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Abstract

Schrödinger Cat States, which in quantum optics refer to a superposition of distinct co-

herent states, have acquired pedestal due to their application in quantum technologies.

Despite the challenges involved, efforts are underway to generate large size cat states in

the laboratories. Their importance in quantum metrology, in enhancing precision mea-

surement is monumental.

This thesis explores the power these states hold in enhancing metrology for phase and

displacement sensing. We begin by exploring the nonclassicality of cat states through

Wigner function, then continue towards analyzing their photon statistics. We analyti-

cally studied as to whether Mandel Q parameter can serve as an indicator for relative

strength of cat states, with coherent states as benchmark, for precisely measuring phase

and displacement. Our results demonstrate that Q is not sufficient in dictating the metro-

logical advantage of the cat states across different parameters. The study was extended

to include various probe states with similar construction as Schrödinger cat states called

as multiheaded cats. Next, we explore the impact of single photon addition on metro-

logical power of all the states considered. Through graphical analysis, we elucidate that

this manipulation of cat states result in further enhancing their metrological potential, as

photon addition is a non-local operation and can add to the operational nonclassicality

of a state.

Our findings underscore the significance of Schrödinger cat states and highlight the ad-

vantage of manipulation of photon number in enhancing quantum metrology.

x



Chapter 1

Introduction

1.1 Overview

The world of quantum mechanics, most of the time challenges our logic owing to its

counter-intuitive nature. Quantum superposition and entanglement are quintessence of

the strangeness associated with that world. This aspect can be exemplified by Schrödinger

cat. In this chapter, we delve into the Schrödinger cat state, explore its potential applica-

tions in quantum technologies, introduce quantum metrology and present future research

prospects.

1.2 Schrödinger Cat State

1.2.1 Historical Context

Schrödinger’s cat is an eponym of Erwin Schrödinger. In 1935, Schrödinger through his

paper titled “The Present Situation in Quantum Mechanics” (translated from German)

[1] proposed a famous thought experiment involving a cat. The idea was put forth as a cri-

tique against Max Born’s probabilistic interpretation of wave-function, which according

to Schrödinger results in ridiculous cases where superposition at microscopic scale could

get entangled with that of at macroscopic scale. The setup for Schrödinger’s gedanken ex-

periment , given in figure 1.2.1, illustrates a cat confined in a box along with a radioactive

element and a vile of poison. The probability of decay of the radioactive element in one

hour is half, which constitutes a superposition at microscopic level. If the element decays
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within the given time it initiates a process by which the vile is hammered down and the

cat being exposed to the poison dies and lives otherwise, constituting a superposition in

macroscopic world. Any measurement on the system afterwards, represented by looking

inside the box, will collapse the macroscopic superposition in either of the distinct states

in fig. 1.2.1 (c) or (d). This cat that simultaneously exist in the box in alive and dead

state is dubbed as a Schrödinger Cat.

Figure 1.2.1: Schrödinger’s Gedanken Experiment [2]

1.2.2 Timeline of Adoption of Schrödinger cat

“Schrödinger cat”, though originally stood as a critique, the terminology was over the

time adopted by the corpus of quantum mechanics. It now refers to a superposition of

macroscopically distinct quantum states. The timeline is as under:

1935: Schrödinger introduces his namesake cat through the thought experiment.

1950-70s: The fundamental principles on which quantum mechanics stand were being

vehemently debated by the scientists. In 1963, Glauber gave coherent states. The even

and odd superposition of coherent states introduced by Dodonov et al., in 1973, in their

seminal paper [3] were titled as even and odd coherent states respectively.

1980s: With advancement in quantum optics and technology, scientists were able to test

the superpositions at quantum scale. In 1986, Yurke and Stoler introduced yet another

superposition of coherent states as generalized coherent states. The states introduced are

now referred to as Yurke-Stoler states and 4 headed cat state.

1990s: With the publication of Brune and Haroche [4] in 1992 on generation of Schrödinger

cat state, the terminology began to appear more frequently in publications and depicted

superposition of classical fields (coherent state).
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2000s: The terminology gets rooted in vocabulary of quantum physics. Extensive ex-

perimental setups with an aim to generate, measure and manipulate the Schrödinger cat

states further solidified the term.

1.2.3 Schrödinger Cats in Quantum Optics

A Schrödinger cat state (henceforth referred to as cat) is considered as a superposition

of states which are macroscopically distinct. In quantum optics, superposition of two

distinct classical fields, i.e., coherent state, is called a Schrödinger cat state. In phase

space, an even cat can be visualised through a quasi-probability distribution function

called as Wigner function.

Figure 1.2.2: Phase Space Representation of Even Cat [5]

The two gaussian curves atop the central plane represent overlapping of similar classi-

cal fields, each denoted by a distinct state of a cat being alive or dead; whereas, the fringe

pattern in between reflects overlapping of the two distinct states. The negative curves,

which may astound the reader at first, hold extreme significance in quantum optics and

will be discussed in chapter 3.

1.2.4 Creating Schrödinger Cats in Labs

Early efforts to create cats in the labs go as far back as 1992. However, after decades

of research cats are being created utilizing various phenomena. Method of atom-field
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interaction like trapping ion or photon in quantum cavity [4],[6] acts as precursor to

various approaches like subtraction of photon methods [7],[8],[9],[10], and photon addition

method [11]; however, all these methods fail to produce cats with large amplitude. The

most recent approach that utilizes quantum Zeno effect and interaction free measurement

[12] allows creating cats with relatively large amplitude.

1.2.5 Challenges to Schrödinger Cats

Though, the importance of cat states in quantum technology cannot be accentuated

enough, there are certain challenges which do prevail and limit their utility: the chal-

lenges being scalability i.e. creating large amplitude optical cat states. Despite the best

experimental efforts, α remains less than 2 [12], and owing to the fragility of cat states,

they tend to decohere on interaction with environment.

1.2.6 Significance

Cat states show promise for understanding fundamental physics and various practical

applications:

Fundamental Physics: Cat states help in navigating the quantum-classical boundary

[13] . These are also utilized in testing the underpinnings of quantum mechanics [14].

Quantum Information: Cat states are versatile resources in quantum information

processing. They play pivotal role in enabling quantum error correction [15], enhancing

communication protocols [16], and can be utilized for creating complex quantum states

[17].

Quantum Metrology: Cat states offer the potential to surpass classical limits in pre-

cision measurements. Their sensitivity to phase shifts and other parameters enable en-

hanced sensing capabilities in various applications such as atomic clocks [18], gravitational

wave detectors and magnetic imaging making them versatile for material and medical sci-

ence [19].

1.3 Quantum Metrology

Quantum metrology deals with studying ways to enhance precision and accuracy in mea-

suring various physical parameters beyond classical limit, using principles of quantum
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mechanics such as entanglement and superposition. Despite the fact that quantum me-

chanics imposes limit on precisely measuring complementary variables due to Heisenberg

Uncertainty Principle, it also paves way for techniques in enhancing metrology. Quantum

metrology began with the seminal paper of C. M. Caves [20] in which he proposed the

“squeezed state” technique that illustrated how shot noise i.e., a quantum mechanical

error associated with photon number fluctuations in interferometers could be reduced

using quantum correlations. Techniques such as these become pertinent when precision

cannot be enhanced by increase of optical power [21]. Mostly, the instruments employed

for carrying out quantum metrology resemble those utilized for classical metrology. For

example, interferometers when used with quantum states can help beat classical limit,

which is called as Standard Quantum Limit (SQL) or Shot Noise, and approach Heisen-

berg Limit (HL).

1.3.1 Estimation Tasks in Quantum Metrology

Quantum metrology is carried out in three main steps: state preparation, parameter

encoding, measurement along with classical estimation techniques [22] as shown in figure

4.1.1.

Figure 1.3.1: Tasks for Parameter Estimation in Quantum Metrology

Briefly, a classical parameter of interest is encoded on a probe state through a quantum

map. The resulting state of the system is measured through application of generalized

measurements which are chosen appropriately followed by techniques of data processing.

In order to achieve optimal precision, all the elements of quantum metrology need to be

optimized. This paper, analyzes the impact of optimizing the probe state from within

the cats.

1.3.2 Enhancing Metrology with Cats

Schrödinger cat states, when used as probe states can lead to enhancing the sensitivity

of measuring devices by using quantum interference. For example, in Mach Zehnder In-
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terferometer, cat states can be used in reducing noise and increasing phase sensitivity,

which results in measurements that beat SQL asymptotically; thus approaching Heisen-

berg limit [23], which is an ultimate quantum limit in precision.

1.4 Future Research

Future research directions include looking for ways to further enhancing the quantum

metrology of cat states by exploiting entanglement and multiple photon addition.

1.5 Outline

This thesis has been organized as under:

Chapter 2 pertains to rudimentary concepts related to Glauber Coherent States which

include the definition and discussion on their classical nature, properties and generat-

ing technique. The said discussion then naturally leads to exploring different forms of

Schrödinger cats, Yurke-Stoler states, multiheaded cats and their excited counter-parts.

In the end we have also produced a scheme for creating excited states in lab.

Chapter 3, we talk about the non-classicality and various quantifiers which capture

the nonclassical nature of the states such as Wigner function and Mandel Q parame-

ter. Wigner functions and Mandel Q parameter of the multiheaded cat states have been

worked out.

Chapter 4, pertains to the various quantum tasks involved in parameter estimation

through quantum metrology. Two operational quantifiers of nonclassicality have been

reviewed, which includes metrological power of states and operational resource measure

which serves as tight upper bound on the prior. The measure has been employed in later

part to work out the metrological power for displacement sensing, followed by calculations

for metrological power for phase sensing.

Chapter 5 deals with the analysis, through graphical comparison, as to whether Mandel

Q parameter serves as an indicator of relative strength of metrological power irrespective

of the parameter measured, or not. Furthermore, We have analyzed the impact of photon

addition to cats on their photon statistics and in enhancing their metrological power.

Chapter 6 In this chapter we have presented the summary and conclusion of our work.
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Appendix, detail calculations have been appended at the end, as they could have dis-

rupted the flow of this document.
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Chapter 2

Schrödinger Cat State in Quantum

Optics

Schrödinger considered the possibility of existence of the cat, a classical object, in super-

position of two distinct states i.e., alive and dead a “ridiculous case”, which is a direct

consequence of superposition at microscopic level. Quantum Optics, realizes such a cat

by taking superposition of a classical entity with two distinct states that can be actuated

with exclusiveness of an alive and dead cat, especially when that entity is “macroscopic”

enough. This enigmatic entity is called a Coherent state. Coherent state is the most clas-

sical quantum state, as its dynamics resembles that of a classical system and the distinct

forms can be obtained by controlling the phase of these states. However, the resulting

Schrödinger cat is purely a quantum state as its a superposition of coherent states, and

give rise to number of phenomena which have no classical analogue.

2.1 Coherent States

In chapter 1, we have already introduced the even cat; however, that is not the only

possible combination of the coherent states with respect to their relative phases. We

begin this chapter by putting forth the concept of coherent state. The reasons as to why

these quantum states are dubbed as classical, what are their properties and how they can

be generated have been explored. In the later part, we introduce the various forms of

Schrödinger cat states and then extend our discussion towards generalized cats, followed

by creation of excited cats.

8



2.1.1 Coherent States in Literature

Coherent states were first presented by Schrödinger, in 1926, as solution to Schrödinger

equation. He showed them as wave packet for a large number of wave functions of har-

monic oscillator. The significance of this wave packet was that it did not spread with

respect to time [24]. Another interpretation of coherent states came as eigenstates of

annihilation operator â from G. Iwata [25]. It was much later in 1963 when J. Glauber

and E. C. G. Sudarshan (independently) systematically presented these states as super-

position of the number states, the later forming a complete set [26],[27]; however, the

name “coherent states” is attributed to Glauber alone.

2.1.2 Quantization of Cavity Field

The motivation that led Glauber to present coherent states as description of the field,

with intrinsically uncertain number of photons, was the inadequacy of defined number

state |n⟩ in calculations involved in quantum electrodynamics. He equated the field states

to that of states of quantum oscillator owing to the similarity between the Hamiltonian

of the two, i.e., the Hamiltonian of field given by,

H =
1

2

∫
dV

[
εoE

2(r, t) +
1

µo
B2(r, t)

]
, (2.1.1)

where, E and B are the single-mode cavity electric and magnetic fields are of following

forms when polarization is considered along x-axis, and propagation of field along z-axis,

Ex(z, t) =

(
2ω2

V εo

)1/2

q(t) sin(kz), (2.1.2)

By(z, t) =
1

c2k

(
2ω2

V εo

)1/2
dq(t)

dt
cos(kz), (2.1.3)

where, ω is the single mode frequency linked with wave number k through dispersion

relation ω = ck, V is the volume of the cavity and q(t) is a time dependent quantity

with length as dimension. Plugging above fields in eq. (2.1.1), and using orthogonality

condition for trigonometric quadratures, we get,

H =
1

2
(p2 + ω2q2),
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which equates to the Hamiltonian of a simple harmonic oscillator with m = 1. The

frequency of classical oscillations ω are associated with spring constant k through k =

mω2. Quantizing the system implies replacing the classical parameters with the quantum

observables and introducing their commutators, thus,

Êx(z, t) =

(
2ω2

V εo

)1/2

q̂ sin(kz), (2.1.4)

B̂y(z, t) =
1

c2k

(
2ω2

V εo

)1/2

p̂ cos(kz), (2.1.5)

and,

Ĥ =
1

2
(p̂2 + ω2q̂2), (2.1.6)

p̂ and q̂ are hermitian complementary variables representing momentum and position

operators respectively, with following commutator,

[q̂, p̂] = ih̄. (2.1.7)

Introducing two non-Hermitian operators, â := 1√
2h̄ω

(ωq̂+ ip̂), â† := 1√
2h̄ω

(ωq̂− ip̂) and a

Hermitian number operator n̂ as n̂ = â†â, the Hamiltonian in eq. (2.1.6) becomes,

Ĥ = h̄ω
(
n̂+

1

2

)
. (2.1.8)

The introduced operators follow the undermentioned commutation laws,

[â, â†] = 1, [â, n̂] = â, and [â†, n̂] = −â†. (2.1.9)

As, n̂ and Ĥ commute, they are compatible observables and share an eigenket, obtained

through diagonalization of the two, with corresponding eigenvalues n and En respectively,

Ĥ|n⟩ = En|n⟩, n̂|n⟩ = n|n⟩, (2.1.10)
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where |n⟩ can be referred as energy eigenstate of the cavity field. The non-Hermitian

operators â and â† are called as annihilation and creation operator as when operated

on the eigenstate, they result in annihilating and creating a quantum of energy h̄ω,

respectively,

Ĥ(â|n⟩) = (En − h̄ω)|n⟩, Ĥ(â†|n⟩) = (En + h̄ω)|n⟩. (2.1.11)

An umbrella term used for these operators is ladder operators, as they cause addition or

deletion a quanta from the number state,

â|n⟩ =
√
n|n− 1⟩, â†|n⟩ =

√
n+ 1|n+ 1⟩, (2.1.12)

with n̂ called as photon number operator giving the number of quanta or photons in the

state,

â†â|n⟩ = n|n⟩, (2.1.13)

where, n = 0, 1, 2, 3..., a consequence of normalization condition for â|n⟩. All the higher

number states can be generated by repeated application of creation operator on vacuum,

where vacuum is the lowest number state attainable,

|n⟩ = (â†)n√
n!

|0⟩, â|0⟩ = 0. (2.1.14)

As |n⟩ are eigenstates of Hermitian operators; therefore, they ought to be orthonormal,

satisfying following conditions,

∑
m

|n⟩⟨n| = 1, ⟨n|m⟩ = δn,m. (2.1.15)

Number states can thus be used as basis, i.e., any state and operator can be expresses

in terms of these states. Even though this basis set present descriptions of field with

definite energy En and n photons, these are not the eigenstates of the field itself as

⟨n|Ex(r, t)|n⟩ = 0.
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2.1.3 Glauber Coherent State

Glauber defined single mode coherent states as eigenstates of annihilation operator sat-

isfying following equation [26],

â|α⟩ = α|α⟩. (2.1.16)

Since, â and â† are non-hermitian operators, the eigenvalue α is a complex number. As,

energy eigenstates of the harmonic oscillator or number states are orthonormal, coherent

states can be expanded with number states as basis,

|α⟩ =
∞∑
n=0

Cn|n⟩, (2.1.17)

where, Cn’s are the expansion co-efficients. Eq. (2.1.16) together with Eq. (2.1.17) yield,

Cn = ⟨n|α⟩ = e−|α|2/2 α
n

√
n!

⇒ |α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!
|n⟩. (2.1.18)

Significance of α

The significance of α becomes evident by taking expectation value of the number operator,

⟨n̂⟩ = ⟨α|â†â|α⟩ = |α|2, (2.1.19)

thus, for the states unlike number states where number of photons is not definite ⟨n̂⟩

gives the average number of photons, and for coherent states |α|2 takes the meaning of

average number of photons in the field. The fluctuations in the photon number given by

∆n̂2 is given as under,

⟨(∆n̂)2⟩ = ⟨n̂2⟩ − ⟨n̂⟩2,

= ⟨α|â†ââ†â|α⟩ − (⟨α|â†â|α⟩)2,

12



using the commutator relation [â, â†] = 1,

= |α|2. (2.1.20)

As, average number of photons and its fluctuations in field is same, the photon statistics

in the field are Poissonian. A fact, reinforced through probability of finding n photons in

the state,

Pn = |⟨n|α⟩|2,

= (e−|α|2/2)2
(αα∗)n

n!
,

= e−|α|2 |α|2n

n!
, (2.1.21)

which is a Poissonian profile.

Quantized Field States

Coherent states offer the description of electric field component of the light. Using eq.

(2.1.4), and time dependent ladder operators, (obtained via Heisenberg equation of mo-

tion dÔ/dt = (i/h̄)[Ĥ, Ô] used in Heisenberg picture, discussed in next subsection, to

study evolution of operators),

Ex(z, t) = Eo(âe
−iωt + â†eiωt) sin(kz), (2.1.22)

taking expectation value with respect to coherent states,

⟨α|Ex(z, t)|α⟩ = Eo|α|(ei(θ−ωt) + e−i(θ−ωt)) sin(kz), (2.1.23)

= 2Eo|α| cos(θ − ωt) sin(kz), (2.1.24)

̸= 0. (2.1.25)

2.1.4 Coherent State as Classical Field

Coherent states of the oscillator, are purely quantum in construction owing to be defined

through superposition of number states, and thus use of term classical light to represent

them is a misnomer. However, we can argue that these states have certain properties

13



which bring them closest to classical systems. In this sense, i.e., from quantum mechanical

point of view, coherent states are dubbed as classical [28].

Minimum Uncertainty States

In Classical Mechanics, description of various systems through phase space helps in vi-

sualising the trajectories that system takes. The position and momentum coordinates

of a point in phase space, give complete description of the system and can exactly be

measured. When considered in the context for light, this entails measuring the ampli-

tude and phase of electric field precisely. In contrast, the phase space description of

a state in quantum mechanics is troublesome as all quantum states follow Heisenberg

Uncertainty Principle. The principle dictates that complementary variables cannot be

measured precisely, as for any such variables R̂ and T̂ ,

⟨(∆R̂)2⟩⟨(∆T̂ )2⟩ ≥ 1

4
|⟨[R̂, T̂ ]⟩|2. (2.1.26)

Thus, if coherent states minimize this uncertainty i.e., allow system to be described in

phase space nearest to trajectory of point particle, then they qualify as classical like.

Rescaling position and momentum operators to dimensionless quadrature operators,

X̂µ =
i

2
(e−iµâ† − eiµâ), (2.1.27)

with µ = 0, π/2 representing rescaled momentum and position operators, respectively.

They are called as quadrature operators as in phase space they reveal the coherent state

to be oscillating out of phase by 90o,

⟨X̂π/2⟩ =
1

2
(α + α∗) = |α| cos θ = Re(α), (2.1.28)

⟨X̂0⟩ =
i

2
(α∗ − α) = |α| sin θ = ℑ(α). (2.1.29)

Eq. (2.1.26) for quadrature operators becomes,

⟨(∆X̂π/2)
2⟩⟨(∆X̂0)

2⟩ ≥ 1

4
|⟨[X̂π/2, X̂0]⟩|2,

=
1

16
, (2.1.30)
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as [X̂π/2, X̂0] =
i
2
. The variance in each quadrature with respect to coherent state turns

out to be equal,

⟨α|(∆X̂π/2)
2|α⟩ = 1

4
= ⟨α|(∆X̂0)

2|α⟩, (2.1.31)

with,

⟨α|(∆X̂π/2)
2|α⟩⟨α|(∆X̂0)

2|α⟩ = 1

16
. (2.1.32)

Hence, coherent states are minimum uncertainty states and thus are most classical

among all quantum states. The phase space depiction of coherent states is given in

following fig. 2.1.1:

(a) Coherent state for small α (b) Coherent state for large α

Figure 2.1.1: Phase space representation of a coherent state α with amplitude |α| and angle
θ. Comparison of (a) and (b) depicts that in classical limit the phase uncertainty ∆θ gets small,
but quadrature uncertainty indicated by the shaded circle remains same

Classical Dynamics of Coherent State

The evolution of any state can be discerned by using the unitary time evolution operator

Û = e−
i
h̄
Ĥt. Quantum systems for which the Hamiltonian are time independent, two

evolution pictures can be used to govern their dynamics depending on whether the state or

operator evolves; Schrödinger and Heisenberg picture. Schrödinger Picture (SP) dictates

that the states evolve with time whereas the operator stays stationary and vice-versa for

the Heisenberg picture. Using SP,

|α(t)⟩ = Û |α(0)⟩,
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using Hamiltonian of quantum harmonic oscillator,

= e−|α|2/2
∑
n

αn√
n!
e−iωt(n̂+1/2)|n⟩,

= e−iωt/2e−|α|2/2
∑
n

(αe−iωt)n√
n!

|n⟩,

= e−iωt/2|αe−iωt⟩, (2.1.33)

which shows that |α⟩ continues to stay as a coherent state, as it evolves with time.

Now let’s look into the wave function of coherent state and the dynamics of its centroid:

ψα(q) = ⟨q|α⟩, (2.1.34)

using definition of coherent state,

= e−|α|2/2
∞∑
n=0

αn√
n!
⟨q|n⟩, (2.1.35)

using expression for number state wave function,

= e−∥α|2/2
∞∑
n=0

αn√
n!

[
(2nn!)−1/2

( ω
πh̄

)1/4
e−η

2/2Hn(η)

]
, (2.1.36)

where, Hn(η) are the Hermite polynomial and η = q
√
ω/h̄. Using Hermite polynomial’s

generating function, g(η, x) = e−x
2+2xη =

∑∞
m=0(x

n/n!)Hn(η),

=
( ω
πh̄

)1/4
e−|α|2/2e−η

2/2

∞∑
n=0

1

n!

( α√
2

)n
Hn(η), (2.1.37)

=
( ω
πh̄

)1/4
e−|α|2/2e−η

2/2e−
α2

2
+
√
2αη, (2.1.38)

completing the square,

=
( ω
πh̄

)1/4
e−|α|2/2eη

2/2e
−(η− α√

2
)2
, (2.1.39)
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this is a Gaussian wave function. The probability density with respect to position be-

comes,

=
( ω
πh̄

)1/2
e−|α|2eη

2

e−(
√
2η−α)2 , (2.1.40)

which is also a Gaussian. Similarly, the corresponding time evolved wave function is,

=
( ω
πh̄

)1/4
e−|α|2/2eη

2/2e
−(η−αe−iωt

√
2

)2
, (2.1.41)

with the probability density given as,

=
( ω
πh̄

)1/2
e−|α|2eη

2

e
−(η−αe−iωt

√
2

)2
e
−(η−α∗eiωt

√
2

)2
, (2.1.42)

=
( ω
πh̄

)1/2
e−(η−

√
2ℜαe−iωt)2 , (2.1.43)

this is just an oscillatory Gaussian wave packet at all times. This is a signature classical

behaviour, with a particle substituted by a wave packet. In contrast, other quantum

mechanical states show dispersion with time. Looking at the centroid of the time evolved

wave function,

⟨q̂⟩t = ⟨αe−iωt|q̂|αe−iωt⟩ =
√

h̄

2ω
⟨αe−iωt|â+ â†|αe−iωt⟩, (2.1.44)

where, we have used q̂ =
√

h̄
2ω
(â+ â†),

=

√
h̄

2ω
e−|α|2

∞∑
m=0

∞∑
n=0

(αe−iωt)∗m√
m!

⟨m|â+ â†|n⟩(αe
−iωt)n√
n!

, (2.1.45)

=

√
h̄

2ω
e−|α|2

∞∑
m=0

∞∑
n=1

(αe−iωt)∗m√
m!

(
√
nδm,n−1 +

√
n+ 1δm,n+1)

(αe−iωt)n√
n!

, (2.1.46)

=

√
h̄

2ω
e−|α|2

∞∑
m=0

|α|2m

m!
|α|(ei(θ−ωt) + e−i(θ−ωt)), (2.1.47)

=

√
2h̄

ω
Re(αeiωt). (2.1.48)
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Similarly, for p̂ = i
√

h̄ω
2
(â† − â),

⟨p̂⟩t =
√
2h̄ωIm(αeiωt). (2.1.49)

The above time average values of displacement and momentum operators, reflect

oscillatory behaviour of the centroid of wave function of coherent state.

2.1.5 Properties of Coherent States

Prior to Glauber formalism for the coherent states, they were given no heed as they could

not be used as basis. However, Glauber did explicitly showed a way in which operators

and states could be expanded in terms of coherent states, bearing unique properties.

Non-orthogonality

Although coherent states are considered as classical, they cannot be distinguished if their

amplitude is relatively small. This can be made evident by overlapping the two different

coherent states |γ⟩ and |λ⟩ (for detail calculations refer to appendix A.1),

⟨λ|γ⟩ = (e−|λ|2/2
∞∑
m=0

λ∗m√
m!

⟨m|)(e−|γ|2/2
∞∑
n=0

γn√
n!
|n⟩),

= e−(|λ|2+|γ|2)/2eλ
∗γ, (2.1.50)

= e−(|λ−γ|)2/2e(λ
∗γ−λγ∗)/2,

|⟨λ|γ⟩|2 = e−(|λ−γ|)2 . (2.1.51)

Hence, coherent states are not distinguishable unless |λ− γ| ≥ 0, making them generally

non-orthogonal [12] and [27].

Normalization

The coherent states are normalized, with their over-completeness [27] relation given as,

∫
|λ⟩⟨λ|d

2λ

π
= 1, (2.1.52)

(refer to appendix A.2) where, the integrand is integrated over the complex plane, d2λ =

d(ℜλ)d(ℑλ).
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2.1.6 Generating Coherent States

Generation of coherent states can be achieved by application of the unitary displacement

operator D̂ on vacuum state. The operator is a function of complex variable λ and is

defined as under [26],

D̂(λ) := eλâ
†−λ∗â, (2.1.53)

when applied to vacuum state leads to,

|λ⟩ = D(λ)|0⟩ = eλâ
†−λ∗â|0⟩. (2.1.54)

The proof is given in appendix A.3

2.2 Schrödinger Cat States

A Schrödinger cat in quantum optics, as noted earlier, is defined as a superposition

of macroscopically distinct |α⟩ and | − α⟩ coherent states, which is directly related to

Schrödinger thought experiment where the macroscopic object, i.e. a cat (here actuated

to coherent state being treated as classical state) is in superposition of classically distinct

states, i.e. alive and dead (corresponds to |α⟩ and | − α⟩). Depending on the relative

phase of the coherent states involved, in the said superposition; they can be classified as

even or odd Schrödinger cats. Dodonov et al. mentioned the explicit form of these cats

[3] as earliest as 1973, and tagged them as even and odd coherent states.

Even |ψe⟩ and odd cats |ψo⟩ are even and odd superposition of |α⟩ and | − α⟩, i.e.,

out of phase (distinct) coherent states with fixed phase difference of 0,

|ψe⟩ = Ne(|α⟩+ | − α⟩), (2.2.1)

( with Ne = (2 + 2e−2|α|2)−1/2), and π,

|ψo⟩ = No(|α⟩ − | − α⟩), (2.2.2)

(with No = (2− 2e−2|α|2)−1/2), respectively, making them symmetric and anti-symmetric
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under parity transformation (α → −α). Ne and No represent constants obtained through

normalization requirement of cats ⟨ψ|ψ⟩. The two distinct states can be visualized in

phase space as depicted in fig. 2.2.1; however, the even cats, in literature, generally

consider the coherent states on real line with θ = 0 i.e., real α. This simplifies the

mathematical analysis and graphical representation. Visualizing cats in phase space

requires much more novel functions like Wigner function (discussed in the next chapter).

Figure 2.2.1: Phase space representation of two distinct forms of coherent states, which
become completely distinguishable for large α.

It is pertinent to mention here that as coherent states are non-orthogonal, they cannot

be said as distinct or distinguishable states in the strict sense of quantum mechanics,

unless α is considered as very large causing the overlap of the two states ⟨α|−α⟩ = e−2|α|2

to vanish. However, the term distinct is employed as the difference between the two

coherent states can be significant on macroscopic scale. Even though the classical states

within the cats are not distinct at quantum level, the cats themselves enjoy orthogonality

among them, and form complete sets separately in Hilbert space of even and off cats i.e.,

⟨ψe|ψo⟩ = 0,

∫
|ψk⟩⟨ψk|

d2α

π
= 1, (2.2.3)

where i = e, o.

The non-orthogonality of coherent states give rise to interference effects which is

quintessence of superposition. It is due to this feature that cats find wide ranging appli-

cations in quantum technologies.
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2.2.1 Yurke-Stoler State

Yurke-Stoler State (YS) presented by Yurke and Stoler [29] is also a superposition of the

two distinct coherent states; however, there is an additional phase shift of eiπ/2 between

them in the superposition unlike Schrödinger cats and are therefore not considered under

the umbrella term. This phase shift gives rise to interference effects which are not in

consonance with the cats (discussed in detail in next chapter). Mathematically, they are

represented as under [30],

|ψys⟩ =
1√
2
(|α⟩+ i| − α⟩). (2.2.4)

The unique interference pattern of YS demands it utility in experiments where more

control over phase difference and coherence is needed.

2.2.2 Generalized Coherent or Multiheaded Cat States

In literature, there exist states which are superposition of more than two distinct coherent

states, which can be considered as extension of cats. However, the nomenclature associ-

ated with them varies. For instance, Goldberg and Heshami dubs them as generalized cat

states [31]. Lan et al. [32], introduces multiheaded quantum states, with N-headed coher-

ent superposition state i.e., NHCSS in which N number of coherent states having equal

weights are superposed, and Schrödinger cats are considered as quantum optics analogue

of 2HCSS. These states are later on also termed as higher order cat states. Wenchao

and Zubairy [33] have worked with superposition of three and four coherent states for

analyzing their nonclassicality and have called them as three-headed and four-headed

respectively. It is this later nomenclature that we are using in this document, with an

umbrella term Multiheaded Cat States (MH) referring to superposition of M number of

coherent states and by this classification Schrödinger cats and YS state can be considered

as 2H cats. There are various forms of MH cats depending on their relative phases, the

one considered in this document are discussed below.

Three Headed Cat State

Three Headed Cat State (3H cat) is generally a superposition of three distinct coherent

states; however, we have taken the form in which two of the three states are coherent
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with the third replaced by vacuum [33],

|ψ3h⟩ = N3h(|α⟩+ |0⟩+ | − α⟩), (2.2.5)

where, N3h = (3 + 4e−|α|2/2 + 2e−2|α|2)−1/2 is the normalization constant with significant

contribution due to overlap of various states involved. The presence of third state in the

superposition results in very unique properties different from cats. It may be pertinent to

mention here that the coherent state |α = 0⟩ correspond to the oscillator’s ground state,

i.e., |n = 0⟩, also called as vacuum. For vacuum state, number of photon is completely

known, rendering the phase completely uncertain. In phase space, the three states can

be visualized as follows,

Figure 2.2.2: Phase space representation of three distinct forms of coherent states, with one
coherent state replaced by vacuum. ∆θ = 2π shows that the phase is completely uncertain.

Four Headed Cat State

Four Headed Cat State (4H Cat), as the name suggests, is formed by superposition of

four coherent states with different phases.

|ψ4h⟩ =
1

2
(|α⟩ − |iα⟩+ | − α⟩+ | − iα⟩). (2.2.6)

The form shared above was first explored by Yurke and Stoler [29], and has several

significant features. The state is balanced superposition of four distinct coherent states

symmetrically placed around the origin in phase space at θ = 0, π/2, π and 3π/2. 4H Cat

reveal complex interference patterns.
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Figure 2.2.3: Phase space representation of four distinct forms of coherent states, symmetri-
cally placed around origin.

MH, with M representing the number of coherent states involved in the superposition,

are eigenstates of âM with αM as the eigenvalue,

âM |ψMh⟩ = αM |ψMh⟩, (2.2.7)

where, |ψMh⟩ represent an M headed cat.

2.2.3 Some Excited Multiheaded Cats

The single photon added cats can simply be prepared by application of the creation

operator â† on the cats, Schrödinger as well as multiheaded [34], [35]. In this thesis,

we have identified the photon added cats as excited cats. Table 2.1 shows all the ex-

cited multiheaded cats, which have been proposed by applying creation operator to their

non-excited counterparts and then finding their respective normalization constant. Nxyz

represent these constants obtained as, ⟨ψxyz|ψxyz⟩ = 1.

Excited Cats |ψxyz⟩ Nxyz

Even |ψeec⟩ = Neecâ
†|ψe⟩ Neec = (1 + |α|2N

2
e

N2
o
)−1/2

Odd |ψeoc⟩ = Neocâ
†|ψo⟩ Neoc = (1 + |α|2N

2
o

N2
e
)−1/2

YS |ψeys⟩ = Neysâ
†|ψys⟩ Neys = (1 + |α|2)−1/2

3H |ψe3h⟩ = Ne3hâ
†|ψ3h⟩ Ne3h = (1 + |α|2N

2
3h

N2
o
)−1/2

4H |ψe4h⟩ = Ne4hâ
†|ψ4h⟩ Ne4h =

(
1 + |α|2

)−1/2

Table 2.1: Excited Cats
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2.2.4 Generating Excited Cats in Lab

Following the photon addition scheme to a coherent state given by Zavatta et al. [36],

and Chen at al. [37], we have proposed following schematic for creation of excited cats.

Creation of Schrödinger Cat A laser source, which represents a coherent state cre-

ated through stimulated emission, is used to first create a squeezed vacuum state in signal

mode by passing the laser light through Optical Parametric Oscillator (OPO). The re-

sulting state can be represented as |ζ⟩s|0⟩i, where, | ⟩s and | ⟩i represent a signal and

idler mode respectively. This state is then directed onto a beam-splitter, to produce a cat

by photon subtraction [38]. The BS splits the beam into reflected and transmitted part,

with non-zero probability of a photon being detected by Single Photon Detector (SPD).

Thus, if the photon is detected in SPD, this means that it has been subtracted from the

reflected beam, giving rise to âs|ζ⟩s|1⟩i, where âs|ζ⟩s := |ψs⟩s is a cat in signal mode.

Photon Addition to Schrödinger Cat through SPDC Once the photon has been

detected at the SPD the resulting state becomes |ψs⟩s|0⟩i. The beam is directed to

Spontaneous Parametric Down Conversion (SPDC) where a pump beam is used to prob-

abilistically add single photons to both signal and idler modes as under,

|ψf⟩ = (1 + gâ†sâ
†
i )|ψs⟩s|0⟩i = |ψs⟩s|0⟩i + gâ†s|ψs⟩s|i⟩i, (2.2.8)

where, g is the gain factor of the SPDC process and â†s|ψs⟩s is an excited cat in signal

mode. SPDC basically annihilates a pump photon and creates an entangled photon

pair in signal and idler mode [39], and the second term in above equation represents

the probabilistic nature of creation of such a photon pair. The resulting beam advances

to a Polarized Beam Splitter (PBS), which splits the resulting beam according to their

polarization, as a type-II SPDC generates beams with orthogonal polarization. The idler

mode photon goes to SPD and heralds or announces the arrival of excited cat to the

Homodyne Detection (HD).

Homodyne Detection using the Generated Cat as Local Oscillator A part of

the cat state generated is directed to the HD as a local oscillator i.e. a reference state,

with which the excited cat is interfered at a BS. Homodyne detection allows observation

of quadratures of cat state generated in the signal mode [40].
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Figure 2.2.4: Schematics for creation of excited cat. The OPO generates squeezed vacuum
state, which through photon subtraction creates cat state. Photon addition to cat and idler
vacuum mode is ensured in SPDC. The idler photon heralds the signal mode to homodyne
detector. Local oscillator (cat) and excited cats are made to interfere on beam-splitter for
extraction of phase information by HD.

25



Chapter 3

Quantifying Nonclassicality of

Schrödinger Cats

Nonclassicality of quantum states is generally defined as properties of states that cannot

be described by classical physics. Such properties, may include entanglement, superposi-

tion and squeezing etc. In quantum technology, nonclassicality offers quantum advantage

that has no classical analogue. Therefore, it is necessary to look for quantifiers of nonclas-

sicality which could capture its extent in states. We open this chapter with the discussion

on the criteria that quantum states ought to fulfill to be tagged as nonclassical, followed

by discussion on some quantifiers of nonclassicality. In the end, the same quantifiers are

used to explore the nature of multiheaded cats.

3.1 Nonclassicality and P Function

P Representation of Coherent States

The density operator representing the state can be expanded in terms of coherent states

as,

ρ̂ =

∫
P (α)|α⟩⟨α|d2α, (3.1.1)

which according to Glauber is called as P representation [26]. P (α) that reflects the

weight of coherent states in the above expansion, is titled as the Glauber-Sudarshan P

function, for Sudarshan also observed the same form for the density operator [27]. This

weight function can be considered similar to the probability density of different values of

26



α across the complex plane, if P (α) ≥ 0 or if it contains singularities as strong as delta

function, which is so for coherent states.

Criteria for Nonclassicality

It turns out that for certain quantum states, P (α) ceases to be a Probability Distribution

Function (PDF) owing to negative values in some part of phase space or has singularities

stronger than delta function (i.e., derivative of delta function). The states for which P (α)

can no longer be a true probability distribution function, are referred to as nonclassical

and the corresponding P function qualifies as quasi-probability distribution.

Normalization of P Function

Just like any phase space probability distribution, the P function distribution when

integrated across the entire complex plane gives 1. This can be asserted by using the

definition of a mixed quantum state,

ρ̂ =
∑
i

pi|ψi⟩⟨ψi|,

where, |ψi⟩ represents a pure state, and pi is the probability of finding the system in the

ith pure state,

Tr(ρ̂) =
∑
n

∑
i

pi⟨n|ψi⟩⟨ψi|n⟩,

with, |n⟩ representing orthonormal basis, which forms a complete set i.e.
∑

n |n⟩⟨n| = 1.

Using completeness of |n⟩ and normalizability of |ψi⟩,

=
∑
i

pi,

= 1, (3.1.2)

recalling Eq. (3.1.1) and Eq. (3.1.1), we get,

1 = Tr(ρ) = Tr

∫
P (α)|α⟩⟨α|d2α,
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using property of trace,

=

∫
P (α)⟨α|α⟩d2α,

=

∫
P (α)d2α.

Inadequacy of P Function in Phase Space Realization

A drawback of P function is that it constitutes tempered distribution, and is strictly

speaking not a function. Unlike functions, the distributions represented by derivatives

of delta function hold no meaning until they appear in an integral acting on a function,

facilitating shift of derivative on to the function itself. Therefore, Wigner function dis-

cussed in the next paragraph is of primary interest for inferring nonclassicality of quantum

states.

3.2 Nonclassicality Quantifiers

There are number of quantifiers of nonclassicality, with each having its own attributes,

quantifying various aspects of nonclassicality. These include Wigner function, Mandel Q

parameter, squeezing parameter, entanglement potential, measures of non-Gaussianity,

resource and operational resource theory of nonclassicality [28] etc. Out of these we have

discussed first two quantifiers in succeeding sections and the last one in next chapter.

3.2.1 Wigner Function

Another phase space quasi-probability distribution function which captures the nonclas-

sical nature of states, called Wigner function, was first proposed by Wigner in 1932 and

is defined as [41],

W (q, p) :=
1

2πh̄

∫ ∞

−∞
⟨q + 1

2
x|ρ̂|q − 1

2
x⟩eipx/h̄dx, (3.2.1)

and when integrated over entire phase space yields 1. For ρ̂ = |ψ⟩⟨ψ|,

∫ ∞

−∞
W (q, p)dpdq =

1

2πh̄

[∫ ∞

−∞
ψ∗(q +

1

2
x)ψ(q − 1

2
x)

(∫ ∞

−∞
eipx/h̄dp

)
dxdq

]
,
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using fourier transform of delta function,

=

∫ ∞

−∞
|ψ(q)|2dq = 1.

Wigner function can be obtained as Fourier transform of a symmetric ordered character-

istic function C
(ρ)
s [42],

W (α) =
1

π2

∫
eλ

∗α−λα∗
C(ρ)
s (λ)d2λ. (3.2.2)

The characteristic functions of state of a system correspond to various orders in which

D(λ) is expanded in terms of creation and annihilation operator. Number operator (â†â)

is in normal order, operator ââ† is ordered anti-normally, whereas, sum of these operators

is symmetric. Thus, in general there are three characteristic functions given as under:

C(ρ)
s (λ) = Tr[ρ̂D(λ)] = Tr[ρ̂eλâ

†−λ∗â], (3.2.3)

C(ρ)
n (λ) = Tr[ρ̂eλâ

†
e−λ

∗â], (3.2.4)

C(ρ)
an (λ) = Tr[ρ̂e−λ

∗âeλâ
†
], (3.2.5)

where ρ is the density operator describing the state, C
(ρ)
n (λ) and C

(ρ)
an (λ) are the normal

and anti-normal ordered characteristic functions, respectively. These functions are linked

as,

C(ρ)
s (λ) = C(ρ)

n (λ)e−|λ|2/2 = C(ρ)
an (λ)e

|λ|2/2, (3.2.6)

and can be used to calculate Wigner functions of various states. We have worked out the

Wigner functions of cats through normal ordered characteristic function as it reduces the

complexity of the calculations.

3.2.2 Mandel Q Parameter

Mandel Q parameter helps in capturing the nonclassicality of states by quantifying the

deviation of statistics of photon number of a particular optical field from that of classical
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state. Mathematically, it is defined as [43],

Q :=
⟨(∆n̂)2⟩ − ⟨n̂⟩

⟨n̂⟩
,

simplifying further,

=
⟨n̂2⟩ − ⟨n̂⟩2 − ⟨n̂⟩

⟨n̂⟩
,

=
⟨â†ââ†â⟩ − ⟨â†â⟩2 − ⟨â†â⟩

⟨â†â⟩
,

=
⟨â†â⟩+ ⟨â†2â2⟩ − ⟨â†â⟩2 − ⟨â†â⟩

⟨â†â⟩
,

=
⟨â†2â2⟩ − ⟨â†â⟩2

⟨â†â⟩
, (3.2.7)

where, ⟨(∆n̂)2⟩ is the variance in distribution of photon number. Q parameter help

identify the nature of states as when :

Q = 0, indicates Poissonian character of states, which is typical of coherent states.

Therefore, Poissonian behaviour is associated with classicality.

Q < 0, corresponds to sub-Poissonian statistics, which relates to non-classical state.

This indicates less fluctuation in photon number than expected from classical states.

Q > 0, corresponds to super-Poissonian statistics which can hint towards classical (for

thermal field) or non-classical light, making Q insufficient to assess the nature of state.

For states showing such statistics, fluctuations in photon number is greater than the

average photon number.

Figure 3.2.1: Types of Photon Number Distributions. Classical and nonclassical states follow
Poissonian and sub-Poissonian statistics, respectively. Ambiguity prevails for nature of states
showing super-Poissonian behaviour. [44]
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3.3 Nature of Schrödinger Cat States

Equipped with the tools to investigate the nonclassicality of states, we now analyze the

nature of multiheaded cats.

3.3.1 Wigner Function of Cats

The normal ordered characteristic function for even cat is:

Cn(e)(λ) = ⟨ψe|eλâ
†
e−λ

∗â|ψe⟩,

= |Ne|2(⟨α|+ ⟨−α|)eλâ†e−λ∗â(|α⟩+ | − α⟩),

using eq(2.1.16) and eq(A.1.1),

= |Ne|2[eλα
∗−λ∗α + e−(λα∗−λ∗α) + e−2|α|2(eλα

∗+λ∗α + e−(λα∗+λ∗α))], (3.3.1)

=
2|Ne|2

π

[
e−2|β−α|2 + e−2|β+α|2 + 2e−2|β|2 cos 2i(αβ∗ − α∗β)

]
,

The Wigner function becomes,

We(β) =
2|Ne|2

π

[
e−2|β−α|2 + e−2|β+α|2 + 2e−2|β|2 cos 4Im(αβ∗)

]
,

which for real α reduce to,

We(β) =
2|Ne|2

π

[
e−2[(βr−αr)2+β2

i ] + e−2[(βr+αr)2+β2
i ] + 2e−2(β2

r+β
2
i ) cos 4(αrβi)

]
. (3.3.2)
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(a) Plot of We Vs β

(b) Projection of We

Figure 3.3.1: Wigner Function of even cat for α =
√
5. (a) Gaussian curves reflect the alive

and dead components of the Schrödinger cat at α = ±
√
5, with interference fringes between

them. The negative curves in the fringe pattern indicate nonclassicality of even cat.

Key Features of Wigner Function of Even Cats

Wigner plot of even cats, has certain prominent and peculiar features, such as,

Gaussian Curves The first two terms of the Wigner function represent two Gaussian

curves which are obtained due to overlap of each coherent state with itself. e−2|β−α|2

appears due to |α⟩ and peaks at β = α i.e. βr =
√
5 and βi = 0 as we have plotted the

function for real α. The second Gaussian term is again due to | − α⟩ with maximum at

βr = −
√
5 and βi = 0.

Interference Fringes The fringes in the centre are due to interference between the

two coherent states, reflecting coherence terms and superposition. The oscillations in

the fringes is due to the cosine function in the last term e−2|β|2 cos 2Im(αβ∗); whereas the

Gaussian function centered at zero modulates the oscillations ensuring that the amplitude

dies down as β increases. The valleys in the interference pattern, where Wigner function

becomes negative, are indicative of nonclassicality of even cat.
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Similarly, Wigner functions for odd cat is:

Wo(β) =
2|No|2

π

[
e−2|β−α|2 + e−2|β+α|2 − 2e−2|β|2 cos 4Im(αβ∗)

]
,

for real α,

=
2|No|2

π

[
e−2[(βr−αr)2+β2

i ] + e−2[(βr+αr)2+β2
i ] − 2e−2(β2

r+β
2
i ) cos 4(αrβi)

]
. (3.3.3)

(a) Plot of Wo Vs β

(b) Projection of Wo

Figure 3.3.2: Wigner Function of odd cat with α =
√
5. (a) Gaussian curves are same as for

even cat at α = ±
√
5. The fringe pattern again has negative values indicating nonclassicality

of odd cats; however, due to inversion of fringes the negativity of Wigner function of even and
odd cats will differ.

The Wigner function of odd cats share similar key features as that of even cats, i.e.

with two Gaussian curves peaked at (βr, βi) = (±
√
5, 0) and an interference pattern.

However, the defining feature of odd cats is its inverted fringe pattern, which contains a

central negative peak with alternating adjacent peaks. Thus, odd cat is also nonclassical
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due to negativity of its Wigner function.

For YS state, due to presence of additional phase difference in coherent states, the

Wigner function changes to,

Wys(β) =
1

π

[
e−2|β−α|2 + e−2|β+α|2 + 2e−2|β|2 sin 4Im(αβ∗)

]
,

for real α,

=
1

π

[
e−2[(βr−αr)2+β2

i ] + e−2[(βr+αr)2+β2
i ] − 2e−2(β2

r+β
2
i ) sin 4(αrβi)

]
. (3.3.4)

(a) Plot of Wys Vs β

(b) Projection of Wys

Figure 3.3.3: Wigner Function of YS state with α =
√
5. Apart from Gaussian curves which

share same properties with even and odd cats, the interference pattern shows oscillations which
are signature of sine function. Negative curves of the fringes hint towards nonclassicality of the
states.

Once again, the Wigner function for YS state only differ in its fringe pattern, which

shows oscillatory behaviour depicted by sine function and modulated by Gaussian. Due

to sine function, which is out of phase by 90o to the cosine function in even and odd cats,
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additional phase shift is introduced and the negative central peak of Gaussian envelope

is shifted at βi = π/2k where k = 4αr. The negative values of Wigner function of YS cat

is indicative of nonclassicality.

For 3H and 4H, the plots for Wigner functions are:

Figure 3.3.4: Wigner Functions for 3H and 4H [32]

From Fig. 3.3.4 it is evident that the Wigner function of these cats assume negative

values in phase space. The interference pattern differs substantially from that of cats and

YS state. Apart from the general features, the negativity of Wigner function reflects that

3 and 4H cats are nonclassical as well.

3.3.2 Q Parameter for Cats

Recalling eq. (3.2.7), in this section we have calculated the Q parameter of multiheaded

cats and their excited counterparts, and then Q parameter for cats have been plotted for

analysis of their photon statistics.

Even Cats

For even cats given by eq. (2.2.1), evaluating the averages involved in definition of Q:

⟨ψe|â†â|ψe⟩ = N2
e (⟨α|+ ⟨−α|)â†â(|α⟩+ | − α⟩),
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using Eq. (A.1.1), ⟨±α| ∓ α⟩ = e−2|α|2 ,

= |α|2N2
e /N

2
o . (3.3.5)

As 2H cats are eigenstate of â2,

⟨ψe|â†2â2|ψe⟩ = |α|4. (3.3.6)

Hence, Eq. (3.2.7) becomes,

Qe =
|α|2(N4

o −N4
e )

N2
eN

2
o

,

=
4|α|2e−2|α|2

1− e−4|α|2 > 0. (3.3.7)

Thus, even cats follow super-Poissonian statistics and their nonclassicality cannot be

concluded from Q alone.

Odd Cats

Recalling odd cats given by eq. (2.2.2),

⟨ψo|â†â|ψo⟩ = |α|2N2
o /N

2
e . (3.3.8)

Q parameter for odd cat, Qo, is given as,

Qo =
|α|2(N4

e −N4
o )

N2
eN

2
o

,

= −4|α|2e−2|α|2

1− e−4|α|2 < 0, (3.3.9)

which hint towards sub-Poissonian statistics, capturing nonclassicality of these cats.

36



YS States

For YS states, as given in eq. (2.2.4), evaluating the averages involved in Q,

⟨ψys|â†â|ψys⟩ =
1

2
(⟨α| − i⟨−α|)â†â(|α⟩+ i| − α⟩),

= |α|2. (3.3.10)

The corresponding Q parameter Qys becomes,

Qys =
|α|4 − |α|4

|α|2
,

= 0, (3.3.11)

which represent YS states as classical owing to their Poissonian photon statistics.

3H Cats

Evaluating the averages involved in Mandel Q for 3H cats,

⟨ψ3h|â†â|ψ3h⟩ = 2N2
3h|α|2(1− e−2|α|2),

=
N2

3h|α|2

N2
o

. (3.3.12)

⟨ψ3h|â†2â2|ψ3h⟩ =
N2

3h|α|4

N2
e

. (3.3.13)

Mandel Q parameter for 3H cats Q3h becomes,

Q3h =
N2

3h|α|4/N2
e −N4

3h|α|4/N4
o

N2
3h|α|2/N2

o

,

= |α|2
(
N2
o

N2
e

− N2
3h

N2
o

)
> 0, (3.3.14)

reflecting super-Poissonian characteristics.

4H Cats

Evaluating the averages involved in Mandel Q,

⟨ψ4h|â†â|ψ4h⟩ =
1

4
(⟨α| − ⟨iα|+ ⟨−α|+ ⟨−iα|)â†â(|α⟩ − |iα⟩+ | − α⟩+ | − iα⟩),
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using Eq. (A.1.1), ⟨±α| ± iα⟩ = ⟨±iα| ∓ α⟩ = e−|α|2ei|α|
2
, ⟨±α| ∓ iα⟩ = ⟨±iα| ± α⟩ =

e−|α|2e−i|α|
2
and ⟨±iα| ∓ iα⟩ = e−2|α|2 ,

= |α|2. (3.3.15)

⟨ψ4h|â†2â2|ψ4h⟩ = |α|4. (3.3.16)

Q4h becomes,

Q4h =
|α|4 − |α|4

|α|2
,

= 0. (3.3.17)

Hence, 4H cats like YS display classical character according to Q parameter.

Excited Even Cat

Evaluating the averages involved in Q for excited even cats,

⟨ψeec|â†â|ψeec⟩ = N2
eec⟨ψe|ââ†ââ†|ψe⟩,

using commutator [â, â†] = 1,

= N2
eec⟨ψe|1 + 3â†â+ â†2â2|ψe⟩.

Recalling results obtained for even cats,

= N2
eec(1 + 3|α|2N

2
e

N2
o

+ |α|4). (3.3.18)

⟨ψeec|â†2â2|ψeec⟩ = N2
eec⟨ψe|ââ†2â2â†|ψe⟩,

= N2
eec⟨ψe|4â†â+ 5â†2â2 + â†3â3|ψe⟩,

= N2
eec

[
4|α|2N

2
e

N2
o

+ 5|α|4 + |α|6N
2
e

N2
o

]
. (3.3.19)
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Mandel Q for excited even cat Qeec becomes,

Qeec =
N2
eec

[
4|α|2N

2
e

N2
o
+ 5|α|4 + |α|6N

2
e

N2
o

]
−N4

eec(1 + 3|α|2N
2
e

N2
o
+ |α|4)2

N2
eec(1 + 3|α|2N2

e

N2
o
+ |α|4)

,

= −16|α|8N4
oN

4
e e

−2|α|2 + 8|α|4(1 + e−4|α|2 − 8e−2|α|2)N4
oN

4
e +N4

o + 2|α|2N2
oN

2
e

(N2
o + |α|2N2

e )(3|α|2N2
e +N2

o + |α|4N2
o )

< 0.

(3.3.20)

Thus, even though even cat displayed super-Poissonian statistics; its excited counterpart

clearly follows sub-Poisson statistics.

Excited Odd Cats

Evaluating the averages involved in Q,

⟨ψeoc|â†â|ψeoc⟩ = N2
eoc(1 + 3|α|2N

2
o

N2
e

+ |α|4). (3.3.21)

⟨ψeoc|â†2â2|ψeoc⟩ = N2
eoc⟨ψo|4â†â+ 5â†2â2 + â†3â3|ψo⟩,

= N2
eoc

[
4|α|2N

2
o

N2
e

+ 5|α|4 + |α|6N
2
o

N2
e

]
. (3.3.22)

Qeoc becomes,

Qeoc =
N2
eoc

[
4|α|2N

2
o

N2
e
+ 5|α|4 + |α|6N

2
o

N2
e

]
−N4

eoc(1 + 3|α|2N
2
o

N2
e
+ |α|4)2

N2
eoc(1 + 3|α|2N2

o

N2
e
+ |α|4)

,

=
16|α|8N4

oN
4
e e

−2|α|2 − 8|α|4(1 + e−4|α|2 + 8e−2|α|2)N4
oN

4
e −N4

e − 2|α|2N2
oN

2
e

(N2
e + |α|2N2

o )(3|α|2N2
o +N2

e + |α|4N2
e )

.

(3.3.23)

By plotting the above result, we learn that Qeoc < 0; hence, excited odd cat follow

sub-Poissonian statistics.

Excited YS States

Evaluating the averages involved in Q,

⟨ψeys|â†â|ψeys⟩ = N2
eys(1 + 3|α|2 + |α|4). (3.3.24)

⟨ψeys|â†2â2|ψeys⟩ = N2
eys

[
4|α|2 + 5|α|4 + |α|6

]
. (3.3.25)
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Qeys becomes,

Qeys = −N2
eys

1 + 2|α|2 + 2|α|4

1 + 3|α|2 + |α|4
< 0. (3.3.26)

Hence, nonclassicality of excited YS state is captured by Q parameter as opposed to their

non-excited counterparts, for which Qys was 0.

Excited 3H Cats

Evaluating the averages involved in Q,

⟨ψe3h|â†â|ψe3h⟩ = N2
e3h(1 + 3|α|2N

2
3hN2

o + |α|4N
2
3h

N2
e

).

⟨ψe3h|â†2â2|ψe3h⟩ = N2
e3h

[
4|α|2N

2
3h

N2
o

+ 5|α|4N
2
3h

N2
e

+ |α|6N
2
3h

N2
o

]
. (3.3.27)

Qe3h becomes,

Qe3h =
[
N2
e3h|α|2N4

3h

[
− 12− 2|α|2 + 2|α|4 + e−|α|2/2(24|α|2 − 16 + 8|α|4)

+e−2|α|2(4 + 70|α|2 − 2|α|4 − 16|α|6) + e−5|α|2/2(24|α|2 + 16− 8|α|4)

+e−4|α|2(8− 8|α|2)
]
−N2

e3h

]
/
(
1 + 3|α|2N

2
3h

N2
o

+ |α|4N
2
3h

N2
e

)
. (3.3.28)

Plotting the above result shows that Qe3h < 0, as opposed to positive values of Q for 3H

state.

Excited 4H Cats

Evaluating the averages involved in Q,

⟨ψe4h|â†â|ψe4h⟩ = N2
e4h

(
1 + 3|α|2 + |α|4

)
. (3.3.29)

⟨ψe4h|â†2â2|ψe4h⟩ = N2
e4h

(
4|α|2 + 5|α|4 + |α|6

)
. (3.3.30)

Qe4h becomes,

Qe4h = − 2|α|2

1 + 3|α|2 + |α|4
< 0. (3.3.31)
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As opposed to 4H cats for which Q = 0, for excited 4H cat Q attains negative values

reflecting nonclassical attribute.

Fig. 3.3.5 reflect that among Schrödiner cats Q parameter is negative for odd cats

only; thus qualifying it as noncalssical state. YS state is tagged as classical state, owing

to zero value of Q which is not in consonance with negativity of corresponding Wigner

function. Hence, Q is unable to capture any nonclassical aspect of this state. For even

cat, Q being greater than zero reveals super-Poissonian statistics. In such instances,

ambiguity prevails in interpreting the nature of state as super-Poissonian character can

be inferred either as classical or nonclassical. Similarly, Q identifies 4H cat as classical

for Q4h = 0 and fails to distinguish 3H cat as classical or nonclassical as Q3h > 0.

Figure 3.3.5: Plot of Q parameter vs |α|2 for cats. Q only qualifies odd cat as nonclassical,
and shows ambiguity in inferring nonclassicality

Even though Q parameter is not capturing the nonclassicality of the cats in entirety,

it may hold some bearing over metrological ability of the states. It is this aspect that we

intend to explore.
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Chapter 4

Operational Quantification of

Nonclassicality via Quantum

Metrology

In this chapter, we have first explored various quantum tasks involved in quantum metrol-

ogy for undergoing parameter estimation, followed by detail review of classical versus

quantum estimation theory. In the end, we have discussed the operational quantifiers of

nonclassicality that define nonclassicality in terms of any advantage that they offer in

carrying out a quantum task.

4.1 Quantum Metrology

Quantum metrology has already been introduced in Chapter 1 along with cursory mention

of steps involved in it, here we discuss its various quantum mechanical aspects, in detail.

4.1.1 Estimation Tasks in Quantum Metrology

The most significant part of the quantum metrology is the selection of a nonclassical

state ρ̂, called as probe, that optimizes the parameter estimation. It will be shown in

chapter 6 that probe optimized for estimation of one parameter may not necessarily be

optimized for another parameter. The unknown parameter ϕ, which is to be estimated

by the process, is encoded onto the probe state through unitary quantum mapping,

which gives rise to a state that now depends on ϕ as ρ̂ϕ = e−iϕĜρ̂eiϕĜ where, Ĝ is the
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generator of the transformation caused by quantum mapping. Performing estimation

of the parameter requires that a measurement be performed on ρ̂ϕ, which in quantum

metrology is represented by generalized measurements called as Positive Operator Valued

Measurements (POVM) [45]. {Π̂µ} represent hermitian elements of POVM and satisfy

certain relations, such as decomposition of unity
∫
Π̂µ dµ = 1 and Π̂µ ≥ 0. Projection

operators are special type of these generalized measurements. Once the measurement

is performed, the readouts satisfy the PDF p(µ|ϕ) = Tr(Π̂µρ̂ϕ). Now the problem at

hand has reduced to that of classical parameter estimation. However, selection of a

particular POVM from infinite options will impact the parameter estimation and thus

needs optimization as well.

Figure 4.1.1: Steps in Quantum Metrology

4.1.2 Classical Parameter Estimation

The problem of classical estimation theory tantamount to finding an unbiased estimator

Φ that maps the results {µ} of measurements of a system, to an unknown parameter {ϕ}

[46]. The measurement outcomes µ follow a certain PDF p(µ|ϕ) and follow normalization

condition,
∫
p(µ|ϕ)dµ = 1. Our guess of unknown parameter can be correct if we repeat

the experiment multiple times, which translates to the accuracy of the estimator deeming

it unbiased, i.e.,

⟨Φ⟩ =
∫
p(µ|ϕ)Φdµ(µ) = ϕ. (4.1.1)

Here, ϕ represents the true value of unknown parameter. In order to look for an efficient

estimator we need to define a quantity called Fisher Information (FI). FI is defined as

the average of square of derivative of log likelihood function taken over entire values of
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outcomes µ,

F (ϕ) :=

〈[
∂ϕ log p(µ|ϕ)

]2〉
, (4.1.2)

=

∫
dµ

(
∂ϕ log p(µ|ϕ)

)2
,

=

∫
dµ

1

p(µ|ϕ)

(
∂ϕp(µ|ϕ)

)2

, (4.1.3)

which in terms of log likelihood L(µ|ϕ) = log p(µ|ϕ) can be written as,

=

〈[
∂ϕL(µ|ϕ)

]2〉
, (4.1.4)

where Likelihood function finds the best PDF that fits the given data i.e., measure-

ment outcomes, for a given value of ϕ. The efficiency with which an estimator estimates

the unknown parameter is given by Cramer-Rao Bound (CRB) (appendix C.1),

∆2Φ̂ ≥ 1

NF (ϕ)
, (4.1.5)

where N is the number of times measurement is performed. The estimators saturating

the CRB are termed as the most efficient.

4.1.3 Quantum Estimation Theory

Transition from classical to quantum estimation theory calls for considering quantum

states for probes and POVM for carrying out measurements. Addressing the optimal

selection of POVM for quantum metrology mandates introduction of a hermitian operator

called as Symmetric Logarithmic Derivative (SLD)[28]. This operator satisfies following

equation,

∂ϕρ̂ϕ =
1

2
{ρ̂ϕ, L̂ϕ}, (4.1.6)

with ρ̂ϕ to be taken as a mixed state i.e., ρ̂ϕ =
∑

k pk|ψk⟩⟨ψk|, L̂ϕ turns out as under

(appendix C.2),

L̂ϕ = 2
∑
k,l

(∂ϕρ̂ϕ)kl|ψk⟩⟨ψl|
pk + pl

, (4.1.7)
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Using eq. (4.1.6) together with eq. (4.1.7) leads to,

F (ϕ) ≤ Tr[ρ̂ϕL̂
2
ϕ],

where, the RHS of the inequality is defined as Quantum Fisher Information (QFI)

FQ(ρ̂, ϕ) := Tr[ρ̂ϕL̂
2
ϕ] [46], (4.1.8)

from which quantum CRB follows as,

∆2Φ̂ ≥ 1

NFQ(ρ̂, ϕ)
. (4.1.9)

Dependence of QFI on probe state as well as parameter ϕ reflects that the usefulness of the

probe state alone for metrology is compromised. The problem can however be remedied

by use of unitary transformation of the probe i.e., when ρ̂ϕ = e−iϕĜρ̂eiϕĜ, where Û = e−iϕĜ

is the unitary operator that evolves the probe. Using definition of QFI eq. (4.1.8), eq.

(4.1.7) and ∂ϕρ̂ϕ = i[ρ̂ϕ, Ĝ], we are led to following expression for QFI (appendix C.4),

FQ(ρ̂, Ĝ) = 2
∑
kl

(pk − pl)
2

pk + pl
|Ĝkl|2, (4.1.10)

which now is independent of the unknown parameter. For pure ρ̂ = |ψ⟩⟨ψ| and mixed

state ρ̂ =
∑
pk|ψk⟩⟨ψk|, the above equation reduces to (appendix C.5),

FQ(|ψ⟩, Ĝ) = 4⟨ψ|(∆Ĝ)2|ψ⟩, (4.1.11)

FQ(ρ̂, Ĝ) ≤ 4Tr[ρ̂(∆Ĝ)2], (4.1.12)

respectively.

Thus, QFI for pure and mixed states with respect to different parameters i.e., quadra-

ture and phase sensing are defined as under (dropping the factor of 4 for convenience),
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Pure States

QFI for quadrature and phase measurement are given as:

FX̂(|ψ⟩) = max
µ

⟨ψ|(∆X̂µ)
2|ψ⟩, (4.1.13)

where, X̂µ = i(e−iµâ† − eiµâ)/
√
2 and µ ∈ [0, 2π], which gives quadrature operators as

X̂π/2 = (â† + â)/
√
2 and X̂0 = (â− â†)/

√
2i.

Fn̂(|ψ⟩) = ⟨ψ|(∆n̂)2|ψ⟩. (4.1.14)

Mixed States

QFI for mixed states is defines as convex roof of variance [47],

FX̂(ρ̂) = max
µ

{
min

{pj ,|ψj⟩}

(∑
pj⟨ψj|(∆X̂µ)

2|ψj⟩
)}

[23], (4.1.15)

Fn̂(ρ̂) =

{
min

{pj ,|ψj⟩}

(∑
pj⟨ψj|(∆n̂)2|ψj⟩

)}
, (4.1.16)

with minimization over all ensembles.

Taking QFI as the measurement scheme, various probe states can be used to find as

to which states offer optimal precision.

4.2 Operational Quantifiers of Nonclassicality

Nonclassicality of a state can be exploited to enhance the performance of a probe in

metrology. The parameters that quantify the ability of a nonclassical state to enhance

any quantum metrological task can be called as operational quantifiers. In following

subsections, we have discussed two such quantifiers, one being metrological power of a

state and the other as operational resource measure. The later gives a tight upper bound

on the metrological power for displacement sensing.
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4.2.1 Metrological Power of Nonclassical States

Metrological power of a probe is defined by the amount its QFI exceeds relative to that

of any classical state, i.e.,

WĜ(ρ̂) := max[FĜ(ρ̂)− FĜ(ρ̂cl), 0]. (4.2.1)

Note that we have dropped the subscript Q from QFI as in earlier notation FQ(ρ̂, Ĝ) and

labelled it as FĜ(ρ̂) as it is understood to be quantum Fisher information.

Quadrature Sensing

The metrological power of a state for quadrature sensing can be inferred from eq. (4.2.5)

and is given as [23],

WX̂(ρ̂) = max[FX̂(ρ̂)− FX̂(ρ̂cl), 0], (4.2.2)

since metrological power of a probe is defined by taking classical state as benchmark,

any negative outcome holds no significance. In that case, the quantity may very well be

equated to zero. FX̂(ρ̂cl) for coherent state via eq. (4.1.13) becomes,

FX̂(ρ̂cl) = max
µ

{
⟨α|X̂2|α⟩ − ⟨α|X̂|α⟩2

}
,

= max
µ

{
−1

2
(e−2iµα∗2 + e2iµα2 − 2|α|2 − 1) +

1

2
(e−iµα∗ − eiµα)2

}
,

maximizing over µ yields,

= |α|2 + 1

2
− |α|2,

=
1

2
, (4.2.3)

hence, metrological power of any state is,

WX̂(ρ̂) = max[FX̂(ρ̂)− 1/2, 0]. (4.2.4)
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Phase Sensing

For phase sensing, eq. (4.2.5) becomes,

Wn̂(ρ̂) = max[Fn̂(ρ̂)− |α|2, 0], (4.2.5)

as, Fn̂(ρ̂cl) = ⟨α|(∆n̂)2|α⟩ = |α|2.

Metrological power of a state can be considered as a criterion for nonclassicality. It is

pertinent to mention here that metrological power does not quantify nonclassicality but its

ability to enhance metrology. Here comes the notion of useful nonclassicality. Entirety of

nonclassicality cannot be converted into useful quantum task; only useful nonclassicality

can. We will see for cats, that although all are characterized as nonclassical states (evident

from their Wigner functions), only few offer metrological advantage

4.2.2 Operational Resource Theory of Nonclassicality

Resource Theory of Nonclassicality

Resource Theories (RT) offer yet another way of quantifying the nonclassicality of states.

There exist a number of RTs e.g., RT of entanglement, non-Gaussianity and nonclassical-

ity which share same underlying approach. The objective of these theories is to identify

the various attributes of nonclassicality of states which are otherwise not available freely

i.e., via classical or free operations. Under Resource theoretic formalism, the nonclassical

quantum states are considered as a resource, which provide means to counter the limits

associated with classical states. A classical operation is defined as a quantum map which

cannot produce nonclassicality from classical states. For RT of nonclassicality, free oper-

ations forbid creation of quantum resource such as superposition of classical states from

their mixture. These operations can be of following forms:

• enhancing the number of classical states in a system, e.g., making a mixture of

coherent states,

• applying passive optical operations that are linear, and

• removing the ancillary modes via trace.

A nonclassicality measure, N(ρ̂), of resource theory must satisfy following conditions [28]:

48



• Non-negativity i.e. N(ρ̂) ≥ 0

Equality holds if and only if the state is classical. This means that if the state being

analyzed is nonclassical then the measure will be greater than zero, thus quantifying

some aspect of quantumness of the state.

• Weak Monotonicity i.e. N(∧[ρ̂]) ≤ N(ρ̂)

The statement entails monotonic decrease of N(ρ̂) under operations represented

by ∧, where ∧ represents linear maps. This condition is signature of all RTs. It

forbids the creation and enhancement of nonclassicality freely, which signifies that

it is impossible for the measure to increase under any linear operation.

• Convexity i.e.
∑

j pjN(ρ̂j) ≥ N(
∑

j pj ρ̂j)

Forming a mixture of states is a classical operation. This condition ensures that for

a mixture of states, either pure or mixed, the measure of nonclassicality cannot be

increased.

Operational Resource Theory (ORT)

ORT differs from RT in a way that in addition to the conditions met by resource measures,

it captures the nonclassicality in operational terms i.e., it quantifies as to how much a

useful quantum task can be performed by a state with no classical analogue.

Operational Resource Measure (ORM)

Wenchao et al., [23] have presented an ORM that not only satisfies the minimum condi-

tions for RT; but also quantifies the ability of a pure state towards displacement sensing

and provides a tight upper bound over the metrological power i.e. N(ρ̂) ≥ W . The ORM

is defined as,

N(ρ̂) := min
{pj ,|ψj⟩}

[
max
µ

{∑
pj⟨ψj|(∆X̂µ)

2|ψj⟩
}]

− 1

2
,
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where, X̂µ = i√
2
(e−iµâ† − eiµâ),

= min
{pj ,|ψj⟩}

[
max
µ

{∑
pj

(
⟨ψj|X̂2

µ|ψj⟩ − ⟨ψj|X̂µ|ψj⟩2
)}]

− 1

2
,

= min
{pj ,|ψj⟩}

[
max
µ

{
− 1

2

∑
pj

(
⟨ψj|

(
e−2iµâ†2 + e2iµâ2 − 2â†â− 1

)
|ψj⟩

− ⟨ψj|
(
e−iµâ† − eiµâ

)
|ψj⟩2

)}]
− 1

2
,

defining n̄j = ⟨ψj|â†â|ψj⟩, ζ̄j = ⟨ψj|â2|ψj⟩, and ᾱj = ⟨ψj|â|ψj⟩,

= min
{pj ,|ψj⟩}

[
max
µ

{
− 1

2

∑
pj

(
e−2iµ(ζ̄∗j − ᾱ∗2

j ) + e2iµ(ζ̄j − ᾱ2
j )− 2n̄j − 1

+ 2|ᾱj|2
)}]

− 1

2
.

Maximizing N(ρ̂) with respect to µ leads to µ = 0, π/2 and ζ̄∗j = ζ̄j, ᾱ
∗2
j = ᾱ2

j .

For µ = 0,

N(ρ̂) = min
{pj ,|ψj⟩}

{
−

∑
pj(ζ̄j − ᾱ2

j ) +
∑

pj(n̄j − |ᾱj|2)
}
. (4.2.6)

For µ = π/2,

N(ρ̂) = min
{pj ,|ψj⟩}

{∑
pj(ζ̄j − ᾱ2

j ) +
∑

pj(n̄j − |ᾱj|2)
}
, (4.2.7)

which for maximization to occur yield,

N(ρ̂) = min
{pj ,|ψj⟩}

{∣∣∑ pj(ζ̄j − ᾱ2
j )
∣∣+∑

pj(n̄j − |ᾱj|2)
}
. (4.2.8)

N(ρ̂) can be written in a compact form using an extended state ρ̂E =
∑

j pj|ψj⟩⟨ψj| ⊗

|j⟩E⟨j| generated while using orthogonal vectors |j⟩E,

N(ρ̂) = min
{pj ,|ψj⟩}

max
µ

FX̂µ⊗ÎE(ρ̂E)− 1/2, (4.2.9)

50



which follows from property of QFI, that, if second system of a bipartite ρ̂ is traced out,

then QFI of the resulting system cannot increase [48], i.e.,

FX̂µ⊗ÎE(ρ̂E) ≥ FX̂µ
(TrE ρ̂E) = FX̂µ

(ρ̂), (4.2.10)

⇒ min
{pj ,|ψj⟩}

max
µ

FX̂µ⊗ÎE(ρ̂E) = FX̂µ
(ρ̂).

For pure states ORM becomes,

N(ρ̂) =
∣∣ζ̄ − ᾱ2

∣∣+ n̄− |ᾱ|2, (4.2.11)

Conditions for Operationality of the Measure

Non-negativity, N(ρ̂) ≥ 0

• For Classical States For arbitrary classical state, i.e., a mixture of coherent states

ρ̂ =
∑
pj|αj⟩⟨αj|. Eq(4.2.8) yields,

N(ρ̂) = min
{pj ,|ψj⟩}

{∣∣∣∣∑ pj(α
2
j − α2

j )

∣∣∣∣+∑
pj(|αj|2 − |αj|2)

}
,

= 0. (4.2.12)

• For Nonclassical States From the decomposition of ρ̂, at the minimum one of

the state must be a nonclassical, i.e., |ψj⟩ = |ψNC⟩, then using Cauchy-Schwarz

inequality,

|⟨v|w⟩| ≤
√

⟨v|v⟩⟨v|w⟩, (4.2.13)

let |w⟩ = â|ψNC⟩ and |v⟩ = |ψNC⟩,

|⟨ψNC |â|ψNC⟩| ≤
√

⟨ψNC |ψNC⟩⟨ψNC |â†â|ψNC⟩,

|ᾱNC |2 ≤ n̄NC . (4.2.14)
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The equality sign will hold provided |ψNC⟩ is an eigenstate of â, which can only be

true provided |ψNC⟩ is a coherent state against the initial statement. Hence,

|ᾱNC |2 < n̄NC . (4.2.15)

Thus, from eq(4.2.8), for a nonclassical state,

N(ρ̂) > 0. (4.2.16)

Weak Monotonicity, N(∧[ρ̂]) ≤ N(ρ̂)

A linear optical operation/ map is defined as [49],

∧(ρ̂) := TrA(ULρ̂⊗ ρ̂AU
†
L) =

∑
j

qjσj, (4.2.17)

where, UL is a unitary operator implemented through passive linear optical elements

e.g. phase shifter, beam splitter and displacement operations with single mode, ρ̂A is

an ancilla classical state that is being traced out, qj = Tr(Πj ρ̂) = Tr(Kj ρ̂K
†
j ) is the

probability of finding the system in mixed state σj, σj = Kj ρ̂K
†
j/qj =

∑
i pi|ϕij⟩⟨ϕij| are

the post-measurement mixed states, Kj are Kraus/ detection operators and Πj = K†
jKj

are POVM elements already described. Eq(4.2.17) becomes,

∧(ρ̂) =
∑
j

qj
(
Kj ρ̂K

†
j/qj

)
,

=
∑
j

Kj ρ̂K
†
j ,

=
∑
j

Kj

(∑
i

pi|ψi⟩⟨ψi|
)
K†
j ,

=
∑
i,j

qjpi

(
Kj|ψi⟩√

qj

)(⟨ψi|K†
j√

qj

)
,

=
∑
i,j

qjpi|ϕij⟩⟨ϕij|. (4.2.18)
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Checking for weak monotonicity of N(ρ̂),

N(∧(ρ̂)) = N

(∑
i,j

qjpi|ϕij⟩⟨ϕij|
)
, (4.2.19)

using eq(4.2.10),

≤ max
µ

FX̂µ⊗ÎE⊗ÎA′

(∑
i,j

qjpi|ϕij⟩⟨ϕij| ⊗ |i⟩E⟨i| ⊗ |j⟩A′⟨j|
)
− 1

2
,

where, |j⟩A′ is a classical ancilla state with mode A′ and forms a set of orthogonal vectors

{|j⟩A′}. Once again, linear optical mapping dictates that there exist a linear unitary and

a classical ancilla state ρ̂AA′ such that, TrA
[
Uρ̂E⊗ ρ̂AA′U †] = ∑

i,j qjpi|ϕij⟩⟨ϕij|⊗|i⟩E⟨i|⊗

|j⟩A′⟨j|,

= max
µ

FX̂µ⊗ÎE⊗ÎA′

(
TrA

[
Uρ̂E ⊗ ρ̂AA′U †])− 1

2
,

≤ max
µ

FX̂µ⊗ÎE⊗ÎAA′

(
Uρ̂E ⊗ ρ̂AA′U †)− 1

2
,

where, ρ̂AA′ =
∑

k rk|αk⟩⟨αk| is a coherent state in modes AA′ with
∑

k rk = 1,

= max
µ

FX̂µ⊗ÎE⊗ÎAA′

(
Uρ̂E ⊗

∑
k

rk|αk⟩⟨αk|U †)− 1

2
,

using convexity of QFI i.e., FX̂µ
(
∑
pj|ψj⟩⟨ψj|) ≤

∑
pjFX̂µ

(|ψj⟩⟨ψj|),

≤ max
µ

∑
k

rkFX̂µ⊗ÎE⊗ÎAA′

(
Uρ̂E ⊗ |αk⟩⟨αk|U †)− 1

2
.

Switching from Schrödinger to Heisenberg picture in quantum mechanics,

= max
µ

∑
k

rkFU†X̂µ⊗ÎE⊗ÎAA′U

(
ρ̂E ⊗ |αk⟩⟨αk|

)
− 1

2
,

= max
µ

∑
k

rkFX̂U
µ +X̂U

AA′

(
ρ̂E ⊗ |αk⟩⟨αk|

)
− 1

2
,
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as QFI is additive under tensoring,

= max
µ

∑
k

rk

{
FX̂U

µ

(
ρ̂E

)
+ FX̂U

AA′

(
|αk⟩⟨αk|

)}
− 1

2
,

= max
µ

{
FX̂U

µ

(
ρ̂E

)
+
∑
k

rkFX̂U
AA′

(
|αk⟩⟨αk|

)}
− 1

2
,

≤ max
µ

FX̂µ⊗ÎE

(
ρ̂E

)
− 1

2
= N(ρ̂).

Hence,

N
(
∧ (ρ̂)

)
≤ N(ρ̂). (4.2.20)

Convexity, i.e.
∑

j pjN(ρ̂j) ≥ N(
∑

j pj ρ̂j)

We know that,

∑
j

pjN(ρ̂j) =
∑
j

pj

(
min

{pj ,|ψj⟩}
max
µ

FX̂µ⊗ÎE(ρ̂j ⊗ |i⟩E⟨i|)− 1/2

)
,

= min
{pj ,|ψj⟩}

max
µ

∑
j

pjFX̂µ⊗ÎE(ρ̂j ⊗ |i⟩E⟨i|)− 1/2,

using convexity of QFI,

≥ min
{pj ,|ψj⟩}

max
µ

FX̂µ⊗ÎE(
∑
j

pj ρ̂j ⊗ |i⟩E⟨i|)− 1/2,

as ρ̂E =
∑

j pj ρ̂j ⊗ |i⟩E⟨i| ,

= min
{pj ,|ψj⟩}

max
µ

FX̂µ⊗ÎE(ρ̂E)− 1/2,

= N(
∑
j

pj ρ̂j), (4.2.21)

⇒
∑
j

pjN(ρ̂j) ≥ N(ρ̂). (4.2.22)
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Tight Upper Bound over Metrological Power, i.e., N ≥ W

N(ρ̂) = min
{pj ,|ψj⟩}

max
µ

FX̂µ⊗ÎE(ρ̂E)− 1/2,

≥ min
{pj ,|ψj⟩}

max
µ

FX̂µ

{
TrE(ρ̂E)

}
− 1/2,

= max
µ

FX̂µ
(ρ̂)− 1/2,

= W (ρ̂),

⇒ N(ρ̂) ≥ W (ρ̂), (4.2.23)

where, equality holds for pure state. Thus, for a pure state, metrological power for

displacement measurement can be found using Eq. (4.2.11), i.e.,

N(ρ̂) = WX̂(ρ̂) = n̄− |ᾱ|2 +
∣∣ζ̄ − ᾱ2

∣∣. (4.2.24)

where, ᾱ = ⟨ψ|â|ψ⟩, and ζ̄ = ⟨ψ|â2|ψ⟩ = α2.

4.3 Metrological Power of Cats

In this section, we have analytically worked out the metrological power of cats for quadra-

ture and phase sensing.

4.3.1 Quadrature Sensing

For quadrature sensing, we have evaluated the expectation values of different operators

involved in eq. (4.2.24) for our probe states and worked out their metrological power.

2H Cats

Metrological power for even cats W e
X̂

becomes,

W e
X̂
=

2|α|2

1 + e−2|α|2 , (4.3.1)

and for odd cats,

W o
X̂
=

2|α|2

1− e−2|α|2 , (4.3.2)
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where, ᾱ = 0 and ζ̄ = α2 for even and odd cats both. For YS cats, the metrological

power is given as,

W ys

X̂
= |α|2 − |α|2e−4|α|2 + |α2 + α2e−4|α|2|,

which for real α reduces to,

= 2α2, (4.3.3)

with ᾱ = −iαe−2|α|2 and ζ̄ = α2.

3H Cats

The metrological power for 3H cats is,

W 3h
X̂

=
N2

3h|α|2

N2
o

+ α2N2
3h[1/N

2
e + 2e−|α|2/2],

= 2|α|2N2
3h[2 + e−|α|2/2], (4.3.4)

which is obtained via following averages, with use of identities ⟨1|α⟩ = αe−|α|2/2 and

⟨2|α⟩ = α2
√
2
e−|α|2/2,

ᾱ = 0. (4.3.5)

ζ̄ = α2N2
3h[1/N

2
e + 2e−|α|2/2]. (4.3.6)

4H Cats Evaluating various averages involved in WX̂ for 4H cats,

ᾱ = −iαe−|α|2(cos |α|2 − sin |α|2). (4.3.7)

ζ̄ = α2e−2|α|2 . (4.3.8)

Metrological power becomes,

W 4h
X̂

= |α|2 + |α|2e−2|α|2[1− (cos |α|2 − sin |α|2)2 + e−2|α|2(cos |α|2 − sin |α|2)2
]
. (4.3.9)
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Excited 2H Cat

For excited even cats, metrological power becomes,

W eec
X̂

= N2
eec

[
1 + 4N2

e |α|2(|α|2 + 3)
]
, (4.3.10)

with ᾱ = 0 and ζ̄ = N2
eecα

2(3 + |α2|N
2
e

N2
o
) Whereas for excited odd cats, WX̂ is given by,

W eoc
X̂

= N2
eoc

[
1 + 4N2

o |α|2(|α|2 + 3)
]
, (4.3.11)

with corresponding averages ᾱ = 0 and ζ̄ = N2
eocα

2(3 + |α2|N
2
o

N2
e
). Metrological power for

YS states simplifies to,

W eys

X̂
= N4

eys

(
1 + 7|α|2 + 8|α|4 + 2|α|6

)
, (4.3.12)

with none of the averages vanishing, i.e.,

ᾱ = iN2
eysα(−2 + |α|2). (4.3.13)

ζ̄ = N2
eys

(
3α2 + α2|α|2

)
. (4.3.14)

Excited 3H Cats

For 3H cats,

W e3h
X̂

= N2
e3h

[
1 + 2N2

3h|α|2(6 + 2|α|2 + 3e−|α|2/2)
]
, (4.3.15)

with ᾱ = 0 and ζ̄ = N2
e3hN

2
3hα

2
[

3
N2

e
+ 6e−|α|2/2 + 2|α|2(1− e−2|α|2)

]
.

Excited 4H Cats

Evaluating various averages involved in WX ,

ᾱ = iN2
e4hαe

−|α|2[|α|2(cos |α|2 + sin |α|2)− 2(cos |α|2 − sin |α|2)
]
. (4.3.16)

ζ̄ = N2
e4hα

2e−2|α|2(3− |α|2). (4.3.17)
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Metrological power becomes,

W e4h
X̂

= N4
e4h

[
1 + 4|α|2 + 4|α|4 + |α|6 − |α|2e−2|α|2(|α|4 − 2|α|2 − 3)

]
. (4.3.18)

4.3.2 Phase Sensing

Recalling Eq. (4.2.5), for metrological power of states for phase sensing and simplifying

it further,

Wn̂ = Fn(|ψ⟩)− |α|2

= ⟨ψ|(∆n̂)2|ψ⟩ − |α|2,

= ⟨â†â⟩+ ⟨â†2â2⟩ − ⟨â†â⟩2 − |α|2. (4.3.19)

All the averages involved in the above equation have already been worked out. Foregoing

in view, the metrological power for cats in estimating phase are given as under:

Even Cats

W e
n̂ = |α|2N2

e /N
2
o + |α|4 − |α|4N4

e /N
4
o − |α|2,

= 4|α|2N2
e e

−2|α|2(4|α|2N2
e − 1).

Odd Cat

W o
n̂ = |α|2N2

o /N
2
e + |α|4 − |α|4N4

o /N
4
e − |α|2,

= 4|α|2N2
o e

−2|α|2(1− 4|α|2N2
o ).

YS States

W ys
n̂ = |α|2 + |α|4 − |α|4 − |α|2,

= 0.
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3H Cats

W 3h
n̂ =

N2
3h|α|2

N2
o

+
N2

3h|α|4

N2
e

− N4
3h|α|4

N4
o

− |α|2,

= N2
3h|α|2[

1

N2
o

+
|α|2

N2
e

− N2
3h|α|2

N4
o

]− |α|2.

4H Cats

W 4h
n̂ = |α|2 + |α|4 − |α|4 − |α|2,

= 0.

YS and 4H state hold no metrological power in phase sensing; whereas, the rest of

cats do.

For excited cats, the expressions for the quantifier are relatively complex, with none

showing lack of ability of enhancing metrology.

Excited Even Cat

W eec
n̂ = N2

eec(1 + 3|α|2N
2
e

N2
o

+ |α|4) +N2
eec

[
4|α|2N

2
e

N2
o

+ 5|α|4 + |α|6N
2
e

N2
o

]
−N4

eec(1 + 3|α|2N
2
e

N2
o

+ |α|4)2 − |α|2,

= N4
eec|α|2

[
− 16N4

e |α|6e−2|α|2 +
N2
e

N2
o

(
|α|4 − 2|α|2N

2
e

N2
o

+ 2
)
+ 4|α|2

]
− |α|2.

Excited Odd Cats

W eoc
n̂ = N2

eoc(1 + 3|α|2N
2
o

N2
e

+ |α|4) +N2
eoc

[
4|α|2N

2
o

N2
e

+ 5|α|4 + |α|6N
2
o

N2
e

]
−N4

eoc(1 + 3|α|2N
2
o

N2
e

+ |α|4)2 − |α|2,

= N4
eoc|α|2

[
16N4

o |α|6e−2|α|2 +
N2
o

N2
e

(
|α|4 − 2|α|2N

2
o

N2
e

+ 2
)
+ 4|α|2

]
− |α|2.

59



Excited YS States

W eys
n̂ = N4

eys|α|2(2 + 2|α|2 + |α|4)− |α|2.

Excited 3H Cats

W e3h
n̂ = N4

e3hN
4
3h|α|2

[
44 + 16|α|2 + 6|α|4 + e−|α|2/2(32|α|2 − 16 + 8|α|4)

+ e−2|α|2(−4 + 56|α|2 − 2|α|4 − 16|α|6) + e−5|α|2/2(−16 + 32|α|2 − 8|α|4)

+ e−4|α|2(−8 + 8|α|2 − 4|α|4)
]
− |α|2.

Excited 4H Cats

W e4h
n̂ = N4

e4h|α|2.
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Chapter 5

Results and Discussion

Mandel Q parameter, that reflects the photon statistics of a state, helps in quantifying the

nonclassicality of states; while, the metrological power seeks to quantify it operationally,

i.e., how much of a quantum task can be performed by a state. A possibility exist where

Q parameter could identify the states which are metrologically strong. Furthermore, in

chapter 4 it was seen that free operations do not enhance metrology of a state. In contrast,

addition of a photon to a state generates entanglement of signal and idler mode of a state

through spontaneous parametric down conversion and is therefore not considered as a

free operation. Thus, it will lead to enhancing metrology. However, it remains to be seen

that how much it could increase the metrological power of cats.

In this chapter, we will carry out an analysis of the results through comparison via

graphs focusing on following two aspects, (within the purview of cats):

• whether Mandel Q parameter serves as an indicator of enhanced metrology of states

irrespective of the generator or otherwise,

• impact of addition of photon on the Q parameter and metrological power of states.

5.1 Mandel Q-parameter Vs Metrology

In this sub-section, comparison of Q parameter of states vis-à-vis their metrological power

(quadrature and phase sensing) has been drawn.
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Schödinger Cats and YS State

From Wigner functions of all the cats worked out in chapter 3, we know that these

states are nonclassical; however, Q parameter as evident from fig.5.1.1 reveals different

picture. Fig.5.1.1 (a) indicates that only odd states show nonclassical behaviour without

ambiguity. Q parameter for YS identifies it as classical states; whereas for even state it is

ambiguous as to whether they are classical or nonclassical. Fig.5.1.1(b) indicate that odd

state enjoys enhanced metrology for displacement sensing, which is so far in consonance

with Q parameter. For YS state, despite that Q parameter identified it as classical, it

shows non-zero metrological power and even state which could not be classified as classical

or nonclassical has the least metrological power among all three states. The same figure’s

third plot (c) that shows the trend of metrological power of the subject cats for phase

sensing indicate that only even cat possess some metrological power; whereas odd cat

and YS state have none. Thus, Q is neither capturing the full extent of nonclassicality

of these states nor their ability in enhancing metrology.

Figure 5.1.1: Comparison of photon statistics and metrological power of even, odd and YS
cat states for real α. (a) Plot of Q Vs |α|2. Among all three states, Q only identifies odd cat as
nonclassical. (b) Plot of WX Vs |α|2 and (c) Wn Vs |α|2. The last two graphs reflect that odd
cat has enhanced metrology for displacement sensing and even cat for phase.

3H and 4H Cats

3H and 4H cat states, both, are non-classical which gets evident from their Wigner

functions whereas Q parameter (Fig.5.1.2(a)) does not clearly reflect nonclassicality of the

two states. 4H cat state is tagged as classical; whereas Q fails to clearly identify 3H cat as
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nonclassical, for these states exhibit super-Poissonian photon statistics. Fig.5.1.2(b) and

(c) dictate that 4H cat is relatively strong from metrological point of view for displacement

sensing than 3H up to certain value of |α|2 after which 3H is stronger, and for phase

sensing 4H offers no metrological advantage.

Figure 5.1.2: Comparison of Q and metrological power for displacement and phase sensing of
3H and 4H cats for real α. (a), (b) and (c) are plots of Q, WX and Wn Vs |α|2 respectively. (a)
reflect that only Q3h > 0 with super-Poissonian statistics for 3H state, and Poissonian for 4H
cat state. (b) and (c) show the relative metrological strength 3H state enjoys for phase over 4H
cat, with reversed strength up to a point for displacement sensing.

Above analysis of various plots of Q-parameter and metrological powers of states

clearly reflect that Q-parameter cannot be identified as an indicator for metrological

strength of a state.

5.2 Impact of Photon Addition

In this subsection, the impact of photon addition has been explored on nonclassicality

of various cat states, both in terms of overall nonclassicality and useful nonclassicality

through their metrological power.

Consider the following comparison of Q,WX and Wn for various cat states before and

after photon addition, for real α.
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Even Cat

Figure 5.2.1: Comparing Q (a), metrological power for displacementWX (b) and phase sensing
Wn (c) of even and excited even state for real α. (a) The super-Poissonian character of even
cat switches to sub-Poissonian for its excited form reflecting increase in nonclassicality. (b) and
(c) reveals increased metrology of excited even cat in displacement and phase sensing.

Fig. 5.2.1 (a) reflect that even though Q parameter was ambiguous about nonclassicality

of even cat, due to positive values of Q indicating super-Poissonian photon statistics;

the excited even is clearly nonclassical. Thus, addition of a photon to even cat has

transformed the state into a state that now shows sub-Poissonian statistics. Fig. 5.2.1

(b) and (c) shows the resulting state has enhanced metrology in displacement as well as

phase sensing.
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Odd Cat

Figure 5.2.2: Comparing Q (a), metrological power for displacementWX (b) and phase sensing
Wn (c) of odd and excited odd state for real α. (a) The sub-Poissonian character of excited
odd cat is more stronger than odd cat showing reflecting increase in nonclassicality. (b) and (c)
reveals increased metrology of excited odd cat in displacement and phase sensing.

Fig 5.2.2 (a) reveals increased nonclassicality of excited odd cat as the curve representing

Q values has shifted further below towards more negative values of Q. This shows that

excited odd cats have smaller variance in photon number in comparison to mean than for

its non-excited counterpart. Fig 5.2.2 (b) and (c) shows enhanced metrology of excited

odd cat in displacement and phase sensing respectively.

YS State

Fig 5.2.3 (a) shows that unlike YS state, Q parameter identifies excited YS state as

nonclassical as Qeys < 0 revealing the underlying sub-Poissonian photon statistics of

this state. Whereas, fig. 5.2.3 (b) and (c), as in previous two cases indicate enhanced

metrology of the excited cat.
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Figure 5.2.3: Comparing Q (a), metrological power for displacementWX (b) and phase sensing
Wn (c) of YS and excited YS state for real α. (a) The Poissonian character of YS state switches
to sub-Poissonian for its excited form reflecting increase in nonclassicality. (b) and (c) reveals
increased metrology of excited YS cat in displacement and phase sensing.

3H Cat

Figure 5.2.4: Comparing Q (a), metrological power for displacementWX (b) and phase sensing
Wn (c) of even and excited even state for real α. (a) The super-Poissonian character of 3H cat
switches to sub-Poissonian for its excited form reflecting increase in nonclassicality. (b) and (c)
reveals increased metrology of excited cat in displacement and phase sensing.

From fig 5.2.2 (a) it is evident that even though Q could not clearly identify 3H cat as

nonclassical due to super-Poissonian nature of its photon statistics, the negative values

of Qe3H reflects underlying sub-Poissonian statistics and thus reveals that excited 3H cat

is nonclassical. Fig 5.2.2 (b) and (c) shows enhanced metrology of excited odd cat in

displacement and phase sensing respectively.
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4H Cat

Figure 5.2.5: Comparing Q (a), metrological power for displacementWX (b) and phase sensing
Wn (c) of 4H and excited 4H cat for real α. (a) The Poissonian character of 4H cat switches
to sub-Poissonian for its excited form reflecting increase in nonclassicality. (b) and (c) reveals
increased metrology of excited 4H cat.

Fig 5.2.5 depicts same phenomena as for YS state. Fig. (a) shows that even though 4H

cat is dubbed as classical due to Qys = 0, after photon addition the resulting excited

state has been identified as nonclassical as Qeys < 0 revealing its sub-Poissonian photon

statistics. Fig 5.2.5 (b) and (c) reflects enhanced metrology for excited 4H irrespective

of the generator used.

For all the states, photon addition enhances the overall nonclassicality of states as

well as enhance their metrological strength irrespective of the generator used. Hence,

addition of photon adds to the nonclassicality of the states.
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Chapter 6

Summary and Conclusion

Our work substantially explores the nonclassicality of a particular form of quantum states,

through various quantifiers, with significance towards enhancing quantum metrology. The

probe states considered for this study were mainly Schödinger cat states, which hold a

unique place in quantum optics owing to their origin from Schödinger gedanken exper-

iment in 1935, actually meant to critique probabilistic interpretation of wave function

i.e., superposition of microscopic states. Appreciating the cats as superposition of dis-

tinct coherent states, the study was also extended to states with similar construction

i.e., superposition of number of coherent states with distinct phases resulting in multi-

headed cat states. The quantifiers used for detail examination of nonclassicality of the

cat states, have been worked out analytically. These include Wigner function, Mandel Q

parameter, metrological power and operational resource measure. All of these quantifiers

capture various attributes of nonclassicality of the states, where the later two seek to

capture the utility of nonclassical states as a resource in enhancing quantum tasks and

can be considered as operational quantifiers of nonclassicality. Two research questions

were posited during the course of this study, one out of which considered the significance

of Q parameter as indicator of relative metrological power of states across estimation

of different classical parameters. To answer this question, we graphically compared the

results obtained for the Mandel Q parameter and metrological power in sensing phase

and displacement in phase space, of our probe states . We observe that the Q parameter

does not predict trends in metrology of phase and displacement.

Next, we have also explored as to whether quantum metrology of the Schödinger cats

can be enhanced by forming excited cats, as the process that entails forming such cats
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is known to add to the nonclassical characteristics of a state. To test the proposition,

excited cats were realized by adding a single photon to the cats, which in lab translates

to spontaneous down conversion of a single photon to an entangled pair, in signal and

idler mode, and driving the cat state in signal mode through this converter. The detail

schematics of the experimental setup was devised and presented in this study. The results

thus obtained in seeking the impact of photon addition to the cats in enhancing metrology

were promising as we observed increment in metrological power across all the cats and

parameters with no exceptions.

An important question that can further this study, is consideration of metrological

power of cats for double mode interferometry using Mach-Zehnder Interferometer. The

reader, can also explore the metrology of cats by exploiting entanglement and multiple

photon addition.
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Appendix A

Appendix to Chapter 2

A.1 Non-orthogonality of Coherent States

⟨λ|γ⟩ = (e−|λ|2/2
∞∑
m=0

λ∗m√
m!

⟨m|)(e−|γ|2/2
∞∑
n=0

γn√
n!
|n⟩)

= e−(|λ|2+|γ|2)/2[
∞∑
n=0

(λ∗γ)n

n!
]

= e−(|λ|2+|γ|2)/2eλ
∗γ (A.1.1)

= e−(|λ|2+|γ|2−2λ∗γ+λγ∗−λγ∗)/2

= e−(|λ−γ|2−λ∗γ+λγ∗)/2

= e−(|λ−γ|)2/2e(λ
∗γ−λγ∗)/2

A.2 Normalization of Coherent States

∫
|λ⟩⟨λ|d2λ =

∫
e−|λ|2

∞∑
m=0

∞∑
n=0

λn√
n!

λ∗m√
m!

|n⟩⟨m|d2λ

using polar form of λ, i.e., λ = seiθ, d2λ = sdsdθ where s ∈ [o,∞] and θ ∈ [0, 2π]

=
∞∑
m=0

∞∑
n=0

∫
e−s

2 sn+m+1

√
n!m!

ei(n−m)θ|n⟩⟨m|dsdθ

=
∞∑
m=0

∞∑
n=0

|n⟩⟨m|√
n!m!

∫ ∞

0

e−s
2

sn+m+1ds

∫ 2π

0

ei(n−m)θdθ
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using the orthogonality condition for complex exponential function,
∫ 2π

0
ei(n−m)θ = 2πδnm,

and eliminating index m through contraction due to Kronecker delta,

= π

∞∑
n=0

|n⟩⟨n|
n!

∫ ∞

0

e−s
2

(s2)n(2sds)

which by introducing variable change as s2 = t and 2sds = dt, yields,

= π

∞∑
n=0

|n⟩⟨n|
n!

∫ ∞

0

e−ttndt

the integral using definition of Gamma function equates to n!

= π

∞∑
n=0

|n⟩⟨n|

exploiting completeness of number states,

= π (A.2.1)

A.3 Generating Coherent State through Displace-

ment Operator

D̂(λ)|0⟩ = eλâ
†−λ∗â|0⟩

Using disentangling theorem, eA+B = eAeBe−[A,B]/2 with A = λâ† and B = −λ∗â, above

equation yields,

= eλâ
†
e−λ

∗âe−|λ|2/2|0⟩
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using Taylor expansion for exponential functions,

= e−|λ|2/2(
∞∑
n=0

(λâ†)n

n!
)(

∞∑
m=0

(−λ∗â)m

m!
)|0⟩

= e−|λ|2/2(
∞∑
n=0

(λâ†)n

n!
)(1 +

∞∑
m=1

(−λ∗â)m

m!
)|0⟩

As â|0⟩ = 0,

= e−|λ|2/2
∞∑
n=0

(λâ†)n

n!
|0⟩

= e−|λ|2/2
∞∑
n=0

λn√
n!
|n⟩

= |λ⟩ (A.3.1)
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Appendix B

Appendix to Chapter 3

B.1 Wigner Function for Even Cat

We(β) =
1

π2

∫
d2λeλ

∗β−λβ∗|Ne|2[eλα
∗−λ∗α

+ e−(λα∗−λ∗α) + e−2|α|2(eλα
∗+λ∗α + e−(λα∗+λ∗α))]e−|λ|2/2

Let’s take α = αr+iαi√
2

, β = βr+iβi√
2

and λ = λr+iλi√
2

then d2λ = dλrdλi/2,

=
|Ne|2

2π2

∫
dλrdλie

i(βiλr−βrλi)[ei(αrλi−αiλr) + e−i(αrλi−αiλr)

+ e−(α2
r+α

2
i )(eαrλr+αiλi + e(αrλr+αiλi))]e

−1
4
(λ2r+λ

2
i )

=
|Ne|2

2π2

[(∫
dλre

−λ2r
4 ei(βi−αi)λr

)(∫
dλie

−λ2i
4 e−i(βr−αr)λi

)
+

(∫
dλre

−λ2r
4 ei(βi+αi)λr

)(∫
dλie

−λ2i
4 e−i(βr+αr)λi

)
+e−(α2

r+α
2
i )

(∫
dλre

−λ2r
4 e(αr+iβi)λr

)(∫
dλie

−λ2i
4 e(αi−iβr)λi

)
+e−(α2

r+α
2
i )

(∫
dλre

−λ2r
4 e−(αr−iβi)λr

)(∫
dλie

−λ2i
4 e−(αi+iβr)λi

)]
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using standard gaussian integral,

=
4π|Ne|2

2π2

[
e−(βi−αi)

2

e−(βr−αr)2 + e−(βi+αi)
2

e−(βr+αr)2

+e−(α2
r+α

2
i )
(
e(αr+iβi)

2

e(αi−iβr)2 + e(αr−iβi)2e(αi+iβr)
2
)]

=
2|Ne|2

π

[
e−2(|β|2+|α|2−αβ∗−α∗β) + e−2(|β|2+|α|2+αβ∗+α∗β)

+e−2|α|2
(
e2(|α|

2−|β|2−αβ∗+α∗β) + e2(|α|
2−|β|2+αβ∗−α∗β)

)]
=

2|Ne|2

π

[
e−2|β−α|2 + e−2|β+α|2 + e−2|β|2 (e−2(αβ∗−α∗β) + e2(αβ

∗−α∗β)
)]

We(β) =
2|Ne|2

π

[
e−2|β−α|2 + e−2|β+α|2 + 2e−2|β|2 cos 2i(αβ∗ − α∗β)

]
(B.1.1)
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Appendix C

Appendix to Chapter 4

C.1 Derivation of CRB

For N = 1, the CRB is given as,

∆2Φ ≥ 1

F (ϕ)
(C.1.1)

The derivation of CRB is a direct result of application of Cauchy-Schwarz Inequality. For

a PDF p(µ|ϕ) that gives the conditional probability of observing readout µ, for given

value of ϕ, the average of an estimator Φ(µ) is given as,

⟨Φ(µ)⟩ =
∫
p(µ|ϕ)Φ(µ)dµ

and the inner product of Φ(µ) with ∂ϕL(µ|ϕ) is defined as,

⟨Φ(µ)∂ϕL(µ|ϕ)⟩ =
∫
dµf(µ)Φ(µ)∂ϕL(µ|ϕ)

The covariance between two functions Φ(µ) and ∂ϕL(µ|ϕ) is defined as,

Cov[ϕ, ∂ϕL(µ|ϕ)] =
〈
(Φ− ⟨Φ⟩)(∂ϕL(µ|ϕ)− ⟨∂ϕL(µ|ϕ)⟩)

〉
(C.1.2)
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as ∂ϕL(µ|ϕ) = 1
p(µ|ϕ)∂ϕp(µ|ϕ), ⟨∂ϕL(µ|ϕ)⟩ =

∫
∂ϕp(µ|ϕ)dµ = ∂ϕ(

∫
p(µ|ϕ)dµ) = 0 and

using definition of unbiased estimator, the above equation reduces to,

=
〈
(Φ− ϕ)(∂ϕL(µ|ϕ))

〉
=

∫
p(µ|ϕ)Φ(µ)∂ϕL(µ|ϕ)dµ

=

∫
Φ(µ)∂ϕp(µ|ϕ)dµ

= ∂ϕ

∫
Φ(µ)p(µ|ϕ)dµ

= ∂ϕ(ϕ)

= 1 (C.1.3)

Now using Cauchy Schwarz inequality for Φ(µ) and ∂ϕL(µ|ϕ), we get

|
〈
Φ− ⟨Φ⟩, ∂ϕL(µ|ϕ)− ⟨∂ϕL(µ|ϕ)⟩

〉
|2 ≤ ⟨(Φ− ⟨Φ⟩)2⟩⟨(∂ϕL(µ|ϕ)− ⟨∂ϕL(µ|ϕ)⟩)2⟩

The LHS of above eq. is Cov[Φ, ∂ϕL(µ|ϕ)]2 = 1,, we get,

1 ≤ ∆2Φ∆2∂ϕL(µ|ϕ)

as ∆2∂ϕL(µ|ϕ) =
〈
(∂ϕL(µ|ϕ)−⟨∂ϕL(µ|ϕ)⟩)2

〉
=

〈
(∂ϕL(µ|ϕ)2

〉
= F (ϕ), the above inequal-

ity becomes,

1

F (ϕ)
≤ ∆2Φ (C.1.4)

For N number of experiments,

1

NF (ϕ)
≤ ∆2Φ (C.1.5)

C.2 Expression for SLD

L̂ϕ = 2
∑
k,l

(∂ϕρ̂ϕ)kl|k⟩⟨l|
pk + pl
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Plugging the definition of mixed state i.e., ρ̂ϕ =
∑

k pk|ψk⟩⟨ψk| in eq. (4.1.6) we get,

∂ϕρ̂ϕ =
1

2
(
∑
k

pk|ψk⟩⟨ψk|L̂ϕ + L̂ϕ
∑
k

pk|ψk⟩⟨ψk|)

introducing identity operator adjacent to SLD, 1̂ =
∑

l |ψl⟩⟨ψl| and writing the matrix

elements ⟨ψl|L̂ϕ|ψk⟩ as (L̂ϕ)lk,

=
1

2

(∑
kl

pk|ψk⟩(L̂ϕ)kl⟨ψl|+
∑
kl

pk|ψl⟩(L̂ϕ)lk⟨ψk|
)

as SLD is hermitian, its eigenvalues are real numbers; therefore, (L̂ϕ)lk = (L̂ϕ)kl

=
1

2

∑
kl

(
pk|ψk⟩⟨ψl|+ pk|ψl⟩⟨ψk|

)
(L̂ϕ)kl

projecting ⟨ψi| and |ψj⟩ from left and right respectively, and using identity ⟨ψi|ψk⟩ = δik,

(∂ϕρ̂ϕ)ij =
1

2

∑
kl

(
pkδikδlj + pkδilδkj

)
(L̂ϕ)ij

=
1

2
(pi + pj)(L̂ϕ)kl

(L̂ϕ)kl turns out to be,

(L̂ϕ)ij = 2
(∂ϕρ̂ϕ)ij
pi + pj

⇒ L̂ϕ = 2
∑
kl

(∂ϕρ̂ϕ)kl|ψk⟩⟨ψl|
pk + pl

(C.2.1)

C.3 FI Vs QFI

Taking partial derivative of conditional PDF p(µ|ϕ) with respect to ϕ leads to,

∂ϕp(µ|ϕ) = Tr(Π̂µ∂ϕρ̂ϕ)

=
1

2
Tr(Π̂µρ̂ϕL̂ϕ + Π̂µL̂ϕρ̂ϕ)
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Using cyclic property of trace and the fact that all the operators involved in above equa-

tion are hermitian,

=
1

2
Tr

[
(ρ̂ϕΠ̂µL̂ϕ)

† + ρ̂ϕΠ̂µL̂ϕ
]

which give way to,

= ℜ
[
Tr(ρ̂ϕΠ̂µL̂ϕ)

]
hence eq. (4.1.3) becomes,

F (ϕ) =

∫
dµ

1

p(µ|ϕ)

(
ℜ
[
Tr(ρ̂ϕΠ̂µL̂ϕ)

])2

≤
∫
dµ

∣∣Tr(ρ̂ϕΠ̂µL̂ϕ)
∣∣2

Tr(ρ̂ϕΠ̂µ)

=

∫
dµ

∣∣Tr(√ρ̂ϕΠ̂µ

Tr(ρ̂ϕΠ̂µ)

√
Π̂µL̂ϕ

√
ρ̂ϕ)

∣∣2
using Cauchy-Schwarz Inequality, |Tr[Â†B̂]|2 ≤ Tr[Â†Â]Tr[B̂†B̂], the above eq. trans-

forms into an inequality given as,

≤
∫
dµTr[Π̂µL̂ϕρ̂ϕL̂ϕ]

which through completeness of POVMs yields,

= Tr[L̂ϕρ̂ϕL̂ϕ] = Tr[ρ̂ϕL̂
2
ϕ]

F (ϕ) ≤ Tr[ρ̂ϕL̂
2
ϕ] (C.3.1)

C.4 Unitary QFI

FQ(ρ̂, Ĝ) = 2
∑
kl

(pk − pl)
2

pk + pl
|Ĝkl|2
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For unitary transformation, the SLD can be written as,

L̂ϕ = 2i
∑
k,l

⟨ψk|[ρ̂ϕ, Ĝ]|ψl⟩|ψk⟩⟨ψl|
pk + pl

where we have used ∂ϕρ̂ϕ = i[ρ̂ϕ, Ĝ], in eq. (C.2.1). Evaluating the commutator leads to,

= 2i
∑
k,l

pk − pl
pk + pl

Ĝkl|ψk⟩⟨ψl|

Squaring SLD gives,

L̂2
ϕ = −4

∑
klij

(pk − pl)(pi − pj)

(pk + pl)(pi + pj)
ĜklĜij|ψk⟩⟨ψl|ψi⟩⟨ψj|

contracting index i gives,

= −4
∑
klj

(pk − pl)(pl − pj)

(pk + pl)(pl + pj)
ĜklĜlj|ψk⟩⟨ψj|.

Using definition of QFI,

FQ( ˆρ, ϕ) = Tr[ρ̂ϕL̂
2
ϕ]

= −4
∑
iklj

pi
(pk − pl)(pl − pj)

(pk + pl)(pl + pj)
ĜklĜlj⟨ψi|ψk⟩⟨ψj|ψi⟩

= −4
∑
iklj

pi
(pk − pl)(pl − pj)

(pk + pl)(pl + pj)
ĜklĜljδikδji
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contracting index i and j with δ, leads to j = k

= 4
∑
kl

pk
(pk − pl)

2

(pk + pl)2
|Ĝkl|2

= 4
∑
kl

(1− pl
pk + pl

)
(pk − pl)

2

(pk + pl)
|Ĝkl|2

= 4
∑
kl

(pk − pl)
2

pk + pl
|Ĝkl|2 − Tr[ρ̂ϕL̂

2
ϕ]

= 2
∑
kl

(pk − pl)
2

pk + pl
|Ĝkl|2

FQ(ρ̂, Ĝ) = 2
∑
kl

(pk − pl)
2

pk + pl
|Ĝkl|2 (C.4.1)

C.5 Unitary QFI for Mixed and Pure States

Through simple algebra, QFI for mixed and pure states can be obtained from eq. (C.4.1),

FQ(ρ̂, Ĝ) = 2
∑
kl

(pk − pl)
2

pk + pl
|Ĝkl|2

= 2
∑
kl

1

pk + pl
(p2k + p2l + 2pkpl − 4pkpl)|Ĝkl|2

= 2
∑
kl

[
pk + pl −

4pkpl
pk + pl

]
|Ĝkl|2

Exploiting the arbitrariness of index l and k, pk|Ĝkl|2 = pl|Ĝkl|2 which leads to,

= 4

[∑
kl

pk⟨ψk|Ĝ|ψl⟩⟨ψl|Ĝ|ψk⟩ −
∑
kl

2pkpl
pk + pl

|Ĝkl|2
]

using completeness of the states |ψl⟩

= 4
∑
k

pk⟨ψk|Ĝ2|ψk⟩ −
∑
kl

8pkpl
pk + pl

|Ĝkl|2 (C.5.1)
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For pure state, ρ̂ = |ψ⟩⟨ψ|, pk = pl = 1 for one value of k and l, with rest all as 0. Thus,

eq. (C.5.1) becomes

= 4
(
⟨ψ|Ĝ2|ψ⟩ − ⟨Ĝ⟩2

)
FQ(ψ⟩, Ĝ) = 4⟨ψ|(∆Ĝ)2|ψ⟩ (C.5.2)

For mixed state, using the identity, Tr[ρ̂(∆Ĝ)2] =
∑

k pk⟨ψk|(∆Ĝ)2|ψk⟩ =
∑

k pk
[
⟨ψk|(Ĝ)2|ψk⟩−

|⟨ψk|Ĝ|ψk⟩|2
]
[47] eq. (C.5.1) yields,

= 4Tr[ρ̂(∆Ĝ)2]−
(∑

kl

8pkpl
pk + pl

|Ĝkl|2 − 4
∑
k

pk|⟨ψk|Ĝ|ψk⟩|2
)

FQ(ρ̂, Ĝ) ≤ 4Tr[ρ̂(∆Ĝ)2] (C.5.3)
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