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ABSTRACT 

Breast cancer is the most prevalent cancer among females. In Pakistan, late diagnosis of 

this disease leads to a higher death rate. This type of cancer involves uncontrolled division 

of epithelial cells surrounding ducts and lobules of breast. This uncontrolled division is 

mediated by transcription factors. One of the family of transcription factors is the Kruppel-

like factors family. These are the zinc-finger proteins that function in cell cycle 

progression. However, these are also involved in various malignancies where they directly 

affect cell cycle regulation, apoptosis, metastasis and signaling pathways. Therefore, there 

is a need to study these proteins. One of the members of this family of proteins is KLF8. 

This factor is found to be associated with different types of cancers and other disorders. 

There is not enough evidence of single nucleotide polymorphism in KLF8. This study is 

aimed at studying the association between SNPs of KLF8 and breast cancer. The SNPs in 

KLF8 affect the structure and function of the KLF8 protein. In-silico analysis of the SNP 

rs868781835 revealed that its affect might probably be damaging, while SNP 

rs1196572444 was found to be damaging. This SNP was rendered to genotype analysis 

where the genotype GT was associated with metastasis of breast cancer.  

Keywords: Breast cancer, KLF8, SNPs, zinc-finger proteins, In-silico  
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CHAPTER 1: INTRODUCTION 

1.1 Cancer Overview  

Cancer is a disease in which certain cells of the body undergo uncontrolled divisions 

leading to altered signaling and metabolism. The abnormal mass of cells formed in this 

way is termed as ‘tumor’. This mass establishes its own microenvironment. It is established 

through research that genetic mutations cause normal cells to transform.  A lot of data is 

available to chalk out its root cause but the quest to find a cure continues (Upadhyay, 2021). 

The functional capabilities of cells to grow rapidly are referred to as the hallmarks of 

cancer. To date, there are eight hallmarks of cancer. These include maintaining signaling 

pathways for proliferation, deceiving growth suppressors, opposition to apoptosis, 

unlimited replicative potential, establishment of a vasculature, ability to invade the nearby 

tissue and metastasis, metabolic reprogramming, and immune evasion (Hanahan et al., 

2011). 

 

Figure 1.1  Hallmarks of cancer (Hanahan et al., 2011) 

 

1.1.1 Global Cancer Prevalence 
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According to the International Agency for Research on Cancer, the disease has been 

diagnosed in 19.3 million people, and 10 million fell prey to it excluding non-melanoma 

skin cancer as of the year 2020. Breast cancer held its new place as the most commonly 

diagnosed cancer type replacing lung cancer and its associated death rate remained high 

(Sung et al., 2021).  

 

Figure 1.2 Global Cancer Prevalence (WHO) 

It is evident from the map that breast cancer is the most prevalent one. Our focus will be 

on this type of cancer. 

1.2 Breast Cancer 

Breast cancer is a multifactorial disease where the epithelial cells lining the ducts and 

lobules of the breast undergo changes regulated by genes and hormones. Its appearance in 

an individual involves risk factors that may be modifiable or non-modifiable. The 

modifiable factors include therapies, alcohol intake, being overweight, exposure to certain 

chemical and cancer-causing agents (carcinogens), excessive exposure to radiation, lack of 

physical activity, and insufficient intake of vitamins. The non-modifiable factors include 

sex, age, ethnicity, family history, previous therapies for cancer that involve radiation, the 
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hormonal status of the body, density of breast tissue, and genetic mutations (Łukasiewicz 

et al., 2021a). Of all the factors, we will focus on the genetic basis of breast cancer. 

Molecular and histological evidence shows that breast cancer is of three types, one in which 

hormone receptors (estrogen and progesterone) are expressed, the second that expresses 

human epidermal receptor (HER2), and the triple-negative breast cancer (TNBC) 

(Barzaman et al., 2020).  

1.2.1  Types of Breast Cancer 

According to Hormone Receptors (estrogen and Progesterone) 

The hormone receptor-positive breast cancer expresses estrogen and progesterone 

receptors in approximately 70% of all breast cancers (Brufsky et al., 2018). Estrogen is an 

important hormone involved in reproduction, development, and growth and is steroidal in 

nature. They exert their effects through binding with their receptors which belong to the 

nuclear receptor transcription factor family. These receptors regulate the transition from 

G0 to the S phase in the breast epithelial cell cycle and so, defects of these receptors lead 

to breast cancer formation (Zhang et al., 2014). Progesterone is also a steroid hormone with 

numerous functions in the human body. It specifically functions in the reproductive system 

in maintaining pregnancy. It is produced by the adrenal cortex (Cable et al., 2023). 

Progesterone activity is associated with the activation of its receptors. It is a nuclear 

transcription factor. Its role has been known in estrogen receptor signaling in ER-positive 

breast cancer (Boland et al., 2020).  

HER2 

HER2 is a membrane receptor that effects cell proliferation and survival. Its amplification 

leads to tumor development and invasion in breast cancer. It is amplified in 15-20% of 

breast carcinomas (Krishnamurti et al., 2014).  

Triple-negative Breast Cancer (TNBC) 
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This type of breast cancer signifies a group of tumors where there is an absence of estrogen 

receptor, progesterone receptor, and over-expression of the human epidermal growth factor 

receptor 2 gene. 10-20% of human breast cancers are of this type (P. Kumar & Aggarwal, 

2016).  

1.3 Single Nucleotide Polymorphism (SNP) 

A SNP is a position in DNA where there is a change among individuals of a species 

(Nicholson et al., 2002). This polymorphism is most common, which occurs after every 

1000 base pairs in the human genome (Karki et al., 2015). These are responsible for 

producing variations in the population  (Cotton et al., 2018). These SNPs might be linked 

to phenotypes or disease. For this, genome-wide association studies (GWAS) are carried 

out. SNPs can alter gene function through affecting mRNA splicing, nucleocytoplasmic 

export, stability, and translation, thus changing the protein’s activity (Robert et al., 2018). 

SNPs can also lead to disease susceptibility. This is indicated by the fact that a person 

possessing a certain SNP is more likely to have a disease when compared to a healthy 

person without that particular SNP. Some examples include, Alzheimer's disease, sickle-

cell anemia, schizophrenia and various malignancies (Bessenyei et al., 2004).  

1.3.1 SNPs in Cancer 

As described earlier, SNPs can cause disease susceptibility. Likewise, these can cause 

cancer susceptibility if it falls in gene that regulates DNA mismatch repair, cell cycle 

regulation, metabolic activity, and immunity. These also function as biomarkers in various 

malignancies as diagnostic and therapeutic agents. If these lie in the promoter region, they 

modify the promoter activity, binding of transcription factor, DNA methylation and histone 

modification. If the SNP lies in exonal region, it promotes cancer susceptibility through 

suppressing gene transcription and translation. In intronic regions, these produce splice 

variants and either promote or prevent binding of long non-coding RNAs (lncRNAs), while 

in 5’UTR they affect translation and in 3’UTR, they impact binding of miRNAs (Deng et 

al., 2017).  
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1.3.2 SNPs in Breast Cancer 

The association between breast cancer and SNPs has been identified through genome-wide 

association studies. However, not much is known about the disease prognosis (He et al., 

2019). 

Here, we will study, the impact of single nucleotide polymorphism of a gene belonging to 

the family of Krupple-like factors (KLFs). We have chosen to take the factor, KLF8. There 

is not enough evidence of a link between breast cancer and KLF8 polymorphism. It is yet 

to be discovered whether there is any genetic link between KLF8 SNPs and an increased 

risk of developing breast cancer. As a result, the primary goal of this research is to identify 

the possibly harmful SNPs found in KLF8 and link them with breast cancer. This will help 

us to explore more about KLF8, which will most likely lead to the development of a new 

possible therapeutic target as well as a prognostic marker for early detection of breast 

cancer.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

The oldest depiction of cancer was of bone cancer from ancient Egypt. The term ‘cancer’ 

originated from a Greek word ‘karkinos’ coined by Hippocrates which depicted carcinoma 

tumors. It has been established from historical records that there was no treatment 

procedure for the disease. However, a surgical intervention was performed to clear away 

the surface tumors as is done in the present day (Sudhakar, 2009). 

The process of gaining the ability to grow abnormally is termed ‘neoplasia’. There are two 

courses of neoplasms, either they are benign, meaning they reside in one place, or they 

become malignant which refers to invasion of the surrounding tissue and travel to distant 

organs (W.L., Kemp).  

2.1.1 Types of Cancer 

There are various types of cancer, based on the organ where it originated. The disease can 

be classified into five broad classes. These include carcinoma (the cancer of body tissue), 

sarcoma (the cancer of connective tissues), lymphoma (the cancer of nodes or glands of 

the lymphatic system), leukemia (the cancer of bone marrow), and myeloma (the cancer 

of plasma cells of bone marrow) (Stanford Medicine). 

2.2 Breast Cancer 

According to the World Health Organization, breast cancer is the most prevalent type of 

carcinoma in females of all ages followed by colorectal cancer and other carcinomas 

(WHO). 
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Figure 2.1 Global Breast Cancer Prevalence (WHO) 

Breast cancer is also has a high prevalence in Pakistan to the extent that 1 in every 9 females 

suffer from the disease at any age in their lives. In Asia, Pakistan holds the first place in 

breast cancer prevalence where there might be a lot of reasons including poor hygienic 

conditions and lack of awareness (Menhas, 2020.) 

The International Agency of Research on Cancer reports that in the year 2018, the disease 

had been diagnosed in 34,066 females. Due to lack of proper healthcare facilities and issues 

related to delayed diagnosis has resulted in a high mortality rate (Khan et al., 2021). 

According to the World Health Organization Globocan 2020 data, breast cancer in females 

remains on top of all new cancer incidences (WHO Globocan 2020).  
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Figure 2.2 Cancer Incidences in Pakistan (WHO Globocan 2020) 

2.3 The KLF Gene Family 

Gene expression is an important process through which the functioning of a gene is 

determined. The process primarily involves producing a product from a gene. The product 

is normally a protein. Gene expression involves the processes of transcription of DNA and 

translation of mRNA to produce proteins. The process of transcription happens within a 

nucleus of a cell in which an enzyme uses a coded section of a gene to produce mRNA 

which is further used by translation process outside of nucleus. During the transcription 

process the RNA polymerase with the help of proteins called transcription factors binds to 

a specific section within a gene to produce mRNA. The understanding of gene expression 

allows us to determine the function of a gene and its purpose through which we can develop 

a better understanding of the biological processes (Nature Education). Transcription factors 

that are used to generate mRNA are very important as they act as regulators or controlling 

factors in the gene expression process. Transcription factors also act as initiators in the 

gene expression process. The regulation or control of the gene expression process is an 

important as well as a complex part that ensures the creation of correct proteins (Wakim et 

al., 2012).  

There are different types of transcriptional factors. Krüppel-like factors (KLFs) are 

transcription factors that bind to DNA and modulate cellular mechanisms and metabolism. 
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These are zinc finger protein structure-like transcriptional factors that act as regulators in 

the gene expression process. KLF can enhance as well as repress gene expression. There 

are 18 types of KLFs which are categorized into 3 groups. This classification is based on 

their role in regulating the process of transcription and their structural characteristics. 

Group 1 comprises KLF3, KLF8, and KLF12, Group 2 comprise KLF1, KLF2, KLF4, 

KLF5, KLF6, and KLF7, and Group 3 comprises KLF9, KLF10, KLF11, KLF13, KLF14, 

and KLF16. KLF15 and KLF17 have not been included in these groups due to poor 

knowledge about their association with other factors. Each KLF group has some functional 

characteristics which are categorized into specific groups. KLFs groups 1 and 3 primarily 

acts as transcriptional repressors whereas KLFs group 2 act as transcriptional activators 

(Pollak et al., 2018).  

 

Figure 2.1: Phylogenetic Tree of KLF Family (McConnell et al, 2010)  

 

The KLF family members work with other transcriptional regulators and play a vast role 

in metabolism in approximately every organ of the human body. They work to exert 
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physiologic effects where required. These are involved in processes such as intake of 

nutrients, catabolism of amino acids, lipid partitioning, glucose content fluctuation, and 

energy production through oxidation (Hsieh et al., 2019). These are also involved in 

important cellular functions including cell proliferation, differentiation, and apoptosis 

(Bialkowska et al., 2017).  

The Kruppel-like factors carry three highly conserved C2H2 zinc finger domains at 

carboxy-terminals. These facilitate the activation or halting of transcription by interacting 

with GC-rich consensus sequences including 5’-CACCC-3’ sequences of the DNA 

(Lomberk & Urrutia, 2005). On the other hand, the amino terminus of these factors controls 

the specific protein-protein and protein-DNA interactions, contrary to the carboxy terminus 

(Suzuki et al., 2005)  

KLFs also share homology with another transcription factor called SP1. This was one of 

the initially identified and characterized transcription factor which binds to the GC-rich 

regions of the DNA through three C2H2-type zinc fingers. Due to the structural similarity 

of KLFs with SP1, these KLFs are categorized among the SP1/KLF family (McConnell et 

al., 2010). 
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Figure 2.2: Domain structure of KLFs in humans (Bialkowska et al., 2017) 

The KLF family members work with other transcriptional regulators and play a vast role 

in metabolism in approximately every organ of the human body. They work to exert 

physiologic effects where required. These are involved in processes such as intake of 

nutrients, catabolism of amino acids, lipid partitioning, glucose content fluctuation, and 

energy production through oxidation (Hsieh et al., 2019). These are also involved in 

important cellular functions including cell proliferation, differentiation, and apoptosis 

(Bialkowska et al., 2017).  

The Kruppel-like factors carry three highly conserved C2H2 zinc finger domains at 

carboxy-terminals. These facilitate the activation or halting of transcription by interacting 

with GC-rich consensus sequences including 5’-CACCC-3’ sequences of the DNA 

(Lomberk & Urrutia, 2005). On the other hand, the amino terminus of these factors controls 

the specific protein-protein and protein-DNA interactions, contrary to the carboxy terminus 

(Suzuki et al., 2005)  
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KLFs also share homology with another transcription factor called SP1. This was one of 

the initially identified and characterized transcription factor which binds to the GC-rich 

regions of the DNA through three C2H2-type zinc fingers. Due to the structural similarity 

of KLFs with SP1, these KLFs are categorized among the SP1/KLF family (McConnell et 

al., 2010). 

 

Figure 2.3: The Role of KLFs in breast cancer metastasis (Zhang et al., 2020) 

 

2.4 KLF8 

2.4.1 Structure 

KLF8 belongs to the family of KLF (Kruppel-like Factors) which act as transcriptive 

factors in the regulation of gene expression process. The main purpose of KLF is to regulate 

or control gene expression by binding to DNA sequences by interacting with promoter 

regions of genes. KLF8 belongs to group 1 of the KLF family which contains KLF3 and 
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KLF12 factors too (Satadru et al., 2012.)). In humans, the KLF gene family member, the 

KLF8 is located on the X-chromosome. It comprises of 359 amino acid residues and was 

isolated from K562 leukemia cell line for the first time. A transcription factor contains 

three main domains, a DNA binding domain, which in the case of KLF8 is highly 

conserved, a transcription regulatory domain, and a nuclear localization signal (Vliet, 

Turner, & Crossley, 2000).   

The DNA-binding Domain of KLF8 

This factor contains a DNA binding part which allows it to detect and bind to promoter 

region of a gene. Its structure allows it to bind to CACCC, a specific pattern in promoter 

region of a gene (Funnell et al., 2012).  

The Transcription Regulatory Domain 

Transcription activation part allows KLF8 to regulate or control the transcription of genes. 

These parts allow transcriptive factors to interact with other factors or proteins to enhance 

the process of gene transcription. It has been observed that KLF8 acts as a transcriptive 

activator as well as repressor in certain scenarios (Aiqin Sun & Jie Hao, 2019.). 

The Nuclear Localization Signal 

Nuclear Localization Signal (NLS) is the process of transporting certain proteins to the 

nucleus of a cell. This process is very important as regulation of proteins in and out of the 

nucleus is crucial for gene expression (Cokol, Nair, & Rost, 2000). Since KLF8 is a 

transcriptive factor and it needs to be transported to the nucleus of a cell in order to regulate 

gene expression, it contains a nuclear localization signal that helps it to enter into the 

nucleus. nuclear localization signals of proteins like KLF8 are detected by importins 

(transport proteins) when formed in the cytoplasm and transported to the nucleus through 

nucleus pores (Mehta et al., 2009).  

2.4.2 Functions of KLF8  

KLF8 plays various roles based on its interaction with different genes. KLF8 plays a critical 

role in different cell processes for example cell proliferation, cell differentiation, and cell 
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transformation. Cell proliferation is the process by which cells are divided and their 

numbers are increased. The cell proliferation process plays an important role in tissue 

development and maintenance in the human body. KLF8 plays its role in cell 

differentiation in which cells are assigned specialized roles or functions and switching from 

one cell type to another in order to perform various tasks. Many transcriptive factors play 

an important role in the cell differentiation process helping a single cell to develop in 

various tissues and organs. Along with cell proliferation and differentiation, KLF8 also 

plays its role in the cell transformation process which involves the change in characteristics 

of a cell (Phenotype) as a result of inserting a new genetic material in a cell (M.-D. Wang 

et al., 2020).  

A dysregulation of KLF8 leads to diseases. For instance, KLF8 has been observed to be 

involved in Alzheimer’s Disease (AD) which is related to the brain affecting brain memory 

and brain cell structure. KLF8 is expressed in the brain as well and plays its role in neural 

processes happening in the brain. Several investigations are underway in order to 

understand the involvement of KLF8 in neural disorders inside the brain (Yi et al., 2014) 

2.4.3 Oncogenic Transformation and KLF8 

It is the process by which healthy cells are transformed or undergo changes which lead to 

abnormal or unregulated cell proliferation which in turn lead to cancer cells development. 

This process involves oncogenes which when activated amplifies the cell proliferation 

process. KLF8 plays its role in oncogenic transformation as it is an important transcriptive 

factor involving cell proliferation as described earlier. This leads to tumor progression in 

the human body (Wang et al., 2007). KLF8's role in the EMT process in tumor progression 

is the main reason for its involvement in different types of human cancers. Studies have 

shown KLF8 involvement in different types of cancers in the human body such as breast, 

gastric, liver etc. KLF8 involvement has been observed in growth of human lung cancer as 

well. In recent experiments, KLF8 overexpression was involved in growth and proliferation 

of lung cancer cells however on the contrary the knockdown of KLF8 decreased the lung 

cancer cell growth (Ma et al., 2019).  

2.5 KLF8 in Breast Cancer 
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KLF8 is a transcription factor which is overexpressed in multiple cancer types including 

the breast cancer. It plays a significant part in epithelial to mesenchymal transition, 

proliferation, and DNA damage repair (Tianshu Li et al., 2015a). It has also shown to play 

a role in breast cancer metastasis (Mukherjee et al., 2016). Another role of KLF8 has been 

identified to regulate other genes and microRNAs in promoting EMT and stem-cell-like 

traits to promote invasion (Xianhui et al., 2013)  

In EMT 

Epithelial to Mesenchymal Transition (EMT) is a process which allows cells to change 

their characteristics from epithelial (tightly connected cells lying on the surface of organs) 

to mesenchymal (mobile cells). This process allows the transition of cells from a structured 

state to a more mobile state. EMT is involved in the beneficial process such as healing 

wounds, however, it can also play a role in spreading cancer tumor cells on the contrary 

side (Kalluri et al., 2009).   

It has been observed that KLF8 plays its role as an inducer in the EMT process. KLF8 

unregulated expression could be a potential reason for spreading cancer cells in the human 

body. KLF8 facilitates cell migration and invasion which is a core functionality in the EMT 

process. KLF8 also plays its role in tumor progression which enables cancer cells to acquire 

mobility in order to spread to different parts to the body. It does so by directly binding and 

repressing the promoter of E-cadherin independent of E boxes and SNAIL expression. 

Therefore, more expression of KLF8, lower is the expression of E-cadherin in invasive 

human breast carcinoma (Xianhui Wang et al., 200(. 

In Metastasis 

Metastasis is the mobilization of tumorigenic cells from their primary site to the secondary 

one by rupturing the extracellular matrix. This rupturing of the extracellular matrix for 

invasion of surrounding cells is brought about by the matrix metalloproteases (MMPs). 
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MMP9 

KLF8 regulates MMPs in breast cancer. This was studied by employing two cell lines, one 

to check the impact of overexpression of KLF8 on MCF-10A and the second, MDA-MB-

231 to check the impact of knocking down the KLF8. High expression of KLF8 enhanced 

MMP9 expression. Opposite to this, KLF8 knockdown led to reduced expression of 

MMP9. This signified the role of KLF8 and MMP9 signaling in human breast cancer 

invasion and metastasis (X Wang et al., 2011).  

MMP14 

Another role of KLF8 was identified in MMP14 signaling in promotion of invasiveness 

and metastasis of human breast cancer. At transcriptional level, the KLF8 promotes 

MMP14 expression and its knockdown showed the opposite effect. This happens through 

two mechanisms, either by directly affecting the promoter or by indirectly promoting the 

nuclear translocation of β-catenin, expressing T-cell factor-1 (TCF1) and successively 

activating the promoter by β-catenin/TCF1 complex. Moreover, by down-regulating focal 

adhesion kinase (FAK) or its knockdown led to the deduction that the cell surface 

presentation of active MMP14 is dependent upon FAK expression and activity downstream 

of KLF8. This signifies the combined role of KLF8 and FAK to regulate the activity of 

MMP14 for breast cancer metastasis (H Lu et al., 2014).  

CXCR4 

Another method adopted by KLF8 to induce metastasis is through induction of CXCR4. A 

cell line MDA-MB-231 was used to carry out experiments to check this effect. Treatment 

of cells in this cell line with a variant CXCL12, of CXCR4 ligand showed the formation of 

filopodium-like protrusions. Overexpression of the factor, KLF8 as well as CXCR4 led to 

aggressiveness of tumor through metastasis in immunocompromised mice. Overall, this 

pointed towards recurrence of breast cancer malignancy (Mukherjee et al., 2016).  
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EPSTI1 

The Epithelial stromal interaction 1 (EPSTI1) is a newly identified stromal fibroblast-

induced gene. It has been shown to play a role in invasive breast cancer malignancy by 

being overexpressed. Two cell lines were used to check the effect of KLF8 expression on 

EPSTI1. One cell line was used to check the impact of overexpression of KLF8 on EPSTI1 

in MCF-10A and the second cell line, MDA-MB-231 was used to check the impact of 

knocking down the KLF8. High expression of KLF8 enhanced EPSTI1 expression. 

Opposite to this, KLF8 knockdown led to its reduced expression. KLF8 attached to the 

promoter region of EPSTI1. EPSTI1 was explored to interact with the valosin containing 

protein (VCP), degrading the IκBα which ultimately activated of NF-κB in the nucleus. 

This however led to the conclusion that KLF8 signaling mechanism along with EPSTI1, 

VCP, and NF-κB is critical in invasion and metastasis of human breast carcinoma (T Li et 

al., 2014).  

In Drug-resistant Metastasis 

KLF8 was observed to be over expressed by treatment of LM2 cells with chemotherapy 

drugs. This over-induction of KLF8 or CXCR4 is capable of causing increased metastasis 

to various organs and led to excessive secretion of VEGF, establishment of new 

vasculature, formation of filopodium-like protrusions, and colonization. Colonization is 

changing of micro-metastasis to macro-metastasis at distant sites. Such enhancement of 

KLF8 upon chemotherapy and the association of KLF8/CXCR4 indicated drug-resistant 

metastasis and can prove to be a new drug target (Hao et al., 2021).  

In DNA Repair 

A novel role of KLF8 includes protecting the breast cancer cells’ from dying and DNA 

from being damaged by harmful effects of doxorubicin. In this way, it repairs the DNA of 

breast cancer cells. As soon as the DNA of these cells gets damaged, KLF8 is 

phosphorylated by DNA-dependent protein kinase’s catalytic subunit. It is then sumoylated 
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by SUMO E3 ligase protein inhibitors of activated STAT. the process of DNA repair then 

starts as the KLF8 is recruited to the site of DNA damage (Heng Lu et al., 2012). 

Stem cell-like Activity 

Stem cells are the cells that have the capability to self-renew and to differentiate into mature 

cell types. These mature cells are specialized to perform specific functions. In case of 

tumors, the sub-population of stem cells are called the cancer stem cells (CSCs). These 

illustrate the properties of stem cells as well as cancer cells. The breast cancer stem cells 

(BCSCs), promote breast cancer invasion and metastasis. The tumor microenvironment 

thus established, plays a critical role in growth signaling and proliferation (He et al., 2021).   

In the case of KLF8, it was observed to be overexpressed in triple-negative breast cancer 

cells, which further enhanced the population of CSCs. On the contrary, downregulating the 

expression of kLF8 reduced the CSC population. Recently, it has been observed that a 

nutrient sensor O-GlcNAc transferase (OGT) and O-GlcNAcylation for increased in the 

population of cancer stem cells. This promoted stemness and tumorigenesis of breast 

cancer cells, both in-vivo and in-vitro. This increment was interlinked with increased 

expression of KLF8 suggesting its potential role in rendering CSC traits (Le Minh et al., 

2023).  

Invasion through targeting MicroRNAs 

MicroRNAs (miRs) are short non-coding regulatory RNAs. They target the 3’UTR 

(untranslated region) of mRNA. They are tightly regulated in normal cell. However, their 

role as critical regulators of tumor progression and as cancer stem cells has been explored 

in the recent past (Mo, 2012).  

miRNA-146a 

The KLF8 has emerged as a promoter of breast cancer through rendering the cancer 

stem cell ability to the mammary stem cells. This ability of stem cells can be induced 

during epithelial to mesenchymal transition (EMT). The miR-146a has been explored 
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as a target of KLF8 and TGF-β which are responsible for inducing EMT. It was 

observed that the MCF-10A cells acquired the stem cell properties when KLF8 was 

over-expressed or treated with TGF-β. This led to overexpression of miR-146a in 

invasive breast cancer cell lines. On the other hand, if the cells had been treated with 

miR-146a inhibitors, the MCF-10A cells were incapable of having the stem cell traits. 

The reason was identified as miR-146a targeting the 3’UTR of Notch signaling 

inhibitor NUMB for translational inhibition. Hence, the miR-146a potentially 

activated Notch signaling by being stimulated by KLF8 (Wang et al., 2013). 

miRNA-141 

The KLF8 is found to target the miR-141. It represses the promoter of miR-141 which 

targets the 3’-UTR of Epidermal Growth Factor Receptor (EGFR) to stop its translation. 

EGFR overexpression had been observed in invasive triple-negative breast cancer. Upon 

upregulating the expression of KLF8 in non-tumorigenic MCF-10A cells, led to 

overexpression of EGFR whereas knocking it down in another cell line, MDA-MB-231 

downregulated it. This shows the impact of KLF8 on expression of miR-141/EGFR 

signaling pathway in breast cancer malignancy (Tianshu Li et al., 2015).  
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Figure 2.1: Role of KLF8 in Cancer (Kumar et al. 2021) 

  



21 

 

CHAPTER 3: MATERIALS AND METHODS 

In-Silico Analysis 

3.1.1 Data Retrieval 

The SNP data for KLF8 was retrieved from the ENSEMBL database under the transcript 

ID KLF-204-ENST00000468660.6. The information included variant ID, base and residue 

alterations, genome coordinates and amino acid coordinates. The genome assembly 

number was GRCh38.p14 (GCA_000001405.29). the transcript had 6 exons is annotated 

with 24 domains and features, is associated with 17623 variant alleles and maps to 668 

oligo probes. This gene has 8 splice variants, orthologues and paralogues. 

Further data retrieval was done from the Genome Aggregation Database (gnomAD) and, 

the Catalogue of Somatic Mutations In Cancer (COSMIC) databases. The KLF8 gene 

variants were selected excluding the in-frame variants. All the variants were then 

categorized into two categories. These were named coding variants and regulatory variants. 

The synonymous, non-synonymous, truncated and frameshift variants were included in the 

coding variants category while splice site and untranslated region variants (UTRs) were 

included in regulatory variants. Then the selection criteria was narrowed down to missense 

variants that give altered protein products. These selected variants were analysed further. 

3.1.2 Identification of unique missense variants 

From the three databases, ENSEMBL, gnomAD and COSMIC,  the number of selected 

KLF8 variants was summed up. The total number of variants from each database was 

represented through a graph. These total variants were then compared and the common 

ones were merged to avoid repetition. All other unique variants were assigned a separate 

number even if they resided on the same location.  

3.1.3 Evaluation of deleterious variants 
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The missense variants were then filtered using five software tools. These tools include 

SIFT, PolyPhen, MetaLR, REVEL and Mutation Assessor for determining pathogenicity. 

These tools give scores to determine the pathogenicity of the variants. 

SIFT score predicts whether an amino acid substitution might cause changes in function of 

the   resulting protein. This score ranges from 0.0 to 1.0 where 0.0 to 0.05 score range is 

predicted deleterious, 0 being the highest value and 0.05 to 1.0 is predicted to be tolerated, 

1 being highly tolerated. PolyPhen also applies a score range from 0.0 to 1.0 where 0 

indicates benign and 1 indicates deleterious. MetaLR divides the variants into either a 

‘damaging’ or a ‘tolerated’ category. The scores range from 0 to 1 where a higher value 

indicates higher chances of being deleterious. REVEL applies a similar score range from 

0 to 1 where scores above 0.5 indicate that the variant is ‘likely disease-causing’ and scores 

below 0.5 indicate they are ‘likely benign’.  

After filtering the variants, these were rendered for further analysis. This lead to 

considering two pathogenic variants of the gene KLF8 that were subjected to wet lab 

analysis. These variants had rs IDs ‘rs1196572444’ and ‘rs868781835’. 

3.1.4 Analysis of stability of filtered variants 

For the analysis of stability of filtered variants, different software tools were used. These 

tools determined the effect of missense mutation on the resulting protein. These softwares 

include Mupro, Mutpred2 and DynaMut.  

For retrieving data from I-Mutant, protein sequence was fed in FASTA format as well as 

the amino acids and their coordinates. The results were obtained in the form of DDG values 

(Kcal/mole). A DDG value less than 0 indicates destabilization in protein whereas greater 

than 0 indicates increasing protein stability. 

MUpro is a software that provides a prediction on changes in protein stability due to a 

variation in a single amino acid. It gives a change in energy score (DDG) which ranges 

from -1 to 1, where  a score less than 0 indicates decreasing stability while greater than 0 

indicates increasing stability due to presence of an amino acid variant. 
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DynaMut tool is responsible for evaluation of the impact of amino acid variants on stability 

and molecular dynamics of resulting protein. Also, the difference in vibrational entropy 

(DDS) between mutant and wild type proteins is predicted through this tool. 

Another software tool, InterPro was used to gain information on the domains of KLF8, its 

active site, substrate binding site and the amino acids found in each region. For this, the 

data was entered in FASTA format. 

3.1.5 Structural and Functional Analysis of Pathogenic Variants 

The structural and functional analysis of pathogenic variants was done using software tools 

including MutPred2, DynaMut and HOPE. These tools helped in estimating the effect of 

these pathogenic variants on structure and function of resultant proteins. 

MutPred2 is a software tool that predicts the pathogenic influence of amino acid variants 

on resulting proteins and their molecular activities through calculating the likelihood of 

pathogenicity in the form of a score. This probability scores greater than 0.5 indicates 

pathogenicity but this has a chance of being incorrect. For this, a set criterion has been 

devised according to which, a score greater than 0.68 indicates 10% likelihood of false 

positive results. On the other hand, a score greater than 0.80 indicates 5% chance of false 

positive results.  

The DynaMut software tool determines protein flexibility and rigidity. However, this was 

used to predict the alteration in protein structure. 

The HOPE software describes the changed protein domain and charge difference between 

the wild-type and variant under consideration. It also determines the affect on molecular 

interaction with surrounding residues. The information regarding change in protein size 

due to amino acid differences is also provided by HOPE. 

3.1.6 In-silico mutagenesis 

In-silico mutagenesis was carried out in PyMol, molecular visualization system. The 

structure of wild KLF8 was visualized and an amino acid in  the wild type was changed to 
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create the mutated variant. The changed amino acid was given a different color from the 

original one. This was done by selecting the ‘Wizard’ option > Mutagenesis > Protein and 

then selecting the residue and converting it to the amino acid as in the variant. The structure 

was then saved in ‘pdb’ format. Molecular dynamics simulations were run on wild-type 

and mutant KLF8 structures. 

3.1.7 Molecular Dynamics (MD) Simulations 

Molecular dynamics simulations were conducted using GROMACS on a super computer. 

An open source, terminal emulator, PuTTy was used to give commands to the remote 

system for performing functions such as cleaning the structure of protein, topology, and 

labeling of coordinates. Different algorithms performed energy minimization and 

temperature and pressure equilibrium to carry out 20ns MD. An open source file manager, 

WinSCP was utilized to transfer files between the local and remote server. When the MD 

steps were completed in PuTTy, the output data analysis was done to calculate RMSD, 

RMSF, SASA, Radius of gyration and hydrogen bonds number. The results were depicted 

graphically. 

3.2 Primer Designing 

Primers were designed to carry out Tetra ARMS PCR. For this, the bioinformatics tool, 

Primer 1 was used. A total of four, two inner and two outer primers were designed to 

amplify the gene region containing the variant under study. These primers were then 

validated through UCSC genome browser in-silico PCR. Here, primer length, temperature, 

allele difference and SNP position were chosen. 

3.3 Experimental analysis 

3.3.1 Sample Collection 

For blood sample collection, an approval was taken from the Institutional Review Board 

of Atta ur Rahman School of Applied Biosciences. A total of 100 samples each, breast 

cancer patients and healthy controls were collected. This was done following the 
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recommendations of the ethical review board. Breast cancer patients without comorbidities 

such as diabetes and hypertension and pregnant and lactating women were not included in 

the study. The volunteering patients’ consent was taken. Data regarding their medical 

history, age, tumor grade, cancer type, history of smoking and alcohol consumption and 

treatment status was also collected. For blood collection, a tourniquet was tied 3cm above 

the visible vein in the arm or hand and the area was sanitized. Then, using a sterile syringe, 

3-5ml of blood was drawn and added to a 5ml EDTA tube.  

3.3.2 DNA extraction 

The organic method was used for DNA extraction from blood samples of experimental and 

control groups. This method employs phenol, chloroform and isoamyl alcohol. For this, 

four buffers were prepared, named solution A, B, C and D. 

Solution A: 

0.32M sucrose (54.72g), 

10mM Tris-base pH=7.5 (0.602g), 

5mM magnesium chloride (0.238g) 

Following this dissolution and autoclaving, 5 mL of 1% V/V Triton X-100 was added and 

stored at 40º Celsius. This solution breaks cellular membranes to expose the DNA. 

Solution B: 

10mM Tris-base pH=7.5 (0.6057g), 

400mM sodium chloride (11.685g),  

2mM ethylene diamine tetra acetic acid (0.58g) 

dissolved in autoclaved distilled 

water to make 500ml of solution 

dissolved in distilled autoclaved 

water with volume raised to 

500ml and pH adjusted to 7 
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Solution C is composed of phenol kept in a dark, properly covered reagent container in 

aluminum foil, in a cold environment 

Solution D is composed of 24 ml of chloroform and 1 ml of isoamyl alcohol combined to 

make 50 mL of solution, diluted to 500mL distilled water. 

Procedure: The process of extracting the DNA takes two days. On the first day, 750µl 

blood was taken in an Eppendorf tube with an equal volume of Solution A and incubated 

at room temperature for 10 minutes. It was then centrifuged for 10 minutes at 13000 rpm. 

Then, the supernatant was discarded. The pallet was resuspended in 500µl Solution A, 

centrifuged, and the supernatant was discarded. To the supernatant, 400µl of Solution B 

was added and centrifuged at 13000 rpm for 10 minutes.  This caused the proteins to 

separate and remove from the pallet while precipitating the DNA in the pallet. Then, the 

pallet was dissolved in 400µl Solution B, 12µl SDS and 5µl proteinase K. The tube was 

then kept for incubation at 37 ºC for a night. 

Next day, the incubated tube was taken, 250 µl of Solution C and the same quantity of 

Solution D were added and centrifuged at 13000 rpm for 10 minutes. This step was done 

to create two layers. Solution C separated the aqueous and organic phases in the solution 

whereas solution D stabilized protein coagulation and aided DNA purification by reducing 

foam formation. Of these two layers, the upper layer contained DNA and was carefully 

picked and transferred to a new Eppendorf tube. To this tube, 500µl of isopropanol and 

55µl sodium acetate was added and centrifuged at 13000 rpm for 10 minutes. The pallet 

was suspended in 200µl centrifuged at 13000rpm for 8 minutes. The supernatant was 

discarded and the tube was inverted for drying. When, dried, 25-30 µl PCR water was 

added to store the extracted DNA. 

3.3.3 Tetra ARMS PCR 

This procedure was performed to determine the genotype of the samples obtained. This 

was done using two types of primers, the inner and the outer primers designed according 

to the variants created by in-silico mutagenesis. A reaction mixture in the quantity of 20µl 

was prepared. This mixture contained 1 µl of each primer i.e., a total of 4 µl, 2 µl of the 
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extracted DNA, 2 µl nuclease-free water and 12 µl of SolisFAST master mix. The master 

mix contained PCR buffer comprising of magnesium chloride, dNTPs and additives that 

maximize PCR efficiency and DNA polymerase. 

The tubes comprising the reaction mixture were centrifuged for a few seconds and placed 

in the thermal cycler. Primer optimization was carried out at various chemical 

concentrations and melting temperatures in multiple PCRs. For determining optimum 

temperature ranges, the gradient PCR technique was applied. The PCR stretched over 30 

cycles and three key phases, denaturation, annealing, and extension. 

In the first phase, the template DNA was denatured from a double-stranded structure to a 

single-stranded structure when rendered to 95ºC for 5 minutes. In the next phase, the 

daughter DNA strands were denatured. This phase stretched to 30 cycles, 30 seconds each 

at 94ºC. The next phase was primer annealing at 58.5ºC for 30 seconds. Following this 

phase, was the extension phase carried out at 72ºC for 30 seconds. The final extension 

period was 7 minutes conducted at 72 ºC. After this, the PCR cycle was paused at 4 ºC to 

cool the PCR product and temporary storage. 

3.3.4 Agarose Gel Electrophoresis  

Agarose gel electrophoresis was performed to visualize the DNA extracted from the blood 

samples collected and the PCR products. Agarose gel was made in the concentration of 2% 

W/V. for this, 2gm of agarose powder was mixed with 1X TAE buffer and the volume was 

raised to 100ml and heated to ensure complete dissolution. Then, this was slightly cooled 

and 5-7 µl of ethidium bromide was added for ease of visualization under UV light. The 

prepared gel was then carefully poured in gel casting tray avoiding bubble formation. A 

comb was applied to create wells and then the gel was kept to set completely. An 

electrophoresis tank was filled with 1X TAE buffer. The set gel was taken, comb was 

removed, and the gel was submerged in the buffer-filled tank. In one of the wells, ladder 

DNA was injected as a reference in the quantity of 5µl, while in other wells, 8-10 µl of the 

PCR product was injected. The electrophoresis machine was set at 80V and 500A and the 

gel was run for 40 minutes. Then the gel was visualized under UV transilluminator.  
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For visualizing the extracted DNA, the concentration of gel was 1.5% W/V, 8-10 µl DNA 

sample was combined with 1 µl loading dye and then injected in the wells and visualized 

under UV light in the similar manner as done for PCR products. 
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CHAPTER 4: RESULTS 

4.1 In-silico Analysis 

4.1.1 Structure Prediction of KLF8 Protein 

KLF8 protein’s structure was predicted by AlphaFold, which used per residue model 

confidence score (pDDLT) ranging from 0 to 100. Based on this model, a 3D structure was 

obtained. The interpro analysis provided information on domains of KLF8 protein. There 

is one N domain from amino acid number 48-216 while three zinc-finger C2H2 domains 

from 274-303, 304-333 and 334-359. According to AlphaFold, the N domain showed a low 

confidence score while the other three C2H2 domains showed high and very high 

confidence score.   

 

Figure 4.1: KLF8 protein's 3D predicted structure, C-terminal region domains showed 

high confidence score (70-90) of predicted structure. 
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Figure 4.2:  Representative domains shown in Interpro 

The structure was validated in SAVES and PROCHECK analysis revealed that 70.3 

percent  

of amino acid residues had phi-psi angles in the most preferred regions, 17.3 percent in  

additionally allowed regions, 8.8 percent in generously allowed regions, and 3.6 percent  

residue had phi-psi angles in the disallowed regions of the Ramachandran plot 
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Figure 4.3 Ramachandran Plot showing the measurements of angles in KLF8 

4.1.2 Subcellular Localization and Phylogenetic Tree 

Deeploc 1.0 predicted the subcellular localization of the KLF8. Figure 4.3 and Table 4.1 

below depict the path of KLF8 localization. The path taken by the protein to localize to its  

compartment within the cell is represented by the red line. The score represents the 

probability/likelihood of the event. As a result of the score, it's assumed that KLF8 is  

found in the nucleus.  
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Figure 4.4: KLF8 protein's localization route and the likelihood score. The path of 

localization is shown in red 
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Table 4.1 KLF8 Localization and its Likelihood 

Localization Likelihood 

Cytoplasm 0.0041 

Nucleus 0.9958 

Cell membrane 0 

Lysosome/Vacuole 0 

Golgi Apparatus 0 

Peroxisome 0 

Extracellular space 0 

Endoplasmic Reticulum 0 

Mitochondrion 0 

 

Clustal Omega software was used to find the evolutionary relationship between KLF 

family members. Figure 4.4 depicts the evolutionary profile of KLFs, which reveals that 

all members of  KLF8’s descended from a single ancestor protein. The score measures the 

substitution per site, which indicates how much a specific protein has evolved through time 

in comparison to its family members. The conserved regions of KLF8 were visualized 

through ConSurf as shown in the figure below. 
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Figure 4.5: Conservation Analysis by ConSurf 
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Figure 4.6 Phylogenetic Tree of the KLF proteins. All the KLFs originated from a common 

root and then evolve into different classes 

4.1.3 KLF8 Variants Identification 

A total of 486 variants of KLF8 gene, including missense, nonsense, spliced and frameshift 

variants, were retrieved from multiple databases including Ensembl, COSMIC, and 

genomAD, containing 251, 85 and 150 variants respectively. Although, Ensembl database 

included 200 missense, 11 frameshift, 37 spliced variants, 3 nonsense variants, while 

variants from COSMIC database include 83 missense, 2 frameshift, 0 nonsense and splice 

variants and genomAD had 131 missense, 5 frameshift, 12 spliced variants and 2 nonsense. 

Out of 486 variants, 200 were unique and 286 variants were redundant. Unique 200 variants 

include 159 missense, 16 frameshift, 7 nonsense and 18 spliced variants. 
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Figure 4.7 Total variants acquired from all three databases (Cosmic, GnomAD, Ensembl) 

 

Figure 4.8 Total Variant Occurrences across all three Databases 
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Figure 4.9 Filtered unique variants from all three databases 

Missense variants were filtered from these three databases shown in the figure below. 

 

Figure 4.10 Missense variants filtered from three databases 
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4.1.4 KLF8 Missense SNPs Filtration 

The missense data was further filtered to retrieve the SNPs for further investigation. This 

filtration was based on their pathogenicity percentages. SIFT, PolyPhen, REVEL, Mutation 

Assessor, and MetaLR tools were used to calculate pathogenicity scores as stated in the 

methodology. Following table shows the pathogenicity scoring and percentages. 

 

Table 4.2 Pathogenicity table of missense variants 

Seria

l no. 
Variant ID AA coord sift_class 

polyphen_

class 

revel_cl

ass 

meta_lr_c

lass 

mutation_a

ssessor_clas

s 

Pathog

enicity 

% 

1 rs911255592 3 0 0 - - - 0% 

2 rs776924073 4 1 0 0 0 0.5 30% 

3 rs750116979 5 1 0 0 0 0 20% 

4 rs1457982343 7 1 0 0 0 0 20% 

5 rs759821417 9 0 0 0 0 0 0% 

6 rs1602425063 15 0 1 0 0 0.5 30% 

7 rs765607510 17 1 0 0 0 0 20% 

8 rs763410667 18 1 0 0 0 0.5 30% 

9 rs1409861399 19 1 0 0 0 0 20% 

10 rs1329785837 19 1 0 0 0 0 20% 

11 rs764459709 20 1 0 0 0 0 20% 
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12 rs752124107 24 0 0 0 0 0 0% 

13 rs1229194237 26 1 0 0 0 0.5 30% 

14 rs1438658965 26 1 0 0 0 0.5 30% 

15 rs1438658965 26 1 0 0 0 0.5 30% 

16 rs1398077363 28 1 1 0 0 0.5 50% 

17 rs1040382871 29 0 1 0 0 0.5 30% 

18 rs1340917869 29 1 1 0 0 0.5 50% 

19 rs368900678 33 1 0 0 0 0.5 30% 

20 rs144407506 33 0 0 0 0 0.5 10% 

21 rs144407506 33 0 0 0 0 0.5 10% 

22 rs774648329 34 1 0 0 0 0.5 30% 

23 rs762366439 37 0 0 0 0 0.5 10% 

24 rs762366439 37 0 0 0 0 0.5 10% 

25 rs768058968 38 0 0 0 0 0.5 10% 

26 rs759073766 40 0 0 0 0 0.5 10% 

27 rs1417633235 42 0 0 0 0 0.5 10% 

28 rs368933949 43 1 1 0 0 0.5 50% 

29 rs758061219 48 1 1 0 0 0.5 50% 

30 rs777618241 49 0 0 0 0 0 0% 

31 rs751362149 50 0 0 0 0 0.5 10% 
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32 rs757188676 51 0 0 0 0 0.5 10% 

33 rs757188676 51 0 0 0 0 0.5 10% 

34 rs1253393491 52 1 1 0 0 0.5 50% 

35 rs899019890 53 1 1 0 0 0.5 50% 

36 rs745893681 53 0 0 0 0 0 0% 

37 rs745893681 53 1 0 0 0 0.5 30% 

38 rs770010841 53 0 0 0 0 0 0% 

39 rs780360757 56 1 0 0 0 0.5 30% 

40 rs1342034737 57 1 1 0 0 0.5 50% 

41 rs1245069875 58 1 0 0 0 0.5 30% 

42 rs139081150 61 0 0 0 0 0 0% 

43 rs1050502377 62 1 1 0 0 0.5 50% 

44 rs768821062 62 1 1 0 0 0.5 50% 

45 rs774753989 69 1 1 0 0 0.5 50% 

46 rs887584045 69 1 1 0 0 0.5 50% 

47 rs1306007343 70 1 1 0 1 0.5 70% 

48 rs1200383021 70 1 1 0 1 0.5 70% 

49 rs868781835 71 1 1 1 1 0.5 90% 

50 rs143969730 75 1 1 0 0 0.5 50% 

51 rs772525064 80 0 0 0 0 0.5 10% 
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52 rs1379874289 81 0 1 0 0 0 20% 

53 rs1160583250 84 1 1 0 0 0.5 50% 

54 rs1361224783 87 1 1 0 0 0.5 50% 

55 rs1361224783 87 1 1 0 0 0.5 50% 

56 rs1404365594 89 1 1 0 0 0.5 50% 

57 rs773726642 94 1 1 0 0 0.5 50% 

58 rs758988041 95 1 1 0 0 0.5 50% 

59 rs1451874481 98 0 1 0 0 0 20% 

60 rs752213619 100 0 1 0 0 0.5 30% 

61 rs752213619 100 0 1 0 0 0.5 30% 

62 rs1330392987 102 0 1 0 0 0.5 30% 

63 rs1047950271 104 0 1 0 0 0.5 30% 

64 rs1427759514 106 0 0 0 0 0.5 10% 

65 rs146429909 108 0 0 0 0 0.5 10% 

66 rs139841730 109 0 0 0 0 0 0% 

67 rs139841730 109 0 0 0 0 0 0% 

68 rs1024570270 109 0 0 0 0 0.5 10% 

69 rs753632321 110 0 0 0 0 0.5 10% 

70 rs753632321 110 0 0 0 0 0 0% 

71 rs756190986 111 1 1 0 0 0.5 50% 
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72 rs756190986 111 1 1 0 0 0.5 50% 

73 rs756190986 111 1 0 0 0 0.5 30% 

74 rs1239437887 114 0 0 0 0 0.5 10% 

75 rs780171768 115 0 0 0 0 0 0% 

76 rs749373892 115 0 0 0 0 0.5 10% 

77 rs1383363632 117 0 0 0 0 0.5 10% 

78 rs374892798 118 0 1 0 0 0.5 30% 

79 rs1180735183 119 0 0 0 0 0.5 10% 

80 rs779031240 120 0 0 0 0 0 0% 

81 rs748491106 120 0 0 0 0 0.5 10% 

82 rs1344440945 122 0 0 0 0 0.5 10% 

83 rs143280924 124 0 1 0 0 0.5 30% 

84 rs771483872 126 0 1 0 0 0.5 30% 

85 rs1397842630 129 0 0 0 0 0.5 10% 

86 rs775036329 129 0 0 0 0 0 0% 

87 rs775036329 129 0 0 0 0 0 0% 

88 rs1221527601 134 0 0 0 0 0 0% 

89 rs1221527601 134 0 0 0 0 0.5 10% 

90 rs763754140 135 1 0 0 0 0.5 30% 

91 rs763754140 135 1 0 0 0 0.5 30% 



43 

 

92 rs757211205 138 1 1 0 0 0.5 50% 

93 rs36102105 139 1 1 0 0 0.5 50% 

94 rs1314515814 140 1 0 0 0 0.5 30% 

95 rs913427803 141 0 0 0 0 0 0% 

96 rs767419429 142 1 0 0 0 0.5 30% 

97 rs750305226 143 1 1 0 0 0.5 50% 

98 rs756101201 145 1 1 0 0 0.5 50% 

99 rs200907884 148 1 1 0 0 0.5 50% 

100 rs755032067 150 1 0 0 0 0.5 30% 

101 rs1433771646 150 1 0 0 0 0.5 30% 

102 rs779134931 156 0 0 0 0 0 0% 

103 rs1169792053 161 1 1 0 0 0.5 50% 

104 rs369282415 162 1 1 0 0 0.5 50% 

105 rs778094890 165 1 1 0 0 0.5 50% 

106 rs747415809 166 1 0 0 0 0.5 30% 

107 rs1209125016 166 1 1 0 0 0.5 50% 

108 rs1569186150 167 0 0 0 0 0.5 10% 

109 rs1569186150 167 1 0 0 0 0.5 30% 

110 rs771429775 168 1 1 0 0 0.5 50% 

111 rs777027560 169 0 1 0 0 0.5 30% 
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112 rs1054205139 169 1 1 0 0 0 40% 

113 rs748774811 174 0 0 0 0 0 0% 

114 rs1220892845 180 0 0 0 0 0 0% 

115 rs1274128070 182 1 0 0 0 0.5 30% 

116 rs1321414525 182 1 0 0 0 0.5 30% 

117 rs761546600 187 0 1 0 0 0.5 30% 

118 rs140327143 188 0 0 0 0 0 0% 

119 rs1260887085 189 1 1 0 0 0.5 50% 

120 rs1050451843 190 1 0 0 0 0 20% 

121 rs1194175582 193 1 1 0 0 0.5 50% 

122 rs760574954 195 1 1 0 0 0.5 50% 

123 rs766287376 195 1 1 0 0 0.5 50% 

124 rs753727815 197 0 0 0 0 0 0% 

125 rs753727815 197 0 0 0 0 0 0% 

126 rs1569186275 198 0 1 0 0 0 20% 

127 rs755018799 199 1 1 0 0 0.5 50% 

128 rs1381116096 200 1 1 0 0 0.5 50% 

129 rs1418504822 201 1 1 0 0 0.5 50% 

130 rs1298150637 205 1 1 0 0 0 40% 

131 rs1359243793 206 1 1 0 0 0 40% 
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132 rs1402386561 208 1 1 0 0 0.5 50% 

133 rs1484964264 211 1 1 0 0 0.5 50% 

134 rs1484964264 211 1 1 0 0 0.5 50% 

135 rs376737146 213 0 0 0 0 0.5 10% 

136 rs754199549 214 0 1 0 0 0.5 30% 

137 rs1018147187 218 0 0 0 0 0 0% 

138 rs1274299131 220 1 1 0 0 0.5 50% 

139 rs1274299131 220 1 1 0 0 0.5 50% 

140 rs1220870159 221 1 0 0 0 0 20% 

141 rs765267281 222 1 1 0 0 0.5 50% 

142 rs771485287 223 0 0 0 0 0 0% 

143 rs200006019 223 0 0 0 0 0 0% 

144 rs1324948642 227 1 0 0 0 0.5 30% 

145 rs370185272 231 0 1 0 0 0 20% 

146 rs145056308 235 1 0 0 0 0.5 30% 

147 rs1157044023 235 1 0 0 0 0.5 30% 

148 rs757569499 236 0 0 0 0 0.5 10% 

149 rs1456723587 236 0 0 0 0 0.5 10% 

150 rs781401053 237 0 0 0 0 0.5 10% 

151 rs763246473 239 1 0 0 0 0.5 30% 
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152 rs766866162 239 1 0 0 0 0.5 30% 

153 rs780734959 240 0 1 0 0 0.5 30% 

154 rs747609626 240 1 1 0 0 0.5 50% 

155 rs1160586311 243 1 0 0 0 0 20% 

156 rs995444916 245 0 1 0 0 0.5 30% 

157 rs1402780164 246 0 0 0 0 0 0% 

158 rs142294522 247 0 1 0 0 0 20% 

159 rs1477147807 249 0 1 0 0 0 20% 

160 rs1477147807 249 0 1 0 0 0 20% 

161 rs1433525053 256 0 0 0 0 0.5 10% 

162 rs755606346 258 0 0 0 0 0.5 10% 

163 rs1057099030 259 0 0 0 0 0.5 10% 

164 rs1602457545 261 0 0 0 0 0 0% 

165 rs1287721402 264 1 0 0 0 0.5 30% 

166 rs756827184 272 1 1 0 0 0.5 50% 

167 rs745593957 275 0 1 0 0 0 20% 

168 rs1379763969 276 1 1 0 0 0.5 50% 

169 rs1290497846 282 1 0 0 0 0 20% 

170 rs1385427586 284 1 1 0 0 0.5 50% 

171 rs749213915 293 1 1 0 0 0.5 50% 
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172 rs139041929 295 1 1 0 0 0 40% 

173 rs774267049 296 1 1 0 0 0 40% 

174 rs760877139 306 1 0 1 1 1 80% 

175 rs1391902410 307 1 0 0 0 0.5 30% 

176 rs969886508 309 1 0 0 0 0 20% 

177 rs766842755 312 1 0 0 0 0.5 30% 

178 rs754312008 313 1 0 0 0 0.5 30% 

179 rs1331025659 313 1 0 0 0 0.5 30% 

180 rs1322306475 317 1 0 0 0 0 20% 

181 rs1405382114 319 1 0 0 0 0.5 30% 

182 rs755518394 322 1 1 0 0 0.5 50% 

183 rs1204570188 323 1 1 0 0 0.5 50% 

184 rs1286585777 326 1 1 0 0 0 40% 

185 rs1380748194 331 0 1 0 0 0.5 30% 

186 rs1456582819 332 1 1 1 1 0.5 90% 

187 rs1569194785 333 1 1 0 0 0 40% 

188 rs1251320193 337 0 1 0 0 0.5 30% 

189 rs756805881 337 1 1 0 0 0 40% 

190 rs1196572444 339 1 1 1 1 1 100% 

191 rs780645349 340 1 1 0 0 0.5 50% 
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After that, the percentage pathogenicity for all variants was determined and plotted as 

shown in the following graph. 

 

Figure 4.11 Pathogenicity percentages of the missense variants 

Out of 200 missense variants, threshold 85% pathogenicity was adjusted to filter out 

deleterious variants that could affect resultant protein structure and functions. After 
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192 rs1016774145 341 1 1 0 0 0.5 50% 

193 rs1470090266 341 1 0 0 0 0 20% 

194 rs1169656171 344 1 1 0 0 0 40% 

195 rs1397734593 345 1 1 0 0 0.5 50% 

196 rs745530968 345 1 1 0 0 0.5 50% 

197 rs1298321992 348 1 0 0 0 0 20% 

198 rs1555939511 355 1 1 1 0 0 60% 

199 rs1281874686 357 1 unknown 0 0 0.5 30% 

200 rs201887872 358 1 unknown 0 0 0 20% 
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applying threshold pathogenicity filter, 3 pathogenic variants were obtained with 

pathogenicity 85% or above shown in table 4.2. and two variants (rs868781835, and 

rs1196572444) at amino acid number 71 and 339 with highest pathogenicity 90% and 

100% respectively were shortlisted for further protein analysis. 

Table 4.3 missense variants after threshold pathogenicity sorting 

Variant ID Alleles AA AA coord 
sift_clas

s 

polyphen_cla

ss 

revel_clas

s 

meta_lr_clas

s 

mutation_asses

sor_class 

rs868781835 C/T P/L 71 D PD LDC DA M 

rs1456582819 A/G K/E 332 D PD LDC DA M 

rs1196572444 T/G C/G 339 D PD LDC DA H 

 

(D= Deleterious, PD= Probably damaging, LDC= Likely disease causing, D= damaging, 

H= High, M= Medium) 

 

Table 4.4: Selected Missense Variants according to Pathogenicity 

 

Variant ID 
AA 

coord 

Conseq. 

Type 
sift_class 

polyphen

_class 

revel_cla

ss 

meta_lr_cl

ass 

mutation_

assessor_c

lass 

Pathogenicity % 

rs868781835 71 
missense 

variant 
1 1 1 1 0.5 90% 

rs1456582819 332 
missense 

variant 
1 1 1 1 0.5 90% 

rs1196572444 339 
missense 

variant 
1 1 1 1 1 100% 
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The SNP frequency per Exon was analyzed as shown below. 

 

Figure 4.12 SNP Frequency per Exon 

4.1.5 Protein Stability Analysis 

MuPro, DynaMut and Maestroweb were used to do the structural and functional 

investigation of the SNPs rs1196572444 and rs868781835. MUpro generated a DDG value 

of -1.7939459 kcal/mol for SNP1, indicating decreasing stability of the protein structure 

and a value of 0.75721874 kcal/mol, indicating an increasing stability. DynaMut DDG 

values indicated decreasing stability of both the protein structures associated with the SNPs 

under study. The DDG value for both the SNPs is 0.383 and 0.856 Kcal/mol, according to 

MaestroWeb results, indicating an increase in stability. 
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Table 4.5: Protein Stability Analysis 

Tools 

rs1196572444 

 

rs868781835 

DDG Value Consequence DDG Value Consequence 

MUpro 
-1.7939459 

kcal/mol 

Decreasing 

Stability 

0.75721874 

kcal/mol 

Increasing Stability 

DynaMut 0.056 kcal/mol 
Decreasing 

Stability 

-0.292 

kcal/mol 

Decreasing 

Stability 

MAESTRO 

WEB 
0.383 kcal/mol Increasing Stability 0.856 kcal/mol Increasing Stability 

4.1.6 Structural and Functional Analysis of Variants 

MutPred2, DynaMut, and HOPE were used to check the effect of amino acid variants on 

the structure and function of total proteins. The SNPs rs1196572444 and rs868781835 had 

a general probability score of 0.882 and 0.762 according to MutPred2. 

 According to Mutpred results, inducing the mutation C339G can result in an altered 

disordered interface and gain of N-linked glycosylation at N340. Also, the induction of 

mutation P71L can cause loss of intrinsic disorder, loss of B-factor and loss of 

ubiquitylation at K67.  

Table 4.6: Mutpred2 Scoring 

ID Substitution MutPred2 score 

KLF8_HUMAN P71L 0.762 

KLF8_HUMAN C339G 0.882 
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Table 4.7 MutPred2 Results 

Residual Change Mechanism P-value 

C339G 

Altered Disordered interface 0.02 

Gain of N-linked glycosylation at N340 0.03 

P71L 

Loss of Intrinsic disorder 9.3e-03 

Loss of B-factor 0.03 

Loss of Ubiquitylation at K67 0.04 

 

DynaMut2 calculated the vibrational entropy energy between the wild-type and mutant 

proteins to demonstrate a difference in protein flexibility because of mutation. The results 

are depicted in the following table. 

Table 4.8: DynaMut2 Results 

Variant ΔΔSVib ENCoM ΔΔG 

C339G 
-0.070 kcal.mol-1.K-

1 (Decrease of 
molecule flexibility) 

0.056 kcal/mol 
(Destabilizing) 

P71L 
0.365 kcal.mol-1.K-

1 (Increase of 
molecule flexibility) 

-0.292 kcal/mol 
(Destabilizing) 
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C339G       P71L 

 

Figure 4.13: Variant Structures. Colored Amino acids show change in vibrational entropy 

due to mutation. BLUE represents a rigidification of the structure and RED a gain in 

flexibility 

Intra-atomic interactions were also predicted by DynaMut. The results indicate different 

amino acid interactions when compared to wild type. The wild type contained cysteine 

which was converted to glycine at 339th position in one of the SNPs. In another selected 

SNP, proline was converted to leucine at position 71. 
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            Wild type    C339G 

Figure 4.14: Intra-atomic Interactions of wildtype and C339G variant 

             

               Wild type          P71L 

Figure 4.15: Intra-atomic Interactions of wildtype and P71L variant 

In addition to these techniques, the HOPE report shown below in Table revealed that 

both the variant residue is substantially larger than the wild-type residue, possibly 

resulting in bumps in the protein structure. 
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Table 4.9: HOPE Report 

SNP ID Variant Amino Acid   Variant Location Functional Damage 

rs1196572444 

size charge hydrophobicity Domain 
Conserv

ation 
Effects on  

DNA 

binding 

damaging 

smaller 

Wild Variant 
More 

hydrophobic 

Zinc-

finger 

domain 

Highly 

conserv

ed Neutral Neutral 

rs868781835 bigger Neutral Neutral - - 

Highly 

conserv

ed 

 
Probably 

damaging 

The variant and the wild type residue were neutral even after the mutation, C339G and 

P71L as shown in the figures below. 

 

Figure 4.16: Cysteine is shown on the right side which is converted to Glycine located on 

the left The size of Cysteine is larger than Glycine as the -SH group is removed 

At this position, mutation converts cysteine to glycine which reduces the rigidity of 

structure and this disturbs the zinc-finger domain. The resulting residue is less hydrophobic 

as compared to the wild-type. This will lead to a loss of hydrophobic interactions at the 

core or surface of the protein. 
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Figure 4.17 Proline is shown on the right side which mutates to Leucine shown on the left 

side. The size of Leucine is larger than Proline as the ring structure is opened 

This mutation leads to a reduction in rigidity of the protein structure. The mutant residue 

is larger. This can disturb the structure through the formation of bumps. The HOPE report 

does not mention the effect of this mutation on hydrophobicity and domains of the protein 

structure. 

4.1.7 Results of Molecular Dynamics (MD) Simulation 

The files containing data on MD simulations were run for the wild-type and variant 

proteins. To analyze the results, graphs were generated through Gromancer. To examine 

the differences between wild type and mutant proteins, four characteristics were used: root 

mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration, 

number of hydrogen bonds, and solvent accessible surface area (SASA) analysis. The 

variation of distinct atoms in a protein from its typical position is shown by the root mean 

square deviation (RMSD). In comparison to wild type, RMSD analysis of the wild and 

mutant proteins found that the altered protein deviates greatly from its reference position. 

By comparing the RMSD values, the structural deviations of both wild type and variant 

proteins over the period of 20ns were determined and plotted in a graph. Both the variant 

proteins showed deviations when compared to the wildtype. The maximum deviation could 

be seen around 20 ns starting from around 0.3 ns. This shows that the variants have low 

stability. 
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Figure 4.18: RMSD plot for wild-type and variant proteins 

Individual residues' deviation from their mean position is depicted by root mean square 

fluctuation (RMSF). A higher RMSF number indicates more flexible movements during 

simulation, whereas a lower RMSF value indicates limited movements in comparison to 

its typical position. The difference in the fluctuation of wild and mutant protein residues 

can be seen using RMSF analysis in figure 25. To see the difference in the dynamic 

behavior of residues caused by the mutations, RMSFs of wild and both mutant KPCG 

structures were computed. The peaks represent the residues' highest kinetic energies. 

The fluctuation in residues of wild and both variant KLF8 structures ranges from 0.1nm to 

>2nm. The C339G variant shows higher peaks than the wild and other variant, P71L. The 

region around 100-150 residues and 200-300 show a higher peaks for SNP1 (C339G) and 

the region 50-100 and 200-250 show highest peaks for the variant P71L. The wild-type 

shows highest peaks around 50-150 only. The overall graph shows nearly similar 

fluctuations for SNP2 while SNP1 shows much difference where the fluctuations are 

decreasing considerably after 300 residues.   
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Figure 4.19: RMSF plot of wild-type and variant proteins 

The radial distance of all the atoms in a protein from their common axis is known as the 

radius of gyration (Rg). Rg is the radius of a protein structure in a dynamic situation, 

indicating the protein's compactness and changes in folding over time. The computed 

radius of gyration for wild and modified proteins is shown in figure 4.20. it can be seen 

that the Rg value of wild-type protein increases significantly at 2.5 ns and then fluctuates 

throughout the course of simulation. However, for SNP1 the values drop in the beginning, 

then increase and then again decrease around 20ns showing an increase in compactness. 

For SNP2, the graph fluctuates but the values concluded around 20ns are similar to the 

wild-type. 
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Figure 4.20: Radius of gyration of wild-type and variant proteins 

Between the polar side chains of amino acid residues, hydrogen bonds develop. The 

amount of hydrogen bonds formed in all KLF8 structures throughout a 20ns simulation 

period is depicted in figure 4.21. The number of hydrogen bonds in variant P71L can be 

seen to be decreasing around 7.5 to 15ns when compared to the wild-type. The wild-type 

KLF8 hydrogen bonds are overall increasing during the 20ns simulation. However, 

variation is observed for C339G where the hydrogen bonds are even more in number than 

the wild KLF8. 

 

Figure 4.21: Difference in number of hydrogen bonds in wild-type and variant proteins 

Calculating the solvent accessible surface area (SASA) is a simple technique to address 
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the surface features of peptides or protein, such as whether the surface is polar or 

non-polar, or to distinguish between exposed and buried sections or amino acids. the 

figure 4.22, shows the SASA plot. 

 

Figure 4.22: SASA Analysis of wild-type and variant proteins 

The SASA value of both variant protein structures is overall smaller than that of the wild 

type protein structure, indicating that variant structures are more stable, particularly the 

C339G variant. The wild and mutant protein structures SASA range is between 250 and 

425 nm². The SASA value begins to decrease for the wild-type as well as the variant 

proteins throughout the simulation period. Both variations resulted in a decrease in the 

surface area of protein, indicating a decrease in the solvent accessible surface area, which 

leads to a increase in protein stability. Figure 4.22 shows the graphical representation of 

surface area over the stimulation period.  

4.1.8 Effects of SNPs on mRNA Secondary Structure 

The mRNA secondary structure of KLF8 wild-type and variant was predicted applying in-

silico method. For both, the wild-type and variant, minimum free energy was calculated. 

For the variant rs1196572444 T/G, the minimum free energy (MFE) of RNA secondary 

structure changed from -10 kcal/mol of wild-type to -12.6 kcal/mol of the variant. As a 

result, a significant change in structure was also observed. The decrease in minimum free 

energy signify an increase in stability of the mRNA structure. In case of the variant 

rs868781835 C/T, no change in MFE was observed. This showed a value of -7.5 kcal/mol. 
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Figure 4.23: Minimum free energy of wild-type and variant C339G 

 

 

Figure 4.24: Minimum free energy of wild-type and variant P71L 
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4.2 Wet-lab Analysis 

4.2.1 Genotype Analysis of Breast Cancer Patients and Control Samples 

The genotype analysis showed that the genotype TT has an odds ratio and relative risk of 

40.16 and 6.143. These values indicate that these homozygous alleles could be related to 

breast cancer development and association when compared to homozygous GG or 

heterozygous GT. The homozygous genotype GG shows an odds ratio of 0.1856 and 

relative risk of 0.3293 which means that this might not be involved in the disease. 

Table 4.10 Genotyping data of C339G (rs1196572444) 

Genotype/ 

Alleles 
Cancer % Control % Odds Ratio Relative risk P-value 

GG 3% 14.29% 0.1856 0.3293 

<0.005  GT 11% 72.45% 0.047 0.1748 

TT 86% 13.27% 40.16 6.143 

G 8% 23.15% 0.2887 0.4611 

<0.005  
T 92% 76.85% 3.464 2.169 

 4.2.2 Association of C339G SNP (rs1196572444) with Metastasis in Breast Cancer 

The genotype GG and GT have higher values than the TT genotype. However, the genotype 

GT has the highest value. Therefore, we can say that the patients possessing this genotype 

might have a chance of metastasizing.  
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Table 4.11: Statistical Analysis of Genotype relation with metastasis 

Genotype 

Disease State 

Metastatic Non-metastatic 

P-value 
Relative 

Risk 

Odds 

Ratio 
P-value 

Relative 

Risk 
Odds Ratio 

GG >0.9999 1.176 1.527 >0.9999 0.7698 0.6548 

TT 0.3832 0.7651 0.4821 0.3832 1.587 2.074 

GT 0.3428 1.321 2.177 0.3428 0.6068 0.4594 
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CHAPTER 5: DISCUSSION 

The accumulation of mutations in genes that regulate cell cycle, apoptosis, invasiveness 

and metastasis leads to cell transformation in the form of malignancy. This happens 

because such genes act as caretaker genes for maintaining genomic stability (Listgarten et 

al., 2004). Breast cancer development occurs either due to modifiable or non-modifiable 

factors. Out of these, a non-modifiable factor is single-nucleotide polymorphism (SNP) 

(Łukasiewicz et al., 2021b). These SNPs are accountable for increasing cancer 

susceptibility (Hubner & Houlston, 2017). 

The KLF family of proteins is the transcription factor family. These are either 

transcriptional activators or repressors and are zinc-finger proteins. There are a total of 

eighteen members of this family. KLF8 is one of them. This protein is involved in cell 

migration, proliferation, epithelial to mesenchymal transition, DNA repair, as well as 

resistance to drugs in cancer progression (Yuce & Ozkan, 2024). The aim of this study was 

to identify the most pathogenic variant of KLF8 and check its impact on overall protein 

structure and function. It further aimed at checking its link with breast cancer development 

and prognosis.  

To check the localization of this protein, Deeploc 1.0 was utilized. Deeploc 1.0 uses deep 

learning to predict the subcellular localization of proteins found in eukaryotes. It is able to 

differentiate among ten different localizations. These include nucleus, cytoplasm, 

mitochondrion, cell membrane, endoplasmic reticulum, chloroplast, Golgi apparatus, 

lysosome or vacuole, peroxisome and extracellular. The predicted likelihood score turned 

out to be 0.998 in nucleus for KLF8. This indicates that this protein is found in the nucleus. 

The Clustal Omega software was used to find the evolutionary relationship between 

Kruppel-like Factor family members. KLF8 evolution was analyzed by aligning the 

sequences of all KPC family proteins to indicate conserved areas among the proteins in 

this family. The phylogenetic tree showed that all members of this family descended from 

a common ancestor and have some conserved regions present in all KLF isoforms. The 

conserved regions were visualized through ConSurf. 
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We searched the structure of KLF8 in Protein Data Bank (PDB). No structure was found 

so we used AlphaFold to predict its three-dimensional structure. This software applies 

scoring system to predict model confidence. While the 3D structure was predicted by 

AlphaFold, another software, Interpro was used to see the domains in KLF8. One N-

terminal domain and three C2H2 domains were identified. according to AlphaFold, the 

three C2H2 zinc-finger domains showed high confidence score. The structure was 

validated using SAVES and Procheck analysis showed that majority of the angles lie in the 

most preferred regions pointing towards structure stability. This was depicted through a 

Ramachandran plot.  

As this research study was aimed at checking the link between KLF8 SNPs and breast 

cancer, the SNP data was acquired from Ensembl Genome Browser. Then, the missense 

SNPs were filtered out and considered for further analysis as these have an impact on 

protein structure and sometimes, on its function as well. Further filtration was conducted 

to identify highly pathogenic variants. For this, the scores of various softwares were 

considered. These include SIFT, PolyPhen, Revel, Mutation Assessor, and MetaLR. 

Pathogenicity percentage of the variants was calculated by self-scoring the variants keeping 

benign and pathogenic on two extremes as 0 and 1 and a midpoint was set at 0.5. Then, a 

threshold value was selected as 85%. All these variants were shown in a graph pf 

pathogenicity percentage. Based on the threshold value, two highly pathogenic variants 

further analyzed. These had rs IDs, rs868781835(P71L) and rs1196572444(C339G).  

Stability analysis of the selected variants was carried out using software tools such as 

MUpro, DynaMut and MaestroWeb. For the variant rs868781835(P71L), MUpro and 

MaestroWeb showed increasing stability while DynaMut showed decreasing stability. For 

the variant rs1196572444(C339G), MUpro and DynaMut showed decreasing stability 

while MaestroWeb showed increasing stability. The decreasing stability of protein 

indicates that the SNP might be associated with breast cancer. 

For structural and functional analysis of selected SNPs, MutPred2, DynaMut and HOPE 

were used. These tools predict whether a change in protein structure may affect its function. 

MutPred2 gives a score for predicting the pathogenicity and has set 0.5 as a threshold for 
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pathogenicity. On the other hand, the value for our selected variants came out as 0.762 for 

P71L and 0.882 for C339G which renders them as pathogenic. Moreover for C339G, this 

showed an altered disordered interface and gain of N-linked glycosylation at N340 and for 

P71L, it showed loss of intrinsic disorder, loss of B-factor and loss of Ubiquitylation at 

K67. These mean that there is a decrease in stability of the mutant protein. DynaMut also 

predicted that the overall protein stability is decreasing due to the mutation. Moreover, the 

intra-atomic interactions were also altered as compared to the wild-type. Hope analysis 

revealed that the size of the mutant proteins differs from the wild-type. In case of SNP 

P71L the size was bigger with probably damaging effect, whereas for C339G, the size was 

smaller with damaging effect. These results suggest that a change in even a single amino 

acid can alter the protein structure and it may affect its function, leading to cancer 

development and disease progression. 

The effect of such change on protein structure and function was also evaluated by 

observing the stability of mRNA secondary structure. in case of P71L, the change does not 

affect mRNA stability. Contrary to this, in SNP C339G, there is a change in stability. The 

minimum free energy for this structure changes from -10 kcal/mol to -12.6 kcal/mol. This 

decrease in MFE indicates an increase in stability of the structure.  

As the in-silico analysis predicted that the polymorphism of KLF8 in SNP C339G might 

have a damaging role, leading to breast cancer development. For practically checking this 

effect, ARMS-PCR was conducted. Two groups, disease and control were made. Blood 

samples were collected from 100 subjects each and DNA was extracted. Then, two sets of 

primers, two inner and two outer were designed through Primer1. The obtained results were 

analyzed through statistical evaluation. According to these, the genotype GG might have a 

protective role in breast cancer development whereas the genotype TT might be involved 

in disease development as the odds ratio and relative risk turned out to be 40.16 and 6.143 

for the genotype TT. The statistical analysis suggests that the genotype GG and GT might 

be involved in metastasis in breast cancer patients. 
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5.1 Conclusion 

Breast cancer is the most prevalent type of cancer in females worldwide and its incidence 

rate is also higher. There are a lot of ways in which the disease develops. The disease 

proves to be fatal as it is usually diagnosed at later stages. Early detection can lead to an 

increased chance of survival. However, biomarkers for detection and therapies might help 

in this aspect. Single nucleotide polymorphism is an important factor in disease 

development. In case of KLF8, little is known about its variants and their role in breast 

cancer. 

In our study, the KLF8 SNPs were identified through in-silico analysis. Two of them were 

selected for structural and functional analysis through computational methods. One of these 

(rs868781835) turned out to be probably damaging while the other (rs1196572444) turned 

out to be damaging. This SNP was further chosen for genotype analysis. The results 

suggested that this was not associated with breast cancer development, but it was involved 

in disease progression through metastasis. The results might be different for different 

ethnicities. 

This SNP can be used as a prognostic marker and a therapeutic target in breast cancer. The 

expression profile of this SNP calls is needed for further investigation as it might provide 

some cutting-edge findings in cancer therapy. Further research is required to validate the 

acquired results on a large sample size and different ethnicities. The results can also be 

applied to other cancer types to check the role of this variant of KLF8. 
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Krüppel-Like Family of Transcription Factors. Arteriosclerosis, Thrombosis, and 

Vascular Biology, 25(6), 1135–1141. 

https://doi.org/10.1161/01.ATV.0000165656.65359.23 

Upadhyay, A. (2021). Cancer: An unknown territory; rethinking before going ahead. 

Genes & Diseases, 8(5), 655–661. https://doi.org/10.1016/j.gendis.2020.09.002 

Vliet, J. v., Turner, J., & Crossley, M. (2000). Human Kruppel-like Factor 8: a CACCC-

box binding protein that associates with CtBP and represses transcription. Nucleic 

Acids Research, 28(9), 1955–1962. https://doi.org/10.1093/nar/28.9.1955 

Wakim, S., & Mandeep Grewal. (n.d.). Importance of Gene Expression. 



74 

 

Wang, M.-D., Xing, H., Li, C., Liang, L., Wu, H., Xu, X.-F., … Yang, T. (2020). A novel 

role of Krüppel-like factor 8 as an apoptosis repressor in hepatocellular carcinoma. 

Cancer Cell International, 20(1), 422. https://doi.org/10.1186/s12935-020-01513-3 

Wang, X, Lu, H., Urvalek, A. M., Li, T., Yu, L., Lamar, J., … Zhao, J. (2011). KLF8 

promotes human breast cancer cell invasion and metastasis by transcriptional 

activation of MMP9. Oncogene, 30(16), 1901–1911. 

https://doi.org/10.1038/onc.2010.563 

Wang, X, & Zhao, J. (2007). KLF8 transcription factor participates in oncogenic 

transformation. Oncogene, 26(3), 456–461. https://doi.org/10.1038/sj.onc.1209796 

Wang, Xianhui, Zheng, M., Liu, G., Xia, W., McKeown-Longo, P. J., Hung, M. C., & 
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