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ABSTRACT 

Depression and anxiety are prevalent among 10-20% of children and adolescents globally, 

with an estimated 15 million people affected in Pakistan. Despite this growing figure, the 

general Pakistani population lacks awareness regarding mental disorders due to limited 

mental healthcare resources and negative perception of mental health. This study aims to 

utilize machine learning with RCADS to maximize the use of current healthcare resources 

and facilitate depression and anxiety screening. Three feature selection methods i.e., the 

Chi-square test of independence, Spearman correlation, and Recursive Feature Elimination 

revealed a weak correlation with the evaluation of depression and anxiety in the study 

population. Data augmentation was done using the multinomial probability distribution of 

the existing data to generate hybrid-synthetic correlated discrete multinomial variates of 

each item of RCADS-47, to address the limitation of a small sample size. Six commonly 

employed ML algorithms—Decision Tree, Random Forest, Support Vector Machine, 

Logistic Regression, Naive Bayes, and K-Nearest Neighbor—were trained on the hybrid 

data to develop the predictive models. The Naive Bayes algorithm yielded the best overall 

results with up to 75% accuracy and a 0.75 F1 score. The findings suggest that the Naive 

Bayes algorithm using 46 features suits the data well and has the potential to be used as a 

data-driven decision support system for the concerned professionals and improve the usual 

way of screening anxiety and depression in children and adolescents. 

Keywords:  Revised Child Anxiety and Depression Scale (RCADS), Machine Learning 

Algorithms, Depression, Anxiety, Data Augmentation 
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CHAPTER 01: INTRODUCTION 

Adolescence is a chaotic transitional stage marked by significant physiological, 

psychological, and emotional changes. This maelstrom of change and adaptation makes 

young people more susceptible to mental health illnesses such as anxiety, mood disorders, 

eating disorders, and personality disorders [1]. The most prevalent forms of mental health 

problems in children and adolescents include psychological distress such as depression and 

anxiety [2], [3] and it has a severe effect on their lives. The rate ranges from 11% to 25% 

and 3% to 8% for anxiety disorders and depressive disorders respectively [4], [5]. It is 

predicted that half of all mental problems begin to develop by the age of 14, and 75% by 

the age of 18 [6], [7]. Untreated anxiety and depression may have negative effects and 

cause other issues later in life, such as substance misuse or dependency, suicidal thoughts, 

poor academic performance, and unemployment [8], [9], [10], [11]. The cause for the 

observed rise in psychological illness among young individuals is unknown. To address 

this rise, parents, schools, medical professionals, and governments must work together to 

develop supportive settings and offer the tools and solutions that are needed.  

1.1       Mental Health Challenges in Pakistan  

Even though the mental health of children is becoming a global priority, there is 

limited research on the subject from low- and middle-income nations like Pakistan [12]. In 

Pakistan, around 15 million people struggle with mental health issues. But for a country 

with a population of 241.49 million [13], there are relatively few government mental health 

facilities and just 400 certified psychiatrists majority of whom are located in urban areas 

[14]. Even though about half of Pakistan's population is under the age of 18, as far as we 

know, no empirical statistics for children and adolescents have been recorded on a national 

level [15]. Nonetheless, studies and surveys with small sample numbers show that there is 

a burden associated with early onset mental health problems. A survey conducted in 

Rawalpindi on 1,124 youth revealed that 17.2% and 21.4% of them were estimated to be 

suffering from anxiety and depression, respectively [16]. A study conducted in Karachi on 

1,470 individuals between the ages of 11 and 17 found that around 20% of the participants 
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had serious emotional and behavioral issues. Similarly, a survey conducted on 640 

teenagers estimated that 34% of the participants had atypical social and emotional behavior 

[17], [18]. Regardless of the given estimates, resources for addressing mental health 

disorders are insufficient for their severity. According to the World Health Organization 

(WHO) data, as of 2019, the suicide mortality rate (per 100,000 population) in Pakistan is 

8.9 [19]. When it comes to mental health concerns, the majority of the community appears 

to be in denial. Individuals are reluctant to disclose that they suffer from mental health 

issues because these are taboo subjects that are hardly discussed [20]. Mental health is just 

as important as physical health, yet it is often neglected due to cultural stigma, a lack of 

awareness, and misleading spiritual beliefs. The general public is unaware of mental 

illnesses and the small percentage that is informed is unaware of the therapies available for 

them. These reasons lead to untreated mental disorders. As reported in the World Mental 

Health Survey, nearly 85% of serious mental health concerns in low- and middle-income 

countries (LMIC) did not receive any therapeutic management in the previous year [21]. 

Mental health screenings include questionnaires as well as one-on-one interviews. Many 

tools have been developed to evaluate anxiety and depression in children and adolescents. 

These assessment tools are often comprehensive, containing 20 to 80 questions each (Table 

1.1). 

Table 1.1: Common Mental Health Assessment Tools 

Sr.no. Assessment Tool 
Psychological 

Disorder 

Number 

of items 
Reference 

1. 
DSM-5 Online Assessment 

Measures 

Depression and 

Anxiety Disorders 
25 [22] 

2. 
Patient Health Questionnaire 

(PHQ) Screeners 

Anxiety, 

Depression, Eating 

Disorders 

83 [23] 

3. 

Center for Epidemiological 

Studies Depression Scale for 

Children (CES-DC) 

Depression 

Disorders 
20 [24] 
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4. 
Kutcher Adolescent Depression 

Scale (KADS) 

Depression 

Disorders 
6 to 11 [25], [26] 

5. 
Screen for Child Anxiety 

Related Disorders (SCARED) 
Anxiety Disorders 41 [27] 

6. 
Spence Children’s Anxiety 

Scale (SCAS) 
Anxiety Disorders 35 to 45 [28] 

7. 

Spielberger State-Trait Anxiety 

Inventory for Children (STAI-

C) 

Non-disorder-

specific Anxiety 
20 [29] 

8. 
Revised Children’s Manifest 

Anxiety Scale (RCMAS) 
Anxiety Disorders 73 [30] 

9. 
Strengths and Difficulties 

Questionnaire (SDQ) 

Anxiety, 

Depression, and 

Social Behaviors 

25 [31] 

10. 
Fear Survey Schedule for 

Children-Revised (FSSC-R) 
Fear 80 [32] 

Another major issue is that with the present screening and assessment methods, 

there is a need for generalizability. The data used in epidemiological research on mental 

diseases predominantly comes from high-income nations, but to fully comprehend the 

actual global epidemiology, additional data from low- and middle-income countries 

(LMICs) are required.  Most tools are revised and made with the needs of individuals in 

Europe or America in mind. The Revised Child Anxiety and Depression Scale (RCADS), 

for instance, was created by American researchers and was first tested on American 

individuals. Since then, it has been validated in different populations such as Australia [33], 

Denmark [34], Netherlands [35], Turkey [36], Ireland [37], El Salvador [38], and The 

United Kingdom [39]. As of yet, no study has been conducted in Pakistan. 

Sociodemographic factors of study populations are reported as key influencers in the 

development of early-onset psychological disorders [40]. Thus, to guarantee their 

effectiveness, methods of screening must be standardized and optimized with a focus on 

the Pakistani population as well. 
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The aforementioned information makes it evident that improvements are needed in 

the effectiveness and accessibility of mental health care services. This may be achieved by 

utilizing machine learning (ML) in developing intelligent clinical decision support systems 

that are driven by data. By assisting medical professionals in making evidence-based 

decisions, machine learning tools reduce the burden and improve patient care [41]. 

Furthermore, such user-friendly technologies' ease and adaptability can improve patient 

outcomes. In Chapter 2, the current state of ML integration in mental healthcare is covered 

in detail.  

1.2  Depression and Anxiety 

 In the DSM-5, Depressive disorder is an umbrella term for illnesses that cause 

continuous feelings of sadness and accompanying changes that greatly impair one's 

capacity to function [42]. Among the depressive disorders is Major Depressive Disorder 

(MDD), which was previously placed in the “Mood Disorders” chapter of DSM-IV, and is 

now located in the “Depressive Disorder” section of DSM-5. Although this change may 

not seem like much, it has significant effects on the diagnosing process. A minor phrasing 

adjustment has broadened the diagnosis by adding hopelessness to the main mood 

requirement. For anxiety, DSM-5 removed obsessive-compulsive, acute stress, and post-

traumatic stress disorders, providing a more precise and uniform definition of anxiety 

disorders. Separation anxiety disorder and selective mutism were classified as anxiety 

disorders rather than neurodevelopmental diseases, resulting in fewer differences between 

the childhood and adulthood categories of anxiety disorders [43]. Anxiety, in DSM-5, is 

defined as worrying about a potential threat. Anxiety disorders are defined as conditions 

characterized by overwhelming nervousness along with corresponding behavioral 

abnormalities. Fear and anxiety inevitably overlap, but they differ in the fact that fear is 

more often associated with an increase in neural activity necessary for fight-or-flight 

reactions or escape behaviors, in contrast, anxiety is more often associated with tense 

muscles, alertness in anticipation of danger, and cautious or avoidant behavior. Fear is an 

emotional response to a perceived or genuine impending threat, whereas anxiety is an 

anticipatory feeling of a threat in the future [44]. In primary healthcare settings, anxiety 

disorders are commonly diagnosed as panic disorder, social anxiety disorder, and 
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generalized anxiety disorder. Physical symptoms of anxiety disorders include rapid 

heartbeats, shortness of breath, and feeling lightheaded. Symptoms of anxiety disorders 

include nervousness, social fears, random or triggered panic attacks, worrying about the 

future, and avoidance behaviors [45].  

1.3  Revised Child Anxiety and Depression Scale (RCADS) 

The Revised Child Anxiety and Depression Scale (RCADS) is a revised version of 

the Spence Children’s Anxiety Scale [46]. It is a freely available 47-item self-report 

measure used to evaluate children's symptoms that align with major depressive and anxiety 

disorders in the DSM-IV (see Appendix A). The RCADS has two versions: a long version, 

RCADS-47, with 47 items, and a short version, RCADS-25, with 25 items. The RCADS-

47 is composed of 47 items and six subscales namely Major Depressive Disorder (MDD), 

Separation Anxiety Disorder (SAD), Social Phobia (SP), Generalized Anxiety Disorder 

(GAD), Panic Disorder (PD), Obsessive-Compulsive Disorder (OCD) (Table 1.3). 

Respondents must rate each of the 47 questions according to how frequently they can relate. 

A score of 0 for "Never," 1 for "Sometimes," 2 for "Often," and 3 for "Always" is assigned 

to each item.  

There is also a Revised Child Anxiety and Depression Scale—Parent Version 

(RCADS-P), that is given to the parents or caregivers of the child to evaluate the child’s 

anxiety and depression symptoms. The RCADS-P uses the same method for scoring as the 

RCADS finished by the child. Each subscale's responses are added up to provide a raw 

score, which is subsequently converted into a t-score. That t-score is then used to evaluate 

the child’s depression and anxiety. The t-score conversion sheet is available on the RCADS 

website. The scoring may be done manually or automatically. For manual scoring, each 

item's score is assigned a number value of 0, 1, 2, or 3, representing Never, Sometimes, 

Often, and Always respectively. For each subscale, the numerical values of each item are 

summed together. The items that make up each subscale are mentioned in the Table 1.2. 

For example, to calculate Generalized Anxiety, the numerical values for items 1, 13, 22, 

27, 35, and 37 are summed. Thus, the maximum possible score is 18, while the lowest is 

0. Individuals between the ages of 8 and 18 can complete the RCADS, and parents or other 
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carers of young people can complete the RCADS-P. It takes five to ten minutes to complete 

the questionnaire. The copyright for the RCADS and all of its derivative works, including 

translations, belongs to Bruce F. Chorpita and Susan H. Spence. End users can download 

them from the RCADS website (https://rcads.ucla.edu/) [47].  

Table 1.2: RCADS-47 Subscales and their Corresponding Items 

Subscale 
Corresponding 

Items 
Score 

Major Depressive 

Disorder (MDD) 

2, 6, 11, 15, 19, 21, 

25, 29, 40, 47 

MDD 

Score 

Overall 

Depression 

Score 

Total 

Internalizing 

Score 

Separation Anxiety 

Disorder (SAD) 

5, 9, 17, 18, 33, 45, 

46 

SAD 

Score 

Overall 

Anxiety Score 

Social Phobia (SP) 
4, 7, 8, 12, 20, 30, 

32, 38, 43 

SP 

Score 

Generalized 

Anxiety Disorder 

(GAD) 

1, 13, 22, 27, 35, 37 
GAD 

Score 

Panic Disorder 

(PD) 

3, 14, 24, 26, 28, 34, 

36, 39, 41 

PD 

Score 

Obsessive-

Compulsive 

Disorder (OCD) 

10,16, 23, 31, 42, 44 
OCD 

Score 

1.4  Problem Statement 

Childhood and adolescent mental health concerns are a neglected public health 

concern because of cultural stigma, a lack of awareness, and insufficient mental healthcare 

services. The Revised Child Anxiety and Depression Scale (RCADS) has established itself 

as a widely utilized self-report tool for diagnosing anxiety and depression symptoms in 

children and adolescents but this validation has been mostly carried out in Western 

https://rcads.ucla.edu/
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countries. Evaluating the RCADS in non-Western countries, particularly developing 

nations where anxiety and depression prevalence may differ, is also necessary.  

Additionally, the current intervention options are expensive and time-consuming. 

Such constraints in mental healthcare increase the growing frequency of mental health 

problems. Failure to diagnose these issues early in childhood and teenage years can have 

major effects on the individual growing up. The improvement of existing screening 

methods for mental health concerns, particularly depression and anxiety using RCADS, 

may be achieved by employing machine learning techniques to create smart data-driven 

decision support systems. Scoring RCADS tests can be a tedious task for mental health 

professionals. It involves manually adding up all the answers and then looking up a table 

to convert the sum into a T-score. This process is time-consuming and error-prone. By 

training models directly on the raw RCADS responses, the need for manual calculations 

and table lookups can be eliminated. Moreover, machine learning can minimize human 

error and ensure consistent scoring. Incorporating machine learning into the RCADS 

scoring process has the potential to significantly improve efficiency, accuracy, and 

consistency and valuable time can be freed up for healthcare professionals. It can help 

healthcare providers by enabling them to quickly make well-informed judgments 

throughout the screening process. 

1.5  Objectives 

 This study aims to achieve the following objectives: 

 Analysis of each RCADS-47 item to identify significant features for the prediction 

of depression and anxiety using a Pakistani clinical sample. 

 Generation of augmented data using the statistical distribution of the existing data 

to resolve the limitation of a small dataset. 

 Developing a predictive model using machine learning methods to predict the 

disorder category based on RCADS scores.  
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1.6  Relevance to National Needs 

 In Pakistan, where resources for mental health are limited, managing psychological 

disorders is critical. With depression and anxiety affecting an estimated 15 million 

individuals of the population, as was mentioned in Section 1.1, limited services in remote 

areas make the issue worse [48]. Research and development in the mental health sector is 

much needed. Machine learning can be used for accurate screening instead of time-

consuming and biased manual assessments. The data-driven decision-making can assist 

doctors in achieving accurate diagnoses. Furthermore, a machine learning model built on 

real-world data can promote early intervention by enabling accurate diagnosis and offering 

a deeper comprehension of the efficacy of RCADS in the Pakistani population. Healthcare 

developers can apply the suggested solution to create a convenient machine-learning tool.  

The less time-consuming diagnosis and ultimately timely intervention for mental 

health concerns among children and adolescents will contribute to the Sustainable 

Development Goal (SDG) 3 - Good Health and Well-being. Additionally, the creation of a 

rapid screening tool will give mental health practitioners an efficient decision-support 

system, easing the strain of primary psychiatric consultations and accelerating the 

procedure. Enhancing and improving conventional healthcare methods can ultimately 

fulfill SDG 9 - Industry, Innovation, and Infrastructure  

1.7  Thesis Structure 

 This dissertation adheres to a detailed framework to achieve the goals stated in 

Section 1.5. Chapter 2 outlines the literature assessment that was done to evaluate the 

extent of research on machine learning-driven prediction of mental health disorders in 

young people and to identify possible research gaps. The methodology of the study is 

elaborated upon in Chapter 3, and the results obtained are discussed in Chapter 4. Finally, 

a summary of the study, an acknowledgment of the limitations, and suggestions for 

addressing them are included in Chapter 5, which brings the dissertation to a close. 
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CHAPTER 02: LITERATURE REVIEW   

 Since self-report measures provide firsthand accounts of experiences not available 

from other sources, they are crucial for evaluating these disorders in children. Effective 

assessment methods are critical when dealing with children's mental health. It is essential 

to determine whether the techniques used to diagnose depression and anxiety disorders in 

kids are theoretically valid measures. RCADS has been demonstrated to be a valid tool for 

detecting and assessing anxiety and depression in both clinical and non-clinical populations 

of children and adolescents [49], [50]. RCADS has also demonstrated promising 

psychometric properties in different populations and cross-cultural research and meta-

analyses have demonstrated the measure's strong psychometric qualities [51], [52]. 

Moreover, Over the last ten years, machine learning techniques have been included in 

healthcare systems for the diagnosis and likely prognosis of mental health disorders due to 

the need to discover efficient strategies for treating mental health disorders [53]. A machine 

learning algorithm is a computerized mechanism that, instead of being "hard coded"—that 

is, programmed to generate a certain result—uses input data to accomplish a specified job. 

These algorithms are "soft coded" meaning that they automatically change or adjust their 

design as a result of experience and repetition, hence improving their ability to do the 

intended objective. The algorithm then shapes itself most optimally so that it can generate 

the intended result from fresh, unknown data [54]. 

2.1  Evaluation of Psychometric Properties of RCADS  

2.1.1  Australia 

 An Australian research team evaluated the psychometric properties of RCADS. 

There were 405 children and adolescents in the study, ranging in age from 6 to 18. The 

results displayed good test-retest reliability, internal consistency, and convergent validity 

using RCADS, along with robust structural validity and internal reliability. Preliminary 

data analysis covered various aspects, from assumption testing to confirmatory factor 
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analysis. The study identified RCADS as a valid instrument for diagnosing anxiety and 

depressive symptoms in Australian youth [33]. 

2.1.2  Turkey 

 In a research study with 483 participants aged 8 to 17, the psychometric properties 

of the Turkish version of RCADS-P were evaluated. The RCADS-P showed strong 

reliability and validity. The study confirmed the six-factor structure, aligned with DSM-

based subscales, of the Turkish RCADS-P using confirmatory factor analysis. Notably, the 

instrument was able to distinguish between children with and without relevant diagnoses, 

which shows its discriminative validity. Gender differences occurred, with girls scoring 

higher on anxiety and depression. The results support the Turkish RCADS P as a useful 

tool for parents, emphasizing its usefulness in assessing current disorders [36]. 

2.1.3  Hawaii 

 In a study from 2005, the RCADS' psychometric qualities were analyzed in a 

clinical sample of 513 young people with an average age of 12.9 years and predominantly 

consisting of Caucasian, Hawaiian, Japanese American, Filipino, or multi-ethnic. 

Convergent and discriminant validity tests demonstrate that RCADS have favorable 

qualities when compared to clinical interviews and self-reports. Moreover, confirmatory 

factor analysis supported a valid factor structure, with all factor loadings being statistically 

significant. The study revealed gender and grade-level disparities in scores and emphasized 

the effectiveness of the RCADS in distinguishing between target and non-target groups for 

different diagnoses. The study found that the RCADS total anxiety scale did better than the 

usual methods in telling apart anxiety disorders from control cases [49].  

 In another study with 490 participants aged 6-18 from mental health clinics, 

RCADS-P displayed high internal consistency and strong discriminant validity between 

anxiety and depressive disorders. Both children and caregivers completed English 

questionnaires, and P ChIPS was used to conduct diagnostic interviews. RCADS showed 

good internal consistency at 0.95 and significant correlations were found with the CBCL 

Anxious/Depressed Syndrome Scale. The study confirms RCADS-P's discriminant 
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validity, utility in assessing internalizing problems, and specificity in measuring anxiety 

and depression [50].  

 Research in 2016 evaluated the shortened version of RCADS-P, the parent version. 

The research included a school samples that consisted of 967 children from grades 3 to 12 

and a clinical sample that included 433 children ranging from 6 to 18 years old. For 

evaluating the psychometric properties, reliability, and validity of the RCADS-25-P, the 

study employed statistical analyses, including confirmatory factor analysis and reliability 

tests. According to the findings, the shorter version retained the reliable factor structure of 

the original 47-item version. Cronbach's alpha and test-retest correlations confirmed its 

consistency. The tool was able to differentiate among individuals with and without clinical 

diagnoses proved its discriminant validity. Examination of the parent-child agreement 

showed that the clinical sample had higher agreement than the school sample, possibly as 

a result of more severe symptoms. The 25-item RCADS version performed equally well, 

if not better, than the longer 47-item version, making it an appropriate alternative to 

diagnose anxiety and depression while reducing the diagnosis time [55]. 

2.1.4  Denmark  

 A Denmark research team aimed to evaluate the psychometric properties of the 

Danish version of RCADS. The sample consisted of 667 children aged 9 to 17 from 

community schools in Denmark. With a Cronbach's alpha of 0.96, the within-scale 

reliability was remarkable validating the RCADS DAN as a useful device for screening 

anxiety in young Danes. Anxiety and depression were observed at higher levels in girls 

than in boys, indicating a significant gender difference in total internalizing scores. A 

confirmatory factor analysis was also done, and the results confirmed the RCADS's 6-

component structure. The study used RCADS and the Screen for Child Anxiety-Related 

Emotional Disorders (SCARED-R) for evaluation. The data analysis included reliability 

assessment and Pearson correlations for convergent validity. According to the findings, the 

RCADS DAN has similar psychometric features to those published in the United States 

and Europe, and it is a valid evaluation instrument for diagnosing anxiety and depression 

[34]. 
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2.1.5  Netherlands  

 A study done in the Netherlands in 2015 aimed to investigate a school-based 

preventive program's effectiveness for childhood anxiety and depression in the Amsterdam 

area. The sample comprised 3636 children aged 8-13 from diverse ethnic backgrounds. It 

utilized RCADS and teacher reports to confirm the RCADS's reliability and validity for a 

multi-ethnic late childhood population. Confirmatory factor analysis replicated the 

RCADS's original factor structure. Good internal consistency and stability over three 

months were observed, supporting the RCADS's utility in identifying children in need of 

prevention programs. The study discovered a strong association between anxiety and Major 

Depressive Disorder (MDD) scales, implying that the MDD scale may better capture 

anxiety symptoms than depression symptoms. RCADS showed sensitivity to change and 

gender. Despite a small gap in detecting high-symptom children between RCADS and 

teacher reports, RCADS was recommended for screening and tracking changes in anxiety 

and depression symptoms over time. The study pointed out the need to use children's self-

reports for successful screening in identifying and treating anxiety and depression 

symptoms [35].  

 Another study carried out in 2013 assessed the consistency of anxiety symptom 

measurement across adolescents using RCADS. The research was conducted as part of the 

Tracking Adolescents Individual Lives Survey (TRAILS), a Dutch cohort study, and 

included a sample of 2226 people from both urban and rural areas in the northern 

Netherlands. The ages of the participants ranged from 10 to 17 years old. The study focused 

on RCADS’ longitudinal structure, examining its ability to consistently measure anxiety 

symptoms over time. The findings of the research concluded that RCADS effectively 

measures anxiety subtypes consistently across various time points in a general adolescent 

population. This consistency shows that changes in anxiety subscales are more likely to be 

true reflections of changes in anxiety levels rather than mistakes caused by measurement 

errors [56].  

 Another study conducted in 2020 aimed to assess the psychometric properties of 

two concise versions of the Revised Child Anxiety and Depression Scale (RCADS-25 and 
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RCADS-20) for screening anxiety and depression in school children and adolescents. The 

research involved 2,238 participants aged 8 to 18 from diverse primary and secondary 

schools in the Netherlands. The study evaluated the internal consistency, criterion validity, 

structural validity, test-retest reliability, and construct validity of the RCADS-25 and 

RCADS-20 scales. Key findings indicated that both scales demonstrated good structural 

validity, confirming a well-fitting four-factor model encompassing generalized anxiety 

disorder, separation anxiety disorder, social phobia, and major depressive disorder. Internal 

consistency was robust, with Cronbach's alpha coefficients ranging from 0.70 to 0.93. Test-

retest reliability was favorable, exhibiting intra-class correlation coefficients between 0.70 

and 0.91. Criterion validity was established through significant correlations with the 

Schedule for Affective Disorders and Schizophrenia for School-Age Children Present and 

Lifetime Version (K-SADS-PL). Additionally, construct validity was affirmed by 

significant correlations with other anxiety and depression measures (SCARED-NL and 

CDI-2). In summary, the study concludes that the RCADS-25 and RCADS-20 scales are 

both viable and efficient screening tools for anxiety and depression in school-age 

population [57]. 

2.1.6  United States of America 

 In one of the two studies, conducted by Chorpita et al, 1641 kids from various ethnic 

backgrounds were assessed for anxiety and depression using RCADS. Despite the anxiety 

items' satisfactory representation of the scale, a few of the items revealed weak correlations, 

suggesting issues with content validity. Study 2 involved 246 children aged around 12 

years. A subset of 125 participants underwent a retest after a week, maintaining ethnic and 

age representativeness. RCADS reliability was assessed through a one-week test-retest, 

with alpha coefficients ranging from 0.71 to 0.85. The RCADS General Anxiety Disorder 

(GAD) scale demonstrated discriminant validity based on DSM-IV GAD criteria, 

emphasizing chronic worry over somatic symptoms. Interesting differences by sex and 

grade were also noted in RCADS subscales [46].  

 A research study aimed to preliminarily investigate the psychometric properties of 

the RCADS with a sample of children referred for possible ADHD, enhancing 
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generalizability to this population. The 117 participants included children from age 8 to 12 

years old, predominantly male (65.8%), and white (76.9%). 83% of the participants met 

ADHD criteria. A six-factor RCADS structure was predicted by the research, along with 

strong discriminant, convergent, and reliability validity. Moderate degrees of anxiety and 

depression were demonstrated by the mean scale scores. Strong relationships were found 

when convergent validity was evaluated using one parent's report and the child's self-report 

measures. One child-self-report and two parent-reports were used to assess discriminant 

validity, which showed construct and criterion validity for both sets of reports. 

Internalizing symptoms were favorably correlated with RCADS scores, but externalizing 

behaviors were negatively correlated. Parent-child reports revealed moderate to strong 

connections with specific factor correlations. Adolescents who scored highly on the 

RCADS internalizing scale also showed noticeably higher anxiety levels. Moderate 

agreement was shown by the inter-correlations between the RCADS subscales, which 

ranged from 0.41 to 0.86, with a slightly lower correlation for depression [58].  

 Another research with a sample of 372 participants investigated the psychometric 

properties of the RCADS-P scale in children undergoing ADHD evaluations. The RCADS-

P demonstrated consistent and accurate results, showing its validity and reliability. 

Analyses revealed that girls and children with internalizing disorders showed higher scores. 

The study investigated the prevalence of internalizing disorders among individuals with 

and without ADHD, revealing substantial differences in the prevalence rates for both 

groups. The RCADS-P showed good validity in assessing anxiety and depression when 

compared to Vanderbilt measures. The sensitivity-prioritizing ROC analysis demonstrated 

how well the RCADS-P screened for internalizing issues [59]. 

2.1.7  Ireland 

 In a different study that used statistical techniques like WLSMV and MIMIC, 

gender and age-based variations were the main focus of the assessment of the 47-item 

RCADS's psychometric qualities among Irish teenagers. 350 second-level students 

participated, the majority of whom were white (91.4%). A latent internalizing disorder 

factor was found to explain comorbidity, and the RCADS displayed strong internal 
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consistency, reliability, and convergent validity. Significantly greater levels of depression 

and anxiety were found in females. Distinct patterns in anxiety symptoms were shown by 

age-based disparities between school cycles, which suggests that the prevalence of anxiety 

disorders varies. The subscales measuring anxiety and depression showed moderate 

correlations, supporting the preliminary divergent validity [37]. 

2.1.8  United Kingdom 

 A study led by Karen McKenzie at the University of Cambridge in 2019, aimed to 

assess the validity of assessments designed for children and young people when applied to 

adults for measuring anxiety and depression. The Revised Children's Anxiety and 

Depression Scales (RCADS) were deemed reliable for adults, although adult responses 

primarily reflected general anxiety rather than specific anxiety disorder symptoms. Data 

for the original and short-form RCADS were obtained from 270 participants which 

consisted of 97 males (35.9%) ranging from 18 to 67 years old. An additional separate 

sample of 371 participants completed the 25-item short form RCADS items. The study 

explored the factorial structure of the RCADS in adults, favoring a bi-factor model to 

capture both general and specific anxiety subtypes. The findings highlighted that all 

RCADS versions provided reliable measures of general anxiety and depression in adults, 

encompassing various anxiety sub-dimensions. The study acknowledged potential sample 

bias, over-representing students and females, though existing research suggests that 

university students experience mental health issues at rates comparable to the general 

population [60]. 

2.1.9  Spain 

 Another research in 2021 examined the psychometric properties of the Spanish 

version of RCADS-25 with a sample of Salvadorian youth, and to establish its 

measurement invariance by gender. The sample for this study comprised 1296 3rd -12th 

grade students with a mean age of 12.73 years, of these, 716 identified as female (55.2%). 

The results of the study showed that the RCADS-25 had good internal consistency, test-

retest reliability, and convergent validity with other measures of anxiety and depression. 
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The two-factor structure of the RCADS-25 was confirmed, and measurement invariance 

was established by gender. The study also provided normative data for the Salvadorian 

youth population across different age groups. The study concluded that the Spanish version 

of the RCADS-25 is a reliable and valid measure of anxiety and depression symptoms in 

Salvadorian youth, and can be used for school-based screening and clinical assessment 

purposes [38]. 

2.1.6  Cross-national 

 Another study investigated the cross-cultural measurement variabilities of RCADS 

in 3,908 African and White American children and adolescents aged 13-18. The study 

included 11 countries and tried to find the RCADS's validity among various cultural 

groups. The study used categorical confirmatory factor analysis (CCFA) and the multiple 

indicators multiple causes (MIMIC) model to analyze fit and differential item functioning 

(DIF) on a 47-item scale. The demographics showed significant variations. Cronbach's 

alpha demonstrated the RCADS's dependability, and CCFA revealed appropriate fit 

indexes for the majority of countries. Although eight items showed DIF, cross-cultural 

measurement invariance was established. Even after non-invariant elements were removed 

from the RCADS scores, statistically significant disparities between nations were found. 

The study concluded that the RCADS maintains its factor structure and validity across 

diverse cultural and ethnic groups [61].  

 Another study in 2022 delved into the cross-cultural evaluation of the RCADS in 

Spain, Chile, and Sweden, employing confirmatory factor analysis and multi-group CFA. 

Assessing three participant samples, the research spans school children and adolescents in 

non-clinical settings from the mentioned countries. The RCADS, known for robust 

psychometric properties, exhibited a superior fit to a unidimensional model in all countries, 

supporting its cross-cultural utility for gauging depression, anxiety, and obsessive-

compulsive symptoms in youth. Internal consistency across RCADS subscales was 

consistently adequate to excellent. While the original six-factor model demonstrated 

satisfactory fit, modifications were suggested based on the Swedish sample. Latent means 

comparison, adjusted for age and gender differences, unveiled significant variations in 
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internalizing symptoms among Chilean, Spanish, and Swedish groups. Across all 

comparisons, girls consistently scored higher than boys on every factor. Strong evidence 

for measurement invariance across cultures was found, emphasizing the RCADS' 

consistency in diverse populations. The study underscores the importance of conducting 

measurement invariance tests in multinational research for cross-cultural reliability and 

advocates for further investigations into validity aspects across diverse cultural contexts 

[52]. 

2.2  Machine Learning for Depression and Anxiety 

 In machine learning, there are two major directions of pattern recognition; 

supervised and unsupervised learning. In supervised learning, the target classes of the data, 

that are being used to train the algorithm, are already labeled. Supervised pattern 

recognition uses labeled data to train a mapping function that connects input variable x to 

the output variable y. Unsupervised learning uses unlabeled data. Every case is assigned a 

label by the algorithm itself. by observing the data's underlying patterns. Unsupervised 

learning looks for structure and patterns in unlabeled data. Supervised machine learning 

includes regression and classification techniques like Random Forest, Decision Trees, K-

Nearest Neighbors (KNN), and Logistic Regression. Unsupervised learning approaches 

have applications in clustering, dimensionality reduction, and anomaly detection [62]. 

Supervised machine learning techniques are more appropriate when it comes to ML-based 

mental health issue prediction as medical professionals are the only ones who should be 

making conclusions about an individual's health. Only to help with this process should 

machine learning techniques be employed. 

A 2020 study employing machine learning algorithms in India predicted 

depression, anxiety, and stress. The DASS 21 questionnaire was used to gather data from 

348 people, both employed and unemployed, from different socioeconomic backgrounds. 

Several machine learning algorithms were used for the classification process, including 

Catboost, Naive Bayes, Random Forest, Logistic Regression, and SVM. Of all the 

classifiers, Catboost produced the best levels of accuracy (82.6%) and precision (84.1%). 

In two data sets of 110 and 520 individuals, random forest produced the greatest accuracy 
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rate of 91% and 89% for stress, anxiety, and depression predictions Because Random 

Forest was able to handle unbalanced classes, it was considered to be the best model, with 

Naive Bayes having the greatest accuracy. Despite its noteworthy contribution to 

psychological well-being, the study has many drawbacks. The accuracy of the 

classification algorithms is impacted by imbalanced classifications in the data. Because of 

the imbalance between the anxiety, depression, and stress classes, accuracy alone was 

insufficient to assess the models. Even though the study emphasized the significance of the 

f1 score in instances of classification imbalance, it also pointed out that all anxiety 

algorithms had low f1 scores, indicating difficulties in reliably predicting anxiety. 

Additionally, data from 348 employed and unemployed people aged 20 to 60 were gathered 

for the study. The sample size and individual participant characteristics may have 

limitations in representing demographics and variables that impact mental health [63]. 

Nemesure et al. predictively modeled anxiety and depression using a unique 

machine-learning technique. An ensemble of algorithmically different machine-learning 

techniques, including deep learning, were employed in the development of a unique 

machine-learning pipeline for this work. To enhance the performance of machine learning 

models, additional engineered features were created via feature engineering, such as Body 

Mass Index (BMI), Pulse Pressure, and Mean Arterial Pressure (MAP). The model's goal 

was to find significant indicators for GAD and MDD risk by training it to predict 

psychiatric disease using non-psychiatric input variables. 4,184 undergraduate students 

from the University of Nice Sophia Antipolis participated in the study; their ages and 

genders were evenly distributed. On the held-out test set, the ensemble model had a 

moderate predictive ability for the identification of GAD and MDD, with an AUC of 0.73 

and 0.67 respectively. The study's reliance on a dataset of French college students poses a 

critical limitation, potentially impacting the generalizability of the findings despite the 

model's commendable predictive ability for psychiatric illnesses when non-psychiatric 

variables are used. The research sample showed a low prevalence of anxiety and 

depression, a typical disadvantage in mental health studies. In addition, the sample size 

was rather small [64]. 
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Research in 2017 explored the potential of an automated system for predicting 

anxiety and depression in elderly patients to streamline diagnosis and referral using 

machine learning. The data was collected from 520 geriatric patients attending a 

government-operated tertiary care institution in Kolkata, India, and based on a thorough 

review of the literature and discussions with psychiatrists, eleven out of twenty features 

were chosen for predictive modeling using five different attribute evaluators (SU, CFS, 

PCA, GR, and OR). For binary classification, ten distinct classifiers—BN, logistic, RF, 

KS, RT, J48, SMO, MLP, RS, and NB—were used and evaluated for binary classification. 

The most suitable classifier was determined to be Random Forest (RF), which had a low 

false positive rate and 91% prediction accuracy. The chosen features and classifiers were 

externally validated using data from an additional 110 elderly patients. The research study 

discusses the difficulties in computing processes, specifically the slower processing of 

SVM. It is important to take into account the feasibility of using these models in healthcare 

environments that have limited resources [65]. 

In their study focused on the impact of depression and anxiety symptoms among 

schoolchildren, Qasrawi et al. conducted a comprehensive analysis using machine learning 

techniques to predict associated risk factors. 3,984 schoolchildren from public and refugee 

schools in the West Bank, ages 10 to 15, enrolled in fifth through ninth grades, were 

included in the study. Data was gathered using the Health Behaviors Schoolchildren 

questionnaire in the 2013–2014 academic year. Support vector machine (SVM), Random 

Forest (RF), neural network, decision tree, and Naive Bayes were the five machine learning 

approaches used in the study. SVM and Random Forest models showed the best accuracies 

in predicting both depression and anxiety symptoms with Random Forest obtaining 76.4% 

and 78.6% accuracy for depression and anxiety, and SVM reaching 92.5% and 92.4% 

accuracy respectively. The findings demonstrated the effectiveness of SVM and random 

forest in categorizing and predicting mental health issues in the student body under study. 

Key findings indicated that several factors such as school violence and bullying, domestic 

violence within the home environment, academic performance, and family income 

emerged as pivotal determinants that significantly influenced depression and anxiety levels 

among schoolchildren. Each of these factors was determined by the machine learning 

models to be a crucial determinant influencing student's mental well-being and cognitive 
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growth. The study emphasizes how early childhood anxiety and depression symptoms have 

a significant impact on mental health and cognitive development. It additionally 

emphasizes how machine learning techniques, in particular SVM and random forest 

models, hold promise for understanding and predicting the complex relations between risk 

factors. Although the suggested model's metrics are quite remarkable, the study's 

demographics raise uncertainty about the results' repeatability and generalizability. The 

children not only come from a certain ethnic group, but they also live in an area that is 

under occupation and unstable politically and socially. The subtleties of a child's well-

being under such terrible conditions are not comparable to those of a child in an 

undisturbed, sovereign state [66]. 

2.3  Study Rationale 

 At the time of the literature review, there was no published research on the subject 

of predicting mental disorders among Pakistani children and adolescents; as a matter of 

fact, the vast majority of studies on RCADS had been conducted in the West. Since 

sociodemographic factors have a significant impact on the development of mental health 

issues, research on these areas is equally important in non-Western countries, especially 

developing nations where anxiety and depression prevalence may differ. This has been 

deemed an important research gap. Pakistan currently lacks a sufficient infrastructure for 

mental health treatment given the size of the country's population. To bridge the gap 

between the urgent need for mental health care and the availability of resources, effective 

smart screening procedures tailored for Pakistani adolescents are required. This study's use 

of local data from Pakistani children and teens will fill in these research gaps and have 

considerable effects on the multidisciplinary field of machine learning and mental health 

research. 
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CHAPTER 03: METHODOLOGY 

A basic machine learning workflow, comprising data collection, pre-processing, 

feature selection, model training, and model assessment, was used in this study. The 

psychiatry department of Benazir Bhutto Hospital, Rawalpindi provided a secondary local 

dataset for this study. The data was pre-processed and scored using the SPPS batch code 

provided for RCADS. A collection of important features was chosen using statistical and 

computational techniques to train and test six machine learning algorithms that combined 

ensemble and classical methods. The performance of the models was evaluated using 

different metrics. Figure 3.1 provides a schematic diagram of the methodology.  

 

 

Figure 3.1: Workflow of the methodology 
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3.1  Data Collection 

The data for the study was provided by the psychiatry department of Benazir Bhutto 

Hospital, Rawalpindi. Patients granted consent for the use of the data, understanding that 

it would be kept anonymous and used strictly for research. The data consisted of RCADS 

evaluations of 138 children and adolescents, 44 boys and 82 girls, ranging from grade 3 to 

grade 12. The scores of all individual items were calculated using the SPSS code available 

on the RCADS website to deduce the final evaluation of each individual. A t-score below 

the recommended cut-off point of 65 is in the normal range meaning that no referral to 

treatment is needed, unless clinical judgment suggests otherwise. A t-score between 65 and 

69, is in the borderline clinical range, and whether or not referral is necessary needs to be 

clarified by doing a more comprehensive assessment or by using clinical judgment. A t-

score of 70 or above is in the clinical range which indicates a referral to treatment is needed. 

The 47 items of the RCADS are divided into 6 subscales with each subscale having a set 

number of questions (Table 1.3). Cut-off scores for these subscales are the same.  

3.2  Data Preprocessing 

 Data preprocessing is an important step in machine learning. If raw and unclean 

data is fed to a machine learning model, it affects the overall performance of the model. 

For 12 individuals, the gender was missing and for 46 individuals, the grade was missing. 

Since gender and grade are both vital pieces of information for evaluation, thus any cases 

that lacked either of this information were eliminated. Instances with even one missing 

value were deleted, leaving us with 87 instances, 34 boys and 53 girls. As stated in Section 

3.1, a total score of less than 65 was categorized as Normal, a score between 65 and 69 as 

Borderline, and a score of 70 or more as Clinical. Of the 34 boys, 17 were categorized as 

normal, 3 as borderline, and 14 as clinical. Additionally, out of the 53 girls, 30 fell into the 

normal group, 4 into the borderline category, and 19 into the clinical category. For feature 

selection and machine learning, the 47 RCADS items were selected as input variables for 

predicting the overall evaluation. 
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3.3  Data Analysis 

3.3.1 Descriptive Analysis 

 To describe the characteristics of the data, Kolmogorov-Smirnov and Chi-square 

tests of normality were used to evaluate the RCADS t-score of the total anxiety scale, the 

total internalizing scale, and each subscale to determine the distribution and skewness. The 

distribution was subsequently confirmed using skewness and kurtosis tests for each 

subscale. Testing for goodness-of-fit is a method used to assess how well a statistical model 

matches a collection of data. Single-sample Goodness-of-fit tests to check whether a 

sample could have been taken from a population with a specific distribution by taking into 

consideration a null and an alternative hypothesis. The Kolmogorov-Smirnov and Chi-

square tests of normality are two examples of such tests that are used to determine whether 

or not the data fits a normal distribution. The test statistic is computed using the sample's 

empirical distribution function (EDF). If the p-value falls below the specified level of 

significance or the test statistic's value exceeds a critical value for a certain level of 

significance, the null hypothesis is rejected, indicating that the sample was taken from 

populations following a different distribution [67].  

3.3.2 Internal Consistency and Reliability Analysis 

 Like previous studies, each subscale's internal consistency was measured using 

Cronbach’s alpha to see how closely connected the RCADS items were. Cronbach's alpha, 

which is often represented by the lowercase Greek letter α, is a regularly used statistic to 

assess the internal consistency or reliability of rating scales. It quantifies the reliability of 

a score by calculating inter-item correlations among all items and the magnitude of 

Cronbach’s alpha to summarize the information of questionnaire items [68]. It indicates 

how well the items of a questionnaire relate to one another. The alpha value ranges between 

0 and 1. Higher numbers imply stronger internal consistency, indicating that the items are 

assessing the same underlying idea of the questionnaire [69]. Alpha values of 0.70 or higher 

are usually considered acceptable. For inter-item correlation, items with a correlation 

between 0.20 to 0.40 were regarded as sufficient [70]. The 47 items of the RCADS are 
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divided into 6 subscales with each subscale, however, in this study, only the overall 

internalizing evaluation was taken into account. None of the following steps made use of 

the evaluations from the other subscales. 

3.4  Feature Selection 

 Feature selection is the step of reducing the number of input features before the 

development of a predictive model to improve the model's accuracy and efficiency. Two 

feature selection techniques, namely the filter method in which the selection of features is 

independent of a classifier and the wrapper method in which the features are selected using 

a classifier, were used to determine which of the 47 independent input variables were most 

relevant before machine learning algorithms were put into practice. 

3.4.1 Chi-square Test of Independence 

 Often referred to as the Spearman Chi-square test, the chi-square test is one of the 

most used statistical methods for determining whether two categorical variables are 

associated or not [71]. It is a non-parametric (distribution-free) method for analyzing group 

differences when the dependent variable is nominal. The Chi-square is adaptable to the 

data's distribution, much like all other non-parametric statistics. In particular, 

homoscedasticity in the data or equality of variances among the groups is not required [72]. 

A single sample's two categorical variables may be tested for independence using the chi-

square test to assess whether they are related to or independent of one another. Chi-square 

tests involve a calculation of a p-value and a test statistic (ρ). Rejection of the null 

hypothesis would suggest that there may be a relationship between one variable and another 

variable within the sample. Generally, values equal to 0.2 or below are deemed as weak 

associations [71]. In this study, C is calculated for each of the 47 RCADS items at a 

significance level of 0.05 using the Chi-square test. 

3.4.2 Spearman Correlation 

 Correlation is the measurement of the relationship between two variables to 

determine whether they are unrelated, positively or negatively correlated, or neither. 
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Correlation coefficients are used to quantify the degree of relationship between variables. 

Stated differently, correlation coefficients quantify the degree of relationship, both 

direction and magnitude, between two variables. There are two types of correlation 

coefficients: positive and negative, i.e., the direction of the association, and high or low, 

i.e., the magnitude of the association. The Spearman's correlation coefficient, named after 

Charles Spearman, is a non-parametric measurement that uses ranks to measure the 

relationship between variables. It measures the degree to which a monotonic function can 

adequately explain the connection between two variables [73]. A correlation value of 0 

denotes no association. Correlation coefficients range from -1 to +1, where -1 represents 

perfect negative correlation and +1 represents perfect positive correlation coefficients. In 

addition, correlation coefficients below 0.40 (positive or negative) are considered low, 

those between 0.40 and 0.60 are considered moderate, and those over 0.60 are considered 

strong. The statistical significance of the correlation is established by calculating a p-value 

in addition to r. P-values over the chosen threshold of significance denote significant 

findings, while those below it imply non-significant findings [74]. To identify significant 

features in this study, a correlation between the evaluation result and the 47 RCADS items 

was calculated. A correlation value of 0.4 and above was deemed satisfactory and values 

below 0.3 were considered poor [75]. 

3.4.3 Recursive Feature Elimination (RFE) 

 The Random Forest-Recursive Feature Elimination (RF-RFE) algorithm was used 

for the identification of significant features to be used during machine learning. The 

original idea of RFE was to train a model repeatedly, rank features, and then exclude the 

features with the lowest ranking to allow Support Vector Machines to do feature selection. 

Similar applications of this technique to Random Forests have shown that it works well 

when correlated features are present [77]. SVM’s capacity to find strong predictors is 

impacted by the presence of correlated predictors, even if it supports non-linear 

connections between predictors. The Random Forest-Recursive Feature Elimination (RF-

RFE) method is one proposed solution. Random Forest, a multiclass algorithm, has an 

intrinsic (unbiased) feature significance metric [76]. In this study, the 47 features (47 items 
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of RCADS) were tested iteratively using Python, and the features that yielded the highest 

performance metrics were chosen. 

3.5  Data Augmentation 

 As stated in Section 3.2, 51 out of the 138 cases were discarded because of missing 

data, leaving us with 87 instances. 87 instances in a dataset are insufficient to create an 

efficient machine-learning model. Therefore, augmented data was generated utilizing the 

probability distribution followed by the data in the 47 items of RCADS. Programming 

language R and Rstudio were used for both confirming the probability distribution and 

generating the data.  

3.5.1 Multinomial Probability Distribution 

Multinomial distribution is a multidimensional generalization of the binomial 

distribution which is limited to only two possible outcomes (success and failure), to more 

than two values. The multinomial distribution is a distribution function for discrete 

processes, similar to the binomial distribution, but fixed probabilities are attached to each 

outcome. A multinomial distribution is a process that has k possible outcomes (X1, X2, X3, 

…, Xk) with associated probabilities (p1, p2, p3,…, pk) such that Σpi = 1. The sum of the 

probabilities has to equal 1 because one of the results is certain to occur. Equation 3.5 

below describes the density function of multinomial distribution [78].  

(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑘 = 𝑥𝑘) =
𝑛!

𝑥1!𝑥2!
, … , 𝑥𝑘!

𝑝1
𝑥1𝑝2

𝑥2, … , 𝑝𝑘
𝑥𝑘 (3.1) 

The original data's probability distribution was investigated to create augmented 

data that was as close to the original as possible. The multinomial distribution of the 

original data was investigated using the chisq.test function of the MASS package in R at 

an alpha level of 0.05. If the alpha value of each test is less than the critical value, it 

demonstrates that the applied distribution fits the data distribution. 
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3.5.2 Data Generation 

To closely replicate the probability distribution of the original dataset, augmented 

data was generated utilizing the MASS and copula libraries in R. Five augmented datasets 

were created in varying sizes relative to the original data: 1:4 (four times the original size), 

1:8 (eight times the original size), 1:12 (twelve times the original size), 1:16 (sixteen times 

the original size), and 1:20 (twenty times the original size). 

3.6  Model Development 

 This study employs six machine learning models, including Decision Tree (DT), 

Random Forest (RF), Support Vector Machines (SVM), Logistic Regression (LR), Naive 

Bayes (NB), and K-nearest Neighbor (KNN). These models were developed using Python 

and the Scikit-learn package, with the default parameters. 

3.5.1 Decision Tree 

 A decision tree, a supervised machine learning method, is a graph to represent 

choices and their results in the form of a tree. It consists of a root node, internal nodes, and 

branches. The nodes represent an event or choice and the edges represent the decision rules 

or conditions. Each node represents attributes in a group that is to be classified and each 

branch represents a value that the node can take [79]. 

3.5.2 Random Forest Tree 

 The Random Forest is an ensemble method that makes use of several separate 

Decision Trees. There are three Random Forest hyper-parameters: the size of the nodes, 

the number of estimators, and the number of features that each node takes into factoring 

before splitting. Among commonly employed machine learning techniques, this regression 

tree method offers an additional level of model interpretability and prediction accuracy. 

With the use of random sampling and ensemble techniques, RF can provide better 

predictions and improved generalizations [80]. 
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3.5.3 Support Vector Machine 

  In the last couple of years, the Support Vector Machine has gained immense 

popularity because of its ease of use and adaptability in handling various classification 

problems. An SVM's capacity to learn classification patterns with a balance between 

accuracy and repeatability is what gives it its effectiveness. While SVM is still rarely used 

for regression, it is now a popular method for classification with great adaptability that can 

be used in a variety of data science settings. The algorithm creates a reproducible 

hyperplane that optimizes the distance between the support vectors for the two class labels 

to train the model. A hyperplane is a line that separates data points into categories. The 

expected label for data that has not been shown yet may then be found using that hyperplane 

[81]. 

3.5.4 Logistic Regression 

 Logistic Regression predicts binary outcomes with two mutually exclusive states. 

Nonetheless, logistic regression has the capacity to account for several factors and allows 

the use of continuous or categorical predictors. The ratio of the chance of the event 

occurring divided by the probability of the event not occurring is the odds of the event of 

interest. The natural logarithm of the odds is used by the logistic regression model as a 

regression function of the predictors. An expansion of binary logistic regression that can 

classify multiple categories, like in this study, is multinomial logistic regression [82]. 

3.5.5 Naive Bayes 

 Naive Bayes is a Bayes Theorem-based classification algorithm that assumes 

predictors are independent. Simply put, a Naive Bayes classifier assumes that the features 

are unrelated. Even though this independence assumption is frequently violated in practice, 

the algorithm still provides excellent accuracy. Naive Bayes is primarily used for text 

classification. Naive Bayes utilizes sample data to estimate the posterior probability of each 

class y given x. These estimates are utilized for classification or other decision-support 

purposes [79].  
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3.5.6 K-Nearest Neighbour 

The K-Nearest Neighbour is a relatively easy supervised machine learning 

approach that may be used for both regression and classification problems. Its main 

disadvantage is that, although it is simple to use and comprehend, it becomes noticeably 

slower as the volume of data being used increases [79]. 

3.7  Model Evaluation 

 A machine learning model's performance may be judged using a variety of metrics, 

including accuracy, precision, recall, and F1 score. These metrics track and evaluate the 

ML algorithms' performance quality during the training and testing stages and they do so 

by comparing the classification labels given by the model with the actual labels of the target 

in the dataset. The following metrics are used in this study to evaluate the model’s 

performance. 

3.6.1 Confusion Matrix 

 The confusion matrix albeit not a performance metric gives a tabular representation 

of the actual and predicted class labels. The rows in the table represent the actual class label 

in the data while the columns represent the class labels predicted by the ML model. The 

confusion matrix, in this study, is a 3x3 table since there are three class labels.  

3.6.2 Accuracy 

Accuracy is a performance metric that tells how many instances was the machine 

learning model able to predict correctly. It can be calculated by dividing the correct 

predictions by the total number of predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (3.2) 
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3.6.3 Precision 

 Precision measures how many positive instances the machine learning model could 

predict correctly. It can be calculated by dividing the true positives i.e., actual positives in 

the data with the total number of positive predictions made by the model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3.3) 

3.6.4 Recall 

 Recall is a performance metric that measures the number of correctly predicted 

positive classes from all the positive predicted classes in the data. It shows how many 

positive instances the model correctly identifies. It is also called sensitivity. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3.4) 

3.6.6 F1 Score 

The F1 score is the harmonic mean of precision and recall. It combines precision and 

recall into a single metric and is frequently used in binary and multi-class classification 

problems to better understand the model performance.   
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CHAPTER 04: RESULTS AND DISCUSSION 

 This chapter presents the findings of the suggested methodology and evaluates them 

in the context of related literature. The main objective of this research has been to create a 

clinical decision-support system utilizing RCADS for the early detection and treatment of 

two prevalent mental illnesses: anxiety and depression. 

4.1  Descriptive Analysis 

During the pre-processing, it was found that gender for 12 individuals and grade 

for 46 individuals were missing. Since gender and grade are both crucial pieces of 

information for the final evaluation, any case that lacked either information was discarded. 

Instances with even one missing value were deleted, leaving us with 87 instances, 34 boys 

(39%) and 53 girls (60%). As discussed in Section 3.1, a t-score of less than 65 was 

categorized as normal, a score between 65 and 69 as borderline, and a score of 70 or more 

as clinical. In the remaining dataset of 87 individuals, there were 47 normal cases (54%), 

7 borderline cases (8%), and 33 clinical cases (37%). Among the 34 boys, 17 were 

Figure 4.1: Bar chart of data distribution (gender) 
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classified as normal (19%), 3 as borderline (3%), and 14 as clinical (16%), and among the 

53 girls, 30 (34.4%) were in the normal range, 4 (4.6%) in the borderline range, and 19 

(21.8%) in the clinical range. Figure 4.1 and Figure 4.2 show bar charts of these 

distributions by gender and grade and the detailed distribution of the instances are shown 

in Table 4.1 and Table 4.2. 

Table 4.1: Distribution of data (gender) 

Gender 

Evaluation 

Total Normal Borderline Clinical 

n (%) n (%) n (%) 

Boys 17 (19.5%) 3 (3.4%) 14 (16.1%) 34 (39.1%) 

Girls 30 (34.4%) 4 (4.6%) 19 (21.8%) 53 (60.9%) 

Total 47 (54%) 7 (8%) 33 (37.9%) 87 

Figure 4.2: Bar chart of data distribution (grade) 
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Table 4.2: Distribution of data (grade) 

Grade 

Evaluation 

Total Normal Borderline Clinical 

n (%) n (%) n (%) 

3 5 (5.7%) 1 (1.1%) 1 (1.1%) 7 (8%) 

4 5 (5.7%) 0 (0%) 1 (1.1%) 6 (6.8%) 

5 2 (2.3%) 0 (0%) 0 (0%) 2 (2.3%) 

6 9 (10.3%) 0 (0%) 3 (3.4%) 12 (13.7%) 

7 6 (6.8%) 1 (1.1%) 4 (4.6%) 11 (12.6%) 

8 4 (4.6%) 2 (2.3%) 6 (6.9%) 12 (13.7%) 

9 6 (6.9%) 1 (1.1%) 9 (10.3%) 16 (18.3%) 

10 5 (5.7%) 2 (2.3%) 6 (6.9%) 13 (14.9%) 

11 1 (1.1%) 0 (0%) 2 (2.3%) 3 (3.4%) 

12 4 (4.6%) 0 (0%) 1 (1.1%) 5 (5.7%) 

Total 47 (54%) 7 (8%) 33 (37.9%) 87 

Table 4.3 describes the normal, borderline, and clinical cases present in the data for 

the RCADS subscales; Major Depressive Disorder (MDD), Separation Anxiety Disorder 

(SAD), Social Phobia (SP), Generalized Anxiety Disorder (GAD), Panic Disorder (PD), 

Obsessive-Compulsive Disorder (OCD) as well as the Overall Anxiety Scale. 

Table 4.3: Prevalence of the subscale disorders in the data 

Subscale 
Normal Borderline Clinical 

n (%) n (%) n (%) 

Overall Anxiety Score 48 (55.2%) 10 (11.5%) 29 (33.3%) 

Major Depressive Disorder (MDD) 52 (59.7%) 9 (10.3%) 26 (29.8%) 

Generalized Anxiety Disorder (GAD) 71 (81.6%) 6 (6.9%) 10 (11.5%) 

Obsessive-Compulsive Disorder 

(OCD) 
56 (64.4%) 11 (12.6%) 20 (22.9%) 

Panic Disorder (PD) 42 (48.3%) 9 (10.3%) 36 (41.4%) 
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Separation Anxiety Disorder (SAD) 34 (39.1%) 8 (9.2%) 45 (51.7%) 

Social Phobia (SP) 67 (77%) 9 (10.3%) 11 (12.6%) 

 

To describe the characteristics of the data, Kolmogorov-Smirnov and Chi-square 

tests of normality were used to evaluate the RCADS t-score of the total anxiety scale, the 

total internalizing scale, and each subscale to determine the distribution and skewness. 

The distribution was subsequently confirmed using skewness and kurtosis tests for each 

subscale. The t-scores of the overall internalizing scale (all six subscales), the overall 

anxiety scale (five subscales), and each subscale followed a normal distribution (p-value 

≤ 0.05) as evident from the results of the Kolmogorov-Smirnov and Chi-Square tests of 

normality (Table 4.4). Skewness and kurtosis further verified the normal distribution 

(Table 4.5). 

Table 4.4: Tests of normality of RCADS-47 subscales 

Subscale Mean 
Std. 

dev 

Kolmogorov-

Smirnov 
Chi-square 

Statistics Sig. Statistics Sig. 

Overall Internalizing Score 63.43 18.87 0.08 0.58 5.33 0.50 

Overall Anxiety Score 62.42 17.74 0.07 0.71 4.15 0.65 

Major Depressive Disorder 

(MDD) 
61.91 18.77 0.09 0.40 5.31 0.50 

Generalized Anxiety 

Disorder (GAD) 
51.75 13.16 0.11 0.15 6.93 0.32 

Obsessive-Compulsive 

Disorder (OCD) 
59.09 15.22 0.10 0.29 6.17 0.40 

Panic Disorder (PD) 66.29 18.79 0.10 0.28 2.97 0.81 

Separation Anxiety 

Disorder (SAD) 
73.34 21.08 0.09 0.42 7.11 0.31 

Std. dev: Standard Deviation 
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Table 4.5: Skewness and Kurtosis of RCADS-47 subscales 

Subscale Range Min Max Skewness  Kurtosis 

Overall Internalizing Score 74 32 106 0.35 -0.61 

Overall Anxiety Score 71 32 103 0.28  -0.63  

Major Depressive Disorder 

(MDD) 
73 32 105 0.46  -0.64 

Generalized Anxiety Disorder 

(GAD) 
51 27 78 0.35  -0.78 

Obsessive-Compulsive Disorder 

(OCD) 
68 32 100 0.46  -0.35 

Panic Disorder (PD) 77 36 113 0.54  -0.45 

Separation Anxiety Disorder 

(SAD) 
89 37 126 0.18 -0.91 

Social Phobia (SP) 56 28 84 0.32  -0.70 

 

4.2  Internal Consistency and Reliability Analysis 

 The internal consistency of RCADS overall internalizing scale, overall anxiety 

scale, and each subscale was assessed using Cronbach’s alpha. RCADS showed excellent 

internal consistency with an alpha of 0.953 (Table 4.6). The inter-item correlation was also 

computed for each item (Fig. 4.3). All 47 items combined had inter-item correlations that, 

on average, showed a weak to moderate relation, with most correlations falling between 

0.1 and 0.6. This demonstrates that while the questionnaire's items are focused on one 

particular issue, they are well-diversified to avoid being redundant or repetitive. Removing 

items 3 and 5 resulted in a slight increase in the scale's internal consistency from 0.953 to 

0.954. Conversely, removing items 10, 12, 15, 18, 19, 20, 21, 22, 23, 25, 29, 30, 31, 32, 

34, 35, 37, 38, 39, 40, 41, 42, 44, and 45 caused a decrease from 0.953 to 0.952. 

Additionally, the removal of items 27 and 47 lowered the consistency from 0.953 to 0.951. 

However, these changes are too minor to be considered significant. Within each subscale, 

removing any item from the Major Depressive Disorder subscale, Obsessive-Compulsive 
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Disorder subscale, Separation Anxiety Disorder subscale, and Social Phobia subscale 

reduced their internal consistency. The removal of item 13 ("I worry that something awful 

will happen to someone in my family") increased the Generalized Anxiety Disorder 

subscale's internal consistency from 0.753 to 0.768. The subscale's internal consistency 

worsened when any other item was deleted. Similarly, when item 3 ("When I have a 

problem, I get a funny feeling in my stomach") was eliminated, the internal consistency of 

the Panic Disorder subscale improved slightly from 0.810 to 0.817. 

Table 4.6: Internal consistency coefficient Cronbach’s alpha for each subscale 

Subscale Cronbach’s alpha 

Overall Internalizing Scale 0.953 

Overall Anxiety Scale 0.940 

Major Depressive Disorder (MDD) 0.859 

Generalized Anxiety Disorder (GAD) 0.753 

Obsessive-Compulsive Disorder (OCD) 0.747 

Panic Disorder (PD) 0.810 

Separation Anxiety Disorder (SAD) 0.761 

Social Phobia (SP) 0.835 



37 

 

4.3  Feature Selection 

Both filter and wrapper methods analysis revealed that majority of the features 

demonstrated a significant correlation with the target variable and played a crucial role for 

the final evaluation. The chi-square test of independence revealed that most of the features 

were statistically significant at an alpha level of 0.05 (Table 4.7). 

 

Figure 4.3: Heat map of inter-item correlation matrix 
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Table 4.7: results of the Chi-square test of independence of the 47 features with the 

target 

Feature χ2 Contingency Coefficient (C) p-value 

Rcads01 23.872 0.464 0.001 

Rcads02 14.159 0.374 0.028 

Rcads03 13.018 0.361 0.043 

Rcads04 16.275 0.397 0.012 

Rcads05 4.510 0.222 0.608 

Rcads06 17.106 0.405 0.009 

Rcads07 19.475 0.428 0.003 

Rcads08 11.214 0.338 0.082 

Rcads09 10.092 0.322 0.121 

Rcads10 22.137 0.450 0.001 

Rcads11 16.500 0.399 0.011 

Rcads12 29.832 0.505 0.000 

Rcads13 24.594 0.469 0.000 

Rcads14 22.982 0.457 0.001 

Rcads15 40.828 0.565 0.000 

Rcads16 18.602 0.420 0.005 

Rcads17 8.003 0.290 0.238 

Rcads18 33.012 0.524 0.000 

Rcads19 22.841 0.456 0.001 

Rcads20 28.794 0.499 0.000 

Rcads21 39.110 0.557 0.000 

Rcads22 34.0.29 0.530 0.000 

Rcads23 41.744 0.569 0.000 

Rcads24 29.194 0.501 0.000 

Rcads25 29.994 0.506 0.000 

Rcads26 23.344 0.460 0.001 

Rcads27 48.0.95 0.597 0.000 
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Rcads28 18.858 0.422 0.004 

Rcads29 29.697 0.504 0.000 

Rcads30 31.671 0.517 0.000 

Rcads31 18.673 0.420 0.005 

Rcads32 46.902 0.592 0.000 

Rcads33 15.315 0.387 0.018 

Rcads34 42.000 0.571 0.000 

Rcads35 34.964 0.535 0.000 

Rcads36 14.343 0.376 0.026 

Rcads37 34.975 0.535 0.000 

Rcads38 33.155 0.525 0.000 

Rcads39 25.125 0.473 0.000 

Rcads40 40.651 0.564 0.000 

Rcads41 38.008 0.551 0.000 

Rcads42 21.330 0.444 0.002 

Rcads43 24.121 0.466 0.000 

Rcads44 29.094 0.501 0.000 

Rcads45 37.894 0.551 0.000 

Rcads46 14.511 0.378 0.024 

Rcads47 53.447 0.617 0.000 

Feature with a weak association is highlighted in yellow. 

χ²: Chi-square test statistic, C: Contingency Coefficient of Chi-square test. 

 

Similarly, the correlation analysis between the target variable and the features 

showed that most features had a significant correlation. As stated in Section 3.4.2, 

correlations less than 0.3 were deemed weak. At the 0.05 alpha level, Rcads05 did not show 

significant correlation with the target variable. However, it is important to highlight that 

all correlations were significant at 0.01 alpha level (Table 4.8). 
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Table 4.8: results of Spearman correlation of the 47 features with the target 

Feature Spearman Correlation (ρ) p-value 

Rcads01 0.461 0.000 

Rcads02 0.271 0.011 

Rcads03 0.241 0.025 

Rcads04 0.353 0.001 

Rcads05 0.158 0.143 

Rcads06 0.351 0.001 

Rcads07 0.449 0.000 

Rcads08 0.267 0.013 

Rcads09 0.309 0.004 

Rcads10 0.470 0.000 

Rcads11 0.410 0.000 

Rcads12 0.567 0.000 

Rcads13 0.471 0.000 

Rcads14 0.426 0.000 

Rcads15 0.552 0.000 

Rcads16 0.434 0.000 

Rcads17 0.240 0.025 

Rcads18 0.601 0.000 

Rcads19 0.472 0.000 

Rcads20 0.500 0.000 

Rcads21 0.621 0.000 

Rcads22 0.603 0.000 

Rcads23 0.623 0.000 

Rcads24 0.541 0.000 

Rcads25 0.519 0.000 

Rcads26 0.476 0.000 

Rcads27 0.666 0.000 

Rcads28 0.357 0.001 
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Rcads29 0.525 0.000 

Rcads30 0.564 0.000 

Rcads31 0.442 0.000 

Rcads32 0.684 0.000 

Rcads33 0.376 0.000 

Rcads34 0.626 0.000 

Rcads35 0.568 0.000 

Rcads36 0.374 0.000 

Rcads37 0.555 0.000 

Rcads38 0.576 0.000 

Rcads39 0.516 0.000 

Rcads40 0.646 0.000 

Rcads41 0.601 0.000 

Rcads42 0.420 0.000 

Rcads43 0.458 0.000 

Rcads44 0.563 0.000 

Rcads45 0.633 0.000 

Rcads46 0.327 0.002 

Rcads47 0.727 0.000 

Feature with a weak correlation is highlighted in yellow. 

ρ: Spearman Correlation Coefficient 

 

RF-RFE selected 35 features as important to train a model. It eliminated Rcads02, 

Rcads03, Rcads05, Rcads06, Rcads09, Rcads10, Rcads17, Rcads19, Rcads28, Rcads33, 

Rcads36, and Rcads46 with an accuracy of 88%. RF-RFE starts with all features included 

in the model. After the initial run, the feature importance scores are calculated. The feature 

with the lowest importance score is then eliminated, and the model is run again. This 

process of calculating feature importance scores and eliminating the feature with the lowest 

score is repeated until either a stopping criterion is met or there is no further improvement 

in model accuracy. In this case, a specific number of features to be selected was not 
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provided; instead, the model determined it automatically (See Appendix B). The feature 

importance calculated during RF-RFE is represented as bar chart in Figures 4.4. 

The number of features eliminated by the Chi-square test of independence, 

Spearman Correlation, and RF-RFE are 4, 1, and 12 respectively. One feature, Rcads05, 

was consistently identified as insignificant by all three methods. Because of this, it was 

removed from the data and not used during model training (Table 4.9). The elimination of 

this question is understandable as in Pakistani culture, joint families are common, and 

children are rarely left at home alone. While teenage boys may have some unsupervised 

time, it is less common for younger children and teenage girls. As a result, the concept of 

feeling afraid when alone at home is not a typical experience for most children in Pakistan. 

Figure 4.4: Bar chart of important features selected by RF-RFE 
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This might explain why the particular question concerning this fear had no meaningful 

impact on predicting feelings of depression or anxiety in this context. 

Table 4.9: Selected features from the three feature selection methods 

Feature Chi-Square Test of Independence Spearman Correlation RF-RFE 

Rcads01 ✔ ✔ ✔ 

Rcads02 ✔ ✔ ✘ 

Rcads03 ✔ ✔ ✘ 

Rcads04 ✔ ✔ ✔ 

Rcads05 ✘ ✘ ✘ 

Rcads06 ✔ ✔ ✘ 

Rcads07 ✔ ✔ ✔ 

Rcads08 ✘ ✔ ✔ 

Rcads09 ✘ ✔ ✘ 

Rcads10 ✔ ✔ ✘ 

Rcads11 ✔ ✔ ✔ 

Rcads12 ✔ ✔ ✔ 

Rcads13 ✔ ✔ ✔ 

Rcads14 ✔ ✔ ✔ 

Rcads15 ✔ ✔ ✔ 

Rcads16 ✔ ✔ ✔ 

Rcads17 ✘ ✔ ✘ 

Rcads18 ✔ ✔ ✔ 

Rcads19 ✔ ✔ ✘ 

Rcads20 ✔ ✔ ✔ 

Rcads21 ✔ ✔ ✔ 

Rcads22 ✔ ✔ ✔ 
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Rcads23 ✔ ✔ ✔ 

Rcads24 ✔ ✔ ✔ 

Rcads25 ✔ ✔ ✔ 

Rcads26 ✔ ✔ ✔ 

Rcads27 ✔ ✔ ✔ 

Rcads28 ✔ ✔ ✘ 

Rcads29 ✔ ✔ ✔ 

Rcads30 ✔ ✔ ✔ 

Rcads31 ✔ ✔ ✔ 

Rcads32 ✔ ✔ ✔ 

Rcads33 ✔ ✔ ✘ 

Rcads34 ✔ ✔ ✔ 

Rcads35 ✔ ✔ ✔ 

Rcads36 ✔ ✔ ✘ 

Rcads37 ✔ ✔ ✔ 

Rcads38 ✔ ✔ ✔ 

Rcads39 ✔ ✔ ✔ 

Rcads40 ✔ ✔ ✔ 

Rcads41 ✔ ✔ ✔ 

Rcads42 ✔ ✔ ✔ 

Rcads43 ✔ ✔ ✔ 

Rcads44 ✔ ✔ ✔ 

Rcads45 ✔ ✔ ✔ 

Rcads46 ✔ ✔ ✘ 

Rcads47 ✔ ✔ ✔ 

Feature highlighted in yellow was common among all methods 
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4.4  Data Augmentation 

 Due to the limited size of the original dataset for effective machine learning, data 

augmentation was chosen. The dataset consists of 47 items, each with 4 possible outcomes 

(0 = never, 1 = sometimes, 2 = often, and 3 = always). Upon reviewing the data, it appears 

to adhere to a multinomial distribution. To verify this, a chi-square test was conducted on 

each item, confirming the multinomial distribution (Table 4.10). The analysis utilized the 

MASS library in the R programming language to perform these tests. This probability 

distribution was used to generate 5 sets of data (1:4; four times the original data, 1:8; eight 

times the original data, 1:12; twelve times the original data, 1:16; sixteen times the original 

data, and 1:20; twenty times the original data) that mimic the distributional properties of 

the original 87 instances. Given that questions on the same subscale have a strong 

correlation with one another, data was generated for each subscale. This means that a child 

who responds "often" or "always" to one depression-related question is likely to respond 

similarly to other depression-related questions. To ensure the synthetic data accurately 

reflected these patterns and was not made up of random numbers, the average correlation 

between the questions and the target evaluation was calculated and used as input. 

Additionally, the probability of each possible answer (0, 1, 2, and 3) was also provided to 

the R code (See Appendix C and D). This approach was used to make sure the synthetic 

data produced results that were not just random values but closely mirrored the real data. 

The original 87 and the augmented instances were combined to generate a ‘hybrid’ dataset, 

which was then used in model development. Progressively expanding the dataset is based 

on well-established data augmentation and machine learning methods. In disciplines like 

deep learning, data augmentation is a common approach that involves artificially 

increasing the training dataset to improve the performance of the model [83]. Additionally, 

the concept of gradually expanding augmented data is consistent with ensemble methods 

like bootstrapping and bagging, which provide several data subsets to train various models 

[84]. 
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Table 4.10: Results of the Chi-square test for multinomial distribution 

RCADS Chi-square df p-value Null Hypothesis 

Rcads01 0.0169 3 0.9994 Fail to reject 

Rcads02 0.04023 3 0.9979 Fail to reject 

Rcads03 0.036824 3 0.9981 Fail to reject 

Rcads04 0.0275 3 0.9988 Fail to reject 

Rcads05 0.016113 3 0.9995 Fail to reject 

Rcads06 0.016021 3 0.9995 Fail to reject 

Rcads07 0.012091 3 0.9996 Fail to reject 

Rcads08 0.0054788 3 0.9999 Fail to reject 

Rcads09 0.022784 3 0.9991 Fail to reject 

Rcads10 0.03202 3 0.9985 Fail to reject 

Rcads11 0.011431 3 0.9997 Fail to reject 

Rcads12 0.0051168 3 0.9999 Fail to reject 

Rcads13 0.0011789 3 0.9999 Fail to reject 

Rcads14 0.0091817 3 0.9998 Fail to reject 

Rcads15 0.023593 3 0.9990 Fail to reject 

Rcads16 0.015973 3 0.9995 Fail to reject 

Rcads17 0.017718 3 0.9994 Fail to reject 

Rcads18 0.016254 3 0.9995 Fail to reject 

Rcads19 0.0054946 3 0.9999 Fail to reject 

Rcads20 0.0082746 3 0.9998 Fail to reject 

Rcads21 0.01792 3 0.9994 Fail to reject 

Rcads22 0.010762 3 0.9997 Fail to reject 

Rcads23 0.0069459 3 0.9998 Fail to reject 

Rcads24 0.0098667 3 0.9997 Fail to reject 

Rcads25 0.0098667 3 0.9997 Fail to reject 

Rcads26 0.0060208 3 0.9999 Fail to reject 

Rcads27 0.031392 3 0.9985 Fail to reject 

Rcads28 0.030651 3 0.9986 Fail to reject 
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Rcads29 0.0091817 3 0.9998 Fail to reject 

Rcads30 0.010762 3 0.9997 Fail to reject 

Rcads31 0.010914 3 0.9997 Fail to reject 

Rcads32 0.0522 3 0.9969 Fail to reject 

Rcads33 0.000346 3 0.9999 Fail to reject 

Rcads34 0.018751 3 0.9993 Fail to reject 

Rcads35 0.021728 3 0.9992 Fail to reject 

Rcads36 0.011063 3 0.9997 Fail to reject 

Rcads37 0.011137 3 0.9997 Fail to reject 

Rcads38 0.15112 3 0.9851 Fail to reject 

Rcads39 0.014231 3 0.9996 Fail to reject 

Rcads40 0.0098101 3 0.9997 Fail to reject 

Rcads41 0.010177 3 0.9997 Fail to reject 

Rcads42 0.037352 3 0.9981 Fail to reject 

Rcads43 0.11431 3 0.9997 Fail to reject 

Rcads44 0.010983 3 0.9997 Fail to reject 

Rcads45 0.000579 3 0.9999 Fail to reject 

Rcads46 0.020549 3 0.9992 Fail to reject 

Rcads47 0.017515 3 0.9994 Fail to reject 

4.5  Model Development and Evaluation 

 First, the original dataset of 87 instances with all 47 features was used for model 

development. Code for the ML models is provided in Appendix E. For this dataset, RF 

correctly classified 45out of 47 normal cases, 0 out of 7 borderline cases, and 29 out of 33 

clinical cases. DT correctly classified 34 out of 47 normal cases, 2 out of 7 borderline cases, 

and 24 out of 33 clinical cases. SVM correctly classified 47 out of 47 normal cases, 0 out 

of 7 borderline cases, and 31 out of 33 clinical cases. LR correctly classified 46 out of 47 

normal cases, 1 out of 7 borderline cases, and 32 out of 33 clinical cases. NB correctly 

classified 43 out of 47 normal cases, 3 out of 7 borderline cases, and 32 out of 33 clinical 

cases. KNN correctly classified 47 out of 47 normal cases, 2 out of 7 borderline cases, and 
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31 out of 33 clinical cases (Fig. 4.5A – F). The best-performing model was KNN with a 

92% accuracy and 0.91 F1score (Table 4.11). While these accuracies are impressive, the 

machine learning models were likely over-fitted due to the insufficient training data of only 

87 instances. 

Table 4.11: Performance evaluation of the six ML models on the original dataset 

Models Accuracy F1 Class Precision Recall 

RF 0.85 0.81 

Normal 0.87 0.96 

Borderline 0.00 0.00 

Clinical 0.83 0.88 

DT 0.69 0.71 

Normal 0.79 0.72 

Borderline 0.14 0.29 

Clinical 0.80 0.73 

SVM 0.90 0.86 

Normal 0.90 1.00 

Borderline 0.00 0.00 

Clinical 0.89 0.94 

LR 0.91 0.89 

Normal 0.94 0.98 

Borderline 0.33 0.14 

Clinical 0.91 0.97 

NB 0.90 0.90 

Normal 0.98 0.91 

Borderline 0.43 0.43 

Clinical 0.89 0.97 

KNN 0.92 0.91 

Normal 0.90 1.00 

Borderline 1.00 0.29 

Clinical 0.94 0.94 
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(A) 
RF 

N B C 

N 45 0 2 

B 3 0 4 

C 4 0 29 
 

(B) 
DT 

N B C 

N 34 9 4 

B 3 2 2 

C 6 3 24 
 

(C) 
SVM 

N B C 

N 47 0 0 

B 3 0 4 

C 2 0 31 
 

 

(D) 
LR 

N B C 

N 46 1 0 

B 3 1 3 

C 0 1 32 
 

 

(E) 
NB 

N B C 

N 43 3 1 

B 1 3 3 

C 0 1 32 
 

 

(F) 
KNN 

N B C 

N 47 0 0 

B 3 2 2 

C 2 0 31 
 

Figure 4.5: Confusion matrices of the six ML models on the original dataset 

In the first of the five hybrid datasets, which was four times the size of the original 

dataset plus the original dataset (N=435). RF accurately classified 233/237 normal cases, 

2/82 borderline cases, and 74/116 clinical cases. DT correctly classified 161/237 normal 

cases, 21/82 borderline cases, and 64/116 clinical cases. SVM correctly classified 224/237 

normal cases, 13/82 borderline cases, and 87/116 clinical cases. LR correctly classified 

211/237 normal cases, 28/82 borderline cases, and 87/116 clinical cases. NB correctly 

classified 197/237 normal cases, 42/82 borderline cases, and 83/116 clinical cases. And 

lastly, KNN correctly classified 227/237 normal cases, 7/82 borderline cases, and 73/116 

clinical cases (Fig. 4.6A–F). Naive Bayes performed the best with 74% and 0.75 accuracy 

and F1 score respectively (Table 4.12).  

Table 4.12: Performance evaluation of the six ML models on the 1:4 hybrid and 

feature-selected dataset 

Models Accuracy F1 Class Precision Recall 

RF 0.71 0.64 

Normal 0.68 0.98 

Borderline 0.50 0.02 

Clinical 0.86 0.64 

DT 0.57 0.57 
Normal 0.75 0.68 

Borderline 0.23 0.26 
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Clinical 0.49 0.55 

SVM 0.74 0.71 

Normal 0.78 0.95 

Borderline 0.36 0.16 

Clinical 0.78 0.75 

LR 0.75 0.74 

Normal 0.83 0.89 

Borderline 0.41 0.34 

Clinical 0.77 0.75 

NB 0.74 0.75 

Normal 0.88 0.83 

Borderline 0.38 0.51 

Clinical 0.81 0.72 

KNN 0.71 0.66 

Normal 0.72 0.96 

Borderline 0.29 0.09 

Clinical 0.78 0.63 

 

(A) 
RF 

N B C 

N 233 0 4 

B 72 2 8 

C 40 2 74 
 

(B) 
DT 

N B C 

N 161 42 35 

B 30 21 31 

C 24 28 64 
 

(C) 
SVM 

N B C 

N 224 7 6 

B 51 13 18 

C 13 16 87 
 

 

(D) 
LR 

N B C 

N 211 18 8 

B 36 28 18 

C 7 22 87 
 

 

(E) 
NB 

N B C 

N 197 36 4 

B 25 42 15 

C 1 32 83 
 

 

(F) 
KNN 

N B C 

N 227 4 6 

B 60 7 15 

C 30 13 73 
 

Figure 4.6: Confusion matrices of the six ML models on the 1:4 hybrid dataset 

In the second hybrid dataset, which was eight times the size of the original dataset 

plus the original dataset (N=783), RF accurately classified 435/444 normal cases, 3/136 

borderline cases, and 124/203 clinical cases. DT correctly classified 303/444 normal cases, 

37/136 borderline cases, and 98/203 clinical cases. SVM correctly classified 411/444 
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normal cases, 18/136 borderline cases, and 161/203 clinical cases. LR correctly classified 

394/444 normal cases, 35/136 borderline cases, and 151/203 clinical cases. NB correctly 

classified 380/444 normal cases, 53/136 borderline cases, and 147/203 clinical cases. And 

lastly, KNN correctly classified 411/444 normal cases, 17/136 borderline cases, and 

117/203 clinical cases (Fig. 4.7A – F). Naive Bayes performed the best with 74% accuracy 

and a 0.74 F1 score (Table 4.13). 

Table 4.13: Performance evaluation of the six ML models on the 1:8 hybrid and 

feature-selected dataset 

Models Accuracy F1 Class Precision Recall 

RF 0.72 0.65 

Normal 0.69 0.98 

Borderline 0.38 0.02 

Clinical 0.84 0.61 

DT 0.56 0.57 

Normal 0.71 0.68 

Borderline 0.23 0.27 

Clinical 0.51 0.48 

SVM 0.75 0.71 

Normal 0.78 0.93 

Borderline 0.45 0.13 

Clinical 0.74 0.79 

LR 0.74 0.72 

Normal 0.82 0.89 

Borderline 0.36 0.26 

Clinical 0.73 0.74 

NB 0.74 0.74 

Normal 0.87 0.86 

Borderline 0.35 0.39 

Clinical 0.75 0.72 

KNN 0.70 0.66 

Normal 0.71 0.93 

Borderline 0.30 0.12 

Clinical 0.78 0.58 
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(A) 
RF 

N B C 

N 435 2 7 

B 116 3 17 

C 76 3 124 
 

(B) 
DT 

N B C 

N 303 78 63 

B 66 37 33 

C 57 48 98 
 

(C) 
SVM 

N B C 

N 411 10 23 

B 83 18 35 

C 30 12 161 
 

 

(D) 
LR 

N B C 

N 394 29 21 

B 66 35 35 

C 18 34 151 
 

 

(E) 
NB 

N B C 

N 380 48 16 

B 50 53 33 

C 6 50 147 
 

 

(F) 
KNN 

N B C 

N 411 18 15 

B 101 17 18 

C 65 21 117 
 

Figure 4.7: Confusion matrices of the six ML models on the 1:8 hybrid dataset 

In the third of the five hybrid datasets, which was twelve times the size of the 

original dataset plus the original dataset (N=1131). RF accurately classified 648/658 

normal cases, 4/183 borderline cases, and 152/290 clinical cases. DT correctly classified 

480/658 normal cases, 39/183 borderline cases, and 122/290 clinical cases. SVM correctly 

classified 612/658 normal cases, 25/183 borderline cases, and 228/290 clinical cases. LR 

correctly classified 594/658 normal cases, 52/183 borderline cases, and 227/290 clinical 

cases. NB correctly classified 587/658 normal cases, 51/183 borderline cases, and 222/290 

clinical cases. And lastly, KNN correctly classified 616/658 normal cases, 15/183 

borderline cases, and 140/290 clinical cases (Fig. 4.8A – F).  Logistic Regression and Naive 

Bayes performed the best with Logistic Regression achieving 77% accuracy and a 0.75 F1 

score and Naive Bayes achieving 76% accuracy and 0.75 F1 score (Table 4.14). 

Table 4.14: Performance evaluation of the six ML models on the 1:12 hybrid and 

feature-selected dataset 

Models Accuracy F1 Class Precision Recall 

RF 0.71 0.64 
Normal 0.69 0.98 

Borderline 0.57 0.02 
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Clinical 0.80 0.52 

DT 0.57 0.57 

Normal 0.72 0.73 

Borderline 0.20 0.21 

Clinical 0.45 0.42 

SVM 0.76 0.73 

Normal 0.81 0.93 

Borderline 0.42 0.14 

Clinical 0.73 0.79 

LR 0.77 0.75 

Normal 0.85 0.90 

Borderline 0.40 0.28 

Clinical 0.75 0.78 

NB 0.76 0.75 

Normal 0.87 0.89 

Borderline 0.34 0.28 

Clinical 0.73 0.77 

KNN 0.69 0.66 

Normal 0.72 0.94 

Borderline 0.22 0.10 

Clinical 0.79 0.52 

 

(A) 
RF 

N B C 

N 648 0 10 

B 151 4 28 

C 135 3 152 
 

(B) 
DT 

N B C 

N 480 89 89 

B 81 39 63 

C 104 64 122 
 

(C) 
SVM 

N B C 

N 612 14 32 

B 106 25 52 

C 42 20 228 
 

 

(D) 
LR 

N B C 

N 594 37 27 

B 83 52 48 

C 23 40 227 
 

 

(E) 
NB 

N B C 

N 587 40 31 

B 79 51 53 

C 11 57 222 
 

 

(F) 
KNN 

N B C 

N 616 21 21 

B 145 15 23 

C 108 42 140 
 

Figure 4.8: Confusion matrices of the six ML models on the 1:12 hybrid dataset 

In the fourth hybrid dataset, which was sixteen times the size of the original dataset 

plus the original dataset (N=1479), RF accurately classified 819/845 normal cases, 4/270 
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borderline cases, and 207/364 clinical cases. DT correctly classified 586/845 normal cases, 

66/270 borderline cases, and 169/364 clinical cases. SVM correctly classified 768/845 

normal cases, 33/270 borderline cases, and 293/364 clinical cases. LR correctly classified 

743/845 normal cases, 57/270 borderline cases, and 287/364 clinical cases. NB correctly 

classified 709/845 normal cases, 78/270 borderline cases, and 281/364 clinical cases. And 

lastly, KNN correctly classified 776/845 normal cases, 30/270 borderline cases, and 

197/364 clinical cases (Fig. 4.9A – F). Again Logistic Regression and Naive Bayes 

performed the best with 73% and 72% accuracies and 0.72 F1 score respectively (Table 

4.15). 

Table 4.15: Performance evaluation of the six ML models on the 1:16 hybrid and 

feature-selected dataset 

Models Accuracy F1 Class Precision Recall 

RF 0.70 0.62 

Normal 0.68 0.97 

Borderline 0.31 0.01 

Clinical 0.77 0.57 

DT 0.69 0.71 

Normal 0.72 0.69 

Borderline 0.22 0.24 

Clinical 0.44 0.44 

SVM 0.74 0.70 

Normal 0.78 0.91 

Borderline 0.35 0.12 

Clinical 0.73 0.80 

LR 0.73 0.72 

Normal 0.81 0.88 

Borderline 0.35 021 

Clinical 0.72 0.79 

NB 0.72 0.72 

Normal 0.84 0.84 

Borderline 0.33 0.29 

Clinical 0.71 0.77 

KNN 0.68 0.64 

Normal 0.71 0.92 

Borderline 0.26 0.11 

Clinical 0.73 0.54 
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(A) 
RF 

N B C 

N 819 4 22 

B 227 4 39 

C 152 5 207 
 

(B) 
DT 

N B C 

N 586 140 119 

B 119 66 75 

C 106 99 159 
 

(C) 
SVM 

N B C 

N 768 37 40 

B 171 33 66 

C 48 23 293 
 

 

(D) 
LR 

N B C 

N 743 58 44 

B 148 57 65 

C 27 50 287 
 

 

(E) 
NB 

N B C 

N 709 89 47 

B 122 78 70 

C 13 70 281 
 

 

(F) 
KNN 

N B C 

N 776 39 30 

B 196 30 44 

C 121 46 197 
 

Figure 4.9: Confusion matrices of the six ML models on the 1:16 hybrid dataset 

In the fifth and last hybrid dataset, which was twenty times the size of the original 

dataset plus the original dataset (N=1827), RF accurately classified 1035/1055 normal 

cases, 6/325 borderline cases, and 261/447 clinical cases. DT correctly classified 746/1055 

normal cases, 85/325 borderline cases, and 195/447 clinical cases. SVM correctly 

classified 965/1055 normal cases, 63/325 borderline cases, and 340/447 clinical cases. LR 

correctly classified 956/1055 normal cases, 77/325 borderline cases, and 340/447 clinical 

cases. NB correctly classified 901/1055 normal cases, 126/325 borderline cases, and 

341/447 clinical cases. And lastly, KNN correctly classified 987/1055 normal cases, 

62/325 borderline cases, and 239/447 clinical cases (Fig. 4.10A – F). Naive Bayes 

performed the best achieving 75% accuracy and 0.75 F1 score (Table 4.16). 

Table 4.16: Performance evaluation of the six ML models on the 1:20 hybrid and 

feature-selected dataset 

Models Accuracy F1 Class Precision Recall 

RF 0.71 0.64 

Normal 0.69 0.98 

Borderline 0.32 0.02 

Clinical 0.84 0.58 

DT 0.56 0.57 Normal 0.72 0.71 
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Borderline 0.22 0.26 

Clinical 0.48 0.44 

SVM 0.75 0.72 

Normal 0.79 0.91 

Borderline 0.36 0.19 

Clinical 0.78 0.76 

LR 0.76 0.74 

Normal 0.83 0.91 

Borderline 0.35 0.25 

Clinical 0.77 0.79 

NB 0.75 0.75 

Normal 0.85 0.85 

Borderline 0.38 0.39 

Clinical 0.78 0.76 

KNN 0.70 0.68 

Normal 0.74 0.94 

Borderline 0.33 0.19 

Clinical 0.80 0.53 

 

(A) 
RF 

N B C 

N 1035 5 15 

B 284 6 35 

C 178 8 261 
 

(B) 
DT 

N B C 

N 746 176 133 

B 158 85 82 

C 133 119 195 
 

(C) 
SVM 

N B C 

N 965 54 36 

B 200 63 62 

C 49 58 340 
 

 

(D) 
LR 

N B C 

N 956 65 34 

B 178 77 70 

C 19 75 353 
 

 

(E) 
NB 

N B C 

N 901 118 36 

B 140 126 59 

C 14 92 341 
 

 

(F) 
KNN 

N B C 

N 987 43 25 

B 228 62 35 

C 126 82 239 
 

Figure 4.10: Confusion matrices of the six ML models on the 1:20 hybrid dataset 
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The evaluation of machine learning models trained on the five sets of hybrid data 

revealed that most algorithms achieved accuracy exceeding 70%, except for the decision 

tree, which underperformed. Gradually increasing the data size led to a slight enhancement 

in the model's performance. However, the improvement was not substantial or drastic. 

While there was a noticeable positive trend, the overall impact on the model's accuracy and 

efficiency remained relatively modest. Among all models, Naive Bayes delivered the best 

overall performance (Table 4.17). The best-performing model was chosen based on the F1 

score. In multiclass classification, choosing the optimal model based on the F1 score is 

helpful as it guarantees a balance between recall and precision, offering a thorough 

assessment of model performance [85]. Because it assigns equal weight to majority and 

minority classes, the F1 score provides a more informative measure across all classes, 

making it especially helpful for datasets with unequal class distributions. The F1 score 

makes model comparison easier by providing a single statistic that takes into account both 

false positives and false negatives. Because it may be weighted, macro, or averaged to 

represent performance across classes, it is well-suited for multiclass settings and ensures 

consistency [86]. Out of the three classes, the ‘borderline’ class was frequently observed 

to be falsely classified as the ‘normal’ class. The lack of borderline cases in the original 

data likely contributed to this class' poor representation since it is difficult for machine 

learning models to identify the underlying patterns in minority classes, which results in 

incorrect categorization. 

Table 4.17: Summary of performance evaluations of the six ML models on five 

hybrid datasets 

Models  1:4 1:8 1:12 1:16 1:20 

RF 
Accuracy 0.71 0.72 0.71 0.70 0.71 

F1 score 0.64 0.65 0.64 0.62 0.64 

DT 
Accuracy 0.57 0.56 0.57 0.55 0.56 

F1 score 0.57 0.57 0.57 0.55 0.57 

SVM 
Accuracy 0.74 0.75 0.76 0.74 0.85 

F1 score 0.71 0.71 0.73 0.70 0.72 

LR Accuracy 0.75 0.74 0.77 0.73 0.76 
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F1 score 0.74 0.73 0.75 0.72 0.74 

NB 
Accuracy 0.74 0.74 0.76 0.72 0.75 

F1 score 0.75 0.74 0.75 0.72 0.75 

KNN 
Accuracy 0.71 0.70 0.69 0.68 0.70 

F1 score 0.66 0.66 0.66 0.64 0.68 

SVM, Logistic Regression, and Naive Bayes all achieved very similar accuracies, 

differing by only a few points. However, Naive Bayes demonstrated the best overall 

performance (Fig. 4.11) and was chosen as the best-performing model. External validation 

of Naive Bayes on a newly generated dataset of 500 samples resulted in an accuracy of 

72% and an F1 score of 0.71, which are close to its training accuracy and F1 score. The 

Naive Bayes model outperformed other machine learning algorithms in the study for 

several reasons:  

Figure 4.11: F1 score comparison of the six ML models across the five datasets 
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 Independence Assumption: Naive Bayes operates under the assumption that 

the features are independent given the class label. This assumption, while often 

unrealistic in real-world data, allows the model to simplify the computation of 

probabilities, making it efficient and effective, especially when the features are 

not highly correlated [87]. 

 Categorical Data Suitability: The model is particularly well-suited for 

categorical data, which aligns with the nature of the RCADS questionnaire 

responses (e.g., responses categorized as 0 = never, 1 = sometimes, 2 = often, 3 

= always) [88]. 

 Probability Estimates: Naive Bayes provides probability estimates for each 

class, which helps in handling uncertainty and ambiguity in responses. This is 

particularly useful in psychological assessments where responses can be 

subjective [88]. 

 Robustness to Irrelevant Features: Naive Bayes can perform well even when 

some features are irrelevant, as it focuses on the conditional probabilities of the 

features given the class label. 

 Simplicity and Speed: The simplicity of the Naive Bayes algorithm allows for 

quick training and prediction, making it a practical choice for applications 

requiring rapid assessments, such as mental health screenings. 

These factors contributed to Naive Bayes achieving the best overall performance in the 

study, as indicated by its accuracy and F1 score during both the training and external 

validation phases.  
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CHAPTER 05: CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

5.1  Key Findings 

The study's major findings show that ML-driven prediction models are effective in 

screening Pakistani children and adolescents for anxiety and depression with at least 70% 

accuracy. The problem of the limited sample size is addressed by hybrid data, which seems 

to be a viable substitute for real-world data. Feature selection reveals that Rcads05 (“I 

would feel afraid of being on my own at home”) does not have a strong correlation with 

depression and anxiety in the study population. Satisfactory performance has been 

observed by the SVM, Logistic Regression, and Naive Bayes algorithm, however, Naive 

Bayes had the best overall performance compared to the other algorithms. It implies that 

this algorithm seems to be an effective decision support system to help medical 

practitioners make well-informed screening decisions based on the chosen RCADS 

features. It is suggested to validate the study's findings with larger foreign data in the future 

and to develop the recommended method into a smart tool for end users. Nevertheless, the 

said tool cannot be utilized in clinical settings without more study and validation. 

As far as we are aware, there has been no study like this in Pakistan. The current 

study is the first in terms of developing ML prediction models using Pakistani data and 

RCADS. In developing countries, where anxiety and depression prevalence may differ and 

where research is scarce and the burden of poor mental health is made worse by several 

issues like societal stigma, limited access to resources, and the high cost of mental health 

consultations, this preliminary contribution to the field of mental health can encourage 

more research and development concerning the integration of ML in healthcare practices. 

5.2  Limitations 

It is important to recognize the limitations of this study. The main limitation of the 

current study is the class imbalance in the sample. Although the small data size issue was 
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addressed by generating augmented data, it is important to acknowledge that this data, 

while helpful in increasing sample size, cannot eliminate the imbalances present in the 

original data. Since the biases in the original dataset persist in the augmented data as well. 

Therefore, an initial dataset with little to no class imbalance is recommended even when 

using data augmentation. 

Moreover, only the total internalizing scale has been included in this study in the 

prediction models. The other RCADS subscales have not been included, as it would have 

been too complicated and outside the scope of the study to evaluate such an in-depth 

multiclass prediction model. However, these present findings can be further explored and 

developed in the future for the development of prediction models that include screening 

for the other subscales. 
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APPENDIX A: THE REVISED CHILD ANXIETY AND 

DEPRESSION SCALE (RCADS-47) 

Item Question 

Rcads01 I worry about things 

Rcads02 I feel sad or empty 

Rcads03 When I have a problem, I get a funny feeling in my stomach 

Rcads04 I worry when I think I have done poorly at something 

Rcads05 I would feel afraid of being on my own at home 

Rcads06 Nothing is much fun anymore 

Rcads07 I feel scared when I have to take a test 

Rcads08 I feel worried when I think someone is angry with me 

Rcads09 I worry about being away from my parents 

Rcads10 I get bothered by bad or silly thoughts or pictures in my mind 

Rcads11 I have trouble sleeping 

Rcads12 I worry that I will do badly at my school work 

Rcads13 I worry that something awful will happen to someone in my family 

Rcads14 I suddenly feel as if I can't breathe when there is no reason for this 

Rcads15 I have problems with my appetite 

Rcads16 
I have to keep checking that I have done things right (like the switch is off, 

or the door is locked) 

Rcads17 I feel scared if I have to sleep on my own 

Rcads18 
I have trouble going to school in the mornings because I feel nervous or 

afraid 

Rcads19 I have no energy for things 

Rcads20 I worry I might look foolish 

Rcads21 I am tired a lot 

Rcads22 I worry that bad things will happen to me 

Rcads23 I can't seem to get bad or silly thoughts out of my head 
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Rcads24 When I have a problem, my heart beats really fast 

Rcads25 I cannot think clearly 

Rcads26 I suddenly start to tremble or shake when there is no reason for this 

Rcads27 I worry that something bad will happen to me 

Rcads28 When I have a problem, I feel shaky 

Rcads29 I feel worthless 

Rcads30 I worry about making mistakes 

Rcads31 
I have to think of special thoughts (like numbers or words) to stop bad 

things from happening 

Rcads32 I worry what other people think of me 

Rcads33 
I am afraid of being in crowded places (like shopping centers, the movies, 

buses, busy playgrounds) 

Rcads34 All of a sudden I feel really scared for no reason at all 

Rcads35 I worry about what is going to happen 

Rcads36 I suddenly become dizzy or faint when there is no reason for this 

Rcads37 I think about death 

Rcads38 I feel afraid if I have to talk in front of my class 

Rcads39 My heart suddenly starts to beat too quickly for no reason 

Rcads40 I feel like I don’t want to move 

Rcads41 
I worry that I will suddenly get a scared feeling when there is nothing to be 

afraid of 

Rcads42 
I have to do some things over and over again (like washing my hands, 

cleaning, or putting things in a certain order) 

Rcads43 I feel afraid that I will make a fool of myself in front of people 

Rcads44 
I have to do some things in just the right way to stop bad things from 

happening 

Rcads45 I worry when I go to bed at night 

Rcads46 I would feel scared if I had to stay away from home overnight 

Rcads47 I feel restless 
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APPENDIX B: PYTHON CODE FOR RF-RFE 

# import packages 

from google.colab import files 

import pandas as pd 

 

# Uploading the CSV file from computer 

uploaded = files.upload() 

filename = 'data.csv' 

df = pd.read_csv(filename) 

print(df) 

 

# Separate the features and target variables 

X = df.drop('Target', axis=1) 

y = df['Target'] 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.datasets import make_classification 

from sklearn.model_selection import cross_val_score, 

StratifiedKFold 

from sklearn.feature_selection import RFE 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 
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from sklearn.pipeline import Pipeline 

 

# Function to evaluate a model using stratified 5-fold cross-

validation 

def evaluate_model(model, X, y): 

    cv = StratifiedKFold(n_splits=5, shuffle=True, 

random_state=42) 

    scores = cross_val_score(model, X, y, scoring='accuracy', 

cv=cv, n_jobs=-1) 

    return np.mean(scores) 

 

# Initialize a RandomForestClassifier as the estimator 

estimator = RandomForestClassifier(n_estimators=100, 

random_state=42) 

# Initialize a list to store the mean accuracies for each number 

of selected features 

mean_accuracies = [] 

# Initialize a list to store the names of the optimal number of 

selected features 

optimal_feature_counts = [] 

 

# Loop through different numbers of selected features 

for i in range(1, 48): 

    rfe = RFE(estimator=estimator, n_features_to_select=i) 

    model = RandomForestClassifier() 

    pipeline = Pipeline(steps=[('s', rfe), ('m', model)]) 
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    mean_accuracy = evaluate_model(pipeline, X, y) 

    mean_accuracies.append(mean_accuracy) 

    optimal_feature_counts.append(i) 

    print(f"Number of Selected Features: {i}, Mean Accuracy: 

{mean_accuracy:.3f}") 

 

# Find the index of the maximum mean accuracy 

optimal_idx = np.argmax(mean_accuracies) 

optimal_features = optimal_feature_counts[optimal_idx] 

print(f"Optimal Number of Selected Features: {optimal_features}") 

 

# Plot feature importances using the RandomForestClassifier 

estimator.fit(X, y) 

importances = estimator.feature_importances_ 

print(importances) 

plt.figure(figsize=(20, 16)) 

plt.title("Feature Importances") 

plt.bar(range(len(importances)), importances, 

tick_label=np.arange(1, len(importances) + 1)) 

plt.xlabel("Feature Number") 

plt.ylabel("Importance") 

plt.show() 
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APPENDIX C: R CODE FOR CHI-SQUARE TEST FOR 

MULTINOMIAL DISTRIBUTION 

# Load libraries 

library(MASS)  # for chisq.test 

# Read data 

data=read.csv("RCADS.csv",header=TRUE) 

# Check for missing values (not recommended for multinomial) 

if (any(is.na(data$rcads))) { 

  stop("Data contains missing values. Multinomial not suitable!") 

} 

# Get observed counts 

observed <- table(data$rcads) 

# Define total number of trials (observations) 

n <- sum(observed) 

# Define the vector of unequal probabilities (replace with your 

values) 

p <- c(0.08, 0.07, 0.02, 0.14, 0.13, 0.14, 0.18, 0.15, 0.03, 

0.06)  # Probabilities for categories 0, 1, 2, 3 

# Check if probability vector length matches category count 

if (length(p) != nrow(table(data$rcads))) { 

  stop("Probability vector length must match number of 

categories!") 

} 
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# Calculate expected counts using the probabilities 

expected <- n * p 

# Create table for observed and expected counts 

counts_table <- cbind(Category = names(observed), Observed = 

observed, Expected = expected) 

# Print the table 

cat("Table of Observed and Expected Counts:\n") 

print(counts_table) 

# Perform Chi-squared goodness-of-fit test 

chisq.result <- chisq.test(observed, p = expected/n) 

# Print results 

cat("Chi-squared test for multinomial distribution with unequal 

probabilities:\n") 

print(chisq.result) 

# Interpret results 

if (chisq.result$p.value > 0.05) { 

  cat("p-value =", chisq.result$p.value,  

      "\nWe fail to reject the null hypothesis of multinomial 

fit.\n") 

} else { 

  cat("p-value =", chisq.result$p.value,  

      "\nWe reject the null hypothesis of multinomial fit.\n") 

} 
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APPENDIX D: R CODE FOE DATA AUGMENTATION 

# Load libraries 

library(copula) 

library(MASS) 

# Define the correlation 

correlation <- 0.35 

# Number of samples 

n <- 1000 

# Number of series 

num_series <- 6 

# Generate a multivariate normal distribution with the specified 

correlation matrix 

sigma <- matrix(correlation, num_series, num_series) + diag(1 - 

correlation, num_series) 

normals <- mvrnorm(n, mu = rep(0, num_series), Sigma = sigma) 

# Transform the normal variables to a uniform using the CDF 

uniforms <- pnorm(normals) 

# Define the probabilities for the multinomial distributions 

probs_list <- list( 

  c(0.07, 0.43, 0.23, 0.27), 

  c(0.39, 0.30, 0.15, 0.16), 

  c(0.30, 0.26, 0.23, 0.21), 

  c(0.38, 0.29, 0.20, 0.13), 
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  c(0.22, 0.35, 0.24, 0.19), 

  c(0.36, 0.26, 0.16, 0.22)) 

# Ensure the number of probability vectors matches the number of 

series 

if (length(probs_list) != num_series) { 

  stop("The length of probs_list must match the number of 

series.") 

} 

# Function to map uniform variables to multinomial 

uniform_to_multinomial <- function(u, probs) { 

  return(findInterval(u, cumsum(probs), rightmost.closed = TRUE)) 

} 

# Generate the series of multinomial random numbers 

series_list <- lapply(1:num_series, function(i) { 

  sapply(uniforms[, i], uniform_to_multinomial, probs = 

probs_list[[i]]) 

}) 

# Combine the series into a data frame 

result <- as.data.frame(do.call(cbind, series_list)) 

colnames(result) <- paste0("series", 1:num_series) 

# Save to a CSV file 

write.csv(result, file = "GAD_synthetic.csv", row.names = TRUE) 

# Verify the correlation 

print(cor(result)) 
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APPENDIX E: PYTHON CODE FOR ML MODELS 

# Upload File 

from google.colab import files 

import pandas as pd 

# Uploading the CSV file from computer 

uploaded = files.upload() 

filename = 'data.csv' 

data = pd.read_csv(filename) 

print(data) 

# Separate features (questions) and target variable (evaluation) 

X = data.drop('Target', axis=1) 

y = data[' Target '] 

 

######################## RANDOM FOREST ########################## 

import numpy as np 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score, confusion_matrix, make_scorer 

from sklearn.model_selection import cross_val_predict, 

StratifiedKFold 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 
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# Initialize the Random Forest model 

model = RandomForestClassifier() 

# Use Stratified K-Fold cross-validation 

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

# Cross-validation predictions 

y_pred = cross_val_predict(model, X, y, cv=skf) 

model.fit(X, y) 

# Calculate metrics 

accuracy = accuracy_score(y, y_pred) 

precision = precision_score(y, y_pred, average='weighted') 

f1 = f1_score(y, y_pred, average='weighted') 

recall = recall_score(y, y_pred, average='weighted') 

conf_matrix = confusion_matrix(y, y_pred) 

# Print the results 

print(f"Random Forest Results:") 

print(f"Accuracy: {accuracy:.2f}") 

print(f"Precision: {precision:.2f}") 

print(f"F1: {f1:.2f}") 

print(f"Recall: {recall:.2f}") 

print(f"Confusion Matrix:\n{conf_matrix}") 

# Visualize the confusion matrix in a table form 

conf_matrix_df = pd.DataFrame(conf_matrix, index=['Normal', 

'Borderline', 'Clinical'], columns=['Predicted Normal', 

'Predicted Borderline', 'Predicted Clinical']) 
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plt.figure(figsize=(10, 7)) 

sns.set(font_scale=1.2) 

sns.heatmap(conf_matrix_df, annot=True, fmt='d', cmap='Blues', 

annot_kws={"size": 14})   

# Adjusted annotation size 

plt.ylabel('Actual', fontsize=12) 

plt.xlabel('Predicted', fontsize=12) 

plt.title('Confusion Matrix', fontsize=15) 

plt.show() 

# Save model 

joblib.dump(model, f'{model}.joblib') 

print(f"{model} trained and saved.") 

print("\n") 

 

######################## DECISION TREE ########################## 

import numpy as np 

from sklearn.model_selection import cross_val_score, 

cross_val_predict, StratifiedKFold 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score, confusion_matrix 

from sklearn.tree import DecisionTreeClassifier 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 
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# Use Stratified K-Fold cross-validation 

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

# Initialize the Decision Tree model 

model = DecisionTreeClassifier() 

# Perform cross-validation 

y_pred = cross_val_predict(model, X, y, cv=skf) 

model.fit(X, y) 

accuracy = accuracy_score(y, y_pred) 

precision = precision_score(y, y_pred, average='weighted') 

f1 = f1_score(y, y_pred, average='weighted') 

recall = recall_score(y, y_pred, average='weighted') 

conf_matrix = confusion_matrix(y, y_pred) 

# Print the results 

print(f"Decision Tree Results:") 

print(f"Accuracy: {accuracy:.2f}") 

print(f"Precision: {precision:.2f}") 

print(f"F1: {f1:.2f}") 

print(f"Recall: {recall:.2f}") 

print(f"Confusion Matrix:\n{conf_matrix}") 

# Visualize the confusion matrix in a table form 

conf_matrix_df = pd.DataFrame(conf_matrix, index=['Normal', 

'Borderline', 'Clinical'], columns=['Predicted Normal', 

'Predicted Borderline', 'Predicted Clinical']) 

plt.figure(figsize=(10, 7)) 
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sns.set(font_scale=1.2)   

sns.heatmap(conf_matrix_df, annot=True, fmt='d', cmap='Blues', 

annot_kws={"size": 14})  # Adjusted annotation size 

plt.ylabel('Actual', fontsize=12) 

plt.xlabel('Predicted', fontsize=12) 

plt.title('Confusion Matrix', fontsize=15) 

plt.show() 

# Save model  

joblib.dump(model, f'{model}.joblib') 

print(f"{model} trained and saved.") 

print("\n") 

 

############################### SVM ############################# 

import numpy as np 

from sklearn.model_selection import cross_val_score, 

cross_val_predict, StratifiedKFold 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score, confusion_matrix 

from sklearn.svm import SVC 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 

# Initialize the SVM model 

model = SVC() 
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# Use Stratified K-Fold cross-validation 

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

# Cross-validation predictions 

y_pred = cross_val_predict(model, X, y, cv=skf) 

model.fit(X, y) 

# Calculate metrics 

accuracy = accuracy_score(y, y_pred) 

precision = precision_score(y, y_pred, average='weighted') 

f1 = f1_score(y, y_pred, average='weighted') 

recall = recall_score(y, y_pred, average='weighted') 

conf_matrix = confusion_matrix(y, y_pred) 

# Print the results 

print(f"SVM Results:") 

print(f"Accuracy: {accuracy:.2f}") 

print(f"Precision: {precision:.2f}") 

print(f"F1: {f1:.2f}") 

print(f"Recall: {recall:.2f}") 

print(f"Confusion Matrix:\n{conf_matrix}") 

# Visualize the confusion matrix in a table form 

conf_matrix_df = pd.DataFrame(conf_matrix, index=['Normal', 

'Borderline', 'Clinical'], columns=['Predicted Normal', 

'Predicted Borderline', 'Predicted Clinical']) 

plt.figure(figsize=(10, 7)) 

sns.set(font_scale=1.2)   
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sns.heatmap(conf_matrix_df, annot=True, fmt='d', cmap='Blues', 

annot_kws={"size": 14})  # Adjusted annotation size 

plt.ylabel('Actual', fontsize=12) 

plt.xlabel('Predicted', fontsize=12) 

plt.title('Confusion Matrix', fontsize=15) 

plt.show() 

# Save model  

joblib.dump(model, f'{model}.joblib') 

print(f"{model} trained and saved.") 

print("\n") 

 

##################### LOGISTIC REGRESSION ####################### 

import numpy as np 

from sklearn.model_selection import cross_val_score, 

cross_val_predict, StratifiedKFold 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score, confusion_matrix 

from sklearn.linear_model import LogisticRegression 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 

# Use Stratified K-Fold cross-validation 

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

# Initialize the Logistic Regression model 
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model = LogisticRegression(max_iter=1000) 

# Cross-validation predictions 

y_pred = cross_val_predict(model, X, y, cv=skf) 

model.fit(X, y) 

# Calculate metrics 

accuracy = accuracy_score(y, y_pred) 

precision = precision_score(y, y_pred, average='weighted') 

f1 = f1_score(y, y_pred, average='weighted') 

recall = recall_score(y, y_pred, average='weighted') 

conf_matrix = confusion_matrix(y, y_pred) 

# Print the results 

print(f"Logistic Regression Results:") 

print(f"Accuracy: {accuracy:.2f}") 

print(f"Precision: {precision:.2f}") 

print(f"F1: {f1:.2f}") 

print(f"Recall: {recall:.2f}") 

print(f"Confusion Matrix:\n{conf_matrix}") 

# Visualize the confusion matrix in a table form 

conf_matrix_df = pd.DataFrame(conf_matrix, index=['Normal', 

'Borderline', 'Clinical'], columns=['Predicted Normal', 

'Predicted Borderline', 'Predicted Clinical']) 

plt.figure(figsize=(10, 7)) 

sns.set(font_scale=1.2)   
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sns.heatmap(conf_matrix_df, annot=True, fmt='d', cmap='Blues', 

annot_kws={"size": 14})  # Adjusted annotation size 

plt.ylabel('Actual', fontsize=12) 

plt.xlabel('Predicted', fontsize=12) 

plt.title('Confusion Matrix', fontsize=15) 

plt.show() 

# Save model 

joblib.dump(model, f'{model}.joblib') 

print(f"{model} trained and saved.") 

print("\n") 

 

######################### NAIVE BAYES ########################### 

import numpy as np 

from sklearn.model_selection import cross_val_score, 

cross_val_predict, StratifiedKFold 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score, confusion_matrix 

from sklearn.naive_bayes import GaussianNB 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 

# Use Stratified K-Fold cross-validation 

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

# Initialize the Naive Bayes model 
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model = GaussianNB() 

# Perform cross-validation 

y_pred = cross_val_predict(model, X, y, cv=skf) 

model.fit(X, y) 

accuracy = accuracy_score(y, y_pred) 

precision = precision_score(y, y_pred, average='weighted') 

f1 = f1_score(y, y_pred, average='weighted') 

recall = recall_score(y, y_pred, average='weighted') 

conf_matrix = confusion_matrix(y, y_pred) 

# Print the results 

print(f"Naive Bayes Results:") 

print(f"Accuracy: {accuracy:.2f}") 

print(f"Precision: {precision:.2f}") 

print(f"F1: {f1:.2f}") 

print(f"Recall: {recall:.2f}") 

print(f"Confusion Matrix:\n{conf_matrix}") 

# Visualize the confusion matrix in a table form 

conf_matrix_df = pd.DataFrame(conf_matrix, index=['Normal', 

'Borderline', 'Clinical'], columns=['Predicted Normal', 

'Predicted Borderline', 'Predicted Clinical']) 

plt.figure(figsize=(10, 7)) 

sns.set(font_scale=1.2)   

# Adjust the font scale for better readability 
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sns.heatmap(conf_matrix_df, annot=True, fmt='d', cmap='Blues', 

annot_kws={"size": 14})  # Adjusted annotation size 

plt.ylabel('Actual', fontsize=12) 

plt.xlabel('Predicted', fontsize=12) 

plt.title('Confusion Matrix', fontsize=15) 

plt.show() 

# Save model  

joblib.dump(model, f'{model}.joblib') 

print(f"{model} trained and saved.") 

print("\n") 

 

############################ KNN ################################ 

import numpy as np 

from sklearn.model_selection import cross_val_score, 

cross_val_predict, StratifiedKFold 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score, confusion_matrix 

from sklearn.neighbors import KNeighborsClassifier 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 

# Use Stratified K-Fold cross-validation 

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

# Initialize the KNN model 
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model = KNeighborsClassifier() 

# Perform cross-validation 

y_pred = cross_val_predict(model, X, y, cv=skf) 

model.fit(X, y) 

accuracy = accuracy_score(y, y_pred) 

precision = precision_score(y, y_pred, average='weighted') 

f1 = f1_score(y, y_pred, average='weighted') 

recall = recall_score(y, y_pred, average='weighted') 

conf_matrix = confusion_matrix(y, y_pred) 

# Print the results 

print(f"KNN Results:") 

print(f"Accuracy: {accuracy:.2f}") 

print(f"Precision: {precision:.2f}") 

print(f"F1: {f1:.2f}") 

print(f"Recall: {recall:.2f}") 

print(f"Confusion Matrix:\n{conf_matrix}") 

# Visualize the confusion matrix in a table form 

conf_matrix_df = pd.DataFrame(conf_matrix, index=['Normal', 

'Borderline', 'Clinical'], columns=['Predicted Normal', 

'Predicted Borderline', 'Predicted Clinical']) 

plt.figure(figsize=(10, 7)) 

sns.set(font_scale=1.2)  

sns.heatmap(conf_matrix_df, annot=True, fmt='d', cmap='Blues', 

annot_kws={"size": 14})   
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# Adjusted annotation size 

plt.ylabel('Actual', fontsize=12) 

plt.xlabel('Predicted', fontsize=12) 

plt.title('Confusion Matrix', fontsize=15) 

plt.show() 

# Save model 

joblib.dump(model, f'{model}.joblib') 

print(f"{model} trained and saved.") 

print("\n") 

 

####################### EXTERNAL VALIDATION ##################### 

from google.colab import files 

import pandas as pd 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score, confusion_matrix 

import joblib 

# Load data 

uploaded = files.upload() 

filename = 'test data.csv' 

data = pd.read_csv(filename) 

print(data) 

X_test = data.drop("Total_Elevation", axis=1) 

y_test = data["Total_Elevation"] 
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# List of models to test 

models = ['RandomForestClassifier()', 'DecisionTreeClassifier()', 

'SVC()', 'LogisticRegression(max_iter=1000)', 'GaussianNB()', 

'KNeighborsClassifier()'] 

for model_name in models: 

  # Load model 

  model = joblib.load(f'{model_name}.joblib') 

  # Predict on test data 

  y_pred = model.predict(X_test) 

  # Calculate metrics 

  accuracy = accuracy_score(y_test, y_pred) 

  precision = precision_score(y_test, y_pred, average='weighted') 

  recall = recall_score(y_test, y_pred, average='weighted') 

  f1 = f1_score(y_test, y_pred, average='weighted') 

  confusion = confusion_matrix(y_test, y_pred) 

  # Output metrics 

  print(f"Model: {model_name}") 

  print(f"Accuracy: {accuracy:.2f}") 

  print(f"Precision: {precision:.2f}") 

  print(f"Recall: {recall:.2f}") 

  print(f"F1 Score: {f1:.2f}") 

  print(f"Confusion Matrix:\n{confusion}") 

  print("\n") 


