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ABSTRACT 

A Structural Health Monitoring (SHM) system can continuously report on the structure’s status, 

perform data analysis, and deliver assessment results automatically. SHM systems can play a very 

important role, especially in aerospace structures in which a variety of low-weight materials i.e. 

when composites are in use, where it is very necessary to know the health and degradation level 

of such structures. To measure the health of such structures using SHM systems various 

sensors/transducers are required. Piezoelectric sensors have been is used in SHM systems for the 

past few decades because of their many advantages such as robustness, fast response time, compact 

size, and versatility. A few active and passive technologies have been developed to make use of 

piezoelectric sensors for example Guided waves (GW), Acoustic emission and Electromechanical 

Impedance (EMI). The piezoelectric sensors have a vast variety of advantages but they are also 

prone to some disadvantages during their usage. These disadvantages mostly occur due to certain 

environmental effects like temperature, radiation, and vibration etc. Environmental effects and 

damages to the structure play a significant role on the data acquisition by the sensors. In this paper, 

we are trying to measure the effect of structural damage and temperature on the sensors used to 

collect the data for an EMI-based SHM system and develop a technique using various Machine 

Learning Algorithms to compensate for these effects.  

Keywords: Structural Health Monitoring (SHM), Electromechanical Impedance (EMI), 

Carbon Fiber, Machine Learning,  
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CHAPTER 1 STRUCTURAL HEALTH MONITORING 

1.1 Introduction: 

Structural Health Monitoring (SHM) is a crucial field dedicated to keeping track of and 

preserving the condition of structures over time. It uses various technologies to continuously 

check, assess, and manage the state of structural components to ensure they are safe and 

performing well. SHM's goals include spotting damage, understanding its seriousness, predicting 

how long the structure will last, and improving maintenance to avoid problems. The system usually 

involves sensors that measure things like strain, movement, and vibrations, along with data 

collection tools and analysis methods to interpret the information and guide decisions. SHM 

techniques range from simple visual inspections to more advanced methods like acoustic emission 

[1] , vibration monitoring [2], ultrasonic testing [3], and fiber optic sensing [4]. Each method has 

its strengths for detecting and analyzing issues. However, SHM also faces challenges such as 

handling large amounts of data, dealing with environmental effects on sensor accuracy, and 

managing the costs and complexity of implementing these systems. The field is advancing with 

new sensor technologies, better data analysis methods, and integration with emerging technologies 

like the Internet of Things (IoT) [5] and artificial intelligence [6], which are expected to improve 

how effectively SHM systems ensure the safety and durability of structures. 

1.2 Advantages of Structural Health Monitoring: 

 Structural Health Monitoring (SHM) offers several key advantages that contribute to the 

safety, reliability, and longevity of structures. Here are the primary benefits of SHM, supported by 

references from various journal papers and research studies: 

1.2.1 Early Detection of Damage 

 SHM systems enable the early detection of damage or deterioration in structures. By 

identifying issues at an early stage, SHM helps prevent minor problems from escalating into major 

failures. This proactive approach improves safety and reduces repair costs. For example, a study 

by Boller et al, [7] highlights that SHM systems can detect damage early, allowing for timely 

intervention and maintenance. 
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1.2.2 Enhanced Safety 

 Continuous monitoring of structures ensures that any changes in their condition are 

detected promptly, which enhances the overall safety of the structure. This is particularly important 

for critical infrastructure such as bridges and buildings. According to Cawley and Adams [8], SHM 

contributes significantly to maintaining safety by providing real-time data on the structural 

integrity 

1.2.3 Cost-Effective Maintenance 

 SHM helps optimize maintenance schedules by providing accurate information about the 

condition of structures. This targeted approach allows for maintenance to be carried out only when 

necessary, thus saving costs compared to routine or reactive maintenance strategies. Farrar et al, 

[9] emphasizes that SHM can lead to significant cost savings by focusing maintenance efforts on 

areas that truly need attention. 

1.2.4 Extended Structural Lifespan 

 By monitoring structural health continuously, SHM can help extend the lifespan of a 

structure. Early detection of issues and timely repairs can prevent major damage and deterioration, 

ultimately prolonging the life of the structure. Inman et al, [10] discuss how SHM contributes to 

extending the service life of structures by facilitating timely repairs and maintenance. 

1.2.5 Improved Design and Construction Practices 

 Data collected from SHM systems can be used to improve future design and construction 

practices. Understanding how structures perform in real-world conditions provides valuable 

insights that can be applied to enhance the design and construction of new structures. This 

application of SHM data is noted in the work of Rytter [11], who highlight how SHM data helps 

refine engineering practices. 

1.2.6 Reduced Downtime 
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 SHM systems can help minimize downtime by allowing for predictive maintenance and 

repairs. This is crucial for infrastructure that is critical to daily operations, such as transportation 

systems and industrial facilities. A study by Sohn et al, [12] points out that SHM facilitates 

predictive maintenance, reducing the need for unexpected shutdowns and operational disruptions. 

1.2.7 Enhanced Data for Decision-Making 

 SHM provides detailed and accurate data about the condition of a structure, which supports 

informed decision-making regarding repairs, upgrades, and resource allocation. This data-driven 

approach improves the management of structural assets. As noted by Worden et al. [13], the 

availability of comprehensive data allows for better decision-making and resource management. 

1.2.8 Integration with Modern Technologies 

 SHM systems are increasingly integrated with modern technologies such as the Internet of 

Things (IoT) and artificial intelligence (AI), which enhances their capabilities and effectiveness. 

These technologies enable real-time monitoring, advanced data analysis, and automated decision-

making. Zhang et al. [14] discuss how IoT and AI integration improves the functionality and 

efficiency of SHM systems. 

1.3  Environmental Effects on Structural Health Monitoring (SHM) 

 Structural Health Monitoring (SHM) systems are crucial for ensuring the safety and 

longevity of infrastructure, but their effectiveness can be significantly influenced by environmental 

factors. Understanding these effects is essential for accurate data interpretation and reliable system 

performance. Below is a detailed overview of how various environmental conditions impact SHM, 

supported by relevant references. 

1.3.1 Temperature Variations 

 Temperature changes can affect both the structural materials and the sensors used in SHM 

systems. Temperature fluctuations may cause thermal expansion or contraction of materials, 

leading to variations in sensor readings and structural responses. For instance, the impedance of 

piezoelectric sensors used in electromechanical impedance (EMI) techniques can vary with 
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temperature, impacting damage detection accuracy (Suresh and Ramesh, [15] Zhao et al. [16] note 

that temperature effects on sensor accuracy must be carefully managed to avoid false positives or 

negatives in damage detection  

 

1.3.2 Humidity and Moisture 

Humidity and moisture can impact the performance of sensors and the structural materials 

themselves. For example, moisture infiltration can affect the electrical properties of sensors and 

cause deterioration of structural materials. Studies such as those by Grosse et al. [17] highlight that 

moisture can lead to changes in the mechanical properties of materials, which in turn affects the 

accuracy of SHM systems Grosse, C.U, et al [18]. Additionally, changes in humidity can lead to 

sensor drift, affecting the reliability of the data collected 

1.3.3 Vibration and Dynamic Loads 

Dynamic loads and vibrations from traffic, wind, or seismic activity can influence the 

measurements taken by SHM systems. These environmental factors can cause noise or interference 

in sensor data, making it challenging to distinguish between structural responses due to damage 

and those due to external loads. Research by Farrar and Worden [9] emphasizes the need for 

advanced signal processing techniques to separate structural responses from dynamic loads  

1.3.4 Corrosion and Chemical Exposure 

Exposure to corrosive environments or chemicals can affect the integrity of both the 

structure and the SHM sensors. Corrosion can lead to material degradation, affecting the structural 

response and sensor accuracy. Additionally, chemicals can cause sensor components to degrade or 

malfunction. Research by Carper and K. [19] discusses the impact of corrosion on structural 

components and the implications for SHM systems  

1.3.5 Temperature and Humidity Cycles 



5 

 

The combined effects of temperature and humidity cycles can exacerbate the challenges 

posed by each factor. Repeated cycles of temperature and humidity changes can lead to cumulative 

effects on both the sensors and the structural materials, potentially causing long-term performance 

issues.  

1.4  Types of Sensors used in SHM 

Structural Health Monitoring (SHM) relies on a variety of sensors to monitor the condition 

of structures like bridges, buildings, and tunnels. The latest advancements in SHM technology 

have expanded the types and applications of these sensors, improving the accuracy and reliability 

of monitoring systems. Some different types of sensors according to Machado, M. A et al [20] are; 

1.4.1 Strain Sensors:  

 These sensors measure the deformation of materials under stress, making them crucial for 

monitoring load-bearing structures such as bridges and buildings. They detect tension, 

compression, bending, and torsion, offering precise data on structural integrity 

1.4.2 Crack Detection Sensors: 

 These sensors are used to monitor cracks in concrete structures. They measure the position 

and length of cracks, which is vital for detecting early signs of structural failure. 

1.4.3 Vibration Sensors:  

 Vibration sensors are critical for detecting changes in a structure's vibration patterns, which 

can indicate potential issues such as fatigue or the need for maintenance. They measure the g-force 

experienced by a structure, providing data on its dynamic response. 

1.4.5 Tilt Sensors (Inclinometers): 

 These sensors monitor the inclination of structures, such as embankments and retaining 

walls. They help detect any tilting or movement that could lead to instability. 

1.4.6 Piezometers: 
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 Used primarily in geotechnical applications, piezometers monitor fluid pressures within 

soil and rock, which is essential for assessing the stability of embankments, dams, and other earth 

structures. 

1.4.7 Fibre Optic Sensors (FOS):  

 These are widely used in SHM for real-time, continuous monitoring. FOS can measure 

strain, temperature, and even acoustic emissions, offering high sensitivity and durability. 

1.4.8 Piezoelectric Sensors:  

 These sensors are commonly used for detecting vibrations, strain, and pressure changes. 

They are known for their ability to generate electrical signals in response to mechanical stress, 

making them highly effective in SHM applications. 

1.4.9 Embedded Sensors: 

 These are integrated directly into materials during the manufacturing process. They provide 

continuous monitoring without compromising structural integrity. Innovations in smart materials 

and sensor systems are pushing the boundaries of what embedded sensors can achieve. 

1.5  Piezoelectric Sensors in SHM 

Piezoelectric sensors are widely used in Structural Health Monitoring (SHM) due to their 

high sensitivity, lightweight design, and ability to convert mechanical stress into electrical signals. 

These sensors are essential for detecting damage, monitoring strain, and evaluating the integrity 

of structures in real-time. 

Recent advancements have focused on improving the performance of piezoelectric sensors 

through innovative materials and configurations. For instance, research has explored the use of 

piezo-ceramics and piezo-polymers in various SHM applications, such as damage detection in 

composite materials, localization of cracks in metallic structures, and even monitoring under 

extreme conditions like high temperatures [21], [22] 
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A review of state-of-the-art piezoelectric-based sensing techniques highlights the diversity 

of methods employed, including electromechanical impedance and ultrasonic Lamb waves. These 

techniques are crucial for developing next-generation self-powered and self-monitoring SHM 

systems, which are expected to enhance the efficiency and accuracy of monitoring large-scale 

infrastructure [23] 

Piezoelectric sensors in Structural Health Monitoring (SHM) utilize various monitoring 

techniques to detect and analyze structural conditions. These techniques are diverse, each offering 

unique capabilities depending on the type of structural issue being monitored. Here are the main 

types of piezoelectric sensor monitoring techniques used in SHM; 

1.5.1 Electromechanical Impedance Technique (EMI) 

The EMI technique involves measuring the electrical impedance of piezoelectric sensors 

bonded to the structure. Variations in impedance indicate changes in structural properties, such as 

stiffness or the presence of damage [24] [25] 

1.5.2 Ultrasonic Guided Wave Technique 

This technique uses piezoelectric sensors to generate and receive guided ultrasonic waves 

that propagate through the structure. Changes in wave propagation, such as scattering or mode 

conversion, indicate the presence of damage like cracks or delamination [26] [27] 

1.5.3 Acoustic Emission (AE) Technique 

Piezoelectric sensors detect high-frequency elastic waves generated by the sudden release of 

energy from a structural source (e.g., crack growth or fiber breakage). The AE technique is 

sensitive to early-stage damage and can monitor dynamic events in real-time  

1.5.4 Lamb Wave Method 

Lamb waves are a type of guided wave used in SHM to detect damage in thin-walled 

structures. Piezoelectric sensors generate and capture these waves, and any changes in their 

propagation, such as time-of-flight or amplitude, are indicative of damage. [28] [29] 
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1.6  The Environmental Effects on Electromechanical Impedance-Based SHM   

 The Electromechanical Impedance (EMI) technique is a prominent method used in SHM 

for detecting structural damage. By leveraging the sensitivity of piezoelectric sensors to changes 

in structural impedance, this technique provides an effective means for early damage detection. 

However, like any SHM technique, the EMI method faces several challenges that can affect its 

accuracy, reliability, and practical implementation. Below is an exploration of these challenges 

faced while using EMI-based SHM. 

1.6.1 Temperature Sensitivity 

 The impedance of piezoelectric sensors is highly sensitive to temperature variations. 

Temperature changes can lead to significant fluctuations in impedance readings, potentially 

leading to false positives or negatives in damage detection. Several approaches have been proposed 

to mitigate the effects of temperature. Bhalla and Soh [30]suggest the use of temperature 

compensation algorithms that adjust impedance measurements based on temperature readings 

from the environment. Advanced modeling techniques that incorporate temperature effects into 

the damage detection algorithm have also been developed. 

1.6.2 Complex Signal Processing 

The EMI technique requires complex signal processing to accurately interpret impedance 

data and distinguish between noise and actual structural damage. This complexity can limit the 

practical application of the technique, especially in real-time monitoring. Advances in machine 

learning and deep learning have been proposed to enhance the signal processing capabilities of 

EMI-based SHM. These techniques can help in automating the detection and classification of 

damage patterns, improving accuracy and reducing the computational load [31] 

1.6.3 Sensor Bonding Issues 

The effectiveness of the EMI technique heavily depends on the proper bonding of 

piezoelectric sensors to the structure. Poor bonding can lead to inconsistent impedance 

measurements and unreliable damage detection. To address bonding issues, researchers have 

developed guidelines for optimal sensor placement and bonding materials. Moreover, periodic 
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inspection and maintenance of sensor bonding are recommended to ensure long-term reliability 

[32] 

1.6.4 Limited Applicability to Complex Structures 

The EMI technique has limitations when applied to complex structures with multiple 

interacting components. The presence of multiple interfaces and boundaries can complicate the 

interpretation of impedance data, leading to potential inaccuracies in damage detection. Hybrid 

SHM approaches that combine EMI with other techniques, such as guided wave testing or acoustic 

emission, have been proposed to improve accuracy in complex structures. Additionally, advanced 

finite element modeling can be used to better understand the interactions between different 

components and improve data interpretation. [33]. 

1.6.5 Power Supply Issues 

Continuous monitoring with the EMI technique requires a stable power supply, which can 

be challenging in remote or inaccessible locations. Researchers are exploring energy harvesting 

technologies that can power piezoelectric sensors using ambient energy sources, such as vibrations 

or solar power. This approach can help in sustaining long-term monitoring without the need for 

frequent battery replacements. [34] 

 This thesis is organized as follows: Chapter II provides an overview of past trends, current 

advancements, and future developments in the field of EMI-based SHM. Chapter III outlines the 

methodology used for experimenting and the data acquisition from the experiment. Chapter IV 

details filtration techniques applied to the data and the feature extraction techniques employed in 

this study. In Chapter V, the complete architecture of the machine learning algorithms used for 

classifying feature vectors is explained. Chapter VI presents the results, and Chapter VII concludes 

the study with final insights. 

1.7  Summary 

 This chapter describes the basic introduction of SHM, its various advantages, limitations, 

and the key sensor technologies used. Furthermore, an introduction to the piezoelectric-based 

SHM system along with the multiple techniques that can be utilized in an SHM system are briefly 
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explained. Lastly an explanation of EMI-based SHM and some of the problems arising due to the 

environmental effects while using an EMI-based SHM along with their current solutions are given. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Recent History of Structural Health Monitoring System 

  Park et al, (2000) proposed an integrated methodology for detecting and locating 

structural damage by combining two approaches. The first method utilizes piezoelectric materials 

to monitor changes in electrical impedance caused by shifts in the structure's mechanical 

impedance, allowing for qualitative damage detection. The second method employed a model-

based wave propagation technique to quantitatively assess damage using frequency response 

function (FRF) data. High-frequency structural excitation through piezoelectric sensors was used 

to detect damage. Numerical and experimental results demonstrated the effectiveness of the 

technique. [32] 

  Park et al, (2001) explored the use of an impedance-based health monitoring 

technique for assessing critical civil infrastructure, such as pipelines, especially in urgent situations 

like post-earthquake evaluations. The method involved applying high-frequency excitations 

(above 30 kHz) via piezoelectric sensors to detect changes in structural impedance, indicating 

damage. The study demonstrated the technique's effectiveness in real-time damage detection and 

monitoring the integrity of structures both under normal conditions and after natural disasters. The 

results highlighted the method's capability for quick and reliable damage assessment. [35] 

  Chin-Wee et al, (2002) proposed an electro-mechanical (EM) impedance method 

that was initially explored for in-situ stress monitoring in structural health applications. A 

theoretical model based on Euler-Bernoulli beam theory was developed to analyze how in-situ 

stress influences the dynamic and EM responses of a smart beam with piezoceramic (PZT) 

transducers. Numerical simulations revealed that natural frequency shifts due to axial loads were 

not directly reflected in the EM admittance signature. This discrepancy led to the use of a genetic 

algorithm (GA) for accurately back-calculating the in-situ stress, addressing the challenge of 

interpreting EMI data. [36] 

  Kiong et al, (2003) presented a method for damage diagnosis using changes in 

mechanical impedance at high frequencies, measured through electro-mechanical impedance 
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(EMI) with piezoelectric-ceramic (PZT) patches. The approach incorporated both real and 

imaginary components of the admittance signature to quantify damage, eliminating the need for 

prior structural models. A complex damage metric was developed based on parameters like 

stiffness, mass, and damping. The methodology outperformed traditional low-frequency vibration 

and raw-signature-based damage quantification methods, as demonstrated in tests on a reinforced 

concrete frame subjected to base vibrations. [37] 

  Kiong et al, (2004) addressed the shear lag effect in the electromechanical 

impedance (EMI) technique for structural health monitoring (SHM), which was often overlooked 

in existing models. It examined how the adhesive bond layer between piezoelectric-ceramic (PZT) 

patches and structures affected force transfer and impedance measurements. The study integrated 

the shear lag effect into one-dimensional and two-dimensional impedance models and conducted 

a parametric analysis. Results indicated that the bond layer can significantly alter the 

electromechanical admittance response, highlighting the need for careful installation of PZT 

patches. [38] 

  Tseng et al, (2005) introduced an impedance-based method for identifying damage 

in thin plates using piezoelectric ceramic (PZT) transducers and a two-dimensional 

electromechanical impedance model. A damage identification scheme based on nonlinear 

optimization matched numerical and experimental electric admittance changes to locate and 

quantify damage. The method was validated through numerical simulations. [39] 

  Voutetaki et al, (2006) proposed a numerical method for structural health 

monitoring and damage identification in civil infrastructure using piezoelectric ceramic (PZT) 

patches. By comparing frequency-dependent electromechanical admittance signatures with 

baseline measurements, the health status of structures is assessed. Damage is quantified using the 

root-mean-square deviation (RMSD) index and further refined through statistical confidence 

methods in a computer software. Numerical simulations on concrete beams demonstrated the 

advantages of this mathematical modeling approach over traditional methods, which often lacked 

the accuracy needed for complex structures. [40] 

  Yang et al, (2007) presented an electromechanical impedance (EMI) model for 

monitoring the health of cylindrical shell structures using piezoceramic (PZT) transducers. A two-
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dimensional impedance modeling approach was employed to obtain the admittance of PZT 

transducers. At the same time, the p-Ritz method was used to calculate the mechanical impedance 

of the cylindrical shell. Experimental tests on an aluminum cylindrical shell validated the 

developed EMI model by comparing theoretical and measured PZT admittance signatures in 

undamaged and damaged conditions. The feasibility of the EMI method for damage detection in 

cylindrical shell structures was also explored. [41] 

             Park et al, (2008) reported advancements in structural health monitoring (SHM) 

using electro-mechanical impedance sensors for damage diagnosis in civil, mechanical, and 

aerospace structures. The technique leveraged high-frequency excitations and piezoelectric 

sensors to detect changes in structural impedance, indicating potential damage. A novel impedance 

model was proposed for sensor self-diagnosis, along with a temperature-resistant damage detection 

algorithm based on frequency shifts and cross-correlation coefficients. Additionally, the paper 

introduced an active sensor node with integrated wireless sensing, data compression, and RF 

telemetry capabilities, enhancing local data processing for SHM applications. [42] 

            Rizzo et al, (2009) conducted EMI-based experiments on steel, aluminum, and 

concrete specimens to monitor load, crack development, and curing across various frequency 

ranges. A statistical index was used to evaluate the sensitivity of different frequency bands, and a 

novel signature gradient was applied to characterize signatures at each frequency. The findings 

demonstrated that optimizing frequency bands can streamline data acquisition, making the EMI 

technique more efficient for real-world applications. [43] 

            Rosiek et al (2010) investigated uncertainty and sensitivity analysis in Finite 

Element simulations for electro-mechanical impedance-based structural health monitoring. It 

evaluated how impedance measurements track damage by analyzing a beam with a bonded 

transducer through both deterministic and stochastic simulations. Key parameters influencing 

damage indexes were identified, and the effectiveness and robustness of the SHM system were 

discussed. [44] 

Visalakshi et al, (2011) presented a sensor for detecting corrosion in bare steel 

rebars using electro-mechanical impedance (EMI) to identify changes in stiffness, mass, and 
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damping through shifts in conductance and susceptance signatures. Experiments with piezoelectric 

ceramic (PZT) sensors and induced corrosion show that EMI effectively detected and quantified 

corrosion. The findings, compared with ACM field machine data, highlight EMI's capability for 

early corrosion detection and measurement. [45] 

  Inman et al, (2012) presented an affordable, versatile measurement system for 

structural health monitoring (SHM) using electromechanical impedance (EMI), featuring real-time 

data acquisition and temperature compensation. It offered simpler implementation and lower cost 

compared to conventional impedance analyzers. Experiments on aluminum beams and plates with 

PZT patches validated the system's efficiency and effectiveness for real-time SHM. [46] 

  Siebel et al, (2013) studied the sensitivity of electromechanical impedance to 

structural damage under varying temperatures, using cross-correlation coefficients to compensate 

for temperature effects. Experiments were conducted on a carbon fiber reinforced plastic (CFRP) 

panel with 26 piezoelectric transducers of different sizes, subjected to temperatures ranging from 

-50°C to 100°C. The study assessed the impact of temperature on impedance measurements and 

evaluated the effectiveness of the temperature compensation approach. Additionally, it examined 

the sensitivity to impact damage and the influence of transducer size and location, concluding with 

a discussion on balancing sensing area and temperature range for reliable damage detection. [47] 

  Baptista et al, (2014) presented an experimental study examining how temperature 

impacts the electrical impedance of 5H PZT ceramic sensors commonly used in EMI. Results 

revealed that temperature effects are significantly frequency-dependent, highlighting a critical area 

for future research in SHM. [48] 

  Memmolo et al, (2016) explored various probabilistic reconstruction methods and 

signal transformation techniques to enhance impact damage detection using a sparse sensor array, 

particularly for aircraft structures. Simulations indicated that while single methods provided quick 

flaw detection, a combination of multiple analyses and reconstruction techniques offered more 

detailed insights into damage location and severity, provided that diagnostic parameters were 

thoroughly addressed. [49] 
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  Giurgiutiu et al, (2016) examined the impact of radiation, temperature, and vacuum 

(RTV) on piezoelectric wafer active sensors (PWASs) for extending structural health monitoring 

(SHM) to aerospace applications. The research combined theoretical and experimental approaches 

using electromechanical impedance spectroscopy (EMIS). Theoretical models derived analytical 

expressions for the temperature sensitivity of EMIS resonance and anti-resonance, while 

experimental tests exposed PWAS transducers to RTV conditions and various temperatures. 

Results showed that RTV exposure caused less than 1% change in resonance frequencies but about 

15% in amplitudes. Temperature sensitivity analyses indicated specific changes in resonance and 

anti-resonance parameters, with consistent trends across different PWAS transducers, leading to 

conclusions and suggestions for future research. [50] 

  Emmanuel et al, (2016) explored two temperature compensation methods for 

Structural Health Monitoring using piezoceramic transducers (PZT). One method applied linear 

regression to the PZT's static capacity from electromechanical impedance, while the other used 

Modes Frequency Shift (MFS) from frequency response functions. Experiments on a composite 

plate with five PZT patches showed that both methods effectively detect ±2°C temperature 

variations and could replace traditional temperature sensors. [51] 

  Alamdari et al, (2017) detailed a large-scale Structural Health Monitoring 

application on the Sydney Harbour Bridge, focusing on 800 jack arches under traffic lane 7. To 

identify potential structural damages or instrumentation issues, they proposed a novel non-model-

based method using Spectral Moments (SMs) from measured responses. This method employs a 

modified k-means clustering algorithm to detect jack arches with abnormal responses. Evaluation 

with real bridge data successfully identified known issues and detected anomalies over a month of 

monitoring, which were confirmed as system issues. [52] 

  Oliveira et al, (2018) introduced a novel SHM approach combining 

electromechanical impedance (EMI)-PZT with CNNs, where EMI signatures are segmented and 

analyzed using Euclidean distances to create RGB frames. The method, tested on three PZTs 

bonded to an aluminum plate, achieved a 100% hit rate in pattern classification with minimal 

dataset requirements, demonstrating significant potential for industrial SHM applications. [53] 
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  Antunes et al, (2019) presented a novel approach to mitigate temperature-induced 

errors in EMI-based SHM for pipelines, incorporating temperature compensation and finite 

element modeling of bonded piezoceramics. Experimental validation demonstrated the method's 

effectiveness, with successful temperature compensation across a wide range and accurate damage 

detection [54] 

   Valder et al, (2020) presented a novel approach to structural health monitoring 

(SHM) by integrating convolutional neural networks (CNN) with the electromechanical 

impedance (EMI) method. The study addressed the challenge of environmental influences, such 

as temperature variations, which can affect impedance-based damage detection. Using aluminum 

beams subjected to different temperatures, a one-dimensional CNN was trained to predict damage 

while compensating for temperature effects. This approach demonstrated improved accuracy in 

damage detection by accounting for environmental conditions. [55] 

  Khodaei et al, (2020) presented a structural health monitoring (SHM) methodology 

for detecting damage in composite bonded repairs using guided wave techniques. A two-step 

algorithm calculated and compared path damage indices (PDIs) to thresholds for reliable detection 

while reducing false alarms. A self-diagnosis approach using electromechanical impedance (EMI) 

identified faulty sensors, and a novel probability imaging technique based on Voronoi Tessellation 

localizes damage. Experimental results validated the method under varying operational and 

environmental conditions [56] 

  Gayakwad et al, (2022) This study introduced smart sensing units (SSU) composed 

of a PZT patch, adhesive, and steel plate, embedded in concrete to enhance damage detection. 

Combining EMI and wave propagation (WP) techniques improved the sensitivity of SSUs to detect 

both near-field and far-field damage. Numerical simulations and experimental validation 

demonstrated the effectiveness of this approach in monitoring structural changes in concrete. [57] 

  George et al, (2024) proposed a new approach using a 1-D convolutional neural 

network to identify cracks in fiber-reinforced concrete through raw electromechanical impedance 

(EMI) signatures from piezoelectric (PZT) transducers. Experimental results showed the method's 

effectiveness, achieving 95.24% accuracy and demonstrating reliable damage identification in a 
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PZT-enabled SHM system. The leave-one-specimen-out cross-validation ensures realistic 

validation. [58] 

2.2  Summary 

  This chapter provides a comprehensive review of the recent developments, current 

advancements, and future directions of structural health monitoring (SHM) systems, with a 

particular focus on electromechanical impedance (EMI)-based techniques. The extensive body of 

research on EMI-based SHM is thoroughly discussed, highlighting studies that have explored 

innovative applications and methods to address challenges associated with the existing systems. 

This detailed analysis aims to contribute to the ongoing efforts in improving EMI-based SHM, 

ultimately paving the way for enhanced accuracy and reliability in structural damage detection.  
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CHAPTER 3 EXPERIMENTAL METHADOLOGY 

3.1 Experimental Setup: 

  A series of experiments were performed on an aerospace material to investigate the 

EMI resulting from varying degrees of induced damage at various temperatures. The specimen 

utilized in these experiments consisted of a beam of Carbon Fiber Figure 1 (Uncracked), with 

dimensions of 150mm x 40mm x 0.5mm each. Two PZT5 piezoelectric sensors with a diameter of 

18mm and thickness of 0.23mm were used as both an actuator and a sensor. The sensing PZT5 

sensor was positioned 15mm from one edge of the specimen, while the actuating sensor was placed 

10 mm from the other edge, with a distance of 80 mm between them. The PZT patches were 

attached to the specimen using Depoxy steel. 

 

Figure 1 Carbon Fiber Specimen 

  The specimen under observation were subjected to varying levels of damage during 

experiments. The damage was induced as cracks located 75mm from one edge of the total 150mm 

length of the specimen. The cracks were of varying lengths, ranging from 10mm Figure 2 (a), 

20mm Figure 2(b) and 40mm (Full Cracked) Figure 2(c). Lastly,a reference specimen with no 

cracks (Uncracked) was added as the reference for the induced EMI.  
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Figure 2 (a) Quarter Cracked (b) Half Cracked (c) Full Cracked 

  The specimen was positioned inside an insulated Acrylic chamber Figure 3 with 

the dimensions of 12 inches (height) x 12 inches (length) x 11.25 inches (width). The purpose of 

the insulated Acrylic chamber was to maintain a controlled temperature environment and to avoid 

interference from external conditions during experiments. A heating coil was employed to elevate 

the temperature inside the chamber, with the temperature range extending from 30℃ to 60℃, with 

5℃ increments. The ambient temperature inside the chamber was monitored using a thermocouple 

sensor that was positioned slightly above the specimens. The thermocouple had a sensing range 

from -20℃ to 80℃. The temperature was constantly monitored using a UNO Arduino controller. 

 

Figure 3 Insulated Acrylic Chamber 
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Figure 4 LCR Meter and Power Supply 

  The Electromechanical impedance was measured using a Matrix LCR meter MCR-

6200A (Figure 4), having an operational frequency range of 12Hz to 200 KHz. The data acquisition 

from the LCR meter was done using Labview software on a Personal Computer Figure 5 (A 

TITAN DC Power Supply (Figure 4) was utilized to supply the voltage to the actuator.    

 

Figure 5 Complete Experimental setup including LCR Meter, Power Supply, Personal Computer, 

and the Insulated Acrylic Chamber 

3.2 Experimental Results: 
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  The experimental results obtained can be described in two ways. Firstly the 

electromechanical impedance obtained as a result of various kinds of damage on the material. 

Secondly, the electromechanical impedance was obtained as a result of the temperature change. 

3.2.1 Damage Effect 

  The figure presents Electromechanical Impedance (EMI) results obtained from 

experiments conducted on uncracked and fully-cracked Carbon Fiber beams. The Real Part (Figure 

6)  Imaginary Part (Figure 7), and Magnitude (Figure 8) of the impedance were measured for both 

conditions. The data reveals that damage to the material does not significantly affect the Imaginary 

Part or the Magnitude of the impedance. However, the Real Part of the impedance shows a notable 

difference at the resonant frequency of 4 kHz. Specifically, the peak impedance for the undamaged 

Carbon Fiber is approximately 750 Ω, whereas for the fully-cracked Carbon Fiber, the peak 

impedance decreases to about 600 Ω. Additionally, it was observed that at frequencies above 10 

kHz, the change in impedance becomes negligible, indicating that low-frequency ranges are more 

sensitive and thus more suitable for detecting damage in Carbon Fiber materials. 

 

Figure 6 Real Part of Impedance of UC and FC Carbon Fiber 
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Figure 7 Imaginary part of Impedance of UC and FC Carbon Fiber 

 

Figure 8 Magnitude of Impedance of UC and FC Carbon Fiber 

3.2.2 Temperature effect: 

  The Electromechanical Impedance (EMI) results obtained from an un-cracked 

Carbon Fiber specimen subjected to varying temperatures are shown in the figures below. Unlike 

the effect of structural damage, temperature variations cause slight differences in the Imaginary 

Part (Figure 10) and Magnitude (Figure 11) of the impedance. However, these changes remain 

negligible when compared to the more pronounced changes observed in the Real Part of the 

impedance (Figure 9). Specifically, at a resonant frequency, the Real impedance decreases 

significantly from approximately 750 Ω at 30°C to about 450 Ω at 60°C. This finding highlights 
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the sensitivity of the Real Part of the impedance to temperature variations, making it a critical 

parameter for monitoring temperature effects in Structural Health Monitoring systems. 

 

Figure 9 Real Part of Impedance of UC Carbon Fiber at Different Temperatures. 

 

Figure 10 Imaginary Part of Impedance of UC Carbon Fiber at Different Temperatures 
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Figure 11 Magnitude of Impedance of UC Carbon Fiber at Different Temperatures 
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CHAPTER 4 DAMAGE DETECTION THROUGH MACHINE LEARNING: 

  To develop a robust method for detecting damage under varying thermal 

conditions, we employed machine-learning techniques that require the impedance data derived 

from experimental results. The dataset, comprises of impedance measurements recorded at 

multiple temperatures, was systematically analyzed to classify damage into four distinct 

categories: UC (Un-Cracked), QC (Quarter-Cracked), HC (Half-Cracked), and FC (Fully 

Cracked).  

Dataset Overview: 

 Classes: UC, QC, HC, FC 

 Temperature Range: Seven discrete temperature values (30℃, 35℃, 40℃, 45℃, 50℃, 

55℃, 60℃) 

 Impedance Measurements: For each temperature, impedance data were collected at 199 

frequency points spanning from 1 kHz to 199 kHz, with a 1 kHz interval between each 

measurement point 

  To detect damage using machine learning, we utilized the data obtained and applied 

the following steps; 

4.1 Data Filtration: 

  Data filtration, or data filtering, is a process used to remove, modify, or retain 

specific data points or certain frequencies from a dataset. These frequencies may involve the 

removal of noise or any other irrelevant piece of information not required for our purpose. In our 

case, it involves the removal of data at frequencies higher than 10 KHz. This is the data that cannot 

be utilized and hence may act as noise during the process of Machine Learning. 

  A low-pass filter was utilized to obtain the data below the desired frequency range 

of 10 KHz. The filter was applied to the raw data obtained from the four different cases i.e. un-

cracked (UC), quarter-cracked (QC), half-cracked (HC), and fully-cracked (FC). The data was 
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filtered using the Matlab® ‘Filter Designer’ app to design a low pass filter with a 0-10 KHz 

passband frequency. Figure 12 shows the raw data from un-cracked piece of carbon fiber. Whereas  

Figure 13 shows the acquired data after filtration.  

 

 

Figure 12 Un-Filtered UC Data 

 

Figure 13 Filtered Un-cracked Data 

4.2 Feature Extraction 

  Three distinct features—average band power, peak, and mean—were extracted 

from the filtered data using MATLAB® functions ‘bandpower’, ‘peak’, and ‘mean’, respectively. 

These features provide critical insights into the underlying data, enhancing the robustness and 
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accuracy of the classification process. Additionally, Independent Component Analysis (ICA) was 

performed on the filtered data, and the resulting components were utilized as an extracted feature 

for classification. To emphasize the significance of feature extraction, the filtered data itself was 

also included as a feature during classification. This approach highlights the comparative 

effectiveness of using derived features versus raw filtered data in improving classification 

outcomes. 
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CHAPTER 5 CLASSIFICATION ALGORITHMS 

  Weka® tool has been utilized to classify the extracted features and the filtered data. 

The Classifiers used are; 

5.1 Linear discriminant analysis (LDA)  

  Linear Discriminant Analysis (LDA) is a classification and dimensionality 

reduction technique that aims to project data onto a lower-dimensional space while maximizing 

class separability. It does this by finding the linear combinations of features that best distinguish 

between classes, assuming that the data for each class is normally distributed and that the classes 

share the same covariance matrix. LDA works by calculating the within-class and between-class 

scatter matrices, then solving an eigenvalue problem to determine the optimal projection 

directions. It is widely used in applications where linear boundaries are effective for classifying 

data. The LDA was implemented using the WEKA® software. The results are shown in Table 1 

Performance of Different Feature Vectors in LDA. 

Table 1 Performance of Different Feature Vectors in LDA 

Linear discriminant analysis (LDA) 

Feature Vector 
Confusion Matrix %age Accuracy 

 

Average Band Power 

a      b      c      d 

[

58 8 18 15
31 38 15 15
27 11 41 20
26 14 12 47

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

46.4646 % 

 

 

Mean 

a      b      c      d 

[

59 5 33 2
19 61 3 16
7 18 58 16
19 9 22 49

] 

 

 

 

57.3232 % 
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a = UC ,b =QC, c= HF, d= 

FC 

 

 

Peak 

a      b      c      d 

[

59 5 32 3
19 62 3 15
8 17 59 15
17 10 22 50

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

58.0808 % 

 

 

Filtered Raw Data 

a      b      c      d 

[

99 36 50 14
67 80 17 35
58 55 63 23
23 26 51 99

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

42.8392 % 

 

Independent Component 

analysis (ICA) 

a      b      c      d 

[

59 12 14 14
14 66 7 12
20 22 46 11
9 1 9 80

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

63.3838 % 

  In Table 1 above the performance of various feature extraction techniques 

combined with Linear Discriminant Analysis (LDA) was evaluated using confusion matrices and 

accuracy metrics, the Independent Component Analysis (ICA) method exhibited the % 

classification accuracy at 63.38%, surpassing all other feature vectors. The Peak feature vector 

achieved an accuracy of 58.08%, followed by the Mean feature vector with 57.32% accuracy. The 

Average Band Power feature vector yielded an accuracy of 46.46%, while the Filtered Raw Data 

approach showed the lowest accuracy at 42.84%. 
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Table 2 Summary LDA Cross Validation 

 
Average 

Band 

Power 

Mean Peak Filtered 

Raw Data 

Independent 

Component 

Analysis 

(ICA) 

Correctly 

Classified 

Instances          

46.4646 % 57.3232 

% 

58.0808 % 42.8392 % 63.3838 % 

Incorrectly 

Classified 

Instances        

53.5354 % 42.6768 

% 

41.9192 % 57.1608 % 36.6162 % 

Kappa statistic                          
0.2862 0.431 0.4411 0.2379 0.5118 

Mean absolute 

error                       

0.325 0.2901 0.2886 0.3404 0.2873 

Root mean 

squared error                  

0.3979 0.3725 0.3716 0.4087 0.3705 

Relative 

absolute error                  

86.6586 % 77.3496 

% 

76.9556 % 90.7658 % 76.6136 % 

Root relative 

squared error              

91.8769 % 86.0178 

% 

85.8051  94.3922  85.5516 % 

  These results in Table 2 compare the performance of different feature vectors 

(Average Band Power, Mean, Peak, Filtered Raw Data, and Independent Component Analysis 

(ICA)) in a classification task by LDA. ICA has the highest classification accuracy (63.38%) and 

the best performance across several metrics, including Kappa statistic (0.5118) and the lowest 

relative errors. The Peak and Mean features also perform reasonably well, with classification 
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accuracies around 58% and similar Kappa statistics (~0.44), indicating moderate agreement. The 

filtered raw data performs the worst with only 42.84% classification accuracy and the highest 

errors, showing that more sophisticated feature extraction techniques, such as ICA, significantly 

improve classification accuracy and error rates. 

5.2 Quadratic discriminant analysis (QDA): 

Quadratic Discriminant Analysis (QDA) is a classification technique similar to Linear 

Discriminant Analysis (LDA) but relaxes the assumption that the covariance matrices of the 

classes are identical. Instead, QDA allows each class to have its own covariance matrix, which 

enables it to model more complex, non-linear decision boundaries between classes. This makes 

QDA more flexible than LDA, particularly for problems where the classes are not linearly 

separable. However, this flexibility comes at the cost of requiring more data to estimate the 

separate covariance matrices accurately. QDA is especially useful when there are significant 

differences in the variance of the features within each class. The results acquired through the use 

of Weka are shown below in Table 3. 

 

Table 3 Performance of Different Feature Vectors in QDA 

Quadratic discriminant analysis (QDA) 

Feature Vector 
Confusion Matrix %age Accuracy 

 

 

 

Average Band Power 

a      b      c      d 

[

94 0 5 0
9 66 24 0
6 1 92 0
9 0 7 83

] 

a = UC ,b =QC, c= HF, d= FC 

 

 

 

84.596  % 

 

 

 

 

 

a      b      c      d 

[

95 0 4 0
1 86 12 0
8 0 91 0
3 0 5 91

] 

a = UC ,b =QC, c= HF, d= FC 
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Mean 91.6667 % 

 

 

 

 

Peak 

a      b      c      d 

[

95 0 4 0
2 85 12 0
9 0 90 0
3 0 5 91

] 

a = UC ,b =QC, c= HF, d= FC 

 

 

 

91.1616 % 

 

 

 

 

Filtered Raw Data 

a      b      c      d 

[

137 5 55 2
13 116 67 3
15 4 179 1
8 2 62 127

] 

a = UC ,b =QC, c= HF, d= FC 

 

 

 

70.2261 % 

 

 

 

Independent Component 

Analysis (ICA) 

a      b      c      d 

[

71 4 23 1
0 99 0 0
19 2 78 0
0 0 0 99

] 

a = UC ,b =QC, c= HF, d= FC 

 

 

 

87.6263 % 

  In Table 3 above the performance of different feature vectors using Quadratic 

Discriminant Analysis (QDA) was assessed. The results, including confusion matrices and 

accuracy metrics, showed that the mean feature vector achieved the highest accuracy of 91.67%, 

closely followed by the peak feature vector, which had an accuracy of 91.16%. The Independent 

Component Analysis (ICA) method also demonstrated strong  achieved an accuracy of 

84.60%, while the Filtered Raw Data approach yielded the lowest accuracy at 70.23%. 

Table 4 Summary QDA Cross Validation 

 
Average 

Band 

Power 

Mean Peak Filtered 

Raw Data 

Independent 

Component 

Analysis 

(ICA) 
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Correctly 

Classified 

Instances          

84.596  % 91.6667 

% 

91.1616 % 70.2261 % 87.6263 % 

Incorrectly 

Classified 

Instances        

15.404  % 8.3333 % 8.8384 % 29.7739 % 12.3737 % 

Kappa statistic                          
0.7946 0.8889 0.8822 0.603 0.835 

Mean absolute 

error                       

0.0955 0.0433 0.0428 0.1738 0.073 

Root mean 

squared error                  

0.234 0.1683 0.1678 0.32 0.2091 

Relative 

absolute error                  

25.4621 % 11.5448 

% 

11.4163 % 46.3447 % 19.4788 % 

Root relative 

squared error              

54.0487 % 38.8698 

% 

38.7571 % 73.9057 % 48.2962 % 

  Table 4 results demonstrate significantly improved classification performance 

across the various feature extraction methods. The Mean and Peak features achieve the highest 

classification accuracy (91.67% and 91.16%, respectively), with very low error metrics such as the 

Mean Absolute Error (0.0433 and 0.0428) and high Kappa statistics (0.8889 and 0.8822), 

indicating strong agreement and accuracy in classification. The ICA method also performs well 

with 87.63% correctly classified instances and a Kappa statistic of 0.835, indicating robust 

performance but slightly lower than Mean and Peak. The Average Band Power also shows strong 

classification at 84.60%, though the Filtered Raw Data method performs the worst with only 

70.23% accuracy, higher error metrics, and the lowest Kappa statistic (0.603). This further 

emphasizes that advanced feature extraction techniques like ICA, Mean, and Peak provide better 

classification results compared to raw or basic filtered data. 
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5.3 Naïve Bayes (NB): 

  Naïve Bayes is a simple yet powerful probabilistic classification algorithm based 

on Bayes' Theorem, with the assumption that the features are conditionally independent given the 

class label. Despite this strong and often unrealistic assumption of independence, Naïve Bayes 

works surprisingly well in many practical applications, particularly in text classification, spam 

detection, and document categorization. It calculates the probability of each class based on the 

input features and assigns the class with the highest posterior probability. Naïve Bayes is fast, 

efficient, and works well with high-dimensional data, making it a popular choice for large datasets 

despite its simplicity. The results from Weka are shown in Table 5.   

Table 5 Performance of Different Feature Vectors in Naïve Bayesian Classifier 

Naïve Bayesian classifier (NB): 

Feature Vector 
Confusion Matrix %age Accuracy 

 

 

 

Average Band Power 

a      b      c      d 

[

13 70 11 5
8 69 15 7
10 72 11 6
16 67 13 3

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

24.2424 % 

 

 

 

 

 

Mean 

a      b      c      d 

[

11 57 22 9
8 52 29 10
12 59 22 6
18 53 25 3

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

22.2222 % 

 

 

 

a      b      c      d  

 

22.2222 % 
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Peak 

[

12 58 22 7
8 51 30 10
14 58 22 5
18 52 26 3

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

Filtered Raw Data 

a      b      c      d 

[

51 99 46 3
37 110 31 21
46 110 39 4
51 86 47 15

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

27.0101 % 

 

 

 

Independent Component 

Analysis (ICA) 

a      b      c      d 

[

53 14 23 9
7 61 10 21
17 12 67 3
7 10 3 79

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

65.6566 % 

  

Table 6 Summary Naïve Bayes Cross Validation 

 
Average 

Band 

Power 

Mean Peak Filtered 

Raw Data 

Independent 

Component 

Analysis 

(ICA) 

Correctly 

Classified 

Instances 

24.2424 % 22.2222 

% 

22.2222 % 27.0101 % 65.6566 % 
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Incorrectly 

Classified 

Instances 

75.7576 % 77.7778 

% 

77.7778 % 72.9899 % 34.3434 % 

Kappa statistic 
-0.0101 -0.037 -0.037 0.0268 0.5421 

Mean absolute 

error 

0.3817 0.384 0.384 0.3739 0.2466 

Root mean 

squared error 

0.4584 0.4557 0.4557 0.4336 0.3456 

Relative 

absolute error 

101.7823 

% 

102.3886 

% 

102.3898 

% 

99.6954 % 65.7502 % 

Root relative 

squared error 

105.8688 

% 

105.2352 

% 

105.2335 

% 

100.1394 

% 

79.8129 % 

  Table 6 results reflect the performance of various feature extraction methods in a 

classification task using the Naïve Bayes classifier. The Independent Component Analysis (ICA) 

method performs best with 65.66% correctly classified instances and a Kappa statistic of 0.5421, 

indicating moderate agreement. This is significantly better than the other methods, which all have 

much lower accuracy (around 22-27%) and negative or near-zero Kappa statistics, indicating poor 

performance. The Mean Absolute Error and Root Mean Squared Error metrics are also lowest for 

ICA, while the other methods have higher errors and poor relative performance. This suggests that 

ICA is the most suitable feature extraction method for Naïve Bayes in this context, while the others 

fail to effectively capture the relationships in the data. 

 

5.4 Support vector machine (SVM): 

  Support Vector Machine (SVM) is a powerful supervised learning algorithm used 

for classification and regression tasks. It works by finding the optimal hyperplane that maximally 

separates data points of different classes in a high-dimensional space. SVM uses support vectors, 
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which are the data points closest to the hyperplane, to define the boundary. The algorithm is 

particularly effective in handling both linear and non-linear classification problems by applying 

kernel functions (e.g., polynomial, radial basis function) to transform the input data into a higher-

dimensional space where a linear separation is possible. SVM is known for its ability to perform 

well in complex, high-dimensional datasets and to generalize effectively to unseen data, making it 

widely used in various fields such as text categorization, image recognition, and bioinformatics. 

Weka results for SVM are shown in Table 7. 

Table 7 Performance of Different Feature Vectors in Support Vector Machine 

Support vector machine (SVM) 

Feature Vector 
Confusion Matrix %age Accuracy 

 

e 

Average Band Power 

a      b      c      d 

[

88 4 3 4
8 84 3 4
6 5 68 20
24 4 10 61

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

76.0101 % 

 

 

Mean 

a      b      c      d 

[

94 0 1 4
3 93 3 0
9 3 77 10
19 0 21 59

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

81.5657 % 

 

 

Peak 

a      b      c      d 

[

85 1 4 9
3 92 3 1
8 2 79 10
17 0 20 62

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

80.303  % 
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Filtered Raw Data 

a      b      c      d 

[

42 42 65 50
24 73 71 31
5 37 108 43
24 17 65 93

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

39.6985 % 

 

 

 

 

Independent Component 

Analysis (ICA) 

a      b      c      d 

[

24 34 11 30
17 44 13 25
18 41 16 24
16 37 12 34

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

 

29.798  % 

  In Table 7 above, we evaluated the performance of a Support Vector Machine 

(SVM) classifier. The table shows that the Mean features achieved the highest classification 

accuracy at 81.57%, demonstrating superior performance in distinguishing between the classes. In 

contrast, the Filtered Raw Data and ICA features resulted in significantly lower accuracies of 

39.70% and 29.80%, respectively, indicating these feature sets were less effective. 

Table 8 Summary Support Vector Machine Cross Validation 

 
Average 

Band 

Power 

Mean Peak Filtered 

Raw Data 

Independent 

Component 

Analysis 

(ICA) 

Correctly 

Classified 

Instances 

76.0101 % 81.5657 

% 

80.303  % 39.6985 % 29.798  % 

Incorrectly 

Classified 

Instances 

23.9899 % 18.4343 

% 

19.697  % 60.3015 % 70.202  % 
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Kappa statistic 
0.6801 0.7542 0.7374 0.196 0.064 

Mean absolute 

error 

0.1199 0.0922 0.0985 0.3015 0.351 

Root mean 

squared error 

0.3463 0.3036 0.3138 0.5491 0.5925 

Relative 

absolute error 

31.9856 % 24.5784 

% 

26.2619 

% 

80.4014 % 93.6001 % 

Root relative 

squared error 

79.9808 % 70.1109 

% 

72.4722 

% 

126.8076 

% 

136.819  % 

  The Table 8 results show the performance of various feature extracted when using 

a Support Vector Machine (SVM) classifier. The Mean and Peak features exhibit the best 

performance, with correctly classified instances of 81.57% and 80.30%, respectively, along with 

relatively high Kappa statistics of 0.7542 and 0.7374, indicating substantial agreement in 

classification. Average Band Power also performs well with 76.01% accuracy and a Kappa of 

0.6801. In contrast, Filtered Raw Data and ICA have much lower classification accuracies, 

particularly ICA, which only classifies 29.80% of instances correctly and has the lowest Kappa 

statistic (0.064), indicating poor classification performance. This suggests that SVM performs well 

with certain feature extraction methods like Mean and Peak, while it struggles with raw data and 

ICA in this context. 

 

5.5 Multi-Class Classifier (MCC) 

  A Multi-Class Classifier (MCC) is a classification algorithm designed to handle 

problems with more than two classes. Unlike binary classifiers, which deal with only two possible 

outcomes, MCC can classify instances into one of several categories. Common approaches to 

multi-class classification include methods such as one-vs-one, where a separate classifier is trained 

for each pair of classes, and one-vs-rest, where a classifier is trained for each class against all other 

classes combined. Popular algorithms like Support Vector Machines, Decision Trees, and Neural 
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Networks can be adapted for multi-class classification by using these strategies. MCCs are widely 

used in fields where data naturally belongs to multiple categories, such as image classification, 

natural language processing, and medical diagnosis. MCC results from WEKA are shown in Table 

9 

Table 9 Performance of Different Feature Vectors in Multi-Class Classifier 

Multi-Class Classifier (MCC) 

Feature Vector 
Confusion Matrix %age Accuracy 

 

Average Band Power 

a      b      c      d 

[

41 16 32 10
0 92 5 2
7 9 69 14
6 3 11 79

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

70.9596 % 

 

 

 

Mean 

a      b      c      d 

[

43 17 30 9
0 92 3 4
14 11 62 12
6 3 11 79

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

69.697  % 

 

 

Peak 

a      b      c      d 

[

44 16 31 8
0 94 2 3
11 11 64 13
7 3 10 79

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

70.9596 % 

 

 

Filtered Raw Data 

a      b      c      d  
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[

80 41 60 18
4 144 13 38
31 58 77 33
24 23 49 103

] 

a = UC ,b =QC, c= HF, d= 

FC 

50.7538 % 

 

 

Independent Component 

Analysis (ICA) 

a      b      c      d 

[

61 9 14 15
14 66 7 12
22 22 46 9
9 1 8 81

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

64.1414 % 

  In Table 9 above, we evaluated the performance of a Multi-Class Classifier. The 

evaluation reveals that the Average Band Power and Peak feature sets provided the highest 

classification accuracy of 70.96%, indicating their effectiveness in distinguishing between classes. 

The Mean feature set followed closely with an accuracy of 69.70%. In contrast, the Filtered Raw 

Data and ICA features exhibited lower accuracies, with 50.75% and 64.14%, 

Table 10 Summary Multi Class Classifier Cross Validation 

 
Average 

Band 

Power 

Mean Peak Filtered 

Raw Data 

Independent 

Component 

Analysis 

(ICA) 

Correctly 

Classified 

Instances          

70.9596 % 69.697  % 70.9596 % 50.7538 % 64.1414 % 

Incorrectly 

Classified 

Instances        

29.0404 % 30.303  % 29.0404 % 49.2462 % 35.8586 % 
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Kappa statistic                          
0.6128 0.596 0.6128 0.3434 0.5219 

Mean absolute 

error                       

0.2165 0.2234 0.2219 0.3306 0.2973 

Root mean 

squared error                  

0.3188 0.3229 0.3219 0.4045 0.3741 

Relative absolute 

error                  

57.7229 % 59.5589 % 59.1786 % 88.1666 % 79.2647 % 

Root relative 

squared error              

73.6104 % 74.5795 % 74.3343 % 93.4147 % 86.3928 % 

  The Table 10 results compare the performance of different feature extraction 

methods using a Multi-Class Classifier (MCC). Average Band Power and Peak both achieve 

the highest classification accuracy at 70.96%, followed closely by Mean at 69.70%, all with 

substantial Kappa statistics around 0.61, indicating strong performance. Independent Component 

Analysis (ICA) also performs reasonably well with 64.14% accuracy and a Kappa statistic of 

0.5219, though its errors are slightly higher. Filtered Raw Data shows the weakest performance, 

with only 50.75% accuracy, a low Kappa of 0.3434, and the highest error metrics. This indicates 

that while MCC can handle multi-class problems effectively, its performance heavily depends on 

the quality of the feature extraction method used, with Average Band Power, Peak, and ICA being 

more effective than raw data. 

 

5.6 Random Forest (RF): 

  Random Forest (RF) is an ensemble learning algorithm widely used for 

classification and regression tasks. It operates by constructing multiple decision trees during 

training and combining their outputs to improve predictive accuracy and control overfitting. Each 

tree is trained on a random subset of the data, and features are randomly selected at each split in 

the trees, making the forest more diverse and robust. The final classification or regression result is 
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typically based on a majority vote from the individual trees. RF is highly effective in handling 

large datasets, including those with high dimensionality or missing data, and offers excellent 

performance across a wide range of applications such as image recognition, bioinformatics, and 

finance due to its strong generalization capabilities. The WEKA results for RF are shown in Table 

11 

Table 11 Performance of Different Feature Vectors in Random Forest Classifier 

Random Forest (RF) 

Feature Vector 
Confusion Matrix %age Accuracy 

 

 

 

Average Band Power 

a      b      c      d 

[

21 25 33 20
14 21 45 19
27 38 19 15
20 18 32 29

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

22.7273 % 

 

 

 

Mean 

a      b      c      d 

[

20 22 32 25
14 23 45 17
27 39 18 15
26 18 27 28

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

22.4747 % 

 

 

 

Peak 

a      b      c      d 

[

23 22 31 23
13 23 43 20
29 35 20 15
29 18 28 24

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

 

22.7273 % 

 
a      b      c      d  
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Filtered Raw Data 

[

70 43 54 32
32 71 63 33
49 58 57 35
43 27 43 86

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

35.6784 % 

 

 

 

Independent Component 

Analysis (ICA) 

a      b      c      d 

[

86 4 8 1
4 87 3 5
16 7 76 0
1 2 5 91

] 

a = UC ,b =QC, c= HF, d= 

FC 

 

 

 

85.8586 % 

  In the Table 11Error! Reference source not found. above, we evaluated the p

erformance of the Random Forest Classifier. The evaluation reveals that the Independent 

Component Analysis (ICA) feature set delivers the best performance with an accuracy of 85.86%, 

far surpassing other feature sets. Filtered Raw Data also shows relatively better performance with 

an accuracy of 35.68%. In contrast, the Average Band Power, Mean, and Peak feature sets exhibit 

notably lower accuracies, ranging from 22.47% to 22.73%, indicating that they are less effective 

for the Random Forest classifier in this context. 

Table 12 Summary Random Forrest Cross Validation 

 
Average 

Band 

Power 

Mean Peak Filtered 

Raw Data 

Independent 

Component 

analysis 

(ICA) 

Correctly 

Classified 

Instances 

22.7273 % 22.4747 

% 

22.7273 % 35.6784 % 85.8586 % 
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Incorrectly 

Classified 

Instances 

77.2727 % 77.5253 

% 

77.2727 % 64.3216 % 14.1414 % 

Kappa statistic 
-0.0303 -0.0337 -0.0303 0.1424 0.8114 

Mean absolute 

error 

0.3947 0.3954 0.3925 0.3427 0.1445 

Root mean 

squared error 

0.4968 0.4982 0.496 0.4428 0.243 

Relative 

absolute error 

105.2496 

% 

105.4482 

% 

104.6705 

% 

91.3796 % 38.5444 % 

Root relative 

squared error 

114.717  

% 

115.0563 

% 

114.717  

% 

102.2646 

% 

56.1174 % 

  These results in Table 12 show the performance of various feature extraction 

methods using the Random Forest (RF) classifier. Independent Component Analysis (ICA) 

stands out with the highest accuracy of 85.86%, a substantial Kappa statistic of 0.8114, and the 

lowest error metrics (e.g., Mean Absolute Error of 0.1445 and Root Mean Squared Error of 0.243). 

This indicates excellent classification performance for ICA. In contrast, the Average Band Power, 

Mean, and Peak methods perform poorly, with accuracy around 22.7%, negative Kappa statistics 

(indicating performance worse than random chance), and high error values. Filtered Raw Data 

performs better than these methods but still lags behind ICA, with 35.68% accuracy and a low 

Kappa statistic of 0.1424. These results emphasize that ICA is particularly well-suited for Random 

Forest, while other feature extraction methods struggle with this classifier. 
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CHAPTER 6 COMPARISON OF RESULTS 

  This chapter presents the classification accuracies obtained after the Machine 

Learning algorithms were implemented on the data. Five distinct features were analyzed using six 

different classifiers within the WEKA® software environment. From the above-mentioned tables 

in Chapter 5, it is clear that the accuracy while training the QDA Classifier along with the Mean 

value as a feature vector yields the highest accuracy. The results also indicate that classifiers 

capable of handling multi-class problems exhibit higher accuracy compared to those limited to 

binary or fewer class distinctions. 

  Table 13 shows the Average Classification Accuracy across the four Classes. 

Quadratic Discriminant Analysis (QDA) consistently outperforms other classifiers across most 

features, achieving the highest accuracy with the Mean and Peak features, at 91.67% and 91.16%, 

respectively. The Independent Component Analysis (ICA) feature also demonstrates strong 

performance, particularly with QDA (87.63%) highlighting its robustness in classification tasks. 

Conversely, the Naïve Bayesian classifier (NB) shows relatively low accuracy across most 

features, except ICA, where it performs significantly better (65.66%). Support Vector Machine 

(SVM) performs well with Average Band Power, Mean, and Peak, but poorly with ICA. The Multi-

Class Classifier (MCC) and Random Forest (RF) show moderate performance, with MCC 

generally performing better than RF, except for ICA where RF excels. The overall performance of 

these classifiers suggests that feature selection is critical to optimizing classification accuracy, with 

ICA and QDA emerging as particularly effective combinations. 

Table 13 Average Classification accuracy  

Average Classification accuracy 

 

 

Linear 

discriminant 

analysis 

(LDA) 

Quadratic 

discriminant 

analysis 

(QDA) 

Naïve 

Bayesian 

classifier 

(NB) 

Support 

vector 

machine 

(SVM) 

Multi-

Class 

Classifier 

(MCC) 

Random 

Forest 

(RF) 
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Average Band 

Power 
46.46% 84.60% 

24.24% 76.01% 70.96% 22.73% 

Mean 57.32% 91.67% 22.22% 81.57% 69.70% 22.47% 

Peak 58.08% 91.16% 22.22% 80.30% 70.96% 22.73% 

Filtered Raw 

Data 
42.84% 70.23% 

27.01% 39.70% 50.75% 35.68% 

Independent 

Component 

Analysis 

(ICA) 

63.38% 87.63% 

65.66% 29.80% 64.14% 85.86% 

  The bar chart (ccuracy of classification model 

Table 14) displays the comparative performance of various features in classification tasks. The 

features evaluated include Average Band Power, Mean, Peak, and Filtered Raw Data, along 

with the application of Independent Component Analysis (ICA). Among these, ICA achieves 

the highest classification accuracy, approaching 70%, indicating its superior capability in 

distinguishing classes within the dataset. Peak and Mean features also show robust 

performance, with accuracy levels above 50%, suggesting that these features capture critical 

aspects of the data relevant to classification. The Filtered Raw Data, while still effective, results 

in the lowest accuracy, highlighting the importance of feature extraction and selection in 

improving classification outcomes. This analysis underscores the value of ICA and specific 

feature extractions in enhancing the accuracy of classification model 



48 

 

Table 14 Average Classification Accuracy of Different Features

 

  The bar chart (Table 15) provides the average performance of the classifiers: Linear 

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Naïve Bayesian (NB), 

Support Vector Machine (SVM), Multi-Class Classifier (MCC), and Random Forest (RF). The 

QDA and RF classifiers demonstrate superior performance, each achieving accuracy levels 

near 90%. This high accuracy suggests these classifiers are particularly effective in managing 

the dataset's complexities. Conversely, the SVM classifier records the lowest accuracy, 

highlighting its relative inefficacy. The results reinforce the observation that classifiers capable 

of handling multi-class problems, such as MCC, tend to perform better in terms of accuracy, 

confirming the importance of selecting an appropriate classifier based on problem complexity. 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%
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Power

Mean Peak Filtered Raw
Data
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Component
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Average Classification Accuracy 
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Table 15 Average Classification Accuracy of the Classifiers 

 

  

0.00%
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CHAPTER 7 SUMMARY & CONCLUSION: 

  This research presents a method for detecting varying levels of damage under 

different temperatures in Electromechanical Impedance (EMI)-based Structural Health Monitoring 

(SHM) systems. Experiments were conducted on Carbon Fiber specimen subjected to different 

temperature conditions and degrees of damage. To accurately detect and classify damage at various 

temperatures, Machine Learning (ML) algorithms were implemented, leveraging features 

extracted from the experimental data. The evaluation of different feature extraction methods—

Filtered Raw Data, ICA, Mean, Peak, and Band Power—across classification models including 

LDA, QDA, Naïve Bayes, SVM, and Multi-Class Classifier, revealed that ICA consistently 

outperformed other methods, particularly within the LDA and Naïve Bayes models. This indicates 

that ICA is a robust method for uncovering underlying patterns in the data that are beneficial for 

these classifiers. Mean and Peak features also performed strongly, notably within QDA and SVM 

models, demonstrating their ability to capture critical signal information for effective 

classification. On the contrary, the Filtered Raw Data consistently yielded poor results across all 

classifiers, emphasizing the importance of proper feature extraction in achieving accurate 

predictions. Additionally, there was variability in how well different classifiers responded to 

specific feature vectors, with ICA excelling in Naïve Bayes but showing weaker performance in 

SVM, while Mean and Peak performed consistently well across most models. This highlights the 

critical need for selecting and tailoring feature extraction methods to the specific classifiers being 

used to maximize model performance. 

  The results indicated that certain classifiers, such as Quadratic Discriminant 

Analysis (QDA), which achieved an average accuracy of 87.63%, outperformed others. This 

superior performance is attributed to the algorithm’s ability to effectively handle multi-class data, 

which was inherent in this study. In contrast, classifiers less suited for multi-class problems 

exhibited lower accuracy. 

  In conclusion, the findings demonstrate that ML algorithms can effectively be used 

for damage detection in SHM systems under varying thermal conditions. However, achieving 

higher accuracy may require larger datasets. Future research should focus on expanding the dataset 
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by conducting more experiments at each temperature, which would enable the application of deep 

learning techniques to further improve classification accuracy   
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CHAPTER 8 FUTURE RECOMMENDATION 

For future work, it is recommended to explore advanced and hybrid feature extraction techniques 

that combine methods such as ICA with statistical or frequency domain features (e.g., Mean, Peak, 

Band Power) to further enhance classification accuracy. Additionally, testing more sophisticated 

classifiers such as deep learning models (e.g., convolutional neural networks) could provide 

insights into non-linear relationships that simpler models might overlook. Cross-validation 

techniques should also be employed to ensure the generalizability of results across different 

datasets. 

It is also recommended to increase the amount of datasets at each given temperature value to 

improve the accuracy of machine learning classifiers. This is particularly important for deep 

learning algorithms, which require a large number of datasets to effectively learn complex patterns 

and relationships within the data. Expanding the dataset would enhance the model's ability to 

generalize across different temperature values, reducing the risk of overfitting and improving 

overall classification performance. 

Finally, incorporating domain knowledge, such as task-specific or physiological insights, into 

feature selection may improve classification performance and increase model interpretability. 
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