

DC-AC inverters have the means to convert DC to alternating current (AC). They can be classi-

fied into two-level and multi-level inverters.

• Two-Level Inverters: These include single-stage and multi-stage converters, as well as

conventional full-bridge inverters.

• Multi-Level Inverters: These are further divided into diode clamp, flying capacitor, cas-

caded H-bridge, hybrid, and dual inverters, which are used for high-power applications.

AC-DC rectifiers

AC-DC rectifiers have the ability to convert AC to DC and can be classified into two categories:

single-phase and three-phase rectifiers. These are essential in power supplies and battery charg-

ing systems.

AC-AC converters

AC-AC converters modify the characteristics of AC power, including its voltage, current, fre-

quency, or phase. They encompass cyclo converters and matrix converters, which are utilized in

motor drives and variable frequency applications.

Figure 2.1 provides a comprehensive classification of power electronics converters. The top-

level categories include DC-DC converters, DC-AC inverters, AC-DC rectifiers, and AC-AC

converters. Each main category is further subdivided:

• DC-DC converters: These are split into unidirectional and bidirectional types, with fur-

ther distinctions between isolated and non-isolated converters. Examples include Push-

Pull, Flyback, and Multi-Phase Buck converters.

• DC-AC inverters: These are categorized into current source and voltage source inverters,

with two-level and multi-level/phase subtypes. Notable examples include Full Bridge and

Cascaded H-Bridge inverters.
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Figure 2.1: Classification of power electronics converters [20]

• AC-DC rectifiers: These are divided into single-phase and three-phase rectifiers, crucial

for converting AC power to DC.

• AC-AC converters: This category includes cyclo converters and matrix converters, used

to directly convert AC power from one form to another.

As shown in the image, a color code is made to show where these converters are used: yellow

for high voltage/power applications and blue for low voltage/power applications. This is very

helpful in that the classification given is very specific, helping users choose specifically what

type of converter to use for a specific intended use, hence optimum performance and efficiency.

2.2 Inverters

An inverter, in regards to power electronics, is a crucial device that is able to convert direct cur-

rent Direct Current (DC) into alternating current Alternating Current (AC) . It is very versatile in

its uses; from household appliances to industrial machineries, machines, and renewable energy

facilities. Inverters can be classified into several types on the basis of their design, operational

principles, and applications. Here, we will focus on three primary types: single-level inverters,

multilevel inverters, and specialized inverters.
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2.2.1 Single level inverters

Figure 2.2: Two level inverter output [11]

Single-level inverters, also known as two-level inverters, are the simplest form of inverters. They

convert DC to AC by switching the DC input voltage between positive and negative values,

producing a square wave output as shown in figure 2.2.

Structure and operation

Single-level inverters typically use a single set of power switches (such as transistors or thyris-

tors) to invert the DC voltage. These switches alternate the polarity of the input voltage, resulting

in an AC output.

Advantages

• Simple in design, cost-effective, and easy to control.

• Suitable for applications where a basic AC output is sufficient, such as in small uninter-

ruptible power supplies (UPS) and motor drives.

Limitations

The square wave output of single-level inverters has high harmonic content, leading to poor

power quality and potential issues in sensitive equipment. Filtering techniques are often required

to mitigate these harmonics.
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2.3 Multilevel inverters

Multilevel inverters represent a significant advancement in inverter technology, offering im-

proved power quality and efficiency. They generate multiple voltage levels from a set of DC

sources, resulting in a stepped approximation of a sinusoidal waveform. The primary types of

multilevel inverters include:

Neutral point clamped inverters

Neutral Point Clamped (NPC) inverters are important members of the multilevel inverter family,

in addition to the diode-clamped multilevel inverters. They find use in applications ranging from

medium- to high-power. The applications of these inverters are extended to the field of industrial

motor drives, power supplies for renewable energy systems, grid-connected power supplies, and

others where output waveform quality is of prime importance to bring down harmonic distortion

and maintain overall efficiency. NPC inverters produce several levels of voltage by connecting

the neutral point of the DC bus with diode clamps to the output phases as shown in 2.3.

Figure 2.3: Three level NPC inverter [32]

As shown in figure 2.3, the basic three-level NPC inverter consists of the following:

• DC bus capacitors: These capacitors partition the DC bus voltage into two equal partitions

hence creating a neutral point.

• Clamping diodes: These diodes clamp the center point of the DC bus capacitors to the

output phases, thus permitting intermediate voltage levels.
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• Switching devices: Typically, metal-oxide-semiconductor field-effect transistors (MOS-

FETs) and insulated gate bipolar transistors (IGBTs) are used to regulate the voltage levels

applied to the load.

In the three-level NPC inverter, the output voltage has three possible values: zero, positive DC

bus voltage or negative DC bus voltage. This comes from proper switching of the power devices

and using the clamping diodes to limit the stress of the voltage on the switches.

Flying capacitor inverters

Flying Capacitor (FC) inverters or capacitor-clamped multilevel inverters are a type of multi-

level inverter that utilizes capacitors as its primary elements to achieve numerous voltage levels.

Particularly, these inverters are capable of generating high-quality output waveforms with low

harmonic distortion, thus making them particularly suitable for medium to high power appli-

cations, such as industrial drives, renewable energy systems, and power grid interfaces. The

configuration of an FC inverter comprises many capacitors and switches arranged in a way that

they can produce a number of different voltage levels as illustrated in figure 2.4.

Figure 2.4: Flying capacitor inverter [2]

Some of the main elements of an FC inverter include:

• Switching devices: The common switching devices used are metal-oxide-semiconductor

field-effect transistors (MOSFETs) or insulated gate bipolar transistors (IGBT). These

devices are utilized to control the level of voltage present at the output.
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• Flying capacitors: These capacitors are connected in series with the switching devices and

are used to clamp the voltage to intermediate levels between the main DC bus voltages.

• DC bus capacitors: These capacitors store the main DC supply voltage for the inverter.

For an n-level FC inverter, the number of voltage levels, n, is decided by the number of flying

capacitors and switching devices used. For instance, a five-level inverter will have four flying

capacitors. The capacitors charge and discharge in a controlled manner, allowing the inverter to

generate stepped output voltages that approximate a sinusoidal waveform.

Cascaded H-bridge Inverters

The CHB inverters are a type of multilevel inverter architecture that is quite suiting for medium

to high power applications. These inverters find wide application in motor drives, renewable

energy systems, and power grid interfaces due to their capability to produce high-quality output

waveforms, scalability, and modular design. The CHB inverter is an assembly of several H-

bridge cells connected in series. Each cell in the H-bridge can produce three different voltage

levels: positive, zero, and negative. The total output voltage is the sum of voltages generated by

each H-bridge cell. A single H bridge is shown in figure 2.5.

Figure 2.5: H-Bridge inverter [1]

Some important components of a CHB inverter are:

• H-Bridge cells: Each H-bridge cell is a full-bridge inverter comprising four switching

devices, typically metal-oxide-semiconductor field-effect transistors (MOSFETs) or in-

sulated gate bipolar transistors (IGBTs) , along with a DC power source.

• DC power sources: These can be separate DC sources, batteries, capacitors, or photo-

voltaic panels, depending on the application.
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• Control system: The control system manages the switching of each H-bridge cell to syn-

thesize the desired output waveform.

Advantages of multi level inverters

MLIs are designed to produce output voltage waveforms that closely approximate a sinusoidal

shape by synthesizing multiple discrete voltage levels. Figure 2.6 shows the comparison of

different levels of voltages. These levels are 2 levels, 3 levels and 5 levels.

Figure 2.6: Comparison of output voltage waveforms [34]

The advantages of MLIs include:

• Improved output waveform: The stepped output waveform closely approximates a sinu-

soidal wave, resulting in the reduction of Total Harmonic Distortion (THD) and improving

power quality.

• Higher efficiency: Lower switching losses and better utilization of the DC sources con-

tribute to higher overall efficiency.

• Scalability: The modular design of multilevel inverters allows for easy scaling to higher

power levels by adding more H-Bridge units or other modules..

Challenges of Multilevel Inverters

1. Complex control: Precise timing of the switching events is required for multilevel inverters,

which makes their control strategies more complex since the output waveform has to be of the

desired shape.
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2. More components: Switches, diodes, and capacitors mean increasing the number of compo-

nents, which in turn increases cost and complexity.

3. Fault detection and management: Reliable operation at this increased order of magnitude

of components and potential fault points necessitates effective fault detection and management

strategies.

2.4 Specialized inverters

1. Grid tied inverters: These inverters are integral to renewable energy systems, converting

DC power from sources like solar panels and wind turbines into AC power that aligns with the

grid. They frequently incorporate features such as Maximum Power Point Tracking (MPPT) to

optimize energy harvest and anti-islanding protection to ensure safety and reliability.

2. Stand-alone inverters: Used in off-grid systems where the inverter provides AC power

independently of the grid. This is the major part of their application, which is normally done in

remote or backup power systems and often includes battery management features.

3. Bidirectional inverters: A bidirectional inverter can perform the task of converting DC to

AC and vice versa. It is normally utilized for purposes like battery energy storage systems and

charging stations of electric vehicles. The existence of bidirectional flow management lends

compatibility between inverting operations to have a flexible solid-level energy management

system.

Converters are the most diversified and indispensable elements in the domain of modern power

electronics. There exist many different types of inverters, designed to cater to the different

requirements of applications. Single-level inverters are simple and relatively inexpensive; mul-

tilevel inverters offer better power quality and efficiency; and specialized inverters are designed

and optimized for specific applications. It is important to know the nature, merits, and problems

of each class of inverter so that an appropriately suitable inverter can be chosen for a particular

application.

2.5 Overview of H-bridge inverter

An H-Bridge multilevel inverter comprises several H-Bridge units, each of which has three

levels of voltage: positive, zero, and negative. These modules are connected in a series format to
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obtain the staircase waveform, which approaches the ideal sine wave. This configuration results

in a reduced level of THD for the output voltage and is hence related to significant generation

of quality power. H-bridge topology finds an advantage in this regard as it can ease the control

strategy used and lower the component count.

Working principle

The working principle of an H-Bridge multilevel inverter lies in the procedure followed in

switching the states of the power semiconductor devices (IGBTs or MOSFETs) for each H-

Bridge unit. Properly timed switching events allow the inverter to deliver a stepped output

voltage waveform, which is near sinusoidal. This stepped waveform is created from the sum of

the voltages generated by each of the H-Bridge units, offering better resolution for controlling

the output voltage and frequency.

Applications in renewable energy systems

There is an ever rising demand to integrate renewable sources of energy with the electricity

grid, and hence, for more effective power conversion systems. H-bridge multilevel inverters are

applied in various applications of renewable energy, particularly in photovoltaic (PV) systems.

Such inverters convert DC power developed from solar panels into an appropriate AC suitable

for grid integration or local consumption. Their most basic utility within the PV system is that

they have the capability of maintaining high efficiency while managing very high power levels.

By distributing the voltage among many H-Bridge units, the multilevel approach lessens the

strain on individual components. By doing so it achieves increased reliability of the inverter

overall coupled with an ability to work more easily under conditions of differing loads. In

addition to PV systems, H-Bridge multi-level inverters are used for wind energy conversion

systems, battery storage systems, and electric vehicle charging stations. It is preferable due to

its high performance and flexibility for many renewable energy applications.

Advantages

H-Bridge multilevel inverters have several advantages, making them in wider application. Some

of the key benefits include:

1. Improved output waveform quality: The multilevel approach will lead to a staircase output
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voltage waveform close to a sinusoidal wave, thereby reducing the THD and requiring high

filtering to be decreased.

2. Reduced switching losses: Working with the H-Bridge topology at low switching frequen-

cies attains lower switching losses and further increases the overall efficiency.

3. Scalability and modularity: The whole architecture of the H-Bridge makes it very modular

to scale an inverter simply by placing more H-Bridge units in series for handling more power.

4. Enhanced Reliability: Chances of component failure will be significantly lowered when

voltage stress is distributed to a great number of H-Bridge units. Hence this enhances reliability

and longevity.

Challenges

1. Complex control strategies: Control of multiple H-Bridge units demands algorithms so-

phisticated enough to secure the exact timing of switching events to uphold the desired output

voltage waveform. Development and realizing the control strategies might be difficult, and at

times, computationally heavy.

2. Increased component count: The modular nature of H-Bridge multilevel inverters means

more components than simpler inverter topologies are necessary. This may eventually lead to

higher costs and space requirements.

3. Fault detection and management: More the number of components and design complexity,

more an inverter design needs appropriate fault detection and management strategies. Reliable

operation under fault conditions is a major goal for the practical success of H-Bridge multilevel

inverter. Multilevel H-bridge topologies offer many advantages in terms of quality, effective-

ness, and reliability of the output waveforms; hence, they have been popular for renewable

energy systems. However, these features also increase the complexity and call for enhanced

control and fault-detection mechanisms to reap maximum benefits from such inverters.

2.6 Solar energy

Overview of solar power generation

The generation of solar power harnesses energy from sunlight through PV cells, transforming it

directly into electricity through the technology known as ’photovoltaics’. Such a process uses
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key components and steps as follow:

1. Photovoltaic cells: PV cells are semiconductor devices, mainly composed of silicon, ab-

sorbing photons from sunlight. In fact, this absorption excites electrons, thus leading to direct

current (DC) electricity.

2. Solar panels: PV cells are connected in series and parallel connections to make a solar panel

by which the output current and voltage can be heightened for use.

3. Solar arrays: Many solar panels combine to generate tremendous electricity suitable for

applications within homes, offices, or even large uses by power utilities.

2.7 Overview of photovoltaic energy

Lately, there’s been a growing interest in different sources of electrical energy because of the

plentiful sunlight and their eco-friendly advantages. The most common use of this energy is

in rural areas where no public electricity is available. Material research and technological ad-

vancement in semiconductors, used to build photovoltaic cells, have significantly come in as a

boost in fast growth and development of this renewable energy. One of the key challenges of PV

systems is extracting the maximum solar energy, as the efficiency of the installation drastically

depends on sunlight and ambient temperature. The development of techniques for real-time

maximum power extraction, such as the Maximum Power Point Tracking (MPPT) technique, has

been done by this impact. At the same time, another solution would be to increase the presence

in an electric network with a PV inverter having active harmonic filtering capability, given that

non-linear loads are quite intensive. The key is to furnish an FAP-GPV topology in which solar

energy extraction is maximized, together with the energy quality reaching the level required by

international standards and norms.

A PV system utilizes solar panels for the conversion of solar energy into electrical energy with

the help of several components, including PV panels, electrical connections, mechanical connec-

tions, regulation systems, and conversion systems. The significance of PV cells can be explained

as a component made up of semiconductor materials like silicon. These semiconductors have

been designed into cells that can be used effectively both in series and parallel[27]. To form an

electric field in a PV cell, a semiconductor wafer (silicon) is used, consisting of a negative side

and a positive side.

As shown in Figure 2.7 When light makes contact with a solar cell, electrons are emitted from
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Figure 2.7: PV cell [15]

the atoms of the semiconductor material. These freed electrons can then be captured, generating

an electric current at the output of the solar cell.

The use of solar energy through photovoltaic systems has observed a significant increase in re-

cent years, driven by the growing global crisis awareness of environmental sustainability and the

urgent need to reduce greenhouse gases. Solar PV technology is a key player in the transition to

clean and sustainable energy sources. The sun panels that capture sunlight and transform it into

DC electricity, constitutes the heart of the photovoltaic system. However, to fully exploit solar

energy and integrate it with our current energy without any problem equipment, the efficiency

of the conversion of DC to AC is required.

2.8 Safety and protection of photovoltaic panels

When designing a photovoltaic installation, it is essential to ensure the electrical protection

of the system to extend its lifespan and prevent destructive failures related to the association

of cells and their operation under shading conditions. A solar panel is composed of several

interconnected cells. To prevent a damaged cell from affecting the holistic performance of the

panel, a safety system is integrated using protection diodes. There are two types of diodes used

for this purpose:

• Series diodes (Anti-return diodes): These are added to prevent reverse currents.
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• Parallel diodes (Bypass diodes): These protect shaded cells by diverting the "normal" cur-

rent, preventing it from passing through the "shadowed" cell and minimizing production

loss.

These protective measures are crucial in maintaining the efficiency and reliability of photo-

voltaic panels, ensuring that the system continues to function effectively even when individual

cells are compromised. A solar panel typically contains one to three bypass diodes, depending

on the number of cells it has (on average, 36 cells for 3 bypass diodes).

Advantages of solar power

1. Renewable: Solar energy is an unlimited resource and can be the consistent substitute for

conventional fossil fuel.

2. Environment friendly: Generation of solar power does not produce any greenhouse gas

emissions in operation, reducing carbon footprint.

Challenges of solar power

• Intermittency: Solar power generation depends on the availability of sunlight, which

fluctuates with weather conditions and the time of day.

• Initial cost: The upfront cost of solar panels and associated equipment can be high,

although prices have been decreasing over time.

Role of DC-DC converters in PV systems

DC-DC converters are crucial components in solar power systems, serving to regulate and opti-

mize the voltage output from solar panels. Their primary functions include:

Voltage regulation

The solar panels generate a variable direct current voltage based on sunlight intensity and tem-

perature. The DC–DC converters control proper and stable voltage for the inverter and other

components of the system.
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Maximum power point tracking

Normally, MPPT is embedded within the DC-DC converter control algorithms and carries out

the job of extracting as much power as possible from the solar panels. The electrical operating

point of the modules or arrays is regulated so they always operate at maximum power.

Efficiency improvement

By optimizing voltage and current output, DC-DC converters enhance overall efficiency within

a solar power system by converting and using more energy in the process.

Types of DC-DC converters

• Buck converters: It is a step-down converter that reduces the input voltage to a lower,

regulated output voltage. This method is opted when the desired output voltage is lower

than the input voltage.

• Boost converters: It is a step-up converter that increases the input voltage to a higher,

regulated output voltage. This is opted when the desired output voltage is higher than the

input voltage.

• Buck-Boost converters: These converters are versatile enough to provide either a higher

or lower regulated output voltage in comparison to the input voltage.

Advantages of DC-DC converters

• Improved system performance: Stability in the output power of voltage and power

extraction optimization are advantages that a DC-DC converter brings in a solar system..

• Flexibility: There are several available DC-DC converters available that can meet differ-

ent voltage regulation needs and, therefore, highly flexible in use regarding different solar

power applications.

• Protection: DC-DC converters can be designed with additional features such as overvolt-

age protection, overcurrent protection, and thermal management for the safeguarding of

the components.
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2.9 Integration of solar power with multilevel inverters

The integration of solar power with multilevel inverters involves several key steps to ensure

efficient and reliable power conversion:

DC output from solar panels

The solar panels generate DC voltage whose level varies in accordance with sunlight intensity

and environmental conditions.

Voltage regulation through DC-DC converters

The DC output from the solar panels is fed to the DC-DC converters wherein the voltage is

adjusted and optimized using MPPT algorithms.

DC input to multilevel inverter

The multilevel inverter receives the regulated DC voltage from the DC-DC converters. It con-

verts this DC voltage into the AC voltage that can be delivered at the end-use or fed into the

grid.

Multilevel inverter operation

The multilevel inverter synthesizes the AC output by generating multiple voltage levels from the

regulated DC input. This gives high-quality AC output with less harmonic distortion.

Benefits of integration

• Higher efficiency: Integrating optimally designed DC-DC converters along with multi-

level inverters provides more efficiency in the overall solar power system.

• High quality power output: Multilevel inverters produce a high-quality AC waveform with

lower THD, making them better compatible with grid standards and sensitive equipment.

• Scalability: The modularity of both DC-DC converters and multilevel inverters allows

ease of scaling to fulfill increased power demand.
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Modern power systems are therefore highly dependent on solar energy and DC-DC converters

that provide a renewable and efficient source of electricity. In this regard, the addition of solar

power to multilevel inverters is particularly advantageous in terms of power quality, efficiency,

and scalability.

2.10 Faults in H-Bridge inverters

H-Bridge inverters, like all power electronic devices, can develop different types of faults. It is

important to understand these faults, their origins, and consequences, to be able to put in place

efficient strategies in detection and mitigation. This section mainly discusses the different types

of faults that may occur in H-Bridge inverters, with a focus on open-switch faults, their impacts

on system performance, and fault detection methods.

Types of faults in H-bridge inverters

1. Open switch faults:

• Description: This is a type of fault that takes place if one of the semiconductor

switches (IGBTs, MOSFETs, and so forth) employed within the H-Bridge fails to

conduct current—it becomes an open circuit.

• Causes: These faults are consequential from component aging, thermal stress, man-

ufacturing defects, or control signal failures.

• Consequences: Open switch faults can cause unbalanced output voltage levels, a

rise in harmonic distortion, reduced efficiency, and possibly damage other parts due

to abnormal current flows.

2. Short circuit faults:

• Description: Fault due to short-circuit occurs when a switch fails in the permanently

closed condition and thereby creates a direct short across the power supply or load.

• Causes: Such faults may be caused by overvoltage conditions, insulation failures, or

catastrophic breakdown of the component.

• Consequences: Short-circuit faults can lead to high overcurrent states, which have

the potential to destroy the inverter, power supply, and load. Instant actions with

protection are needed so that the failure is not catastrophic.
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3. Gate driver faults:

• Description: The anomalies in control signals driving switches can lead to wrong

switching actions.

• Causes: These defects may be due to some trouble in the control circuit, signal

interferences, or power supply to the gate drivers.

• Consequences: Improper switching may result in suboptimal inverter performance

with increased losses or even cause stress and failure in components.

4. Thermal faults:

• Description: Components may get heated too much and this heating may lead to

thermal runaway or even degradation, hence causing thermal faults.

• Causes: Overloading, lack of cooling, or high ambient temperature.

• Consequences: Continuous exposure to high temperature shortens the lifespan of

components, causes efficiency to drop, and raises the probability of other kinds of

faults.

Consequences of open switch faults

Open switch faults are one of the commonest and most critical types of faults that occur in

H-Bridge inverters. Some of the more specific consequences are:

1. Unbalanced output voltage levels: An open switch results in the disruption of the in-

tended switching sequence, which causes asymmetry in the output voltage waveform.

This can consequently lower power quality and enhance harmonic distortion.

2. Increased harmonic distortion: As a result of poor switching action, deviations from

the ideal output waveform are noticed, which in turn increases the THD. Increased THD

would result in inefficiencies and associated difficulties in supplied loads.

3. Reduced efficiency: Open circuit faults prevent the inverter from being used at its effi-

cient point of operation. The resulting inefficiency tends to increase energy losses and

lower system performance.

4. Potential damage to components: The unusual current paths developed due to this fault

of an open switch can exert some sort of stress on the other components of the inverter

that might lead to more faults, and finally failure of these components.
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Consequences of short switch faults

The short switch faults in 5-level CHB inverters can have severe implications for the performance

and reliability of the entire system. These faults will cause an unwanted continuous conduction

of the switch or will create a low resistance path and generate a few critical problems.

1. Excessive current flow: The fault related to short switches can lead to a high current peak

up to more than two times the maximum peak set value. The overrated current, if present,

might induce overtemperature on some components, leading to permanent damage of the

inverter switches, power semiconductors, and other related hardware. It may also cause

protective devices to trip, leading to interruptions in the supply of power and possible

downtime.

2. Increased power losses: Abnormal current flow because of short switch faults can lead

to substantial losses in power in the system. It lowers the overall energy conversion ef-

ficiency of the solar energy system and gives additional heat that further stresses and

degrades the system components.

3. Component damage and reduced lifespan: With the continuous operation under a short

switch fault condition, the wear and tear rate of components is significantly increased,

reducing their lifetime. Critical components, such as capacitors, inductors, and power

semiconductors, may suffer increased thermal and electrical stress, resulting in premature

failure that requires expensive repairs or replacement.

4. System instability and potential safety hazards: A slight fault in the switch may easily

cause the normal operation of the inverter to be disturbed, thus leading to system instabil-

ity. This instability can manifest as voltage and current fluctuations, which may adversely

affect other connected systems or equipment. In severe cases, these faults can pose safety

hazards, such as electrical fires or electric shocks, particularly if the fault leads to insula-

tion breakdown or exposes live parts.

Addressing short switch faults promptly and effectively is crucial for maintaining the integrity

and safety of the solar energy system and ensuring reliable power delivery.
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2.11 Existing methods for fault detection

Fault detection is an important factor in controlling the adverse effects of the faults on H-bridge

inverters. Quite a number of techniques have been developed, among them are:

Voltage and current monitoring:

• Description:Continuous monitoring of voltage and current waveforms is done. These

help to identify any anomalies that may point to faults.

• Advantages: It is quite simple in implementation, and it can be done real-time.

• Limitations: May not always find the exact position or exact type of fault without addi-

tional analysis.

Thermal imaging:

• Description: Thermal cameras or sensors detect abnormal temperature rises in inverter

components.

• Advantages: Non-invasive, hence provides visual confirmation of overheating compo-

nents.

• Limitations: Detects only thermal faults and needs frequent monitoring and maintenance.

Signal processing techniques:

• Definition: Advanced signal processing algorithms analyze the inverter’s electrical sig-

nals to detect characteristic fault signatures.

• Advantages: Can detect and diagnose a wide range of faults with high accuracy.

• Limitations: Needs sophisticated hardware and computational resources.

Model based approaches:

• Description: These use mathematical models of the inverter for the comparison of ex-

pected performance with actual measurements.
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• Advantages: They can provide deep insights into the causes and locations of faults.

• Limitations: The accuracy of the models is very important; and accurate models may be

cumbersome to develop.

Deep learning techniques:

• Description: In this approach, machine learning models, especially deep learning, are

used to learn from historical fault data in such a way that they recognize and classify

faults in real time.

• Advantages: High accuracy, ability to deal with complex patterns, potential for real-time

implementation.

• Disadvantages: Very high demand for training data and computation power to train and

run the models.

These recent advances, particularly in the domain of fault detection techniques using deep learn-

ing, bring new hope for increasing the reliability and efficiency of H-Bridge inverters in different

applications.

2.12 Literature review

The research on detection faults in CHBMLIs has continued, from the viewpoint of the application

of model-based strategies and advanced ML and AI techniques. The basic idea, key method-

ologies, and pursued approaches of researchers in the field of fault detection in CHBMLIs,

including the use of model-based methodologies, machine learning, deep learning techniques,

are presented herein.

The advancement in renewable energy technologies has significantly increased the reliance on

solar power systems, particularly in the integration of sophisticated inverter architectures like

the Cascaded H-Bridge 5 level Inverters. The robustness and efficiency of these systems are

paramount, necessitating advanced fault detection mechanisms to ensure continuous and reli-

able operation. Over the past few decades, various methods and models have been proposed to

address the challenges of fault detection in multi-level inverters. The broader picture of these

methods is shown in figure 2.8 . This section reviews the existing literature on traditional and
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contemporary fault detection techniques, its trend in evolution, machine learning and deep learn-

ing models, and how these innovations improve reliability and performance in solar-fed inverter

systems. This section identifies strengths and limitations of prior research, presenting a broad

view of the present state-of-the-art concerning fault detection methodologies, laying the ground

for this work.

Figure 2.8: Existing methods for fault detection

The paper [22] proposed novel fault-tolerant scheme that enhances the reliability of CHB invert-

ers, which are pivotal for generating high-quality AC outputs. In the event that a power switch

fails, the proposed approach is to bypass the failed H-Bridge cell with the existing backup cell

in place of the functionally lost one while restoring balanced line-to-line voltages from the CHB

inverter. The system continues operating at maximum possible output voltage, using the re-

maining healthy cells fully operational with only limited operational losses to maintain reduced

fault sensitivity of the proposed system. The authors in [13] illustrate a robust method to regain

the operational performance of CHB inverters. The method is SVM-based and incorporated in

an auxiliary unit to detect faults and recover operation; this system can bypass the faulty cell

dynamically and, in this way, maintain the inverter’s performance.

Model-based fault detection methods rely on accurately obtained mathematical models of cas-

caded H-bridge inverters. Such models react to deviations in the system behavior when open-

switch faults are established. These methods include parameter estimation methods as well as

observer based methods. Observer-based implementation techniques use state observers to es-
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timate system states and compare them with actual measurements. If a significant discrepancy

is observed, a fault is indicated.Whereas, in the parameter estimation method, parameters of the

inverter model such as resistance and inductance are estimated and changes are monitored. A

significant deviation from the nominal values indicates a fault. The authors in [18] have pro-

posed the use of signal processing techniques where PWM asymmetries, reference signals, and

resultant output voltages are analyzed to detect open transistor faults. Also, there are specific

significant mean values for each faulty transistor that have been introduced due to the existence

of the fault.

In another example, to detect and localize the fault, researchers have used Fuzzy Inference

Systems (FIS) [30] and Model Predictive Control (MPC) [8]. The predictions given by the

MPC controllers were compared with the actual measurements, and faulty switches were de-

tected. However, these methodologies may run into difficulties in correctly capturing dynamic

complexities and non-linearities of real systems, resulting in possible inaccuracies within fault

detection, especially for multiple open switches.

Machine Learning (ML) and Artificial Intelligence (AI) tools and techniques provide alternative

methodologies for fault detection in CHBMLIs through the use of historical data for learning the

patterns associated with normal and faulty operation. In [3], the authors investigated the fault

diagnosis of CHMLIs with ML algorithms mainly based on classification algorithms, where the

k-NN and SVM algorithms were proposed. PPCA was implemented for feature extraction, and

it was shown that the fault diagnosing speed was quicker by using SVM, while the accuracy

increases, especially for CHMLIs with an open switch fault.

In [31] a 15-level inverter is examined for fault diagnosis.The fault diagnostic method proposed

has the following architecture: a fully connected feedforward neural network layer, referred to

as the multi layer perceptron, which identifies and then classifies whether a condition is normal

or faulty in CHBMLIs. In[29], Shen et al. have implemented a unique convolution neural net-

work (CNN) based diagnostic method for open switch fault diagnosis for neutral point clamped

inverter, which features a dual input channel. Through this implementation, midpoint voltages,

along with three-phase currents of the NPC inverter, serve as signals for the purpose of ex-

tracting fault information[24]. In [9], features are extracted via wavelet decomposition from

single switch fault output and ANN to detect failure from open switch in a five level cascaded

inverter. The wavelet decomposition process involves breaking down the signal into different

frequency components at varying resolutions. By decomposing the signal into twelve levels, the
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researchers aim to extract detailed information about the signal’s frequency content and identify

specific patterns associated with open switch failures in the inverter system. Among the plethora

of mother wavelets, the "dB10" wavelet is utilized, which belongs to the family of orthogonal

wavelets, specifically the Daubechies wavelets.

In the context of PV systems, fault detection methodologies have also been investigated exten-

sively. ML-based approaches, including Gaussian Process Regression and ANN techniques,

have been employed for diagnosing various faults such as mismatch, partial shading, and short

circuit faults [10] [25]. ANN architectures are mainly useful for fault detection using inputs

such as solar irradiance, cell temperature, and PV current-voltage characteristics [10] [17]. Hy-

brid deep learning techniques have also been proposed for fault identification based on Elec-

troluminescence (EL) imaging [36]. ANFIS and Clarke transformed assisted ANNs are used

for open-circuit fault diagnosis and fault localization in switches (IGBTs) of three-phase invert-

ers[6][21].

Research evidenced in this section clearly highlights diverse methodologies and approaches

that have been employed for fault detection in CHBMLIs and PV systems. Whereas model-based

strategies underpin efforts in fault detection, ML and AI techniques provide alternative promising

avenues of research for addressing complex system dynamics in the improvement of detection

accuracy. Researchers using historical data and advanced learning algorithms aim to develop

renewable energy systems that are ever more reliable, performant, and safe, for global adoption

of clean energy technologies.
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System Modelling

This chapter is intended to address the main focus of our research, which is to integrate a photo-

voltaic source into the inverter’s DC bus (dc-link). This combination, also known as a PV inverter,

offers several significant benefits, including the ability to supply free active power to the elec-

trical grid alongside the active filtering option characteristic of Voltage Source Inverters (VSI).

In this way, the active compensator is now capable of performing multiple functions: ensuring

reactive power compensation, eliminating current-type harmonics, and ultimately supplying a

certain amount of active power to the distribution network.

3.1 Mathematical modelling of photovoltaic system

This section addresses the mathematical modeling of Photovoltaic system which we integrated

with CHBMLIs for our data source. Figure 3.1 illustrates the equivalent circuit of a PV cell, which

consists of an ideal current source in parallel with a diode. The cell is exposed to real-world

conditions of irradiance and temperature T.

In this model, the current source represents the photocurrent generated by the cell, which is di-

rectly proportional to the sunlight (irradiance) hitting the cell. The diode models the p-n junction

of the cell, where the behavior of the diode is affected by the temperature of the environment.

These factors influence the overall performance and efficiency of the PV cell, making it essential

to consider both irradiance and temperature in the system’s design and operation. Understanding

this model is crucial for optimizing the power output and integrating the PV system effectively

into broader electrical networks.

A single-diode solar cell can be shown by an equivalent electrical circuit as shown in figure 3.1
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where Iph represents the photogenerated of the connected PV module and Id0 is the average cur-

rent of the diode. Rs represents the series resistance in the cell, which includes the resistance of

the cell material, contacts, and interconnections, Rshrepresents the parallel resistance, modeling

the leakage paths across the cell, mainly due to defects and impurities.

Figure 3.1: Equivalent electrical model of a photovoltaic Cell

A PV cell can be modeled using the equation that defines the static behavior of the PN junction

of a conventional diode. Thus, the output current produced by a solar cell Ipv and the output

voltage Vpv can be expressed as follows:

Ipv = Iph − Id0

[
exp

(
qVdo

nkT

)
−1

]
−

Vpv +Rs · Ipv

Rsh
(3.1.1)

Vpv =Vdo −Rs · Ipv (3.1.2)

These equations capture the relationship between the current and voltage of a PV cell, taking into

account the effects of temperature and the intrinsic properties of the diode. It is fundamental for

predicting the performance and optimizing the design of PV systems.

3.2 Connection of photovoltaic cells

Depending on the requirements and systems used, photovoltaic cells can be connected in se-

ries and/or parallel configurations. This association of cells results in a photovoltaic generator

(GPV).

• Series connection: Boosts the voltage while keeping the current constant.

• Parallel connection: Boosts the current while keeping the voltage constant.

Combining multiple cells forms a module, and the association of several modules constructs a

panel as shown in figure 3.2. A photovoltaic field is created by connecting multiple panels in

series and/or parallel configurations.
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Figure 3.2: PV cell, pannel, module and array [16]

This modular approach allows for flexibility in designing PV systems to meet specific power

requirements and optimize performance according to the available space and environmental

conditions. From an energy efficiency standpoint, industrially, the following efficiencies can be

achieved for different types of silicon-based cells:

• Monocrystalline silicon cells: 13% to 14%

• Polycrystalline silicon cells: 11% to 12%

• Amorphous thin film cells: 7% to 8%

These efficiencies reflect the current technological capabilities and the material properties of

each type of cell. Monocrystalline cells offer the highest efficiency due to their high purity

and uniform crystal structure, while polycrystalline cells, being less pure, offer slightly lower

efficiency. Amorphous thin-film cells, though the least efficient, are cost-effective and flexible,

making them suitable for various applications.

3.3 Current-Voltage characteristics with variable irradiance and

temperature

Figure 3.3 illustrates the I-V (current-voltage) and P-V (power-voltage) characteristics of a solar

cell, where Pm represents the maximum power point,Isc denotes the short-circuit current, and Voc

indicates the open-circuit voltage. It can be inferred from the figure that for one specific point

of operation, Maximum Power Point (MPP), the PV cell provides maximum power.

An I-V curve is a curve that plots the current-voltage relationship at various levels of irradiance

and temperature. A P-V curve shows how the output power varies in relation to voltage. The

maximum power point (MPP) refers to the point of maximum current multiplied by voltage in
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Figure 3.3: I-V P-V characteristics of solar panel [23]

the product of the two terms, I * V. Working at this point is of paramount importance to get opti-

mum energy from a PV system. MPP represents the point on the I-V curve where optimal power

corresponds. It can translate to the operating point where the best irradiation and temperature

conditions are. It is necessary to operate at the MPP if a PV system is to be very efficient. Power

output is maximum when this particular point of operation of the PV cell is obtained, taking

all available sunlight and favorable temperature conditions into account. That makes MPPT a

very important part of PV system design so that the system keeps working at or close to peak

performance in any environmental condition.

Influence of irradiance

As previously mentioned, a photovoltaic cell is highly sensitive to changes in sunlight irradi-

ation. Based on the I-V characteristics, the current is significantly influenced by changes in

sunlight, while the voltage V remains approximately constant. Consequently, strong irradiation

of 1000 W/m² generates an optimal current for the cell. Other parameters can also impact the

panel’s efficiency, such as geometric size and the angle of solar incidence. Maximizing irra-

diance on the PV cells ensures they produce the highest possible current, which is critical for

achieving maximum power output. Therefore, proper placement and orientation of solar panels,

considering these factors, are essential for optimizing the overall performance of a PV system.
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Influence of temperature

However, when ambient temperature changes, the voltage V can vary while the current remains

relatively unchanged. Figure 3.4 illustrates the characteristic curves under a range of variable

temperatures from 0 to 75°C.

Figure 3.4: I-V characteristics of solar panel under different temperatures [35]

Temperature has a substantial impact on the performance of photovoltaic cells. As temperature

increases, the open-circuit voltage Voc decreases, which affects the overall voltage output of the

cell. This phenomenon is due to the intrinsic properties of semiconductor materials used in the

cells. While the current is less affected by temperature variations compared to voltage, overall

power output can still be affected as temperature changes alter the balance between voltage and

current at the MPP.

Optimizing the temperature conditions around PV panels, such as through cooling mechanisms

or proper ventilation, can help mitigate these effects and increase the efficiency and longevity

of solar energy systems.
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Maximum power point tracking techniques

The performance of PV cells depends on their output sensitivity to changes in irradiance. Be-

cause solar irradiance and temperature vary, it is important to trace the most available power

of PV cells through effective control of an ordinary boost converter using the MPPT method.

Very fundamentally, this MPPT extracts the maximum power from the PV panels by applying

different control algorithms. These algorithms have their basis inn Perturb and Observe (P&O),

Incremental Conductance, and other intelligent MPPT techniques related to fuzzy logic, ANN,

or adaptive methods like ANFIS [5].

MPPT algorithms adjust the operating point of the PV system continuously to ensure it operates

at or near the MPP, despite fluctuations in environmental conditions. This optimization maxi-

mizes the efficiency of the PV system, enhancing energy yield and overall performance over its

operational lifespan.

3.4 DC-DC conversion stage

To consistently harness the maximum available power PV generator (GPV) and transfer it to the

load, a DC-DC conversion stage must be employed. A boost converter (step-up converter) is an

electrical device capable of directly connecting a voltage input source (generator) to a current

output source (load). This stage serves as an interface between the two elements, ensuring

efficient power transfer through control action, typically employing MPPT.

A boost converter functions as a voltage step-down device when the power switch (often a

MOSFET) is placed in series with the load. It operates as a voltage step-up device when the

switch is placed in parallel with the load. In many applications, the use of a boost converter

is essential to maximize the output voltage of a photovoltaic system. In most cases, the DC-

DC converter is controlled using MPPT techniques to maintain the highest possible efficiency

(typically above 90%). The efficiency of the converter is primarily influenced by components

such as the MOSFET transistor, smoothing inductors, and capacitors used for energy storage.

The circuit of a boost converter primarily consists of inductors, capacitors, a diode, and a con-

trollable switch. These devices dissipate ideally no power at all, so the efficiency of the static

converters is very high. Notice that the appropriate operation of these static converters depends

on the appropriate selection of passive components such as the inductor for current smoothing

and the output capacitor. These components will then assure efficient performance and proper
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operation that will guarantee stability in photovoltaic systems with the DC-DC converters.

3.5 Perturb and Observe algorithm

The most popularly identified MPPT techniques are the Perturb and Observe (P&O) algorithms.

The operation principle is built upon perturbing the system, incrementing or decrementing the

reference voltage Vref, or acting directly on the duty cycle, and observing the effects in the

output power of the panel. The following is a detailed process for the operation of the P&O

algorithm:

• Perturbation: The operating point is perturbed by increasing or decreasing Vref or by ad-

justing the converter duty cycle.

• Power comparison: It compares current output power P(k) with past output power, P(k−

1).

• Decision making: If P(k)−P(k− 1) > 0, it indicates that the power increased with the

perturbation direction. Therefore, it continues perturbing in the same direction in the next

iteration. If P(k)−P(k−1)≤ 0, it reverses the perturbation direction in the next iteration.

Figure 3.5 illustrates the flowchart of the P&O technique, depicting the sequential steps involved

in adjusting and optimizing the operating point of the PV system to locate the maximum power

point.

The Perturb and Observe (P&O) algorithm is straightforward to implement and effective in

many PV applications. However, it may experience oscillations around the maximum power

point, especially under rapidly varying irradiance conditions.

3.6 PV integration with power converter

The block diagram for PV system is shown in 3.6. A 5 level cascaded H bridge inverter (CHI)

is used as power converter for the conversion of DC energy into AC energy, where the eight

switches combined by ( S1- S4) upper bridge and ( S5- S8) lower bridge are integrated in the

main circuit of the inverter as shown in 3.7 . Two bridges are used to generate 5 level voltage.

This is because each cell can provide a maximum of three levels of voltage, thus limiting the
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Figure 3.5: P&O MPPT algorithm [33]

maximum voltage level of each output phase at 2n + 1, where n signifies the number of the cells

per phase[28]. The Vdc is voltage source from PV acting as input to these bridges.

Figure 3.6: Block diagram for PV system

In this study, we employed multicarrier Sinusoidal Pulse Width Modulation (SPWM) to mod-

ulate a Cascaded H-Bridge Multilevel Inverter (CHB-MLI). To generate the PWM signals for

the 5-level Cascaded H-Bridge inverter, we utilized a carrier-based PWM approach with a si-

nusoidal carrier waveform. This technique involves comparing a sinusoidal reference signal

against several high-frequency triangular carrier signals. The outcome of this comparison dic-

tates the switching states of the inverter’s power devices, resulting in the desired multi-level

output voltage waveform. The carrier-based PWM technique is crucial for achieving precise

control of the inverter, enhancing efficiency, and reducing harmonic distortion.

This scheme compares multiple triangular carriers with a reference sinusoidal signal in order to

generate the gate pulses. Table 3.1 shows the switching states for the 5-level H-bridge inverter.
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"0" denotes that the matching switch is in the OFF state, and "1" indicates that the related switch

is in the ON state [4]. Four carrier waves are compared with sine wave to generate PWM signals

for the switching devices. The switching devices used in the inverter are MOSEFETs.

Figure 3.7: 5 Level H-bridge multi-level inverter

Sr # Voltage Switching State (S1 to S8)

S1 S2 S3 S4 S5 S6 S7 S8

01 2V 1 0 0 1 1 0 0 1

02 V 1 0 0 1 0 1 0 1

03 V 0 1 0 1 1 0 0 1

04 0 0 1 0 1 0 1 0 1

05 -V 0 1 1 0 0 1 0 1

06 -V 0 1 0 1 0 1 1 0

07 2V 0 1 1 0 0 1 1 0

Table 3.1: Switching states for 5-level H-bridge inverter

Figure 3.8 shows the integration of PV with CHBMLIs. In this model we have amended the

weather conditions such as temperature and incident solar irradiance. The rays from the sun

is converted to DC by PV array. The cells are connected in a combination of both series and

parallel. The solar panel specifications used is given in table 3.2.

40



CHAPTER 3: SYSTEM MODELLING

Figure 3.8: Schematic diagram for integration of PV with upper bridge of inverter

Parameters Value

Max Power 214.89 W

Cells per module 60

Open circuit voltage 34.8 V

Short circuit current 8.3 A

Maximum voltage point 29 V

Maximum current point 7.41 A

Irradiance 1000 W/m2

Temperature [45 25] °C

Diode saturation current 6.08 e-11 A

Ideality factor 0.883

Table 3.2: Solar panel specifications

Power output from the solar panels is maximized MPPT. Solar panels have a non-linear voltage-

current (V-I) characteristic, and there exists a point on this curve known as the MPP, where the

power (product of current and voltage) is at its peak as decribed earlier. We implemented the

Perturb and Observe (P&O) method. This algorithm operates by periodically adjusting either the

voltage or current and observing the resulting change in power output. By employing the P&O

algorithm, the operating point of our PV system is dynamically adjusted, ensuring it consistently

delivers maximum power, thereby enhancing overall system efficiency.

Figure 3.9, 3.10 and 3.11 illustrate alternative power source configurations aimed at managing

the variability of solar energy inputs and enhancing system reliability in the context of 5-level
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CHB inverter where in figure 3.9 both bridges are supported by solar. In figure 3.10, the upper

bridge of the inverter is supported by DC voltage source, while the lower bridge is supplied by a

solar energy . This hybrid configuration leverages the stability of DC power to complement the

intermittent nature of solar energy, thereby improving overall system reliability.

Figure 3.9: Case 1 PV integration with 5-level CHB inverter

Figure 3.10: Case 2 PV integration with 5-level CHB inverter

Conversely, figure 3.11 depicts a configuration where the upper bridge is supported by a solar

energy, while the lower bridge operates on DC voltage source . This arrangement offers another

approach to balance power variability, ensuring continuous operation and minimizing disrup-

tions in energy generation. By integrating these configurations with advanced fault detection

systems tailored for 5-level CHB Inverter, our research aims to address critical challenges in

renewable energy systems. The goal is to enhance the robustness, reliability, and real-time per-
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Figure 3.11: Case 3: PV integration with 5-level CHB inverter

formance of fault detection mechanisms, ultimately contributing to the seamless integration of

solar energy into mainstream power grids and advancing sustainable energy solutions.

3.7 Conclusion

This chapter has provided a comprehensive understanding to the modeling of PV systems. It

began by introducing the essential components of PV systems, including detailed diagrams of

PV cells that illustrate their structure and operation. The discussion then shifted to various MPPT

techniques, which are crucial for optimizing the energy output of PV systems by continually

adjusting to the most efficient operating points. Furthermore, the chapter explored the inte-

gration of PV systems with a five-level H-bridge inverter. This integration is key to enhancing

the performance of solar energy systems, as it allows for improved harmonic performance and

reduced voltage stress compared to traditional inverters. By modeling these interactions, the

chapter provided insight into how advanced inverter technologies can be employed to achieve

more efficient and reliable solar power systems.
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Proposed Methodology

This chapter presents the methodology adopted in this research, designed to approach compre-

hensively the solution of the problem of fault detection in solar-fed, five-level CHB inverter. The

chapter is arranged such that it brings out the processes involved in data collection, preprocess-

ing, and the implementation of the deep-learning technique.

4.1 Block diagram

The proposed methodology for detection of fault and its classification in a solar fed CHBMLI

involves several sequential stages as shown in Figure 4.1. Integrating a DC-DC converter to

optimize the solar panel output, followed by a single-phase 5-level CHB inverter for efficient

DC to AC conversion. Data collection then captures voltages across bridges, which further

go through preprocessing. The data is then fed into a deep learning model. Various models

and algorithms are explored, including their architecture, training processes, and performance

evaluation and evaluated using different performance metrics. Based on those performance

metrics, optimal model is chosen for the detection and classification of fault.

4.2 Data collection

In this research, we have focused primarily on the single short switch and upto two open switch

faults, which correlates to rise in secondary failures as well in converter components. This can

result in high repair costs [7].The output voltage along with upper and lower bridge voltage

is collected for varying modulation indexes i.e. 0.55 to 1. The modulation index (m) is a
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Figure 4.1: Block diagram
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dimensionless quantity used in modulation applications. It is the ratio of the amplitude of the

modulating signal’s to the amplitude of the carrier signal. Mathematically, modulation index is

defined in equation 4.2.1.

m =
Vpeak

Vcarrier
(4.2.1)

In equation 4.2.1 m represents the index of modulation, Vpeak is peak amplitude that the mod-

ulating signal can reach and Vcarrier represents the peak amplitude that the carrier signal can

reach.

The data comprises 49 unique fault cases, i.e. single and double open switch faults, single

short switch faults, dc-dc converter switch fault, alongside an additional case representing fault

absence, totalling 49 cases. Each case consists of three voltages as features pertinent to the

operational parameters of the inverter.

No fault cases

Figure 4.2, 4.3 and 4.4 shows wave-forms for no switch fault in all 3 cases. It can be seen in

4.3 and 4.4 that it takes longer time to stabilize the output voltage because of mismatch in input

voltage sources in each bridge.

Figure 4.2: No switch fault case 1
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Figure 4.3: No switch fault case 2

Figure 4.4: No switch fault case 3

Open circuit switch faults

Figure 4.5 shows wave-forms for single open switch fault cases. As shown in figure, there are

8 switches in CHB5LI so that makes 8 cases for single open switch faults. The waves differ in

voltage levels. 28 classes belong to double switch faults in CHB5LI, and remaining belong to

DC-DC inverter switch fault. Some of those faults are shown in figure 4.6.

H bridge short switch faults

Similarly figure 4.7 shows wave-forms for single short switch fault case where switch 8th is

shorted. There are total 8 switches in H bridge that makes 8 classes for single H bridge short

switches.

DC-DC converter switch faults

Scenario 1: Open Switch in the Lower DC-DC Converter
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Figure 4.5: Single open switch fault types

When the lower DC-DC converter switch is open (no duty cycle signal):

• Inductor Behavior: The inductor attempts to maintain current flow, which results in a

large voltage spike due to Lenz’s Law.

• Voltage Overshoot: This high voltage spike can be significant, causing a temporary over-

shoot in the output voltage.

• Effect on Inverter Input: The upper bridge receives a normal regulated voltage, while the

lower bridge experiences a high-voltage spike.

• Inverter Output: The high-voltage spike from the lower bridge creates an imbalance, caus-
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Figure 4.6: Double open switches fault types

ing the inverter output voltage to swing drastically between -1000V to 1000V. The con-

trol system of the inverter becomes unstable due to the sudden and large voltage changes,

leading to longer stabilization time.

Figure 4.8 shows wave-forms for single open switch fault case where case 2 dc- dc switch is

open.

Scenario 2: Shorted Switch in the Lower DC-DC Converter

When the lower DC-DC converter switch is shorted:

• Inductor Behavior: The inductor is directly connected to the input voltage, causing a
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Figure 4.7: Single switch short fault types

Figure 4.8: Single DC-DC converter switch open fault

current ramp-up through the inductor.

• Voltage Drop Across Switch: There is a small voltage drop across the shorted switch due

to its internal resistance (Rds(on)) and other resistive elements.

• Effect on Inverter Input: The lower bridge receives a lower-than-expected DC voltage

because the shorted switch bypasses the regulation mechanism, leading to a direct, unreg-

ulated (and likely lower) voltage.

• Inverter Output: The lower contribution from the lower bridge results in a reduced voltage

swing in the inverter output, observed as -80V to 80V. The reduced input voltage from the

lower bridge leads to an overall lower output voltage from the inverter, but with a more

balanced and stable output compared to the open switch scenario.

Figure 4.9 shows wave-forms for single short switch fault case where dc- dc switch is open.
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Figure 4.9: Single DC-DC converter switch short fault

4.2.1 White gaussian noise

In the context of fault detection in solar-fed 5-level CHB inverters, introducing White Gaussian

Noise (WGN) into voltage signals plays a critical role in simulating real-world conditions and

enhancing the robustness of fault detection algorithms. Incorporating WGN into voltage signals

during the data collection and preprocessing stages is essential for several reasons:

1. Realistic simulation: The addition of noise opens further possibilities for realistic simulation

of the actual operating conditions of the PV fed CHBMLIs. This simply states that models for fault

detection are trained and assessed in a more realistic environment, implying that this enhances

better practical applicability. By introducing noise, a model will learn to discriminate between

real faults and anomalies induced by noise.

2. Robustness and reliability: This will make the fault detection system more robust and

reliable, thus ensuring that it is not prone to false positives and negatives.

3. Performance evaluation: Actually, testing developed algorithms for fault detection under

noisy conditions is a more stringent measure of performance. This would help one know how

robustly the models would retain accuracy and consistency in any demanding situation.

WGN is defined statistically: it has a constant spectral density, meaning it is white over all

frequencies, and its amplitude distribution follows the Gaussian or normal distribution. This

makes it an ideal candidate for the simulation of random noise in voltage signals.

• Spectral density: The power spectral density (PSD) of WGN remains flat over the range

of all frequencies. This property is necessary for the voltage signals since the noise af-

fects each of them equally, therefore leading to an overall test environment for the fault

detection algorithms.

• Gaussian distribution:The amplitude of WGN is Gaussian and given in terms of a mean (µ)

and standard deviation (σ ). For all practical purposes, the value of µ is zero, therefore
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making the noise center around zero and the parameter σ controls the spread, or intensity

of the noise.

Mathematically, WGN n(t) added to a voltage signal v(t) is shown as:

y(t) = v(t)+n(t) (4.2.2)

In equation 4.2.2 y(t) depicts the noisy signal, v(t) is the original voltage signal, and n(t) is the

WGN.

The noise n(t) is characterized by its mean µ and variance σ2:

n(t)∼ N (µ,σ2) (4.2.3)

In practice, the noise is described by its power, which is usually measured in units of decibels

(dB). The SNR, known as the ratio between signal and noise, can be calculated in decibels as

shown in equation 4.2.4.

SNRdB = 10log10

(
Psignal

Pnoise

)
(4.2.4)

where Psignal is the original voltage signal power, and Pnoise is the power of the noise.

To bring the noise level under control, set the power in the noise Pnoise as follows:

Pnoise =
Psignal

10SNRdB/10 (4.2.5)

The standard deviation, σ , of the noise can be obtained from the power in the noise by taking

the square root, as shown in equation 4.2.6.

σ =
√

Pnoise (4.2.6)

In the implementation phase, WGN is generated and added to the voltage signals utilized for the

training and then testing the deep learning models.

This research aims to develop fault detection models that are not only accurate but also resilient

to the noise and variability inherent in real-world renewable energy systems. We introduce WGN

at various SNR levels, specifically -20 decibels, -10 decibels, 10 decibels, and 20 decibels, to

assess the models’ performance under different noise conditions.This approach ensures that the

models are robust and reliable, ultimately contributing to the improved performance and safety

of solar-fed 5-level CHB inverters. Figure 4.10 shows no fault ideal case i.e. with no noise, and

a no fault case after incorporating WGN of -20db.
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Figure 4.10: White gaussian noise

4.3 Data Preprocessing

The preprocessing technique for voltage signals from an CHB5LI involves two steps: first,

applying a Moving Average Filter (MAF) having a window size of 10, and second, performing

Wavelet Denoising. This two-step process smooths the data and removes noise while preserving

significant signal features that are levels as shown in 4.11.

Moving average filter

The Moving Average Filter smooths the time-series data x(t) by averaging the data points within

a specified window size N = 10. This reduces short term noise and fluctuations, making the

underlying trend more apparent. The smoothed signal y(t) is given by:

y(t) =
1
10

9

∑
i=0

x(t − i) (4.3.1)
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Denoise wavelet

Wavelet denoising goes one step further to remove noise from the smoothed signal y(t). The

signal has a decomposition to its frequency components done through wavelet transformation,

followed by thresholding of wavelet coefficients to remove noise and then reconstructed.

1. Decomposition: The Haar wavelet decomposes the smoothed signal, y(t), into wavelet

coefficients. The coefficients c j,k are computed as:

c j,k = ⟨y(t),ψ j,k(t)⟩=
∫

∞

−∞

y(t)ψ∗
j,k(t),dt (4.3.2)

2. Threshold Calculation: In soft thresholding, threshold is derived by Stein’s Unbiased

Risk Estimate (SURE) based on the median absolute deviation of the coefficients. The

threshold λ is:

λ = σ
√

2ln(N) (4.3.3)

where σ = 1
0.6745 ·MAD and the length of the signal y(t) is given by N.

3. Soft Thresholding: Soft thresholding is applied to the detail coefficients c j,k using the

calculated threshold:

ĉ j,k = sign(c j,k) ·max(|c j,k|−λ ,0) (4.3.4)

4. Signal Reconstruction: Reconstruct a denoised signal ŷ(t) using thresholded wavelet

coefficients.

ŷ(t) =
J

∑
j=0

∑
k

ĉ j,kψ j,k(t) (4.3.5)

where J is the number of decomposition levels.

Wavelet denoising using the Haar wavelet offers an effective method for preprocessing voltage

signals contaminated with noise. By decomposing the signal into wavelet coefficients, applying

soft thresholding, and reconstructing the denoised signal, unwanted noise is effectively removed

while preserving important signal features. This preprocessing step significantly enhances the

quality and reliability of voltage signal analysis and interpretation. Figure 4.11 shows the noisy

signal, denoised signal obtained through MAF and wavelet denoising, and the residual signal

highlighting the removed noise components.
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Figure 4.11: Signal denoising

Encoding

Label encoder is used to transform the classes into numerical values ranging from 0 to 48 (num-

ber of categories - 1). Label encoding assigns a unique integer to each category in a categorical

feature. This encoding assumes an ordinal relationship between categories [26].

4.4 Deep learning techniques

We implemented several state-of-the-art deep learning models including Fully Convolutional

Network (FCN), Long Short Term Memory (LSTM), ResNet, and a hybrid amalgamation of the

CNN and LSTM architecture, CNN-LSTM model for time series classification to accurately

identify and localize switches fault. Here, we discuss each model’s architecture, technical as-

pects, and the results obtained.

4.4.1 Convolutional neural network

Convolutional Neural Network (CNN) is a specialized deep learning model applied to grid-like

structured data and include images and time-series data processing. In fact, since CNNs are
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very effective in pattern recognition, there have been many successful applications from image

classification and object detection up to the recent application in power electronics for fault

detection. The 1D CNN model developed applies convolutional filters across the input sequence

to capture the local patterns and dependencies in sequential data. The part of the architecture of

CNN receives the input data, which goes under processing by applying convolution with a kernel

to extract features in the form of feature maps. These feature maps capture relevant patterns or

trends that vary over time within the signal, suggesting dynamic behaviors or transitions between

different states and amplitude variations that are changes in the magnitude or intensity of the

signal over time, reflecting fluctuations in the underlying phenomenon being measured. The 1D

CNN’s core operation is a convolution that uses a sliding window to apply multiple learnable

filters (or kernels) on the input sequence, where each filter slides over an input sequence using a

sliding-window approach and computes a feature map highlighting local patterns and features.

The FCN model is constructed using input layer, Convolutional Layers, Batch normalization,

activation function, global average pooling and dense layer as shown in 4.12 [14].

Figure 4.12: Fully convolutional neural network architecture

1. Architecture of a CNN

The typical architecture of a CNN consists of several layers , each fulfilling specific functions

to transform input sequence of data into a meaningful output. Primary components of a CNN

include:

Input Layer: This layer receives the raw input data. In the context of fault detection, this could

be voltage or current signals transformed into a suitable format, such as a spectrogram or other

time-series representations.

Convolutional Layers:

Convolutional filters are applied to input data through these layers. Each filter conducts a con-
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volutional operation and traverses the input data with computed dot products to produce feature

maps. The key parameters of convolutional layers include:

• Filter Size (Kernel Size): Dimensions of the convolutional filters showing the size of the

receptive field.

• Stride: The size of the step that the filter moves with on the input data.

• Padding: The method of handling borders, either by adding zeros (zero padding) or with-

out padding (valid padding).

Activation Function: The most commonly used activation function after each convolution layer

used is the Rectified Linear Unit (ReLU). The ReLU makes the process nonlinear so that a very

complex pattern can be captured by the network.

Pooling Layers: The pooling layer decreases the spatial dimensions of the feature maps gener-

ated by the convolution layers, in addition to reducing the computational load and the number of

parameters. The most popular methods used for pooling are max pooling and average pooling.

Fully Connected Layers: These work much like the traditional neural network, in the sense

that every neuron in the preceding layer is connected to each neuron in the next layer, thereby

supplying high-level reasoning regarding input features.

Output Layer: . When the task at hand is a classification task, the softmax function is im-

plemented in the output layer to make this decision on the probability distribution over target

classes from the final activation.

2. Training a CNN Training a CNN is done in several steps to have the parameters of the network

trained to their maximum:

• Forward Propagation: The first step in the model training phase where the input data is

propagated through the network to compute the output.

• Loss Calculation: A loss function computes how much the predicted output deviates from

the actual target output.. For classification, categorical cross-entropy is usually used.

• Backpropagation: Applying the chain rule from output to input, gradients of the loss

function are calculated with respect to the weights of the network for each individual

layer.
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• Weight Update: The weights are updated using an optimization algorithm, such as SGD

(Stochastic Gradient Descent) or its variants, by minimizing the loss.

CNNs offer several advantages for fault detection in power electronics:

• Automatic Feature Extraction: No requirement of human intervention for data prepro-

cessing and feature extraction from raw data.

• Spatial Hierarchies of Features: CNNs learn from simple features in the initial layers to

more complicated ones in the deeper layers.

• Parameter Sharing: Parameters at different spatial locations are shared by the convolu-

tional layers, which leads to minimizing the total parameters and computational complex-

ity.

• Translation Invariance: Due to local connectivity and pooling operations, the network

allows for a certain degree of translation invariance. It is useful for making the network

insensitive to slight shifts and deformations in the data.

Mathematically, the input to the model is a time series with shape (ntimesteps,nfeatures):

X ∈ Rntimesteps×nfeatures (4.4.1)

Each convolutional layer applies a set of filters to the input:

yi, j =
K−1

∑
k=0

M−1

∑
m=0

w( j)
k,mxi+k,m +b j (4.4.2)

where:

• yi, j is the output at position i for the j-th filter.

• K is the size of the kernel filter.

• M is the length of input features.

• w( j)
k,m are the filter weights.

• b j is the bias term.
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Normalization of the output of the convolutional layer is given by equations:

ŷi, j =
yi, j −µ j√

σ2
j + ε

(4.4.3)

zi, j = γ jŷi, j +β j (4.4.4)

where:

• µ j and σ2
j represents the mean and variance of the activations respectively.

• Numerical stability is represented by a small constant ε .

• γ j and β j shows learnable parameters for scaling and shifting.

The use of ReLU activation in 1D CNNs is particularly advantageous due to its computational

efficiency and its ability to allieviate the vanishing gradient problem, which can take effect

due to activation functions like sigmoid and tanh. By retaining only positive values while the

negative values are set to zero, ReLU facilitates faster training and convergence of the network,

allowing it to effectively learn from the input data. The ReLU activation function is applied

using equation 4.4.5.

ai, j = max(0,zi, j) (4.4.5)

Global average pooling reduces each feature map to a single value:

g j =
1

ntimesteps

ntimesteps−1

∑
i=0

ai, j (4.4.6)

The dense layer with softmax activation outputs class probabilities is shown in equation 4.4.7

pk =
ezk

∑
C−1
j=0 ez j

(4.4.7)

where:

• zk = wk ·g+bk

• C is the target number of classes.

• wk and bk are the weights and biases of the dense layer.
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Table 4.1 shows a summary of the architecture that we have implemented in our research. The

architecture starts with three convolutional layers. In more detail, the first convolution layer has

128 filters with a kernel size of 8, the second layer has 256 filters with a kernel size of 5, and

the third one has 128 filters with a kernel size of 3. Same padding for each convolutional layer

is applied to keep the input dimension. Then, we apply batch normalization and an activation

function such as ReLU. A Global Average Pooling layer follows to further reduce the data

dimension by averaging each feature map. Finally, a Dense layer serves as the output layer

which uses a softmax activation function for finding the probability distribution over the target

classes, such that it makes the fault classification possible.

For model compilation, the Adam optimizer is used while the loss function is chosen to be the

categorical-cross entropy. It is trained with batch size of 128 for 100 epochs. 25% of the data

is reserved for testing. The process of training is through iterative forward and backward passes

into the network, in which the weights are adjusted to minimize the loss function. This iterative

optimization continues until the model achieves satisfactory accuracy and loss metrics on the

validation data.

Layer Type Parameters

1 Conv1D Filters: 128, Kernel Size: 8, Padding: ’same’, Input Shape: (X_train.shape[1], X_train.shape[2])

2 BatchNormalization -

3 Activation ReLU

4 Conv1D Filters: 256, Kernel Size: 5, Padding: ’same’

5 BatchNormalization -

6 Activation ReLU

7 Conv1D Filters: 128, Kernel Size: 3, Padding: ’same’

8 BatchNormalization -

9 Activation ReLU

10 GlobalAveragePooling1D -

11 Dropout 0.4

12 Dense 49, Activation: Softmax

Table 4.1: CNN architecture

Long Short Term Memory

LSTM networks are a form of recurrent neural network (RNN) primarily used to be able to better

capture temporal dependencies in sequential data, generally time series, as compared to its pre-

decessors. LSTM provide superior performance and can handle various issues in temporal data

as compared to traditional RNNs, particularly the problem of vanishing gradient, by introducing
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a unique architecture that includes memory cells and gates which regulate how the information

flows through the system. The provided LSTM model architecture for time series classifica-

tion includes LSTM layers to learn temporal patterns, followed by dense layers to perform the

classification task.

Mathematically, LSTM cell consists of several gates that dictate how and what information flows

through the network, allowing the network to maintain and update its state over time.

The forget gate ( ft) has the purpose of deciding how much information should be deleted from

the prior cell state. It is computed as follows:

ft = σ(Wf · [ht−1,xt ]+b f ) (4.4.8)

where:

• σ is the activation function known as sigmoid.

• Wf are the weights for the forget gate of LSTM.

• b f are the corresponding biases for the forget gate.

• ht−1 is the hidden state from the prior time step.

• xt is the input at the current time step.

The input gate (it) controls how much of the incoming new and unique information must be

incorporated into the cell state. It is given by:

it = σ(Wi · [ht−1,xt ]+bi) (4.4.9)

where:

• Wi are the weights for the input gate of LSTM.

• bi are the biases for the input gate.

The candidate cell (C̃t) state depicts the new information that can be appended to the cell state.

It is calculated as:

C̃t = tanh(WC · [ht−1,xt ]+bC) (4.4.10)

where:
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• tanh is the activation function known as the hyperbolic tangent.

• WC are the weights for the candidate cell state of LSTM.

• bC are the biases for the candidate cell state.

The cell state (Ct) is updated by the combination OF the old cell state (modulated by the forget

gate) and the new, incoming candidate values (modulated by the input gate):

Ct = ft ⊙Ct−1 + it ⊙C̃t (4.4.11)

where ⊙ represents element-wise multiplication.

The output gate (ot) is tasked with determining the output of the current cell state. It is given

by:

ot = σ(Wo · [ht−1,xt ]+bo) (4.4.12)

where:

• Wo are the weights for the output gate of LSTM.

• bo are the biases for the output gate.

The hidden state (ht) is computed by the following formula:

ht = ot ⊙ tanh(Ct) (4.4.13)

These equations encapsulate the core functionality of LSTM networks, enabling them to effec-

tively model complex temporal dependencies in sequential data.

4.4.2 Bi-LSTM

Bidirectional LSTM (Bi-LSTM) is a special kind of Recurrent Neural Network (RNN) architec-

ture that is widely applied in Machine Learning. Unlike the traditional LSTM layers, through

which sequences are processed in one direction only, Bi-LSTM layers allow an input sequence

to be processed in both forward and backward directions at the same time. This ability to pro-

cess bidirectionally makes it possible to include information not only from the previous time

steps but also from those coming next into the framework.
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More formally, a Bidirectional LSTM (Bi-LSTM) layer consists of two LSTM sublayers, each

of which processes an input sequence from a different direction: one forward and the other back-

ward, as illustrated in Figure 4.13 [19]. This makes it possible for the network to incorporate

information from both past and future contexts, which is highly beneficial in tasks where the

complete understanding of the sequence is needed. This is very useful in such areas as natural

language processing, speech recognition, and audio processing fault detection where the mean-

ing of a given sequence may be defined based on the overall context rather than merely adjacent

elements.

Figure 4.13: BI-LSTM architecture

The output sequences from these two LSTM sublayers are concatenated and further sent to the

succeeding layer in the neural network. The concatenated output presents a significantly deeper

insight into the sequence, in which information from both past and future directions is combined.

This property enhances the model’s capability of learning dependencies and patterns in sequen-

tial data, thereby making it more relevant for applications that require sensitive understanding

and prediction across time.

In the current research, the input layer of the Bi-LSTM model considers a sequence of 7590

timesteps, where each timestep accommodates 3 features. This layer is important in that it

ensures the model perceives properly the structure of the time series data, leading to proper

learning influence brought about by the sequences.

The first hidden layer in our model IS a bidirectional LSTM with 128 units. Bidirectional

allows dependencies to be captured not only in the forward but also in the backward directions,

which improves the model’s ability to decipher complex temporal relationships. In addition, to
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prevent overfitting, a dropout layer with a dropout rate of 0.3 is used. The purpose of the batch

normalization is to stabilize and speed up the training by normalizing the outputs of the LSTM

layer.

The second layer is bidirectional LSTM Layer with Dropout and batch normalization. This

hidden layer also follows the first hidden layer’s structure. It also uses a bidirectional LSTM

containing 128 units. This layer, in turn, increases the capacity of the model to capture complex

patterns of the data. Similar to the previous layer, a dropout layer is also added to reduce

overfitting and batch normalization to stabilize and accelerate training.

The third hidden layer further reduces the LSTM units to 64 to now make it even more com-

pressed in its representation of learned features. This reduction is done to abstract the necessary

patterns out of data while keeping the bidirectionality for a holistic temporal learning process. In

the same way as for previous layers, dropout and batch normalization are used here to reinforce

generalization and boost training efficiency.

Lastly, the output layer of the model: this dense layer consists of 49 neurons, each corresponding

to one of the 49 classes in our classification task. The softmax function is used on the output

layer, allowing it to give a probability distribution over the 49 classes so that the model can

output confident predictions for each input sequence. The architecture is shown in table 4.2

Layer Type Parameters

1 InputLayer Input Shape: (7590, 3)

2 Bidirectional LSTM Units: 128, Return Sequences: True, Kernel Regularizer: L2(0.001)

3 Dropout Rate: 0.3

4 BatchNormalization -

5 Bidirectional LSTM Units: 128, Return Sequences: True, Kernel Regularizer: L2(0.001)

6 Dropout Rate: 0.3

7 BatchNormalization -

8 Bidirectional LSTM Units: 64, Kernel Regularizer: L2(0.001)

9 Dropout Rate: 0.3

10 BatchNormalization -

11 Dense Units: 49, Activation: Softmax

Table 4.2: Bi-LSTM architecture
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4.4.3 CNN-LSTM

A hybrid CNN-LSTM model leverages the strengths of CNN as well as the LSTM networks. The

CNN-LSTM architecture embodies the feature extraction capabilities of CNNs and combines it

with the sequential learning strengths of LSTM networks. This hybrid approach is particularly

effective for time-series classification tasks, such as fault detection in solar-fed multi-level in-

verters. Here’s a detailed explanation of the CNN-LSTM architecture and its application in this

context.

1. CNN:

• Feature Extraction: CNNs are powerful neural networks which are adept at extracting

spatial features from input data. They extract features from the input sequence by applying

convolutional filters, which helps in capturing local patterns and hierarchical features.

• Layers: Typical CNN layers include convolutional layers which are the primary source

of feature extraction, activation functions (like ReLU, Tanh) for inducing non-linearity,

pooling layers for mininizing computational complexity, and sometimes batch normaliza-

tion.

2. LSTM Networks:

• Sequential Learning: LSTM networks, a type of recurrent neural network (RNN), excel at

learning long-term dependencies in sequential data. They are adept at capturing temporal

patterns and contextual information in time-series data.

Table 4.3 shows the architecture designed to detect faults in a 5-level CHB inverter system pow-

ered by solar energy. The model uses CNN layers for initial feature extraction followed by LSTM

layers for capturing temporal dependencies.

The architecture begins with an input of sequence data and has a one-dimensional convolutional

layer with 64 filters applied to it, having a kernel size of 3, which is meant to extract local

patterns in the input sequence data. It then processes the output using the ReLU activation

function in order to introduce non-linearity. After the convolutional layer, a MaxPooling1D

layer is applied on the data. It has a pool size of 2 in order to reduce the spatial data dimension,

summarizing feature representation with some form of translation invariance.

The extracted features from the CNN are then passed through an LSTM layer with 100 neurons

aimed at capturing temporal dependencies in sequential data. This architecture layer enabled
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Layer Type Parameters

1 Input Layer Shape: (timesteps, features)

2 Conv1D Filters: 64, Kernel Size: 3, Activation: ReLU, Input shape:

(7590, 3)

3 MaxPooling1D Pool Size: 2

4 LSTM Units: 100, Return sequences: False

5 Dense Units: 100, Activation: ReLU

6 Dropout Rate: 0.5

7 Dense Units: num_classes, Activation: Softmax

Table 4.3: CNN-LSTM architecture

processing of time series data and learning long-term dependencies in such a way that the tem-

poral context of the data was properly defined. In this case, further transformation of the features

learned by LSTM has been carried out following the LSTM layer using a dense layer employing

100 neurons with the ReLU activation function.

We integrate a dropout layer of rate 0.5 for the reduction of overfitting. During training, the

neurons in the dropout layers are randomly dropped so that the model does not rely heavily on

specific paths. At the end, we add a dense layer with 49 neurons. We apply a softmax activation

function to this layer so as to get probability distributions over the classes.

4.4.4 Residual network

ResNet revolutionized the world of deep learning by rectifying the vanishing gradient problem,

which often hampers the training of neural networks with many layers. Introduced by Kaiming

He et al. in their 2015 paper titled "Deep Residual Learning for Image Recognition," ResNet

enables the training of extremely deep networks by using a novel architectural feature called

"residual blocks."[12]

Vanishing Gradient Problem Vanishing gradient is a problem in which, in deep networks, gra-

dients can become exceedingly small, preventing the network from effectively updating weights

and learning. This issue often limits the depth of traditional neural networks.

Residual Learning The core idea of ResNet is residual learning. Instead of each layer learning a

direct mapping from input to output, the layer learns the residual. The residual is the difference
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between the input and the desired output as shown in figure 4.14. Formally, the network does

not learn H(x), rather it learns F(x) = H(x)−x, where H(x) is the original function and x is the

input. The original function then becomes H(x) = F(x)+ x.

Residual Block A residual block typically consists of two or three layers. The input x is pro-

pogated through the layers to produce F(x), and then x is added to F(x) before applying the

activation function. Mathematically, it can be expressed as:

y = F(x,{Wi})+ x (4.4.14)

where y is the block’s output, Wi represents the weights of the layers, and F(x,{Wi}) is the

residual mapping.

Figure 4.14: Residual connection

Skip Connections: These are shortcuts that skip one or more layers, and instead connect

the input of the residual block directly to its output block. Skip connections help alleviate the

vanishing gradient problem by enabling gradients to flow directly through the network, even

when they become very small.

Network Depth: ResNet architectures are denoted as ResNet-50, ResNet-101, ResNet-152,

etc., where the number denotes how many layers constitute the network. This deep architecture

is made feasible by the use of residual blocks.

Batch Normalization: Batch normalization is employed after each convolutional layer and

before the activation function within the residual blocks. It normalizes the output of each layer,

thus allowing the training process to be stabilized and also accelerated.

Activation Function: Typically, ReLU (Rectified Linear Unit) serves as the activation func-

tion in ResNet. It introduces non-linearity into the network, facilitating the learning of intricate

patterns.
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Identity vs. Convolutional Blocks:

• Identity Blocks: These blocks perform identity mapping, i.e., the dimensions are the same

for both the input and output.

• Convolutional Blocks: These blocks change the input’s dimensions using convolution

layers with stride greater than 1 or through pooling.

Global Average Pooling: Rather than using fully connected layers, ResNet often utilizes global

average pooling at the end of the network. This technique cuts down the spatial dimensions of

the feature maps to a single vector per feature map, helping to mitigate overfitting and reducing

computational load.

Mathematical Formulation: Residual Function:

F(x) = ReLU(BN(W2 ·ReLU(BN(W1 · x)))) (4.4.15)

Here, W1 and W2 are weights of layers of convolution, BN denotes batch normalization, and

ReLU serves as the activation function.

Output of Residual Block: :

y = F(x)+ x (4.4.16)

In the bottleneck architecture: Bottleneck Residual Function:

F(x) =W3 ·ReLU(BN(W2 ·ReLU(BN(W1 · x)))) (4.4.17)

Here, W1, W2, and W3 are weights of the convolutional layers, and the convolutions are typically

1x1, 3x3, and 1x1 respectively.

Advantages of ResNet

• Ease of Training: By using residual learning, ResNet mitigates the vanishing gradient prob-

lem, making it feasible to train much deeper networks.

• High Accuracy: ResNet models have achieved state-of-the-art results on many benchmark

tasks, such as image classification and object detection.

• Flexibility: The architecture can be easily adapted for various tasks and extended to very

deep networks.
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In summary ResNets leverage the idea of residual learning, which assists in mitigating the prob-

lem of vanishing gradient (where gradients become so small they approach zero and thus no

learning occurs) problem which is often seen in deep neural networks. The core functionality

of ResNet is the residual block, which allows the network to learn residual functions correspond-

ning to the layer inputs, instead of learning them via unreferenced functions. The provided

ResNet model is designed with 1D convolutional layers tailored for time series data. Each resid-

ual block has the following architecture: convolutional layers, which are then followed by batch

normalization and finally by the ReLU activation as shown in 4.15 [14].

Figure 4.15: ResNet architetcure

The ResNet architecture in our research starts with an initial convolutional layer, followed by

batch normalization and ReLU activation function for induction of non-linearity. The model

then includes a sequence of residual blocks, each composed of two convolutional layers with

batch normalization and ReLU activation function. The first block in each series optionally in-

cludes a convolutional shortcut connection to match the dimensions when the number of filters

changes. Specifically, the architecture includes three groups of residual blocks with increas-

ing filter sizes (64, 128, and 256), which progressively capture more complex features. The

output from the last residual block is globally averaged and passed through a dense layer with

a softmax activation to produce the final classification output, making the model suitable for

identifying different types of switch faults in H-bridge multilevel inverters. Table 4.4 captures

the essential details of each layer in the ResNet architecture in our research, including the output

shape, number of parameters, and specific details about the layer configuration.
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Layer Type Output Shape Param #

Input Layer (InputLayer) (None, 7590, 3) 0

Conv1D (conv1d) (None, 7590, 64) 1600

BatchNormalization (None, 7590, 64) 256

Activation (ReLU) (None, 7590, 64) 0

Residual Block 1 (None, 7590, 64) -

Residual Block 2 (None, 7590, 128) -

Residual Block 3 (None, 7590, 256) -

GlobalAveragePooling1D (None, 256) 0

Dropout (None, 256) 0

Dense (None, 49) 12593

Table 4.4: ResNet architecture

Parameter Calculation

Understanding the number of parameters in each layer of a neural network is crucial for an-

alyzing its complexity and performance. Below, we provide the detailed calculations for the

parameters of the Conv1D, BatchNormalization, and Dense layers.

Conv1D Layer

The parameters for a Conv1D layer are calculated using the formula:

Params = (kernel size× input channels×filters)+filters

For our Conv1D layer:

Params = (8×3×64)+64 = 1600

BatchNormalization Layer

The parameters for a BatchNormalization layer are calculated using the formula:

Params = 4×filters
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For our BatchNormalization layer:

Params = 4×64 = 256

Dense Layer

The parameters for a Dense layer are calculated using the formula:

Params = (input units×output units)+output units

For our Dense layer:

Params = (256×49)+49 = 12,593

4.5 Conclusion

In this chapter, we have delved into the methodologies and deep learning architectures employed

for fault detection in solar-fed 5-level CHB inverter. We began with an introduction to data

collection and preprocessing techniques, emphasizing the importance of handling real-world

data variability and noise. The inclusion of WGN into voltage signals was discussed at length,

and its criticality emphasized to simulate practical scenarios, which further made the model

robust against varied noise levels.

We also summarized some deep learning techniques in detail so that the role of each type in

fault detection is clearly understood. With this in mind, comprehensive details of the FCN, Bi-

LSTM, CNN-LSTM, and ResNet architectures were elaborated on in respect to their structural

elements, mathematical underpinnings, and particular advantages. The summarized findings

were presented in a comparative table that placed specific emphasis on architecture differences

and their relevance to fault detection performance.

In general, this chapter has provided a solid base to understand technical complexities and prac-

tical applications of advanced neural network architectures toward the performance, reliability,

and efficiency improvement of any developed fault detection system. These are important in-

sights to help promote resilient renewable energy systems and ensure optimal performance,

including minimizing downtime. The subsequent chapters will go into this in more detail and

explain the practical application and testing of the models in a real-world scenario.
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Results and Discussion

The chapter demonstrates the performance and effectiveness of the developed neural network

architectures for fault detection in renewable energy systems. Empirical results obtained from

the training and testing of each model will be presented, followed by a critical analysis and

interpretation of the results. The discussion is held in view of the research objectives to present

insights into the performance of the model, robustness, and suitability for application in the real

world.

5.1 Performance evaluation metrics

The performance of models in the field of fault detection of renewable energy systems using

neural networks is measured through the application of rigorous metrics of assessment. The

importance of these metrics is very high in quantifying the accuracy, reliability, and robustness

of the model in detecting faults in different operational conditions. It’s in this section that we

delve into key performance metrics that play pivotal roles in the effectiveness of neural network

models:

Accuracy

Accuracy is the most basic metric that tells how correct a model’s prediction is. Mathematically,

it is defined in 5.1.1.

Accuracy =
No. of Correct Predictions
Total No. of Predictions

(5.1.1)

While accuracy gives an overall view of how a model is performing, it is not sufficient when
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class distributions are imbalanced.

Precision

Precision gauges how accurate the positive predictions of the model are close to being accurate.

It evaluates whether the model sidesteps the mistake of labeling data points as being positive

that is not true. It can be determined using equation 5.1.2.

Precision =
True Positives

True Positives + False Positives
(5.1.2)

Precision is important in applications where misclassification of positives can have serious con-

sequences.

Recall (Sensitivity)

Recall is measure of the model’s ability to capture most of the positive samples out of the actual

number of positives present in the dataset. It is calculated as:

Recall =
True Positives

True Positives + False Negatives
(5.1.3)

This is important, in particular, for applications where false negatives (missing positive in-

stances) are undesirable.

F1-score

A harmonic mean of precision and recall is given by the F1 score. Hence it is a metric that gives

a balanced measure of the model’s performance.

F1-score = 2× Precision×Recall
Precision + Recall

(5.1.4)

Therefore, useful measures for case classes with imbalanced distribution should provide very

comprehensive measures of model effectiveness.

Confusion Matrix

A table that is used to describe the performance of a classification model on the set of test data

is called confusion matrix; it results in counts of the correct and incorrect positive items. It
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highlights in detail where a model does well or struggles to predict something.

These metrics collectively serve as crucial benchmarks for evaluating neural network models

designed for fault detection in renewable energy systems. They enable researchers and engineers

to quantify the performance of their models accurately, identify strengths and weaknesses, and

guide further refinements for enhanced real-world applications.

5.2 Training and validation performance

The ResNet model demonstrates robust learning and generalization capabilities, as evidenced

by the accuracy and loss plots in figure 5.1. The initial rapid improvements followed by stabi-

lization are typical in well-trained deep learning models. The fluctuations in validation accuracy

and loss are common and reflect the inherent variability in the validation data set. The overall

trends suggest that the ResNet model effectively learns the underlying patterns associated with

switch faults in PV systems. The high final validation accuracy, coupled with the low validation

loss, indicates strong generalization to unseen data, reaffirming ResNet’s suitability for this fault

detection task. It can be seen that the accuracy has an exponential growth in the earlier epochs

and then plateaus at higher epochs. Similarly, the loss is reduced exponentially at the start and

stabilizes at higher epochs.

(a) (b)

Figure 5.1: (a) Accuracy for training and validation sets and (b) Loss for training and validation

sets of ResNet

Other models performance on validation and training data for 0db is shown in figures 5.2 ,5.3

and 5.4. For the LSTM model, we can see that the accuracy sharply increases till about 40
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epochs then suffers for about 20 epochs with the accuracy flip flopping until it stabilizes at

around 70 percent. However, it then suffers a decline at higher epochs, suggesting that optimum

accuracy peaks at around 90 epochs and then suffers a downturn. The loss follows a similar

pattern in the opposite direction.

(a) (b)

Figure 5.2: (a) Accuracy for training and validation sets and (b) Loss for training and validation

sets of LSTM

The fully connected convolutional model performs at a more general pattern, increasing expo-

nentially till about 40 epochs and then settling at around 80 percent accuracy for the complete

100 epochs. The loss also follows a similar pattern, by decreasing exponentially and then stabi-

lizing from 40 epochs onwards, to about 0.5 as shown in figure 5.3. Compared to LSTM, it has

a much smoother training process.

(a) (b)

Figure 5.3: (a)Accuracy for training and validation sets and (b) Loss for training and validation

sets of FCN
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Finally, we have the CNN-LSTM hybrid model. This performs similarly to the fully connected

neural network model, albeit with even lesser ups and downs as shown in 5.4. The model also

reaches a peak accuracy of about 80 percent, with the loss being reduced to about 0.5.

(a) (b)

Figure 5.4: (a) Accuracy for training and validation sets and (b) Loss for training and validation

sets of CNN-LSTM

Figure 5.5: Models comparison of accuracy across different SNR

The comparative performance of accuracy for all SNRs is shown in figure 5.5. The figure

clearly indicate that ResNet is the most effective model for detecting switch faults in PV fed 5

level CHB inverter. Its superior accuracy underscore its robustness and reliability in real-world

applications.
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5.3 Comparitive analysis across different SNR

These metrics present vital benchmarks through which the neural network models can be judged

and compared among themselves for fault detection in renewable energy systems. They further

make it possible to compare performance on different models at varying SNR levels. These

SNR levels are -20 dB, -10 dB, 0 db, 10 dB, and 20 dB. The results are presented in table 5.1.

The high scores across all metrics in table 5.1 suggest that ResNet can effectively distinguish

between faulty and non-faulty states with minimal errors, making it highly suitable for practical

implementation in fault detection systems. The FCN model, while not as effective as ResNet,

still shows reasonably good performance and could be considered a viable alternative in sce-

narios where computational resources are constrained, given its relatively simpler architecture

compared to ResNet. On the other hand, the CNN-LSTM and LSTM models, with their com-

paratively lower performance metrics, might require further optimization or could be used in

conjunction with other methods to improve their fault detection capabilities.

The performance of these algorithms has been evaluated with the key performance metrics,

which cover all aspects of evaluation: accuracy, precision, recall, and F1-Score. These clearly

presented the performance of different approaches for accurate fault detection of switches in the

solar-powered cascaded H-bridge inverter under differing levels of white Gaussian noise.

Analysis of results

1. Accuracy:

Consistently achieves the highest accuracy across all SNR levels, pointing out its robustness in

fault detection tasks. At -20 dB SNR, the accuracy achieved by ResNet was 92.93%, which is

better than the values for FCN (84.39%), LSTM (65.89%), and CNN-LSTM (76.93%). Such

a trend proceeds for the rest of the levels, with ResNet dominating or sharing levels of top

accuracy in across all noise levels.

2. Precision:

Precision shows how well the model has predicted the actual positive instances among all the

predicted positive instances. ResNet still outperforms other models at all the SNR levels. In

fact, even at -20 dB SNR, the precision of ResNet is 93.60% compared to that of FCN (87.88%),

LSTM (68.15%), and CNN-LSTM (76.16%). The trend shows that ResNet effectively reduces

false positives. The precision of ResNet for other levels is 94% for -10 db and around 95% for

77



CHAPTER 5: RESULTS AND DISCUSSION

SNR (dB) Metric FCN LSTM CNN-LSTM ResNet

-20

Accuracy 0.8439 0.6589 0.7693 0.9293

Precision 0.8788 0.6815 0.7616 0.9360

Recall 0.8439 0.6589 0.7693 0.9293

F1-score 0.8326 0.6476 0.7423 0.9266

-10

Accuracy 0.8526 0.6826 0.7888 0.9406

Precision 0.8790 0.6989 0.8008 0.9423

Recall 0.8526 0.6826 0.7888 0.9406

F1-score 0.8418 0.6689 0.7767 0.9397

0

Accuracy 0.8711 0.6801 0.8009 0.9483

Precision 0.8910 0.6917 0.8091 0.9491

Recall 0.8711 0.6801 0.8009 0.9483

F1-score 0.8626 0.6662 0.7887 0.9479

10

Accuracy 0.8711 0.7040 0.8134 0.9587

Precision 0.8943 0.7236 0.8287 0.9593

Recall 0.8711 0.7040 0.8134 0.9587

F1-score 0.8605 0.6929 0.8040 0.9585

20

Accuracy 0.8666 0.6875 0.8051 0.9510

Precision 0.8892 0.7040 0.8120 0.9517

Recall 0.8666 0.6875 0.8051 0.9510

F1-score 0.8561 0.6764 0.7931 0.9506

Table 5.1: Performance metrics for models across various SNR levels

10 and 20 db.

3. F1-score:

The F1-score for combining the overall scores of precision and recall highlights once more the

steady performance of ResNet. In this case, F1-scores on ResNet at various SNR levels are

robust and are indicative of balanced performance between precision and recall. For example,

at -20 dB SNR, ResNet behaves with an F1-score of 92.66%, whereas FCN results in 83.26%;

LSTM, 64.76%; and CNN-LSTM, 74.23%.
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Comparison Across Architectures

ResNet emerged as the best-performing model with a fault detection time of 0.07s, consistently

achieving the highest accuracy, precision, recall, and F1 score across all SNR levels. Its ar-

chitecture, including residual connections, effectively mitigates the vanishing gradient problem,

allowing the network to learn deep, intricate patterns within the data. This capability proved

particularly valuable in accurately distinguishing fault conditions from normal operations, even

in noisy environments. FCN ranked second, delivering strong results, especially in less noisy

environments, due to its simplicity and ability to capture global features, though it struggled

with higher noise levels. CNN-LSTM showed moderate performance; its hybrid architecture

leveraged CNNs for spatial learning and LSTMs for temporal dynamics, but it did not outper-

form ResNet or FCN, possibly due to complexity and overfitting issues. LSTM was the least

effective, with the lowest performance metrics and longest training time, struggling with spatial

feature capture and sensitivity to noise. Increasing noise levels negatively impacted all models,

but ResNet maintained superior performance, highlighting the importance of model selection in

fault detection within PV systems under varying noise conditions.

5.4 Limitations

1. Dataset Size and Diversity: The study’s reliance on a specific dataset, though extensive,

may limit the generalizability of findings to broader contexts. The dataset used primarily

represents a specific geographic area or operational conditions, potentially overlooking

variations in environmental factors or equipment configurations that could affect fault

detection performance in different settings.

2. SNR Variation and Real-world Conditions: While the study evaluated model perfor-

mance across different Signal-to-Noise Ratio (SNR) levels, the simulated noise conditions

may not fully capture the complexities of real-world environments. Variations in noise

characteristics and dynamic operational conditions (e.g., rapid weather changes affecting

solar energy output) could influence the models differently than simulated scenarios.

3. Architecture-Specific Considerations: Each neural network architecture (FCN, LSTM,

CNN-LSTM, ResNet) comes with its own strengths and limitations. For instance, while

ResNet demonstrated superior performance in most metrics, its computational complexity
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and training requirements may pose practical challenges in resource-constrained environ-

ments compared to simpler architectures like FCN.

4. Validation and Overfitting: Although efforts were made to mitigate overfitting through

cross-validation and regularization techniques, the potential for overfitting to specific

characteristics of the training dataset remains a concern. Validation across independent

datasets or real-time deployment scenarios would provide further insights into model ro-

bustness and generalizability.

5.5 Conclusion

ResNet emerges as the most effective architecture for fault detection in the context of renew-

able energy systems, demonstrating superior accuracy, precision, and F1-score across varying

SNR levels. Its residual learning approach and deep architecture enable it to capture complex

patterns effectively, making it well-suited for real-world applications where robust fault detec-

tion is crucial. LSTM and CNN-LSTM show competitive performance, suitable for scenarios

where computational efficiency and sequential data processing are paramount, albeit with vary-

ing strengths in different SNR conditions. FCN, while simpler in structure, shows lower overall

performance compared to the other architectures evaluated here.
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Conclusion

The pursuit of efficient and reliable fault detection in switches within PV systems is crucial for

the stability and longevity of renewable energy systems. This study evaluated the effectiveness

of four deep learning models FCN, Bi-LSTM, ResNet, and CNN-LSTM in detecting faults under

different noise levels.

Among these models, ResNet stood out as the best performer, achieving a fault detection time

of just 0.07 seconds and consistently high scores in accuracy, precision, recall, and F1 across

all SNR levels. Its architecture, with residual connections, effectively overcomes the vanishing

gradient problem, enabling the network to learn complex patterns in the data, even in noisy

conditions. FCN came in second, delivering strong results, particularly in environments with

less noise. Its simplicity and ability to capture broad features made it reliable for fault detection,

though it struggled more as noise increased.

CNN-LSTM showed moderate success, utilizing both CNNs for spatial learning and LSTMs for

temporal dynamics, but it did not outperform ResNet or FCN, possibly due to its complexity and

risk of overfitting. Bi-LSTM was the least effective, showing the lowest performance metrics

and requiring the longest training time. This was likely due to its difficulty in capturing spatial

features and sensitivity to noise, which disrupted its ability to detect sequential patterns. As

expected, all models’ performances were negatively impacted by higher noise levels, but ResNet

maintained superior performance, highlighting its robustness. This research underscores the

importance of choosing the right model for fault detection in PV systems, particularly under

varying noise conditions. The findings suggest that models like ResNet, capable of deep feature

extraction, are particularly well-suited for this task.
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6.1 Future work

To address these limitations of this research, future research could focus on:

• Diverse dataset collection: Incorporating datasets from varied geographical locations

and operational conditions to enhance model robustness and generalizability.

• Real-time validation: Conducting field tests or deploying models in operational settings

to validate performance under real-world conditions.

• MPPT algorithm: Explore other algorithm for tracking maximum point from PV panel

such as fuzzy logic using neural network.

• Model explainability: Integrating interpretability tools or developing hybrid models that

balance performance with transparency, enhancing trust in AI-driven decision-making

processes.

• Other faults: Proposing models for other types of fault such as thermal faults and upto

two short circuit fault diagnosis for CHBMLIs.

By acknowledging and addressing these limitations, future studies can build upon current find-

ings to further advance fault detection systems in renewable energy applications.
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