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ABSTRACT

A respiratory disease refers to a condition that affects the organs involved in respiration.
The lungs are the central part of the respiratory system. Advancements in sequencing
technology have revealed that respiratory tract primarily lungs consist of unique and
diverse microbes. The alteration in the balance of these microbes have been found in
different respiratory diseases e.g. Chronic Obstructive Pulmonary Disease (COPD),
asthma, Tuberculosis (TB), lung cancer, pneumonia and SARS-CoV. Globally, pul-
monary infections continue to be a leading source of mortality with COPD about 3
million deaths annually, asthma affecting about 334 million people, lung cancer killing
1.6 million people and TB infecting 10 million cases worldwide acquiring great con-
cern to understand the composition and role of microbial communities in respiratory
diseases. This study utilized the two secondary 16S amplicon datasets to analyze and
identify the bacterial compositions mainly in COPD and SARS-CoV. The outcome has
given the taxonomic classification and relative abundance of micro-organisms in lungs
during different disease states. Moreover, the four shotgun datasets are also analyzed
to provide detail insight into microbial content, identifying different bacterial species
and assessing the observed differences during diseased and healthy states in COPD
and SARS-CoV, lung cancer and TB disorders. The key bacterial phylum determined
by the analysis are Bacteroidetes, Firmicutes and Proteobacteria with different fam-
ilies and crucial bacterial species with their relative abundances. The discriminating
phylum in lung cancer are Actinobacteria and Fusobacteria are distinct phylum in
lung cancer and crucial species are Halomonas-sp-LBP4, Campylobacter-jejuni and
Haemophilus-influenzae while Candidatus-Saccharibacteria is discrimated with signifi-
cant species are Neisseria-subflava and Prevotella-melaninogenica in TB sequences after
performing metagenome analysis. In COPD the important species are Haemophilus-
influenzae and Staphylococcus-aureus and COVID-19 has Staphylococcus-epidermidis,
Malassezia-restricta and Corynebacterium-propinquum. Amplicon analysis shows that
Fusobacteria is also present and Staphylococcaceae, Pseudomonaceae and Flavobacte-
riaceae are identified in both amplicons and shotgun analysis. Additionally, using the
taxonomic classification tables of bacterial species with their relative abundances in
specific disorders two sophisticated machine learning models are generated to classify
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the bacteria into diseased and control also providing information about the relative
abundances present in the feature data. These models are trained on each disease
dataset and then one model with all combined datasets. All models gives the good
accuracies and potential to categorize the microbial species precisely. The COVID-19
datasets has high accuracies among all datasets with 94% in RF and 88% in SVM.
These procedures give valuable insight into the understanding of respiratory microbe’s
composition and patterns in infected and control states. These findings lead to the
basis of further comprehensive and valuable studies focusing on composition and func-
tional profiling of respiratory microbiota and investigating a better way to cure these
painful disorders.

Keywords: Respiratory microbiota, COPD, COVID-19, lung cancer, TB, amplicon,
shotgun, taxonomical classification, relative abundance, ML.
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Chapter 1

INTRODUCTION

The respiratory system is the basis of life. Human respiratory system consists of
different organs, muscles and various bones which are helpful in breathing process.
Respiration involves two main mechanisms, inhalation (air goes in) and exhalation (air
moves out) from the lungs. The respiratory tract is further divided into the upper
respiratory tract (nose, pharynx, larynx) and lower respiratory tract (trachea, bronchi,
lungs). Humans and microbes are correlated. These microbes include bacteria, viruses,
fungi, archaea, etc. The human body also has a variety of microbes at different body
sites e.g. gut, skin, respiratory and urogenital tract etc. There are various critical pro-
cesses maintained by these micro-organisms including digestion, prevention of diseases
and maintaining immune balance [1].

1.1 Respiratory Microbiome

Respiratory tract contains the complex communities of bacteria known as ’respiratory
microbiota’. High throughput sequencing techniques were used for the verification
of micro-organisms in the respiratory tract within the lower respiratory tract. Most
of the research is on the dysbiosis of the microflora of the lower respiratory tract in
chronic respiratory disorders. Alteration of airway microbes occurs in persistent airway
disorders including severe asthma, bronchiectasis, and COPD [2].

1.1.1 Lung Microbiome

The microbial community that resides particularly in the lungs is collectively considered
as lung microbiota. The lower respiratory tract is comprised of the transfer of micro-
organisms from the upper respiratory tract through processes of inhalation, mucosocal
dispersion, and microaspiration [3]. After entering into the lungs there are certain
mechanisms involved that are responsible for the removal of these micro-organisms
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from the lungs to maintain a balanced and healthy environment. These mechanisms
include host defense system or immune system responses, mucociliary clearance, and
cough which are helpful for the elimination of microbial content from the respiratory
tract and lungs. In this way, the lungs perform their central role of respiration efficiently
[4].

1.1.2 Composition of Lung Microbiome

The composition of the microbiome of the lungs is very diverse as it includes different
viral, fungal, and bacterial colonies. The mycobiota (fungal species) include Penicil-
lium, Candida, and Saccharomyces belonging to the division of Ascomycetes. The viral
community of the lungs includes phages. Haemophilus, Streptococcus, and Prevotella
are among the bacterial species present in the lungs. All these micro-organisms play a
crucial role in maintaining a healthy state in the lungs and help to perform the normal
functions of the lungs [5].

1.1.3 Association of Lung Microbiome

The microbiome of lung is affected by several environmental and microflora present in
the human body. The micrflora of Upper respiratory tract also has a significant effect
on the lung micro-organisms. The affect of upper pulmonary tract and micro-organims
of nasopharynx is discussed below.

1.1.3.1 Microbiome of Upper Respiratory Tract

The Upper Respiratory Tract (URT) consists of different structures including the nasal
cavity, nasopharynx,lyranyx and oropharynx. All these structures have specific micro-
bial ecosystems and alteration leads to various contagious infectious disorders. The
URT has a dense amount of microbes as compared to the lower respiratory tract.
URT is typically composed of Corynebacterium, Streptococcus, Moraxella, Dolosi-
granulum and Bifidobacterium. These genera maintain the control environment in
the nasopharynx and oropharynx. Moreover, the URT is persistently in association
with the surrounding biosphere it is home to various micro-organisms. Therefore a
dynamic microbial ecosystem is exhibited by the upper airway. In the same way, var-
ious factors are involved in the composition of the microbial environment, disruption
leads to different respiratory disorders [6]. The respiratory system is also engaged in
wide-ranging functions such as humidification, respiratory airway passage, warming,
immunological defense, olfactory sensation, and filtering of inhaled air.
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1.1.3.2 Microbiome of Nasopharynx

The nasopharynx plays a vital role in respiration and using the oropharynx helps in the
passage of air from the nasal cavity to the windpipe [7]. The different bacterial genera
exhibit the nasopharynx such as non-typeable Haemophilus influenzae, Streptococcus
pneumoniae, and Moraxella catarrhalis [8]. There are other dominant bacterial genera
such as Corynebacterium and Dolosigranulum which are also helpful in the functioning
of the nasal cavity [9]. Therefore alteration in bacterial community results in severe
diseases and affects human health badly. The common diseases of the nasopharynx are
nasopharyngeal carcinoma, tonsilitis, and nasopharyngitis.

The microbiome of the upper respiratory system plays a significant role in the
development of lung microbiome. The microorganisms present in the nasal cavity,
nasopharynx, and oropharynx are eventually transferred to the lungs, forming the
foundation of lung flora. Therefore, studying these microbes is essential to gain a better
understanding of lung microbiota [10]. It is essential to comprehend the microbial
compositions present in the upper respiratory tract, as they have a significant influence
on the lung’s primary microbial community where proper gaseous exchange takes place.
Understanding these microbial compositions can help us gain valuable insights into the
lung functioning and its impact on overall health.

1.1.4 Factors Affecting Lung Microbiome

Numerous factors can alter the microbial composition of the lungs, including genetics,
environmental aspects, and the use of antibiotics.

1.1.4.1 Genetic Factors

The respiratory tract features cilia-like structures that aid in the removal of pathogenic
microorganisms through a process called mucociliary clearance. Additionally, a pro-
tective mucus layer lines the airway passage, with MUC5AC and MUC5B being the
mucin-encoding genes that contribute to the elimination of harmful bacteria from the
lungs [11].

1.1.4.2 Environmental Factors

Humans are often exposed to various habitats, and the micro-organisms present in these
habitats can significantly impact the composition of their lung microbiome. Previous
studies have demonstrated that exposure to dust can increase the risk of developing
asthma, and similarly, exposure to cigarette smoke can also alter the communities of
micro-organisms in the lungs Dietary fibers impact the lung microbiota, particularly
the proportion of bacterial phyla, such as Bacteroidetes and Firmicutes [11].
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1.1.4.3 Antibiotic Usage

Antibiotic use in the antenatal period affects the intestinal microbiota and also disturbs
the lung microbiome. Some studies showed that there are perturbations in the lung
microbiome after antibiotic use. Vancomycin plus neomycin was used in a study that
enhanced T-cell and natural killer cell activation leading to the reduction of melanoma
B16 lung metastasis in their mouse lungs. Therefore, medication alters the microbial
content in the respiratory system [11].

Consequently, all these factors alter the microflora of the pulmonary system and
these alterations result in chronic and acute disorders. There are various breathing
diseases e.g. pulmonary fibrosis, asthma, lung cancer, chronic pulmonary respiratory
disease (COPD), COVID-19, pneumonia cystic fibrosis and TB etc.

1.2 Respiratory Diseases

There are several respiratory diseases which are responsible for millions of deaths across
the world. Most common respiratory diseases are COPD (COPD), Asthma, TB ,
Lung cancer, Pneumonia, Cystic Fibrosis etc. Now non-culture techniques e.g. Next
Generation Sequencing (NGS) contributes for analyzing the role of microbial content in
these disorders. Some pulmonary diseases and the micro-organisms role in progression
of diseases is discussed below.

1.2.1 Chronic Obstructive Pulmonary Disease

COPD is a medical condition marked by inflammation of the lungs, sputum production
with cough and breathing difficulties [10]. Various factors result in COPD including
inflammation in the lungs, causes of exacerbation rates and response to different thera-
pies. Other characteristics such as pathogenic bacteria, viruses and environmental fac-
tors, can also increase the likelihood of exacerbation. Contiguous Diseases are among
the primary causes of exacerbations, with viruses such as Coronavirus, Influenza virus
as well as bacteria like Pseudomonas aeruginosa, and Morxella being frequently im-
plicated factors. Thus microbiome contributes to the development, advancement and
medication of COPD [12].

1.2.1.1 Stages of COPD

For a better understanding of the severity and classification of the disease, scientists
introduced the system named Global Initiative for Obstructive Lung Disease (GOLD)
introduced a system for the classification of different stages of COPD based on Forced
Expiratory volume in 1s (FEV1). Mainly, the four stages are according to the GOLD
standard used globally for COPD severity checks.
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• Stage 1 (Mild)

• Stage 2 (Moderate)

• Stage 3 (severe)

• Stage 4 (very severe)

Stage one has few or no symptoms, while the moderate shows fewer symptoms with
cough. After moderate the condition becomes severe. The last stage with very severe
symptoms and extreme difficulty in respiration [13]

1.2.1.2 Symptoms of COPD

The symptoms of a disease can vary depending on the intensity and duration of the
illness. Additionally, patients experience difficulty in doing their daily activities. Var-
ious symptoms influence the regular work and lifestyle of the patient. Cough appears
as the most prevailing symptom among the others. The mild symptoms includes:

• Sputum production

• Cough

• Dyspnea

The most severe and uncommon includes:

• Respiratory discomfort

• Acute bronchitis

• Wheezing [14].

1.2.1.3 Prevalence of COPD

Prevalence, another important factor of any disease, indicates the extent to which
people are affected by it. COPD is a highly prevalent disease worldwide, including
in Pakistan. According to research, Two-hundred fifty-one million people are affected
by COPD around the world, causing three million deaths. In middle or low-income
countries COPD is responsible for a 90 % death rate. In Pakistan, 2.1 % of individuals
are affected by COPD. The research estimated that the number of deaths resulting
from COPD will reach 4.5 million worldwide by 2030 [15].
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1.2.1.4 Lung Microbes in COPD

Microbes play a significant role in human health and disease. Beneficial bacteria help
maintain a healthy environment and protect against harmful microbes. On the other
hand, harmful microorganisms lead to infectious and non-infectious diseases. The lungs
contain a significant amount of microbiota that aids in their normal functioning. When
there is dysbiosis (an imbalance in the microbiota), it can lead to various disorders.
In individuals with COPD , there is a decrease in the diversity of beneficial bacteria,
and an increase in disease-causing bacterial species and phyla such as Brevundimonas,
Neisseria, Moraxella and species from the Cyanobacteria phylum. Additionally, viruses
such as Rhinovirus and Influenza virus can contribute to the progression of COPD. In
cases of acute exacerbations of COPD, there is an increase in the amount of Klebsiella
and Acinetobacter species [10].

1.2.2 COVID-19

COVID-19 is a pulmonary virus that mainly affects the lungs causing pneumonia. The
virus badly affects the respiratory system but it also damages the kidneys, circulatory
system, digestive and central nervous system leading to multi-organ system failure.
The main receptor for COVID-19 in our body is Angiotensin-Converting Enzyme 2
(ACE2) which plays an important role in providing a favorable environment for the
growth of the virus [16].

1.2.2.1 Symptoms of COVID-19

The research carried on COVID-19 symptoms shows that symptoms can appears after a
little while of virus encounter generally between 2-14 days.The symptoms of COVID-19
may vary a little from person to person but the most common symptoms of COVID-19
includes the following:

• Cough

• Fever

• Fatigue

• Dyspnea

• Headache

• Abdominal pain

• Sputum production

• Loss of smell and taste [17].
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1.2.2.2 Prevalence of COVID-19

After the emergence of the first case in China, the world encountered horrible COVID-
19 virus waves one after the other. In the COVID-19 era, there are four to five strains of
COVID-19 emerged and it badly affects human lives all over the world. The prevalence
of the coronavirus is too much high as it has affected 40 million people across the
world according to a study done in 2021. The dangerous waves also affect low-income
countries and Pakistan and according to research, its prevalence rate in Pakistan is
0.019 %. Although it seems less, the figure resulted in 1,580,631 positive cases and
30,656 deaths in Pakistan [18].

1.2.2.3 Lung Microbes in COVID-19

Although there is little known about the role of lung microbiota in COVID-19. Some
studies show that dysbiosis in lung micro-organisms has occurred in SARS-Cov-2. The
pathogenic bacteria in COVID-19 have increased according to evidence from a few
studies. In research on COVID-19 patients, biopsies and Broncho Alveolar Lavage
Fluid (BALF) samples are used to focus on lung microbiome. The fungal genera
consist of Cladosporium, Dipodascus, Aspergillus, and Candida with the dominant
one being Cutaneotrichosporon. The bacterial genera involved are Brevundimonas,
Enterobacteriaceae and Acinetobacter [19]. The abundance of Enterobacter cloacae,
Klebsiella oxytoca, and Lactobacillus reuteri are also seen in SARS-Cov-2 patients [20].

1.2.3 Lung Cancer

Lung cancer is a cancer in the tissues of the lungs. Lung cancer is among the most
prevalent cancers. Tobacco smoking is among the top factors that lead to severe lung
cancer stages. The types of lung cancer are broadly categorized into Small-Cell Lung
Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC). Non-Small Cell Lung
Cancer is the most prevalent cancer among the others. Non-small cell Lung Cancer is
a cancer that starts in the lining of lung cells. The most common types of NSCLC are
adenocarcinoma and squamous cell carcinoma [21].

1.2.3.1 Symptoms of Lung Cancer

Although most cancers are diagnosed at later stages there are a few symptoms that
patients of lung cancer encounter. The symptoms are listed below:

• Weakness

• Weight loss
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• Hemoptysis

• Severe Chest Pain

• Cough with wheezing [22].

1.2.3.2 Prevalence of Lung Cancer

The world has been facing lethal cancer disease from a long ago. Lung cancer is
among the top spreading cancers. Smoking is the top factor for respiratory disease
specifically lung cancer. The death rate of lung cancer estimated was at 1.8 million
and the diagnosed cases were 2.0 million worldwide. The 19 million cases of cancer are
diagnosed in Pakistan showing the critical situation of disease prevalence [23].

1.2.3.3 Lung Microbiome in Lung Cancer

The imbalance of microbes is also related to lung cancer. The concentration of micro-
organisms decreased in lung cancer. The strains of Pseudomonas and Escherichia
coli are found in cancer patients. The Cytomegalovirus (CMV) in lung cancer tissues,
Thermus bacteria richness increased in the last stages of cancer. The patients with Lung
Squamous Cell Carcinoma (LUSC) and adenocarcinoma majorly occupy Actinomyces,
Veillonel, Rothia, Capnocytophaga, Arthobacter and Proteobacteria [24].

1.2.4 Tuberculosis

TB is also a lethal disease which is caused by a bacterium called Mycobacterium TB.
TB affects the respiratory passage and lungs badly resulting in pulmonary fibrosis,
bronchiectasis respiratory cavitation and restriction of breath. Mycobacterium TB
interacts with different host processes and adapts according to them. Alterations in
oxygen tension and, the emergence of granulomas also adapt their metabolism mecha-
nism are among the modification processes [25].

1.2.4.1 Symptoms of TB

There are different recognizable symptoms shown by a TB patient. The dominant
symptoms are:

• Fatigue

• Breathlessness

• Shivering and fever
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• Discomfort in the chest

• Chronic cough with mucus

The other accessory symptoms might include hematological manifestations, low blood
sugar level, more oxidative stress, inadequate Vitamin D, and modified host microbial
community are correlated to TB [26].

1.2.4.2 Prevalence

According to estimates from the World Health Organization , 25 % of people in the
world are Mtb-positive and consequently at risk of developing TB. There are a couple
of contributors that give rise to mycobacterium infection including HIV infection, mal-
nutrition, and smoking. African countries also had a high prevalence of TB specifically
East African countries. The reported fatalities from TB in 2015 were 1.4 million and
increased to 1.49 million in 2018 and 10 million new cases diagnosed [27].

1.2.4.3 Lung Microbiome in TB

The decrease in diversity of micro-organisms is shown by TB individuals. Some bac-
terial species of Coprococcus, Treponema, Prevotella and Leptotrichia.While there is
also a rise in an anundance of pathogenic bacteria Pseudomonas, Streptococcus, Gra-
mulicatella, Moryella and Mogibacterium. The relative abundance of Mycobacterium
also increased [28].

1.3 Metagenome

A metagenome corresponds to the sequencing of all the microbes present in a particular
environment [29]. The term "Metagenomics" was used first time by Jo Handelsman in
1998. She provides a way to identify and study the non-culturable microbes through
the metagenomic technique. Currently, microbes of different environments are studied
through metagenomics [30].In terms of overall biological material and number of cells,
microorganisms make up the majority of life forms on Earth and play crucial roles in
worldwide component processes [31].

1.3.1 Types of Metagenome

The two most used techniques of high-throughput sequencing are amplicon and shotgun
sequencing.
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1.3.1.1 Amplicon Sequencing

Amplicon sequencing is the targeted approach in which only the marker genes are
sequenced instead of the whole genome of organisms. Prokaryotes utilized 16S rDNA,
while eukaryotes utilized 18S rDNA, primarily fungi. The pipeline in amplicon includes
various tools to accomplish the microbial classification. The most common tool used
for amplicon analysis is Quantitative Insights into Microbial Ecology Version 2. The
ancient method used for classification is the Operational Taxonomic unit (OTU) while
the recent and most used is Amplicon Sequence Variants (ASV). ASV represents the
unique sequences and high accuracy and closely related sequences are clustered. After
ASV formation they are used to identify the microbes present in the specimen. In
short, amplicon sequencing can be used for bacteria or archaea identification from the
samples used for analysis [32].

1.3.1.2 Shotgun Sequencing

Whole genome or Shotgun sequencing is used for the complete sequencing of the genome
of microbes.. Shotgun gives detailed information on genomes to the species level of the
organism. The functional and various pathways details are highlighted through the
whole genome sequencing of microbes. The method also gives the knowledge about
the other micro-organisms present in the environment from the focused one only. The
pipeline of shotgun sequencing involves different tools at different steps. The FASTQC,
Bowtie, MetaphlAn, Kraken, Bracken and LefSe are the frequently used tools in whole
genome sequencing. The method is of great importance in understanding the microbe’s
role in multiple human diseases encountering multiple body sites [32].

1.4 Machine Learning

Machine Learning (ML), trains machines to process information with greater efficiency.
Understanding from evidence is the aim of ML. Numerous research investigations have
been conducted on the subject of teaching computers to operate on their own. Several
methods are used in ML to address data-related issues. The sort of model that works
effectively for a specific problem, and the choice of algorithm used relies on the type
of query you want to answer. The ML process to teach a function that translates a
command to an outcome using sample combinations of inputs and outputs is known as
supervised learning. The train and test datasets are separated from the input dataset.
From training data, the ML model gets trained, and the model is evaluated through
test data.

Unsupervised learning is the type in which there is no sample data learning. It
is up to the algorithms to find and display the intriguing structure within the data.
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Few features were identified from the data by the unsupervised learning algorithms. It
recognizes the class of the data when it is introduced by using the previously learned
features. Its primary applications are in decreasing attribute and clustering [33].

There are various ways in which we can use ML and deep learning in metagenomics
to handle and manage microbiome data. We can use ML models for taxonomic clas-
sification of the microbiome, biomarker bacteria in any disease, functional annotation
of micro-organisms, sequence or sample classification, disease identification, and for
therapeutic efficacy [34].

1.4.1 Different ML Models

There are various ML models which we use for different purposes. Support Vector
Machine, Random Forest, Naive Bayes and Logistic Regression models. Some of them
are discussed in the below section.

1.4.1.1 Random Forest

Decision tree methods, one of the most widely used supervised learning techniques, are
quite adaptable because they are non-parametric. Another recursive split technique
that uses a group of distinct decision trees for prediction is called a Random Forest
(RF). Since numerous models are integrated to create a single RF, as well as a combined
approach. To accomplish this, the procedure makes copies of the original data that are
bootstrapped, projecting one tree for every bootstrap. As numerous trees are averaged
and combined to produce reliable and precise predictions, RF are less likely to over-fit
than a single tree.

1.4.1.2 Support Vector Machine

Support Vector Machine are designed for classification tasks where multiple variables
are involved and there are two classes (e.g., cases or controls) in a multi-layered model.
SVM use a multidimensional, border that ideally divides classes, to distinguish between
different classes (i.e., outcome categories). To locate an independent selection surface,
SVM use a conversion of data that propagates the input into a space with greater
dimensions represented as a kernel operator. SVM are hampered by being a "black
box" technique, meaning that metrics for how predictors are integrated to optimize the
hyperplane are not supplied, even though they can produce predictions that are highly
precise when utilizing adaptive nonlinear kernels [35].
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Chapter 2

LITERATURE REVIEW

This chapter is a review about the previous studies on pulmonary diseases and micro-
organisms role in the development of the disorder.Non-culture techniques e.g. metage-
nomics approaches includes primarily the 16S rRNA and metagenome sequencing.

2.1 Chronic Obstructive Pulmonary Disease

COPD is a chronic disorder and multifactor disease with a large number of patients.
The characteristics of COPD patients are diminished lung function, shortness of breath
and low-quality air. Advanced techniques like Next Generation Sequencing have clar-
ified the role of respiratory tract microbiota, especially lung microbes encountering
different disorders [36]

The respiratory tract is a gateway for the entrance of many bacteria and viruses.
The intake and elimination of microbes are disturbed by pulmonary infection and
illness. The structure of the lung microbiota varies as the disease progresses. As a
result, lung dysbiosis that causes COPD exacerbations has a considerable influence on
lung function and overall health. A growing research indicates that lung microbiome
dysbiosis is a contributing factor in the onset and intensification of COPD [37].

Globally, COPD is the third leading cause of death. The underlying cause of acute
flares-up involves both bacterial and viral contagions. Around 50 % of COPD acute
exacerbations may be caused by respiratory viral pathogens.The aberrant inflammation
is triggered by inhaled toxic gases and proteases are essential for the etiology of COPD
[38].

Smoking-related inflammation is characterized by proteolytic enzymes and excessive
neutrophilic infiltration. The Protein Phosphatase 2A (PP2A) activity is reduced in
COPD which is a modulator in the process of inflammation.Similarly, the spread of
pulmonary diseases is also related to the receptor signaling of Formylated peptides
and formyl peptide receptors (FPR). These peptides are produced by pathogens as a
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result of tissue damage. Hence, an endless loop is established whereby inflammation
stimulates various signaling pathways in cells, protease-antiprotease imbalances, and
mucous elevated levels [24].

Particulate matter(PM) is an intricate mixture consisting of fluids, pollutants, and
heavy metals and differs in terms of quantity and surface area. Metals like Fe, Pb,
Cu, and organic compounds phenols, volatile organic compounds constitute the PM.
PM considerably raises symptoms of COPD, acting as a stimulator factor for acute
flare-ups of the disease. According to research, exposure to PM is responsible for the
increase in pulmonary inflammation in COPD. Additionally, when exposed to PM,
COPD patients are more vulnerable to contagious diseases. The reason is that PM
contains pathogens and these pathogens cause alterations in the microbes in COPD
patients, resulting in the deterioration of the condition of the disease [39].

2.1.1 Metagenomics on COPD

The respiratory microbiota is more poorly studied than the gut microbiome. The lat-
est research shows that chronic respiratory conditions such as COPD and bronchial
asthma can result in a changed microflora concerning its different bacterial species.
The respiratory bacterial composition and diversity were analyzed in mild COPD pa-
tients with different pathological features of the disease. The bacterial drivers in COPD
were Prevotella, Streptococcus, Staphylococcus, Veillonella and Pseudomonas. The re-
search shows there is a relation between imbalanced microflora and respiratory tract
malfunctioning over the whole extent of COPD. However, more harmful pathogens are
present in patients with acute COPD.The COPD patients were treated with antibiotics
that reduce the Proteobacterial and increase the family of Firmicutes [40].

The common bacterial phylum in COPD are Firmicutes, Bacteroidetes and Pro-
teobacteria. The bacterial species dominant in COPD are Pseudomonas, Staphylococ-
cus, Veillonella and Streptococcus. The fungi specifically, there was a large increase in
Corynebacterium, Actinomyces, Actinobacillus and Selenomonas in COPD subjects.
The more abundant species reported were Streptococuus and Staphylococcus in COPD
patients [37]. In a study meta-transcriptomic technique was used on the lungs of
COPD patient to identify the pathogenic bacterial species and their role in the in-
fection. Pathogenic bacteria such as Rothia, Streptococcus, Pseudomonas and other
bacterial colonization were more common in COPD patients. However, the flare-ups
were more common in patients where the cause of infection was Pseudomonas [41].

There was a another study in which shotgun metagenome sequencing was performed
on sputum samples of COPD patients. The metagenome classifies the sequences on
a specie-level and functional annotation can be possible. Metagenomic sequencing of
Upper Respiratory Tract (URT) was conducted to improve understanding of micro-
bial content concerning disease. The bacterial composition of COPD was Prevotella,

13



Pseudomonas and Fusobacteria. The other genera include Neisseria, Veillonella, Lac-
tobacillus and Streptococcus [42].

Another study utilized the 16s rRNA V3-V4 in which sputum samples of COPD
patients were sequenced. The sputum sampling of patients was sequenced at different
stages of patients. The microbial heterogeneity was reduced in High-Risk Exacebraters
(HRE) e.g. Streptococcus, Prevotella and Gemella morbillorum. Proteobacteria, Fir-
micutes, and Actinobacteria were same among the both groups. The network analysis
involves the highest rank genera using SparCC for interaction analysis. Actinomyces
exhibit a negative association with Morxella in HRE. Haemophilus, Streptococcus, Lac-
tobacillus and Canocytophage also show negative association in HRE [43].

Research was conducted on sputum samples of COPD individuals to better un-
derstand the species diversity of the Upper Bronchial Tract (UBT) microbiome and
identify physiological alterations linked to the illness, we used metagenomic sequenc-
ing of the UBT microorganism. Ten healthy and eight COPD patients’ bacterial
metagenomes were sequenced. The intensity of the disease was connected with varia-
tions in Streptococcus pneumoniae abundance and functional categories associated with
a decreased ability for bacterial metabolism activities. Stenotrophomonas, Streptococ-
cus and Brucella were only in diseased samples while Pseudomonas, Fusobacterium,
and Veionella were in all samples [42].

2.2 COVID-19

A single, positive-strand RNA virus called SARS-CoV-2 is responsible for the severe
respiratory illness that affects people. The World Health Organization (WHO) declared
a Public Health Emergency of International Concern (PHEIC) in January 2020. SARS-
CoV-2 is a contagious disease that spreads to nearly every continent. These viruses can
mutate and adapt to various environments, so the risks are persistent and long-lasting
[44].

The Primary Recognition Receptors (PRRs) triggered the cytokines production.
Virus chemicals and cell deterioration lead to cytokine storms. Other factors such as
host responses, spread mechanism, and metabolic changes also contribute to cytokines
formation. Neutrophil Extracellular Traps (NETs) are produced by neutrophils that
induce microthrombosis, inflammation and cell death. All of these factors result in
difficulty in breathing [45].

The were multiple factors for the deaths of patients infected with COVID-19. Noso-
comial infections mainly in the lower bronchial tract are also a major risk factor for
COVID-19 patients. Multiple factors were responsible for the deaths of patients in-
fected with COVID-19. A lot of bacterial species are responsible for nosocomial infec-
tions (NIs). The identified bacterial species through research and exploration were Es-
cherichia coli, Staphylococcus species, Pseudomonas, Klebsiella pneumoniae and Acine-
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tobacter species. The viral agents and bacterial infections or co-infections that can hap-
pen during hospitalization can result in the death of many patients with respiratory
disorders. After co-infections, there was severe lung tissue damage which induced more
vulnerability to bacterial infectious disease. Thus, following a viral infection, bacterial
superinfection can arise which leads to more severe and worse conditions [46].

Various reasons are responsible for the intensity of COVID-19 mainly patients with
previous medical conditions and weak immune immune system also contributes signif-
icantly. The is also hyperactivation of NF-κB and viral load is also more in intense
conditions. The intensity of infection contributes to malfunction and lung damage. All
these conditions lead to pneumonia, COPD, and other lung diseases [47]

2.2.1 Metagenomics on COVID-19

The research on the upper bronchial tract of COVID-19 patients was carried out for a
better understanding of the correlation between micro-organisms and the intensity of
the disease. There are only a few studies that are focused on the lower bronchial tract
but it is also significant in intensity of disease [48].

Inflammation and Immune system response can aggravate the infection. Several
Cytokines MIP-1 alpha, IL-6, CCL2 and CXCL10/IP10 were released in the host
body. Microorganisms can alter and worsen the infected condition. Veillonella and
Haemophilus had a high concentration in COVID-19 patients in the oropharynx region.
The nasopharynx had a high burden of Streptococcus, Staphylococcus, and Corynebac-
terium. The dominant fungi species was Candida while the bacterial species were
Enterococcus faecium, Klebsiella and Staphylococcus [49].

Metagenome Sequencing was used on COVID-19 patients to analyze the respiratory
microbiome and co-infection pathogens. The frequent bacterial species were Klebsiella,
Staphylococcus, and Enterococcus.A high frequency of viruses was detected including
Epstein-Barr Virus (EBV), Herpes Simplex Virus (HSV) and Human Parvovirus B19
(HPVB19). The fungal species that were also detected most frequently were Crypto-
coccus, candidemia and Aspergillus. Hence co-infections occurred and worsened the
condition [50].

Analyzing the upper bronchial tract and COVID-19 is of great interest. The re-
search was carried out on metagenomic RNA-seq sequences to investigate the micro-
bial metabolic processes. The micro-organism’s composition differs considerably with
different micro-organism divisions consisting of archaea, viruses, fungal and bacterial
species. Several pathways are linked to COVID-19 disease severity such as virulence,
cell death, membrane transporters, and immune system. There was notable variation in
the microbiome of healthy and diseased groups. The primary phyla were Bacteroidetes,
Firmicutes, Actinobacteria, Cyanobacteria and Proteobacteria which were dominant
in infected individuals. Additionally, the abundant genera in infected individuals were
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Actinomyces, Streptomyces, Pseudomonas, Staphylococcus, Corynebacterium and My-
cobacterium. There was a negative correlation between COVID-19 and microbiome
diversity in the upper bronchial tract [51].

There was research carried out on BALF samples compilation of metatranscrip-
tomes to understand the lower respiratory micro-organisms. For the understanding
of functions, pathways analysis was performed. There were various affected path-
ways some of them were recruited here Carbapenem biosynthesis, N-Glycan biosynthe-
sis, Glycolysis / Gluconeogenesis and D-Alanine metabolis [52]. Significant research
was carried out to analyze the difference in lung microbiome between the infected
and healthy individuals. Bronchoalveolar lavage sampling was used to carry out 16s
rRNA sequencing. A notable change was observed in the richness of micro-organisms
richness.Acinetobacter, Enterobacteriaceae, Pseudomonas, and Sphingobacterium were
prominent among the infected persons [53].

In a study, together with assembly and binning techniques, whole-metagenome shot-
gun sequencing data were used to recreate Metagenome-Assembled Genomes (MAGs)
of five hundred fourteen COVID-19-related nasopharyngeal and fecal samples across 6
distinct groups. The MetaWRAP (v1.3.2) and MaxBin2 (v2.2.6) are used for gener-
ating metagenome assemblies and binning. However, a few numbers of nrMAGs were
found in the nasopharynx samples due to contamination [54].

2.3 Lung Cancer

Lung cancer is a widespread disease affecting millions of people across the world. Vari-
ous factors are responsible for the disease’s development. There were various genes and
transcripts involved in the pathogenesis of the disease.The primary risk factor consid-
ered is tobacco while radioactive gas called radon also contributes significantly to lung
cancer. Nuclear radiation Exposure to asbestos, chromium some viruses such as Hu-
man papillomavirus (HPV), Mycobacterium TB, inflammation due to various reasons,
coal and biomass used for cooking plays an effective role in disease [55].

It appears that there is widespread dysregulation of Long Non-Coding RNA (lncRNA)
expression in cancer, where these molecules function as tumor suppressors or oncogenes.
The lncRNA plays a crucial role in the expression of genes and the disruption of the
expression of lncRNA has a critical role in cancer pathogenesis. For the diagnostics in-
dicators, lncRNA is of great importance. There was a difference in expression between
healthy and cancerous cells. There was research conducted in which the expression level
of lncRNAs e.g LINC00968, PCAT19, ADAMTS9-AS2, SVIL-AS1 was downregulated,
and NUTM2A-AS1, PCAT6, LINC01214, LINC00673, FEZF1-AS1 show upregulated
expression in cancerous cells [56]. The human body contains a variety of microbes that
are essential to preserving the host body’s microbiome. Disruption of micro-organisms
brings about various disorders. Production of cancerous substances, pathogenic factors,
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and inflammatory responses can reasons of disrupted micro-organism communities to
lead to cancer [57].

2.3.1 Metagenomics on Lung Cancer

The micro-environment containing the viruses, bacteria and other microbes in the
lower bronchial tract is considered as microbiome of the lung. The source of lung
microbial content is the upper respiratory tract. A healthy lung has bacterial phyla
Proteobacteria, Actinobacteria and Fusobacteria [58].The microbial communities of
the lung are unique from other body sites. Microaspiration and oral microbial con-
tent serve as the primary source of the lower respiratory tract. Moreover, coughing,
ciliary transport, and immunological responses were responsible for microbial trans-
portation.Furthermore, repeated usage of antimicrobials supports the infection link
between pathogens imbalance and cancer development [59].

The lung microbiome can impact immune mechanisms related to cancerous cells.
Respiartory flora has an impact on tumor-promoting pathways since several compounds
produced by bacteria were linked to carcinogenesis. According to an analysis, respira-
tory carcinoma had a high regulation of pathways e.g. amino acid metabolism, lipid
metabolism, and xenobiotic biodegradation. The gene expressions in pulmonary cells
may be further influenced by this changed microorganism biochemical composition.
The Veillonella had enhanced the expression of the Extracellular Signal-Regulated Ki-
nase (ERK), Phosphatidylinositol 3-Kinase (PI3K), and Mitogen-Activated Protein
Kinase (MAPK) networks in gene expression profiles of the pulmonary tissues [60].

Through infectious substances, genetically harmful pathways, and host autoim-
mune processes, the microbial community can contribute to the progression of cancer.
A study was conducted on patients with lung cancer using 16S sequencing. The anal-
ysis shows that in later stages of lung carcinoma, Legionella and Thermus were found
providing insight into the pathology of tumor formation. The cancer group exhibited
a considerable over-representation of the genera e.g. Novosphingobium, Acinetobacter,
Rhizobium, Prevotella, and Christensenellaceae R-7 group. There was an enrichment
of Haemophilus influenzae (H. influenzae) in the SCC group. Novosphingobium, Para-
sutterella, and Micrococcus were a few ASVs that had low concentrations [61].

DNA degradation can be caused by Bacteroides fragilis. The low concentrations
of anti-cancer p53 gene cause aggression of bacteria and inflammation of NF-κB pro-
motes carcinogenesis. For an improved picture, an amplicon sequencing analysis was
performed on lung carcinoma patients. A different taxa Acidovorax was detected with
a mutation in the TP53 gene. Rhodoferax, Klebsiella, Pseudomonas, and Anaerococ-
cus were among the prominent ones. Polarmonas and Comamonas were also present
although not prominent according to biometrics [62].

A lot of studies bring to light that pathogens and carcinoma of the lung are closely
related, some researchers have used the latest innovations in metagenomics sequencing

17



to discover germs that contribute to lung cancer as biomarkers for tumor detection.
In metatranscriptomic research conducted on lung cancer patients. Prevotella with
different species, Haemophilus, Mycobacterium, Moraxella, Rothia, and Streptococcus
were among the dominant bacterial genera in tumor cells. Furthermore, statistical
analysis showed that Pedobacter, Prevotella, Klebsiella and Mycobacterium were among
the putative biomarkers [63].

There was research that focused on the microflora of lungs during the cancer. Sam-
pling was carried out in two ways. Shotgun analysis was carried out on the cancer
and control samples.Distance-based RDA analysis is used to analyze the role of other
factors in lung cancer progression. Analysis shows that there is an association between
the factors and microflora. Actinobacteria, Firmicutes, and Proteobacteria had high
abundances while Mycobacterium and Streptococcus were among the prevalent genera
in the cancer patients [64].

2.4 Tuberculosis

The primary cause of TB is the bacterial species Mycobacterium TB. The disease cycle
starts with the source of disease, contagious particle formation, and entrance of these
pathogens into the host and then transferred to another prone person. TB patients have
aerosols that are transmitted through sniffing, screaming, and coughing the effective
one [65].

In a report, WHO declared that TB was the cause of 1.4 1 million deaths and
around 10 million were infected in 2019. Co-infections were the most prominent cause
of developing TB. The SARS-CoV-2 and HIV were the dominant disease agents. Other
health issues e.g. nutritional deficiency, organ implantation, and hyperglycemia were
also the reasons for the development and intensity of the disease. There were some
genetic factors, variation of A4 hydrolase, gene and protein expression patterns of my-
cobacterium, immune defense reaction and capability of epigenetics. All these factors
play a potential role in disease progression [66].

Bacterial adaptation in the pathology of TB also plays a major role. There was
research that summarizes that host reaction during infection varies as T-cell activation
and differentiation occur. MTB strain Rostov had a less intense response than the
H37Rv strain in the mouse models that were used for the research. The Quiescent bac-
teria become intensified and result in the formation of cavities in immuno-suppressed
individuals. Lung impairment happens as the pathogen spreads in diseased persons
[67].

Drug resistance in TB infection is a serious issue and biofilm formation has its role
in the resistance and Mycobacterium pathogenesis. Previous studies have provided
evidence that various genes and about 115 proteins play their parts significantly in the
creation of biofilms. DevR, Rv0097, Rv1996, and RegX3 were the common proteins
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that perform their activity in bacterial adhesion. A few genes were also involved lpqY-
sugABC, Rv0195, secA2 and Rv1176c. Genetic regulators e.g. Rv0199, nirB and pks1
also had crucial regulation in microbial colonization. Gene ontology analysis revealed
a few transcription factors, such as RegX3 and NarL while some kinases as PknG and
PknB were also involved in pathogenesis [68].

2.4.1 Metagenomics on TB

There were very few studies on the lung microbiota of TB patients. Here are the findings
of a study in which they performed 16S rRNA sequencing on the lung microbiota of TB
patients. The Anoxybacillus which is a rod-shaped bacteria was significantly high in
diseased persons. The relative abundance of Firmicutes, Bacillaceae and Mycobacterial
communities was higher in diseased patients than the normal ones. Overall study
shows that the lung communities differ potentially between the infected and healthy
individuals [69].

The micro-organisms of the pulmonary tract have an important impact on the
host defense system and in shaping the breathing system. Lung flora affects pul-
monary infections such as TB, COPD, asthma, and cystic fibrosis. The lower respira-
tory tract has a lower microbial community than the URT. The nasal communities of
microbes include Propionibacterium, Corynebacterium, and Staphylococcus while Neis-
seria, Haemophilus and Prevotella were enriched in the oropharynx. Amplicon rRNA
sequencing revealed unique symbiotic bacteria during persistent pulmonary infection.
Usually, Pulmonary flora has few sample studies and little knowledge due to diffi-
culties in sampling. A shotgun metagenomic sequencing revealed that Actinomyces,
Caulobacter and M.tuberculosis were enriched in TB patients [70].

In a study, a shotgun metagenomic analysis was carried out on TB-infected in-
dividuals. Rothia was prominent in throat culture while Pasteurella and Klebsiella
were dominant in BALF. In Untreated TB patients, there was a high abundance of
Staphylococcus aureus, E.coli and Pasteurella multocida. Staphylococcus aureus can
cause multiple organ damage and various illnesses. TB patients had a low ratio of Pre-
votella melaninogenica which leads to aggravating the inflammation and deteriorates
the pulmonary system [71].

The pulmonary microflora fluctuate during several disease states and these fluctu-
ations encounter inflammations which results in lung function alterations. To evaluate
the microbial communities in the respiratory system both amplicon and shotgun tech-
niques were used. Amplicon shows various taxa had high relative abundance in TB
patients e.g. Absconditabacteria, Tenericutes, Proteobacteria, Spirochaetes, TM7 and
Gracilibacteria while at the genera level TB patients had Neisseria, Fusobacterium,
Lautropia, Streptococcus and Campylobacter. Diversity relationships between differ-
ent genera abundance in TB patients, their association robustness, and effects on host
responses were also analyzed [72].
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Very little is known about the lung microbiome of TB patients with dysbiosis and
mostly analyzed using amplicon sequencing. For a better understanding of lung mi-
crobes, shotgun analysis was performed on bronchoalveolar lavage samples between TB
patients and healthy persons. Alpha diversity of TB patients decreased dramatically
than control ones. Mycobacterium was on the top of the list in TB-infected persons
while Actinobacteria was dominant in the perspective of different phylums. Pseu-
domonas, Selenomonas, Streptococcus salivarius, and Neisseria were present in healthy
individuals. Finally, system biology techniques were used to find the hub bacteria.
Pseudomonas, Rothia and Mycobacterium were among the hub microbes [73].

2.5 ML in Metagenomics

BALF samples with lower pulmonary infections were extracted for metagenome se-
quencing. Furthermore, the RF model was built to check the influence of bacteria on
hospitalization. Patients were divided into two groups based on their residence period.
The model was trained with various factors but it performed better when bacterial
content was integrated with diagnostic parameters [74].

ELasticNet is used for linear models, with the metadata of Cystic fibrosis patients.
ElasticNet is a regularization technique like lasso which extracts the significant features
for model training. The model also predicts lung functioning. 16S rRNA sequencing
was also done on the patient samples. Models trained on microbial information give
significantly better prediction than models incorporated with patients’ metadata. The
model accurately predicts the diseased bacterial species e.g. Achromobacter and Pseu-
domonas [75].

To understand the association between bacterial extracellular vesicles and pul-
monary disorders. ANN ML model was built that can differentiate between asthma,
lung cancer and COPD patients based on bacterial taxonomy. The taxonomical clus-
tering was derived from the OTU created by the 16S amplicon sequencing. The model
trained on COPD shows the Firmicutes on top while the model for lung cancer and
asthma shows the Proteobacteria was the most prominent [76].

A study was conducted that uses the RF model to align the important features
using metadata and micro-organism information of Cystic Fibrosis patients and normal
individuals. To reduce the dimensionality of the data, Brouta wrapper technique was
used. The diversity of microflora also plays an effective role in the categorization of
bacterial species. Using different variables and parameters, the cross-validated error
measures were duplicated one hundred times. In contrast, the model does not perform
well in a grouping of cystic fibrosis and control samples taken from the oral swabs. It
also can’t differentiate between the Pancreatic sufficient (PS) and pancreatic insufficient
(PI) groups of patients. The R software was used for the ML analysis [77].
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2.6 Study Rationale

Lungs have diverse and low microbial content. The identification and classification of
microbes role in respiratory disorders requires more research and identification tech-
niques. There is no comparative research on respiratory diseases in context of metage-
nomics even the metagenome of diseased individuals are not compared with healthy
persons in most of previous studies. To bring into consideration these limitations and
gaps we are performing in-silico analysis of respiratory microbiome. The analysis will
improves our understanding on the role and relative abundance of microbes in diseased
and control conditions. We will identify the different significant patterns of diseased
data using different ML algorithms.

2.7 Objectives

• To identify the micro-biome content present in respiratory disorders analyzing
in-silico amplicon and shotgun sequencing data.

• To build a ML model that can differentiate between different respiratory diseases
based on metagenomics data.
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Chapter 3

MATERIALS AND METHODS

The proposed methodology is for the identification and better understanding of the
microbial communities in pulmonary disorders primarily the lung microbiota. Metage-
nomics datasets of sequence reads are used in the aspect of lung and nasopharynx sam-
ples. Additionally, different ML models are also built that can differentiate between the
diseased and healthy samples based on bacterial abundance and metagenomics data.
The general workflow for methodology is represented in the Figure 3.1.

Figure 3.1: General Workflow for Methodology
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3.1 Dataset Collection

The datasets are selected on some attributes that plays a significant role on the overall
research and its outcomes. Datasets of 16S rRNA and shotgun sequencing are selected
for the computational analysis of reads. Two datasets of ampliocn and four datasets of
shotgun are used.The datasets are downloaded from publicly avaliable repositories e.g.
European Nucleotide Archive (ENA), Gene Expression Omnibus (GEO) and Sequence
Read Archive (SRA). Reads should be pair-end and have both normal and diseased
samples. Reads should be of Homo Sapiens. The sampling sites should be respiratory
tract primarily the lungs. The details of datasets used for analysis are represented in
the Table 3.1.

Table 3.1. Datasets used for the Study

Accession No. Disease Sampling Site No. of Samples Study Type
PRJNA636302 COPD Lung 78 Amplicon
PRJNA687143 COVID-19 Lung 52 Amplicon
PRJEB9034 COPD Lung 18 Shotgun
PRJNA743981 COVID-19 Nasopharynx 99 Shotgun
PRJNA714488 Lung Cancer Lung 47 Shotgun
PRJNA655567 TB Lung 61 Shotgun

3.2 Metagenomics

Metagenomics is the collective study of microbial communities in a specified environ-
ment. Several methods are utilized for the identification and understanding of microbial
communities. Culture-based methods provide evidence with few limitations while non-
culture techniques have brought a good shift for detailed analysis. Non-culture-based
techniques e.g. NGS are more appropriate for analyzing the microbiome. Amplicon
and shotgun are widely used techniques for analyzing the microbiota in different envi-
ronments. Metatranscriptome, culturome and virome are also used for micro-organisms
analysis. All these techniques work with both DNA and RNA extraction and sequenc-
ing [32].

3.2.1 Amplicon Sequencing

The bacterial gene has both conserved and variable regions. The conserved regions
are similar among all bacteria and variable regions vary in different bacterial species.
Since variable regions are mostly sequenced to identify the bacterial species in various
samples. The variable parts of a gene range from one to nine represented as V1-V9.
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The commonly used regions for sequencing are V4, V3-V4 and V1-V2.The base pairs
range is approximately 1500 bp of any particular gene. Full-length sequencing of the
16S rRNA gene is possible through the PacBIOs Sequel and Nanopore sequencing while
10,000bp can be sequenced. The primary steps for amplicon sequencing involve DNA
Extraction, PCR Amplification, Library Preparation and Sequencing [78].

3.2.2 In-Silico Analysis of Amplicons

In-silico platforms commonly used for amplicon analysis are Mothur and Quantitative
Insights Into Microbial Ecology(QIIME). After sequencing, the quality of raw reads
is analyzed. The tools used for quality control are the Deblur and Divisive Amplicon
Denoising Algorithm 2. The well-known methods used for read clustering are OTUs and
ASVs. An important step is a taxonomical classification, which involves the databases
e.g. Greengenes2 and Silva databases. Visualization is mostly in bar graphs with
bacterial species classification [79]. The graphical representation of methodology used
for amplicon analysis is represented in the Figure 3.2.

Figure 3.2: In-Silico Analysis steps used for Amplicon Analysis
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The primary steps used here for amplicon sequencing utilizing Quantitative Insights
Into Microbial Ecology (QIIME2) are:

• Metadata formation

• Demultiplexing

• Denoising

• Feature Table Generation

• Amplicon Sequence Variants(ASVs)

• Taxonomial Classification

• Visualization

3.2.2.1 Quantitative Insights Into Microbial Ecology 2

QIIME2 version 2023.2 (https://qiime2.org/) is a powerful tool used for the analysis
of amplicon sequences. There are mainly three main interfaces of QIIME2, q2cli is
the command line, q2galaxy is the graphical user, and the Artifact API interface uses
Python. Here we used the command line interface using QIIME2. QIIME2 is installed
through WSL. Linux commands are used for installation of the latest version of Mini-
conda in Windows from the Anaconda website (https://docs.anaconda.com/free/minicon
da/). After installation of miniconda QIIME2 is installed within conda environment.
QIIME2 2023.2 distribution is installed for analysis.

3.2.2.2 Demultiplexing

After installation, the datasets are downloaded from the ENA (https://www.ebi.ac.uk/
ena/browser/) and SRA (https://www.ncbi.nlm.nih.gov/sra). Data should be demul-
tiplexed, pooled samples can’t be used for analysis. The datasets used for analysis
are already in separate paired fastq files for each sample. Demultiplexing also gives
additional information about the data e.g. sequence count summary and quality plots.

3.2.2.3 Data Input

The first step is the creation of path files for input and metadata files.For path files,
three columns are created with SampleID, forward absolute file path, and reverse ab-
solute file path as paired sequences are used. The metadata files contain sample IDs,
sample names, their SRA-IDs, body sites year of publication, etc. The fastq files of all
samples are collectively input through the path file and their format is converted into
qza. QIIME2 can’t work with any other format of files.
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3.2.2.4 Denoising

After data input, the denoising of data is carried out through Divisive Amplicon De-
noising Algorithm 2 (DADA2). For denoising, qza sequence files along with metadata
are input for Quality Control (QC). DADA2 separates the chimeric sequences. The
tool uses two main parameters trim for trimming at the beginning and end of sequence
reads and trunc for truncation at any specific position of sequence. As the quality
plots are generated through demultiplexing then the low-quality reads are trimmed or
truncated from the sequences. The output files are, a file showing the statistics with
filtered, denoise parameters, etc, representative sequences with feature information,
and a feature table showing frequency per sample, sample details, and feature details.
These features uses the ASVs as the DADA2 uses the ASVs for representation of se-
quences in the data.

3.2.2.5 Amplicon Sequence Variants and Operational Taxonomic Units

There are two methods used for species classification. Operational Taxonomic Units use
a 97% identity index for grouping similar sequences. OTUs reduce the computational
power and mistakes to some extent from the analysis. Clustering was in wide-ranging
groups leading to more general predictions. Different OTUs picking methods were
used including reference-based and de-novo. OTUs were widely used techniques before
the era of denoising methods. Recently, the trend shifted towards denoising methods
primarily the ASVs. ASVs are the most advanced technique for sequence classification.
There are no identity thresholds instead matched biological variants for grouping. The
results are more accurate and different sequence variants between highly correlated
bacterial species. It results in the exact match rather than a general way of grouping
as in OTUs. Sometimes ASVs lead to strain-level classification providing more insights
into the microbial communities. In simple terms, denoised OTU is ASV.

3.2.2.6 Taxonomical Classification

There are different taxonomical classification methods after the creation of ASVs.
Reference-based methods using databases and naive Bayes pre-trained classifiers classi-
fiers. Reference-based uses the Greengenes Database and Silva database for the group-
ing of microbial communities. Both can be used for classification but as Silva is updated
regularly hence Silva is preferred over the Greengenes database. As pre-trained classi-
fiers work smoothly so we select the silva-138-99-nb-classifier.qza naive Bayes classifier
with 99 % sequence similarity classifier used for classification of microbial species.
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3.2.2.7 Visualization

After taxonomical classification, the last step is visualization. The taxonomy files are
input and bar graphs are generated from them. Bar graphs show the identified bacterial
communities at different levels within each sample. As we view the bar plot in QIIME2
view, there are several parameters e.g. bar width, taxonomic levels and color palette
and download options etc. Taxonomical levels with their description are the following:

• Level 1 represents the domain level as either the identified is bacteria or archaea
or some other domain

• Level 2 represents the Phylum of bacteria or archea

• Level 3 representing the class of identified microbes

• Level 4 represent the order of bacteria

• Level 5 represents the family of microbes

• Level 6 shows the genus of bacteria or archaea

• Level 7 represents the species level of microbes

3.2.3 Shotgun Sequencing

There are different High-throughput Sequencing technologies. The base pair length,
expense, range of inaccuracy, and speed also play important roles. Various factors e.g.
sequencing accuracy, the relative abundance of the sample, and the type of sequencing
are considered during the choice of sequencing. Shotgun is preferred among all because
of its accuracy. The commonly used technique for sequencing around the world is
Illumina. The laboratory steps for metagenome sequencing involve microbial sample
collection, DNA extraction from the samples, QC, DNA fragmentation, Metagenome
library preparation and finally sequencing [30].

3.2.4 In-Silico Shotgun Analysis

After metagenome sequencing, raw reads are obtained. The QC of raw reads is analyzed
and low reads are trimmed by various software e.g., MultiQC, FastQC, Cutadapt, and
Trigonometric are among the commonly used tools. FastQC is widely used for QC of
raw reads with ten QC points. Trimmometric and Cutadapt are used for trimming
low-quality or for short reads. After QC, alignment is done using Bowtie or BWA
tools. The reads are aligned to the human genome to remove the host reads and
focus only on the microbial content. Taxonomical Classification is carried out in two
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ways. The use of Reference genome and metagenome assemblies while reference-based
genome classification is using MetaphlAn tool. The MetaWrap, is used for MAGs for
taxonomical classification. Functional Analysis is the additional information provided
by the metagenome sequencing and HUMAnN2 is used for functional annotation. The
graphical representation of methodology used for shotgun analysis is represented in the
Figure 3.3.

Figure 3.3: In-Silico Analysis steps used for Metagenome Analysis

The methodology used for the selected datasets are:

• Import Data

• QC

• Alignment

• Taxonomical Classification

• Relative Abundances

28



3.2.4.1 Galaxy

Galaxy is a well-known framework for the computational processing of high-throughput
sequencing data. It is an open-source platform. An HP ML350pT08 LFF CTO server
with 24 cores (2 CPUs) and 288GB of RAM running Debian OS (Jessie v7) hosted the
Galaxy instance allocated for detection. Two additional RAID5 systems with five 4TB
disks each were used for storage. Galaxy has two significant dimensions:

• A command line interface (CLI)

• An intuitive Web-based graphic user interface (GUI)

The Graphical user interface is easy to use while the command-line requires expertise
and an understanding of Linux. A major reason for using the galaxy project is extensive
memory which handles the large amount of data generated through high throughput
techniques. Additionally, providing a vast variety of tools for different analyses and
provides a user-friendly environment. [80].

3.2.4.2 Importing Datasets

The datasets are present in the public repository of ENA (https://www.ebi.ac.uk/ena/
browser/). The format for input files is fastq and pair-end sequences are used. After
checking the desired parameters raw reads are uploaded from ENA to the Galaxy
project through file links.

3.2.4.3 Quality Control

After uploading into the Galaxy platform, the first step is quality checking of fastq files.
The sequence files contain low-quality reads, GC content, over-represented sequences,
adapter content, and duplicates. A tool called FastQC is intended to identify any
issues in high-throughput sequencing datasets. The tool checks all these parameters
and makes an extensive report on them. If there is adapter content, and reads with
low-quality phred scores, high level of duplication, or any error the pre-processing is
performed to improve the quality of data. Fastp is a program made to quickly and easily
prepare Fastq files all at once. Base correction, polyA tail trimming, adapter trimming
and duplicates can be removed using Fastp.Both FastQC and Fastp generate the html
reports through which we can analyze all these parameters for further processing.
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3.2.4.4 Taxonomical Assignment

Taxonomical profiling is the identification and measuring of the relative abundances of
the micro-organisms content in the collected samples. It is a crucial step in shotgun
sequencing as it classifies the microflora which is required for further analysis. There are
two popular ways of profiling bacterial communities in samples.There are two popular
ways of profiling bacterial communities in samples.

• Reference Based Profiling

• Metagenome Assembled Genomes (MAGs)

In contrast to assembly, reference-based computational methods properly recognize and
assess the identified taxa and current genes in a microbial flora by homology, based
on annotated reference sequence data. The capacity of reference-based metagenomic
profiling to identify rare and difficult-to-assemble genomes is a significant benefit over
assembly. This makes it possible to produce reliable ecological statistics for common
and uncommon taxa, which are challenging to measure precisely due to numerous tech-
nical omissions in data derived only from metagenome assemblies.
All the microbial communities in sampling have their individual and unique genomes.
Reference-based genome techniques can’t properly align and lack some information.
Reconstructing a genome effectively from the provided collection of metagenomic se-
quences is therefore one of the primary objectives in the processing of metagenomic
data. Pre-processing, assembly, and binning is the pipeline for MAGs. A hybrid of
short and extensive reads is the perfect way to create assemblies. The sample-wise
sequencing depth information can help binning methods decide which contigs should
form a MAG. Metagenome assembly and binning have been accomplished through
the development of many processes.ATLAS, Muffin, and MetaWRAP are used for the
formation of metagenome assemblies [81].

3.2.4.5 MetaphlAn

MetaPhlAn 4, is a method that utilizes a combined additional of microorganism genomes
and MAGs to generate a wider range of species-level genome bins42 (SGBs) and
precisely identify their existence and abundance in metagenomes, thereby leveraging
the best aspects of both reference- and assembly-based metagenome profiling. SGBs
are defined exclusively by the MAGs and comprise both recognized species (kSGBs)
and non-characterized species (uSGBs). MetaPhlAn4 is the most updated version of
MetaphlAn. The tool uses the read homology to estimate the relative abundance of
samples. The input can be of three ways, single or multiple fastq files, a SAM file
and an alignment file generated by the MetaphlAn.The first step in the MetaPhlAn
pipeline is to use Bowtie2 to align the raw reads against the database of SGB-specific
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markers. SGB-specific markers are specific to the species-level classification of bacte-
rial species. After alignment then microbial categorization and finding their relative
abundances in the samples is the important step in downstream analysis. The tool
uses reference-based genome alignment and various databases to attain the purpose.In
output, four files are generated:

• A tab-separated file with prediction and relative abundances of sample

• A BIOM file contains taxonomic profiles

• A Bowtie2 contains information on alignment quality and information

• A SAM with aligner, mapping score, and all alignment positions, etc.

[82].
In our analysis for taxonomical grouping their relative abundances are calculated us-
ing MetaphlAn4. The input files are pair-end fasta files. The ’–very-sensitive’ and
reads shorter than 70 bp ‘–read-min-len-70’ parameter is used by the default. In
this way, short reads and very high accuracy can be achieved. In SampleID, the
sample-ids provided in the metadata of datasets are replaced for each sample. Mostly
the CHOCOPhlAn databases were used for microbial profiling. The mpa-vOct2022-
CHOCOPhlAnSGB-202212 is the most updated database that we used for the taxo-
nomical categorization of microbiome.

3.3 Machine Learning

The goal of computer science’s ML field is to use data to learn how to perform better
across a range of tasks. ML is commonly employed in applied healthcare research
to denote automated, highly adaptable, and computationally demanding methods for
detecting patterns in intricate data structures, such as underlying dimensions, nonlinear
connections, and interactions. Generally, there are two types of learning. Supervised
learning learns from the labeled data while Unsupervised learning learns on without
labeled data and learns few features [35].The graphical representation of methodology
used for ML models is represented in the Figure 3.4.
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Figure 3.4: Steps used for ML

The ML analysis comprises the following steps:

• Input Data

• Splitting of Data

• Feature Selection

• Model Building

• Training of Model

• Model Evaluation

3.3.1 Input Data

Data is in the form of the relative abundance of the species calculated from the
MetaphlAn4. After the identification and abundance calculation, all the MetaphLAn
tables are merged. MetaphlAn can differentiate where the particular bacterial species
is present or not and itself places the zero in the missing value rows. After merging, in-
formation on all the classification levels is discarded as we are interested in the bacterial
species hence only species-level information is available in rows. The merged relative
abundance table has both normal and diseased samples of four respiratory disorders
e.g. TB, COPD, COVID-19, and lung cancer.Hence the merged table is input in the
model.
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3.3.2 Splitting of Data

The splitting of data is a crucial step in ML models. There are different splitting
criteria for splitting of data e.g. 70/30 and 80/20. Mostly 80/20 ratio is used for
splitting into train and test sets. Train data is used for the training or learning of the
model while test data is used for the evaluation of the model. We have used the 80/20
ratio for splitting of data. The splitting is helpful for evaluating and measuring the
performance of the model.

3.3.3 Feature Selection

Extracting the significant and appropriate attributes from the initial feature collection
is known as feature selection. It results in a reduction of dimensions of data as du-
plicates and unnecessary attributes are removed. Using feature selection techniques,
learning algorithms can be trained on the data. Effective feature selection can enhance
learning outcomes, boost accuracy, and shorten learning times [83]. We have used the
Least absolute shrinkage and selection operator (Lasso) or L1 regularization method in
RF and SVM for significant feature selection for the training of the models. The most
significant bacterial species relevant to a particular disease based on their abundance
are selected and used for the learning of the model.

3.3.4 Model Building

After significant feature selection, the RF and SVM classifiers are selected for building
a model. Sklearn is a widely used library for ML models.We also used Scikit learn for
training and building our models. Hence two ML models e.g. RF and SVM are built
for the better identification of microbial species in the respiratory disorders.

3.3.5 Model Training

After model building, the important step is the training of the model. The training set
of data is used for the training of the model. The labeled data is used for the learning
of the model so that it effectively learns and enhances its capacity to go well with the
test data. Mostly, 80 % of data is utilized for the training of models.
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3.3.6 Model Evaluation

Model Evaluation is to analyze the performance of the build model. In this step, we
can categorize how well the model has learned and how it works with unseen and real
data. The 20 % of data that is not used for the training is used for the testing of the
build models. In this way we can analyze the reliability of the model.
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Chapter 4

RESULTS

The primary purpose of the executed research is to explore the pathogenic microbes
in pulmonary disorders. The important techniques used to achieve the objectives are
amplicon and shotgun analysis. After that ML algorithms are used for the classification
of samples into diseased and healthy based on relative abundances of Bacteria generated
after shotgun analysis.

4.1 Amplicon Analysis Results

After raw data retrieval from ENA, amplicon analysis is performed. The steps for
analysis are the creation of path and metadata files, demultiplexing and denoising of
the raw reads, feature table, ASVs and taxonomical classification.

4.1.1 COPD Amplicon Dataset

In-silico analysis of amplicon sequences is carried out to analyze the microbial com-
munity and diversity in respiratory diseases. The analysis is carried out in the most
familiar tool for amplicon analysis, QIIME2. First, the pair-end fastq files are down-
loaded from the ENA for COPD. The ENA Id for COPD is PRJNA636302. The
datasets contains 78 samples of different stages of disease. To input the files for the
analysis, path files are created with the ENA links of fastq files. The path file and fastq
files are placed in the directory. The metadata files are also created for the analysis.

To analyze the quality of the raw reads, demultiplexing of the sequences is done. The
demultiplexing step will result in two sections. The first section shows the overview of
demultiplexed sequence count summary of forward and reverse reads and histograms
of forward and reverse reads frequency histograms. The summary of demultiplexed
summary of sequence count for COPD is shown in Table 4.1. The histograms for
forward reads are shown in Figure 4.1 and histogram for reverse reads in Figure 4.2.
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The second section shows the interactive quality plots for forward and reverse reads
and demultiplexed sequence length summary table. The interactive quality plots for
forward reads are shown in Figure 4.3 and for reverse reads for shown in Figure 4.4.

Table 4.1. Summary of Demultiplexed Sequences of COPD Dataset

Statistics Forward Reads Reverse Reads
Minimum 56784 56784
Median 200026.0 200026.0
Mean 228741.012821 228741.012821
Maximum 450590 450590
Total 17841799 17841799

Figure 4.1: Forward Reads Frequency Diagram of COPD
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Figure 4.2: Reverse Reads Frequency Diagram of COPD

Figure 4.3: Quality Score Graph for Forward Reads of COPD
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Figure 4.4: Quality Score Graph for Reverse Reads of COPD

The DADA2 tool is further used to denoise and improve the quality of the sequences.
As shown in the quality plots for forward reads the quality of reads from 260 onwards
have low Phred scores less than 20 so we truncated sequences from 260 onwards. Sim-
ilarly, the Phred scores for forward reads are low from 220 sequence bases. Hence
the reads are truncated from the 220 sequence bases onwards and only good quality
reads are preserved for future use. The tool outputs three files; one showing the full
statistical information of the reads, representative sequences from the input reads and
a feature table. The statistical aspects of the COPD read are displayed in Table 4.2.
Representative sequences or ASVs are shown with feature Id and sequence length. The
feature table consists of frequency per sample and features, interactive sample details
with sample depth and metadata and finally the complete feature details table. The
summary of frequency estimates are shown in Table ??.

Table 4.2. Statistical Aspects after denoising of COPD Dataset

Sample-id Input Filtered Passed Filter % Denoised Merged Merged Filters % Non-Chimeric Non-Chimeric %
Sample1 210501 104581 49.68 104097 101588 48.26 16996 8.07
Sample10 171481 89081 51.95 88609 87238 50.87 10015 5.84
Sample11 176480 76604 43.41 76245 75332 42.69 17769 10.07
Sample12 215058 116606 54.22 116064 114508 53.25 14470 6.73
Sample13 127802 68706 53.76 68420 67741 53 17426 13.64
Sample14 176401 70257 39.83 69429 67278 38.14 15058 8.54
Sample15 144061 81368 56.48 80336 78077 54.2 17793 12.35
Sample16 104199 57923 55.59 57205 55755 53.51 14755 14.16
Sample17 396779 208566 52.56 205808 192378 48.48 27610 6.96
Sample18 131099 71700 54.69 71230 70223 53.56 14571 11.11
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Table 4.3. Summary of COPD Dataset Features

Metric Sample
Number of Samples 78
Number of Features 3412
Total Frequency 1,527,651

For taxonomic analysis we have used silva-138-99-nb-classifier which is naive Bayes
classifier with 99 % sequence similarity used for classification of the sequences in the
dataset. This step results in taxonomic file which has data in tab separated values with
three columns; feature id, taxon and confidence level for classification. The table for
taxonomic classification is shown in Table 4.4. Then the taxonomy file is represented
in bar graphs for the better visualization of classification.The bar chart for taxonomy
is displayed in Figure 4.5. In COPD samples, Proteobacteria, Firmicutes, Actinobac-
teriota and Fusobacteriota were the most abundant phylum of bactreia. The abundant
families of bacteria are Enterobacteriaceae, Moraxellaceae, Pasteurellaceae, Lactobacil-
laceae, Micrococcaceae, Neisseriaceae, Streptococcaceae, Actinomycetaceae and Lep-
totrichiaceae which plays significant impact in disorder. At genus level Moraxella,
Neisseria, Rothia, Veionella, Streptococcus, Leptotrichia and Actinomyces are abun-
dant in COPD samples.

Table 4.4. Taxonomy Classification on the basis of Feature Id’s

Feature Id Taxon Confidence

000558507913a411464774ea3a394f3f d__Bacteria; p__Bacteroidota; c__Bacteroidia; o__Bacteroidales;
f__Prevotellaceae; g__Prevotella; s__Prevotella_denticola 0.9577189301849474

000babd2fd46d402a87ee8bebdaa07c2 d__Bacteria; p__Actinobacteriota; c__Actinobacteria; o__Micrococcales;
f__Cellulomonadaceae; g__Tropheryma; s__Tropheryma_whipplei 0.9696374719813575

001cad1fad16168c4ae7002826de7efb d__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;
f__Streptococcaceae; g__Streptococcus 0.9999945001778408

002153336e8723d77d433cd4a25218f5 d__Bacteria; p__Bacteroidota; c__Bacteroidia; o__Flavobacteriales;
f__Flavobacteriaceae; g__Capnocytophaga 0.9999999620927301

003741c38ce0f69660c7c9e4d1d9d546 d__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales;
f__Pasteurellaceae; g__Haemophilus 0.9455821666772276

004ac61045280c32041b6052ca809b6b d__Bacteria; p__Bacteroidota; c__Bacteroidia; o__Bacteroidales;
f__Prevotellaceae; g__Prevotella 0.99988484507001

0066eeef3047a323b23ff2cddb9ab658 d__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Burkholderiales;
f__Neisseriaceae; g__Neisseria; s__Neisseria_perflava 0.7878777440617253

006ad60c9804a581de76cb7d16b308bc d__Bacteria; p__Firmicutes; c__Clostridia; o__Lachnospirales;
f__Lachnospiraceae; g__Lachnospiraceae_NK3A20_group; s__uncultured_Lachnospiraceae 0.9871487963580632

006c98bce5e348c89a6722254f0aadab d__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Burkholderiales;
f__Neisseriaceae; g__Neisseria 0.999900266948179

00ac280040cee15b405952945d6bbf47 d__Bacteria; p__Firmicutes; c__Clostridia; o__Peptococcales;
f__Peptococcaceae; g__Peptococcus; s__uncultured_bacterium 0.9750943690916912
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Figure 4.5: Bar Graph for Taxonomy Classification of COPD

4.1.2 COVID-19 Amplicon Results

The dataset used for COVID-19 analysis is PRJNA687143. It contains the 52 sam-
ples.The raw data files are downloaded from the ENA repository. As initial step is
creation of path files and metadata files for both normal and diseased samples.All
steps are performed separately for both control and infected patients samples. The
path file and metadata file of COVID-positive samples are input to the QIIME2 envi-
ronment to generate qza format. After that demultiplexed the reads, the summary of
demulltiplexing is shown in Table 4.5 and frequency histograms for forward and reverse
reads are in Figure 4.6 and Figure 4.7. The Phred quality scores for both forward and
reverse reads are shown in Figure 4.8 and Figure 4.9.
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Table 4.5. Summary of Demultiplexed Sequences of COVID-19 Dataset

Statistics Forward Reads Reverse Reads
Minimum 1468 1468
Median 28532.0 28532.0
Mean 29340.166667 29340.166667
Maximum 86613 86613
Total 704164 704164

Figure 4.6: Forward Reads Frequency Diagram for COVID-19
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Figure 4.7: Reverse Reads Frequency Diagram for COVID-19

Figure 4.8: Quality Score Graph for Forward Reads of COVID-19
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Figure 4.9: Quality Score Graph for Reverse Reads of COVID-19

The DADA2 tool is used to further improve the quality and low quality reads are
truncated from 240 onwards for both forward and reverse reads. As the remaining reads
are of good quality they are used for further downstream analysis. The tool outputs the
statistical summary of reads, representative sequences and overall the complete feature
table. Statistical summary of reads are shown in Table 4.6 and Table 4.7 represents
the summary of feature table frequencies.

Table 4.6. Statistical Aspects after denoising of COVID-19 Dataset

Sample-id Input Filtered Passed Filter% Denoised Merged Merged Filters% Non-chimeric Non-chimeric%
Sample1 210501 104581 49.68 104097 101588 48.26 16996 8.07
Sample10 171481 89081 51.95 87238 87238 50.87 10015 5.84
Sample11 176480 76604 43.41 75332 75332 42.69 17769 10.07
Sample12 215058 116606 54.22 114508 114508 53.25 14470 6.73
Sample13 127802 68706 53.76 67741 67741 53 17426 13.64
Sample14 176401 70257 39.83 67278 67278 38.14 15068 8.54
Sample15 144061 81368 56.48 78077 78077 54.2 17793 12.35
Sample16 104199 57923 55.59 55755 55755 53.51 14755 14.16
Sample17 396779 208566 52.56 1923787 192378 48.48 27610 6.96
Sample18 131099 71700 54.69 70223 70223 53.56 14571 11.11
Sample19 148286 66065 44.55 63480 63480 42.81 11092 7.84
Sample2 117782 54909 46.62 53499 53499 45.42 12336 10.47

Table 4.7. Summary of COPD Dataset Features

Metric Sample
Number of Samples 24
Number of Features 898
Total Frequency 143,115
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After denoising, we input the representative sequences and silva-138-99-nb-classifier
that is used for the taxonomic assignment of reads. In the output we get a taxon-
omy file with feature id, taxon with their confidence scores. The format of taxonomy
file is shared in Table 4.8. As we have the taxonomic file we represent the file in
the form of bar charts. The bar chart for these particular diseased samples is dis-
played in the Figure 4.10. The same procedure is repeated with the COVID-negative
samples. Proteobacteria, Firmicutes, Bacteroidota, Actinobacteriota, Campilobac-
terota and Spirochaetota are the abundant phylum in COVID positive patients. The
most abundant families of bacteria are Pseudomonadaceae, Enterobacteriaceae, Pas-
teurellaceae, Staphylococcaceae, Streptococcaceae, Mycoplasmataceae and Flavobac-
teriaceae. Pseudomonas, Staphylococcus, Streptococcus, Escherichia-Shigella, Aggre-
gatibacte are abundant at genus level. Some species e.g. Streptococcus-constellatus,
Schaalia-odontolytica, Capnocytophaga-sputigena, Neisseria-perflava and
Capnocytophaga-gingivalis etc are abundant in diseased samples. The COVID-negative
samples has Firmicutes, Actinobacteriota and Probacteria phylum with Veillonellaceae,
Prevotellaceae, Pasteurellaceae etc are abundant families.

Table 4.8. Taxonomy Classification on the basis of Feature Id’s

Feature Id Taxon Confidence

[HTML]F5F5F5003a2f482726ce8e30005b3b3a979a64 d__Bacteria; p__Firmicutes; c__Clostridia; o__Peptostreptococcales-Tissierellales;
f__Anaerovoracaceae; g__[Eubacterium]_nodatum_group 0.999892416086272

00a48663b44d647e7f1d8b467d623af3 d__Bacteria; p__Firmicutes; c__Bacilli; o__Staphylococcales;
f__Staphylococcaceae; g__Staphylococcus 0.967432237041691

0160832fb548d29947148023a9f49c9a d__Bacteria; p__Bacteroidota; c__Bacteroidia; o__Bacteroidales;
f__Prevotellaceae; g__Prevotella; s__unidentified_eubacterium 0.7117656406489767

017083ec740b09a88c8ba26f27165231 d__Bacteria; p__Firmicutes; c__Bacilli; o__Erysipelotrichales;
f__Erysipelotrichaceae; g__Solobacterium; s__uncultured_organism 0.8664528085764981

[HTML]F5F5F50194c42606eee82c7cd761b6584dac8c d__Bacteria; p__Actinobacteriota; c__Actinobacteria;
o__Actinomycetales; f__Actinomycetaceae; g__Actinomyces 0.9999825150006235

01b3feeaf3b633a917a6ea64644ed157 d__Bacteria; p__Firmicutes; c__Bacilli; o__Mycoplasmatales;
f__Mycoplasmataceae; g__Mycoplasma; s__Metamycoplasma_faucium 0.8753038746220265

01c6c944f7f3bc2ef8127c1bce977565 d__Bacteria; p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales; f__Prevotellaceae; g__Prevotella 0.9999802749425311

02a20a36215bbb8e8be40e78e312bb5f d__Bacteria; p__Firmicutes; c__Clostridia; o__Lachnospirales;
f__Lachnospiraceae; g__Lachnospiraceae_UCG-004 0.7945943492614838

0330c8e1f7335450b134df6ad6525e60 d__Bacteria; p__Firmicutes; c__Clostridia;
o__Peptostreptococcales-Tissierellales; f__Peptostreptococcaceae 0.9997963503878889

[HTML]F5F5F50333515843bfc579cd79e250682e6926 d__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;
f__Streptococcaceae; g__Streptococcus 0.9999993560565421
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Figure 4.10: Bar Graph for Taxonomy Classification of COVID-19

4.2 Shotgun Analysis

Shotgun analysis is the non-targeted approach used to sequence the whole genome of
the all the micro-organisms present in a specified environment.The analysis consists
of data retrieval, input , pre-processing or QC, MetaphlAn analysis for taxonomical
classification and finding their relative abundances.
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4.2.1 In-Silico Shotgun Analysis of COPD

The dataset used for in-silico analysis for COPD is PRJEB9034. It consists of 18
samples; 8 are diseased and 10 are normal. The steps for in-silico analysis involve;
input to the Galaxy, pre-processing, profiling, and relative abundances of microbial
species. The Galaxy is a reliable platform for the analysis of high-throughput data.
The raw reads are searched on the ENA database, and the reads are uploaded on
the Galaxy platform using the Galaxy link on the ENA browser. After uploading the
raw reads, the quality of the raw reads is checked using FastQC. The FastQC report
has ten quality properties enlisting basic statistics, per base sequence quality, per tile
sequence-quality, per sequence quality scores, per base GC content and N content,
length distribution of reads, duplication level, over-represented sequences, and adaptor
content.

All the diseased sequences have the adaptor content, per base sequence quality,
and per sequence quality scores are also not good. To improve quality, we used the
fastp tool. After utilizing fast, the quality of reads is improved and we used the
reads for downstream analysis. The per base sequence quality is displayed in Fig-
ure 4.11 and the adaptor content is in Figure 4.12. After Fastp implementation,
the quality score is improved and adaptor content is removed as shown in Figure
4.13 and Figure 4.14. The next step is utilizing MetaphlAn4 primarily for taxo-
nomic classification and their relative abundances. Additionally, before profiling micro-
organisms, MetaphlAn4 does the aligning of reads. The abundance of each micro-
bial species is output in a tab-separated value (CSV). Similarly, the analysis steps
are repeated for the normal samples. The quality of control samples is also low to
improve quality Fastp is used. The abundant phylum in diseased are Firmicutes,
Proteobacteria and Actinobacteria. The Streptococcaceae, Veillonellaceae, Staphy-
lococcaceae, Prevotellaceae, Actinomycetaceae, Moraxellaceae and Pasteurellaceae .
At genus level Streptococcus, Herbaspirillum, Actinomyces, Veillonella etc and at
specie level Staphylococcus-aureus, Streptococcus-salivarius, Actinomyces-graevenitzii,
Streptococcus-parasanguinis, Prevotella-histicola and Haemophilus-influenzae etc are
among the prominant species.
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Figure 4.11: Graph representing the Phred Score per base for COPD Before Fastp
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Figure 4.12: Graph representing the Adaptor Content in COPD Dataset Before
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Figure 4.13: Graph representing the Phred Score per base for COPD After Fastp
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Figure 4.14: Graph representing the Adaptor Content in COPD Dataset After Fastp

4.2.2 In-Silico Shotgun Analysis of COVID-19

In-silico analysis of COVID-19 dataset was performed on Galaxy Platform. The ENA
id for the dataset is PRJNA743981. It has 99 samples including 8 normal samples and
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remaining samples are diseased. The fastq files of reads are uploaded on the Galaxy
using the ENA browser. The quality of samples are checked using FastQC. The FastQC
report is generated with the ten parameters including the basic statistical report. The
quality of nearly all samples are good excluding eight diseased samples. Low-quality
reads with scores below 20 are enhanced using the Fastp tool which uses trimming
and other parameters for improvement of sequences. Taxonomic profiling is performed
using MetaphlAn4 which performs aligning of reads before profiling.

COVID-19 patients has also same phylums enlisting Firmicutes, Actinobacteria
and Proteobacteria. The distinguishing families of bacteria present are Propionibac-
teriaceae, Malasseziaceae, Carnobacteriaceae, Staphylococcaceae, Corynebacteriaceae,
Propionibacteriaceae, Moraxellaceae, Flavobacteriaceae, Streptococcaceae and Yersini-
aceae. Corynebacteriu-propinquum,Cutibacterium-acnes, Streptococcus-pneumoniae,
Malassezia-restricta and Dolosigranulum-pigrum are the prominant species present in
diseased samples. All these families, genus and species are crucial in the infection
development.

4.2.3 In-Silico Shotgun Analysis of Lung Cancer

The dataset used for analysis is PRJNA714488. It contains fourty-seven samples.Among
them 32 samples are diseased and 15 are non-cancerous. Broncho Alveolar Lavage
(BAL) samples are used for the analysis. As the analysis initiated with the input of
raw reads on the Galaxy platform using the ENA browser links of fastq files. Af-
ter uploading the raw data files, an important step is their quality check. FastQC
report shows that all the parameters and overall the quality of sequences are good.
Hence we don’t need Fastp or any other tool for quality improvement. As the qual-
ity is good we performed MetaphlAn4 analysis for micro-organisms species profiling
and their relative abundances are measured. The quality of base is measured through
Phred Scores. Below 20 are the low quality reads and reads with high scores than
20 are considered as good quality reads. The Bacteroidetes, Proteobacteria, Firmi-
cutes, Actinobacteria and Fusobacteria are abundant phylums. Streptococcaceae ,Pre-
votellaceae, Selenomonadaceae, Porphyromonadaceae, Neisseriaceae, Halomonadaceae,
Vibrionaceae and Thermoactinomycetaceae are familes found with high percentage.
The species Halomonas-sp-LBP4, Vibrio-alginolyticus, Selenomonas, Campylobacter-
jejuni ,Streptococcus-pneumoniae, Prevotella-melaninogenica, Haemophilus-influenzae,
and Escherichia-coli are among the prominant ones and are critical in the disease.

4.2.4 In-Silico Shotgun Analysis of TB

The dataset we used for TB is PRJNA655567. It has sixty-one samples comprising both
diseased and controls. The analysis starts with the basic step of uploading the reads,
thirty-four diseased samples and twenty-seven are the control. The sequence files are in
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fastq files and from ENA they are imported to the Galaxy website. The basic step is to
analyze the quality of sequences, and for that, FastQC is used that generate a detailed
report for the quality of reads. The report gives us information on various parameters
e.g. quality score of reads ber base, GC content, adaptor content, reads length distribu-
tion and duplication levels, etc. Quality of the reads in the datasets is high quality and
can be used for downstream analysis. A further step is taxonomical profiling of species
which is done using MetaphlAn4 the more recent version of MetaphlAn. MetaphlAn4
does the reference-based assignment of microbes. The fastq files are input into Mat-
aphlAn4. Generally, it outputs the relative abundances table, BIOM file, Bowtie2,
and SAM files. Bowtie2 and SAM files are the alignment files as MetaphlAn4 has a
plugin option for the alignment of sequences and then species profiling takes place.
Bacteroidetes, Proteobacteria, Firmicutes and Candidatus-Saccharibacteria are the
dominant phylums. Burkholderiaceae, Neisseriaceae, Peptostreptococcaceae, Strep-
tococcaceae, Prevotellaceae and Porphyromonadaceae are abundant are the among the
dominant families. Neisseria-subflava, Prevotella-melaninogenica , Streptococcus-mitis,
Ralstonia-pickettii and Porphyromonas-pasteri are the species present in TB patients.

4.3 Machine Learning

The ML is performed on relative abundance tables resulting from MetaphlAn4. Two
main classifiers RF and SVM are used for classifying the diseased and normal bacterial
species. After MetaphlAn4 we have relative abundances, and then we merge all the
tables of all diseased datasets COPD, COVID-19, lung cancer, and TB. The details of
data used for ML is summarized in Table 4.9.

Table 4.9. Datasets Used for ML

Accession No. Disease Classes No. of Samples
PRJEB9034 COPD COPD, n 8, 10
PRJNA743981 COVID-19 Cov-2, n 78, 8
PRJNA714488 Lung Cancer LC, n 32, 15
PRJNA655567 TB TB, n 34, 27

4.3.1 Random Forest

After merging, the tables are pre-processed and transformed.There are four hundred
and ninety features (bacterial species) and two hundred and eleven samples including
all diseased and normal. The RF model is employed on all datasets and then on each
dataset individually.

50



4.3.1.1 Chronic Obstructive Pulmonary Disease Dataset

The RF model is build and trained on the bacterial species of COPD dataset.The
data is split into 80 and 20 %.The features are filtered based on chi-square statistical
technique. The lasso is used for more significant feature selection and then model is
trained on these features. The features selected using lasso are represented in the Figure
4.15. After training of model, the accuracy is 0.5 % and F1 score is also 0.45. The
confusion matrix is used to evaluate the performance of model. The matrix displayed
for COPD is displayed in Figure 4.16.

Figure 4.15: Feature Selected Using Lasso for COPD
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Figure 4.16: Confusion Matrix for COPD through RF

4.3.1.2 COVID-19 Dataset

The RF model is build and trained on the bacterial species of COVID-19 dataset.The
features are filtered based on chi-square and lasso for more significant feature selection.
After feature selection, training is performed. The features selected using lasso for
COVID-19 are represented in the Figure 4.17. The model gives accuracy which is 0.94
% and F1 score is 0.936. Further, model is evaluated using the confusion matrix. The
matrix displayed for COVID-19 is displayed in Figure 4.18.

Figure 4.17: Feature Selected Using Lasso for COVID-19
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Figure 4.18: Confusion Matrix for COVID-19 through RF

4.3.1.3 Lung Cancer Dataset

The microbial species of lung cancer are used for the development and learning of RF
model.Important features are chosen using chi-square technique for the learning of the
algorithm.The Figure 4.19 is representing the remarkable features for lung cancer.After
model training, the accuracy of model is 0.6 % and F1 score is 0.56. Confusion matrix
for the lung cancer is shown in Figure 4.20.

Figure 4.19: Feature Selected Using Lasso for Lung Cancer
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Figure 4.20: Confusion Matrix for Lung Cancer through RF

4.3.1.4 Tuberculosis Dataset

The fourth dataset contains information on microbial species of TB.After splitting of
data, the algorithm is trained on the training data. Features that contributes to the
development of disease are chosen using lasso and chi-square feature selection methods.
Figure 4.21 is representing the discriminating features in disease and healthy conditions.
The accuracy of model is 0.66 and F1 score is 0.62. Confusion matrix for TB dataset
is shown in Figure 4.22.

Figure 4.21: Feature Selected Using Lasso for TB
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Figure 4.22: Confusion Matrix for TB through RF

4.3.1.5 All Datasets

A RF model is build using all four datasets together with healthy and diseased bacterial
species.The features chosen for the model is shown in Figure 4.23 and confusion matrix
is displayed in Figure 4.24. Accuracy of the model is 0.51 % and 0.52 is F1 score of the
model. The F1 scores and accuracies for all models on all datasets are shown in Table
4.10.

Figure 4.23: Feature Selected Using Lasso for All Datasets
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Figure 4.24: Confusion Matrix for All Datasets through RF

Table 4.10. Summary of RF Model Scores

Datasets Accuracy F1-Score
COPD 0.5 0.45
COVID-19 0.94 0.93
Lung Cancer 0.6 0.56
TB 0.66 0.62
All 0.51 0.52

4.3.2 Support Vector Machine

SVM is also an important classifier that can differentiate between the two or more
classes in the data.It is also a supervised method.Here SVM is used on four datasets of
different diseases and classify the bacterial species accordingly.Here four hundred and
ninety features are used for the learning of the model.

4.3.2.1 Chronic Obstructive Pulmonary Disease Dataset

The relative abundances of bacteria are input into the ML model.The data is split
into ratio of 20 and 80. The bacterial data is used for the training of SVM that can
differentiate between the diseased and normal.The features which are bacterial species
are used for the training of model and then testing is done to evaluate the performance
of the model.The methods used for features selection are lasso and chi-square.The
features selected for SVM are displayed in Figure 4.25.The confusion matrix for COPD
are shown in Figure 4.26. The accuracy and F1 score for model is 0.45.
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Figure 4.25: Feature Selected Using Lasso for COPD

Figure 4.26: Confusion Matrix for COPD through SVM

4.3.2.2 COVID-19 Dataset

The model is develop only for COVID-19 disease and normal microbial species. The
chosen microbial species are using lasso and shown in Figure 4.27. The confusion
matrix is shown in Figure 4.28. The accuracy measured for the model is 0.88 % and
calculated F1 score is 0.83.
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Figure 4.27: Feature Selected Using Lasso for COVID-19

Figure 4.28: Confusion Matrix for COVID-19 through SVM

4.3.2.3 Lung Cancer Dataset

The SVM for lung cancer is build to classify the micro-organisms present in disease
and control conditions. The chosen species are displayed in Figure 4.29 and confusion
matrix is displayed in Figure 4.30.The model gives the accuracy 0.6 % and F1 score is
0.56.
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Figure 4.29: Feature Selected Using Lasso for Lung Cancer

Figure 4.30: Confusion Matrix for Lung Cancer through RF

4.3.2.4 Tuberculosis Dataset

The SVM for TB is build on bacteria favoured by the chi-square and lasso feature
selection techniques. Model is 0.75 % accurately classifying the infectious and control
bacteria with 0.69 F1 score. The lasso discriminating features are displayed in Figure
4.31 and confusion matrix in Figure 4.32.
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Figure 4.31: Feature Selected Using Lasso for TB

Figure 4.32: Confusion Matrix for TB through SVM

4.3.2.5 All Datasets

A SVM model with all combined datasets is developed that can differentiate between
healthy and all diseased classes. To develop a model on the most significant data,
chi-square and lasso models are used. Most notable micro-organisms used for model
are shown in Figure 4.33. Model is tested with test data to check its performance. The
algorithm is 0.54% accurately classifying the bacteria with F1 score of 0.46. Confusion
matrix is used for the assessment of the SVM. Figure 4.34 is displaying the confusion
matrix for all datasets generated through SVM. The summary of all models scores and
accuracies are shown in Table 4.11.
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Figure 4.33: Feature Selected Using Lasso for All Datasets

Figure 4.34: Confusion Matrix for All Datasets through SVM

Table 4.11. Summary of SVM Model Scores

Datasets Accuracy F1-Score
COPD 0.5 0.45
COVID-19 0.88 0.83
Lung Cancer 0.6 0.56
TB 0.75 0.69
All 0.54 0.46
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Chapter 5

DISCUSSION

Respiratory diseases are the among the top concerns due to their morbidity and mor-
tality rate. Primarily they affect the lung functions and micro-organisms present in
respiratory track and micro-organisms are among the major causes of development and
progression of disease. Immediate attention is required for comprehensive understand-
ing of micro-flora of pulmonary tract primarily the lungs. Novelty and enhancement
is needed for the determination of pulmonary disorders to reduce the burdens of the
chronic respiratory diseases.

The primary purpose of this study is to understand the microbiome of different
parts of the pulmonary tract primarily lungs and determine their roles and relative
abundances in the progression of different diseases using NGS technique. The diseases
which are focused during this study are COPD, COVID-19, Lung Cancer and TB. Two
different metagenomics techniques e.g. targeted (amplicon) and non-targeted (shotgun)
are employed for deep understanding of the bacterial patterns in the diseases. Moreover,
different bacterial species function in the respiratory disorders are evaluated using the
comprehensive literature. Beside this, different ML model e.g. RF and SVM are build
to differentiate between the bacterial species presence in the above mentioned diseases.

Six secondary datasets are used for metagenomics, two amplicon datasets and
four shotgun datasets. In-silico analysis for taxonomical classification of amplicon
was carried out using silva 138.1 database and shotgun analysis was performed using
MetaphlAn4. For detailed exploration and profiling at the maximum level ,shotgun
analysis is preferred.Therefore, for specie and further profiling of microbiome, shotgun
datasets were used. Originally, the 16S rRNA datasets provides insight on the phy-
lum, families and some genera of bacteria. Furthermore, the shotgun provides valuable
insight at the specie and some strains of bacteria.

Metagenomics sequencing is extensively used for the determination and understand-
ing the functions of microbiome in different body sites of humans. Respiartory mi-
croflora also seek much attention due to their impact in different diseases states.The
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adundant phylum in COPD in literature were Bacteroidetes, Proteobacteria and Fir-
micutes. Selenomonas, Actinomyces, Corynebacterium and Actinobacillus are among
the most classified bacteria during profiling[37]. Similarly, metagenomics sequencing
was also utilized to understand the composition of microflora of corona virus. The se-
quencing gives us the important phylum and families of bacteria that are Cyanobacte-
ria, Firmicutes, Bacteroidetes and Actinobacteria while Staphylococcus, Pseudomonas,
Streptomyces and many other generas are also determined [51]. Metagenomics was em-
ployed in lung cancer micro-organisms determination. There was over and under repre-
sentation of micro-organisms in lung cancer patients. Rothia, Moraxella, Haemophilus
and Mycobacterium are critical generas in diseased persons. Fusobacteria, Proteobac-
teria and Actinobacteria are effective phylum identified in the patients that shows
their role and impact in the illness [63]. In case of TB, the microbes initiates their
growth and has key effects on the disease. The generas in TB are a bit change from the
other enlisted disorders. The Spirochaetes, Tenericutes, Fusobacterium, Proteobacteria
,Campylobacter and Absconditabacteria in infected individuals [72].

The lung and overall pulmonary tract microbiota has an significant impact in de-
velopment of disease. Our research results provides critical bacterial phylums, families,
genus, species and some strains in aspect of respiratory diseases. The important bacte-
ria for progression of selected disorders are Bacteroidota, Firmicutes and Proteobacteria
that are present in all diseased datasets. Moreover Fusobacteria is discriminating in
COPD amplicon. Actinomyces, Streptococcus and Veionella are same in amplicon and
shotgun at genus level while Staphylococcaceae family is same in both amplicon and
shotgun analysis in COVID-19. Actinobacteria and Fusobacteria are distinct phylum
in lung cancer. Candidatus-Saccharibacteria is distinguish in TB samples.

Microbes plays significant role in pulmonary illness. The results shows the presence
of micro-organisms in different breathing disorders. Different phylum, families, genera
and species of bacteria are classified with their relative abundances. Although, some
phylum, families or genera are same in diseased and control sequences but their abun-
dances or representation are altered that is key modulator and progression of illness.
As in our case in amplicon analysis of COVID-19, the Proteobacteria has 99.038 %
relative abundance in infected samples but in control cases the maximum abundance
observed is 88.098 % with different genera and species.

Additionally, ML models e.g. RF and SVM are developed and trained on the
bacterial species. The data are bacterial species with their relative abundances that are
input into scikit-learn. The tsv file is read through a function and data is transformed to
bring the bacterial species into rows and samples relative abundances into columns. The
tsv file contains bacterial specie information of all diseases and non-diseased samples.
The labels are added to differentiate between the datasets, with 80/20 ratio for splitting
of data for training and testing of the models. The model can classify and differentiate
between the bacterial species of all diseases. Lasso model and chi-square techniques
are used for significant selection of features. The model is compiled in python, and
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originally accuracy is used for measuring how accurately the model can classify between
the given features. For model evaluation, test data is used which predicts the species
with accurate labels for each dataset. The COVID-19 dataset shows the high accuracies
among all with 94% in RF and 88% in SVM.
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Chapter 6

CONCLUSIONS AND FUTURE
RECOMMENDATIONS

In this research, several metagenomics datasets comprising amplicons (16S rRNA) and
shotgun metagenomes of different respiratory disorders such as COPD, COVID-19,
Lung cancer and TB are analyzed. Firmicutes, Proteobacteria and Bacteroidetes are
the prominent phylums in all these disorders. Actinobacteria and Fusobacteria are dis-
tinct in lung cancer patients with Candidatus-Saccharibacteria is present in TB sam-
ples. In COPD sequences, Fusobacteria is discriminated in amplicon sequences while
Staphylococcaceae family is same in both amplicon and shotgun analysis in COVID-19.
These phylums have different classes and families of bacteria with few same and few
discriminating in the infected sequences.

Shotgun provides more detailed perspective of taxonomical profiling by classifying
the bacteria at the genus and specie level. The critical species identified in COPD are
Staphylococcus-aureus, Streptococcus-salivarius, Actinomyces-graevenitzii, Prevotella-
histicola and Haemophilus-influenzae. Similarly, impactful species in COVID-19 are
Corynebacteriu-propinquum, Cutibacterium-acnes, Streptococcus-pneumoniae, Malasse
zia-restricta and Dolosigranulum-pigrum. In lung cancer sequences Halomonas-sp-
LBP4, Vibrio-alginolyticus, Selenomonas, Campylobacter-jejuni ,Streptococcus-pneumo
niae, Prevotella-melaninogenica, Haemophilus-influenzae and Escherichia-coli plays
their role in progression of disease. Neisseria-subflava, Prevotella-melaninogenica,
Streptoco
ccus-mitis, Ralstonia-pickettii and Porphyromonas-pasteri are significant species iden-
tified in TB samples. Furthermore, different ML models are employed to determine the
microbial specie patterns in diseased and healthy samples. They can play their role in
detection of different pulmonary disorders on the basis of bacterial species present in
the samples.

To improve the authenticity of the research, datasets number implanted for analysis
can be increased. For better understanding of microbial functions and their link with

65



proteins and pathways related to disorders functional analysis can be incorporated.
Moreover, to increase the reliability of the results, it is recommended to incorporate
the wet lab procedures for 16S rRNA and metagenome analysis. Bacteroidetes, Firmi-
cutes and Proteobacteria are the significant taxonomic groups with further underlying
families, genera and specie level information is identified in the analysis. For evalua-
tion and confirmation of the research results, additional studies and more exploration
is required.

In this study, whole respiratory microbiota primarily lungs is explored with sec-
ondary data which is focused on the nasopharynx, BAL and BALF with different sites
in respiratory tract. Hence, studies with primary data with one focused site in pul-
monary tract can give more specific and detailed representation of the microbe’s role
and impact on the breathing disorders. In brief, the obtained results can be the base
to the more valuable and thorough research related to respiratory microbes.

66



Bibliography

[1] J. G. Natalini, S. Singh, and L. N. Segal, “The dynamic lung microbiome in health
and disease,” Nature Reviews Microbiology, vol. 21, no. 4, pp. 222–235, 2023.

[2] A. I. Ritchie and A. Singanayagam, “Metagenomic characterization of the respi-
ratory microbiome. a piece de resistance,” 2020.

[3] M.-M. Pust, L. Wiehlmann, C. Davenport, I. Rudolf, A.-M. Dittrich, and
B. Tümmler, “The human respiratory tract microbial community structures in
healthy and cystic fibrosis infants,” npj Biofilms and Microbiomes, vol. 6, no. 1,
p. 61, 2020.

[4] M. Bou Zerdan, J. Kassab, P. Meouchy, E. Haroun, R. Nehme, M. Bou Zerdan,
G. Fahed, M. Petrosino, D. Dutta, and S. Graziano, “The lung microbiota and
lung cancer: a growing relationship,” Cancers, vol. 14, no. 19, p. 4813, 2022.

[5] R. Li, J. Li, and X. Zhou, “Lung microbiome: new insights into the pathogenesis
of respiratory diseases,” Signal Transduction and Targeted Therapy, vol. 9, no. 1,
p. 19, 2024.

[6] C. Kumpitsch, K. Koskinen, V. Schöpf, and C. Moissl-Eichinger, “The microbiome
of the upper respiratory tract in health and disease,” BMC biology, vol. 17, pp. 1–
20, 2019.

[7] N. L. Mankowski and B. Bordoni, “Anatomy, head and neck, nasopharynx,” 2020.

[8] P. Zimmermann, “Exploring the microbial landscape of the nasopharynx in chil-
dren: a systematic review of studies using next generation sequencing,” Frontiers
in Microbiomes, vol. 2, p. 1231271, 2023.

[9] M. Flynn and J. Dooley, “The microbiome of the nasopharynx,” Journal of medical
microbiology, vol. 70, no. 6, p. 001368, 2021.

[10] L. Qu, Q. Cheng, Y. Wang, H. Mu, and Y. Zhang, “Copd and gut–lung axis:
how microbiota and host inflammasome influence copd and related therapeutics,”
Frontiers in Microbiology, vol. 13, p. 868086, 2022.

67



[11] D. Yang, Y. Xing, X. Song, and Y. Qian, “The impact of lung microbiota dysbiosis
on inflammation,” Immunology, vol. 159, no. 2, pp. 156–166, 2020.

[12] J. Bouquet, D. E. Tabor, J. S. Silver, V. Nair, A. Tovchigrechko, M. P. Griffin,
M. T. Esser, B. R. Sellman, and H. Jin, “Microbial burden and viral exacerbations
in a longitudinal multicenter copd cohort,” Respiratory research, vol. 21, pp. 1–13,
2020.

[13] R. J. Huijsmans, A. de Haan, N. N. ten Hacken, R. V. Straver, and A. J. van’t Hul,
“The clinical utility of the gold classification of copd disease severity in pulmonary
rehabilitation,” Respiratory medicine, vol. 102, no. 1, pp. 162–171, 2008.

[14] M. Miravitlles and A. Ribera, “Understanding the impact of symptoms on the
burden of copd,” Respiratory research, vol. 18, no. 1, p. 67, 2017.

[15] M. A. Khan, “Monthly and seasonal prevalence of asthma and chronic obstruc-
tive pulmonary disease in the district dera ismail khan, khyber pakhtunkhwa,
pakistan,” The Egyptian Journal of Bronchology, vol. 16, no. 1, p. 63, 2022.

[16] A. Singh, S. Zaheer, N. Kumar, T. Singla, and S. Ranga, “Covid19, beyond just
the lungs: A review of multisystemic involvement by covid19,” Pathology-Research
and Practice, vol. 224, p. 153384, 2021.

[17] G. Gabutti, E. d’Anchera, F. Sandri, M. Savio, and A. Stefanati, “Coronavirus:
update related to the current outbreak of covid-19,” Infectious diseases and ther-
apy, vol. 9, pp. 241–253, 2020.

[18] S. Maryam, I. Ul Haq, G. Yahya, M. Ul Haq, A. M. Algammal, S. Saber, and
S. Cavalu, “Covid-19 surveillance in wastewater: An epidemiological tool for the
monitoring of sars-cov-2,” Frontiers in cellular and infection microbiology, vol. 12,
p. 978643, 2023.

[19] S. Khatiwada and A. Subedi, “Lung microbiome and coronavirus disease 2019
(covid-19): possible link and implications,” Human microbiome journal, vol. 17,
p. 100073, 2020.

[20] Y. Han, Z. Jia, J. Shi, W. Wang, and K. He, “The active lung microbiota landscape
of covid-19 patients through the metatranscriptome data analysis,” BioImpacts:
BI, vol. 12, no. 2, p. 139, 2022.

[21] B.-Y. Wang, J.-Y. Huang, H.-C. Chen, C.-H. Lin, S.-H. Lin, W.-H. Hung, and Y.-
F. Cheng, “The comparison between adenocarcinoma and squamous cell carcinoma
in lung cancer patients,” Journal of cancer research and clinical oncology, vol. 146,
pp. 43–52, 2020.

68



[22] M. M. Saab, M. McCarthy, M. O’Driscoll, L. J. Sahm, P. Leahy-Warren, B. Noo-
nan, S. FitzGerald, M. O’Malley, N. Lyons, H. E. Burns, et al., “A systematic
review of interventions to recognise, refer and diagnose patients with lung cancer
symptoms,” NPJ Primary Care Respiratory Medicine, vol. 32, no. 1, p. 42, 2022.

[23] A. Ali, M. F. Manzoor, N. Ahmad, R. M. Aadil, H. Qin, R. Siddique, S. Riaz,
A. Ahmad, S. A. Korma, W. Khalid, et al., “The burden of cancer, government
strategic policies, and challenges in pakistan: A comprehensive review,” Frontiers
in nutrition, vol. 9, p. 940514, 2022.

[24] H. Guo, L. Zhao, J. Zhu, P. Chen, H. Wang, M. Jiang, X. Liu, H. Sun, W. Zhao,
Z. Zheng, et al., “Microbes in lung cancer initiation, treatment, and outcome:
boon or bane?,” in Seminars in Cancer Biology, vol. 86, pp. 1190–1206, Elsevier,
2022.

[25] T. Parbhoo, J. M. Mouton, and S. L. Sampson, “Phenotypic adaptation of my-
cobacterium tuberculosis to host-associated stressors that induce persister forma-
tion,” Frontiers in Cellular and Infection Microbiology, vol. 12, p. 956607, 2022.

[26] L. Luies and I. Du Preez, “The echo of pulmonary tuberculosis: mechanisms of
clinical symptoms and other disease-induced systemic complications,” Clinical mi-
crobiology reviews, vol. 33, no. 4, pp. 10–1128, 2020.

[27] S. B. Obakiro, A. Kiprop, I. Kowino, E. Kigondu, M. P. Odero, T. Omara, and
L. Bunalema, “Ethnobotany, ethnopharmacology, and phytochemistry of tradi-
tional medicinal plants used in the management of symptoms of tuberculosis in
east africa: a systematic review,” Tropical Medicine and Health, vol. 48, pp. 1–21,
2020.

[28] Y. Liu, J. Wang, and C. Wu, “Microbiota and tuberculosis: a potential role of
probiotics, and postbiotics,” Frontiers in Nutrition, vol. 8, p. 626254, 2021.

[29] C. Frioux, D. Singh, T. Korcsmaros, and F. Hildebrand, “From bag-of-genes to
bag-of-genomes: metabolic modelling of communities in the era of metagenome-
assembled genomes,” Computational and Structural Biotechnology Journal, vol. 18,
pp. 1722–1734, 2020.

[30] L. Zhang, F. Chen, Z. Zeng, M. Xu, F. Sun, L. Yang, X. Bi, Y. Lin, Y. Gao,
H. Hao, et al., “Advances in metagenomics and its application in environmental
microorganisms,” Frontiers in microbiology, vol. 12, p. 766364, 2021.

[31] W. Liebl, “Metagenomics,” in Enzyclopedia of geobiology, Springer, 2010.

69



[32] Y.-X. Liu, Y. Qin, T. Chen, M. Lu, X. Qian, X. Guo, and Y. Bai, “A practical
guide to amplicon and metagenomic analysis of microbiome data,” Protein & cell,
vol. 12, no. 5, pp. 315–330, 2021.

[33] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Sci-
ence and Research (IJSR).[Internet], vol. 9, no. 1, pp. 381–386, 2020.

[34] A. Mathieu, M. Leclercq, M. Sanabria, O. Perin, and A. Droit, “Machine learning
and deep learning applications in metagenomic taxonomy and functional annota-
tion,” Frontiers in Microbiology, vol. 13, p. 811495, 2022.

[35] T. Jiang, J. L. Gradus, and A. J. Rosellini, “Supervised machine learning: a brief
primer,” Behavior therapy, vol. 51, no. 5, pp. 675–687, 2020.

[36] S. Yu, H. Zhang, L. Wan, M. Xue, Y. Zhang, and X. Gao, “The association
between the respiratory tract microbiome and clinical outcomes in patients with
copd,” Microbiological Research, vol. 266, p. 127244, 2023.

[37] C. Russo, V. Colaianni, G. Ielo, M. S. Valle, L. Spicuzza, and L. Malaguarnera,
“Impact of lung microbiota on copd,” Biomedicines, vol. 10, no. 6, p. 1337, 2022.

[38] H. Guo-Parke, D. Linden, S. Weldon, J. C. Kidney, and C. C. Taggart, “Mech-
anisms of virus-induced airway immunity dysfunction in the pathogenesis of
copd disease, progression, and exacerbation,” Frontiers in Immunology, vol. 11,
p. 516782, 2020.

[39] M. Kaur, J. Chandel, J. Malik, and A. S. Naura, “Particulate matter in copd
pathogenesis: an overview,” Inflammation Research, vol. 71, no. 7, pp. 797–815,
2022.

[40] F. De Nuccio, P. Piscitelli, and D. M. Toraldo, “Gut–lung microbiota interactions
in chronic obstructive pulmonary disease (copd): potential mechanisms driving
progression to copd and epidemiological data,” Lung, vol. 200, no. 6, pp. 773–781,
2022.

[41] L. Ren, R. Zhang, J. Rao, Y. Xiao, Z. Zhang, B. Yang, D. Cao, H. Zhong, P. Ning,
Y. Shang, et al., “Transcriptionally active lung microbiome and its association with
bacterial biomass and host inflammatory status,” MSystems, vol. 3, no. 5, pp. 10–
1128, 2018.

[42] S. J. Cameron, K. E. Lewis, S. A. Huws, W. Lin, M. J. Hegarty, P. D. Lewis, L. A.
Mur, and J. A. Pachebat, “Metagenomic sequencing of the chronic obstructive
pulmonary disease upper bronchial tract microbiome reveals functional changes
associated with disease severity,” PLoS One, vol. 11, no. 2, p. e0149095, 2016.

70



[43] C.-Y. Yang, S.-W. Li, C.-Y. Chin, C.-W. Hsu, C.-C. Lee, Y.-M. Yeh, and K.-
A. Wu, “Association of exacerbation phenotype with the sputum microbiome in
chronic obstructive pulmonary disease patients during the clinically stable state,”
Journal of Translational Medicine, vol. 19, pp. 1–14, 2021.

[44] D. Yesudhas, A. Srivastava, and M. M. Gromiha, “Covid-19 outbreak: history,
mechanism, transmission, structural studies and therapeutics,” Infection, vol. 49,
pp. 199–213, 2021.

[45] S. R. Paludan and T. H. Mogensen, “Innate immunological pathways in covid-19
pathogenesis,” Science immunology, vol. 7, no. 67, p. eabm5505, 2022.

[46] E. Sharifipour, S. Shams, M. Esmkhani, J. Khodadadi, R. Fotouhi-Ardakani,
A. Koohpaei, Z. Doosti, and S. Ej Golzari, “Evaluation of bacterial co-infections
of the respiratory tract in covid-19 patients admitted to icu,” BMC infectious
diseases, vol. 20, pp. 1–7, 2020.

[47] R. Aquino-Martinez and S. Hernández-Vigueras, “Severe covid-19 lung infection
in older people and periodontitis,” Journal of Clinical Medicine, vol. 10, no. 2,
p. 279, 2021.

[48] R. F. Kullberg, J. de Brabander, L. S. Boers, J. J. Biemond, E. J. Nossent, L. M.
Heunks, A. P. Vlaar, P. I. Bonta, T. van Der Poll, J. Duitman, et al., “Lung
microbiota of critically ill patients with covid-19 are associated with nonresolving
acute respiratory distress syndrome,” American journal of respiratory and critical
care medicine, vol. 206, no. 7, pp. 846–856, 2022.

[49] C. Merenstein, F. D. Bushman, and R. G. Collman, “Alterations in the respiratory
tract microbiome in covid-19: current observations and potential significance,”
Microbiome, vol. 10, no. 1, p. 165, 2022.

[50] Q. Miao, Y. Ma, Y. Ling, W. Jin, Y. Su, Q. Wang, J. Pan, Y. Zhang, H. Chen,
J. Yuan, et al., “Evaluation of superinfection, antimicrobial usage, and airway
microbiome with metagenomic sequencing in covid-19 patients: A cohort study
in shanghai,” Journal of Microbiology, Immunology and Infection, vol. 54, no. 5,
pp. 808–815, 2021.

[51] M. N. Hoque, M. S. Rahman, R. Ahmed, M. S. Hossain, M. S. Islam, T. Islam,
M. A. Hossain, and A. Z. Siddiki, “Diversity and genomic determinants of the
microbiomes associated with covid-19 and non-covid respiratory diseases,” Gene
reports, vol. 23, p. 101200, 2021.

[52] N. Haiminen, F. Utro, E. Seabolt, and L. Parida, “Functional profiling of covid-19
respiratory tract microbiomes,” Scientific Reports, vol. 11, no. 1, p. 6433, 2021.

71



[53] P. Gaibani, E. Viciani, M. Bartoletti, R. E. Lewis, T. Tonetti, D. Lombardo,
A. Castagnetti, F. Bovo, C. S. Horna, M. Ranieri, et al., “The lower respiratory
tract microbiome of critically ill patients with covid-19,” Scientific reports, vol. 11,
no. 1, p. 10103, 2021.

[54] S. Ke, S. T. Weiss, and Y.-Y. Liu, “Dissecting the role of the human microbiome in
covid-19 via metagenome-assembled genomes,” Nature Communications, vol. 13,
no. 1, p. 5235, 2022.

[55] L. Corrales, R. Rosell, A. F. Cardona, C. Martin, Z. L. Zatarain-Barron, and
O. Arrieta, “Lung cancer in never smokers: The role of different risk factors
other than tobacco smoking,” Critical reviews in oncology/hematology, vol. 148,
p. 102895, 2020.

[56] A. Acha-Sagredo, B. Uko, P. Pantazi, N. G. Bediaga, C. Moschandrea, L. Rainbow,
M. W. Marcus, M. P. Davies, J. K. Field, and T. Liloglou, “Long non-coding rna
dysregulation is a frequent event in non-small cell lung carcinoma pathogenesis,”
British journal of cancer, vol. 122, no. 7, pp. 1050–1058, 2020.

[57] Y. Zhao, Y. Liu, S. Li, Z. Peng, X. Liu, J. Chen, and X. Zheng, “Role of lung
and gut microbiota on lung cancer pathogenesis,” Journal of Cancer Research and
Clinical Oncology, vol. 147, no. 8, pp. 2177–2186, 2021.

[58] A. Karvela, O.-Z. Veloudiou, A. Karachaliou, T. Kloukina, G. Gomatou, and
E. Kotteas, “Lung microbiome: An emerging player in lung cancer pathogenesis
and progression,” Clinical and Translational Oncology, vol. 25, no. 8, pp. 2365–
2372, 2023.

[59] F. Perrone, L. Belluomini, M. Mazzotta, M. Bianconi, V. Di Noia, F. Meacci,
M. Montrone, D. Pignataro, A. Prelaj, S. Rinaldi, et al., “Exploring the role of
respiratory microbiome in lung cancer: A systematic review,” Critical Reviews in
Oncology/Hematology, vol. 164, p. 103404, 2021.

[60] Q. Dong, E. S. Chen, C. Zhao, and C. Jin, “Host-microbiome interaction in lung
cancer,” Frontiers in Immunology, vol. 12, p. 679829, 2021.

[61] O.-H. Kim, B.-Y. Choi, D. K. Kim, N. H. Kim, J. K. Rho, W. J. Sul, and S. W.
Lee, “The microbiome of lung cancer tissue and its association with pathological
and clinical parameters,” American Journal of Cancer Research, vol. 12, no. 5,
p. 2350, 2022.

[62] K. L. Greathouse, J. R. White, A. J. Vargas, V. V. Bliskovsky, J. A. Beck, N. von
Muhlinen, E. C. Polley, E. D. Bowman, M. A. Khan, A. I. Robles, et al., “Inter-
action between the microbiome and tp53 in human lung cancer,” Genome biology,
vol. 19, pp. 1–16, 2018.

72



[63] Q. Chen, K. Hou, M. Tang, S. Ying, X. Zhao, G. Li, J. Pan, X. He, H. Xia, Y. Li,
et al., “Screening of potential microbial markers for lung cancer using metagenomic
sequencing,” Cancer Medicine, vol. 12, no. 6, pp. 7127–7139, 2023.

[64] L. Zheng, R. Sun, Y. Zhu, Z. Li, X. She, X. Jian, F. Yu, X. Deng, B. Sai, L. Wang,
et al., “Lung microbiome alterations in nsclc patients,” Scientific reports, vol. 11,
no. 1, p. 11736, 2021.

[65] G. Churchyard, P. Kim, N. S. Shah, R. Rustomjee, N. Gandhi, B. Mathema,
D. Dowdy, A. Kasmar, and V. Cardenas, “What we know about tuberculosis trans-
mission: an overview,” The Journal of infectious diseases, vol. 216, no. suppl_6,
pp. S629–S635, 2017.

[66] G. B. Migliori, C. W. Ong, L. Petrone, L. D’Ambrosio, R. Centis, and D. Goletti,
“The definition of tuberculosis infection based on the spectrum of tuberculosis
disease,” Breathe, vol. 17, no. 3, 2021.

[67] S. S. Alsayed and H. Gunosewoyo, “Tuberculosis: pathogenesis, current treat-
ment regimens and new drug targets,” International journal of molecular sciences,
vol. 24, no. 6, p. 5202, 2023.

[68] S. R. Hegde, “Computational identification of the proteins associated with quo-
rum sensing and biofilm formation in mycobacterium tuberculosis,” Frontiers in
Microbiology, vol. 10, p. 479640, 2020.

[69] Y. Hu, Y. Kang, X. Liu, M. Cheng, J. Dong, L. Sun, Y. Zhu, X. Ren, Q. Yang,
X. Chen, et al., “Distinct lung microbial community states in patients with pul-
monary tuberculosis,” Science China Life Sciences, vol. 63, pp. 1522–1533, 2020.

[70] T. Shah, Z. Shah, Z. Baloch, and X. Cui, “The role of microbiota in respiratory
health and diseases, particularly in tuberculosis,” Biomedicine & Pharmacother-
apy, vol. 143, p. 112108, 2021.

[71] G. Xiao, Z. Cai, Q. Guo, T. Ye, Y. Tang, P. Guan, J. Zhang, M. Ou, X. Fu, L. Ren,
et al., “Insights into the unique lung microbiota profile of pulmonary tuberculosis
patients using metagenomic next-generation sequencing,” Microbiology Spectrum,
vol. 10, no. 1, pp. e01901–21, 2022.

[72] M. R. Ticlla, J. Hella, H. Hiza, M. Sasamalo, F. Mhimbira, L. K. Rutaihwa,
S. Droz, S. Schaller, K. Reither, M. Hilty, et al., “The sputum microbiome in
pulmonary tuberculosis and its association with disease manifestations: a cross-
sectional study,” Frontiers in Microbiology, vol. 12, p. 633396, 2021.

73



[73] Y. Hu, M. Cheng, B. Liu, J. Dong, L. Sun, J. Yang, F. Yang, X. Chen, and Q. Jin,
“Metagenomic analysis of the lung microbiome in pulmonary tuberculosis-a pilot
study,” Emerging microbes & infections, vol. 9, no. 1, pp. 1444–1452, 2020.

[74] J. Li, A. Xiong, J. Wang, X. Wu, L. Bai, L. Zhang, X. He, and G. Li, “Deciphering
the microbial landscape of lower respiratory tract infections: insights from metage-
nomics and machine learning,” Frontiers in Cellular and Infection Microbiology,
vol. 14, p. 1385562, 2024.

[75] C. Y. Zhao, Y. Hao, Y. Wang, J. J. Varga, A. A. Stecenko, J. B. Goldberg, and
S. P. Brown, “Microbiome data enhances predictive models of lung function in
people with cystic fibrosis,” The Journal of infectious diseases, vol. 223, no. Sup-
plement_3, pp. S246–S256, 2021.

[76] A. McDowell, J. Kang, J. Yang, J. Jung, Y.-M. Oh, S.-M. Kym, T.-S. Shin, T.-B.
Kim, Y.-K. Jee, and Y.-K. Kim, “Machine-learning algorithms for asthma, copd,
and lung cancer risk assessment using circulating microbial extracellular vesicle
data and their application to assess dietary effects,” Experimental & Molecular
Medicine, vol. 54, no. 9, pp. 1586–1595, 2022.

[77] K. Pienkowska, M.-M. Pust, M. Gessner, S. Gaedcke, A. Thavarasa, I. Rosen-
boom, P. Morán Losada, R. Minso, C. Arnold, S. Hedtfeld, et al., “The cystic
fibrosis upper and lower airway metagenome,” Microbiology Spectrum, vol. 11,
no. 2, pp. e03633–22, 2023.

[78] I. Abellan-Schneyder, M. Matchado, S. Reitmeier, A. Sommer, Z. Sewald,
J. Baumbach, M. List, K. Neuhaus, and S. Tringe, “Primer, pipelines, parame-
ters: issues in 16s rrna gene sequencing. msphere 6: e01202-20,” 2021.

[79] D. Straub, N. Blackwell, A. Langarica-Fuentes, A. Peltzer, S. Nahnsen, and
S. Kleindienst, “Interpretations of environmental microbial community studies are
biased by the selected 16s rrna (gene) amplicon sequencing pipeline,” Frontiers in
Microbiology, vol. 11, p. 550420, 2020.

[80] K. Chappell, B. Francou, C. Habib, T. Huby, M. Leoni, A. Cottin, F. Nadal,
E. Adnet, E. Paoli, C. Oliveira, et al., “Galaxy is a suitable bioinformatics plat-
form for the molecular diagnosis of human genetic disorders using high-throughput
sequencing data analysis: five years of experience in a clinical laboratory,” Clinical
Chemistry, vol. 68, no. 2, pp. 313–321, 2022.

[81] S. Krakau, D. Straub, H. Gourlé, G. Gabernet, and S. Nahnsen, “nf-core/mag:
a best-practice pipeline for metagenome hybrid assembly and binning,” NAR ge-
nomics and bioinformatics, vol. 4, no. 1, p. lqac007, 2022.

74



[82] A. Blanco-Míguez, F. Beghini, F. Cumbo, L. J. McIver, K. N. Thompson, M. Zolfo,
P. Manghi, L. Dubois, K. D. Huang, A. M. Thomas, et al., “Extending and
improving metagenomic taxonomic profiling with uncharacterized species using
metaphlan 4,” Nature Biotechnology, vol. 41, no. 11, pp. 1633–1644, 2023.

[83] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learning: A
new perspective,” Neurocomputing, vol. 300, pp. 70–79, 2018.

75


	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS
	ABSTRACT
	INTRODUCTION
	Respiratory Microbiome
	Lung Microbiome
	Composition of Lung Microbiome
	Association of Lung Microbiome
	Microbiome of Upper Respiratory Tract
	Microbiome of Nasopharynx

	Factors Affecting Lung Microbiome
	Genetic Factors
	Environmental Factors
	Antibiotic Usage


	Respiratory Diseases
	Chronic Obstructive Pulmonary Disease
	Stages of COPD
	Symptoms of COPD
	Prevalence of COPD
	Lung Microbes in COPD

	COVID-19
	Symptoms of COVID-19
	Prevalence of COVID-19
	Lung Microbes in COVID-19

	Lung Cancer
	Symptoms of Lung Cancer
	Prevalence of Lung Cancer
	Lung Microbiome in Lung Cancer

	Tuberculosis
	Symptoms of TB
	Prevalence
	Lung Microbiome in TB


	Metagenome
	Types of Metagenome
	Amplicon Sequencing
	Shotgun Sequencing


	Machine Learning
	Different ML Models
	Random Forest
	Support Vector Machine



	LITERATURE REVIEW
	Chronic Obstructive Pulmonary Disease
	Metagenomics on COPD

	COVID-19
	Metagenomics on COVID-19

	Lung Cancer
	Metagenomics on Lung Cancer

	Tuberculosis
	Metagenomics on TB

	ML in Metagenomics
	Study Rationale
	Objectives

	MATERIALS AND METHODS
	Dataset Collection
	Metagenomics
	Amplicon Sequencing
	In-Silico Analysis of Amplicons
	Quantitative Insights Into Microbial Ecology 2
	Demultiplexing
	Data Input
	Denoising
	Amplicon Sequence Variants and Operational Taxonomic Units
	Taxonomical Classification
	Visualization

	Shotgun Sequencing
	In-Silico Shotgun Analysis
	Galaxy
	Importing Datasets
	Quality Control
	Taxonomical Assignment
	MetaphlAn


	Machine Learning
	Input Data
	Splitting of Data
	Feature Selection
	Model Building
	Model Training
	Model Evaluation


	RESULTS
	Amplicon Analysis Results
	COPD Amplicon Dataset
	COVID-19 Amplicon Results

	Shotgun Analysis
	In-Silico Shotgun Analysis of COPD
	In-Silico Shotgun Analysis of COVID-19
	In-Silico Shotgun Analysis of Lung Cancer
	In-Silico Shotgun Analysis of TB

	Machine Learning
	Random Forest
	Chronic Obstructive Pulmonary Disease Dataset
	COVID-19 Dataset
	Lung Cancer Dataset
	Tuberculosis Dataset
	All Datasets

	Support Vector Machine
	Chronic Obstructive Pulmonary Disease Dataset
	COVID-19 Dataset
	Lung Cancer Dataset
	Tuberculosis Dataset
	All Datasets



	DISCUSSION
	CONCLUSIONS AND FUTURE RECOMMENDATIONS

