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Abstract

We examine the rare decays τ− → π−η(′)ντ that are G-parity suppressed within
the Standard Model and provide valuable insights into new physics through inter-
actions beyond the SM. In this study, we used an effective field theory framework
to investigate the sensitivity of various observables associated with these decays,
incorporating interactions within the Standard Model fields up to six-dimensional
operators, under the assumption of massless and left-handed neutrinos. Our find-
ings indicate that the examined observables can effectively explain the underly-
ing dynamics of these decays, showing significant sensitivity to scalar and tensor
couplings. Upcoming experiments such as Belle II, LHCb upgrades, and future
electron-positron colliders aim to investigate τ decays with high accuracy, poten-
tially uncovering new physics beyond the Standard Model.
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Chapter 1

Introduction

Weak currents can be divided into two categories specifically as first-class current
(FCC) and second-class current (SCC), based on JPG values of the decay cur-
rent, as explained in [5] by Weinberg. Here, G-parity is a multiplicative quantum
number resulting from the combined operation of isospin rotation and charge con-
jugation, symbolized as G = CeiπI2 , where C signifies charge conjugation and Ii
represents the components of isospin rotation operators. According to the Stan-
dard Model, decays are predominantly influenced by FCC, which have JPG values
of 0++, 0−−, 1+−, 1−+, and so on, and are characterized by PG(−1)J = +1. On
the other hand, SCC, which has JPG values of 0+−, 0−+, 1++, 1−−, and so on, are
expected to be negligible and vanish when perfect isospin symmetry is achieved.
Rare processes are particle decay modes hindered by approximation symmetries
in the SM. They are an excellent approach for investigating new physics because
their low amplitudes may closely resemble the indirect effects of new particles and
interactions. Understanding and controlling the uncertainties within the Standard
Model is critical for determining the influence of NP on the quantitative analysis
conducted at flavor factories. This work centers on the phenomenology surround-
ing hadronic τ decays. The τ lepton is the heaviest known lepton and is the only
one capable of decaying into hadrons. The decay mechanism is facilitated by the
W− boson, which mediates two weak charged currents. This makes it an excellent
way to test electroweak interactions. Moreover, a complex and varied hadronic en-
ergy spectrum is observed due to the emission of a neutrino during the decay. This
spectrum is generated by the weak quark current and can be used to study strong
interactions at different energy levels. For this, semileptonic τ decays offer an ideal
setting for studying non-perturbative Quantum Chromodynamics. They provide
a platform for examining form factors, investigating the hadronization processes
of QCD currents, and determining resonance parameters. These rare τ lepton’s
decay channels are becoming increasingly important in upcoming B-factory exper-
iments, promising new insights into particle physics phenomena. These channels
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have suppressed interactions and increased sensitivity to NP. In SM, several factors
contribute to suppressing rare τ decays:

• Cabbibo suppression refers to the phenomenon where strange hadronic fi-
nal states are relatively suppressed compared to non-strange ones in certain
processes. This occurs when the CKM matrix element Vus is used instead of
Vud. Examples include τ− → K−η′ντ and τ− → K−ηντ [6, 7].

• Phase-space suppression is a common phenomenon in decays where final
states involve kaons, η′, or η mesons, primarily due to the substantial masses
of these particles. Furthermore, second-class current decays violate G-parity,
wherein the vector current’s G-parity opposes that of the hadronic system.
In the isospin limit, G-parity is precisely conserved, hence such processes
are not allowed in the Standard Model. Nevertheless, isospin serves as an
approximate symmetry, it breaks down due to differences in electric charge
and mass between up and down quarks, which leads to the suppression of
these decays.

Our work focuses on the investigation of the rare SCC observed in τ− →
π−η(′)ντ decays, as described in the reference [8]. We have two goals: first, to
understand the hadronic form factors involved in the decay process, and second,
to predict the resulting decay spectra and branching ratios. We hope that these
predictions will encourage experimental collaborations to carry out measurements
of these decays. We are studying certain processes using an effective Lagrangian
framework. Within this framework lies an extensive Lagrangian composed of six-
dimensional operators corresponding to left-handed neutrino fields. These op-
erators encapsulate the effects of New Physics. Previous studies that focused on
estimating the branching fractions within the ranges of 10−5 ∼ 10−6 (10−6 ∼ 10−8)
for the η (η′) decay channels [9], also explored the invariant mass distribution as
part of specific beyond the SM methodologies [10]. Predictions including the scalar
form factor’s (SFF) contribution introduce a notable source of uncertainty in most
evaluations. As a result, a thorough understanding of the SFF is required to evalu-
ate the potential impact of non-standard model effects. We expect that a detailed
analysis of numerous observables in the τ− → η(η′)π−ντ decays at forthcoming su-
perflavor factories will be particularly beneficial in distinguishing NP effects from
isospin-violating contributions in the Standard Model.

The present experimental limits on the τ− → ηπ−ντ decays from the BaBar
[11], Belle [12], and CLEO [13] collaborations are: the branching ratio is less than
9.9 × 10−5 at a 95% confidence level (CL), less than 7.3 × 10−5 at a 90% CL,
and less than 1.4 × 10−4 at a 95% CL, respectively. These upper bounds closely
correspond to the Standard Model predictions are based on isospin breaking. The
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BaBar collaboration set a limit of < 7.2 × 10−6 at a 95% confidence level (CL)
for τ− → η′π−ντ decays [14], whereas Belle obtained < 4.6 × 10−6 at a 90% CL
[15] (previously, CLEO established an upper bound of 7.4 × 10−5 at a 90% CL
[16]). Upcoming experiments at the intensity frontier, such as Belle II, aim to
accumulate a significant amount of data, with a target of 4.5× 1010 τ lepton pairs
in their complete dataset. These experiments gave the first measurements of the
τ− → η(η′)π−ντ decays [17].

The thesis is structured as: Chapter 2 introduces a theoretical framework that
covers the Lagrangian of the Standard Model, Spontaneous Symmetry breaking,
and hadronic decays of τ lepton. We will discuss exploring τ decays using Effective
Field Theory in Chapter 3. Initially, we formulate the effective Lagrangian, which
serves as the foundation of this thesis. Subsequently, we discuss the ChPT, which
is employed in form factors. The formalism for rare τ decays is presented in
Chapter 4. First, we write the amplitude of our decay, and then the definition of
the hadronic matrix element is outlined by incorporating scalar, vector, and tensor
form factors, followed by an expression describing the differential decay width. We
will discuss these form factors using RChT. In Chapter 5, we conduct a numerical
analysis of our research, which includes Dalitz plots and differential decay width
distribution. Furthermore, forward-backward asymmetry plots are presented in
this chapter. In Chapter 6, we conclude our thesis.
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Chapter 2

Theoretical Framework

In this chapter, we will have an overview of the Standard Model Lagrangian,
followed by a brief explanation of spontaneous symmetry breaking and the Higgs
mechanism’s role in generating particle masses. It then discusses the hadronic
decays of the τ lepton and introduces the concept of Effective Field Theory.

2.1 Lagrangian of the Standard Model

The Standard Model (SM) of particle physics is a highly successful theoretical
framework that explains the fundamental components of the universe and their
interactions. The Lagrangian of SM stands as the most comprehensive and renor-
malizable equation, maintaining invariance under local gauge transformations cor-
responding to the symmetry group SU(3)C × SU(2)L × U(1)Y . This structure
requires a total of twelve gauge fields: eight Ga

µ from SU(3)C , three W b
µ from

SU(2)L, and one Bµ from U(1)Y . The matter components within this equation
transform according to either the fundamental or the trivial formulation of these
symmetries. For clarity, Greek letters represent indices for the SU(3)C color group,
capital letters denote family indices, and explicit columns are used to depict n-plets
in SU(2)L. Thus, the fundamental matter components of the Standard Model are
structured as [18]:

lN =

(
νL
lL

)
N

, eN = lR,N , ϕ =

(
ϕ+

ϕ0

)
,

qαN =

(
uL
dL

)
αN

, dαN = dR,αN , uαN = uR,αN

(2.1)

The SU(2)L group represents left-handed fields as doublets and right-handed fields
as singlets. Here, the indexes α and N have values ranging from 1 to 3.
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The scalar boson doublet is represented by ϕ, while the remaining particles are
fermions. Their hypercharges are:

Y (lN) = −1

2
, Y (eN) = −1, Y (ϕ) =

1

2
,

Y (qαN) =
1

6
, Y (dαN) = −1

3
, Y (uαN) =

2

3

(2.2)

The given expression:
L = LF + LB + LS + LY (2.3)

represents the total Lagrangian density of the Standard Model, which is composed
of four main components.

1. LF is the fermionic part which describes the behavior and interactions of
fermions. It includes the kinetic terms for the fermion fields and their inter-
actions with gauge bosons through covariant derivatives.

LF =
∑
N

(
lN /DlN + qN /DqN + eN /DeN + uN /DuN + dN /DdN

)
(2.4)

where lN and eN typically represent the lepton fields, lN denotes the neutrino
and charged lepton doublets, and eN represents the charged lepton singlets.
qN , dN , and uN usually represent the quark fields. These fields come in three
color states: red, green, and blue. These color states are often represented
as vectors, which is why they’re referred to as color vectors and /D represents
a Dirac operator, which is a derivative operator acting on fermion fields in
the context of quantum field theory:

/D = γµDµ (2.5)

where γµ are the Dirac gamma matrices, and Dµ is the covariant derivative,
defined as:

Dµ = I∂µ + igs
λa

2
Ga

µ + ig
σb

2
W b

µ + ig′Bµ (2.6)

as a result, each term is associated with a particle only when the particle
exists within the fundamental representation of a corresponding symmetry.

2. LB is the gauge boson part that contains the kinetic terms governing the
gauge fields (the force carriers: photons, W and Z bosons, and gluons) and
describes their self-interactions. It is derived from the field strength tensors
of the gauge fields.

LB = −1

4
Ga

µνG
µν
a − 1

4
W b

µνW
µν
b − 1

4
BµνB

µν (2.7)
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where

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν (2.8)

W b
µν = ∂µW

b
ν − ∂νW

b
µ − gϵabcW c

µW
b
ν (2.9)

Bµν = ∂µBν − ∂νBµ (2.10)

3. LS - Scalar (Higgs) part that governs the behavior of the Higgs field. This
sector explains the dynamics of the Higgs field itself, including its potential
energy and kinetic terms, as well as its interactions with gauge fields. It is
expressed as follows:

LS = (Dµϕ)
†(Dµϕ)− µ2ϕ†ϕ− 1

2
λ(ϕ†ϕ)2 (2.11)

4. LY - Yukawa Interactions part that describes the interaction of fermions with
the Higgs field, leading to the generation of fermion masses after spontaneous
symmetry breaking. These interactions are known as Yukawa interactions.
Finally, the Yukawa Lagrangian LY is expressed as:

LY = Y 1
NeN l̄Nϕ+ Y 2

NdN q̄Nϕ+ Y 3
NMuM q̄N ϕ̂+ h.c. (2.12)

Using ϕ̂ = iσ2ϕ, we performed rotations in the family space to diagonalize
as many Yukawa matrices Y i as feasible, while maintaining the invariance of
the remaining Lagrangian components. Specifically, an additional rotation
of u permits us to establish Y 3

NM as a unitary matrix multiplied by a diagonal
matrix, Y 3

NM ≡ Y 3
MV

†
NM , without any loss of generality.

In Eqs. 2.4 and 2.7, both fermions and gauge bosons are treated as massless.
However, after spontaneous symmetry breaking (SSB), these particles acquire mass
through the Higgs mechanism, where the Higgs field acquires a non-zero vacuum
expectation value (VEV), thereby breaking the initial symmetry of the Standard
Model.

2.2 Spontaneous Symmetry Breaking

In Eq. 2.11, LS represents the Lagrangian of the complex ϕ4 theory. This theory
maintains invariance under the global U(1) symmetry transformation:

ϕ(x) → eiαϕ(x) (2.13)

where α is a global parameter. In a theory without symmetry breaking, the La-
grangian includes a positive mass term (µ2 > 0), leading to a potential V =
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µ2ϕ†ϕ+ 1
2
λ(ϕ†ϕ)2, which forms a parabolic shape (Fig:2.1a). There exists a unique

symmetric vacuum state where perturbations are symmetric under U(1) phase ro-
tations [1].
For spontaneous symmetry breaking, the mass term is negative (µ2 < 0). The
potential then resembles a Mexican hat shape (Fig:2.1b), with a local maximum
at ϕ = 0 that is unstable. The field condenses into one of many degenerate vacuum
states lying on a ring in the complex plane (red ring in the figure).

(a) (b)

Figure 2.1: (a) µ2 > 0: the ground state is uniquely located at ϕ = 0, maintaining
the U(1) symmetry of the Lagrangian (b) µ2 < 0: the ground state becomes
degenerate, with each ground state breaking the U(1) symmetry of the Lagrangian
[1].

When the vacuum breaks the gauge symmetry, the electroweak group experi-
ences SSB to the electromagnetic subgroup [19]:

SU(3)C × SU(2)L × U(1)Y
SSB−−→ SU(3)C × U(1)QED (2.14)

The mechanism of SSB is responsible for the generation of weak gauge boson
masses. It leads to the emergence of a physical scalar particle within the model
known as the Higgs boson. A final essential component is required to construct
the Standard Model. If µ2 is less than zero and λ is greater than zero in LS, the
potential exhibits a degenerate minimum at |⟨ϕ⟩| = v√

2
≡
√

−2µ2

λ
. The mechanism

of SSB also gives rise to fermion masses and mixings. Within the SM framework,
the symmetry SU(2)L×U(1)Y is spontaneously broken down to U(1)em by selecting

⟨ϕ⟩ = 2−
1
2

(
0
v

)
(2.15)
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between them. The symbol v represents the VEV of the Higgs field in SM. The
value of v is approximately 246 GeV [20]. To account for perturbations around the
minimum, we parameterize the field ϕ(x) as:

ϕ(x) =
eiσiθi(x)/2

√
2

(
0

v +H(x)

)
(2.16)

By choosing a local SU(2)L gauge transformation for ϕ(x), the term involving θ(x)
can be completely vanished from the Lagrangian, resulting in a new scalar boson
H(x).
Before symmetry breaking, the gauge bosons associated with the SU(2)L group
were massless. These bosons acquire mass by interacting with the scalar field ϕ
via the covariant derivative. The charged gauge bosons W∓

µ ≡ W 1
µ ± iW 2

µ/
√
2 are

already diagonalized, whereas the massless photon Aµ and the massive Zµ boson
result from the diagonalization of the mass matrix formed by W µ

3 −Bµ.
Similarly, fermions obtain their masses via the Yukawa Lagrangian. Upon

expanding the mass component of Eq. (2.12), we find:

LY =
v√
2

(
Y 1
N d̄LNdRN + Y 2

N ēLNeRN + Y 3
MV

†
NM ūLNuRM

)
+ h.c. (2.17)

To express the Lagrangian in physical field terms, an additional transformation is
necessary to diagonalize the final mass matrix, indicated as uLN → V †

NMuLM . This
transformation only affects the non-diagonal component of the covariant derivative
in iq(1) /Dq(1) Eq. (2.4). This expression, alongside its leptonic counterpart, corre-
sponds to the charged current Lagrangian LCC , which holds significant importance
in this thesis, particularly in the context of τ decays. It is represented by:

LCC = − g√
2
W †

µ

(
V †
NM ūLNγ

µdLM + ν̄LNγ
µeLN

)
+ h.c. (2.18)

2.3 Hadronic Decay Modes of the τ Lepton

The decay of the τ lepton into hadrons involves contribution from both terms of
Eq. (2.18). To determine the matrix element for this process, we use the Dyson
series expansion of the S-matrix, with LCC as the key component of the interaction
Lagrangian. The challenge arises from the fact that final hadronic states ⟨f | are
produced by quark currents, as these are not elementary particles in high-energy
theory. This leads to a matrix element dependent on the non-trivial hadronic
component:

Mτ→fντ = −g
2V †

uD

2

1

q2 −M2
W

ν̄Lγ
µτL⟨f(pf )|J Du

µ (0)|0⟩ (2.19)
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here, J Du
µ = D̄LγµuL, q = pτ − pντ , and D = s or d. Since:

s = q2 = m2
τ − 2mτ |p⃗ντ |

and knowing that:
s < m2

τ ≪M2
W ,

q2 is much smaller thanM2
W (q2 ≪M2

W ), we can approximate q2 as being negligible
compared to M2

W :

q2 −M2
W ≈ −M2

W

Therefore:
1

q2 −M2
W

≈ 1

−M2
W

= − 1

M2
W

Now Eq: 2.19 becomes:

Mτ→fντ =
g2V †

uD

2M2
W

ν̄Lγ
µτL⟨f |J Du

µ (0)|0⟩ (2.20)

This result is equivalent to the one obtained using Fermi’s theory:

LCC = −2
√
2GF (d̄LNV

†
NMγ

µuLM)(ν̄LNγµeLN) + h.c. (2.21)

The expression for the hadronic-invariant mass distribution dΓ(s) for a final state
⟨fντ | is given by [21]:

dΓ(s) = G2
F |Vud|2SEW

m5
τ

4π

ds

m2
τ

(
1− s

m2
τ

)2{(
1 +

2s

m2
τ

)
H(1)(s) +H(0)(s)

}
(2.22)

H(i) is defined as follows:

Hµν(s) = (−gµνs+ qµqν)H
(1)(s) + qµqνH

(0)(s) (2.23)

with
Hµν ≡ (2π)3

∫
dΦfδ

4(pf − q)⟨n|J Du
µ (0)|0⟩⟨0|J Du†

ν (0)|f⟩ (2.24)

where Φf is the phase space of the f final hadrons, and pf is the total momentum. τ
lepton can decay into various final states, including single-hadron and two-hadron
final states.
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2.3.1 Single Hadron Decays

For single hadron decays, we consider the general process:

• τ− → H−ντ

where H is hadron. The hadronic matrix element for this process, which involves
the weak current responsible for the transition, is given by:

⟨H−|J Du
µ |0⟩ = ifHp

H
µ (2.25)

where:

• fH is the decay constant for hadron,

• pHµ is the four-momentum of the hadron.

The decay width is generally expressed as [22]:

Γ(τ− → H−ντ ) =
G2

F |VuD|2f 2
Hm

3
τ

16π

(
1− m2

H

m2
τ

)2

(2.26)

2.3.2 Two Hadron Decays

For two hadron decays, we consider the following general process:

• τ− → H−H ′(0)ντ

For two final hadrons H− and H ′(0), the hadronic matrix element has two possible
Lorentz structures:

⟨H−(p)H ′(0)(p′)|J Du
µ |0⟩ = cHH0

2

{(
P− − ∆HH0

s
P+

)
µ

FHH0

+ (s)

+
∆HH0

P+
P−
µ F

HH0

S (s)

} (2.27)

where FHH0

+ (s), FHH0

S are the vector and scalar form factors respectively, ∆HH0 =
m2

H−m2
H0 , P+ ≡ p+p0, P− ≡ p−p0, and s = P+2. The normalization coefficients

cHH0 are [21]:

cππ =
√
2, cKK̄ = −1, cKπ =

1√
2
, cπK̄ = −1, cπη′ = −

√
2 (2.28)

The Lorentz structures correspond to J = 1 and J = 0, as per Eq. (2.24):

H(1)(s) = (2π)3
c2HH0

12s2
λ(s,m2

H ,m
2
H0)|FHH0

+ (s)|2
∫
dΦ2δ

4(s− P+2) (2.29)
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and
H(0)(s) = (2π)3

c2HH0

4s2
|FHH0

S (s)|2
∫
dΦ2δ

4(s− P+2) (2.30)

Using: ∫
dΦ2δ

4(s− P+2) =
π

2

λ1/2(s,m2
H ,m

2
H0)

(2π)6s
(2.31)

we get [18]:

dΓτ→H−H′(0)ντ

ds
=G2

F |VuD|2
m3

τSEW

768π3s3
c2HH0

(
1− s

m2
τ

)2

×
{(

1 + 2
s

m2
τ

)
λ3/2(s,m2

H ,m
2
H0)|FHH0

+ (s)|2

+ 3∆2
HH0λ1/2(s,m2

H ,m
2
H0)|FHH0

S (s)|2
} (2.32)

In this thesis, we will consider these two hadron decays and to study these decays
we will use the framework of Effective Field Theory (EFT).

2.4 Effective Field Theory

EFT is a successful approach in quantum field theory (QFT) because it offers a
formalism for systematically investigating problems that involve multiple scales.
This holds particular significance in QCD, where the running coupling, αs(µ),
varies considerably across different energy scales. This theory simplifies practical
computations in QFT. It also offers a modern understanding of “renormalization”.

The core concept of EFT is expressed as follows: We examine the QFT, partic-
ularly focusing on a fundamental scale M , which denotes the mass or significant
momentum transfer associated with a heavy particle [23]. Suppose our interest lies
in studying physics occurring at significantly lower energies E as well as momenta
p compared to M . What is the method for decomposing the decay or scattering
amplitudes into a series of E/M powers? Addressing this question involves a few
steps:

1. Select a cutoff Λ that is less than M , then separate the theory’s fields into
two categories: low- and high-frequency modes,

ϕ = ϕL + ϕH (2.33)

In this division, the low-frequency modes, consisting of Fourier modes with
frequencies ω < Λ are contained in ϕL, while the other modes with frequen-
cies ω > Λ are contained in ϕH .
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The cutoff may be thought of as a “threshold of ignorance”, implying we dis-
regard any knowledge regarding the theory at scales beyond Λ. The ϕL fields
characterize the physics at low energy. The vacuum correlation functions of
these fields can provide all of the information needed for the theory, including
Feynman diagrams, cross sections, scattering amplitudes, and decay rates.
One can determine these correlators by using:

⟨0|T{ϕL(x1) . . . ϕL(xn)}|0⟩ =
1

Z[0]

δ

δJL(x1)
. . .

δ

δJL(xn)
Z[JL]

∣∣∣∣
JL=0

(2.34)

here
Z[JL] = Z

∫
DϕHDϕL e

iS(ϕH ,ϕL)+i
∫
dDx JL(x)ϕL(x) (2.35)

This expression represents the generating functional, where D is the space-
time dimension, S(ϕH , ϕL) =

∫
dDxL represents the action, and sources JL

have been introduced for light fields.

2. Furthermore, we evaluate the path integral for high-frequency fields, yielding

Z[JL] =

∫
DϕL e

iSΛ(ϕL)+i
∫
dDx JL(x)ϕL(x) (2.36)

where
eiSΛ(ϕL) =

∫
DϕH e

iS(ϕH ,ϕL) (2.37)

is known as the “Wilsonian effective action”. The selection of the cutoff
Λ among low- and high-frequency modes affects this action. On scales
∆x ∼ 1/Λ, the action SΛ becomes non-local because the high-frequency
fluctuations are excluded from this theory. The method of excluding such
modes is commonly known as “integrating out” the high-frequency fields in
a functional integral.

3. Finally, we expand the non-local action to include local operators made up
of low-energy fields. This procedure is known as “Operator-Product Expan-
sion”, where two operators Ô1(x)Ô2(y) are expanded as:

Ô1(x)Ô2(y) =
∑
i

ci(x, y)Qi(y) (2.38)

Coefficients ci(x, y) scale as ci

(x−y)
dO1

+dO2
−dQi

, where dQi
represents the scaling

dimension of the operator Qi, which may undergo modifications known as
anomalous dimensions due to quantum corrections. As y approaches x, op-
erators with lower dimensions tend to dominate the summation. This OPE
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works under the assumption that E ≪ Λ. The outcome may be represented
as follows:

SΛ(ϕL) =

∫
dDxLΛ

eff(x) (2.39)

where
LΛ

eff(x) =
∑
i

αiQi(ϕL(x)) (2.40)

This is known as the “effective Lagrangian”. It consists of an infinite series
of local operators Qi multiplied by coupling constants αi, known as Wilson
coefficients. Generally, this sum includes all operators permitted by the
theory’s symmetries that are formed during the formation of the effective
Lagrangian.

The Wilson coefficients αi are obtained from the renormalization group equation
[18]: (

µ
d

dµ
− γQi

)
αi = 0 (2.41)

In this equation:

• µ d
dµ

represents the derivative with respect to the renormalization scale µ,
indicating how the Wilson coefficients evolve as the scale changes.

• γQi
is the anomalous dimension of the operator Qi. It quantifies the scaling

behavior of the operator due to quantum corrections.

Several important factors must be considered while constructing the leading terms
of the effective weak Lagrangian. Firstly, it’s crucial to recognize that four fermion
fields inherently possess dimension δi = 6, implying that no additional fields or
derivatives are permissible in this order. Moreover, weak interactions involve
fermion fields that are exclusively left-handed. Additionally, in strong-interaction
processes, chirality remains conserved, allowing us to set mq = 0 at the leading
power. The only permissible choice for Γ from the Dirac basis, in the context of
quark bilinears ψ̄LΓψL, is Γ = γµ. Lastly, operators have to be Lorentz invariant
and gauge invariant, especially color singlets.

Let’s provide an example to better understand EFT. Semileptonic decays, like
B̄0 → π+e−ν̄e, arise from the quark transition b → ue−ν̄e. The above-mentioned
factors can be used to determine the CKM matrix element |Vub|. The relevant
effective Lagrangian includes a unique dimension-6 operator, ēLγµνLūLγµbiL. The
W boson in Figure 2.2 is integrated out to get this operator. In the following,
we will skip color indices i that are contracted across adjacent quark fields. The
outcome of the tree-level matching is as follows:

Leff = −4GF√
2
VubC1(µ)ēLγ

µνLūLγµbL (2.42)
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with C1 = 1 + O(αs) and GF here is the Fermi constant which is related to the
mass of W boson and coupling strength g of the weak interaction, associated with
the W boson: GF ∼ g2

M2
W

∼ 10−5 GeV−2.
In the SM, weak interactions occur via the exchange of W bosons. Only the

interactions between weak charged gauge bosons W± and fermions result in flavor-
changing currents in the SM. The heavy bosons from the SM Lagrangian may be
integrated out when examining the weak interaction at low energy scales in EFT,
as Figure 2.2 illustrates.

Figure 2.2: (a) In the Standard Model, integrating out the W boson yields an
effective four-fermion interaction. (b) The two crossed circles indicate a local four-
quark operator within the EFT [2]
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Chapter 3

Investigating τ Decays using
Effective Field Theory

This chapter provides a brief overview of Effective Field Theory (EFT), Chiral
symmetry, Chiral Perturbation Theory (ChPT), and Resonance Chiral Theory
(RChT). Firstly, we will write the low-energy charged current Lagrangian govern-
ing these decays. Subsequently, we discuss the Chiral Perturbation Theory, which
is utilized to study the form factors for these decays. A thorough examination of
these form factors will be provided in Chapter 4.

3.1 Effective Field Theory as a Tool to Investigate
τ Decays

We have specifically considered semileptonic τ decays in our work and used the
EFT framework to accommodate potential new physics effects, emphasizing a
model-independent approach.
Being the heaviest of the charged leptons, the τ lepton occupies a unique position
in the SM of particle physics. Several factors motivate the detailed study of τ
decays:

• τ leptons can decay both leptonically (into lighter leptons and neutrinos)
and hadronically (into hadrons and its neutrino). This diversity allows for
the study of both weak and strong interactions within a single framework.

• Due to its high mass and complex decay modes, the τ lepton is sensitive
to various potential new physics scenarios, including supersymmetry, lepto-
quarks, and other extensions of the SM. Any deviations from SM predictions
in τ decays could provide indirect evidence for new physics.
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EFT offers a systematic method to explore the interactions involved in τ decays
by expanding the Lagrangian in terms of operators with increasing dimensions:
Standard Model Effective Field Theory (SMEFT): At energies below the
electroweak scale, the SMEFT framework allows us to include higher-dimensional
operators that encapsulate the effects of new physics. These operators are sup-
pressed by the scale of new physics, making their contributions small but poten-
tially observable in precise measurements.
Low-Energy Effective Theories: At energy scales relevant to τ decays, effective
theories such as ChPT and RChT can be employed to describe hadronic interac-
tions. These theories incorporate the symmetries of the strong interaction and are
particularly useful for modeling the hadronic decay modes of the tau.
Non-perturbative Techniques: Given the non-perturbative nature of QCD at
low energies, lattice QCD and other non-perturbative methods are crucial for cal-
culating the hadronic matrix elements that enter the decay amplitudes.

3.2 The Framework of Effective Field Theory

At the weak scale, the effective Lagrangian incorporates six-dimensional operators
that are invariant under SU(2)L⊗U(1), contributing to low-energy charged current
processes, is expressed as [24, 25]:

Leff = LSM +
1

Λ2

∑
i

αiOi →
1

v2

∑
i

α̂iOi (3.1)

here, Λ is the energy scale associated with NP (typically around 1 TeV), αi are the
couplings of the dimension-six operators Oi at the scale Λ with α̂i =

v2

Λ2αi denoting
the dimensionless couplings of NP, which typically range around 10−3 for a scale of
approximately 1 TeV. Approximately, v2

Λ2 is about 0.06. Therefore, α̂i ≈ 0.06×αi.
For semi-leptonic transitions (ℓ = e, µ, τ) containing only left-handed neutrino

fields, the effective Lagrangian at low scales (O(1GeV)) is expressed as follows:

LCC = −4GF√
2
Vud

[
(1 + [gLv ]ℓℓ)ℓ̄LγµνℓLūLγ

µdL

+ [gRv ]ℓℓℓ̄LγµνℓLūRγ
µdR + [gLs ]ℓℓℓ̄RνℓLūRdL + [gRs ]ℓℓℓ̄RνℓLūLdR

+ [gLt ]ℓℓℓ̄RσµννℓLūRσ
µνdL

]
+ h.c. (3.2)

Here, gLv and gRv are associated with vector couplings for leptons, gLs and gLR rep-
resents the scalar couplings for leptons, and gLt is associated with tensor cou-
plings. Subscripts L(R) indicate chiral projections that are left- or right-handed
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and σµν ≡ i[γµ, γν ]/2.
In eq: (3.2), setting gLv = gRv = gLs = gRs = gLt = 0 represents the Standard Model
Lagrangian. In this expression, all the heavy degrees of freedom are integrated out.
The effective couplings gLv , gRv , gLs , gRs , gLt characterizing New Physics are assumed
to be real since we focus on CP-even observables (observable remains invariant
under a CP transformation).

In terms of equivalent effective couplings ϵL,R = gL,Rv , ϵS = gLs + gRs , ϵP =
gLs − gRs , and ϵT = gLt , the effective Lagrangian, specific to ℓ = τ , takes the
following form 1:

LCC = −GFVud(1 + ϵL + ϵR)√
2

[
τ̄ γµ(1− γ5)ντ · ū (γµ − (1− 2ϵ̂R)γ

µγ5) d

+ τ̄(1− γ5)ντ · ū (ϵ̂S − ϵ̂Pγ5) d+ 2ϵ̂T τ̄σµν(1− γ5)ντ · ūσµνd

]
+ h.c. (3.3)

here ϵ̂i ≡ ϵi/(1 + ϵL + ϵR) for i = R, S, P, T . This factorized form is useful when
appropriately normalized rates allow the cancellation of the overall factor (1 +
ϵL+ ϵR). The expressions for the ϵ̂i are obtained by retaining terms linear in small
effective couplings, reducing them to the form given in [24].

3.3 Chiral Symmetry

Consider Nf flavors of massless quarks represented in flavor space by the vector
field: ψA = (u, d, . . .). The corresponding QCD Lagrangian is:

L0 = −1

4
Ga

µνG
µν
a + iψ̄Lγ

µDµψL + iψ̄Rγ
µDµψR (3.4)

where the gluon interactions are encoded in the flavor-independent covariant deriva-
tive Dµ. The form of the covariant derivative Dµ, which acts on the quark fields
ψL and ψR, can be expressed as:

Dµ = ∂µ − igsG
a
µ

λa

2
(3.5)

Without a quark mass term, interactions between left- and right-handed quark
chiralities occur only through gluon interactions. The QCD Lagrangian remains

1Physical amplitudes in particle physics are independent of the renormalization scale [26].
However, effective couplings ϵi and hadronic matrix elements are scale-dependent. Convention-
ally, µ = 2 GeV is chosen in the MS scheme.

17



invariant under global transformations G ≡ SU(Nf )L × SU(Nf )R that act inde-
pendently on the left and right chiral quark fields:

ψL
G−→ gLψL, ψR

G−→ gRψR, gL,R ∈ SU(Nf )L,R. (3.6)

The Noether currents associated with chiral group G are expressed as:

J iµ
X = ψ̄Xγ

µT iψX , (X = L,R; i = 1, . . . , N2
f − 1) (3.7)

with T i being the SU(Nf ) generators. The Noether charges Qi
X associated with

these currents obey the following commutation relations:

[Qi
X , Q

j
Y ] = iδXY f

ijkQk
X (3.8)

involving the SU(Nf ) structure constants f ijk. These algebraic relations formed
the foundation of current algebra techniques before the development of QCD.
The hadronic spectrum in the light quark sector (u, d, s) does not exhibit chiral
symmetry as described by Eq.(3.6). A Wigner–Weyl realization would predict
degenerate mirror multiplets with opposite chiralities, but such multiplets are not
observed. The fact that the octet of pseudoscalar mesons is lighter than other
hadronic states indicates that the vacuum does not exhibit symmetry under the
complete chiral group. Only transformations where gR = gL preserve symmetry,
leading to the breakdown of SU(3)L × SU(3)R symmetry to SU(3)L+R.
The eight broken axial generators Qa

A = Qa
R−Qa

L correspond to eight pseudoscalar
Nambu-Goldstone bosons (π−, π+, π0, η,K−, K+, K0, K̄0). The small masses of
these particles arise from the quark-mass matrix, which breaks the global chiral
symmetry of the QCD Lagrangian. The quark condensate:

⟨0|q̄q|0⟩ ≠ 0 (3.9)

is the natural order parameter of dynamical chiral symmetry breaking (χSB). For
Nf = 2, ψA = (u, d), the pattern of χSB predicts three Nambu–Goldstone bosons,
which are the pion multiplet [27].

3.3.1 Formulating the Chiral Lagrangian in QCD

The matrix element of a transformation is written as [28]:

g =

(
L 0
0 R

)
(3.10)

where L(R)(x) = eiλiθi and λi are the SU(3) generators. Due to the Goldstone
Theorem, each generator of the unbroken symmetry has an associated Goldstone
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boson. At low energies, these are the primary degrees of freedom.
To parametrize these fields, we apply the CCWZ formalism2. By assuming that
a local field configuration represents an excitation of the vacuum ϕ0, such that
ϕ(x) = Θ(x)ϕ0, where Θ(x) is an element of SU(3)L × SU(3)R, we can express it
as:

Θ(x) =

(
1 0
0 U(x)

)(
V (x) 0
0 V (x)

)
(3.11)

Since ϕ0 remains invariant under any local SU(3)V (L = R) transformation,
therefore we may select any V (x) without modifying the configuration. Choos-
ing V (x) = I, all configurations are parametrized by the local transformation of
the right generators,

U(x) = eiλi
ϕi(x)

F (3.12)

where λirepresents a Gell-Mann matrix, and F is a dimensional parameter intro-
duced to balance the dimensions of ϕi. For a global group transformation g, as
previously defined in Eq. (3.10):

ϕ(x) → gϕ(x) =⇒ Θ(x) → gΘ(x) (3.13)

generally:

gΘ(x) =

(
1 0
0 RU(x)L†

)(
L 0
0 L

)
̸=
(
1 0
0 U1

)
(3.14)

We can choose that after the transformation, the matrix Θ(x) becomes:

Θ(x) → Θ′(x) = gΘ(x)

(
V (x) 0
0 V (x)

)
(3.15)

with an arbitrary V (x). By selecting V (x) = L†, the resulting transformed Θ′(x)
can be parameterized once more using the local transformation linked with the
right generators:

U(x) = eiλi
ϕi(x)

F with U(x) → RU(x)L† (3.16)

The dimensional quantity F identifies the fields ϕ(x) as spin-0 bosons. We now
construct the most general Lagrangian that preserves the symmetries for U(x),
which encapsulates the low-energy degrees of freedom. By imposing invariance
under SU(3)L × SU(3)R transformations, and noting that U(x) → RU(x)L†, we
find that the invariant quantities are the flavor traces of U(x) and U †(x).

LLO =
F 2

4
Tr(∂µU(x)∂µU(x)) (3.17)

2Callan, Coleman, Wess, and Zumino developed the general formalism for Effective La-
grangian involving spontaneously broken symmetries.
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The prefactor is fixed by requiring proper normalization of the kinetic term for
Goldstone bosons when expanding U(x). The higher-order corrections arise from
loop contributions and are given by:

Loop ∼
(

E

4πF

)2

Tree (3.18)

where E represents the energies involved in the process. This counting is valid
as long as E ≪ 4πF . Loop divergences are canceled by renormalizing the low
energy constants of higher-order Lagrangians, encoding short-distance information
obtainable from lattice QCD or estimated analytically, such as through Resonance
Chiral Theory with additional assumptions. Alternatively, these constants can be
fixed using experimental data, though this approach costs of losing some predictive
power, but their natural order matches loop corrections [18].

3.4 Chiral Perturbation Theory (ChPT)

ChPT is an effective field theory based on the spontaneous breaking of chiral
symmetry observed in QCD. It provides a systematic framework to describe the
low-energy interactions of pions and other light mesons. ChPT is organized as an
expansion in terms of small momenta and meson masses, respecting the symme-
tries of QCD. It has been successful in predicting and interpreting experimental
data in low-energy hadron physics [29, 30].
In an ideal scenario, massless Nambu–Goldstone bosons arise from exact symme-
try. However, physical pions have masses due to explicit χSB from quark masses
and electroweak interactions. To incorporate these effects, we introduce external
classical fields that interact with quark currents.

3.4.1 Extended QCD Lagrangian

Consider the extended QCD Lagrangian where quark currents are coupled to ex-
ternal Hermitian matrix-valued fields vµ, aµ, s, p. The Lagrangian is expressed
as:

LQCD = L0 + q̄γµvµq + q̄γµγ5aµq − q̄(s− iγ5p)q (3.19)

here, L0 represents the massless QCD Lagrangian. These external fields parame-
terize chiral symmetry breaking:

rµ ≡ vµ + aµ, lµ ≡ vµ − aµ, s =M ′, p = 0. (3.20)

In this context, the external fields are related to the gauge fields Aµ by:

rµ = −eQAµ (3.21)
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lµ = −eQAµ − e
√
2 sin θW (W †

µA
+ + h.c.) (3.22)

with M ′ and Q being the quark mass and charge matrices respectively:

M ′ = diag(mu,md,ms), Q =
1

3
diag(2,−1,−1) (3.23)

Here, vµ includes electromagnetic interactions, s accounts for quark masses, and
lµ incorporates the charged-current couplings of W± bosons, with the matrix A+:

A+ =

0 Vud Vus
0 0 0
0 0 0

 (3.24)

3.4.2 Chiral Symmetry Transformations and Effective La-
grangian

The Lagrangian maintains invariance under local SU(3)L × SU(3)R transforma-
tions, with external fields transforming as follows:

qR → gRqR, qL → gLqL (3.25)

s+ ip→ gR(s+ ip)g†L (3.26)

lµ → gLlµg
†
L + igL∂µg

†
L (3.27)

rµ → gRrµg
†
R + igR∂µg

†
R (3.28)

To ensure local invariance, the gauge fields vµ and aµ appear only through covariant
derivatives:

DµU = (∂µ − irµ)U + iUlµ (3.29)
DµU

† = (∂µ − ilµ)U
† + iU †rµ (3.30)

and through the field strength tensors:

FL
µν = ∂µlν − ∂νlµ − i[lµ, lν ] (3.31)

FR
µν = ∂µrν − ∂νrµ − i[rµ, rν ] (3.32)

The most general effective Lagrangian, to leading order in terms of derivatives and
external fields, is given by:

L =
F 2

4
Tr[DµU

†DµU + U †χ+ χ†U ] (3.33)

with
χ = 2B(s+ ip) (3.34)

Here, F denotes the pion decay constant, and B refers to the quark vacuum con-
densate.
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3.4.3 Noether Currents and Generating Functional

The generating functional Z[v, a, s, p] relates fundamental and effective theories:

eiZ =

∫
DqDq̄DGµe

i
∫
d4xLQCD =

∫
DUei

∫
d4xLeff (3.35)

with the classical action at the lowest order:

S =

∫
d4xL (3.36)

The chiral Noether currents are:

JL
µ = q̄LγµqL=̇

δS

δlµ
=
i

2
F 2DµU

†U (3.37)

JR
µ = q̄RγµqR=̇

δS

δrµ
=
i

2
F 2DµUU

† (3.38)

The derivatives with respect to the scalar and pseudoscalar sources are given by:

⟨q̄jqi⟩ = − δS

δ(s− ip)ji
= −F

2

2
BUji (3.39)

⟨q̄iqj⟩ = − δS

δ(s+ ip)ji
= −F

2

2
BU †

ji (3.40)

qjLq̄
i
R=̇− δS

δ(s− ip)ji
= −F

2

2
BUij(ϕ) (3.41)

q̄jRq
i
L=̇− δS

δ(s+ ip)ji
= −F

2

2
BU †

ij(ϕ) (3.42)

relating B to the quark vacuum condensate:

⟨0|q̄jqi|0⟩ = −F 2Bδij (3.43)
The Nambu-Goldstone bosons, parameterized by U(ϕ), are zero-energy excitations
over the vacuum condensate that cause dynamical chiral symmetry breaking.

3.4.4 Power Counting

ChPT works by expanding the powers of momenta and quark masses, which are
treated as small parameters. The effective Lagrangian is structured as follows:

Leff = LLO + LNLO + LNNLO + · · · , (3.44)

where LNLO and LNNLO represent the next-to-leading and next-to-next-to-leading
order terms, respectively.
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3.5 Resonance Chiral Theory (RChT)

QCD, the theory of the strong interaction, becomes non-perturbative at low ener-
gies, making it challenging to describe hadronic processes using quarks and gluons.
Effective Field Theories like ChPT are successful in the low-energy regime but are
limited to energies significantly below the mass of rho meson Mρ. RChT extends
the description to energies around 1-2 GeV by incorporating resonance and me-
son fields into a phenomenological Lagrangian framework governed by chiral and
unitary symmetries.

3.5.1 Inclusion of Resonances

RChT extends ChPT by explicitly incorporating resonances into the effective field
theory framework. Resonances are higher-energy states that couple strongly to
pseudo-Goldstone bosons and play a crucial role in processes where intermediate
resonant states are significant.

3.5.2 Lagrangian Formulation

The RChT Lagrangian includes both the pseudo-Goldstone bosons and the reso-
nances. For instance, the Lagrangian for vector resonances Vµ is given by:

LV = −1

4
Tr (VµνV µν) +

FV

2
√
2
Tr (Vµνfµν

+ ) (3.45)

where Vµν is the field strength tensor of the vector resonance, and fµν
+ contains the

field strengths of the external gauge fields [31, 32].

Applications

1. RChT has been successfully applied to study processes such as the τ →
πππντ decay. The relevant form factors can be determined using RChT,
providing insights into the dynamics of hadron resonances.

2. RChT helps in determining the Low-Energy Constants (LECs) in chiral per-
turbation theory by matching the effective theory with the resonance region.
This establishes a connection between chiral and resonance descriptions.
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3.6 Form Factors in τ Decays

Consider the process where a τ lepton decays into three pions. In SM, the decay
amplitudes for processes τ− → π−π−π+ντ and τ− → π−π0π0ντ are given by:

M± = −GFVud√
2

ūντγ
µ(1− γ5)uτT

±
µ (3.46)

here, T±
µ represents the hadronic matrix element of the axial-vector QCD current

Aµ:
T±
µ (p1, p2, p3) = ⟨π1(p1)π2(p2)π±(p3)|Aµe

iLQCD|0⟩ (3.47)

with no contribution from the vector current in the isospin limit. Here, π1 and π2
correspond to π− and π0 for the upper and lower signs in T±

µ , respectively. The
hadronic tensor can be expressed in terms of three form factors, F1, F2, and FP

as:

Tµ =

(
gµν −

QµQν

Q2

)
(p1 − p3)

νF1 +

(
gµν −

QµQν

Q2

)
(p2 − p3)

νF2 +QµFP (3.48)

where Qµ = p1µ+p2µ+p3µ. Form factors F1 and F2 are associated with a JP = 1+

transition and exhibit a transverse structure in the total hadron momentum Qµ.
The form factor FP corresponds to a JP = 0− transition, representing pseudoscalar
degrees of freedom. It vanishes proportionally to the square of the pion mass and
thus contributes to the spectral function of τ → πππντ decays at a suppressed
level, m4

π/Q
4, and is therefore negligible compared to F1 and F2, so it is often

disregarded [33].
Form factors F1 and F2 can be evaluated in the framework of RChT. The La-
grangian incorporates the original RChT terms and those satisfying OPE of the
⟨V AP ⟩ Green function3. Additionally, we ensure the smooth asymptotic behav-
ior of the form factors. Various contributions, depicted in diagrams such as Fig.
4.11 and the off-shell widths of ρ(770) and a1(1260) resonances have also been
implemented according to RChT [3].

3The correlation involving vector, axial-vector, and pseudoscalar currents [34]
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(a) (b) (c)

(d) (e)

Figure 3.1: The diagrams that contribute to the axial-vector form factors of
hadrons [3].

In the decays of τ → πππντ , the ρ(1450) resonance, which belongs to a heavier
vector nonet, may influence the spectrum. Instead of incorporating an additional
nonet in RChT Lagrangian, we modify the ρ Breit-Wigner distribution using an
adjustable parameter. Figure 3.2 illustrates a comparison between the ALEPH
data [4] and the RChT approach, both with and without the ρ(1450) contribution.
The results demonstrate a good agreement with the data when Ma1 ≈ 1.120 GeV.

Figure 3.2: Theoretical M2
πππ spectra for the τ− → π−π−π+ντ decay are compared

with the experimental results from ALEPH [4].

25



Chapter 4

Probing New Physics via
τ− → π−η(′)ντ Decays

This chapter provides a thorough examination of the τ− → π−η(′)ντ decays. We
will start by writing the decay amplitude using effective Lagrangian, followed by
a detailed discussion on the form factors involved in the said decays. We will use
these amplitude and form factors to calculate different physical observables such as
the Dalitz Plot, differential decay width, and forward-backward asymmetry. First,
we introduce Dalitz plots to represent the phase space distribution of final state
particles, offering insights into resonance structures and kinematic boundaries.
Next, we discuss the differential decay width, crucial for predicting decay rates
and understanding the kinematics of τ lepton decays. Additionally, we will discuss
the forward-backward asymmetry associated with these decays. This asymmetry
provides valuable information about the angular distribution of the decay prod-
ucts relative to the initial τ lepton direction, revealing underlying symmetries and
dynamics. Throughout this chapter, our focus will be on establishing the theo-
retical framework and formalism necessary for a comprehensive understanding of
τ− → π−η(′)ντ decays. Detailed discussions and interpretations of results will be
presented in Chapter 5.

4.1 Amplitude of τ− → π−η(′)ντ Decays

For the semileptonic decay process τ−(p) → π−(pπ)η
(′)(pη(′))ντ (pν), the decay am-

plitude is dominated by the vector, scalar, and tensor currents because of the
parity properties of pseudoscalar mesons. The amplitude expression is given by:

M = MV +MS+MT =
GFVud

√
SEW (1 + ϵL + ϵR)√

2
×(LµH

µ+ϵ̂SLH+2ϵ̂TLµνH
µν)

(4.1)
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In eq: (4.1) MV , MS, and MT represent the contributions from the vector,
scalar, and tensor amplitude, respectively. Here, SEW = 1.0201(3) represents the
electroweak correction factor [35], ϵL and ϵR refer to the left- and right-handed
coupling constants, respectively, and ϵ̂S and ϵ̂T account for the scalar and tensor
contributions.

Figure 4.1: Feynman Diagram at Tree-Level for τ− → π−η(′)ντ Decays

In the provided expression (4.1), the leptonic currents are expressed as follows:

Lµ = ū(pν)γµ(1− γ5)u(p) (4.2)
L = ū(pν)(1 + γ5)u(p) (4.3)

Lµν = ū(pν)σµν(1 + γ5)u(p) (4.4)

The tree-level Feynman diagram for τ− → π−η(′)ντ decays is presented in Fig.
(4.1). Additionally, the vector, scalar, and tensor hadronic matrix elements intro-
duced in the equation 4.1 are defined as:

Hµ = ⟨η(η′)π−|d̄γµu|0⟩ = cVQ
µF+(s) + cS

∆QCD
K0K+

s
qµF0(s) (4.5)

H = ⟨η(η′)π−|d̄u|0⟩ = FS(s) (4.6)
Hµν = ⟨η(η′)π−|d̄σµνu|0⟩ = iFT (s)(p

µ
ηp

ν
π − pµπp

ν
η) (4.7)

In our definitions, we introduce the following quantities: s = q2, qµ = (pη(′) + pπ)
µ,

Qµ = (pη(′) − pπ)
µ +

∆
π−η(′)

s
qµ, and ∆ij ≡ m2

i − m2
j . Additionally, ∆QCD

K0K+ =

m2
K0 − m2

K+ + m2
π+ − m2

π0 . The constants cS =
√

2
3

and cV =
√
2 represent

Clebsch-Gordan flavor coefficients. In η′ case, cS = 2√
3

(while cV remains
√
2).

27



The vector hadronic matrix element is ultimately expressed as:

⟨π−η(′)|d̄γµu|0⟩ = cπ
−η(′)

V

[
(pη(′) − pπ)

µ +∆π−η(′)
qµ

s

]
F π−η(′)

+ (s)

+ cπ
−η(′)

S ∆QCD
K0K+

qµ

s
F π−η(′)

0 (s)

(4.8)

In Eq. (4.8), the parameterization provides a significant advantage that the scalar
(vector) form factor F π−η(′)

0(+) (s) corresponds to the final S (P )-wave state (J = 0

and J = 1), allowing for a clear distinction and characterization of the angular
momentum properties and dynamics of the interaction or decay process under
consideration. Furthermore, the requirement for matrix elements to remain finite
at origin is:

F π−η(′)

+ (0) = −c
π−η(′)

S

cπ
−η(′)

V

∆QCD
K0K+

∆π−η(′)
F π−η(′)

0 (0) (4.9)

The connection between the F0(s) and FS(s) form factors is established by the
vector current’s divergence through the relation:

FS(s) = cS
∆QCD

K0K+

(md −mu)
F0(s) (4.10)

Utilizing known results from [36],

m2
π+ = 2m̂B,

m2
π0 = 2m̂B − ε+O(ε2),

m2
K+ = (mu +ms)B,

m2
K0 = (md +ms)B.

(4.11)

it is evident that
∆QCD

K0K+

(md −mu)
= B

(
1− 1

4

mu −md

ms − m̂

)
(4.12)

behaves approximately as B (3.9), where in eq. (4.11) m̂ ≡ mu+md

2
and ε =

B
4
(mu−md)

2

(ms−m̂)
. BF 2 = ⟨0|q̄q|0⟩ is of the order of −(270MeV)3 [37]. Given that F

is roughly 92MeV, it follows that B is of the same order as Mτ . Consequently,
FS(s) inherits the strong isospin suppression observed in F0(s). The scalar term
in Eq. (4.6) may be effectively “absorbed” to the vector current amplitude by
utilizing the Dirac equation L = Lµqµ

Mτ
and Eq. (4.10). This can be accomplished

by substituting

cS
∆QCD

K0K+

s
−→ cS

∆QCD
K0K+

s

(
1 +

sϵ̂S
mτ (md −mu)

)
(4.13)

into the second term of Eq. (4.5).

28



4.2 π−η(′) Scalar Form Factor Using Breit-Wigner
approach

We used the Resonance Chiral Theroy (RChT) framework to describe the necessary
scalar form factor (SFF) for π−η(′). The SFFs are derived from [38]:

F π−η(′)

0 (s) =cπ
−η(′)

0

[
1 +

8cm(cd − cm)

F 2

2m2
K −m2

π

M2
S

− 4cm
F 2

(cd − cm)2m
2
π + cd(s+m2

π −m2
η(′)

)

M2
S − s

] (4.14)

In the πη′ channel, cπ
−η′

0 is expressed as cos θηη′+sin θηη′√
2

, while for the πη channel,

cπ
−η

0 takes the form cos θηη′−
√
2 sin θηη′ . Additionally, cd(m) denotes the couplings

present in the Lagrangian’s derivative (mass) terms, which involve the nonets of
pseudoscalar and scalar mesons. Upon imposing the QCD asymptotic behavior of
the form factors, characterized by O(1/s) for large s, resulting in cd − cm = 0 and
4cdcm = F 2, we deduce cd = cm = F/2 [39], they are eventually stated as:

F π−η(′)

0 (s) = cπ
−η(′)

0

(
1 +

∆π−η(′)

M2
S

)
M2

S

M2
S − s

(4.15)

and at the origin their values are

F π−η(′)

0 (0) = cπ
−η(′)

0

(
1 +

∆π−η(′)

M2
S

)
(4.16)

Incorporating these normalizations into Eq. (4.9) yields an estimation of the nor-
malizations of associated vector form factors:

F π−η
+ (0) = − cos θηη′ −

√
2 sin θηη′√

3
∆QCD

K0K+∆π−η

(
1 +

∆π−η

M2
S

)
= cosϕηη′

m2
K0 −m2

K+ −m2
π0 +m2

π+

m2
η −m2

π−

(
1−

m2
η −m2

π−

M2
S

)
(4.17)

and

F π−η′

+ (0) = − sin θηη′ +

√
2 cos θηη′√

3
∆QCD

K0K+∆π−η′

(
1 +

∆π−η′

M2
S

)
= sinϕηη′

m2
K0 −m2

K+ −m2
π0 +m2

π+

m2
η −m2

π−

(
1−

m2
η′ −m2

π−

M2
S

)
(4.18)
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For simplicity, η-η′ mixing in the quark-flavor basis is, cosϕηη′ =
cos θηη′−

√
2 sin θηη′√
3

and sinϕηη′ =
sin θηη′+

√
2 cos θηη′√
3

. When comparing these VFF normalizations to
those derived following Eq. (4.26), one gets:

ϵπη(′) = cosϕηη′(sinϕηη′)
m2

K0 −m2
K+ −m2

π0 +m2
π+

m2
η(η′) −m2

π−

(
1−

m2
η(′)

−m2
π−

M2
S

)
(4.19)

From Eq. (4.19), we can derive numerical estimates for the πη(η′) mixing angles.
Specifically, we find ϵπη = (9.8 ± 0.3) × 10−3 and ϵπη′ = (2.5 ± 1.5) × 10−4. No-
tably, these values, particularly in the case of ϵπη′ , deviate significantly from their
values in the infinite scalar mass limit, denoted as ϵ̂πη and ϵ̂πη′ , respectively, which
are 0.014 and 0.0038, as reported in Ref.[40]. These calculations were based on
ϕηη′ = (41.4 ± 0.5)◦ [41]. Notably, ϵπη′ is observed to be one order of magnitude
less than ϵ̂πη′ , primarily due to the significant suppression arising from mη′ ≈MS.
The SFFs as shown in Eq. (4.15) start to lose accuracy near the resonance region.
It becomes inadequate when s = M2

S, where MS represents an on-shell interme-
diate scalar resonance. A standard and straightforward approach to address this
constraint is by upgrading the scalar propagator 1

M2
S−s

to 1
M2

S−s−iMSΓS(s)
, here the

associated energy-dependent width, calculated using RChT, is given by:

ΓS(s) = ΓS(M
2
S)

(
s

M2
S

)3/2
h(s)

h(M2
S)

(4.20)

The function h(s) is defined as:

h(s) = σK−K0(s) + 2 cos2 ϕηη′

(
1 +

∆π−η

s

)2

σπ−η(s)

+ 2 sin2 ϕηη′

(
1 +

∆π−η′

s

)2

σπ−η′(s)

(4.21)

where the kinematical factor σPQ(s) is given by:

σPQ(s) =
2qPQ(s)√

s
Θ(s− (mP +mQ)

2) (4.22)

The a0(980) resonance is characterized by a Breit-Wigner mass of MS = (980±
20) MeV and a width of ΓS = (75 ± 25) MeV [20], we estimate the scalar form
factors at origin, as per Eq. (4.16), to be F πη

0 (0) = 0.92 ± 0.02 and F πη′

0 (0) =
0.05 ± 0.03, respectively. the resultant scalar form factors are indistinguishable
within the context of RChT. meaning F̃ π−η

0 (s) = F̃ π−η′

0 (s). Figure 4.2 shows a
graphic representation of the mediated scalar resonance a0(980).
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Figure 4.2: The normalized scalar form factor for π−η′, derived using the Breit-
Wigner approach outlined in Section 4.2

Additional resonances having similar quantum numbers as the a0(980) can be
included in this description. In particular, we include the a0(1450) resonance,
whose effects might be observed in the phase space that is accessible, even if it
is massive. Resonances beyond this point will not be taken into consideration for
the same reason, though. Within the context of RChT, the SFFs containing two
resonances are written as follows:

F π−η(′)

0 (s) = cπ−η(′)

0

×
[
1 +

8cm(cd − cm)

F 2

2m2
K −m2

π

M2
S

− 4cm
F 2

(cd − cm)2m
2
π + cd(s+m2

π −m2
η(′)

)

MS − s

+
8c′m(c

′
d − c′m)

F 2

2m2
K −m2

π

M2
S′

− 4c′m
F 2

(c′d − c′m)2m
2
π + c′d(s+m2

π −m2
η(′)

)

MS′ − s

]
(4.23)

here S and S ′ stand for the resonances associated with a0(980) and a0(1450),
respectively. The limits imposed by the short-distance condition for form factors
approaching 0 as s→ ∞ are:

4cdcm + 4c′mc
′
d = F 2, cm

M2
S

(cm− cd)
+ c′m

M2
S′

(c′m − c′d)
= 0. (4.24)

The couplings c′d and c′m, with cd and cm to a lesser extent, are not well understood
in terms of their precise values. It is possible to keep this constraint for two
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Figure 4.3: The Breit-Wigner method, detailed in Section 4.2, yielded normalized
π−η′ scalar form factors with two resonances (red dashed curve) and one resonance
(solid black curve), respectively.

resonances if we assume the single-resonance case’s requirement cd = cm. As a
result, c′d = c′m. As a result, the SFFs are represented by:

F π−η(′)

0 (s) = cπ−η(′)

0

[
1 +

4

F 2

(
c2m

M2
S − s

+
c′m

2

M2
S′ − s

)(
s+m2

π −m2
η(′)

)]
→ cπ−η(′)

0

(M2
S − s− iMSΓS(s))(M2

S′ − s− iMS′ΓS′(s))
{(M2

S − s)(M2
S′ − s)

+
4

F 2
[c2m(M

2
S′ − s) + c′m

2(M2
S − s)](s+m2

π −m2
η(′))}

(4.25)
Here, we incorporated energy-dependent widths into the scalar propagators. Nu-
merically, the scalar coupling is set to cm = 41.9 MeV and for the a0(1450) res-
onance, the mass MS′ = (1474 ± 19) MeV and the width ΓS′ = (265 ± 13) MeV
are used. Figure 4.3 shows the normalized SFFs for πη(′) computed from Equation
(4.25), taking two resonances, and compares it to the single-resonance scenario. A
notable feature of the normalized expressions is their mode-dependent behavior:
in the πη′ case, in fig. 4.3, two comparable peaks surrounding both resonances are
observed, whereas, in πη scenario, there is a dominant peak for resonance a0(980)
and a smaller peak associated with the a0(1450) are seen in fig. 4.4.
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Figure 4.4: The Breit-Wigner method, detailed in Section 4.2, yielded normalized
π−η scalar form factors with two resonances (red dashed curve) and one resonance
(solid black curve), respectively.

4.3 Vector Form Factor for π−η(′)

We will employ the VFF for π−η(′) within the context of RChT that incorporates
resonances as explicit degrees of freedom [38], which is expressed as:

F π−η(′)

+ (s) = επη(′)

(
1 +

∑
V

FVGV

F 2

s

M2
V − s

)
(4.26)

where επη(′) represents the contribution through π0-η-η′ mixing, the brackets in-
clude the interchange of an infinite series of vector resonances arranged in nonets,
as well as the direct contact term. Here FV and GV denote the two coupling con-
stants of the Lagrangian that couples one nonet of vectors to pseudoscalars, and
MV is the mass of the nonet vector).

At this stage, several alternatives for incorporating the resonance width appear.
The simplest solution is to substitute M2

V −s with M2
V −s− iMV ΓS(s) in equation

(4.26). We will refer to this alternative as the “dipole model” or the “Breit-Wigner
(BW) model”.

F π−η(′)

+ (s) = επη(′)

(
1 +

∑
V

FVGV

F 2

s

M2
V − s− iMV ΓS(s)

)
(4.27)

By incorporating the vector resonant contribution provided by ρ(770) of which the
influence is apparent from the clear peak of about 0.5 GeV2, and its higher radial
excitation ρ′(1450) is seen around 1.9 GeV2 in fig. (4.5).
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Figure 4.5: π−η(′) VFF as obtained by using Breit-Wigner approach

Notably, the term in the parentheses in Eq. (4.26) resembles the computation
of π−π0 VFF. Consequently, the vector form factors for π−η(′) can be expressed
using the well-known π−π0 VFF. This results in their equality at zero momentum
transfer, F π−η(′)

+ (0) = επη(′) and leads to normalized form factors:

F̃ π−η′

+ (s) = F̃ π−η
+ (s) = F̃ π−π0

+ (s) (4.28)

This relation allows us to explain the π−η′ decay modes of interest using well-
established experimental data on VFF for π−π0. Specifically, we utilize the most
recent experimental data from the Belle Collaboration’s analysis of the decay pro-
cess τ− → π−π0ντ , which helps to explain the impacts of larger radial excitations
and the predominate vector resonant contributions [42].

4.4 Tensor Form Factor (TFF) for π−η(′)

Remarkably, the effects of non-standard (NS) scalar interactions are found to de-
velop linearly to the variable s. Conversely, when considering final states involving
π−η(′), the presence of isospin asymmetry leads to a suppression of the SFF F0(s),
while the contribution of new scalar interactions appears at O(0) with respect to
the isospin breaking parameter. Hence, the isospin-breaking τ− → π−η(′)ντ decays
are expected to exhibit sensitivity to scalar interactions. The TFF, which de-
scribes the hadronization of the tensor current, is derived using the leading chiral
Lagrangian; LO(p4) = Λ1⟨tµν+ f+µν⟩ − iΛ2⟨tµν+ uµuν⟩: F

ηπ−

T (0) = ϵπηF
π0π−
T (0) =

√
2Λ2

F 2

[26].
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Figure 4.6: The vector form factor π−π0 found by the Belle Collaboration

The tensor form factor has minimal impact on τ− → π−η(η′)ντ decays, mak-
ing precise normalization and s-dependence less important. So, we will ignore
the s-dependence, namely F πη(′)

T (s) = F πη(′)

T (0) ≡ F πη(′)

T . This leads to |F πη
T | ≤

0.094GeV−1 and |F πη′

T | ≤ 2.4 × 10−3 GeV−1 . However, if tilded form factors are
used instead, |F̃ πη

T | = |F̃ πη′

T | =
√
2Λ2/F

2 = 9.59GeV−1).

4.5 Physical Observables

To explore NP effects in τ− → π−η(′)ντ decays, we must analyze not only the
hadronic spectrum and branching ratio but also Dalitz plot distributions and the
forward-backward asymmetry. This section examines the impact of NS scalar and
tensor couplings from Chapter 3 on these physical observables. We begin with the
Dalitz plots and then proceed to integrated observables, focusing on the differential
decay width as a function of the hadronic invariant mass and the forward-backward
asymmetry. The differential decay rate for τ− → π−η(′)ντ decays within the rest
frame of τ lepton is as follows:

d2Γ

dsdt
=

1

32(2π)3M3
τ

|M|2 (4.29)

here, |M|2 signifies the squared matrix element averaged over spin states, without
considering polarization effects. The variable s represents the invariant mass of
the hadronic system, ranging as (mη(′) + mπ)

2 ≤ s ≤ M2
τ . Additionally, t =

(p′ + pη(′))
2 = (p − pπ−)2, where t is the Mandelstam variable representing the
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momentum transfer squared. The kinematic boundaries are defined as t−(s) ≤
t ≤ t+(s). Their expressions are as follows:

t±(s) =
1

2s

[
2s(M2

τ +m2
π)− (M2

τ + s)(s+m2
π −m2

η(′))

±(M2
τ − s)

√
λ(s,m2

π,m
2
η(′)

)
]
,

(4.30)

where the Kallen function, denoted as λ(α, β, γ), is expressed as: λ(α, β, γ) =
α2 + β2 + γ2 − 2αβ − 2αγ − 2βγ.

4.5.1 Dalitz plots

When examining τ decays including scalar, vector, and tensor currents (SCC),
Dalitz plots are essential for some reasons:
Characterizing Hadronic Dynamics: The distribution of decay products in
the phase space can be seen graphically with Dalitz plots. The kinematics of the
decay process, including the relative contributions from various intermediate states
and resonances, can be better understood by analyzing these plots.
Identifying Resonant Structures: In Dalitz plots, resonant structures can re-
veal the existence of certain particles or resonances that are essential to the decay
process. By examining these structures, one may be able to find novel resonances
as well as identify and characterize the particles causing the decay.
Testing Standard Model Predictions: The distributions and rates of τ decays
are predicted by the Standard Model (SM). Variations from these predictions in
Dalitz plots may indicate the presence of NP. By examining experimental Dalitz
plots in comparison to theoretical predictions, one can assess the SM’s validity and
look for indications of new physics.
Searching for New Physics: Dalitz plot anomalies could be signs of new physics
phenomena, including interactions mediated by hypothetical particles not included
in the Standard Model. By examining these graphs, one can look for indications
of new physics, such as consequences from theories like extra dimensions, super-
symmetry, or dark matter particle interactions.
Measuring Decay Parameters: Dalitz plots offer a way to extract critical decay
parameters, including angular distributions, decay rates, and branching fractions.
Accurate measurements of these factors increase our understanding of fundamen-
tal basic interactions.
The unpolarized squared amplitude averaged over spins in the presence of New
Physics interactions is given by:

|M|2 = 2G2
F |Vud|2SEW (1 + ϵL + ϵR)

2

s2
× (M0+ +MT+ +MT0 +M00 +M++ +MTT )

(4.31)
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Here, M++, M00, and MTT are the vector, scalar, and tensor contributions to the
amplitude, respectively, while their corresponding interference terms are denoted
by M0+, MT+, MT0. Their detailed expressions are:

M0+ = 2cV cSm
2
τRe[F+(s)F

∗
0 (s)]∆

QCD
K0K+

(
1 + s

ϵ̂S
mτ (md −mu)

)
×
(
s(m2

τ − s+ Σπη(′) − 2t) +m2
τ∆πη(′)

)
,

MT+ = −4cV ϵ̂Tm
3
τsRe[FTF

∗
+(s)]

(
1− s

m2
τ

)
λ(s,m2

π,m
2
η(′)),

MT0 = −4cS∆
QCD
K0K+ ϵ̂TmτsRe[FTF

∗
0 (s)]

(
1 +

sϵ̂S
mτ (md −mu)

)
×
(
s(m2

τ − s− 2t+ Σπη(′)) +m2
τ∆πη(′)

)
,

M00 = c2S(∆
QCD
K0K+)

2m4
τ

(
1− s

m2
τ

)
|F0(s)|2

(
1 + ϵ̂S

s

mτ (md −mu)

)2

,

M++ = c2V |F+(s)|2
[
m4

τ (s+∆πη(′))
2 −m2

τs
(
2∆πη(′)(s+ 2t− 2m2

π)

+∆2
πη(′) + s(s+ 4t)

)
+ 4m2

η(′)s
2(m2

π − t) + 4s2t(s+ t−m2
π)
]
,

MTT = −ϵ̂2TF 2
T s

2
(
m2

π − s
)2 (−m2

τ + s
)
+m4

η(′)

(
3m2

τ + s
)

+ 4
(
m2

π − s
) (
m2

τ − s
)
t+ 4st2 + 2m2

η(′)

(
−
((
m2

π − 2m2
τ − s

) (
m2

τ − s
))

−2
(
m2

τ + s
)
t
)

(4.32)
The defined quantities ∆πη(′) = m2

π− − m2
η(′)

and Σπη(′) = m2
π− + m2

η(′)
. NP ef-

fects might be visible in the distribution of Dalitz plots, particularly through a
significant enhancement towards higher values of the hadronic invariant mass, as
suggested by eq. (4.13).

4.5.2 Angular Distribution

New Physics contributions also modify the hadronic mass and angular distributions
of decay products, potentially providing different sensitivities to scalar and tensor
interactions. To simplify the analysis, it is advantageous to work in the hadronic
system’s rest frame, which is defined as p⃗π + p⃗η(′) = p⃗τ− − p⃗ντ = 0. Within this
framework, the energies of the τ lepton and pion are expressed as follows:

Eτ =
s+M2

τ

2
√
s
, Eπ =

s+m2
π −m2

η(′)

2
√
s

(4.33)
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The angle θ between the τ lepton and three-momenta of the pion is related to the
invariant variable t through:

t = m2
τ +m2

π − 2EτEπ + 2|p⃗π||p⃗τ | cos θ (4.34)

here, |p⃗π| =
√
E2

π −m2
π and |p⃗τ | =

√
E2

τ −m2
τ . The decay distribution for the

variables (s, cos θ), considering the most generic effective interactions is expressed
as:

d2Γ

dsd cos θ
=
G2

F |Vud|2SEW

128π3mτ

(1 + ϵL + ϵR)
2

(
m2

τ

s
− 1

)2

|p⃗π|

{
(cS∆

QCD
K0K+)

2|F π−η(′)

0 (s)|2

×
(
1 +

sϵ̂S
mτ (md −mu)

)2

+ 16|p⃗π|2s2
∣∣∣∣ cV2mτ

F π−η(′)

+ (s)− ϵ̂TFT

∣∣∣∣2
+ 4|p⃗π|2s

(
1− s

m2
τ

)[
c2V |F

π−η(′)

+ (s)|2 + 4ϵ̂TF
2
T s
]
cos2 θ

+ 4cS∆
QCD
K0K+|p⃗π|

√
s cos θ ×

(
1 +

s

mτ (md −mu)
ϵ̂S

)
[
cV Re[F ∗

+(s)F0(s)]− 2
s

mτ

ϵ̂TFTRe[F0(s)]

]}
(4.35)

Setting the effective couplings to zero retrieves the usual expressions for this observ-
able within the Standard Model. Significantly, the emergence of new interactions
does not introduce any new angular dependencies. However, the coefficients asso-
ciated with the cos θ terms are adjusted due to terms that scale with the hadronic
invariant mass s. In the absence of new physics, the last term of the preceding
equation, linear in cos θ, has the potential to probe the relative phase between the
vector and scalar contributions.

4.5.3 Decay Width

Integrating Eq. (4.29) across the variable t yields the hadronic invariant mass
distribution:

dΓ

ds
=
G2

FSEWm
3
τ

∣∣∣VudF π−η(′)

+ (0)
∣∣∣2

384π3s
(1 + ϵL + ϵR)

2

(
1− s

m2
τ

)2

× λ1/2(s,m2
η(′) ,m

2
π)
[
YV A + ϵ̂SYS + ϵ̂TYT + ϵ̂2SYS2 + ϵ̂2TYT 2

] (4.36)
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where

YV A =
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3
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(4.37)

Notice that when ϵL = ϵR = ϵ̂S = ϵ̂T = 0, the Standard Model result is recovered.
Furthermore, by considering the matrix element to be finite at origin and the
normalization of form factors, we observe that [38]:

F π−η(′)

+ (0) = −
cS
π−η(′)

cV
π−η(′)

∆QCD
K0K+

∆π−η(′)
F π−η(′)

0 (0) (4.38)

and

F̃+,0
π−η(′)(s) =

F+,0
π−η(′)(s)

F+,0
π−η(′)(0)

(4.39)

which are employed to express eq. (4.36). The scalar, vector, and tensor form fac-
tors, detailed in Sections 4.2, 4.3 and 4.4, finally entered in Eq.(4.36) for predicting
the partial decay rate of τ− → π−η(′)ντ decays.

4.5.4 Forward-Backward Assyemtry (AFB)

AFB is a key finding in high-energy physics, as it provides insights into the underly-
ing dynamics of particle interactions. It is the difference in the angular distribution
of final-state particles produced by a collision between the forward and backward
directions relative to the initial collision axis.

Consider a generic particle collision process ab→ X, where a and b are incom-
ing particles and X represents the final-state particles. The forward direction is
defined as the direction of motion of particle X relative to the incoming particle
a, while the backward direction is defined similarly with respect to particle b.
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The forward-backward asymmetry is quantified as:

AFB =
NF −NB

NF +NB

(4.40)

Here, NF and NB represent the number of final-state particles observed in the
forward and backward directions, expressed as:

NF =

∫ 1

0

d2Γ

dsd cos θ
d cos θ, NB =

∫ 0

−1

d2Γ

dsd cos θ
d cos θ (4.41)

AFB is critical for validating theoretical predictions and exploring NP. Deviations
from the expected asymmetry values could imply the existence of additional par-
ticles or interactions not accounted for by existing theoretical models.
Experimental collaborations at particle colliders, including the LHC, have focused
on precisely measuring forward-backward asymmetries in various collision pro-
cesses. These measurements significantly contribute to understanding fundamen-
tal interactions and discovering new physics.
In summary, AFB is a key observable in high-energy physics that provides valuable
information about the underlying dynamics of particle interactions and serves as
a sensitive probe for new physics phenomena. The AFB is defined [43] as:

AFB =

∫ 1

0
d cos θ d2Γ

dsd cos θ
−
∫ 0

−1
d cos θ d2Γ

dsd cos θ∫ 1

0
d cos θ d2Γ

dsd cos θ
+
∫ 0

−1
d cos θ d2Γ

dsd cos θ

(4.42)

For τ− → π−η(′)ντ decays, we can derive it by putting eq. (4.35) in eq. (4.42) and
then it integrate over the cos θ

Aπη(′)

FB (s) =

−3cS

√
λ
(
s,m2

π− ,m2
η(′)

)
2s2 [YV A + ϵ̂SYS + ϵ̂TYT + ϵ̂2SYS2 + ϵ̂2TYT 2 ]

(
1 +

sϵ̂S
mτ (md −mu)

)
×∆π−η(′)

{
cV Re

[
F ∗
+(s)F0(s)

]
+

2sϵ̂T
mτ

Re [F ∗
0 (s)FT (s)]

}
(4.43)

Once again, the AFB within the SM is evident when ϵR = ϵL = ϵ̂S = ϵ̂T = 0 (which
was initially investigated in [44]).
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Chapter 5

Phenomenological Analysis of
τ− → π−η(′)ντ Decays

This chapter presents the analysis of physical observables previously discussed in
Chapter 4. These include Dalitz plot distributions, differential decay width, and
the forward-backward asymmetry analysis for τ− → π−η(′)ντ decays. Our focus
will be on examining these observables in the framework of new physics coefficients.

5.1 Dalitz Plot Analysis

Figure 5.1 shows the Dalitz plot distributions of |M|2 for the decay τ− → π−η′ντ ,
as discussed in subsection (4.5.1). The plots depict the squared matrix element
|M|2 as a function of s and t Mandelstam variables, each representing different
scenarios with varying scalar and tensor coefficients:

1. Figure 5.1(a) represents the SM scenario without new physics contributions
ϵ̂S = ϵ̂T = 0.

2. Figure 5.1(b) shows |M|2 distribution with a scalar coefficient ϵ̂S = 0.006,
while ϵ̂T = 0, introducing a scalar interaction.

3. Figure 5.1(c) depicts |M|2 distribution with a tensor coefficient ϵ̂T = 0.3,
and ϵ̂S = 0, introducing a tensor interaction.

On the x-axis, s is the invariant mass of the π−η′ system and on the y-axis, t
represents the squared momentum transfer, both the variables are normalized to
m2

τ . The color legend represents the magnitude of |M|2, ranging from lower values
in blue to higher values in red. In 5.1(a), higher values are concentrated in the
central region of the plot, indicating where the decay is most likely to occur. In
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5.1(b), the scalar interaction seems to shift slightly and spread the high-value
regions compared to the SM case, but overall the pattern is similar to the SM
case. In 5.1(c), the tensor interaction appears to have a similar effect to the scalar
interaction.

(a) (b)

(c)

Figure 5.1: Dalitz plot distributions of |M|2 for the decay τ− → π−η′ντ . The
figures show the distributions for the (a) Standard Model (ϵ̂S = ϵ̂T = 0), (b)
ϵ̂S = 0.006, ϵ̂T = 0, and (c) ϵ̂S = 0, ϵ̂T = 0.3.

The triangular shape of the plots corresponds to the kinematic constraints of
the decay process. Regions with higher values of |M|2 may indicate resonant
behavior, influenced by intermediate states contributing to the decay amplitude.

Upon closer inspection, both scalar and tensor interactions alter the distri-
bution of SM |M|2, but these effects are not significantly distinct. The tensor
interaction does not appear to have a more pronounced effect compared to the
scalar interaction in the provided plots. Both interactions cause a similar shift
and spread in the distribution of |M|2, suggesting comparable magnitudes of im-
pact on this decay channel. The color legends on the right of the plots represent
the magnitude of |M|2, with higher values indicating more likely decay regions.
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The shape and concentration of high-value regions provide insights into how the
decay dynamics are influenced by different interaction terms. In this case, both
scalar and tensor couplings have a noticeable but similar impact on the decay
distribution.

(a) (b)

(c)

Figure 5.2: Dalitz plot distributions of |M|2 for the decay τ− → π−ηντ . The
figures show the distributions for the (a) Standard Model (ϵ̂S = ϵ̂T = 0), (b)
ϵ̂S = 0.002, ϵ̂T = 0, and (c) ϵ̂S = 0, ϵ̂T = 0.3.

Figure 5.2 shows the Dalitz plot distributions of |M|2 for the decay τ− →
π−ηντ , as discussed in subsection (4.5.1). The plots depict the squared matrix
element |M|2 as a function of s and t variables, each representing different scenarios
with varying scalar and tensor coefficients:

1. Figure 5.2(a) represents the SM scenario without new physics contributions
ϵ̂S = ϵ̂T = 0.

2. Figure 5.2(b) shows |M|2 distribution with a scalar coefficient ϵ̂S = 0.002,
while ϵ̂T = 0, introducing a scalar interaction.
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3. Figure 5.2(c) depicts |M|2 distribution with a tensor coefficient ϵ̂T = 0.3,
and ϵ̂S = 0, introducing a tensor interaction.

On the x-axis, s is the invariant mass of the π−η system and on the y-axis, t rep-
resents the squared momentum transfer, both the variables are normalized to m2

τ .
In 5.2(a), the plot shows the distribution of |M|2 with respect to the Mandelstam
variables s and t. The distribution is mostly smooth, indicating the expected be-
havior without any additional contributions from scalar or tensor interactions. In
5.2(b), the distribution of |M|2 changes significantly. The shape becomes more
extended along the s axis (the ηπ− invariant mass squared) while also maintaining
some spread along the t axis. The distribution still maintains a smooth gradient
but shows higher values overall compared to the SM case. This suggests that
the scalar interaction enhances the decay amplitude. In 5.2(c), the plot shows a
different distribution pattern. This indicates that the tensor interaction does not
enhance the decay amplitude as much as the scalar interaction does in the given
range of coefficients.

∆ ϵ̂S(ϵ̂T = 0) ϵ̂T (ϵ̂S = 0) ϵ̂S ϵ̂T
πη′

Babar [−1.13, 0.68]× 10−2 |ϵ̂T | < 11.4 [−1.13, 0.67]× 10−2 [−11.9, 11.9]
Belle [−1.07, 0.60]× 10−2 |ϵ̂T | < 10.6 [−1.06, 0.61]× 10−2 [−11.0, 11.0]
Belle II [−4.8, 2.3]× 10−3 [−1.35, 1.41] [−4.8,−4.3]× 10−3 [−3.4,−2.7]
πη
Babar [−8.3, 3.9]× 10−3 [−0.43, 0.39] [−0.83, 0.37]× 10−2 [−0.55, 0.50]
Belle [−7.7, 2.9]× 10−3 [−0.51, 0.47] [−0.75, 0.29]× 10−2 [−0.48, 0.43]
CLEO [−9.5, 5.0]× 10−3 [−0.62, 0.57] [−0.95, 0.49]× 10−2 [−0.66, 0.60]
Belle II [−4.8, 2.0]× 10−3 [−0.12, 0.08] [−4.9,−4.3]× 10−3 [−0.20,−0.25]

Table 5.1: The present upper limits on branching fractions, along with hypothetical
observations with 20% precision from the Belle II experiment, provide constraints
on scalar and tensor couplings [26].
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(a) (b)

(c)

Figure 5.3: Differential decay width distributions for the decay τ− → π−η′ντ in
(s, cos θ) variables. The figures show the distributions for the (a) Standard Model
(ϵ̂S = ϵ̂T = 0), (b) ϵ̂S = 0.006, ϵ̂T = 0, and (c) ϵ̂S = 0, ϵ̂T = 0.3.

Figure 5.3 shows the distribution of differential decay width for the decay τ− →
π−η′ντ , as per equation (4.35). The plots depict the double differential decay width
normalized to τ width, as a function of the (s, cos θ) variables, each representing
different scenarios with varying scalar and tensor coefficients:

1. Figure 5.3(a) represents the SM scenario without new physics contributions
ϵ̂S = ϵ̂T = 0.

2. Figure 5.3(b) shows distribution with a scalar coefficient ϵ̂S = 0.006, while
ϵ̂T = 0.

3. Figure 5.3(c) depicts distribution with a tensor coefficient ϵ̂T = 0.3, and
ϵ̂S = 0.

The Dalitz plot analysis for the decay τ− → π−η′ντ across three scenarios shows
that the overall distribution shape remains consistent. This consistency is observed
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in all three cases: the SM scenario, as well as scenarios with different values of
ϵ̂S and ϵ̂T (specifically, ϵ̂S = 0.006 and ϵ̂T = 0, ϵ̂S = 0 and ϵ̂T = 0.3). These
findings show that, despite variations in interaction parameters, the underlying
kinematics governing the decay process remain constant. Nevertheless, variations
in the intensity across different regions of the plot indicate that the inclusion of
the ϵ̂S and ϵ̂T parameters modify the dynamics of the decay process, resulting in
a distinct distribution of events.

(a) (b)

(c)

Figure 5.4: Differential decay width distributions for the decay τ− → π−ηντ in
(s, cos θ) variables. The figures show the distributions for the (a) Standard Model
(ϵ̂S = ϵ̂T = 0), (b) ϵ̂S = 0.002, ϵ̂T = 0, and (c) ϵ̂S = 0, ϵ̂T = 0.3.

Figure 5.4 shows the distribution of differential decay width for the decay τ− →
π−ηντ , as per equation (4.35). The plots depict the double differential decay rate
normalized to τ width, as a function of the (s, cos θ) variables, each representing
different scenarios with varying scalar and tensor coefficients:

1. Figure 5.4(a) represents the SM scenario without new physics contributions
ϵ̂S = ϵ̂T = 0.
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2. Figure 5.4(b) shows distribution with a scalar coefficient ϵ̂S = 0.002, while
ϵ̂T = 0.

3. Figure 5.4(c) depicts distribution with a tensor coefficient ϵ̂T = 0.3, and
ϵ̂S = 0.

The Dalitz plot analysis for the decay τ− → π−η′ντ across three scenarios shows
that the overall distribution shape remains consistent. This consistency is observed
in all three cases: the SM scenario, as well as scenarios with different values of
ϵ̂S and ϵ̂T (specifically, ϵ̂S = 0.002 and ϵ̂T = 0, ϵ̂S = 0 and ϵ̂T = 0.3). These
findings show that, despite variations in interaction parameters, the underlying
kinematics governing the decay process remain constant. Nevertheless, variations
in the intensity across different regions of the plot indicate that the inclusion of
the ϵ̂S and ϵ̂T parameters modify the dynamics of the decay process, resulting in a
distinct distribution of events. The ρ(770) meson resonance contributes negligibly
in all the Dalitz plots as it is seen around 0.2 to 0.3 region and the region around 0.6
GeV shows the scalar meson a0(1450) resonance contribution. We have observed
that Dalitz plot distribution examined in terms of both s, t variables and s, cos θ
variables exhibit limited sensitivity to realistic non-zero values of ϵ̂S and ϵ̂T . These
values are consistent with the present limits on branching fractions as given in
Table 5.1.

5.2 Differential Decay Rate Analysis

The hadronic invariant mass distribution, as given by eq: (4.36), is plotted for
τ− → π−ηντ and τ− → π−η′ντ decays in Figures 5.5 and 5.6, respectively. In the
following, we analyze the two reactions individually.

5.2.1 Analysis of τ− → π−ηντ Decay

In Figure 5.5, we illustrate the distribution of the total differential decay rate nor-
malized to the τ width for τ− → π−ηντ decay. The x-axis represents the invariant
mass squared s (GeV2), and the y-axis represents the normalized differential decay
width 1

Γτ

dΓ
ds

(GeV)−2. The decay widths are plotted as functions of the invariant
mass squared s for three scenarios:

• Standard Model (SM): Scalar and tensor new physics coefficients are zero
(ϵ̂S = ϵ̂T = 0).

• Scenario 1 (S1): ϵ̂S = 0.005, ϵ̂T = 0.

• Scenario 2 (S2): ϵ̂S = 0, ϵ̂T = 0.3

47



Figure 5.5: Distribution of the total differential decay width for τ− → π−ηντ
plotted against the invariant mass. The SM utilizes a Breit-Wigner formula using
two resonances (black line), while scenarios with ϵ̂S = 0.005, ϵ̂T = 0 are represented
by a red dotted line, and ϵ̂S = 0, ϵ̂T = 0.3 by a blue dashed line.

The plot shows several peaks in the distribution, notably around 0.7 GeV2 and 1.0
GeV2. SM and S2 scenarios show similar peak structures. S1 scenario exhibits a
significantly higher peak around 1.0 GeV2 compared to SM and S2. The increase in
the peak around 1.0 GeV2 suggests that the scalar couplings significantly enhance
the decay rate in this region compared to the SM. The tensor couplings do not
significantly alter the decay width compared to the SM across most of the s range,
except for a slight deviation near the peaks. These peaks likely correspond to
resonance effects. These resonances are due to intermediate states in the decay
process, such as meson resonances that decay into π−η. For example, the peak
around 1.0 GeV2 might be associated with the a0(980) meson resonance. A clear
peak around 0.59 GeV2 is associated with ρ(770) resonance, indicating its presence
in the vector form factor, and the smaller rise observed near 2 GeV2 might be
observed due to resonances a0(1450) or ρ(1450). Beyond 1.5 GeV2, the curves
start to converge, with minimal differences at higher s values. At higher s values
(near 3.0 GeV2), all three scenarios converge, indicating the new physics effects are
more prominent at lower s values. The convergence of the curves at higher s values
indicates that new physics effects are less significant at these higher invariant mass
squared values, possibly due to phase space limitations or the diminishing influence
of resonances.
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5.2.2 Analysis of τ− → π−η′ντ Decay

In Figure 5.6, the distribution of the total differential decay width for τ− → π−η′ντ
decay as the function of invariant mass is presented. Notably, the substantial
mass of the η′ results in a reduced available phase space compared with the π−η
mode. The x-axis represents the invariant mass squared s (GeV2), and the y-
axis represents the normalized differential decay width 1

Γτ

dΓ
ds

(GeV)−2. The decay
widths are plotted as functions of the invariant mass squared s for three scenarios:

• Standard Model (SM): Scalar and tensor new physics coefficients are zero
(ϵ̂S = ϵ̂T = 0).

• Scenario 1 (S1): ϵ̂S = 0.005, ϵ̂T = 0.

• Scenario 2 (S2): ϵ̂S = 0, ϵ̂T = 0.3

Figure 5.6: The figure depicts the distribution of the invariant mass of the η′π−

system for the Standard Model (black line) and scenarios with ϵ̂S = 0.005, ϵ̂T = 0
(red dotted line), and ϵ̂S = 0, ϵ̂T = 0.3 (blue dashed line). The axes are scaled in
units of GeV2.

For the τ− → π−η′ντ decay, the scalar interactions show only a slight enhance-
ment. The plot shows a prominent peak around 2.0 GeV2, with all scenarios (SM,
S1, and S2) displaying similar behavior, though S2 shows slight deviations from
the SM, particularly around the peak. The scalar interaction (S1) slightly en-
hances the peak, indicating some influence of scalar contributions in this region,
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but not as prominently as in the τ− → π−ηντ decay. a0(980) resonance appears at
s ≈ 0.96 GeV2, there is slight enhancement observed in the S1 scenario. The vec-
tor contribution experiences suppression due to the production threshold for π−η′

occurring well beyond the region influenced by possible ρ(770) effects. ρ(1450)
or a0(980) resonance region occurs at s ≈ 2.10 GeV2. This region shows contri-
butions and deviations in the S2 scenario. Both decay processes show that new
physics effects are more pronounced around specific s values, particularly at lower
to intermediate s regions. All scenarios (SM, S1, S2) tend to converge at high s
values, suggesting that the influence of new physics diminishes at higher invariant
mass squared values.

Figure 5.7: The figure depicts the distribution of the invariant mass of the η′π−

system for the Standard Model (black line) and scenarios with ϵ̂S = 0.005, ϵ̂T = 0
(red dotted line), and ϵ̂S = 0, ϵ̂T = 0.3 (blue dashed line). The axes are scaled in
units of GeV2.

The analysis of the differential decay widths for τ− → π−ηντ and τ− → π−η′ντ
decays reveals the contributions of scalar and vector resonances. The peaks in the
plots correspond to the resonances a0(980), a0(1450), ρ(770), and ρ(1450). The
deviations observed in the S1 and S2 scenarios highlight the influence of scalar and
tensor new physics interactions on these resonances. Focusing on these resonance
regions in experimental data can provide insights into the presence and nature of
new physics interactions.
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5.3 Forward-Backward Asymmetry Analysis

This analysis is based on the observable Aπ−η(′)

FB , discussed in subsection (4.5.4).
The figure 5.8 illustrates three distinct scenarios regarding the AFB prediction
for τ− → π−η′ντ decay, each representing potential deviations from the SM case.
On the x-axis, s is the invariant mass of the π−η′ system and AFB on the y-axis
represents the forward-backward asymmetry. Firstly, the black line represents the
SM-based prediction of forward-backward asymmetry. The AFB starts high at low
s values, peaking sharply and then gradually decreasing. It shows a characteristic
peak around 1.2 GeV2 and then a smooth decline indicating the dynamics of the
SM contributions. Secondly, depicted by the red line, Scenario 1 (S1) signifies
a deviation from the SM, featuring a scalar coefficient of 0.002. When only the
scalar coefficient is non-zero, the asymmetry is higher across the s range compared
to the SM. The peak is more pronounced and occurs slightly earlier than in the
SM case. It indicates that the scalar interaction increases the overall asymmetry
and affects the low-s region more significantly.

Figure 5.8: Comparison of AFB for the decay τ− → π−η′ντ for ϵ̂S = 0.002, ϵ̂T = 0
(red line) and for ϵ̂S = 0, ϵ̂T = 0.3 (blue line) against the Standard Model prediction
(black line).

Thirdly, illustrated by the blue line, Scenario 2 (S2) presents another deviation
from the SM case, characterized by a tensor coefficient of 0.3. When only the
tensor coefficient is non-zero, the asymmetry has a similar initial behavior to the
SM but is slightly lower across most of the s range. The tensor interaction affects
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the overall shape, making the peak slightly broader and the subsequent decline
more gradual compared to the SM.
The forward-backward asymmetry plots provide insights into the dynamics of the
decay and the effects of new physics interactions. Scalar and tensor interactions
both modify the asymmetry but in different ways, with scalars generally increasing
the magnitude of asymmetry and tensors altering the shape of the asymmetry dis-
tribution. These distinctions in the plotted forward-backward asymmetry among
the SM and alternative scenarios (S1 and S2) denote potential indications of new
physics in the decay τ− → π−η′ντ .

Figure 5.9: Comparison of AFB for the decay τ− → π−ηντ with ϵ̂S = 0.002, ϵ̂T = 0
(red line) and ϵ̂S = 0, ϵ̂T = 0.3 (blue line) against the Standard Model prediction
(black line).

The fig. 5.9 illustrates three distinct scenarios regarding the AFB prediction
for the decay τ− → π−ηντ , each representing deviations from the SM case. On the
x-axis, s is the invariant mass of the π−η system and AFB on the y-axis represents
the forward-backward asymmetry.
SM (black line): The behavior of this curve is based on the SM predictions. The
asymmetry shows two significant peaks followed by a deep valley below zero. The
first peak occurs around s ≈ 0.5 GeV2, reaching a value above 0.6. The second
peak is lower, around s ≈ 1 GeV2, and is followed by a sharp dip below zero, in-
dicating a strong forward-backward asymmetry transition. As s increases further,
AFB gradually stabilizes around zero.
S1 (red line): This curve’s behavior follows a theoretical model with ϵ̂S = 0.002, ϵ̂T =
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0. When only the scalar coefficient is non-zero, the overall shape of AFB is similar
to the SM case but with notable differences. The first peak is lower than in the
SM, indicating a reduced forward asymmetry in this region. The valley is deeper
compared to the SM, showing a more pronounced backward asymmetry. This sug-
gests that the scalar interaction modifies the asymmetry by reducing the forward
asymmetry at the peak and enhancing the backward asymmetry at the valley.
S2 (blue line): This curve’s behavior is based on a theoretical model where ϵ̂S =
0, ϵ̂T = 0.3. When only the tensor coefficient is non-zero, the initial peak is slightly
higher than in the SM, indicating an increased forward asymmetry in this region.
The second peak and the subsequent dip are more pronounced, with the valley
being deeper than in the SM. This indicates that the tensor interaction enhances
both the forward and backward asymmetry transitions more significantly than the
scalar interaction. This might also suggest the existence of NP extending beyond
the Standard Model. Observing these deviations experimentally could provide ev-
idence for the presence of such interactions and contribute to our understanding
of the underlying physics in τ decays.
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Chapter 6

Conclusion

This thesis investigates the rare hadronic τ lepton decays, specifically τ− →
π−η(′)ντ , which are typically hindered by G-parity under the SM framework. Our
study analyzed these decays within the framework of a comprehensive EFT, in-
corporating six-dimensional operators and considering left-handed neutrinos. We
employed the scalar, vector, and tensor form factors within the frameworks of
ChPT and RChT [38]. We then used these form factors to calculate a double
differential decay distribution and depict the branching ratio for each decay. We
then made Dalitz plots for three scenarios (SM case, scalar couplings, and ten-
sor couplings) to determine which new physics coefficient effects decay the most.
Finally, we calculated AFB and plotted it to evaluate the disparities between the
different scenarios. We have noticed that the impacts of non-standard interactions
can be seen in the Dalitz Plots, hadronic invariant mass distribution, and AFB.
In this study, we gave predictions for various observables, including Dalitz plots,
Branching Ratios (BR), and Forward-Backward Asymmetry. Our attention is di-
rected towards evaluating their importance within the framework of NP scenarios.

• Dalitz plot distributions, examined in terms of both the Mandelstam vari-
ables s and t, as well as when t is substituted by the angle θ between the
two charged particles, exhibit limited sensitivity to realistic non-zero values
of ϵ̂S and ϵ̂T .

• Our analysis demonstrates that the BR experiences negligible reductions
throughout the s range in the NP scenarios. Moreover, the NP scenarios
largely align with the SM predictions, suggesting that BR might not be the
most efficient indicator for NP prediction compared to other parameters.

• Our study shows that the inclusion of scalar and tensor couplings signifi-
cantly alters the AFB in τ → π−η(′)ντ decays, revealing distinct deviations
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from the SM predictions. This finding highlights the significance of AFB in
distinguishing between NP scenarios.

To summarize, the observables of τ → π−η(′)ντ decay provide valuable insights
into these decay mechanisms. Overall, our findings showed modifications and
small deviations to some extent from the SM results when incorporating scalar and
tensor new physics coefficients but to better understand and potentially observe
these effects, it is crucial to obtain more precise and extensive datasets. Future
experiments with higher precision and larger data samples, such as those expected
from upgrades at the LHC experiments, will be crucial in advancing this research.
Additionally, addressing theoretical uncertainties and refining models will help in
making more accurate predictions and improving the sensitivity to new physics.
Nonetheless, both theoretical inquiries and experimental investigations into these
τ decay processes hold the potential to substantially improve our capacity for
uncovering new physics phenomena in the future.
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