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Preface

What is computational physics? Here, we take it to mean techniques for simu-
lating continuous physical systems on computers. Since mathematical physics
expresses these systems as partial differential equations, an equivalent state-
ment is that computational physics involves solving systems of partial differ-
ential equations on a computer.

This book is meant to provide an introduction to computational physics
to students in plasma physics and related disciplines. We present most of the
basic concepts needed for numerical solution of partial differential equations.
Besides numerical stability and accuracy, we go into many of the algorithms
used today in enough depth to be able to analyze their stability, efficiency,
and scaling properties. We attempt to thereby provide an introduction to and
working knowledge of most of the algorithms presently in use by the plasma
physics community, and hope that this and the references can point the way
to more advanced study for those interested in pursuing such endeavors.

The title of the book starts with Computational Methods..., not All Com-
putational Methods.... Perhaps it should be Some Computational Methods...
because it admittedly does not cover all computational methods being used
in the field. The material emphasizes mathematical models where the plasma
is treated as a conducting fluid and not as a kinetic gas. This is the most ma-
ture plasma model and also arguably the one most applicable to experiments.
Many of the basic numerical techniques covered here are also appropriate
for the equations one encounters when working in a higher-dimensional phase
space. The book also emphasizes toroidal confinement geometries, particularly
the tokamak, as this is the most mature and most successful configuration for
confining a high-temperature plasma.

There is not a clear dividing line between computational and theoretical
plasma physics. It is not possible to perform meaningful numerical simulations
if one does not start from the right form of the equations for the questions
being asked, and it is not possible to develop new advanced algorithms unless
one has some understanding of the underlying mathematical and physical
properties of the equation systems being solved. Therefore, we include in this
book many topics that are not always considered “computational physics,”
but which are essential for a computational plasma physicist to understand.
This more theoretical material, such as occurs in Chapters 1, 6, and 8 as well
as parts of Chapters 4 and 5, can be skipped if students are exposed to it in
other courses, but they may still find it useful for reference and context.

xix
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The author has taught a semester class with the title of this book to
graduate students at Princeton University for over 20 years. The students
are mostly from the Plasma Physics, Physics, Astrophysics, and Mechanical
and Aerospace Engineering departments. There are no prerequisites, and most
students have very little prior exposure to numerical methods, especially for
partial differential equations. The material in the book has grown considerably
during the 20-plus years, and there is now too much material to cover in a
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of the material, and an instructor can choose which material from the other
chapters would be suitable for his students and their needs and interests. A
two-semester course covering most of the material is also a possibility.

Computers today are incredibly powerful, and the types of equations we
need to solve to model the dynamics of a fusion plasma are quite complex.
The challenge is to be able to develop suitable algorithms that lead to stable
and accurate solutions that can span the relevant time and space scales. This
is one of the most challenging research topics in modern-day science, and the
payoffs are enormous. It is hoped that this book will help students and young
researchers embark on productive careers in this area.

The author is indebted to his many colleagues and associates for innu-
merable suggestions and other contributions. He acknowledges in particular
M. Adams, R. Andre, J. Breslau, J. Callen, M. Chance, J. Chen, C. Cheng,
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Chapter 1

Introduction to
Magnetohydrodynamic Equations

1.1 Introduction

A high-temperature magnetized plasma such as exists in modern magnetic
fusion experiments is one of the most complex media in existence. Although
adequately described by classical physics (augmented with atomic and nuclear
physics as required to describe the possible interaction with neutral atoms and
the energy release due to nuclear reactions), the wide range of time scales and
space scales present in the most general mathematical description of plasmas
make meaningful numerical simulations which span these scales enormously
difficult. This is the motivation for deriving and solving reduced systems of
equations that purport to describe plasma phenomena over restricted ranges
of time and space scales, but are more amenable to numerical solution.

The most basic set of equations describing the six dimension plus time
(x,v, t) phase space probability distribution function fj(x,v, t) for species j
of indistinguishable charged particles (electrons or a particular species of ions)
is a system of Boltzmann equations for each species:

∂fj(x,v, t)
∂t

+∇ · (vfj(x,v, t)) +∇v ·
[
qj
mj

(E + v ×B)fj(x,v, t)
]

= Cj + Sj . (1.1)

Here mj is the particle mass and qj is the particle charge for species j. The
collision operator Cj =

∑
j′ Cjj′ represents the effect of scattering due to

collisions between particles of species j and j′. External sources of particles,
momentum, and energy are represented by Sj . The electric and magnetic fields
E(x, t) and B(x, t) are obtained by solving the free space Maxwell’s equations

1
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(SI units):

∂B
∂t

= −∇×E, (1.2)

∇×B =
1
c2
∂E
∂t

+ µ0J, (1.3)

∇ ·E =
1
ε0
ρq, (1.4)

∇ ·B = 0, (1.5)

with charge and current density given by the following integrals over velocity
space:

ρq =
∑
j

qj

∫
d3vfj(x,v, t), (1.6)

J =
∑
j

qj

∫
d3vvfj(x,v, t). (1.7)

Here ε0 = 8.8542×10−12Fm−1 and µ0 = 4π×10−7Hm−1 are the permittivity
and permeability of free space, and c = (ε0µ0)−1/2 = 2.9979× 108ms−1 is the
speed of light.

These equations form the starting point for some studies of fine-scale
plasma turbulence and for studies of the interaction of imposed radio-
frequency (RF) electromagnetic waves with plasma. However, the focus here
will be to take velocity moments of Eq. (1.1), and appropriate sums over
species, so as to obtain fluid-like equations that describe the macroscopic dy-
namics of magnetized high-temperature plasma, and to discuss techniques for
their numerical solution.

The first three velocity moments correspond to conservation of particle
number, momentum, and energy. Operating on Eq. (1.1) with the velocity
space integrals

∫
d3v,

∫
d3vmjv, and

∫
d3vmjv

2/2 yields the following mo-
ment equations:

∂nj
∂t

+∇ · (njuj) = Ŝj , (1.8)

∂

∂t
(mjnjuj) +∇ · (mjnjujuj) +∇pj +∇ · πj

= qjnj(E + uj ×B) + Rj + M̂j , (1.9)

∂

∂t

(
3
2
pj +

1
2
mjnju

2
j

)
+ ∇ ·

(
1
2
mjnju

2
juj +

5
2
pjuj + πj · uj + qj

)
= (Rj + qjnjE) · uj +Qj +Q∆j . (1.10)
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Here, we have introduced for each species the number density, the fluid veloc-
ity, the scalar pressure, the stress tensor, the heat flux density, and the external
sources of particles, momentum, and energy density which are defined as:

nj =
∫
d3vfj(x,v, t), (1.11)

uj =
1
nj

∫
d3vvfj(x,v, t), (1.12)

pj =
1
3

∫
d3vmj |v − uj |2 fj(x,v, t), (1.13)

πj =
[∫

d3vmj(v − uj)(v − uj)fj(x,v, t)
]
− pjI, (1.14)

qj =
1
2

∫
d3vmj |v − uj |2 (v − uj)fj(x,v, t). (1.15)

Ŝj =
∫
d3vSj , (1.16)

M̂j =
∫
d3vmjvSj , (1.17)

Qj =
1
2

∫
d3vmjv

2Sj . (1.18)

The species temperature is defined to be kBTj = pj/nj , where the Boltzmann
constant is kB = 1.602× 10−19J [eV ]−1. The collisional sources of momentum
density and heat density are defined as

Rj =
∑
j′

∫
d3vmj(v − uj)Cjj′ , (1.19)

Q∆j =
1
2

∑
j′

∫
d3vmj |v − uj |2Cjj′ . (1.20)

We have used the property that particle collisions neither create nor destroy
particles, momentum, or energy, but only transfer momentum or energy be-
tween species. These conservation properties imply

∑
j

Rj = 0, (1.21)

and for a two-component electron-ion plasma,

Q∆e +Q∆i = Re ·
J
ne
. (1.22)
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1.2 Magnetohydrodynamic (MHD) Equations

The fluid equations given in the last section are very general; however,
they are incomplete and still contain too wide a range of time and space
scales to be useful for many purposes. To proceed, we make a number of
simplifying approximations that allow the omission of the terms in Maxwell’s
equations that lead to light waves and high-frequency plasma oscillations.
These approximations are valid provided the velocities (v), frequencies (ω),
and length scales of interest (L) satisfy the inequalities:

v � c,

ω � ωpe,

L� λD.

Here ωpe is the electron plasma frequency, and λD is the Debye length. These
orderings are normally well satisfied for macroscopic phenomena in modern
fusion experiments. We also find it convenient to change velocity variables
from the electron and ion velocities ue and ui to the fluid (mass) velocity and
current density, defined as:

u =
meneue +miniui
mene +mini

≈ ui; J = niqiui + neqeue. (1.23)

The approximation on the left is normally valid since mi � me and ne ∼ ni.
The resulting mathematical description is often called extended magneto-

hydrodynamics, or just simply magnetohydrodynamics (MHD). For simplicity,
we consider here only a single species of ions with unit charge. The field equa-
tions in MHD are then (SI units):

∂B
∂t

= −∇×E, (1.24)

∇ ·B = 0, (1.25)

∇×B = µ0J, (1.26)

ni = ne = n. (1.27)

Equations (1.24) and (1.25) for the magnetic field B are exact and al-
ways valid. Note that Eq. (1.25) can be regarded as an initial condition for
Eq. (1.24). Equation (1.26) can be taken as a defining equation for the elec-
trical current density J, effectively replacing both Eqs. (1.3) and (1.7). Equa-
tion (1.27), stating the equivalence of the electron and ion number density,
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is referred to as quasineutrality and similarly replaces Eq. (1.6). Note that
there is no equation for the divergence of the electric field, ∇ ·E, in MHD. It
is effectively replaced by the quasineutrality condition, Eq. (1.27).

The fluid equations are the continuity equation for the number density

∂n

∂t
+∇ · (nu) = Sm, (1.28)

the internal energy equation for the plasma pressure

3
2
∂p

∂t
+ ∇ ·

(
q +

3
2
pu
)

= −p∇ · u +
(

3
2
∇pe −

5
2
pe
n
∇n
)
· J
ne

+ Re ·
J
ne

− π : ∇u + πe : ∇ J
ne

+Q, (1.29)

the electron internal energy equation for the electron pressure

3
2
∂pe
∂t

+ ∇ ·
(
qe +

3
2
peu
)

= −pe∇ · u +
(

3
2
∇pe −

5
2
pe
n
∇n
)
· J
ne

+ Re ·
J
ne

− πe : ∇
(
u− J

ne

)
+Q∆ei +Qe, (1.30)

and the force balance equation for the fluid velocity

nmi

(
∂u
∂t

+ u · ∇u
)

+∇ · (πe + πi) = −∇p+ J×B. (1.31)

In addition, from the momentum equation for the electrons, Eq. (1.9) with
j = e, we have the generalized Ohm’s law equation, which in the limit of
vanishing electron mass (me = 0) becomes:

E + u×B =
1
ne

[Re + J×B−∇pe −∇ · πe] . (1.32)

The variables B, u, n, p, pe are the fundamental variables in that they
obey time advancement equations. The variables E, J, and the ion pressure
pi = p − pe are auxiliary variables which we define only for convenience. We
have also introduced the total heat flux q = qe+qi and the total non-isotropic
stress tensor π = πe + πi.

To proceed with the solution, one needs closure relations for the remain-
ing terms; the collisional friction term Re, the random heat flux vectors qj ,
the anisotropic part of the stress tensor πj , and the equipartition term Q∆ei.
It is the objective of transport theory to obtain closure expressions for these
in terms of the fundamental variables and their derivatives. There is exten-
sive and evolving literature on deriving closures that are valid in different
parameter regimes. We will discuss some of the more standard closures in the
following sections. We note here that the external sources of particles, total
energy, and electron energy Sm, Q, and Qe must also be supplied, as must
initial and boundary conditions.
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1.2.1 Two-Fluid MHD

The set of MHD equations as written in Section 1.2 is not complete because
of the closure issue. The most general closures that have been proposed are
presently too difficult to solve numerically. However, there are some approxi-
mations that are nearly always valid and are thus commonly applied. Other
approximations are valid over limited time scales and are useful for isolating
specific phenomena.

The two-fluid magnetohydrodynamic equations are obtained by taking an
asymptotic limit of the extended MHD equations in which first order terms
in the ratio of the ion Larmor radius to the system size are retained. This is
sometimes called the finite Larmor radius or FLR approximation. The princi-
pal effects are to include expressions for the parts of the ion stress tensor πi
and ion and electron heat fluxes qi and qe that do not depend on collisions.
This contribution to the ion stress tensor is known as the gyroviscous stress
or gyroviscosity . Let b be a unit vector in the direction of the magnetic field.
The general form of gyroviscosity, assuming isotropic pressure and negligible
heat flux, can be shown to be [1, 2, 3]:

πgyri =
mipi
4eB

{
b×W · (I + 3bb) + [b×W · (I + 3bb)]†

}
. (1.33)

Here, the rate of strain tensor is

W = ∇u + (∇u)† − 2
3
I∇ · u. (1.34)

The expressions for the gyroviscosity in Eqs. (1.33) and (1.34) are quite
complex and difficult to implement. A common approximation is to replace
Eq. (1.33) with what has become known as the gyroviscous cancellation ap-
proximation [4, 5],

∇ · πgyri ≈ −minu∗ · ∇u, (1.35)

where the ion magnetization velocity is defined by

u∗ = − 1
ne
∇×

( pi
B2

B
)
. (1.36)

At the same order in this expansion, it can be shown that for each species
there exists a heat flux q that is independent of the collision frequency:

q∧j =
5
2
pjkB
qjB

b×∇Tj . (1.37)

The remaining contributions to the ion stress tensor are dependent on the
collisionality regime and magnetic geometry in a complex way. These are often
approximated by an isotropic part and a parallel part as follows:

πisoi = −µ
[
∇u +∇u†

]
− 2(µc − µ) (∇ · u) I, (1.38)

∇ · πisoi = −µ∇2u− (2µc − µ)∇ (∇ · u) , (1.39)

π
‖
i = µ‖(b ·W · b)(I− 3bb). (1.40)



Introduction to Magnetohydrodynamic Equations 7

We note the positivity constraints µ ≥ 0, µc ≥ 2
3µ, µ‖ ≥ 0.

The electron gyroviscosity can normally be neglected due to the small
electron mass. However, for many applications, an electron parallel viscosity
can be important. This is similar in form to the ion one in Eq. (1.40) but with a
coefficient µe‖. In addition, it has been shown by several authors that in certain
problems involving two-fluid magnetic reconnection, an electron viscosity term
known as hyper-resistivity is required to avoid singularities from developing in
the solution [6, 7]. It is also useful for modeling the effect of fundamentally
three-dimensional reconnection physics in a two-dimensional simulation [8, 9].
Introducing the coefficient λH , we can take the hyper-resistivity to be of the
form:

πhre = λHη‖ne∇J. (1.41)

If h is the smallest dimension that can be resolved on a numerical grid, then
it has been proposed that λH ∼ h2 is required for the current singularity to
be resolvable, while at the same time vanishing in the continuum limit h→ 0.

The plasma friction force is generally taken to be of the form:

Re = ne
(
η‖J‖ + η⊥J⊥

)
, (1.42)

where ‖ and ⊥ are relative to the magnetic field direction. The classical values
for these resistivity coefficients are [1]:

η⊥ = 1.03× 10−4Z lnλ[T (ev)]−3/2 Ω m, (1.43)
η‖ = 0.51 η⊥. (1.44)

Here Z is the effective charge of the ion species and lnλ ∼ 20 is the Coulomb
logarithm [10]. The electron-ion temperature equilibration term is related to
the perpendicular resistivity by:

Q∆ei =
3e2n
mi

η⊥nkB(Ti − Te). (1.45)

The forms used for the viscosity coefficients µ, µc, µ‖ and the heat conduc-
tion coefficients κe‖, κ

e
⊥, κi‖, κ

i
⊥ can be the classical value for the collisional

regime [1], but are normally chosen according to other anomalous (or em-
pirical) models or so as to perform parametric studies. However, from basic
physical considerations (that the particles essentially free-stream with very
long collisional mean-free-paths parallel to the magnetic field but not perpen-
dicular to it) we normally have:

κe,i‖ � κe,i⊥ . (1.46)

The standard two-fluid MHD model can now be summarized as follows.
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Using the equations of Section 1.2, we use the following closure model:

Re = ne
(
η‖J‖ + η⊥J⊥

)
, (1.47)

qe = −κe‖∇‖Te − κe⊥∇⊥Te + q∧e, (1.48)

qi = −κi‖∇‖Ti − κi⊥∇⊥Ti + q∧i, (1.49)

πi = πgyri + πisoi + π
‖
i , (1.50)

πe = π‖e + πhre , (1.51)

Q∆ei =
3e2n
mi

η⊥nkB(Ti − Te). (1.52)

To complete this model, one must specify the 11 scalar functions η‖, η⊥, κe‖,
κe⊥ , κi‖, κ

i
⊥, µ, µc, µ‖, µe‖, and λH . These can be either constants or functions

of the macroscopic quantities being evolved in time according to the transport
model being utilized.

1.2.2 Resistive MHD

The resistive MHD model treats the electrons and ions as a single fluid
with pressure p = pe + pi. This model can formally be derived by taking
a limiting case of the two-fluid equations. The first limit is that of collision
dominance, which allows one to neglect the parallel viscosities compared to
∇p. The second limit is that of zero Larmor radius. This implies the neglect of
the gyroviscous stress and the collision-independent perpendicular heat fluxes
q∧j as well as most terms involving J/ne compared to those involving u.
It follows that the electron hyperviscosity is also not required. With these
simplifications, neglecting external sources, and introducing the mass density
ρ ≡ nmi, the equations of Section 1.2 become:

∂ρ

∂t
+∇ · (ρu) = 0, (1.53)

ρ(
∂u
∂t

+ u · ∇u) = −∇p+ J×B−∇ · πisoi , (1.54)

3
2
∂p

∂t
+∇ · (q +

3
2
pu) = −p∇ · u− πisoi : ∇u + ηJ2, (1.55)

∂B
∂t

= ∇× (u×B− ηJ) , (1.56)

J =
1
µ0
∇×B, (1.57)
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qi = −κ‖∇‖T − κ⊥∇⊥T. (1.58)

Here the fluid temperature is defined as T = p/2nkB and the viscosity term
in Eq. (1.54) is evaluated using Eq. (1.39). This model requires only the five
transport coefficients: η, κe‖ , κ⊥, µ, and µc.

1.2.3 Ideal MHD

A further approximation has to do with the smallness of the plasma
resistivity and the time scales over which resistive effects are important,
τR = µ0a

2/η, where a is the minor radius or other typical global dimen-
sion. If we non-dimensionalize the MHD equations, using the Alfvén velocity
VA = B/

√
µ0nMi, a, and the Alfvén time τA = a/VA, we find that the plasma

resistivity becomes multiplied by the inverse magnetic Lundquist number S−1,
where

S ≡ τR
τA
. (1.59)

In modern fusion experiments, this number is typically in the range S ∼
106 − 1012.

The other dissipative quantities qj and πiso are related to the resistivity
and thus also become multiplied by S−1. Although these terms are very im-
portant for the longer time dynamics of the plasma or to describe resistive
instabilities that involve internal boundary layers [11], if we are only inter-
ested in the fastest time scales present in the equations, we can neglect all
these dissipative terms which scale as S−1. Doing so leaves the ideal MHD
equations [14].

These equations have been extensively studied by both physicists and
mathematicians. They have a seemingly simple symmetrical structure with
well-defined mathematical properties, but at the same time can be exceedingly
rich in the solutions they admit. Adding back the dissipative and dispersive
terms will enlarge the class of possible solutions by making the equations
higher order, but will not fundamentally change the subset of non-dissipative
solutions found here for macroscopic motions. It is therefore important to un-
derstand the types of solutions possible for these equations before studying
more complex equation sets.

The ideal MHD equations can be written (in SI units), as follows:

∂ρ

∂t
+∇ · ρu = 0, (1.60)

∂B
∂t

= ∇× (u×B), (1.61)

ρ

(
∂u
∂t

+ u · ∇u
)

+∇p = J×B, (1.62)
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∂p

∂t
+ u · ∇p+ γp∇ · u = 0, (1.63)

where the current density is given by J ≡ µ−1
o ∇×B. Here we have introduced

γ = 5
3 , which is the ratio of specific heats, sometimes called the adiabatic

index. It is sometimes useful to also define another variable

s ≡ p/ργ ,

the entropy per unit mass. It then follows from Eqs. (1.60) and (1.63) that s
obeys the equation

∂s

∂t
+ u · ∇s = 0. (1.64)

Eq. (1.64) can be used to replace Eq. (1.63).

1.2.4 Other Equation Sets for MHD

The equation sets corresponding to the closures listed in the previous sec-
tions are by no means exhaustive. Higher-order closures exist which involve
integrating the stress tensor and higher-order tensors in time [15]. These be-
come very complex, and generally require a subsidiary kinetic calculation to
complete the closure of the highest-order tensor quantities. Additional clo-
sures of a more intermediate level of complexity exist in which the pressure
stress tensor remains diagonal but is allowed to have a different form parallel
and perpendicular to the magnetic field [16]. These allow the description of
some dynamical effects that arise from the fact that the underlying kinetic
distribution function is not close to a Maxwellian.

There are also widely used sets of starting equations for computational
MHD that are in many ways easier to solve than the ones presented here. The
reduced MHD equations follow from an additional expansion in the inverse
aspect ratio of a toroidal confinement device [17, 18]. These are discussed more
in Chapters 9 and 11.

The surface-averaged MHD equations are discussed in Chapter 6. These
are a very powerful system of equations that are valid for modeling the evo-
lution of an MHD stable system with good magnetic flux surfaces over long
times characterized by τR ∼ S τA. The equations are derived by an asymptotic
expansion in which the plasma inertia approaches zero. This leads to consid-
erable simplification, effectively removing the ideal MHD wave transit time
scales from the problem. At the same time, the flux surface averaging allows
the implementation of low collisionality closures that would not otherwise be
possible.

1.2.5 Conservation Form

A system of partial differential equations is said to be in conservation form
if all of the terms can be written as divergences of products of the dependent
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variable, i.e., in the form

∂

∂t
(· · · ) +∇ · (· · · ) = 0.

This form is useful for several purposes. It allows one to use Gauss’s theorem
to obtain global conservation laws and the appropriate boundary conditions
and jump conditions across shocks or material interfaces. It can also be used
as a starting point to formulate non-linear numerical solutions which maintain
the exact global conservation properties of the original equations.

By using elementary vector manipulations, we obtain the conservation
form of the MHD equations of Section 1.1, also incorporating the common
approximations discussed in Section 1.2. Assuming the external source terms
Sm, Se, See, etc. are also zero, we have

∂

∂t
ρ+∇ · (ρu) = 0, (1.65)

∂

∂t
Bi +∇ · [E× x̂i] = 0, (1.66)

∂

∂t
(ρu) +∇ ·

[
ρuu +

(
p+

B2

2µ0

)
I + π − 1

µ0
BB

]
= 0, (1.67)

∂

∂t

(
1
2
ρu2 +

3
2
p+

B2

2µ0

)
+ ∇ ·

[
u
(

1
2
ρu2 +

5
2
p

)
+ u · π +

1
µ0

E×B + q
]

= 0. (1.68)

These express conservation of mass, magnetic flux, momentum, and energy.
Here x̂i is the Cartesian unit vector for i = 1, 2, 3, and Bi is the corresponding
Cartesian component of the magnetic field; Bi = x̂i ·B. The global conserva-
tion laws are obtained by simply integrating Eq. (1.65)–(1.68) over a volume
and using Gauss’s theorem to convert divergences to surface integrals over the
boundary. We obtain

∂

∂t

∫
ρd3x = −

∫
dSn̂ · ρu, (1.69)

∂

∂t

∫
Bid

3x =
∫
dS(n̂× x̂i) ·E, (1.70)

∂

∂t

∫
ρud3x = −

∫
dSn̂ ·

[
ρuu + (p+

B2

2µo
)I + π − 1

µo
BB

]
, (1.71)
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∂

∂t

∫ (
1
2
ρu2 +

3
2
p+

B2

2µ0

)
d3x =

−
∫
dSn̂ ·

[
u
(

1
2
ρu2 +

5
2
p

)
+ u · π +

1
µo

E×B + q
]
. (1.72)

We note in passing that Stokes’ theorem can also be applied directly to
any surface integral of Eq. (1.24) to obtain the flux conservation relation in
a more familiar form. Also, if the resistivity is zero so that E + u × B = 0,
then this implies that the electric field in the frame of the fluid is zero, and
a conservation law can be used to show that the magnetic flux in any fluid
element is conserved. But the global relation, Eq. (1.70), will of course still
hold.

As discussed above and further in Section 2.6, a numerical solution based
on the conservation form of the equations offers some advantages over other
formulations in that globally conserved quantities can be exactly maintained in
a computational solution. However, in computational magnetohydrodynamics
of highly magnetized plasmas, the conservative formulation is not normally
the preferred starting point for the following reasons: While the mass and
magnetic flux conservation equations, Eqs. (1.65) and (1.66) (in some form)
offer clear advantages, the conservation form for the momentum and energy
equations, Eqs. (1.67) and (1.68), can lead to some substantial inaccuracies.
The primary difficulty is due to the difference in magnitude of the kinetic
energy, pressure, and magnetic energy terms in a strongly magnetized plasma.
It can be seen that there is no explicit equation to advance the pressure in
the set of Eqs. (1.65)–(1.68). The pressure evolution equation is effectively
replaced by Eq. (1.68) to advance the total energy density:

ε =
(

1
2
ρu2 +

3
2
p+

B2

2µ0

)
. (1.73)

In order to obtain the pressure, one must use Eq. (1.73) so that:

p =
2
3

(
ε− 1

2
ρu2 − B2

2µ0

)
. (1.74)

While this is mathematically correct, it can happen that if B2 � µ0p, the rel-
atively small computational errors acquired in computing B will be amplified
in the computation of p. Similar considerations may apply to the momentum
equation, Eq. (1.67), where high-order cancellations need to occur. This is
discussed more in Chapter 9.

1.2.6 Boundary Conditions

The global conservation laws Eqs. (1.65)–(1.68) apply to any volume and
can be used to obtain boundary conditions and jump conditions across inter-
faces by applying them appropriately. For example, if we have two regions,
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Region 2Region 1

B

FIGURE 1.1: Gaussian pill box is used to derive jump conditions between
two regions.

within both of which the MHD equations are satisfied, separated by a bound-
ary parallel to B, we can construct a Gaussian pill box in a frame that is
stationary with respect to the interface as shown in Figure 1.1. Taking the
limit as the width and volume approach zero but the surface area remains
finite gives the jump conditions. Using the notation that [[a]] is the jump in
the value of the scalar or vector component a when crossing an interface, we
have: [[

ρn̂ · u
]]

= 0, (1.75)

[[
n̂×E

]]
= 0, (1.76)

[[(
p+

1
2µ0

B2

)
n̂ + n̂ · π + ρn̂ · uu

]]
= 0, (1.77)

[[
n̂ · u

(
1
2
ρu2 +

5
2
p

)
+ n̂ · u · π +

1
µ0

n̂ ·E×B + n̂ · q
]]

= 0. (1.78)

Subsets of these equations apply across more general interfaces as appro-
priate. For example, Eq. (1.76), which followed only from Eq. (1.24), which
is universally valid, can be used to show that the tangential electric field is
continuous across a fluid-wall interface as well. Also, Eq. (1.25) can be used
to show that the normal component of the magnetic field must always be
continuous.
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x

t

FIGURE 1.2: Characteristic curves dx/dt = u. All information is propagated
along these lines.

1.3 Characteristics

The ideal MHD equations are a quasilinear symmetric hyperbolic system
of equations and thus have real characteristics. Because they are real, the
characteristic directions or characteristic manifolds have important physical
meaning since all information is propagated along them. In Section 1.3.1 we
review the nature of the ideal MHD characteristics.

To establish the concepts, let us first consider the simplest possible hyper-
bolic equation in one-dimension plus time,

∂s

∂t
+ u

∂s

∂x
= 0, (1.79)

with u a constant. The characteristics of this equation are just the straight
lines dx/dt = u as shown in Figure 1.2. All information is propagated along
these lines so that if the boundary data s(x, 0) = f(x) are given for some range
of x, then s(x, t) = f(x−ut) is the solution at a later time. The characteristic
curves, as shown in Figure 1.2, form a one-parameter family that fills all space.
To find the solution at some space-time point (x, t) one need only trace back
along the characteristic curve until a boundary data point is intersected.

We note that the boundary data that define the solution may be given
many different ways. The data may be given entirely along the t axis, in
which case they are commonly referred to as boundary conditions, or they
may be given entirely along the x axis in which case they are referred to as
initial conditions. However, more general cases are also allowable, the only
restriction is that all characteristic curves intersect the boundary data curves
once and only once. In particular, the boundary data curve is not allowed
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x

t

timelike

region

spacelike

region

FIGURE 1.3: Space is divided into two regions by characteristic curves.

to be tangent to the characteristic curves anywhere. We will see in the next
section that this restriction allows us to determine the characteristics for a
more complicated system.

Finally, let us review another simple concept that is of importance for
hyperbolic equations. It is that information always travels at a finite velocity.
Consider the simple wave equation

∂2ψ

∂t2
− c2

∂2ψ

∂x2
= 0, (1.80)

where c is a constant. This could be written as two coupled first-order equa-
tions,

∂ψ

∂t
= c

∂ω

∂x
,

∂ω

∂t
= c

∂ψ

∂x
.

Or, by defining f ≡ ψ + ω and g ≡ ψ − ω, as two uncoupled first-order
equations,

∂f

∂t
= c

∂f

∂x
,

∂g

∂t
= −c ∂g

∂x
.

Comparing these with Eq. (1.79), it is clear that Eq. (1.80) has two charac-
teristics, corresponding to dx/dt = ± c. Information emanating from a point
will in general travel along the two characteristics. These will divide space-
time into two regions relative to that point, a timelike region and a spacelike
region as shown in Figure 1.3. A given point can only be influenced by a finite
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FIGURE 1.4: Domain of dependence (l) and domain of influence (r).

region of the boundary data for which that point is timelike. This region is
the domain of dependence of the point. Similarly, a given region of boundary
data can only affect points that are timelike with respect to at least part of
that region. This is the domain of influence of that region; see Figure 1.4.

1.3.1 Characteristics in Ideal MHD

We saw that in one spatial dimension the characteristics were lines, as
in Figure 1.2. In two spatial dimensions, the characteristics will be two-
dimensional surfaces in three-dimensional space time, as shown in Figure 1.5.
In full three-dimensional space, the characteristics will be three-dimensional
manifolds, in four-dimensional space time (r, t). They are generated by the
motion of surfaces in ordinary three-dimensional space r. Let us determine
these characteristics for the ideal MHD equations [19, 20].

We start with the ideal MHD equations, in the following form:

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p− 1
µo
∇B ·B +

1
µ0

(B · ∇)B, (1.81)

∂B
∂t

+ v · ∇B = B · ∇v −B∇ · v, (1.82)

∂p

∂t
+ v · ∇p = −γp∇ · v, (1.83)

∂s

∂t
+ v · ∇s = 0. (1.84)

We use the fact that if the boundary data are given only along the character-
istic curves, then the solution cannot be determined away from those curves.
Let us assume that the boundary data for variables v, B, p, s are given on
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FIGURE 1.5: Characteristics in two spatial dimensions.

the three-dimensional surface φ(r, t) = φ0, and ask under what conditions is
this insufficient to determine the solution away from this surface.

φ(r, t) = φ0, (1.85)

We perform a coordinate transformation to align the boundary data sur-
face with one of the coordinates. We consider φ as a coordinate and introduce
additional coordinates χ, σ, τ within the three-dimensional boundary data
manifold. Thus we transform

(r, t) → (φ, χ, σ, τ). (1.86)

On the boundary data manifold φ = φ0, we specify v(r, t) = v0(χ, σ, τ),
B(r, t) = B0(χ, σ, τ), p(r, t) = p0(χ, σ, τ), and s(r, t) = s0(χ, σ, τ). Since v0,
B0, p0, and s0 are known functions, the derivatives with respect to χ, σ, and τ
are also known. We ask under what conditions can the solutions v(φ, χ, σ, τ),
B(φ, χ, σ, τ), p(φ, χ, σ, τ), and s(φ, χ, σ) be obtained away from the boundary
φ = φ0?

We look for a power series solution of the form

v (φ, χ, σ, τ) = v0(χ, σ, τ) + (φ− φ0)
∂v
∂φ

∣∣∣∣
φ0

+ (χ− χ0)
∂v
∂χ

∣∣∣∣
φ0

+(σ − σ0)
∂v
∂σ

∣∣∣∣
φ0

+(τ − τ0)
∂v
∂τ

∣∣∣∣
φ0

+ · · · ,

and similarly for B, p, and s. The problem is solvable if the normal derivatives
∂v/∂φ|φ0 , ∂B/∂φ|φ0 , ∂p/∂φ|φ0 , and ∂s/∂φ|φ0 can be constructed since all
surface derivatives are known and higher-order derivatives can be constructed
by differentiating the original PDEs.
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Using the chain rule and using subscripts to denote partial derivatives with
respect to the time t, φt = ∂φ/∂t, etc., we can calculate

∂v
∂t

=
∂v
∂φ

φt +
∂v
∂χ

χt · · · ,

v · ∇v = v · ∇φ∂v
∂φ

+ v · ∇χ∂v
∂χ

+ · · · ,

∇ · v = ∇φ · ∂v
∂φ

+∇χ · ∂v
∂χ

+ · · · ,

etc. It is convenient to define some new notation. Define the spatial normal,

n̂ = ∇φ/ | ∇φ |,

the characteristic speed,

u ≡ − (φt + v · ∇φ) /|∇φ|,

which is the normal velocity of the characteristic measured with respect to the
fluid moving with velocity v, and let a prime denote the normal derivative,

( )′ ≡ ∂

∂φ
( ).

Using this notation, the ideal MHD equations take the form

−ρuv′ + n̂p′ +
1
µ0

n̂B ·B′ − 1
µ0

n̂ ·BB′ = · · · , (1.87)

−uB′ − n̂ ·Bv′ + Bn̂ · v′ = · · · , (1.88)

−up′ + γpn̂ · v′ = · · · , (1.89)

−us′ = · · · , (1.90)

where the right side contains only known derivative terms. For definiteness,
now choose B along the z axis and n̂ in the (x̂, ẑ) plane so that in Cartesian
coordinates,

B = (0, 0, B) ,
n̂ = (nx, 0, nz) .

We define the quantities VA ≡ B/
√
µ0ρ and cS ≡

√
γp/ρ, and premulti-

ply Eq. (1.88) by
√
ρ/µ0 and Eq. (1.89) by c−1

S . This allows the system of
equations Eqs. (1.87)–(1.90) to be written as

A ·X = · · · , (1.91)
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where

A =



−u 0 0 −nzVA 0 nxVA nxcS 0
0 −u 0 0 −nzVA 0 0 0
0 0 −u 0 0 0 nzcS 0

−nzVA 0 0 −u 0 0 0 0
0 −nzVA 0 0 −u 0 0 0

nxVA 0 0 0 0 −u 0 0
nxcS 0 nzcS 0 0 0 −u 0

0 0 0 0 0 0 0 −u


and

X =



ρv′x
ρv′y
ρv′z√
ρ/µ0B

′
x√

ρ/µ0B
′
y√

ρ/µ0B
′
z

1
cS
p′

s′


.

Note that the matrix in Eq. (1.91) is symmetric, which guarantees that
the eigenvalues will be real and that the system is hyperbolic. The character-
istics are obtained when the determinant vanishes so that solutions cannot be
propagated away from the boundary data manifold φ = φ0. The determinant
is given by

D = u2
(
u2 − V 2

An

) [
u4 −

(
V 2
A + c2S

)
u2 + V 2

Anc
2
S

]
= 0, (1.92)

where we have used the relation n2
x + n2

z = 1 and let V 2
An = n2

zV
2
A. The eight

roots are given by:

u = u0 = ±0 entropy disturbances,
u = uA = ±VAn Alfvén waves,

u = us = ±
{

1
2
(
V 2
A + c2S

)
− 1

2

[(
V 2
A + c2S

)2 − 4V 2
Anc

2
S

]1/2}1/2

slow wave,

u = uf = ±
{

1
2
(
V 2
A + c2S

)
+

1
2

[(
V 2
A + c2S

)2 − 4V 2
Anc

2
S

]1/2}1/2

fast wave.

The latter two roots are also known as the slow magnetoacoustic and fast
magnetoacoustic waves.

In normal magnetically confined fusion plasmas, we can take the low-β
limit, c2S � V 2

A, which implies

u2
s

∼= n2
zc

2
S ,

u2
f

∼= V 2
A + n2

xc
2
S .
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FIGURE 1.6: Reciprocal normal surface diagram in low-β limit.

The solutions following Eq. (1.92) are represented pictorially by the reciprocal
normal surface diagram of Figure 1.6. The intersection points uj give the speed
of a plane wavefront whose normal n̂ is at an angle φ with the magnetic field
B.

We list here some properties of the characteristic speeds of Eq. (1.92) and
Figure 1.6:

1. |u0| ≤ |us| ≤ |uA| ≤ |uf | <∞ .
2. For propagation along B, VAn = VA, and

|us| = min(VA, cS),
|uA| = VA,

|uf | = max(VA, cS).

3. For propagation perpendicular to B, VAn = 0, and

|us| = |uA| = 0,

|uf | =
(
V 2
A + c2S

)1/2
.

4. If VA = 0 (no magnetic field) the gas dynamics equations are obtained:

|us|, |uA| → 0,
|uf | → cS (ordinary sound wave cS).

5. Incompressible plasma limit is γ →∞, or cS →∞:

|us| → |uA| · · · these coincide,
|uf | → ∞ · · · instantaneous propagation.
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FIGURE 1.7: Ray surface diagram in low-β limit.

It is also instructive to compute a ray surface diagram. Suppose the initial
disturbance is on a circle of radius R0. After a time t, the equation for the
wave surface is

z cosφ+ x sinφ = R0 ± uj(φ)t. (1.93)

We can take the φ derivative of Eq. (1.93) to obtain

−z sinφ+ x cosφ = ± d

dφ
uj(φ)t. (1.94)

Now, invert Eqs. (1.93) and (1.94) for (x, z) to obtain

x = R0 sinφ+
[
sinφuj + cosφ

d

dφ
uj(φ)

]
t,

z = R0 cosφ+
[
cosφuj − sinφ

d

dφ
uj(φ)

]
t.

Next, we let R0 → 0 represent a point disturbance and plot [x(φ), z(φ)]
for 0 < φ < 2π to obtain the ray surface diagram in Figure 1.7. This shows
clearly the extreme anisotropy of the Alfvén wave and also the slow waves in
the low-β limit c2S � V 2

A. Point disturbances just travel along the magnetic
field.

Finally, let us consider the eigenvectors of the matrix in Eq. (1.91). The
eigenvectors corresponding to each of the 4-pair of eigenvalues have physical
significance. On a characteristic manifold, relations exist between v′, B′, p′, s′.
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Discontinuities satisfying these relations are propagated along with the char-
acteristics. Substitution of the roots of Eq. (1.92) into the matrix in Eq. (1.91)
yields the following eigenvectors:



ρv′x
ρv′y
ρv′z√
ρ/µ0B

′
x√

ρ/µ0B
′
y√

ρ/µ0B
′
z

1
cS
p′

s′


=

Entropy

0
0
0
0
0
0
0
±1


,

Alfvén

0
1
0
0
±1
0
0
0


,

Magnetoacoustic

nxu
2/(u2 − V 2

A)
0
nz

−nxuVAnz/(u2 − V 2
A)

0
n2
xuVA/(u

2 − V 2
A)

u/cS
0


.

(1.95)

Note that the Alfvén wave is purely transverse, only perturbing v and
B perpendicular both to the propagation direction and to the equilibrium
magnetic field, while the magnetoacoustic waves involve perturbations in the
other two directions. Note also that the different eigenvectors are orthogonal
(see Problem 1.5).

It is instructive to again take the low-β limit c2S � V 2
A, and also to examine

propagation parallel to (nz = 1, nx = 0), and perpendicular to (nz = 0, nx =
1) the equilibrium magnetic field. We find



ρv′x
ρv′y
ρv′z√
ρ/µ0B

′
x√

ρ/µ0B
′
y√

ρ/µ0B
′
z

1
cp
′

s′



=

Fast
nz = 0
nx = 1

1
0
0
0
0
1

cS/VA
0



,

Fast
nz = 1
nx = 0

1
0
0
±1
0
0
0
0



,

Slow
nz = 1
nx = 0

0
0
1
0
0
0
±1
0


.

(1.96)

It is seen that in a low-β (µ0p � B2) magnetized plasma, there exists a
dramatic difference in the nature of the three non-trivial families of character-
istics. All three waves can propagate parallel to the magnetic field, with the
fast wave and the Alfvén wave having approximately the same velocity, but
different polarities with respect to the perturbed velocities and fields, and the
slow wave being much slower. The slow wave is the only one that involves a
velocity component parallel to the background magnetic field.
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The fast wave alone can propagate perpendicular to the background mag-
netic field and does so by compressing and expanding the field. Note that since
the energy in the magnetic field is B2/2µ0, perturbing the background field
by an amount δBz will require an energy BzδBz/µ0 � δB2

z/2µ0. Thus, from
energetic considerations we expect these perpendicularly propagating distur-
bances to be of very small amplitude compared to other disturbances that do
not compress the background field. However, because the length scales per-
pendicular to the field are normally much smaller than those parallel to the
field (see Problem 1.6), the time scales associated with the fast wave can be
much shorter than those associated with either the Alfvén or slow waves. This
is the fundamental reason for the stiffness of the ideal MHD equations when
applied to a low-β magnetic confinement device.

1.3.2 Wave Dispersion Relation in Two-Fluid MHD

The additional terms present in the two-fluid MHD model of Section 1.2.1
introduce many new effects that are not present in the ideal MHD equations.
The resistivities and viscosities generally damp the wave motion found in the
last section, but resistivity can also allow plasma instabilities by relaxing the
flux constrains of ideal MHD [11].

Here we discuss the effect of the non-dissipative terms in Ohm’s law,
Eq. (1.32), that are present in the two-fluid model but not in the ideal MHD
description,

E + u×B =
1
ne

[J×B−∇pe + · · · ] . (1.97)

When we non-dimensionalize the equations, these new terms on the right bring
in a new dimensionless parameter,

di ≡
1

ΩciτA
, (1.98)

where Ωci = eB0/Mi is the ion cyclotron frequency. The parameter di is called
the ion skin depth. With these terms included, commonly called the Hall
terms, the equations are no longer purely hyperbolic and become dispersive,
i.e., different wavelength disturbances will propagate at different velocities.

If we linearize the equations about an equilibrium state with no flow and
assume a periodic time and space dependence ∼ exp i(ωt−k·x), and now take
the velocity u to be the phase velocity, u ≡ ω/k, the analogue of the dispersion
relation, Eq. (1.92) (after removing the entropy roots), becomes [21]

D =
(
u2 − V 2

An

) [
u4 −

(
V 2
A + c2S

)
u2 + V 2

Anc
2
S

]
− V 2

Anu
2d2
i k

2
(
u2 − c2S

)
= 0. (1.99)

Equation (1.99) is a cubic equation in u2. In Figure 1.8 we show the roots
as a function of the parameter dik corresponding to the low-β parameters of
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FIGURE 1.8: Typical dispersion relation for low-β two-fluid MHD for dif-
ferent angles of propagation relative to the background magnetic field.

Figure 1.6 with cS = 0.3VA for three angles of propagation relative to the
magnetic field, nz = VAn/VA. The curves are labeled according to which ideal
MHD characteristic they match onto in the limit k → 0. It is seen that the
Hall terms increase the propagation speed of the fast wave, either increase or
decrease the propagation velocity of the Alfvén wave, and decrease the velocity
of the slow wave. The modification is most pronounced for propagation parallel
to the background magnetic field. Only wavelengths such that kdi > 1 are
substantially affected.

1.4 Summary

The most fundamental mathematical description of plasma involves solv-
ing for the six dimension plus time phase-space distribution function fj(x,v, t)
for each particle species j together with Maxwell’s equation. The magneto-
hydrodynamic equations reduce this complexity by taking velocity moments
to obtain a small system of fluid-like equations. In order for these equations
to be complete, one needs to invoke closures that are obtained by subsidiary
kinetic transport calculations. Three standard closures for two-fluid MHD, re-
sistive MHD, and ideal MHD have been presented. The MHD equations can
be written in conservation form reflecting global conservation of mass, mag-
netic flux, momentum, and energy. The conservation form of the equations is
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not always the best starting point for numerical solution, but they do pro-
vide an invaluable check on the global accuracy of the solutions. The ideal
MHD equations are a subset of the more complete system of MHD equations.
Their simplified mathematic structure allows rigorous analysis that reveals
their solutions in terms of characteristic curves. Each characteristic curve em-
anating from a point separates spacetime into spacelike and timelike regions
for that characteristic. These characteristics have implications for the type of
numerical method used to solve the equations. Comparison of the fast wave
to the Alfvén and slow waves clearly shows the underlying cause of the stiff-
ness of the ideal MHD equations when applied to a low-β plasma. The Hall
terms that appear in Ohm’s law in the two-fluid description can make the wave
speeds dependent on the wavenumber, k. However, if the wavelengths are long
compared to the ion skin depth di, there is little change in the propagation
velocities.

Problems

1.1: Derive the energy conservation equation, Eq. (1.68), starting from
Eqs. (1.10) and (1.24).

1.2: Consider a circular cross section periodic cylinder with minor radius a
and periodicity length 2πR. (In cylindrical coordinates, the plasma occupies
the region 0 < r < a, 0 < Z < 2πR, 0 < θ < 2π with θ and Z being periodic.)
The normal component of the magnetic field vanishes at the boundary r = a.
Show that it is possible to have an arbitrarily large magnetic field B and self
consistent current density J that satisfy the force-free condition J×B = 0.

1.3: Consider a low-β plasma configuration where the magnetic field and
current density are nearly force free (as in Problem 1.2) but where there
exists a small pressure µ0p � B2. If the relative error in computing B is δB
and if the conservative form of the energy equation is used, Eq. (1.63), what
would be the resulting relative error in calculating p?

1.4: Verify that the following free-space Maxwell equations form a symmetric
hyperbolic system and find their characteristics and eigenvectors.

∂B
∂t

= −∇×E,

∂E
∂t

= c2∇×B.

1.5: Show explicitly that the eigenvectors corresponding to the fast magneto-
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acoustic and slow magnetoacoustic roots, as given in Eq. (1.95), are orthogonal
to one another.

1.6: In the geometry of Problem 1.2 above, suppose we have a strong nearly
uniform magnetic field in the ẑ direction, Bz, and a weaker radially dependent
magnetic field in the θ direction, Bθ(r), with Bz � Bθ. Define the safety
factor q(r) as q = rBz/RBθ. For a given radial position r, estimate the ratio
of times it takes for the fast wave and for the Alfvén wave to propagate from
(θ = 0, Z = 0) to (θ = π,Z = 0).



Chapter 2

Introduction to Finite Difference
Equations

2.1 Introduction

There are several distinctly different methods for obtaining numerical solu-
tions to systems of partial differential equations. The three primary categories
we consider here are finite difference methods, finite element methods, and
spectral methods. Of course, within each of these three categories are many
variations, not all of which we will be able to develop. Finite volume methods
are basically finite difference methods applied to the conservation form of the
equations, and are discussed somewhat in Section 2.6. We begin this chapter
by discussing finite difference equations. There are several good references for
this introductory material [22, 23, 24, 25].

Let us consider an initial value problem given by the model partial differ-
ential equation

∂φ

∂t
+ u

∂φ

∂x
= α

∂2φ

∂x2
. (2.1)

Here, u and α are non-negative real constants, and φ(x, t) is the unknown.
Eq. (2.1) is typical of equations describing realistic systems in that it is of
mixed type. If α were zero it would be hyperbolic, while if u were zero, it
would be parabolic [26].

Equations like this occur in many applications. For example, this could
apply to heat conduction in a moving medium in one dimension. In this case,
φ would be the temperature, u would be the convection velocity, and α would
be the thermal diffusivity. Or, it could also apply to the evolution of the
magnetic vector potential in a plasma. In this case, there is only x variation,
φ is the ẑ-component of the vector potential, Az, u is the x-component of the
plasma velocity, and α is the plasma resistivity. Besides Eq. (2.1), we also need
boundary conditions, i.e., φ(0, t) and φ(L, t), and initial conditions φ(x, 0) for
0 < x < L.

What do we mean by a numerical solution? Let δx and δt be fixed spatial
and time intervals. Let j and n be integer indices. We want to determine
the solution at all discrete space-time points xj = jδx, tn = nδt that lie

27
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FIGURE 2.1: Space and time are discretized into a finite number of points.

within our domain; see Figure 2.1. We denote by φnj the discrete solution that
approximates the continuous solution φ(xj , tn).

To start, we replace the differential equation by a difference equation. In
this case, we will use centered spatial differences and forward time differences.
Using a Taylor’s series expansion, we approximate

∂φ

∂x

∣∣∣∣n
j

' φ(xj + δx, tn)− φ(xj − δx, tn)
2δx

=
φnj+1 − φnj−1

2δx
,

∂φ

∂t

∣∣∣∣n
j

' φ(xj , tn + δt)− φ(xj , tn)
δt

=
φn+1
j − φnj
δt

,

∂2φ

∂x2

∣∣∣∣n
j

=
∂

∂x

{
∂φ

∂x

}
'

∂φ
∂x |

n
j+1/2 −

∂φ
∂x |

n
j−1/2

δx
=
φnj+1 − 2φnj + φnj−1

δx2
.

The entire difference equation is then

φn+1
j − φnj
δt

+ u
φnj+1 − φnj−1

2δx
− α

φnj+1 − 2φnj + φnj−1

δx2
= 0,

which we can recast in a form which is set to advance forward in time from
initial conditions

φn+1
j = φnj −

uδt

2δx
(
φnj+1 − φnj−1

)
+
αδt

δx2

(
φnj+1 − 2φnj + φnj−1

)
. (2.2)

This now allows us to fill in the space-time net of Figure 2.1 by starting
with the initial conditions φ0

j ; j = 0, N and using the difference equation to
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calculate the interior points φ1
j ; j = 1, N −1, with the points φ1

0 and φ1
N being

supplied by boundary conditions. This process is then repeated to obtain the
time points n = 2 and so forth.

We note that Eq. (2.2) has two dimensionless terms,

S1 =
uδt

δx
, S2 =

αδt

δx2
,

that are associated with convection and with dissipation. These are purely
numerical parameters in that they depend on the size of the discrete space
and time intervals. If we attempted to solve this equation on a computer, we
would find that for some values of S1 and S2, good solutions occur, but not so
for others. For different values of these parameters one would find either (i)
bounded oscillations, (ii) unbounded growth, or (iii) unbounded oscillations.
The latter two categories of behavior we call numerical instabilities, and they
must be avoided to obtain meaningful solutions.

2.2 Implicit and Explicit Methods

There are two distinct classes of finite difference methods, explicit and
implicit. In an explicit method, all spatial derivatives are evaluated at the old
time points. An example of this is Eq. (2.2). In an implicit method, some
spatial derivatives are evaluated at new time points as, for example, in this
equation

φn+1
j = φnj −

uδt

2δx
(
φn+1
j+1 − φn+1

j−1

)
+
αδt

δx2

(
φn+1
j+1 − 2φn+1

j + φn+1
j−1

)
. (2.3)

The unknowns at the advanced time, φn+1
j ; j = 0, · · · , N , are seen to be cou-

pled together by the spatial derivative operators in Eq. (2.3), so that solving
for these unknowns requires inversion of a matrix. This is true of implicit
methods in general, while it is not the case for explicit methods.

We will see that generally implicit methods are more stable and allow larger
time steps δt, but explicit methods require less computational effort for each
time step. Note that explicit and implicit methods have domains of dependence
that are quite different from one another as shown in Figures 2.2a and 2.2b.
These are both generally different from that of the differential equation.
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FIGURE 2.2: Domain of dependence of the point (xj , tn) for an (a) explicit
and (b) implicit finite difference method.

2.3 Errors

The partial differential equation we are considering, Eq. (2.1), can be writ-
ten in operator form as

L{φ} = 0,

where in our case,

L =
∂

∂t
+ u

∂

∂x
− α

∂2

∂x2
. (2.4)

In the finite difference approximation, the exact solution, φ, is approxi-
mated by a discrete state vector, φ∆, which is defined only on integer space-
time points, thus

φ⇒ φ∆,

and the exact operator L gets replaced by a finite difference operator

L⇒ L∆,

giving the finite difference approximation to the partial differential equation

L∆{φ∆} = 0.

There are two sources of error in obtaining numerical solutions, and these
behave quite differently. These are (i) truncation error

T∆ ≡ L∆{φ} − L{φ},
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and (ii) machine error, or round-off error. Say φN is the actual solution which
is obtained on the computer. Then the total error in the solution is

E = φ− φN = (φ− φ∆) + (φ∆ − φN ).

The first term on the right is the error due to the truncation error in the
operator, and the second term is due to the finite arithmetic precision in the
machine. As T∆ → 0, we will show that φ∆ → φ under some circumstances,
but φN 6= φ∆ unless the arithmetic is of infinite precision.

2.4 Consistency, Convergence, and Stability

Here we define some fundamental concepts in the study of numerical anal-
ysis [22].

1. A finite difference operator L∆ is said to be consistent with the differ-
ential operator L if T∆ → 0 as δt, δx → 0. In our example, Eq. (2.2),
we have

L{φ} =
∂φ

∂t
+ u

∂φ

∂x
− α

∂2φ

∂x2

L∆{φ} =
φn+1
j − φnj
δt

+ · · · .

By expanding L∆{φ} in a Taylor’s series about φnj , we can compute the
truncation error

T∆ = L∆{φ}−L{φ} =
1
2
δt
∂2φ

∂t2
+

1
6
uδx2 ∂

3φ

∂x3
− α

12
δx2 ∂

4φ

∂x4
+ · · · . (2.5)

If all the derivatives of the true solution are bounded, then this scheme
is consistent since T∆ → 0 as δt, δx→ 0.

2. If φ is a solution to L{φ} = 0, and φ∆ is a solution to L∆{φ∆} = 0, then
φ∆ converges to φ if φ∆ → φ as δt, δx → 0. This implies performing a
series of calculations with differing values of δt and δx and comparing the
results. Note that consistency applies to the operator and convergence
applies to the solution.

3. Stability is the requirement that the solution remain bounded, even in
the limit δt → 0, n → ∞ with nδt finite. In other words, say the finite
difference equation is of the form

L∆{φ∆} = B1φ
n+1
∆ −B0φ

n
∆ = 0,
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where B1 and B0 are finite difference operators. We can define the new
operator

C(δt, δx) ≡ B−1
1 B0,

so that the finite difference equation becomes

φn+1
∆ = C(δt, δx)φn∆.

The scheme is stable if for some τ > 0, the infinite set of operators

[C(δt, δx)]n

is uniformly bounded for 0 < δt < τ , 0 < nδt < T as we take the limit
n → ∞. Note that the concept of stability makes no reference to the
differential equations one wishes to solve, but is a property solely of the
sequence of difference equations.

4. These three concepts are related by the Lax equivalence theorem, the
most celebrated theorem in numerical analysis. It says: “Given a prop-
erly posed initial value problem and a finite difference approximation to
it that satisfies the consistency condition, then stability is the necessary
and sufficient condition for convergence” [22].

The proof of this involves two steps as follows:

(i) First note that the error E = φ− φ∆ satisfies the same difference equa-
tion as φ∆, but with an inhomogeneous term due to the local truncation
error T∆,

L∆{E} = L∆{φ} − L∆{φ∆} = T∆.

Therefore, it follows from the property of stability that the error must
depend continuously on its data. This implies that there is some constant
c for which

‖E‖ ≤ c(‖T∆‖+ ‖E(0)‖).

(ii) By the property of consistency of the operator L∆, the right side ap-
proaches zero as δt, δx→ 0. Thus, convergence is proved.

2.5 Von Neumann Stability Analysis

In the last section we discussed the Lax equivalence theorem, which says
that it is enough to show that a finite difference approximation is consistent
and stable in order to guarantee convergence. It is normally quite straight-
forward to show consistency. The leading order truncation error is readily
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calculated by a Taylor series expansion, and we need only show that it is pro-
portional to some powers of δx and δt. This whole procedure can often be
done by inspection.

In contrast, it is not normally obvious whether or not a given finite differ-
ence approximation to an initial value problem is stable. One of the simplest
and most powerful techniques to determine stability is that due to von Neu-
mann. The method is to perform a finite Fourier transform [27] to convert the
spatial differences into a multiplicative factor. The time advancement equation
for each Fourier harmonic is then put into a form so that the new time level
is expressed as an amplification factor times the amplitude of the harmonic
at the old time level. This amplification factor describes the growth in going
from one time step to the next. Then, the criterion for stability is that the
absolute value of this factor be less than or equal to unity for all allowable
Fourier components.

Suppose that the solution vector at time level n is given by φnj ; j =
0, 1, · · · , N − 1. We define, for integer k values, the finite Fourier transform
vector

φ̃nk =
1
N

N−1∑
j=0

φnj exp(2πikj/N); k = 0, · · · , N − 1, (2.6)

where i =
√
−1. The corresponding inverse transform is

φnj =
N−1∑
k=0

φ̃nk exp(−2πikj/N); j = 0, · · · , N − 1. (2.7)

This is shown to be an exact transform pair by substitution of Eq. (2.6) into
Eq. (2.7),

φnj =
N−1∑
k=0

1
N

N−1∑
j′=0

φnj′ exp (2πikj′/N) exp [− (2πikj/N)]

=
1
N

N−1∑
j′=0

φnj′

N−1∑
k=0

exp [−2πik(j − j′)/N)]

=
1
N

N−1∑
j′=0

φnj′Nδjj′

= φnj .

Note that Eqs. (2.6) and (2.7) are just matrix multiplications, φ̃0

...
φ̃N−1

 =


...

· · · 1
N exp(2πikj/N) · · ·

...

 ·
 φ0

...
φN−1

 .
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The matrices corresponding to Eqs. (2.6) and (2.7) are exact inverses of one
another.

Let us apply this technique to the difference equation introduced in Sec-
tion 2.1,

φn+1
j = φnj −

1
2
S1(φnj+1 − φnj−1) + S2(φnj+1 − 2φnj + φnj−1), (2.8)

where, we recall, S1 = uδt/δx and S2 = αδt/δx2. Assuming that the coeffi-
cients S1 and S2 are constants, we transform each φnj in Eq. (2.8) according
to the definition (2.7) and select out only a single Fourier component k. Af-
ter dividing by the common factor exp[−(2πikj/N)], we obtain the algebraic
equation

φ̃n+1
k = φ̃nk

{
1− 1

2
S1 [exp(−2πik/N)− exp(2πik/N)]

+ S2 [exp(−2πik/N)− 2 + exp(2πik/N)]
}
,

or

φ̃n+1
k = φ̃nk [1− iS1 sin θk + S2(2 cos θk − 2)] , (2.9)

where we have used the identity exp(iα) = cosα+ i sinα and have introduced
the k dependent angle

θk = −2πk/N.

Equation (2.9) can be written in the form

φ̃n+1
k = rφ̃nk , (2.10)

where

r = 1 + 2S2(cos θk − 1)− iS1 sin θk (2.11)

is the amplification factor. For stability, this must satisfy |r| ≤ 1 (or |r| ≤
1 + O(δt) when the differential equation allows exponential growth). As θk
varies from 0 to 2π, Eq. (2.11) traces out an ellipse in the complex plane as
shown in Figure 2.3. The stability criterion that |r| ≤ 1 translates into the
condition that the ellipse in Figure 2.3 lies inside the unit circle.

Define the x coordinate of the center of the ellipse as x0 = 1 − 2S2. The
ellipse is then defined by

(x− x0)2

4S2
2

+
y2

S2
1

= 1.

We look for the point(s) where this curve intersects the unit circle

x2 + y2 = 1.
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FIGURE 2.3: Amplification factor, r (solid), must lie within the unit circle
(dashed) in the complex plane for stability.

Eliminating y2 and solving the quadratic for x2 gives

x =


1,
S2

1(1− 4S2) + 4S2
2

S2
1 − 4S2

2

.

For stability, we require |x| ≥ 1 so that there is no y intersection. This leads
to the two conditions

S2
1 ≤ 2S2 → δt ≤ 2α

u2
, (2.12)

S2 ≤
1
2

→ δt ≤ δx2

2α
. (2.13)

The finite difference method described by Eq. (2.8) is therefore conditionally
stable, with the requirement that the time step δt satisfy the inequalities in
Eqs. (2.12) and (2.13). We will return to a more systematic study of the
numerical stability of different methods applied to different types of equations
in later chapters.

The von Neumann stability analysis presented here strictly applies to linear
problems with constant coefficients. However, since the most unstable modes
are normally those with the smallest wavelengths on the grid, it is an excellent
indicator of local stability if the local values of the coefficients are used in
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evaluating the stability criteria. For non-constant coefficients, it should be
regarded as as a necessary condition for stability but not a sufficient one. For
non-linear problems, one normally would reduce the time step by some small
factor below that predicted by the von Neumann condition to ensure stability.

2.5.1 Relation to Truncation Error

There are several interesting limits of the analysis just presented. First,
consider u = 0, α 6= 0, so that there is no convection. The stability criterion
becomes

δt ≤ δx2

2α
,

which we will see in Chapter 7 is the criterion expected for a forward-time
centered-space (FTCS) method applied to a parabolic equation. Secondly,
consider the limit where α = 0, u 6= 0, which corresponds to no dissipation.
The criterion becomes

δt ≤ 0,

so that FTCS is always unstable when applied to a pure convection problem.
Here we provide some additional insight as to why this is. Recall, from

Eq. (2.5), that the leading order truncation error for α = 0 is

T∆ =
1
2
δt
∂2φ

∂t2
+

1
6
uδx2 ∂

3φ

∂x3
+ · · · .

Hence the equation actually being approximated by the difference equations
is

∂φ

∂t
+ u

∂φ

∂x
= −1

2
δt
∂2φ

∂t2
− 1

6
uδx2 ∂

3φ

∂x3
+ · · · . (2.14)

The differential equation itself can be used to eliminate time derivatives in
favor of space derivatives on the right side of Eq. (2.14), i.e.,

∂2

∂t2
→ u2 ∂

2

∂x2
+O

(
δt, δx2

)
.

To first order in δt and δx, the finite difference equation we are considering is
therefore actually approximating the differential equation

∂φ

∂t
+ u

∂φ

∂x
= −

(
u2δt

2

)
∂2φ

∂x2
, (2.15)

where the term in parentheses is the effective diffusion coefficient. The fact
that it is negative makes the problem mathematically ill posed, which is the
source of the “numerical” instability [28].
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2.5.2 Higher-Order Equations

As an example of a higher-order system, let us consider the inviscid fluid
equations (with γ = 5

3 ), which are a subset of the ideal MHD equations, but
with B = 0. In one dimension these equations, in conservation form, are

∂ρ

∂t
+

∂

∂x
ρu = 0,

∂

∂t
ρu+

∂

∂x

(
ρu2 + p

)
= 0,

∂

∂t

(
1
2
ρu2 +

3
2
p

)
+

∂

∂x

[
u

(
1
2
ρu2 +

5
2
p

)]
= 0. (2.16)

It is convenient to define a fluid state vector U and a flux vector F by

U =

 ρ
m
e

 , F =


m

2
3

(
e+ m2

ρ

)
m
ρ

(
5
3e−

m2

3ρ

)
 ,

where ρ, m = ρu, e = 1
2ρu

2 + 3
2p are the mass density, momentum density,

and total energy density, respectively. Rewriting u and p in terms of these
variables, we can rewrite Eq. (2.16) in the conservation form as

∂U
∂t

+
∂F
∂x

= 0,

or, in the linearized form, as

∂U
∂t

+ A · ∂U
∂x

= 0. (2.17)

Here, the Jacobian matrix A = ∂F
∂U is given by

A =

 0 1 0
− 2

3
m2

ρ2
4
3
m
ρ

2
3

m
ρ (− 5

3
e
ρ + 2

3
m2

ρ2 ) ( 5
3
e
ρ −

m2

ρ2 ) 5
3
m
ρ

 .
The eigenvalues of A, which satisfy the characteristic equation,

|A− λAI| = 0,

are given by
λA = u+ cS , u− cS , u,

where

c2S =
5
3
p/ρ
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is the sound speed. For illustration, let us consider the Lax–Friedrichs differ-
ence method (see Section 9.2.1), which is defined by

Un+1
j =

1
2
(
Un
j+1 + Un

j−1

)
− δt

2δx
A ·

(
Un
j+1 −Un

j−1

)
. (2.18)

As in the scalar case, we transform Eq. (2.18) and consider a single harmonic.
We make the transformation

Un
j → Ũkr

n exp(−2πikj/N),

where r will be the amplification factor. After dividing by the common expo-
nential factor, Eq. (2.18) becomes

rŨk = cos θkŨk −
iδt

δx
sin θkA · Ũk, (2.19)

where θk = −2πk/N . We multiply on the left by the matrix T, chosen so that
the matrix

D = T ·A ·T−1

is a diagonal matrix. This is a similarity transformation, which leaves the
eigenvalues unchanged. Defining the vector Ṽk = T · Ũk, Eq. (2.19) becomes{

(r − cos θk)I +
iδt

δx
sin θkD

}
· Ṽk = 0. (2.20)

Since the matrix in brackets in Eq. (2.20) is diagonal, there is no mixing of the
components of the vector Ṽk and we can consider each component separately.
The diagonal elements of D are just the eigenvalues of A; λA = u, u ± cS .
The condition that the determinant of the matrix in brackets vanish gives the
equation for the amplification factor

r = cos θk − i
δt

δx
λA sin θk. (2.21)

The condition that |r| ≤ 1 for all values of θk gives the stability criterion

δt ≤ δx

|u|+ cS
. (2.22)

Equation (2.22) is known as the Courant–Friedrichs–Lewy or CFL condition.
We will return to it in Chapter 9. Pictorially, it can be seen to be the condition
that the characteristic curves passing backward in time from a point lie within
the numerical domain of dependence of that point as depicted in Figure 2.2.
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2.5.3 Multiple Space Dimensions

Here, we present an example of the von Neumann stability analysis being
used on an equation involving more than one spatial dimension. Consider the
two-dimension convection equation:

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= 0. (2.23)

Let xj = jδx and yl = lδy and denote φ(xj , yl, tn) by φnj,l. Assume for sim-
plicity that there are N zones in both the x and y directions. The leapfrog
method (see Section 9.2.4) applied to this equation is

φn+1
j,l − φn−1

j,l +
uδt

δx

(
φnj+1,l − φnj−1,l

)
+

vδt

δy
(φnj,l+1 − φnj,l−1) = 0. (2.24)

To examine the numerical stability, we apply a finite Fourier transform to
both the j and the l index. Thus, making the substitution

φnj,l → φ̃k,mr
n exp(−2πikj/N − 2πiml/N)

in Eq. (2.24) and dividing through by the common exponential factor, we have

r − 1
r

+ 2iSx sin θk + 2iSy sin θm = 0,

where Sx = uδt/δx, Sy = vδt/δy, θk = −2πk/N , θm = −2πm/N . This is a
quadratic equation in r that can be written

r2 + 2ibr − 1 = 0,

where b = Sx sin θk + Sy sin θm is purely real. The criterion that the amplifi-
cation factor |r| ≤ 1 is equivalent to the condition |b| ≤ 1 for all values of θk
and θm, which leads to the stability criterion

δt ≤ 1
|u|/δx+ |v|/δy

. (2.25)

2.6 Accuracy and Conservative Differencing

Stability is not the only property that makes one finite difference approx-
imation to a partial differential equation superior to another. Other consid-
erations have to do with efficiency and accuracy. These concepts are often
closely intertwined and difficult to quantify. For example, an implicit method
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u0

1
2jρ − 1

2jρ + 3
2jρ +

uj-1 uj uj+1 uj+2 uN

FIGURE 2.4: Density and velocity variables are defined at staggered
locations.

may appear to be preferable to an explicit method if it allows a much less
severe restriction on the time step, or perhaps no restriction at all. But the
implicit method normally takes much more computational effort per time step,
and its accuracy may be inferior. Also, there are different measures of the ac-
curacy. One scheme that is classified as higher accuracy than another may
actually be less accurate in certain global measures of the accuracy.

We normally classify the accuracy of a difference scheme by the powers
of δt and δx that appear as multipliers in the leading order truncation error.
For example, the method defined in Eq. (2.2) that has the truncation error as
defined in Eq. (2.5) is first order accurate in δt and second order accurate in
δx.

Let us now discuss the benefits of conservative differencing, which can
greatly increase one global measure of the accuracy. As an example, consider
the mass density equation in one spatial dimension. This can be written in
two forms: conservative

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (2.26)

or non-conservative

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0. (2.27)

Mathematically, these two forms are equivalent, but the finite difference equa-
tions that arise from these two are not. The conservative form, Eq. (2.26) is
superior in several respects which we now discuss.

In converting Eq. (2.26) to a finite difference form, it is natural to stagger
the locations where ρ and u are defined on the spatial mesh. If u is defined
at cell boundaries or integer values of j, then ρ is defined at cell centers,
or half integer values, j + 1

2 , as shown in Figure 2.4. If the value of ρ is
needed at an integer j value, it is averaged over the two adjacent values:
ρj ≡ (1/2)×(ρj− 1

2
+ρj+ 1

2
). With this convention, the centered space, centered

time (using leapfrog) finite difference approximation to Eq. (2.26) is given by

ρn+1
j+ 1

2
− ρn−1

j+ 1
2

2δt
+

(ρu)nj+1 − (ρu)nj
δx

= 0. (2.28)

The main advantage of Eq. (2.28) stems from the fact that the spatial
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δ x

δ z

FIGURE 2.5: Finite volume method defines the densities at the centers of
cells and the fluxes at the centers of their corresponding faces.

derivative term is the difference between two fluxes, each of which appears in
exactly the same form in the difference equation for a neighboring j value, but
with the opposite sign. Global conservation laws are exactly obeyed, as can
be seen by summing Eq. (2.28) over all j values and noting that all the fluxes
evaluated at interior cell boundaries cancel exactly, leaving only the difference
in fluxes evaluated at the two boundaries

δx
N−1∑
j=0

ρn+1
j+ 1

2
= δx

N−1∑
j=0

ρn−1
j+ 1

2
− 2δt [(ρu)nN − (ρu)n0 ] . (2.29)

If the fluxes evaluated at the two boundaries were prescribed to be zero for
all time, then the sum of the mass in all the cells would be exactly constant
between successive time steps. This global conservation property would not
be maintained by the finite difference form of Eq. (2.27).

In two or more dimensions, a scalar equation in conservation form takes
the form

∂ρ

∂t
+∇ · F = 0. (2.30)

In the case of the mass density equation, F = ρu, where u is the velocity
vector. Let us consider Cartesian coordinates in three dimensions (x, y, z).
Letting xi = iδx, yj = jδy, and zk = kδz, if we integrate Eq. (2.30) over the
volume of a single cell bounded by [xi, xi+1], [yj , yj+1], [zk, zk+1], as shown in
Figure 2.5, and apply Gauss’s theorem, we obtain

∂

∂t

∫
dV ρ+

6∑
i=1

∫
dSin̂i · F = 0, (2.31)

where the integral is over the volume dV = dxdydz centered at
(xi+ 1

2
, yj+ 1

2
, zk+ 1

2
). Replacing the volume integral by the value of the den-

sity at the center of the cell times the cell volume, and the surface integrals
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by the value of the flux at the center of the face times the surface area, after
dividing by the cell volume we obtain the finite difference equation

∂

∂t
ρi+ 1

2 ,j+
1
2 ,k+

1
2

= − 1
δx

[
x̂ · Fi+1,j+ 1

2 ,k+
1
2
− x̂ · Fi,j+ 1

2 ,k+
1
2

]
− 1

δy

[
ŷ · Fi+ 1

2 ,j+1,k+ 1
2
− ŷ · Fi+ 1

2 ,j,k+
1
2

]
− 1

δz

[
ẑ · Fi+ 1

2 ,j+
1
2 ,k+1 − ẑ · Fi+ 1

2 ,j+
1
2 ,k

]
.

We see that the natural location for the density to be defined is at the cell
centers, (xi+ 1

2
, yj+ 1

2
, zk+ 1

2
), and that the natural locations for each of the

fluxes is in the center of its corresponding face. These conventions are the
basis for the finite volume method, which is the natural finite difference method
when a system of equations is expressible in conservative form. This is most
readily extended to non-Cartesian coordinates by starting with the coordinate
independent equation, Eq. (2.31).

The conservation form also has some additional advantages over the non-
conservation form. One is that only the product ρu has to be specified on the
computational boundary, not ρ and u separately. This helps in avoiding over-
specifying boundary conditions. Also, by staggering the variables, we have
been able to approximate centered derivatives over only a single grid spacing,
which leads to a more efficient difference scheme. Finally, the conservation
form is preferable when discontinuities are present, for example, due to ma-
terial interfaces. Differences are only taken of quantities that are continuous
across these interfaces.

2.7 Summary

Finite difference equations are based on a truncated Taylor series expan-
sion of the solution about discrete space-time points, with the missing terms
being the truncation error. The finite difference equation is consistent with
the original partial differential equation if the truncation error approaches
zero as the time step and zone spacing approach zero. The finite difference
solution will approach the true solution to the PDE if the finite difference
equation is consistent and numerically stable. The von Neumann stability
analysis is a powerful technique to determine numerical stability, although it
is rigorously applicable only to linear equations with constant coefficients. It
basically amounts to computing a dispersion relation for the finite difference
equation. Other things being equal, one should try and take advantage of a
conservative formulation of a problem by using conservative differencing. This
allows global conservation relations to be exactly preserved in the finite differ-
ence solution. This is the basis of the finite volume method of discretization.
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Problems

2.1: Verify that the three eigenvalues of the matrix A in Eq. (2.5.2) have
the values u, u + cS , u − cS , where c2S = 5

3p/ρ. Compute the corresponding
eigenvectors.

2.2: Consider a finite difference method that can be written as

φn+1
j = Aφnj+1 +Bφnj−1, (2.32)

for some constants A and B. What are the conditions on A and B for the
method of Eq. (2.32) to be stable?

2.3: Consider the one-dimensional system of conservation laws:

∂U
∂t

+
∂F(U)
∂x

= 0, (2.33)

or
∂U
∂t

+ A · ∂U
∂x

= 0. (2.34)

Here, U(x, t) is the vector of unknowns, and A = ∂F/∂U is a real, positive
definite Jacobian matrix with real eigenvalues λA. Let Un

j be the finite differ-
ence approximation to U(xj , tn), where xj = jδx and tn = nδt, with δt and
δx being the time step and zone size, respectively.

Now, consider the following finite difference method to advance the solu-
tion at an interior point from time level tn to time level tn+1:

U∗
j = Un

j −
δt

δx
A ·

[
Un
j+1 −Un

j

]
U∗∗
j = U∗

j −
δt

δx
A ·

[
U∗
j −U∗

j−1

]
Un+1
j =

1
2
(
Un
j + U∗∗

j

)
. (2.35)

(a) Show that the method is second order accurate in both δt and δx.
(b) Use the von Neumann stability analysis technique to derive a stability con-
dition on the maximum allowable value of δt in terms of δx and the maximum
eigenvalue maxλA.
HINT: First convert the finite difference method, Eq. (2.35), into a single-
step method by substitution. Treat the matrix A as a constant. In evaluating
the truncation error, use the equation (2.34) to eliminate second-order time
derivatives in favor of spatial derivatives.

2.4: Consider the heat conduction equation, Eq. (2.1) with u = 0. Apply the
central difference in time (leapfrog) and centered difference in space method:

φn+1
j = φn−1

j +
2δtα
δx2

[
φnj+1 − 2φnj + φnj−1

]
. (2.36)
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Show that the scheme is unstable for any value of δt.

2.5: Consider the anisotropic diffusion equation:

∂T

∂t
= κx

∂2T

∂x2
+ κy

∂2T

∂y2

where κx 6= κy. Write down a forward-time centered-space finite difference
approximation to this and calculate the maximum stable time step.



Chapter 3

Finite Difference Methods for Elliptic
Equations

3.1 Introduction

In this chapter we discuss numerical methods for solving elliptic equations,
such as Poisson’s equation or the Grad–Shafranov equation. A general mathe-
matical classification of equation types as elliptic, parabolic, or hyperbolic can
be found elsewhere [26, 29]. Elliptic equations need boundary conditions of
either the Dirichlet or Neumann type specified on a closed surface to possess
unique solutions.

Elliptic equations often arise as the steady-state, time-independent limit
of hyperbolic or parabolic equations. They also arise in incompressible flow
problems or in a general formulation of the time-dependent MHD equations
when the fluid velocity and magnetic vector potential are expressed in terms
of potentials and stream function variables [30]. In this case they need to be
solved each time step as is shown in Chapter 9 and efficiency is of paramount
importance.

The numerical formulation of an elliptic equation always reduces to a dis-
crete matrix equation. There are many different algorithms for solving these
matrix equations that have been developed from several very different ap-
proaches. These same types of matrix equations arise in implicit formulations
of parabolic and hyperbolic equations (or systems of equations) as shown in
Chapters 7 and 9. Methods for their efficient solution are therefore of central
importance.

No one method is superior for all applications. Some methods are very sim-
ple to program but are inefficient compared to other more complex methods.
These may be useful in exploratory programming, but not in production ap-
plications. Or, as in the multigrid method described in Section 3.6, relatively
simple methods may form the basis for more complex methods when combined
with other techniques. Some matrices have symmetry or other properties such
as strong diagonal dominance that can be exploited using methods that are
not generally applicable. In the remainder of this chapter we give an overview
of the most common methods that are in use today.

45
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3.2 One-Dimensional Poisson’s Equation

Consider first Poisson’s equation in 1D:

∂2u

∂x2
= R(x), (3.1)

for 0 < x < L, where R(x) is given over the interval. Equation (3.1) is an
ordinary differential equation (ODE) rather than a partial differential equation
(PDE) since there is only one independent variable, x. Since it is a second-
order ODE, it requires two boundary values. If these boundary values are
specified at the same boundary point, such as u(0) and the derivative u′(0),
then it is referred to as an initial value problem. There is an extensive literature
on ODE methods for integrating the solution of initial value problems from
0 to L [31], such as the Runge–Kutta method. These will not be discussed
further here.

3.2.1 Boundary Value Problems in One Dimension

However, if the problem is such that one boundary value is specified at
each boundary, then it becomes a boundary value problem and as such is
similar to boundary value problems in two or more dimensions. We proceed
to discuss this case as an introduction to boundary value problems in multiple
dimensions. Consider the case where we specify one value at each boundary:
either u(0) or u′(0), and either u(L) or u′(L). However, note that the two
derivatives u′(0) and u′(L) cannot both be prescribed independently, since
there is an integral constraint relating these that is obtained by integrating
Eq. (3.1), ∫ L

0

∂2u

∂x2
dx =

∂u

∂x

∣∣∣∣L
0

= u′(L)− u′(0) =
∫ L

0

R(x)dx. (3.2)

This is known as a solvability constraint. Note also that even if Eq. (3.2) was
satisfied exactly, the solution would only be determined up to a constant if
only the derivative boundary conditions were specified.

To solve Eq. (3.1) by finite differences, we use the notation

uj = u(xj), Rj = R(xj); j = 0, · · · , N,

where xj = jh, and h = L/N . A finite difference approximation to Eq. (3.1)
is obtained by Taylor series analysis. Expanding about uj , we have

uj+1 = uj + h
∂u

∂x

∣∣∣∣
j

+
h2

2
∂2u

∂x2

∣∣∣∣
j

+
h3

3!
∂3u

∂x3

∣∣∣∣
j

+
h4

4!
∂4u

∂x4

∣∣∣∣
j

+ · · · ,
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uj−1 = uj − h
∂u

∂x

∣∣∣∣
j

+
h2

2
∂2u

∂x2

∣∣∣∣
j

− h3

3!
∂3u

∂x3

∣∣∣∣
j

+
h4

4!
∂4u

∂x4

∣∣∣∣
j

+ · · · .

Adding these and dividing by h2, we obtain

∂2u

∂x2

∣∣∣∣
j

=
uj+1 − 2uj + uj−1

h2
− h2

12
∂4u

∂x4

∣∣∣∣
j

· · · .

For h2 � 1, the second term on the right, which is the leading order in h
truncation error, is negligible. The finite difference approximation to Eq. (3.1),
accurate to second order in h, is thus given by

uj+1 − 2uj + uj−1 = h2Rj . (3.3)

Equation (3.3) is called a tridiagonal matrix equation. It occurs in many ap-
plications. When written in matrix form, the coefficient matrix has only three
diagonal bands of possible non-zero values as illustrated below:

−B0 A0

C1 −B1 A1

· · ·
CN−1 −BN−1 AN−1

CN −BN

 ·


u0

u1

...
uN−1

uN

 =


D0

D1

...
DN−1

DN

 . (3.4)

For our case, we have Aj = 1, Bj = 2, Cj = 1, Dj = h2Rj for j = 1, · · · , N−1.
The values of the coefficients for j = 0 and j = N are determined by the
boundary conditions as follows: Suppose the values of u(0) and u(L) are given
(Dirichlet conditions). This is incorporated into the above matrix by setting
B0 = BN = −1, A0 = CN = 0, D0 = u(0), DN = u(L). Incorporation of
derivative (Neumann) boundary conditions is discussed in Section 3.3.1 and
in Problem 3.1. We call this matrix sparse because it has mostly zero entries,
and the non-zero elements occur in particular places. These locations form the
sparseness pattern.

3.2.2 Tridiagonal Algorithm

There is a simple yet powerful technique for solving general finite difference
equations that are of the tridiagonal form. Let us rewrite the matrix equation,
Eq. (3.4), in the form

Ajuj+1 −Bjuj + Cjuj−1 = Dj ; j = 0, . . . , N. (3.5)

Equation (3.5) is a second-order difference equation since it involves three
values of uj . To solve, we look for vectors Ej and Fj that satisfy the first-order
difference equation:

uj = Ejuj+1 + Fj , (3.6)
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or, letting j → j − 1

uj−1 = Ej−1uj + Fj−1. (3.7)

Next, using Eq. (3.7) to eliminate uj−1 in Eq. (3.5), and comparing with
Eq. (3.6), we see that Ej and Fj , must obey the recurrence relations.

Ej =
[

Aj
Bj − CjEj−1

]
, (3.8)

Fj =
[
CjFj−1 −Dj

Bj − CjEj−1

]
. (3.9)

Equations (3.6), (3.8), and (3.9) now provide a system of first-order differ-
ence equations which are equivalent to the second-order difference equation,
Eq. (3.5), but which are inherently stable, and which incorporate the boundary
conditions in a natural way.

Since C0 = 0, E0 and F0 are well defined as follows:

E0 = A0/B0,
F0 = −D0/B0.

(3.10)

This is sufficient initialization to advance the difference equation, Eq. (3.9),
for Ej and Fj from j = 1 to j = N − 1. The right boundary condition is then
utilized by noting that since AN = 0, Eq. (3.5) can be used to eliminate uN
in Eq. (3.6) and we have

uN−1 =
[
BNFN−1 −DNEN−1

BN − EN−1CN

]
. (3.11)

Since the Ej and Fj are all known, the recursion relation, Eq. (3.6), can
then be stepped backwards from j = N − 2 to j = 1 to determine uj at
every location. The entire process requires only 5 ×N arithmetic operations
to obtain an exact solution to the difference equation.

3.3 Two-Dimensional Poisson’s Equation

Let us now discuss the 2D Poisson’s equation for the unknown u(x, y) in
a rectangular domain Ω with Dirichlet boundary conditions applied on the
boundary curve δΩ. We consider the equation:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= R(x, y), (3.12)

with boundary values

u(0, y), u(L, y) ; 0 < y < L,
u(x, 0), u(x, L) ; 0 < x < L,

(3.13)
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and a given inhomogeneous term;

R(x, y); 0 < x, y < L.

We note here that the problem could also be posed such that the boundary
conditions given by Eq. (3.13) were replaced by Neumann boundary conditions
in which the values of the normal derivative are specified on the boundary
rather than the function. This is normally denoted by:

∂u

∂n
= b1 on δΩ. (3.14)

This is discussed in Section 3.3.1
The problem we consider is to solve for u(x, y) in the interior. We divide

space into N intervals of length h = L/N in each direction and adopt the
conventional notation:

xj = jh; j = 0, · · · , N,
yk = kh; k = 0, · · · , N,
ujk = u(xj , yk); Rjk = R(xj , yk).

The second-order accurate finite difference equation, again derived by a Taylor
series expansion, is given by

uj+1,k + uj−1,k + uj,k+1 + uj,k−1 − 4uj,k = h2Rj,k. (3.15)

Let the (N + 1)2 vector of unknowns be denoted by x. When Eq. (3.15) is
written in matrix form,

A · x = b, (3.16)

the matrix A is no longer tridiagonal but is sparse with a definite sparseness
pattern as shown below:

u0,0....
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u1,0....
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This matrix has non-zero elements on the diagonal and on either side of
it, but also has non-zero diagonal bands located (N + 1) elements away from
the main diagonal. As in the 1D case, this general matrix will be modified
to incorporate the boundary conditions. In particular, for Dirichlet boundary
conditions, the rows that correspond to boundary values will be replaced by
rows with all zeros, except for 1s on the diagonal, and the boundary value will
be inserted in the right-side vector.

This matrix equation must be inverted to solve for the unknowns (although
the actual inverse is not normally calculated). We consider several methods of
solving this system: (1) direct inversion as if the matrix were full using Gauss
elimination or LU decomposition, (2) direct inversion using block tridiagonal
methods, (3) several approaches to iterative methods, and (4) direct methods
based on transform techniques. But first we include a brief discussion of the
inclusion of Neumann boundary conditions in a 2D problem.

3.3.1 Neumann Boundary Conditions

As discussed in the 1D case in Section 3.2, if Neumann boundary conditions
are specified, the inhomogeneous term must satisfy a solvability condition that
follows from the application of Gauss’s theorem, in this case to Eq. (3.12) using
Eq. (3.14):∫

Ω

R(x, y)dxdy =
∫

Ω

∇ · ∇u dxdy =
∫
δΩ

∂u

∂n
d` =

∫
δΩ

b1d`. (3.17)

As for the 1D case, even with the solvability constraint satisfied, the solution
is determined only up to a constant. We can see this mathematically because
both the equation being solved and the boundary conditions now depend only
on the derivative of the function and not on the function itself. For example,
in the rectangular geometry being considered, the boundary conditions could
take the form of:

∂u

∂x
(0, yk) ≈

u1,k − u0,k

h
= b1(0, yk), (3.18)

or,

∂u

∂x
(0, yk) ≈

−u2,k + 4u1,k − 3u0,k

2h
= b1(0, yk). (3.19)

One of these would replace the row of the matrix corresponding to the bound-
ary value u0,k for k = 1, · · · , N . Equation (3.18) is first order accurate and
Eq. (3.19) is second order accurate. We see that if x = uj,k is any solution
vector that satisfies the difference equation, Eq. (3.15), and either Eq. (3.18)
or Eq. (3.19), then x+cx0 would also be a solution, where c is any real number
and x0 is a vector consisting of all 1s. If this is the case, we say that x0 is a
null vector or belongs to the null space of A, i.e.,

A · x0 = 0. (3.20)
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The nonuniqueness of the solution of the Neumann problem implies that the
matrix A in Eq. (3.16) is singular.

If the problem is properly formulated, this non-uniqueness may not be a
mathematical difficulty. For example, if the unknown u(x, y) corresponds to
a potential or stream function, then only the gradient of u, ∇u has physical
meaning. However, the non-uniqueness could lead to difficulties in some of
the numerical methods for solving the discrete equations that are given in
the following sections. One possible remedy is to replace one of the rows of
the matrix A (usually corresponding to a boundary point) with a row that
arbitrarily fixes one component of x. This renders the resulting system nonsin-
gular, but is not totally satisfactory because the accuracy of the solution will
depend on what equation is deleted. Another remedy [32] is to note that we
can regularize the solution by adding a small, positive definite term propor-
tional to εu2 to the variational statement of the problem, where ε is some small
positive number. The regularized problem is stated as finding the function u
that minimizes the functional

I(u) =
∫ [

|∇u|2 + εu2 + 2uR(x, y)
]
dxdy. (3.21)

This results in Eq. (3.12) being replaced by the Euler equation for Eq. (3.21):

∇2u− εu = R(x, y). (3.22)

For ε small enough, the solution to the finite difference form of Eq. (3.22) will
be close to the particular solution of Eq. (3.12) that minimizes εu2 as well as
satisfying the differential equation.

We now describe a convenient way to impose second-order accurate Neu-
mann boundary conditions, to ensure that the solvability constraint is satisfied
to machine accuracy, and to derive an exact discrete form of Gauss’s theorem.
We use conservative differencing to derive the finite difference equations, and
define the finite difference grid so that the physical boundary lies midway be-
tween two grid points as illustrated in Figure 3.1. Suppose that the elliptic
equation we wish to solve, in 2D Cartesian geometry, is given by:

∂

∂x

(
f(x, y)

∂u

∂x

)
+

∂

∂y

(
g(x, y)

∂u

∂y

)
= R(x, y). (3.23)

Consider a domain 0 < x < Lx, 0 < y < Ly with f(x, y), g(x, y), and
R(x, y) all given, and with Neumann boundary conditions specified. The grid
spacings δx = Lx/N and δy = Ly/N are defined in Figure 3.1. Second-order,
conservative finite differencing of Eq. (3.23) gives:

1
δx

[
f(x, y)

∂u

∂x

∣∣∣∣
j+ 1

2 ,k

− f(x, y)
∂u

∂x

∣∣∣∣
j− 1

2 ,k

]

+
1
δy

[
g(x, y)

∂u

∂y

∣∣∣∣
j,k+ 1

2

− g(x, y)
∂u

∂y

∣∣∣∣
j,k− 1

2

]
= Ri,j , (3.24)
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FIGURE 3.1: The computational grid can be shifted from the physical
boundary by a half grid spacing to naturally incorporate Neumann bound-
ary conditions.

or,

1
δx2

[
fj+ 1

2 ,k
(uj+1,k − uj,k)− fj− 1

2 ,k
(uj,k − uj−1,k)

]
+

1
δy2

[
gj,k+ 1

2
(uj,k+1 − uj,k)− gj,k− 1

2
(uj,k − uj,k−1)

]
= Ri,j .

(3.25)

Let the Neumann boundary conditions for the geometry of Figure 3.1 be
specified in terms of the four boundary arrays for the right, left, top, and
bottom boundaries, bRk , bLk , bTj , and bBj , as follows:

bRk =
(uN+1,k − uN,k)

δx
; k = 1, · · · ,M,

bLk =
(u0,k − u1,k)

δx
; k = 1, · · · ,M, (3.26)

bTj =
(uj,M+1 − uj,M )

δy
; j = 1, · · · , N,

bBj =
(uj,0 − uj,1)

δy
; j = 1, · · · , N.

The finite difference matrix consistent with the boundary conditions is ob-
tained by just replacing one of the four terms on the left of Eq. (3.25) with
the appropriate boundary value from Eq. (3.26) when that term lies on the
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boundary. In this form, we can sum both sides of Eq. (3.25), using Eq. (3.26)
and all the internal cancellations that come from summing a difference equa-
tion which uses conservative differencing. This yields an exact finite difference
form of Gauss’s theorem that must be satisfied by the boundary conditions
and the inhomogeneous term:

N∑
k=1

δy
[
fN+ 1

2 ,k
bRk + f 1

2 ,k
bLk

]
+

M∑
j=1

δx
[
gj,M+ 1

2
bTj + gj, 12 b

B
j

]

=
N∑
k=1

M∑
j=1

δxδyRi,j . (3.27)

Equation (3.27) is the discrete form of the solvability constraint given by
Eq. (3.17).

3.3.2 Gauss Elimination

Let us consider the matrix equation, Eq. (3.16), where A is an M ×M
square matrix, and x and b are vectors of length M . Equation (3.15) is of
this form if we let M = (N + 1)2. In this section we proceed as if A is a full
matrix and consider a general algorithm which is a specific implementation of
Gauss elimination for solving for the unknown vector x. This method will also
work for a matrix having the sparseness pattern of Eq. (3.15), but will not be
nearly as efficient as other methods which take advantage of this sparseness.

We illustrate the method when A is a 3×3 matrix, and will generalize from
there. Note that we assume here that the diagonal elements of the matrices are
not zero, as is normally the case for matrices arising from applying the finite
difference method to elliptic equations. For the more general case of Gauss
elimination where no such assumptions are made and pivoting is required, the
reader is referred to one of numerous books on the subject [31].

Consider then the matrix equation a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·
 x1

x2

x3

 =

 b1
b2
b3

 . (3.28)

The first step is to multiply row 1 by −m21 ≡ −a21/a11 and to add this to
row 2:  a11 a12 a13

0 a′22 a′23
a31 a32 a33

 ·
 x1

x2

x3

 =

 b1
b′2
b3

 ,
where

a′22 = a22 −m21a12,
a′23 = a23 −m21a13,
b′2 = b2 −m21b1.
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Next, multiply row 1 by −m31 ≡ −a31/a11 and add to row 3 to obtain a11 a12 a13

0 a′22 a′23
0 a′32 a′33

 ·
 x1

x2

x3

 =

 b1
b′2
b′3

 ,
where

a′32 = a32 −m31a12,
a′33 = a33 −m31a13,
b′3 = b3 −m31b1.

Finally, multiply row 2 by −m32 = −a′32/a′22 and add to row 3 giving a11 a12 a13

0 a′22 a′23
0 0 a′′33

 ·
 x1

x2

x3

 =

 b1
b′2
b′′3

 , (3.29)

where

a′′33 = a′33 −m32a
′
23,

b′′3 = b′3 −m32b
′
2.

This final matrix in Eq. (3.29) we call U. It is of upper triangular type in that
all the non-zero entries are on or above the diagonal.

Note that by saving the elements mij we could form the lower triangular
matrix L, by adding 1s on the diagonal:

L =

 1 0 0
m21 1 0
m31 m32 1

 . (3.30)

The matrices L and U have the property that they are factors of the original
matrix A:

L ·U = A.

This is called the LU decomposition of the matrix A.
Once the matrix, Eq. (3.28), has been transformed to upper triangular

form, Eq. (3.29), we can perform the back substitution step to solve for the
unknowns, i.e.,

x3 =
b′′3
a′′33

,

x2 =
b′2 − a′23x3

a′22
,

x1 =
b1 − a12x2 − a13x3

a11
.
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We can easily generalize this example from a 3 × 3 to an M ×M matrix
where we recall that M = (N + 1)2 for the matrix Eq. (3.16). The number of
multiplications needed to reduce the system to triangular form is then, for M
large

1
3
M3 ∼=

1
3
N6, (3.31)

whereas the number of multiplications needed to solve the final back-
substitution step is, for M large,

1
2
M2 ∼=

1
2
N4. (3.32)

It is illustrative to evaluate this in terms of how long it would take on
a modern computer. Commodity computers can perform approximately 108

arithmetic operations per second. For N = 100, which is a typical value, this
would require approximately 3300 sec, or 1 hour of dedicated computer time
to reduce to upper triangular form, although the back-substitution step would
require only about 0.5 sec. This is far too much computational effort to spend
on such a simple equation, especially since we will see that there are much
more efficient methods for solving the same equation.

We note here that if one were solving many equations of the form of
Eq. (3.16) that involve the same matrix A, but have differing right-hand-
side vectors b, it would normally be worthwhile to form the LU decomposi-
tion of the matrix A. Once this is formed, we could solve the system for any
right-hand-side vector b by performing only two back-substitution steps, each
requiring ∼ 1

2 M
2 operations. To solve the system

L ·U · x = b,

we could first solve

L · y = b

for the vector y by back substitution, starting from the top, and would then
solve

U · x = y

for the vector x by normal back substitution, starting from the bottom.
We remark here that the estimates made in this section, Eqs. (3.31) and

(3.32), assumed that the matrix A was a full matrix. In reality, the matrix
in Eq. (3.16) that comes from a 2D elliptic equation finite differenced on
a structured rectangular grid will have a band structure as illustrated after
Eq. (3.16). If the band width is of order N , then this will reduce the operation
count, Eq. (3.31), from ∼ N6 to ∼ N4.
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3.3.3 Block-Tridiagonal Method

There is a simple direct method of solving the finite difference equation,
Eq. (3.15), that is a generalization of the tridiagonal technique discussed in
Section 3.2.2. For each k value, we define a vector of length N+1 that contains
the unknowns at all the j values with that k, i.e., we define the length N + 1
vector for each k as follows:

Uk =


u0,k

u1,k

...
uN−1,k

uN,k

 .

The finite difference equation (3.15) can then be written in the block form

Ak ·Uk+1 −Bk ·Uk + Ck ·Uk−1 = Dk.

Here, Bk is a tridiagonal (N + 1) × (N + 1) matrix and Ak and Ck are
both diagonal matrices. If we assume that all boundary conditions are of the
Dirichlet type, then these matrices are of the form:

Bk =



−1
−1 4 −1

−1 4 −1
· · ·

· · ·
−1 4 −1

−1



x
N + 1

y
(3.33)

Ak = Ck =



0
1

1
· · ·

· · ·
1

0



x
N + 1

y
k = 1, · · · , N − 1.

For k = 0 and k = N , B0 = BN = −I (the identity matrix) and C0 =
A0 = CN = AN = 0. The matrix D is also suitably modified to include the
boundary values.

In a manner closely analogous to that discussed in Section 3.2.2, we seek
to find the rank (N + 1) square matrices Ek and the length (N + 1) vectors
Fk such that

Uk = Ek ·Uk+1 + Fk. (3.34)
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In a matrix generalization of the procedure that led to the scalar equations in
Eq. (3.9), we find that Ek and Fk obey the recurrence relations

Ek = [Bk −Ck ·Ek−1]−1 ·Ak,

Fk = [Bk −Ck ·Ek−1]−1 · (Ck · Fk−1 −Dk). (3.35)

To initialize, we note that E0 and F0 are well defined since C0 = 0, and
the analogue of Eq. (3.11) is:

UN−1 =
[
I−EN−1B−1

N CN

]−1 ·
[
FN−1 −EN−1B−1

N DN

]
. (3.36)

The majority of the work for this method involves inverting the matri-
ces in brackets in Eq. (3.35) for each of the (N + 1) k values. This requires
approximately N inversions with ∼ 1/3 N3 operations each, for a total of
∼ 1/3 N4 operations to solve the complete system, a substantial improve-

ment over Gauss elimination on a full matrix, but the same scaling as for
Gauss elimination taking into account the banded structure.

3.3.4 General Direct Solvers for Sparse Matrices

Recently there has been considerable progress in developing efficient gen-
eral direct solvers for sparse matrices. The general algorithms have complex
logic as required for efficient handling of the fill-in of the factors L and U .
A typical solver consists of four distinct steps: (i) an ordering step that re-
orders the rows and columns such that the factors suffer little fill, or such that
the matrix has special structure such as block triangular form; (ii) an analy-
sis step or symbolic factorization that determines the non-zero structures of
the factors and creates suitable data structures for the factors; (iii) numerical
factorization that computes the L and U factors; and (iv) a solve step that
performs forward and back substitution using the factors.

There are many different algorithmic possibilities for each step. Excellent
review papers are available [33, 34, 35]. Modern “black box” packages such as
SUPER_LU [36] or MUMPS [37] that exploit new architectural features, such as
memory hierarchy and parallelism, are available and many are able to obtain
outstanding speeds, close to those theoretically possible on given platforms.
Physicists or other application scientists who require such a solver are advised
to seek out the documentation and try one of these remarkable packages.

3.4 Matrix Iterative Approach

In the next several sections we discuss iterative methods for solving the
difference equations that arise from the approximation of elliptic equations.
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Iterative methods have an advantage over direct methods in that they are quite
general, and don’t necessarily require a particular band structure or that the
coefficient matrices be independent of one coordinate as do the fast direct
methods that utilize transform techniques. Also they benefit from a good
initial guess to the solution so that, for example, if an elliptic equation has to
be solved at each time step as part of a time advancement solution, the values
at the previous time step can be used effectively to initialize the iteration.
We consider several different formalisms for discussing and analyzing these
methods. In this section we discuss the matrix iterative approach, which uses
matrix techniques. In the next section we present the physical approach, which
exploits an analogy between iterative techniques for solving elliptic equations
and solving a corresponding time-dependent equation to the steady state. In
the following sections we discuss the multigrid and Krylov space methods.

We have seen that the finite difference equations that approximate an
elliptic equation can be written in matrix form

A · x = b, (3.37)

where b is a known vector which arises from the inhomogeneous term, x is
the solution vector which is to be determined, and A is a sparse, diagonally
dominant matrix

|aii| ≥
∑
j 6=i

|aij |. (3.38)

We want first to explore iterative methods of the form [38, 39]

x(n+1) = P · x(n) + c, (3.39)

where the iteration is initialized with an initial guess x(0). Now, Eq. (3.39)
must reduce to Eq. (3.37) in the steady state when x(n+1) = x(n). Let us
suppose that the vectors c and b are related by the linear relation

c = T · b. (3.40)

In the steady state, from Eqs. (3.39) and (3.40), we have

x = P · x + T · b,

or

T−1 · (I−P) · x = b.

By comparing with Eq. (3.37), we find

A = T−1 · (I−P),

or

P = I−T ·A. (3.41)
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Choosing an iterative method for solving Eq. (3.37) is therefore equivalent to
choosing a matrix T or a matrix P, which are related by Eq. (3.41). We note
that if T = A−1, the iteration will converge in a single iteration. This suggests
that we should make T “close to” A−1 for rapid convergence.

3.4.1 Convergence

Let ε(n) = x(n)−x be the error in the solution at iteration n. Subtracting
the exact relation

x = P · x + c

from the iterative method in Eq. (3.39) yields an equation for the error:

ε(n+1) = P · ε(n). (3.42)

For convergence, we demand

|ε(n+1)| < |ε(n)|.

We analyze further in terms of the eigenvalues and eigenvectors of P. Say
that P has M distinct eigenvalues λi. We can then expand the initial error in
terms of the eigenvectors of P,S(i)

ε(0) =
M∑
i=1

αiS(i).

Now, from Eq. (3.42)

ε(n) = P · ε(n−1) = Pn · ε(0)

=
M∑
i=1

αiλ
n
i S

(i). (3.43)

This shows clearly that for convergence we need all the eigenvalues of P to be
less than unity. For rapid convergence, we want the maximum of the absolute
values of the eigenvalues, or the spectral radius, to be as small as possible.

Let us now consider some specific methods. It is conventional to decompose
a given matrix A into submatrices. For the matrix A in Eq. (3.37), let

A = D · (I + L + U), (3.44)

where D is a diagonal matrix, I is the identity matrix, L is a lower triangular
matrix with elements only below the diagonal, and U is an upper triangu-
lar matrix with elements only above the main diagonal. In terms of these
submatrices, we discuss three common iterative methods.
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3.4.2 Jacobi’s Method

Jacobi’s method, in matrix form, corresponds to the following:

x(n+1) = −(L + U) · x(n) + D−1 · b. (3.45)

This is of the form of Eq. (3.39) if we identify

P = I−D−1 ·A = −(L + U), T = D−1.

Applied to the finite difference equation in Eq. (3.15), Jacobi’s method,
Eq. (3.45), becomes:

un+1
j,k =

1
4
(
unj+1,k + unj−1,k + unj,k+1 + unj,k−1 − h2Rj,k

)
. (3.46)

Jacobi’s method, Eq. (3.45), is a particular example of a more general class
of iterative methods called relaxation. We return to this and gain additional
insight in Section 3.5.1 The method is very easy to program and requires few
computations per iteration, but we will see that it requires many iterations
to converge and it is thus not competitive with faster methods, at least for
production applications.

However, a slight generalization of the Jacobi method is often used as a
smoother in the multigrid method (Section 3.5). The weighted Jacobi method
is defined by

x(n+1) = xn + ω
[
−(I + L + U) · x(n) + D−1 · b

]
. (3.47)

This reduces to the Jacobi method for ω = 1. (It is also sometimes referred
to as Richardson relaxation.) We will see in Section 3.5.1 that it is unstable
for ω > 1 and generally will converge more slowly than the Jacobi method for
ω < 1. However, a value of ω = 2/3 is especially effective in damping grid-
scale oscillations and is often used in conjunction with the multigrid method
as discussed in Section 3.6.

3.4.3 Gauss–Seidel Method

The Gauss–Seidel method is defined by:

x(n+1) = −L · x(n+1) −U · x(n) + D−1 · b. (3.48)

This has P = −(I + L)−1 · U, T = (I + L)−1 · D−1. Applied to the finite
difference equation in Eq. (3.15), the Gauss–Seidel method, Eq. (3.48), gives:

un+1
j,k =

1
4

(
unj+1,k + un+1

j−1,k + unj,k+1 + un+1
j,k−1 − h2Rj,k

)
.

The Gauss–Seidel method is very similar to Jacobi’s method, but uses the
most recent values of the variable being iterated. It thus requires less storage
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and converges faster than Jacobi’s method, normally about twice as fast. Note
that it implies a certain order of computation so that non-zero elements of L
only multiply components of x that have already been updated.

This implied ordering of computation presents a difficulty when imple-
menting this algorithm on parallel computers where different parts of the grid
would normally be assigned to different processors. For parallelism to be ef-
fective, each part of the grid, residing on different processors, would need be
updated simultaneously. A variant of the Gauss–Seidel method called red-black
Gauss–Seidel addresses this by dividing all the points into two sets: a red set
with j + k even and a black set with j + k odd. First, the entire red set of
points can all be updated in any order, and then the black set can likewise be
updated in any order.

3.4.4 Successive Over-Relaxation Method (SOR)

The Successive Over-Relaxation (SOR) method is given by:

x(n+1) = x(n) + ω
[
−L · x(n+1) − (U + I) · x(n) + D−1 · b

]
. (3.49)

In this case we have

P(ω) = (I + ωL)−1 · [(1− ω)I− ωU] , T = ω(I + ωL)−1 ·D−1. (3.50)

It can be shown that this method will not converge for the over-relaxation
factor, ω, outside the range 0 < ω < 2.

Applied to the finite difference equation in Eq. (3.15), the SOR method,
Eq. (3.49), gives:

un+1
j,k = unj,k +

ω

4

(
unj+1,k + un+1

j−1,k + unj,k+1 + un+1
j,k−1 − 4unj,k − h2Rj,k

)
.

The SOR method appears to be very similar to the Gauss–Seidel method,
but in fact it is much more powerful. For a given sparse matrix, there is an
optimal value of ω, normally between 1 and 2, for which the SOR method
can converge much faster than the Gauss–Seidel or Jacobi methods, making
it competitive with more modern methods in certain situations. This will be
explored more in Problem 3.6.

3.4.5 Convergence Rate of Jacobi’s Method

It is generally not possible to compute the eigenvalues of the matrix P in
Eq. (3.43) and thus obtain the convergence rate. However, for several of the
most simple geometries, operators, and methods, this is possible. We illustrate
a particular technique here.

Suppose we are solving the finite difference form of Laplace’s equation in
a square domain of size L × L. Define a uniform mesh size h = L/N in each
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direction so that the x and y mesh locations are at xj = jh and yk = kh.
Homogeneous boundary conditions are applied at j, k = 0 and N . Let the
solution vector at iteration level n be given by: unj,k ; j, k = 0, 1, · · · , N . We
define, for integer l and m values, the 2D discrete sine transform [40] vector

ũnl,m =
N−1∑
j=1

N−1∑
k=1

unj,k sin
πjl

N
sin

πkm

N
; l,m = 1, · · · , N − 1. (3.51)

The corresponding exact inverse transform is given by

unj,k =
4
N2

N−1∑
l=1

N−1∑
m=1

ũnl,m sin
πjl

N
sin

πkm

N
; j, k = 1, · · · , N − 1. (3.52)

This representation has the property that unj,k can be extended beyond where
it is defined and is odd about j, k = 0 and N . It is thus compatible with the
boundary conditions continuing to be satisfied during the iteration, Eq. (3.46),
even when the interior equations are applied at the boundary.

From Eqs. (3.43) and (3.46), we see that the eigenvalues for the iteration
matrix P for Jacobi’s method satisfies the equation:

1
4
(
unj+1,k + unj−1,k + unj,k+1 + unj,k−1

)
= λunj,k. (3.53)

Substituting from Eq. (3.52) into Eq. (3.53) and using the angle addition
formula, we see that each l,m harmonic decouples from the others, and thus
the eigenvalues are given by:

λl,m =
1
2

[
cos

πl

N
+ cos

πm

N

]
; l,m = 1, · · · , N − 1. (3.54)

Since the eigenvalues are all less than 1, the method will converge. However,
the largest eigenvalue, corresponding to l,m = 1, 1 is very close to 1, given by

λ1,1 = cos
π

N
∼ 1− π2

2N2
.

This implies that the convergence will be very slow, particularly for N large.
The number of iterations required for the error to decay by 1/e is

Nit =
−1

lnλ1,1
∼ 2N2

π2
. (3.55)

We return to this in Section 3.5.1.

3.5 Physical Approach to Deriving Iterative Methods

There is a much more physical approach to developing iterative methods
that involves adding time derivative terms to the original elliptic equation
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and advancing forward in time until a steady state is obtained. We continue
to discuss methods of solving Eq. (3.12), which we write here as

∂2u

∂x2
+
∂2u

∂y2
−R(x, y) = 0. (3.56)

Assume that Dirichlet boundary conditions are applied on a square L × L
domain. The corresponding second-order centered finite difference equation,
assuming δx = δy = h = L/N is given by Eq. (3.15), or:

uj+1,k + uj−1,k + uj,k+1 + uj,k−1 − 4uj,k − h2Rj,k = 0. (3.57)

In the next two sections we will examine the iterative methods that correspond
to adding a first-order and a second-order time derivative term to Eq. (3.56).

3.5.1 First-Order Methods

As a first attempt, let us add a single time derivative term to convert
Eq. (3.56) to a parabolic equation, i.e.,

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
−R(x, y). (3.58)

We finite difference using forward time and centered space differences to obtain
the discrete equation

un+1
j,k = unj,k + s

[
unj+1,k + unj−1,k + unj,k+1 + unj,k−1 − 4unj,k − h2Rj,k

]
. (3.59)

Here, the superscript n is now the time index and we have introduced the
parameter s = δt/h2. If the iteration defined in Eq. (3.59) converges so that
un+1
j,k = unj,k everywhere, then the difference equation in Eq. (3.57) will be

satisfied.
Two questions must be answered concerning the iteration so defined: (i)

How large of a value of s can be used and still obtain a stable iteration and (ii)
How many iterations are necessary to converge? To answer (i), we examine the
stability of the difference scheme using the 2D von Neumann stability analysis
method introduced in Section 2.5.3. Making the substitution

unj,k = ũrnei(jθl+kθm) (3.60)

in Eq. (3.59) and applying the criterion that |r| ≤ 1 for all values of θl and
θm we find that for stability

|r| = |1− 8s| ≤ 1,

or

s ≤ 1
4
. (3.61)
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This implies δt ≤ 1
4h

2. Using the equality, the iteration scheme becomes

un+1
j,k =

1
4
[
unj+1,k + unj−1,k + unj,k+1 + unj,k−1 − h2Ri,j

]
. (3.62)

The iterative method defined by Eq. (3.62) is just Jacobi relaxation, iden-
tical to Eq. (3.46). The more general method defined by Eq. (3.59) for s
arbitrary is the modified Jacobi or Richardson relaxation. Jacobi relaxation is
seen to be a special case of Richardson relaxation optimized by choosing the
relaxation parameter s to be the largest value allowed by stability.

To estimate how many iterations are necessary for the method to converge,
we look at transient solutions of the corresponding differential equation (3.58).
To solve, let

u = uss(x, y) + ũ(x, y, t),

where uss(x, y) is the steady-state solution which satisfies the boundary con-
dition. Then ũ(x, y, t) is zero on the boundary, and satisfies the homogeneous
equation

∂ũ

∂t
=
∂2ũ

∂x2
+
∂2ũ

∂y2
. (3.63)

We look for separable solutions of the form

ũ = e−λmnt sin
(mπx

L

)
sin
(nπy
L

)
, (3.64)

with corresponding decay rates

λm,n =
(
n2 +m2

) π2

L2
. (3.65)

The slowest decaying mode has m = n = 1. It will decay in a time

t = 1/λ11 = L2/2π2.

The number of iterations required for the error to damp one e-folding time is
therefore

t

δt
=

L2

2π2
· 4
h2

' 2
π2
N2. (3.66)

This is the same result as obtained in Eq. (3.55) from analysis of the eigenval-
ues of the matrix P. Since each iteration requires ∼ N2 multiplications, the
total number of multiplications required to obtain a solution with the error
reduced by e−1 will scale like N4.

However, we see from Eq. (3.65) that the short wavelength modes (with
n ∼ m ∼ N) decay much faster that these long wavelength modes that limit
the overall convergence rate. This is one of the key observations underlying
the multigrid method that is discussed in Section 3.6.
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3.5.2 Accelerated Approach: Dynamic Relaxation

In order to accelerate convergence, we consider the effect of adding a higher
time derivative term to Eq. (3.56), converting it now to a hyperbolic equation:

∂2u

∂t2
+

2
τ

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
−R(x, y). (3.67)

We have also included a first-order time derivative term in Eq. (3.67) with a
multiplier of 2/τ to provide the possibility of damping. The multiplier will be
chosen to optimize the convergence rate. In finite difference form, now using
second-order centered differences in both space and time, Eq. (3.67) becomes

un+1
j,k − 2unj,k + un−1

j,k

δt2
+
un+1
j,k − un−1

j,k

τδt

−
[
unj−1,k + unj+1,k + unj,k+1 + unj,k−1 − 4unj,k

h2

]
+Rj,k = 0. (3.68)

Applying the von Neumann stability analysis, we find that for stability we
require the condition δt ≤ h/

√
2. Again choosing the equality, the iteration

scheme becomes

un+1
j,k = −H

D
un−1
j,k +

1
2D

[
unj−1,k + unj+1,k + unj,k+1 + unj,k−1

]
− h2

2D
Rj,k,

with H = 1 − h/
√

2τ,D = 1 + h/
√

2τ . This is known as dynamic relaxation
with the parameter τ to be chosen to optimize convergence as described below.
To estimate convergence, we again look at the transient decay time. From the
homogeneous equation

∂2ũ

∂t2
+

2
τ

∂ũ

∂t
=
∂2ũ

∂x2
+
∂2ũ

∂y2

we obtain the eigenmode solution

ũ = e−λt sin
(mπx

L

)
sin
(nπy
L

)
,

where λ satisfies

λ2 − 2
τ
λ+ λmn = 0,

with λmn being defined in Eq. (3.65). The two roots of this quadratic equation
are:

λ =
1
τ
∓
[

1
τ2
− λmn

] 1
2

.
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For optimal damping, we choose τ2 = 1/λ11, which gives critical damping of
the slowest decaying mode. We thus choose

τ =
L√
2π
,

and the slowest decaying mode will decay by a factor of e in

τ

δt
∼ L

πh
∼ 1
π
N iterations. (3.69)

Since each iteration requires N2 operations, the total effort to reach a solu-
tion will scale like N3. Comparing with the method of Section 3.5.1 (Jacobi
iteration), we see that the accelerated method is faster by a factor of N .

We can now better understand why the Jacobi method converges so slowly,
and why the accelerated method offers a dramatic improvement. The Jacobi
method corresponds to solving a diffusion equation to a steady state. Diffusion
is inherently a slow process, and we will see in Chapter 7 that it requires N2

time steps for a disturbance to propagate across a grid in solving a diffusion
problem with an explicit finite difference method. In contrast, we will see in
Chapter 9 that a disturbance can propagate across a grid inN time steps when
solving a hyperbolic (or wave propagation) equation. By adding some small
damping to the wave equation, we arrive at a system in which the different
parts of the mesh communicate with each other much more efficiently and this
leads to considerably more rapid decay of the error component of the solution.

3.6 Multigrid Methods

Standard iterative methods for solving sparse matrix equations arising
from the finite difference approximation to elliptic partial differential equa-
tions such as described in Sections 3.4 and 3.5 are very general and relatively
easy to program, and thus have many advantages, especially for exploratory
programming and in rapid prototyping. However, they are generally not suit-
able for production applications since when compared to the most efficient
methods, they are not nearly as efficient. Multigrid methods [41, 42] are a
technique for greatly increasing the speed and efficiency of standard iterative
methods, making them competitive with the fastest methods available. There
are three key ideas on which multigrid methods are based.

The first observation is that standard iterative methods benefit greatly
from a good initial guess. We exploit this by first solving the equation on a
coarse grid, then use the coarse grid solution to initialize a finer grid iteration
as shown in Figure 3.2. This process is recursive, going from the coarsest to
the finest grid allowable in the problem.
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Coarse Grid Fine Grid

FIGURE 3.2: Multigrid methods use a sequence of grids of different coarse-
ness.

The second observation is that on a given mesh, or grid, the short wave-
length components of the error decay much faster than the long wavelength
components. This is discussed at the end of Section 3.5.1 in conjunction with
Eq. (3.65). The coarse mesh is therefore much more efficient in handling the
long wavelength components of the error, which it can accurately represent,
while the fine mesh is needed for the short wavelength components.

The third observation is that the error satisfies the same matrix equation
as the unknown. Recall that we are discussing solving Eq. (3.37),

A · x = b. (3.70)

Let x be the exact solution, and v be the approximate solution after some
number of iterations. We define the residual corresponding to the approximate
solution as

r = b−A · v.

This is a measure of how well the approximate solution satisfies the original
equation. Also, define the error as:

e = x− v.

From the definition of the residual and the error, we can subtract

A · v = b− r (3.71)

from Eq. (3.70) to obtain

A · e = r. (3.72)

Since the equation we are solving can be cast in terms of the error and the
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h

2h

4h

8h

restriction interpolation

FIGURE 3.3: Basic coarse grid correction method successively restricts so-
lution from finest (h) to coarsest (8h) grid, and then successively interpolates
back to finest grid.

residual, we can restrict (fine to coarse) and interpolate (coarse to fine) ap-
proximations to the solution between a sequence of grids of different coarseness
using appropriate restriction and interpolation operations.

The basic steps of the multigrid method are given here. There are two
cycles that are periodically combined to deliver an optimal strategy. These
are called nested iteration and coarse grid correction.

The nested iteration is just a strategy to obtain a good initial guess. We
begin by relaxing Eq. (3.70), A · x = b, on a very coarse grid to get an
approximate solution. We then interpolate this solution onto a finer grid as
a good “initial guess” for that grid. Then, Eq. (3.70), A · x = b, is relaxed
on that grid, and the solution is in turn used as a good initial guess for an
even finer grid. This process is repeated until we initialize the unknown on
the finest grid.

The second basic cycle is the coarse grid correction. It is illustrated in
Figure 3.3. The steps in the coarse grid correction are as follows:

1. Start relaxing Eq. (3.70), A · x = b, on the fine grid (h).

2. After a few iterations, stop and compute the residual: r = b − A · v,
where v is the current approximation to the solution x.

3. Map the residual r onto the coarse grid using a restriction operator.

4. Start relaxing the equation for the error, A2h · e = r, on the coarse grid
(2h) using the coarse grid operator.

5. After a few iterations, use the interpolation operator to interpolate the
error e back to the fine grid.

6. Form the new approximation to the solution, x = e + v.

These basic cycles can be used recursively between a sequence of grids of
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h

2h

4h

8h

FIGURE 3.4: Full Multigrid V-cycle (FMV).

different coarseness to form a multigrid tree. Figure 3.3 is a basic block called
a V-cycle. A more advanced cycle that is often used is called the Full Multigrid
V-cycle (FMV) and is illustrated in Figure 3.4.

Important details in the theory of multigrid methods include the forms of
the restriction operator, the interpolation operator, the coarse grid operator,
and the relaxation method (or smoother) used. If the solution on the fine
grid is denoted by vh and that on the coarse grid by v2h, then the standard
operator that interpolates from the coarse to the fine grid can be defined as

vh = Ih2hv
2h. (3.73)

The components of vh are given by, for 0 ≤ j, k ≤ N/2− 1,

vh2j,2k = v2h
j,k

vh2j+1,2k =
1
2
(
v2h
j,k + v2h

j+1,k

)
vh2j,2k+1 =

1
2
(
v2h
j,k + v2h

j,k+1

)
vh2j+1,2k+1 =

1
4
(
v2h
j,k + v2h

j+1,k + v2h
j,k+1 + v2h

j+1,k+1.
)

The corresponding restriction operator that transfers the solution from the
fine grid to the coarse grid is defined as

v2h = I2h
h vh. (3.74)

Here, the components are given by

v2h
j,k =

1
16
[
vh2j−1,2k−1 + vh2j−1,2k+1 + vh2j+1,2k−1 + vh2j+1,2k+1

+ 2
(
vh2j,2k−1 + vh2j,2k+1 + vh2j−1,2k + vh2j+1,2k

)
+ 4vh2j,2k

]
.

These two operators have the property that they are the transposes of each
other, up to a real constant:

Ih2h = c
(
I2h
h

)T
.
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With the definition of these two operators, the coarse grid operator A2h can
be defined in terms of the fine grid operator Ah as

A2h = I2h
h AhIh2h. (3.75)

With the operators defined this way, Eq. (3.75) gives exactly the same result
as one would get if the original problem were discretized on the coarse grid.

There are a number of parameters in the multigrid method that are left un-
defined or are problem dependent. These include the number of iterations that
should be performed on each grid level each cycle, which iteration method (or
smoother) to use (Jacobi, some other form of Richardson relaxation, Gauss–
Seidel, etc.) and whether to use the V-cycle or the FMV-cycle. As discussed in
Section 3.4.2, the weighted Jacobi method with ω = 2/3 gives rapid damping
of grid-scale oscillations and is often used as the relaxation operator.

General theoretical considerations show that the majority of work is per-
formed in iterating on the finest grid, where ∼ Nd operations are required
for a d-dimensional problem with Nd unknowns. If only a few sweeps of the
finest grid are needed, the number of V-cycles or FMV-cycles required should
scale like logN for N large. The total amount of work required for a multigrid
solution should therefore scale like Nd logN , which is competitive with the
best available solvers.

In a variant of multigrid called algebraic multigrid [43, 44], black box pro-
grams have been developed that work solely with the matrix A and right-hand-
side vector b without any explicit knowledge of the underlying grid being used
or differential equation being solved. These construct their hierarchy of oper-
ators directly from the system matrix, where the system is represented as a
graph of n nodes where an edge (i, j) is represented by a non-zero coefficient
Aij .

3.7 Krylov Space Methods

There is a class of very effective modern iterative methods that use a
combination of preconditioning and some definition of optimal iteration in a
Krylov Subspace to obtain rapid convergence [34, 45]. Let us suppose that A
is a matrix close to the identity matrix and that the equation we want to solve
is

A · x = b. (3.76)

We can use the identity matrix to rewrite this as

[I− (I−A)] · x = b. (3.77)
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Consider a particular form of Richardson iteration defined by

x(n+1) = b + (I−A) · x(n)

= x(n) + (b−A · x(n)).
(3.78)

We can rewrite Eq. (3.78) as

x(n+1) = x(n) + r(n), (3.79)

where r(n) ≡ (b−A·x(n)) is the residual after n iterations. Multiply Eq. (3.79)
by −A and add b to obtain the difference equation the residual obeys

b−A · x(n+1) = b−A · x(n) −A · r(n) (3.80)

or

r(n+1) = (I−A) · r(n) = (I−A)n+1 · r(0). (3.81)

A more general form of (modified) Richardson iteration replaces Eq. (3.79)
by

x(n+1) = x(n) + αn+1r(n), (3.82)

where the αn are real constants that can be chosen to minimize some norm
of the residual ‖rn‖. This leads to the relation r(n+1) = (I − αn+1A) · r(n),
which can also be written

r(n+1) = P(n+1)(A) · r(0), (3.83)

where we have introduced the matrix operator

P(n)(A) ≡
n∏
j=0

(I− αjA).

Different Krylov space methods correspond to different rules for selecting the
αj .

For simplicity in the following discussion, we will discuss the choice αj =
1. Let us also suppose that x(0) = 0. This is really no loss of generality,
since for the situation x(0) 6= 0, we can transform through a simple linear
transformation z = x−x(0) so that the transformed system A·z = b−A·x(0) =
b̃, for which obviously z(0) = 0.

For the Richardson iteration introduced above, it follows from Eqs. (3.79)
and (3.81) that

x(n+1) = r(0) + r(1) + r(2) + ...+ r(n) =
n∑
j=0

(I−A)j · r(0). (3.84)
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Thus, x(n+1) lies in the space generated by

{r(0),A · r(0), ...,An · r(0)} ≡ Kn+1(A; r(0)),

where Kn(A; r(0)) is the Krylov subspace of dimension n generated by A and
r(0).

The Richardson iteration thereby generates elements of Krylov subspaces
of increasing dimension. Including local iteration parameters in the iteration,
i.e., allowing αn 6= 1, leads to other elements of the same Krylov subspaces,
and hence to other polynomial expressions for the error and the residual. A
natural question to ask is: “What is the best approximate solution that we can
select from the Krylov subspace of a given dimension?” Posed mathematically,
“best” might be defined as that which minimizes the norm of the residual or
makes the residual orthogonal to the subspace.

In order to discuss the better approximations in the Krylov subspace, we
need to define a basis for this subspace, one that can be extended naturally
for subspaces of increasing dimension. The obvious basis

r(0),A · r(0), ...,An · r(0) (3.85)

for Kn+1(A; r(0)) is not very attractive from a numerical point of view, since
the vectors An · r(0) point more and more in the direction of the dominant
eigenvector for increasing n, and hence they lose their linear independence.

Instead of this standard basis, one usually works with an orthonormal basis
that is constructed by a modified Gram–Schmidt procedure. Thus, if we as-
sume that we already have an orthonormal basis v1, ...,vn for Kn(A; r(0)),
then this basis is expanded by computing t = A · vn, and by orthonor-
malizing this vector with respect to v1, ...,vn. We start this process with
v1 ≡ r(0)/‖r(0)‖2, where we have normalized by the `2 norm of the vector.

There are several approaches to finding the optimal iteration strategy
within the Krylov subspace. Two of the more popular methods are (1) the
Ritz–Galerkin approach that leads to the conjugate-gradient (CG) method,
requiring that b − A · x(n)⊥Kn(A, r(0)) and (2) the minimum residual ap-
proach that leads to methods such as GMRES, requiring that ‖b−A ·x(n)‖2
be minimal over Kn(A; r(0)). We discuss a variational formulation of the con-
jugate gradient method in the next section and the GMRES approach in the
section after that. Additional analysis and discussion of other Krylov space
methods can be found in [34, 46].

3.7.1 Steepest Descent and Conjugate Gradient

If the matrix A is symmetric and positive definite, there is a variational
derivation of the conjugate gradient method [50], which we present here. For
a given N ×N matrix A and N vector b, we define the scalar function

φ(x) =
1
2
xT ·A · x− bT · x. (3.86)
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Equation (3.76) is equivalent to finding the N -vector x̄ that minimizes φ(x),
since this implies that ∇φ(x̄) = A · x̄− b = 0, where ∇ is an N -dimensional
gradient.

We first observe that for an arbitrary scalar α and vector y, it follows from
Eq. (3.86) that

φ(x + αy) = φ(x) + αyT · (A · x− b) +
1
2
α2yT ·A · y. (3.87)

If we impose the requirement that φ(x+αy) be stationary with respect to α,
i.e., ∂

∂αφ(x + αy) = 0, then this implies

yT · [A · (x + αy)− b] = 0, (3.88)

where α is given by

α = −yT · (A · x− b)
yT ·A · y

. (3.89)

To specify an iteration, we choose an initial iterate, x0, and for i = 0, 1, 2, ...
we choose a search direction pi, and define the iteration by

xi+1 = xi + αipi, (3.90)

where αi is chosen to minimize φ(xi + αipi). It follows from Eq. (3.89) that

αi =
pTi · ri

pTi ·A · pi
, (3.91)

where ri ≡ b−A · xi is the residual.
The steepest descent method chooses the search direction pi to be ri (in

the direction of the residual). The iteration method is then given by

xi+1 = xi +
(

rTi · ri
rTi ·A · ri

)
ri. (3.92)

This will decrease the scalar function φ(x) defined in Eq. (3.86) every iteration,
but it converges very slowly because it is always minimizing along the residual
direction at the expense of the other directions.

The conjugate gradient method improves on this shortcoming of the steep-
est descent method by introducing a set of A-conjugate vectors p0,p1,p2, ...
with the orthogonality property:

pTi ·A · pj =
{

= 0, i 6= j
6= 0, i = j

.

We note that these vectors are linearly independent, i.e., they have the prop-
erty that if

k∑
j=0

cjpj = 0 (3.93)
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then this implies

ci = 0; i = 0, · · · , k.

This can be seen by multiplying Eq. (3.93) on the left by pTi · A and using
the orthogonality property.

A-conjugate vectors have the property that

φ(xk+1) =
min

c0, c1, · · · , ck φ
(
x0 +

∑k
j=0 cjpj

)
xn = x̄

, (3.94)

which can be verified directly using Eq. (3.88) and the orthogonality property
of pj . This important property allows one to minimize sequentially with re-
spect to the cks. The second equality in Eq. (3.94) follows from the fact that
the vectors form a complete basis in this N -space RN .

We next consider how to construct the p vectors. A sequence of A-
conjugate pis can be generated from any set of N independent vectors
u0,u1, · · · through a Gram–Schmidt process. We begin with p0 = u0, an
arbitrary N -vector. Then, for i = 1, 2, · · · define

pi = ui +
i−1∑
j=0

βi,jpj . (3.95)

Multiplying on the left by pTj ·A and using the orthogonality property gives:

βi,j = −
pTj ·A · ui
pTj ·A · pj

. (3.96)

We note that the p0, · · · ,pj are expressible as linear combinations of the
u0, · · · ,uj and vice versa. Let us take for the ui to be the ith residual, ui =
ri = b−A · xi.

The residuals have the important property that the ri; i = 0, · · · , N − 1,
form an orthogonal basis for Rn. To see this, note that xi+1 minimizes φ(x0 +∑i
j=0 αjpj) with respect to the α0, · · · , αi. This is equivalent to minimizing

φ(x0 +
∑i
j=0 djrj) with respect to the d0, · · · , di since each pj is a linear

combination of r0, · · · , rj . Thus, from Eq. (3.88), we have for k = 0, · · · , i:

∂

∂dk
φ(x0 +

i∑
j=0

djrj) = 0 ⇒ rTk · [

−ri+1︷ ︸︸ ︷
A · (x0 +

i∑
j=0

djrj︸ ︷︷ ︸
xi+1

)− b] = 0. (3.97)

We next note that the αi in Eq. (3.91) can be expressed as:

αi =
rTi · ri

pTi ·A · pi
. (3.98)
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To see this, start from Eq. (3.91) and note that

pi = ri + linear combination of p0, ...,pi−1

= ri + linear combination of r0, ..., ri−1.
(3.99)

Therefore, pTi · ri = rTi · ri, since rTi · rj = 0 for i 6= j.
It can also be shown that in Eq. (3.96),

βi,j =


0, j < i− 1

rTi · ri
rTi−1 · ri−1

, j = i− 1. (3.100)

This can be seen by starting with Eq. (3.90) for the jth iterate, and premul-
tiplying each side by A and subtracting b from each side

−rj+1︷ ︸︸ ︷
A · xj+1 − b =

−rj︷ ︸︸ ︷
A · xj − b+αjA · pj , (3.101)

thus,

A · pj =
1
αj

(rj − rj+1). (3.102)

Therefore, using the orthogonality property of the ri, we have

rTi ·A · pj =


0, j < i− 1
−rTi · ri
αi−1

, j = i− 1.
(3.103)

Equation (3.100) follows from substitution of Eqs. (3.103) and (3.98) into
Eq. (3.96), making use of the symmetry property of A.

A stencil for the Conjugate Gradient method is as follows:

Choose x0

r0 = b−A · x0

p0 = r0

for i = 0, 1, 2, .... do

αi =
rTi · ri

pTi ·A · pi
xi+1 = xi + αipi
ri+1 = ri − αiA · pi
βi =

‖ri+1‖22
‖ri‖22

pi+1 = ri+1 + βipi
continue until convergence criteria is met.

(3.104)

The A-conjugate property of the pj and the orthogonality property of the
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rj combine to make the Conjugate Gradient method a particularly elegant
method which is fairly simple and efficient to implement.
It is shown in [50] that to reduce the error by a factor of ε will require a
number of iterations given by

N ≥ 1
2

∣∣∣ln ε
2

∣∣∣ (λmax(A)
λmin(A)

) 1
2

. (3.105)

Preconditioning should be employed to reduce this ratio of the largest to
smallest eigenvalues of A, known as the condition number, as is discussed in
Section 3.7.3.

One can use the techniques of Section 3.4.5 to show that for Laplace’s equa-
tion with homogeneous boundary conditions, Eq. 3.105 gives a convergence
scaling for conjugate gradient (CG) similar to that found in Section 3.5.2 for
dynamic relaxation (DR). Also, both CG and DR use two vectors to compute
the new iterate value: in CG it is xi and pi and in DR it is un and un+1. In
fact, it has recently been shown [51] that there is a close connection between
these seemingly totally different approaches and algorithms, and that the αi
and βi in CG correspond to special choices (iteration dependent) for the δt
and τ in the DR algorithm.

3.7.2 Generalized Minimum Residual (GMRES)

One of the most popular methods for solution of a matrix equation when
the matrix is not necessarily symmetric is known as the generalized minimum
residual method, or GMRES [52]. It is an iterative method that approximates
the solution by the vector in a Krylov subspace with minimum residual.

Let A be an m × m matrix that satisfies the equation A · x = b. We
start by constructing a set of n orthonormal vectors of length m that span
the associated n-dimensional Krylov subspace, where n ≤ m. Let x0 be the
initial approximation to the solution (which could be zero). Define the initial
residual as

r0 = b−A · x0.

The corresponding Krylov subspace of dimension n is constructed as

Kn =
{
r0,A · r0,A2 · r0, · · · ,An−1 · r0,

}
. (3.106)

The vectors in Eq. (3.106) are not suitable for use as basis vectors in Kn since
they become increasingly colinear, approaching the eigenvector corresponding
to the largest eigenvalue of A. The Arnoldi iteration [53] performs a Gram–
Schmidt process to produce a series of orthonormal vectors q1,q2, · · · ,qn ,
each of length m, that span the Krylov space Kn. We start with

q1 =
r0

‖r0‖2
.
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We then perform the following process successively for each value of k =
2, · · · , n. First define the m-vector:

zk = A · qk−1 −
k−1∑
j=1

hj,k−1qj . (3.107)

The coefficients hj,k−1 are defined so that zk is orthogonal to all the qj for
j < k. By taking the inner product of Eq. (3.107) with each of the qj and
using the orthonormality property, we have

hj,k−1 = qTj ·A · qk−1; j = 1, k − 1. (3.108)

We then normalize the kth basis vector by defining

hk,k−1 = ‖zk‖2 , (3.109)

qk =
zk

hk,k−1
. (3.110)

The process is then repeated.
We can define a matrix Qn with n columns and m rows consisting of the

vectors as defined in Eq. (3.110).

Qn =

 q1

∣∣∣∣∣∣∣∣∣∣
q2

∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣
qn

 . (3.111)

One can verify that the coefficients hj,k as defined by Eqs. (3.108) and
(3.109) form an upper Hessenburg matrix defined by

Hn = QT
n ·A ·Qn =


h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3 · · · h3,n

. . . . .
0 · · · 0 hn,n−1 hn,n

 . (3.112)

The matrix Hn can be viewed as the representation in the basis formed by
the orthogonal vectors qj of the orthogonal projection of A onto the Krylov
subspace Kn.

The relation between the Qn matrices in subsequent iterations is given by

A ·Qn = Qn+1 · H̃n. (3.113)

Here,

H̃n =


h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3 · · · h3,n

. . . . .
0 · · · 0 hn,n−1 hn,n
0 0 0 0 hn+1,n

 (3.114)
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is an (n+ 1)× n matrix formed by adding an extra row to Hn with a single
entry in the last column.

We now seek the vector xn that lies within the subspace Kn that minimizes
the norm of the residual b −A · xn. Any vector within this subspace can be
written as

xn = Qn · yn (3.115)

for some vector yn. Consider now the norm of the residual

‖b−A · xn‖2 = ‖b−A ·Qn · yn‖2
=

∥∥∥b−Qn+1 · H̃n · yn
∥∥∥

2

=
∥∥∥Qn+1 ·

(
‖r0‖2e1 − H̃n · yn

)∥∥∥
2

=
∥∥∥ ‖r0‖2e1 − H̃n · yn

∥∥∥
2
.

The third step follows because b−A ·x0 is proportional to the first orthogonal
vector, e1 = (1, 0, 0, ..., 0) and ‖r0‖2 = ‖b −A · x0‖2. The final step follows
because Qn+1 is an orthonormal transformation. The minimizing vector yn
can then be found by solving a least squares problem.

The least squares problem is solved by computing a QR decomposition:
find an (n + 1) × (n + 1) orthogonal matrix Ωn and an (n + 1) × n upper
triangular matrix R̃n such that

Ωn · H̃n = R̃n.

The upper triangular matrix R̃n has one more row than it has columns, so its
bottom row consists of all zeros. Hence, it can be decomposed as

R̃n =
[

Rn

0

]
, (3.116)

where Rn is an n × n triangular matrix and the “0” denotes a row of zeros.
The QR decomposition is updated efficiently from one iteration to the next
because the Hessenberg matrices differ only by a row of zeros and a column,

H̃n+1 =
[

H̃n hn+1

0 hn+2,n+1

]
, (3.117)

where hn+1 ≡ (h1,n+1, ..., hn+1,n+1)
T . This implies that premultiplying the

Hessenberg matrix with Ωn, augmented with zeros and a row with multi-
plicative identity, yields almost a triangular matrix.

[
Ωn 0
0 1

]
· H̃n+1 =

 Rn rn
0 ρ
0 σ

 . (3.118)
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This equation determines rn and ρ, and gives σ = hn+2,n+1. The matrix on
the right in Eq. (3.118) would be triangular, and thus of the desired form, if
σ were zero. To remedy this, one applies the Givens rotation,

Gn =

 In 0 0
0 cn sn
0 −sn cn

 , (3.119)

where In is the identity matrix of rank n and

cn =
ρ√

ρ2 + σ2
, sn =

σ√
ρ2 + σ2

. (3.120)

With this Givens rotation, we form

Ωn+1 = Gn ·
[

Ωn 0
0 1

]
. (3.121)

Using Eqs. (3.118) and (3.121), we obtain the triangular matrix

Ωn+1 · H̃n+1 = Gn ·

 Rn rn
0 ρ
0 σ

 =

 Rn rn
0 rnn
0 0

 = R̃n+1, (3.122)

where rnn =
√
ρ2 + σ2. This is the QR decomposition we were seeking. The

minimization problem is now easily solved by noting∥∥∥ ‖r0‖2e1 − H̃n · yn
∥∥∥

2
=

∥∥∥Ωn ·
(
‖r0‖2e1 − H̃n · yn

)∥∥∥
2

=
∥∥∥ ‖r0‖2Ωn · e1 − R̃n · yn

∥∥∥
2
. (3.123)

Now, denote the vector ‖r0‖2Ωn · e1 by

g̃n =
[

gn
γn

]
. (3.124)

We then have∥∥∥ ‖r0‖2Ωn · e1 − R̃n · yn
∥∥∥

2
=
∥∥∥∥[ Rn

0

]
· yn −

[
gn
γn

]∥∥∥∥
2

. (3.125)

The vector that minimizes this is given by

Rn · yn = gn. (3.126)

This now is easily solved by back substitution since Rn is a triangular matrix.
In summary, the GMRES method consists of the following steps:

i Do one step of the Arnoldi method to compute a new column of the
orthonormal matrix Qn and thereby a new column and row of the matrix
H̃n.
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ii Find the yn that minimizes the residual rn by solving a least squares
problem using a QR decomposition.

iii Compute xn = Qn · yn.

iv Repeat if the residual is not small enough.

Because both the storage and the amount of computation increase with the
number of steps, GMRES is typically restarted after a small number of itera-
tions with the final iterate xn serving as the initial guess of the next restart.

3.7.3 Preconditioning

It was stated in the discussion of Eq. (3.105) that the matrix A should have
a low condition number in order for the iteration to converge rapidly. In order
to achieve this, what is normally done is to construct a preconditioning matrix
K with the property that K−1 approximates the inverse of A. Then, Eq. (3.76)
is essentially premultiplied by K−1 and we solve the system K−1 · A · x =
K−1 · b instead of the original system A · x = b.

There are different strategies for choosing the preconditioning matrix K. In
general, (1) K should be a good approximation to A in the sense that K−1 ·A
has a smaller condition number than does A, (2) the cost of the construction
of K must not be prohibitive, and (3) the system K · x = b must be much
easier to solve than the original system. This third property is because it is
never necessary to actually compute either K−1 or K−1 · A explicitly. The
Krylov subspace methods under discussion need the operator of the linear
system only for computing matrix-vector products. Thus, a template for the
Richardson iteration applied to the preconditioned system

K−1 ·A · x = K−1 · b

would be the following: Given an initial guess x0, compute the residual r0 =
b−A · x0. Then, for i = 0, 1, 2, ... do

K · zi = ri

xi+1 = xi + zi

ri+1 = b−A · xi+1.

We note that when solving the preconditioned system using a Krylov sub-
space method, we will get very different subspaces than for the original sys-
tem. The idea is that approximations in the new sequence of subspaces will
approach the solution more quickly than in the original subspaces.

The choice of K varies from purely “black box” algebraic techniques that
can be applied to general matrices to “problem-dependent” preconditioners
that exploit special features of a particular class of problems. Perhaps the
simplest form of preconditioning is the Jacobi preconditioner in which the
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preconditioning matrix is chosen to be the matrix D in Eq. (3.44), the diagonal
of the matrix A.

A class of preconditioners follow from starting with a direct solution
method for A ·x = b and making variations to keep the approximate solution
from becoming too expensive. As we have seen in Section 3.3.2, a common
direct technique is to factorize A as A = L ·U. However, for a sparse matrix,
the number of operations can be prohibitive and the number of entries in the
factors is substantially greater than in the original matrix. In incomplete LU
factorization, the factors are kept artificially sparse in order to save computer
time and storage for the decomposition. The preconditioning matrix K is then
given in the form K = L̃ · Ũ, where L̃ and Ũ are approximate incomplete fac-
tors of A. In this example, z = K−1 · y is computed by first solving for w
from solving L̃ ·w = y and then compute z from Ũ · z = w.

Another popular preconditioner is the incomplete Cholesky factorization of
a symmetric positive definite matrix. The Cholesky factorization of a positive
definite matrix A is A = LLT where L is a lower triangular matrix. An
incomplete Cholesky factorization uses a sparse lower triangular matrix L̃,
where L̃ is “close to” L. The preconditioner is then K = L̃L̃T . To find L̃, one
uses the algorithm for finding the exact Cholesky decomposition, except that
any entry is set to zero if the corresponding entry in A is also zero. This gives
an incomplete Cholesky factorization matrix which is as sparse as the matrix
A [47].

There are also a large class of domain decomposition methods that split
the entire problem being solved into smaller problems on subdomains and
iterate to coordinate the solution between adjacent subdomains. These are
especially attractive when doing parallel computing since the problems on
the subdomains are independent. The most popular of these is the additive
Schwarz method. A detailed discussion of these methods is outside the scope
of the present work, but “black box” routines are available and there is an
extensive literature on their theory and applicability [48, 49].

In the case of the conjugate gradient method with preconditioning, PCG,
a relatively simple modification of the algorithm presented in Section 3.7.1 is
possible if the preconditioning matrix K is symmetric. Consider the following
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stencil, which is a modification of Eq. (3.104):

Choose x0

r0 = b−A · x0

γ0 = K−1 · r0

p0 = γ0

for i = 0, 1, 2, .... do

αi =
γTi · ri

pTi ·A · pi
xi+1 = xi + αipi
ri+1 = ri − αiA · pi
γi+1 = K−1 · ri+1

βi =
γi+1

T · ri+1

γTi · ri
pi+1 = γi+1 + βipi

continue until convergence criteria is met.

(3.127)

This algorithm can be derived similarly to that in Section 3.7.1, except that in
the equivalent of Eq. (3.97) we make note that each pj is a linear combination
of γ0, · · · , γj , and thus it follows from Eq. (3.97) that γTi · rj = 0 for i 6= j.
With preconditioning, the error estimates given in Eq. (3.105) to reduce the
error by a factor of ε now become [50]

N ≥ 1
2

∣∣∣ln ε
2

∣∣∣(λmax
(
K−1 ·A

)
λmin (K−1 ·A)

) 1
2

. (3.128)

There is an extensive and evolving literature on preconditioning that the
reader is referred to [34, 47, 54, 55].

3.8 Finite Fourier Transform

We have seen in Section 2.5 that there exists a finite (or discrete) Fourier
transform pair defined by

gk =
1
N

N−1∑
n=0

Gn exp(2πikn/N); k = 0, · · · , N − 1, (3.129)

Gn =
N−1∑
k=0

gk exp[−(2πikn/N)]; n = 0, · · · , N − 1, (3.130)

and that this is an exact transformation, so that transforming back and forth
does not represent any loss of information.
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There are many variations of the transform pair given by Eqs. (3.129) and
(3.130) that are equivalent but are more convenient for certain applications.
We used one, the 2D discrete sine transform, in Section 3.4.5, as it was well
suited for examining the properties of a particular finite difference equation ap-
plied to a problem with homogeneous boundary conditions. When concerned
with real arrays with non-zero boundary conditions, it is often convenient to
use the real finite Fourier transform relations:

Gn =
1
2
gc0 +

1
2
gcN/2(−1)n +

N/2−1∑
k=1

{
gck cos

2πnk
N

+ gsk sin
2πnk
N

}
,

gck =
2
N

N−1∑
n=0

Gn cos
2πnk
N

; k = 0, · · · , N/2,

gsk =
2
N

N−1∑
n=0

Gn sin
2πnk
N

; k = 1, · · · , N/2− 1, (3.131)

where now the Gn, gck, and gsk are all real. Note that if the Gn were purely
real in Eq. (3.129), then we would have, for k = 0, · · · , N/2,

gck = 2Re{gk},
gsk = 2Im{gk}.

Returning now to the notation of Eq. (3.130), we again observe that Eq.
(3.130) is equivalent to a matrix multiplication. If we define the quantity

W ≡ e−i2π/N , (3.132)

then the elements of the matrix are Wnk, where the superscript now means
“raise to the power n× k.” Using this convention and the implied summation
notation, we can rewrite Eq. (3.130) compactly as:

Gn = Wnkgk; n = 0, · · · , N − 1, (3.133)

where the index k is summed from 0 to N − 1. We note that W as defined in
Eq. (3.132) has the following properties, for any integers j and p:

WN+j = W j ,

WN/2+p = −W p. (3.134)

3.8.1 Fast Fourier Transform

The matrix multiplication needed to perform the finite transform, as de-
fined in Eq. (3.133) can be expensive for N large, requiring N2 multiplications
and N(N − 1) additions since W is a full matrix. The fast Fourier transform
algorithm (FFT) [27, 56] is essentially a clever trick which allows one, if N is
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equal to a power of 2, to factor Wnk into a product of log2N sparse matrices
of a particular form. The total work involved in multiplying all of the sparse
factor matrices turns out to be much less than that required to multiply by
the original matrix.

For a specific example, let us consider explicitly the case N = 4. Using the
properties in Eq. (3.134) and the fact that W o = 1, Eq. (3.133) becomes

G0

G1

G2

G3

 =


1 1 1 1
1 W 1 W 2 W 3

1 W 2 W 0 W 2

1 W 3 W 2 W 1

 ·

g0
g1
g2
g3

 . (3.135)

The matrix multiplication in Eq. (3.135) requires N2 = 16 multiplications and
N(N − 1) = 12 additions to evaluate. Alternatively, now consider the pair of
matrix multiplications

y0
y1
y2
y3

 =


1 0 W 0 0
0 1 0 W 0

1 0 W 2 0
0 1 0 W 2

 ·

g0
g1
g2
g3

 ,

G0

G2

G1

G3

 =


1 W 0 0 0
1 W 2 0 0
0 0 1 W 1

0 0 1 W 3

 ·

y0
y1
y2
y3

 . (3.136)

The pair of matrix multiplications defined in Eq. (3.136) requires only a total
of 8 additions and 4 multiplications if we make use of the fact thatW 2 = −W 0,
as per Eq. (3.134). This fits a general pattern where if N is a power of 2 such
that N = 2γ , we factor the N × N full matrix into γN × N sparse matrices
which have only 2 non-zero entries in each row. Evaluating these then requires
Nγ/2 multiplications and Nγ additions.

Developing the general pattern for the FFT involves utilizing a binary
representation for the integers k and n in the transform relation of Eq. (3.133).
Again, let us consider the case N = 4. We write the integers k and n in terms
of binary numbers k1, k0, n1, n0 that only take on the values of 0 or 1:

k = 2k1 + k0; k1 = 0, 1; k0 = 0, 1,
n = 2n1 + n0; n1 = 0, 1; n0 = 0, 1. (3.137)

With this notation, specifying the values of k1, k0, n1, n0 implies values for k
and n through Eq. (3.137). Thus, the transform relation of Eq. (3.133) can be
written

Gn1,n0 =
1∑

k0=0

1∑
k1=0

gk1,k0W
(2n1+n0)(2k1+k0). (3.138)
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Now, we can rewrite

W (2n1+n0)(2k1+k0) = W (2n1+n0)2k1W (2n1+n0)k0 ,

=
[
W 4n1k1

]
W 2n0k1W (2n1+n0)k0 ,

= W 2n0k1W (2n1+n0)k0 ,

where the term in brackets is unity from Eq. (3.134). Equation (3.138) becomes

Gn1,n0 =
1∑

k0=0

[
1∑

k1=0

gk1,k0W
2n0k1

]
W (2n1+n0)k0 . (3.139)

Equation (3.139) can be written as three sequential steps, namely

yn0,k0 =
1∑

k1=0

gk1,k0W
2n0k1 ,

Zn0,n1 =
1∑

k0=0

yn0,k0W
(2n1+n0)k0 , (3.140)

Gn1,n0 = Zn0,n1 .

Note that in matrix form, Eq. (3.140) can be written as
y0,0
y0,1
y1,0
y1,1

 =


1 0 W 0 0
0 1 0 W 0

1 0 W 2 0
0 1 0 W 2

 ·

g0,0
g0,1
g1,0
g1,1

 ,

Z0,0

Z0,1

Z1,0

Z1,1

 =


1 W 0 0 0
1 W 2 0 0
0 0 1 W 1

0 0 1 W 3

 ·

y0,0
y0,1
y1,0
y1,1

 ,

G0,0

G1,0

G0,1

G1,1

 =


Z0,0

Z0,1

Z1,0

Z1,1

 ,
which are equivalent to the matrix relations in Eq. (3.136).

The general FFT algorithm [27] for N = 2γ , where γ is any integer, is a
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straightforward generalization of the N = 4 example presented here. When
N = 2γ , n and k are represented in binary form as

n = 2γ−1nγ−1 + 2γ−2nγ−2 + · · ·+ n0,

k = 2γ−1kγ−1 + 2γ−2nγ−2 + · · ·+ k0.

The FFT algorithm can be written by introducing intermediate results in a
generalization of Eq. (3.140):

x1 (n0, kγ−2, · · · , k0) =
1∑

kγ−1=0

g (kγ−1, kγ−2, · · · , k0)Wn02
γ−1kγ−1 ,

x2 (n0, n1, kγ−3, · · · , k0) =
1∑

kγ−2=0

x1 (n0, kγ−2, · · · , k0)W (2n1+n0)2
γ−2kγ−2 ,

...

xγ (n0, n1, · · · , nγ−1) =
1∑

k0=0

xγ−1 (n0, n1, · · · , k0)

×W (2γ−1nγ−1+2γ−2nγ−2+···+n0)k0 ,
G (nγ−1, nγ−2, · · · , n0) = xγ (n0, n1, · · · , nγ−1) .

A careful counting of operations shows thatNγ/2 complex multiplications and
Nγ complex additions are required to perform the transform. However, the
important thing is not the numerical coefficient but the scaling as ∼ N log2N
for an exact solution. This algorithm is due to Cooley and Tukey [56].

The FFT based on the binary representation is the most efficient, but it
is also restrictive, limiting applicability to mesh sizes that are powers of 2.
The methods presented here can be straightforwardly extended to numbers
that are powers of other prime numbers. For example, if N = 3γ , we would
represent an index as

n = 3γ−1nγ−1 + 3γ−2nγ−2 + · · ·+ n0,

where now each of the ni takes on the value of 0, 1, 2. It is also possible to con-
struct a fast algorithm for any factorization where N = rm1

1 rm2
2 · · · rmnn [27].

3.8.2 Application to 2D Elliptic Equations

Let us consider the application of transform techniques to the solution
of the finite difference approximation to common elliptic equations in two
dimensions (R,Z) [57]. Consider an equation of the form

R−m
∂

∂R
Rm

∂u

∂R
+
∂2u

∂Z2
= S(R,Z). (3.141)

We are assuming that the function S(R,Z) is known and that Dirichlet bound-
ary conditions are given. Form = 0(1) this is Poisson’s equation in rectangular
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(cylindrical) geometry. For m = −1 it is the toroidal elliptic operator ∆∗ that
will be discussed in Chapter 4. For simplicity, consider a rectangular domain
with N + 1 equally spaced grid points in each dimension with grid spacing h.
A conservative, second-order finite difference approximation to Eq. (3.141) is
given by(

1 +
h

2Ri

)m
(ui+1,j − ui,j)−

(
1− h

2Ri

)m
(ui,j − ui−1,j)

+ui,j+1 − 2ui,j + ui,j−1 = h2Si,j . (3.142)

The boundary conditions are assumed to be in the locations u0,j , uN,j , ui,0,
ui,N for i, j = 0, · · ·N . We perform the following five steps to obtain an
exact solution of Eq. (3.142) based on the 1D sine transform introduced in
Section 3.4.5.

Step (1): Replace the difference equation (3.142) with an equivalent dif-
ference equation for discrete variables ūi,j = ui,j − (Ai + jBi) and an appro-
priately defined S̄i,j such that ūi,j has homogeneous (top/bottom) boundary
conditions at j = 0 and j = N . Define the arrays for i = 0, · · · , N :

āi ≡
(

1 +
h

2Ri

)m
, c̄i ≡

(
1− h

2Ri

)m
, b̄i ≡ āi + c̄i,

Ai ≡ ui,0, Bi ≡ (ui,N − ui,0) /N. (3.143)

The new left-right boundary conditions become, for j = 0, · · · , N ,

ūi,j = ui,j − (Ai + jBi) , i = 0&N.

The new source function becomes, for i, j = 1, · · · , N − 1,

S̄i,j = Si,j − h2
[
āiAi+1 − b̄iAi + c̄iAi−1

]
− jh2

[
āiBi+1 − b̄iBi + c̄iBi−1

]
.

Step (2): Transform the source function S̄i,j for i, j = 1, · · · , N − 1 using
a sine transform. For k = 0, · · · , N − 1 we define:

S̃i,k =
2
N

N−1∑
j=1

sin
jkπ

N
S̄i,j , i = 1, · · · , N − 1.

Similarly for the (left/right) boundary values ū0,j and ūN,j , for k = 1, · · · , N−
1 we have:

ũ0,k =
2
N

N−1∑
j=1

sin
jkπ

N
ū0,j , ũN,k =

2
N

N−1∑
j=1

sin
jkπ

N
ūN,j .

With these, the sine transform of the equivalent difference equation obtained
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by substituting the variables defined in Step (1) into Eq. (3.142) can be writ-
ten:

N−1∑
k=0

sin
jkπ

N

[
āiũi+1,k − biũi,k + c̄iũi−1,k − S̃i,k

]
= 0. (3.144)

Here we have introduced the coefficient array bi = āi + c̄i + 2− 2 cos kπN .
Step (3): In order to satisfy Eq. (3.144), each term in the bracket must

vanish since it is multiplied by a different linearly independent function. Since
each term corresponds to a different k value, and they are uncoupled, each is
a standard tridiagonal equation in the index i. We may solve them using the
method of Section 3.3.3 using ũ0,k and ũN,k as boundary conditions to obtain
ũi,k for i = 1, · · · , N − 1.

Step (4): Transform ũi,k back to ūi,j using the inverse sine transform. For
i, j = 1, · · ·N − 1, we have

ūi,j =
N−1∑
k=0

ũi,k sin
jkπ

N
. (3.145)

Step (5): Finally, construct ui,j from ūi,j by adding back the term sub-
tracted in Step (1):

ui,j = ūi,j + (Ai + jBi); i, j = 1, · · · , N − 1. (3.146)

The computationally intensive work involved transforming the source func-
tion and boundary conditions, solvingN tridiagonal equations, and transform-
ing the solution back. Therefore, the total number of operations required to
obtain a solution is about N2(4 lnN + 5). This is for an exact solution of
the difference equations! The fast direct methods described here are generally
more efficient than the methods discussed earlier in this chapter and should
be used whenever applicable. In general, they can be used whenever the coef-
ficient of the derivatives in the original differential equation are independent
of at least one coordinate.

3.9 Summary

When elliptic equations are transformed into finite difference equations,
they take the form of sparse matrix equations. There are special solvability
constraints associated with Neumann boundary conditions. In 1D, the differ-
ence equations can be solved directly using the tridiagonal algorithm. In 2D
or 3D there are many approaches to solving these sparse matrix systems. If
the equations and the geometry are sufficiently simple, then transform tech-
niques utilizing the FFT can and should be applied. If not, there are a number
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of different options. In 2D, direct methods based on Gauss elimination may
be competitive with iterative methods, but not normally in 3D. Basic itera-
tive methods can be defined by decomposing the matrix into diagonal, upper
triangular, and lower triangular parts and using these to apply the Jacobi,
Gauss–Seidel, or SOR algorithms. Each of these has an analogue in the phys-
ical approach of adding time derivatives to the original elliptic equation and
solving to steady-state. However, other methods such as dynamic relaxation
are more naturally derived using the physical approach. When these iterative
methods are combined with the multigrid algorithm they can be exceptionally
effective. Methods based on Krylov space projections, especially the precon-
ditioned conjugate gradient method (if the coefficient matrix is symmetric)
and the preconditioned generalized minimum residual method, are also very
effective, especially for large systems.

Problems

3.1: Show that a derivative boundary condition at the origin, u′(0), can be
incorporated in the matrix equation (3.4) to second order in h by specifying:

B0 = 1
A0 = 1

D0 = hu′(0) +
1
2
h2R(0).

3.2: Tridiagonal matrix with corner elements: Suppose we wish to solve the
finite difference equation in Eq. (3.3) but with periodic boundary conditions.
(a) Show that the corresponding sparse matrix is tridiagonal in form but with
additional non-zero corner elements.
(b) Show that if you apply Gauss elimination to this matrix by first taking
linear combinations of rows to zero the band below the main diagonal (going
from top left to bottom right), and then taking linear combinations to zero
the band above the main diagonal (going from bottom right to top left), you
will be left with a matrix with only a main diagonal band and one or two
additional non-zero columns.
(c) Show that a 2× 2 autonomous system splits off and can be solved for two
unknowns independent of the rest of the matrix.
(d) Once the 2× 2 system is solved, show that the rest of the unknowns can
be solved by a form of back substitution.

3.3: Non-constant coefficients: Consider the general 1D elliptic equation:

∂

∂x
D(x)

∂u

∂x
= R(x),
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where D(x) and R(x) are given, and u(x) is the unknown function to be solved
for.
(a) Using centered finite differences, derive the matrix coefficients Aj , Bj , Cj ,
and Dj appearing in Eq. (3.5) for the conservative differencing form of the
equation. (See Section 2.6.)
(b) Repeat for the non-conservative form of differencing this equation.
(c) What are the possible advantages of the conservative form of the difference
equations over the non-conservative form?

3.4: Relation of tridiagonal algorithm to Gauss elimination: Show that defin-
ing the vectors Ej and Fj by Eq. (3.9) is equivalent to applying Gauss elimi-
nation to convert the matrix in Eq. (3.4) to an upper triangular matrix with
1s on the main diagonal, and a single upper diagonal band with −Ej on row
j and Fj in the right-side vector.

3.5: Convergence of the Gauss–Seidel method:
(a) Show that Eq. (3.147) is the eigenvalue equation that the Gauss–Seidel
operator satisfies:

1
4
(
unj+1,k + λunj−1,k + unj,k+1 + λunj,k−1

)
= λunj,k. (3.147)

(b) Make the substitution

unj,k = λ(j+k)/2vj,k (3.148)

to obtain an eigenvalue equation for vj,k similar in form to Eq. (3.54). Solve
this to obtain an expression for the lowest eigenvalue, and use this to estimate
the convergence rate of the Gauss–Seidel method and compare it to that of
the Jacobi method.

3.6: Successive over-relaxation: Consider the partial differential equation:

2α
∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− ∂2u

∂x∂t
− ∂2u

∂y∂t
−R(x, y). (3.149)

(a) Let unj,k be the finite difference approximation to u(tn, xj , yk) on an N×N
grid of domain size 0 < x < L and 0 < y < L, where tn = nδt, xj = jδx,
and yk = kδy. Write down a second-order finite difference approximation to
Eq. (3.149) that is centered in space about the point xj , yk and is centered in
time halfway between time tn and tn+1:

∂2u

∂y∂t
=

1
2δyδt

[
un+1
j,k+1 − un+1

j,k−1 − unj,k+1 + unj,k−1

]
,

∂2u

∂y2
=

1
2δy2

[
un+1
j,k+1 − 2un+1

j,k + un+1
j,k−1 + unj,k+1 − 2unj,k + unj,k−1

]
,

∂u

∂t
=

1
δt

[
un+1
j,k − unj,k

]
,
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etc.
(b) Let δt = δx = δy ≡ h = L/N , and combine terms to show that the
finite difference equation reduces to the successive over-relaxation formula,
Eq. (3.49), if we identify

ω =
2

αh+ 1
. (3.150)

(c) Use von Neumann stability analysis to analyze the numerical stability of
Eq. (3.49), and find the conditions on ω for stability by examining the critical
points of the exponential functions.
(d) Examine Eq. (3.149) analytically by looking for a separable solution of the
form:

u(x, y, t) ∼ ˜um,nexp [−λt+ i (mπx/L+ nπy/L)] . (3.151)

Solve for the real part of λ for the slowest decaying mode and use this to
estimate the number of iterations required for convergence as a function of
the parameter α.
(e) Find the value of α (and hence ω) that minimizes the number of iterations,
and estimate the number of iterations required at the optimal value.

3.7: Show how the stencil for the conjugate gradient method with precondi-
tioning, Eq. (3.128), follows from the derivation given in Section 3.7.1 when
we take the pj to be a linear combination of γ0, · · · , γj , and thus it follows
from Eq. (3.97) that γTi · rj = 0 for i 6= j.

3.8: Write down the equations for the FFT algorithm for N = 3γ .





Chapter 4

Plasma Equilibrium

4.1 Introduction

The equilibrium equation,

∇p = J×B, (4.1)

plays a central role in MHD, on both the ideal and the transport time scales.
On the ideal time scales, if the pressure tensor terms are negligible, this is the
time independent solution of the ideal MHD equations with u = 0. Linearized
ideal MHD stability problems require these equilibrium solutions to perturb
about. On the transport time scales, over long times when inertia is unimpor-
tant, this is the force balance equation. It constrains the pressure, magnetic
field, and current density profiles, dictates what external fields are required to
confine the plasma, and determines the plasma shape. In this chapter, we start
by deriving the basic scalar partial differential equation that is equivalent to
the vector equation (4.1). This equation was first derived independently by
three groups [58, 59, 60], and is now known as the Grad–Shafranov–Schlüter
(GSS) equation, or more commonly, the Grad–Shafranov equation.

4.2 Derivation of the Grad–Shafranov Equation

We will work in axisymmetric geometry and use standard cylindrical co-
ordinates (R,φ, Z); see Figure 4.1. We seek axisymmetric solutions so that all
derivatives with respect to φ are set to zero:

∂

∂φ
= 0. (4.2)

The magnetic field B can be written as the curl of the vector potential,

A = (AR, Aφ, AZ).

93
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R

Z

φ

Ψ = const.

FIGURE 4.1: Cylindrical coordinates (R,φ, Z).

Using axisymmetry, Eq. (4.2), we have

B = ∇× (Aφφ̂) +
(
∂AR
∂Z

− ∂AZ
∂R

)
φ̂, (4.3)

where φ̂ is a unit vector in the φ direction. We define two new variables, the
poloidal flux function,

Ψ(R,Z) = −RAφ,
and the toroidal field function,

g(R,Z) = R

(
∂AR
∂Z

− ∂AZ
∂R

)
,

which at this point in the derivation is a general 2D function of R and Z.
Also, recalling that the gradient of the coordinate φ is given by

∇φ =
1
R
φ̂,

we can write Eq. (4.3) in the form

B = ∇φ×∇Ψ(R,Z) + g(R,Z)∇φ. (4.4)

This is a general result for axisymmetric systems in that the magnetic field
can always be expressed in terms of two scalar functions in this form, even if
it is not an equilibrium field. The current density is calculated by taking the
curl of Eq. (4.4),

µ0J = ∆∗Ψ∇φ+∇g ×∇φ. (4.5)

Here we have defined the toroidal elliptic operator,

∆∗Ψ ≡ R2∇ · 1
R2
∇Ψ = R

∂

∂R

(
1
R

∂Ψ
∂R

)
+
∂2Ψ
∂Z2

.
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We substitute Eq. (4.4) for B and Eq. (4.5) for J into the equilibrium equa-
tion, Eq. (4.1). Taking the projection, or dot product, of Eq. (4.1) successively
with the three vectors ∇φ, B, and ∇Ψ, we obtain the three conditions

g = g(Ψ), (4.6)

p = p(Ψ), (4.7)

∆∗Ψ + µ0R
2 dp

dΨ
+ g

dg

dΨ
= 0, (4.8)

respectively. The plasma pressure, p, and the toroidal field function, g, are
therefore both functions only of the poloidal flux, Ψ, in equilibrium, and
the three scalar functions Ψ(R,Z), p(Ψ), and g(Ψ) are related by the Grad–
Shafranov equation, Eq. (4.8). Note that Eq. (4.8) is not of a standard form in
that the functions p(Ψ) and g(Ψ) are differentiated by Ψ, which is the function
being solved for. To solve these equations, we must prescribe the functional
dependence of p and g on Ψ and also supply boundary conditions for Ψ.

4.2.1 Equilibrium with Toroidal Flow

Suppose the steady-state flow is non-negligible. It is still possible to obtain
a scalar equilibrium equation similar to the Grad–Shafranov equation, but that
allows for toroidal flow of arbitrary strength [61, 62]. Consider the steady-state
scalar pressure force balance equation with flow included:

ρu · ∇u +∇p = J×B. (4.9)

The most general toroidal velocity field that satisfies the ideal MHD steady-
state condition which follows from Eq. (1.61),

∇× (u×B) = 0, (4.10)

is given by

u = R2ω(Ψ)∇φ. (4.11)

Here, we have introduced the toroidal angular velocity, ω(Ψ), which can be
prescribed as an arbitrary function of the poloidal magnetic flux, Ψ.

In the presence of equilibrium flow, the plasma pressure will no longer be
a function only of Ψ, but can depend also on the coordinate R. However, the
temperature will remain almost constant on a magnetic surface and thus close
to a function of Ψ because of the large parallel thermal conductivities. We can
still express the pressure as the product of the density and temperature:

p(R,Ψ) = 2ne(R,Ψ)kBT (Ψ). (4.12)

Here, we have defined a species average temperature for convenience: T (Ψ) =
.5 [Te(Ψ) + Ti(Ψ)], and have made use of the quasineutrality condition,



96 Computational Methods in Plasma Physics

Eq. (1.27), to set ni = ne. The mass density and number density are related
by ρ(R,Ψ) = mine(R,Ψ), where mi is the ion mass.

The ∇φ component of Eq. (4.9) still gives Eq. (4.6), g = g(Ψ). However,
the other projections have an additional term present. We use the result that
with the velocity of the form of Eq. (4.11), we have

ρu · ∇u = −ρω2(Ψ)RR̂. (4.13)

Taking the dot product of Eq. (4.9) with B now gives, instead of Eq. (4.7),
the constraint

B · ∇
[
2kBT (Ψ) log ne(R,Ψ)− 1

2
miω

2(Ψ)R2

]
= 0.

This constraint will be satisfied if we take the pressure and density to be of
the form

p(R,Ψ) = 2ne(R,Ψ)kBT (Ψ) = p0(Ψ) exp
[
Pω(Ψ)
p0(Ψ)

(R2 −R2
0)

R2
0

]
. (4.14)

Here, R0 is a nominal major radius introduced for convenience. We also in-
troduce nominal number densities and mass densities defined as:

ne0(Ψ) = ne(R0,Ψ), (4.15)
ρ0(Ψ) = mine0(Ψ) = mine(R0,Ψ). (4.16)

Using these definitions, the nominal fluid and rotation pressures are

p0(Ψ) = 2ne0(Ψ)kBT (Ψ), (4.17)

Pω(Ψ) =
1
2
R2

0ρ0(Ψ)ω2(Ψ). (4.18)

It follows that the partial derivatives of the pressure are given by

∂

∂Ψ
p(R,Ψ) =

p(R,Ψ)
p0(Ψ)

(4.19)

×
[
p′0(Ψ) +

R2 −R2
0

R2
0

(
P ′ω(Ψ)− Pω

p0
p′0(Ψ)

)]
, (4.20)

∂

∂R
p(R,Ψ) = ρ(R,Ψ)ω2(Ψ)R, (4.21)

where we have used “prime” to denote differentiation with respect to Ψ, i.e.
()′ ≡ ∂ () /∂Ψ. This form for the pressure manifestly satisfies force balance in
the R̂ direction and allows us to write the component of Eq. (4.9) in the ∇Ψ
direction as

∆∗Ψ + µ0R
2 ∂

∂Ψ
p(R,Ψ) + g

dg

dΨ
= 0. (4.22)
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This is the desired generalization of the Grad–Shafranov equation, Eq. (4.8), to
include the effect of toroidal equilibrium flow. Problem specification requires
the three functions: g(Ψ), Pω(Ψ), and p0(Ψ). The temperatures Te(Ψ) and
Ti(Ψ) are then needed to obtain the density from the pressure using Eq. (4.12)
and the definitions that follow.

There have been several efforts in formulating and solving the equilib-
rium equation including an arbitrary poloidal flow as well as a toroidal
flow [63, 64, 65]. This leads to a coupled non-linear system involving five free
functions of Ψ. The coupled system involves an (algebraic) Bernoulli equation
and a generalization of the Grad–Shafranov equation. Since the poloidal flow
is strongly damped in most toroidal systems [66, 67], the conventional rea-
soning is that because of the additional complexity involved and the lack of
physical guidance in selecting the five free functions, including poloidal flow
in the Grad–Shafranov form of the equilibrium problem is not justified for
most applications. However, there may be strongly driven systems where this
is required.

An alternative to this approach is to solve the full two-dimensional (axi-
symmetric) resistive or two-fluid forms of the time-dependent MHD equations
to steady state [68, 69]. This approach requires specifying the forms of sources
of particles, energy, and current, as well as any externally supplied parallel
electric field (or loop voltage).

4.2.2 Tensor Pressure Equilibrium

There are many equilibrium applications of interest where the plasma pres-
sure is not well described by a single scalar function. Examples are a driven
system where an anisotropy is present and sustained by intense neutral beam
injection, or a system that preferentially loses a particular class of particles
such as the loss cone in a magnetic mirror device. Here we consider the equi-
librium described by a particular form of pressure tensor,

P = p⊥I + (p‖ − p⊥)
BB
B2

, (4.23)

where p‖ and p⊥ are scalar functions representing the pressure parallel and
perpendicular to the magnetic field direction. The equilibrium equation with
this form for the pressure tensor becomes

∇ ·P = J×B. (4.24)

To proceed, we substitute Eq. (4.23) into Eq. (4.24) and make use of the
identity that for an arbitrary scalar quantity α:

∇ · [αBB] = B(B · ∇α) + αB · ∇B

= B(B · ∇α) + α

[
1
2
∇B2 + (∇×B)×B

]
.
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Here, we have defined the magnitude of the magnetic field as B ≡ |B|. Using
this identity with

α =
p‖ − p⊥

B2
,

the tensor pressure equilibrium equation becomes

∇p⊥ + B(B · ∇α) +
1
2
α∇B2 =

(
1
µ0
− α

)
(∇×B)×B. (4.25)

We proceed to take projections of this equation. Taking the dot product with
the magnetic field B gives, after several cancellations,

B · ∇p‖ =
p‖ − p⊥

B
B · ∇B,

or,

∂p‖

∂B

∣∣∣∣
Ψ

=
p‖ − p⊥

B
. (4.26)

Upon defining the scalar quantity

σ = 1− µ0α = 1 + µ0

p⊥ − p‖

B2
, (4.27)

the dot product of Eq. (4.25) with ∇φ gives the condition that the product of
σg be constant on a flux surface, i.e.,

σg = g∗(Ψ), (4.28)

for some function g∗(Ψ). Using these, the component of the equilibrium equa-
tion in the ∇Ψ direction gives the tensor pressure analogue of the Grad–
Shafranov equation [70]:

∆∗Ψ +
µ0

σ
R2 ∂

∂Ψ
p‖(B,Ψ) +

1
σ
∇Ψ · ∇σ +

1
σ2
g∗

d

dΨ
g∗ = 0. (4.29)

This now requires that the two functions g∗(Ψ) and p‖(B,Ψ) be specified.
From these, the function p⊥ is determined from Eq. (4.26) and the function g
is determined from Eqs. (4.28) and (4.27).

Analytic forms for p‖(B,Ψ) and p⊥(B,Ψ) have been proposed [71] that
correspond to a neutral beam slowing down distribution function (where the
pitch-angle scattering operator has been ignored) in an otherwise isotropic
pressure plasma. If µB(ψ) is the value of the magnetic moment µ =
1/2miV

2
⊥/B of the beam particles at the outer midplane point of the flux

surface Ψ, normalized to the total particle energy (E = 1/2miV
2
‖ +1/2miV

2
⊥)

there, then the pressure can be written as

p‖(B,Ψ) = p0(Ψ) + PB(Ψ)B
√

1− µB(Ψ)B,

p⊥(B,Ψ) = p0(Ψ) +
1
2PB(Ψ)µB(Ψ)B2√

1− µB(Ψ)B
. (4.30)



Plasma Equilibrium 99

Here, p0(Ψ) is the isotropic background pressure and PB(Ψ) is proportional to
the beam deposition profile. One can readily verify that Eq. (4.26) is satisfied
with these functions. Note that because of the singularity at the turning points,
these functional forms are only appropriate for passing beam particles, i.e.,
we require µB(Ψ)B < 1 everywhere in the plasma.

The form of Eq. (4.30) shows that the beam component of the pressure,
p⊥ in particular, will be larger on the inner edge (small major radius side) of
the torus where the magnetic field is highest. From a kinetic standpoint, this
effect is due to the fact that the hot ions move more slowly along the field
lines on the inner edge of the torus and thus spend more time there on the
average.

4.3 The Meaning of Ψ

The contours Ψ(R,Z) = constant are closed within the plasma region,
forming nested toroidal surfaces as shown in Figure 4.1. In the scalar pressure
zero rotation case, these constant Ψ contours are also constant pressure con-
tours since p = p(Ψ). Both the magnetic field and the current lie inside these
Ψ = const surfaces since it follows from Eqs. (4.4), (4.5), and (4.6) that

B · ∇Ψ = 0 (4.31)

and
J · ∇Ψ = 0. (4.32)

We can calculate the magnetic flux through a disk lying in the z = 0 plane,
as shown in Figure 4.2. By direct computation, using the form of B from
Eq. (4.4) and dA = 2πRdRẑ, the poloidal flux is the integral over the disk
shown

ΨPF =
∫

B · dA

= −
∫ R

0

1
R

∂Ψ
∂R

2πRdR

= −2πΨ.

Thus, Ψ is the negative of the poloidal magnetic flux per radian.
It is interesting and instructive to look at the topology of the constant Ψ

contours in both the plasma and the vacuum region at different times in a
typical tokamak discharge as illustrated in Figure 4.3. We plot the contours
in the upper half plane for an up-down symmetric configuration with only
two sets of external coils: vertical field coils located at R = 5m and Z =
±2m, and an OH solenoid located at R = 1m and extending from Z =
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Z

a

0R

FIGURE 4.2: Calculate magnetic flux associated with disk in the z = 0
plane as shown.

−2m to Z = +2m. This is the minimum set of coils needed for a tokamak.
The vertical field coils produce the ẑ-directed external magnetic field required
for a toroidal equilibrium. The required strength can be estimated from the
Shafranov formula [72]:

BextZ = − µ0Ip
4πR0

[
log

8R0

a
− 3

2
+
`i
2

+ βθ

]
. (4.33)

Here IP is the plasma current, R0 is the plasma major radius, a is the approx-
imate minor radius (see Figure 4.2), and the internal inductance and poloidal
beta are defined in terms of integrals over the plasma volume as follows:

βθ ≡ 4
I2
Pµ0R0

∫
pdV, (4.34)

`i ≡ 2
I2
Pµ

2
0R0

∫
|∇Ψ|2

R2
dV. (4.35)

Because these coils do not produce exactly a uniform vertical field, the
field produced by them will also modify the plasma shape. This shape mod-
ification can be compensated for by additional coils as discussed below. The
OH solenoid has toroidal currents that are programmed to change in time in
order to produce and sustain the plasma current. Early in time, these currents
are positive (in the same direction as the plasma current) as shown in Fig-
ure 4.3a. As the OH solenoid currents are decreased in magnitude, through
zero as in Figure 4.3b and to a negative value as in Figure 4.3c, the contours
in the plasma remain approximately similar in shape, but uniformly increase
in value due to resistive diffusion as will be discussed in Chapter 6. The flux
increase from the OH solenoid compensates for the flux increase in the plasma
due to the resistive diffusion. As with the vertical field coils, the OH solenoid
will also normally produce stray fields that need to be compensated for by
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FIGURE 4.3: Parts a, b, c show the poloidal magnetic flux contours,
Ψ = const. in the upper half plane for a typical up-down symmetric toka-
mak discharge at three different times. The bottom plot is of the midplane
(Z = 0) value of the poloidal flux for the three times. The three snapshots
correspond to (a) a positive toroidal current in the OH solenoidal coil located
at R=1, (b) zero current in that coil, and (c) a negative current in the OH coil.
Note that the flux contours in the plasma (solid lines) remain approximately
similar in shape, but uniformly increase in value as time progresses, as shown
in the bottom graph. This increase is due to resistive dissipation in the plasma
as is described in Chapter 6. At the magnetic axis (O-point), this increase in
time is described by the equation Ψ̇ = (η/µ0)∆∗Ψ, where η is the resistivity
at the magnetic axis.
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shaping coils. Note that not shown in Figure 4.3 is the current initiation and
buildup phase, which occurs in the time before Figure 4.3a, and the current
decay phase, which occurs in the time after Figure 4.3c.

A modern tokamak will have additional sets of coils as well as those shown
in Figure 4.3. A number of shaping coils will be present to control the shape of
the plasma-vacuum interface. If the plasma cross section is elongated, a verti-
cal feedback system must also be present that can stabilize the vertical motion
of the plasma [73, 74]. This will normally involve a pair of coils constrained
to have up-down antisymmetric currents as discussed further in Section 4.6.3.

4.4 Exact Solutions

There are a restricted class of exact solutions to the Grad–Shafranov equi-
librium equation, Eq. (4.8). We discuss next some useful solutions for axisym-
metric vacuum fields, and in the following section a class of exact solutions
for a particular set of tokamak profiles.

4.4.1 Vacuum Solution

In the vacuum region, both the pressure p and the current J are zero. From
Eq. (4.5), the flux function Ψ satisfies the homogeneous elliptic equation

∆∗Ψ = 0, (4.36)

subject to appropriate boundary conditions. Even when a plasma is present,
the total magnetic field can be thought of as being the sum of the field that
arises from the plasma currents, and the external field that is produced by
nearby coils. We discuss Green’s function methods for calculating the poloidal
field produced by external coils in Section 4.6.3. However, if the coils are
somewhat far away, it can be a useful approximation to represent their fields
in terms of a multipolar expansion for Ψ, where each term in the expansion
satisfies Eq. (4.36). The first few terms in such an expansion about the point
(R,Z) = (R0, 0), constrained to be even about the Z = 0 midplane, are [75,
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76]:

Ψ0 = R2
0,

Ψ2 =
1
2
[
R2 −R2

0

]
,

Ψ4 =
1

8R2
0

[
(R2 −R2

0)
2 − 4R2Z2

]
,

Ψ6 =
1

24R4
0

[
(R2 −R2

0)
3 − 12R2Z2(R2 −R2

0) + 8R2Z4
]
,

Ψ8 =
1

320R6
0

[
5(R2 −R2

0)
4 − 120R2Z2(R2 −R2

0)
2

+ 80Z4R2(3R2 − 2R2
0)− 64R2Z6

]
.

These correspond to the even nullapole, dipole, quadrupole, hexapole, and
octopole components of the external fields expanded about that point. The
first few odd multipoles are:

Ψ1 = 0,

Ψ3 =
1
R0

R2Z,

Ψ5 =
1

6R3
0

R2Z
[
3
(
R2 −R2

0

)
− 4Z2

]
,

Ψ7 =
1

60R5
0

[
15R2Z

(
R2 −R2

0

)2
+ 20R2Z3

(
2R2

0 − 3R2
)

+ 24R2Z5
]
,

Ψ9 =
1

280R7
0

R2Z
[
35
(
R2 −R2

0

)3
+ 140Z2

(
−2R4 + 3R2R2

0 −R4
0

)
+ 168Z4

(
2R2 −R2

0

)
− 64Z6

]
.

For some studies, it may be advantageous to represent the external field as
a superposition of these components rather than use the field produced by
actual coils.

In an axisymmetric system, the toroidal field function g in vacuum must
be constant, g = g0, so that the toroidal field in vacuum is given by

BT = g0∇φ =
g0
R
φ̂. (4.37)

It is straightforward to see the physical significance of the constant g0. If we
apply Ampere’s law to a circle of radius R that is enclosed by the toroidal
field (TF) magnets as shown in Figure 4.4, we find

g0 =
µ0ITF

2π
,

where ITF is the total current in all the toroidal field magnets. In the region
topologically exterior to the TF magnets, a similar argument shows g0 = 0.
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R

ITF

FIGURE 4.4: For an axisymmetric system, the vacuum toroidal field con-
stant g0 is proportional to the total current in the toroidal field coils, ITF .

4.4.2 Shafranov–Solovév Solution

An exact solution [77] can be found for the particular choice of profiles
satisfying

dp

dΨ
= −c1, g

dg

dΨ
= −c2R2

0.

For real constants c1, c2, and R0, the solution is given by

Ψ =
1
2
(
c2R

2
0 + c0R

2
)
Z2 +

1
8

(c1 − c0)
(
R2 −R2

0

)2
, (4.38)

where c0 is an arbitrary constant. A particularly useful choice for tokamak
applications is to define new constants [78] such that c2 = 0, c1 = B0(κ2

0 +
1)/µ0R

2
0κ0q0, and c0 = B0/R

2
0κ0q0. This gives, for 0 < Ψ < ΨB :

Ψ =
B0

2R2
0κ0q0

[
R2Z2 +

κ2
0

4
(
R2 −R2

0

)2]
,

p(Ψ) =
B0

(
κ2

0 + 1
)

µ0R2
0κ0q0

[ΨB −Ψ] ,

g = R0B0. (4.39)

We can identify the constants as R0 = major radius of the magnetic axis, B0=
toroidal field strength at R0, κ0 = ellipticity of the surfaces at the magnetic
axis, and q0 = safety factor at magnetic axis (see Section 5.3). The constant
ΨB is related to the approximate inverse aspect ratio, ε, by [78]

ε '
[

2q0ΨB

κ0R2
0B0

] 1
2

. (4.40)
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The solution for this class of profiles has also been extended by adding a
homogeneous solution to this particular solution so that a wider variety of
shapes can be represented [79, 80, 81, 82].

Other analytic solutions to the Grad–Shafranov equation have been found,
but none as simple as the ones presented here. In particular, we note that
Atanasiu et al. [83] and Guazzotto et al. [84] have published solutions where
p(Ψ) and g2(Ψ) are quadratic functions of Ψ, but they involve the evalua-
tion of sums of Whittaker functions to fit boundary conditions, making them
inconvenient for most applications.

4.5 Variational Forms of the Equilibrium Equation

It is often desirable to have a variational statement of a problem. One value
of such a form is that it can be cast in new variables and the principle will still
hold. To this end, we seek an energy functional W such that the condition that
the variation of W vanish is equivalent to the plasma equilibrium equation,
Eq. (4.1). It would suffice to find a functional W such that its variation is
given by

δW =
∫

ξ · [∇p− J×B]d3x, (4.41)

for an arbitrary displacement field ξ(x). For, if Eq. (4.41) vanishes for all ξ,
then the equilibrium equation is satisfied everywhere. The form of W will
depend on the constraints imposed during the variation.

Let us first consider the ideal MHD constraints that flux and entropy are
conserved. This is the most physical of possible constraints, and the second
variation determines the stability of the system (see Chapter 8). Since the
displacement field ξ(x) is the time integral of the velocity field u, we can obtain
the ideal MHD constraints from Eqs. (1.61) and (1.63). Thus, we examine the
functional

W =
∫ [

B2

2µ0
+

p

γ − 1

]
d3x, (4.42)

subject to magnetic flux conservation

δB = ∇× (ξ ×B), (4.43)

and entropy conservation

δp = −ξ · ∇p− γp∇ · ξ,
= (γ − 1)ξ · ∇p− γ∇ · pξ. (4.44)

The first variation of Eq. (4.42) gives

δW =
∫ [

1
µ0

B · δB +
δp

γ − 1

]
d3x. (4.45)
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Using the constraints from Eqs. (4.43) and (4.44), Eq. (4.45) becomes

δW =
∫

ξ · (∇p− J×B) d3x−
∫
dS ·

{
1
µ0

ξ⊥B
2 +

γ

γ − 1
pξ

}
. (4.46)

If we have the additional condition that dS ·ξ = 0 on the boundary, which also
follows from flux and entropy conservation, then Eq. (4.46) is of the desired
form of Eq. (4.41).

The ideal MHD variational form given by Eqs. (4.42) to (4.44) is valid in
up to three-dimensional space. There is another useful variational statement
due to Grad and Hirshman [85, 86], but it is only valid in two dimensions
(axisymmetry). It is to vary the Lagrangian functional

L =
∫ [

B2
P

2µ0
− B2

T

2µ0
− p(Ψ)

]
RdRdZ, (4.47)

subject to the constraints

BP = ∇φ×∇Ψ,
BT = g(Ψ)∇φ,
p = p(Ψ). (4.48)

Varying L in Eq. (4.47) with respect to Ψ(R,Z) gives

δL = −
∫
δΨ
[
∇ · 1

µ0R2
∇Ψ +

1
µ0R2

g
dg

dΨ
+
dp

dΨ

]
RdRdZ (4.49)

+
∫
dS · 1

µ0R2
∇ΨδΨ = 0, (4.50)

which implies that the Grad–Shafranov equation, Eq. (4.8), will be satisfied
everywhere if we constrain δΨ = 0 on the boundary. We return to these forms
in Section 5.5.

4.6 Free Boundary Grad–Shafranov Equation

Here we describe an efficient method [87] for solving the Grad–Shafranov
equation, Eq. (4.8), given a prescribed set of external currents and possi-
bly some shape and position control feedback systems as described in Sec-
tion 4.6.6. The partial differential equation we are considering is

∆∗Ψ + µ0R
2 dp

dΨ
+ g

dg

dΨ
= 0, (4.51)
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or, in cylindrical coordinates,

R
∂

∂R

1
R

∂Ψ
∂R

+
∂2Ψ
∂Z2

= µ0RJφ(R,Ψ), (4.52)

where

µ0RJφ(R,Ψ) = −(µ0R
2 dp

dΨ
+ g

dg

dΨ
). (4.53)

In Eq. (4.51), the functions p(Ψ) and g(Ψ) are prescribed in a way which
will be described shortly. We will describe the three major steps in solving
Eq. (4.52): (i) inverting the elliptic operator in Eq. (4.52) for Ψ assuming the
right-hand side (RHS) is known, (ii) iterating on the Ψ dependence in the
RHS function Jφ(R,Ψ), and (iii) determining Ψ on the boundary.

4.6.1 Inverting the Elliptic Operator

We use the superscript n to denote the iteration level for the iteration
on the non-linearity in the source function Jφ(R,Ψ). Thus, denote by Jnφ the
“old” value of this function which is assumed known. The 2D elliptic finite
difference equation satisfied by Ψn+1

i,j = Ψ(iδR, jδZ) at the new iteration level
is given by

Ri
δR

[
1
R

∂Ψ
∂R

∣∣∣∣n+1

i+1/2,j

− 1
R

∂Ψ
∂R

∣∣∣∣n+1

i−1/2,j

]
+

1
δZ

[
∂Ψ
∂Z

∣∣∣∣n+1

i,j+1/2

− ∂Ψ
∂Z

∣∣∣∣n+1

i,j−1/2

]
= µ0RiJ

n
φi,j ,

or

Ri
(δR)2

[
1

Ri+1/2

(
Ψn+1
i+1,j −Ψn+1

i,j

)
− 1
Ri−1/2

(
Ψn+1
i,j −Ψn+1

i−1,j

)]
+

1
(δZ)2

[
Ψn+1
i,j+1 − 2Ψn+1

i,j + Ψn+1
i,j−1

]
= µ0RiJ

n
φi,j . (4.54)

Note that the finite difference equation, Eq. (4.54), is in conservative form,
and will thus satisfy the discrete form of Ampere’s law exactly.

Equation (4.54) is of the form that can be solved by the transform method
described in Section 3.8.2. Because of the factors involving the coordinate R
multiplying some of the differences, the transform must be performed in the
Z direction (index j), and the tridiagonal matrix equation is solved in the R
direction (index i).

4.6.2 Iterating on Jφ(R,Ψ)

The iteration we are considering here is due to the non-linear dependence of
the right-hand side of Eq. (4.52) on the solution Ψ itself. The most straight-
forward iteration scheme, which is called Picard iteration, just amounts to



108 Computational Methods in Plasma Physics

evaluating Jφ at the “old” value, as already discussed. Most often used is a
slight generalization of Picard iteration that incorporates blending or backav-
eraging. It is defined as follows. We first calculate a provisional new Ψ value
from the old current:

∆∗Ψñ+1 = µ0RJφ(R,Ψn). (4.55)

The value of Ψ at the new time is then taken as a linear combination of the
provisional new value and the old value. Thus, for some blending parameter
1 ≥ αB > 0, we define the new value as:

Ψn+1 = αBΨñ+1 + (1− αB)Ψn. (4.56)

It has been found quasi-empirically that choosing a value of αB ∼ 0.5 helps
in convergence and eliminates the possibility of the solution converging to an
odd-even limit cycle.

As a further aid in convergence, and to prevent converging to the trivial
solution, we define the source function in such a way so as to keep certain
physical quantities constant from one iteration to the next. A common con-
straint is to keep the total plasma toroidal current and the central value of
the plasma pressure fixed. To this end, we define a normalized flux function,

Ψ̃ =
Ψ` −Ψ
Ψ` −Ψ0

,

where Ψ` is the value of Ψ at the limiter (plasma edge) and Ψ0 is the value at
the magnetic axis. The normalized flux Ψ̃ is between 0 and 1 for all Ψ values
in the interior of the plasma.

We then define the free functions p(Ψ) and g(Ψ) in terms of Ψ̃ and some
constants that can be adjusted during the iteration to keep the prescribed
global quantities fixed. One such prescription would be

p(Ψ) = p0p̂(Ψ̃), (4.57)
1
2
g2(Ψ) =

1
2
g2
0 [1 + αg ĝ(Ψ̃)], (4.58)

where p0 is the fixed value of the central pressure, g0 is the fixed vacuum
value of the toroidal field function, and p̂(Ψ) and ĝ(Ψ) are functions of the
normalized flux, Ψ̃. For example,

p̂(Ψ̃) = Ψ̃
n1
,

ĝ(Ψ̃) = Ψ̃
n2
.

The central pressure is thereby held fixed by the form of Eq. (4.57). The con-
stant αg, introduced in Eq. (4.58), is adjusted during the iteration to keep the
total plasma current fixed from one interaction to the next. We have intro-
duced the integer exponents n1 and n2 which will determine the peakedness
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of the profiles. To implement the constraint on the total plasma current, we
compute the total plasma current by summing the current density times the
zone area over all grid points. From the equality in Eq. (4.53), we have:

IP =
∑
i,j

δRδZJn
φi,j

=
∑
i,j

{
Rip0

∆Ψ
p̂′(Ψ̃n

i,j) +
g2
0αg

2µ0Ri∆Ψ
ĝ′(Ψ̃n

i,j)
}
δRδZ, (4.59)

where ∆Ψ = Ψ` − Ψ0. We then solve Eq. (4.59) for αg, keeping IP fixed, to
obtain

αg = µ0

[
−p0

∑
i,j Rip̂

′(Ψ̃n
i,j) + IP∆Ψ/δRδZ

1
2g

2
0

∑
i,j ĝ

′(Ψ̃n
i,j)/Ri

]
. (4.60)

When this value for αg is inserted back into Eq. (4.58), and Jφ is evaluated
from Eq. (4.53), the total current will come out to be IP .

It is often desirable to fix additional global parameters besides the central
pressure and total plasma current. For example, one may wish to constrain
the central value of the toroidal current density, or the central safety factor,
q0 (to be defined in Section 5.3). This is readily accomplished by including
additional constants and functions in the definition of the pressure and toroidal
field function. For example, Eq. (4.58) could be generalized as follows:

1
2
g2(Ψ) =

1
2
g2
0 [1 + α1ĝ1(Ψ̃) + α2ĝ2(Ψ̃)].

Here, ĝ1(Ψ̃) and ĝ2(Ψ̃) need to be linearly independent functions and α1 and
α2 are determined in a way analogous to Eq. (4.60) to enforce the constraints.

For many equilibrium applications, it is not the normalized pressure and
form for the toroidal field function that are to be held fixed, but rather other
quantities involving averages over the magnetic surfaces. In particular, the
parallel (to the magnetic field) current inside a given surface, and the safety
factor profile (inverse rotational transform) have special significance and im-
portance. We will return to techniques for solving for equilibria that hold these
profiles fixed in Section 5.5.

4.6.3 Determining Ψ on the Boundary

Up until this point, we have been assuming that the value of Ψ is known
on the boundary of the computational domain. If this is the case, we have
seen how to invert the elliptic operation ∆∗Ψ, and how to iterate on the non-
linearity in the source function Jφ(R,Ψ). Here we discuss how to determine
the value of Ψ on the boundary if what is given is the values of current Ii in
Nc discrete conductors located at coordinates Rci , Z

c
i as shown in Figure 4.5.
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, z c

N
)

Ψ = const .

FIGURE 4.5: Poloidal flux Ψ on the boundary of the computational domain
is obtained from a Green’s function. External coils are represented as discrete
circular current loops.

We use the fact that there is a Green’s function for the toroidal elliptic
operator ∆∗. It is given by

G(R;R′) =
1
2π

√
RR′

k
[(2− k2)K(k)− 2E(k)], (4.61)

where K(k) and E(k) are complete elliptic integrals of the first and second
kind, and the argument is given by

k2 =
4RR′

[(R+R′)2 + (Z − Z ′)2]
. (4.62)

This is derived in Jackson [88] as the vector potential due to an axisymmetric
current source. The Green’s function, G(R;R′), and the flux function, Ψ(R),
satisfy

∆∗G(R;R′) = Rδ(R−R′)δ(Z − Z ′),
∆∗Ψ(R) = µ0RJφ(R), in the plasma region

= µ0

Nc∑
i=1

RIiδ(R−Rci )δ(Z − Zci ) in vacuum. (4.63)

The form of Green’s theorem we will need is

∇ ·
[
Ψ

1
R2
∇G(R;R′)−G(R;R′)

1
R2
∇Ψ

]
=

1
R2

Ψ∆∗G(R;R′)− 1
R2

G(R;R′)∆∗Ψ. (4.64)
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We integrate Eq. (4.64) over all space, letting the observation point R′ lie
on the boundary of the computational grid; see Figure 4.5. We use Gauss’s
theorem to convert the divergences to surface integrals which vanish at infinity.
This gives the result that Ψ at a boundary point (R′, Z ′) is given by

Ψb(R′, Z ′) =
∫

P

G(R,Z;R′, Z ′)Jφ(R,Z)dRdZ

+

Nc∑
i=1

G(Rci , Z
c
i ;R

′, Z ′)Ii, (4.65)

where the integral is over the plasma area. The right side of Eq. (4.65) consists
of two parts, the contribution from the plasma currents and the contribution
from the external currents. Let us consider how to evaluate the first part. The
integral in Eq. (4.65) can be approximated by a sum. If the computational
grid has N grid points in each direction, we would approximate the two-
dimensional integral over the plasma by

Ψb(R′, Z ′) =
∫

P

G(R,Z;R′, Z ′)Jφ(R,Z)dRdZ

'
N∑
i=1

N∑
j=1

G(Ri, Zj ;R′, Z ′)Jφ(Ri, Zj)δRδZ. (4.66)

The double sum appearing in Eq. (4.66) is expensive to evaluate, requiring
N2 evaluations of the Green’s function for each of the 4N boundary points.
There is another way to evaluate the contribution from the plasma currents,
due to von Hagenow and Lackner [89], which we now discuss.

4.6.4 Von Hagenow’s Method

Consider now a function U(R,Z) that satisfies the same differential equa-
tion that Ψ does in the interior of the computational boundary, but which
vanishes on the boundary:

∆∗U = ∆∗Ψ = µ0RJφ,

U = 0 on boundary. (4.67)

We use the following form of Green’s theorem:

∇ ·
[
U

1
R2
∇G(R;R′)

]
−∇ ·

[
G(R;R′)

1
R2
∇U

]
=

1
R2

U∆∗G(R;R′)− 1
R2

G(R;R′)∆∗U. (4.68)

As shown in Figure 4.6, we take the observation point R′ a small distance ε
outside the computational boundary, and take the limit as ε→ 0. Integrating
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FIGURE 4.6: Singularity due to self-field term is resolved by taking the
limit as ε approaches zero from the outside

Eq. (4.68) over the computational domain only, using Gauss’s theorem, and
evaluating the differential volume element as dV = 2πRdRdZ gives∫

dS

R2
U
∂G(R;R′)

∂n
−

∫
dS

R2
G(R;R′)

∂U

∂n

= −2πµ0

∫
G(R;R′)Jφ(R)dRdZ, (4.69)

where the surface integrals are over the computational boundary. Now, let
the differential surface element be related to the differential line element by
dS = 2πRd` and note that the first term in Eq. (4.69) vanishes due to the
fact that U = 0 on the boundary, Eq. (4.67). We are left with the identity∫

P

G(R;R′)Jφ(R)dRdZ =
∫

b

d`

R
G(R;R′)

∂U

∂n
, (4.70)

where the line integral is now over the boundary of the computational domain.
The right side of Eq. (4.70) requires considerable less work to evaluate than
does the left side as it is a line integral rather than an area integral. We have
seen that the solution U can be obtained using a fast direct elliptic solver
in O(N lnN) machine operations. Add this to the O(N2) calculations of the
Green’s function needed to evaluate the line integral in Eq. (4.70) for each
boundary point, and it is still much less expensive than the O(N3) evaluations
needed to evaluate the area sum in Eq. (4.66). The final expression to obtain
Ψ on the computational boundary is

Ψb(R′, Z ′) =
∫
b

d`

R
G(R,Z;R′, Z ′)

∂U

∂n
+

Nc∑
i=1

G(Rci , Z
c
i ;R

′, Z ′)Ii. (4.71)
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FIGURE 4.7: Poloidal flux at magnetic axis, Ψ0, is a local minimum. Limiter
value of flux, Ψ`, is the minimum of the value of the flux at the limiter points
and at the saddle points.

Note that the derivation of this formula assumed that Ψ(R′, Z ′) lies outside
or on the computational boundary, and not interior to it. Were the obser-
vation point to lie inside the computational boundary, the first term on the
right in Eq. (4.68) would have given a contribution when integrated over the
domain, and the resulting expression for the flux at a point interior to the
computational boundary would be

Ψinterior(R′, Z ′) =
∫
b

d`

R
G(R,Z;R′, Z ′)

∂U

∂n
+ U(R′, Z ′)

+
Nc∑
i=1

G(Rci , Z
c
i ;R

′, Z ′)Ii. (4.72)

4.6.5 Calculation of the Critical Points

In Section 4.6.2 we referred to the value of Ψ at the magnetic axis as Ψ0

and the value of Ψ at the plasma-vacuum boundary as Ψ`. The calculation of
these during the iteration involves searching for local extremum values of Ψ:
minima and saddle points.

The basic technique is to apply a multidimensional Newton iteration to
look for points where ∇Ψ = 0. If we use a crude search of mesh values to
locate a point (R,Z) near a critical point, we can calculate the approximate
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location of the critical point as (R+ δR,Z + δZ), where:[
δR
δZ

]
=

1
D

[
−ΨZZ ΨRZ

ΨRZ −ΨRR

]
·
[

ΨR

ΨZ

]
. (4.73)

Here, we have used subscripts to denote partial differentiation, and have de-
fined:

D = ΨRRΨZZ −Ψ2
RZ . (4.74)

This can be iterated until |∇Ψ| = 0 to some tolerance. If the critical point
so found has D > 0, it is a minimum, and if it has D < 0, it corresponds to
a saddle point and an associated separatrix. The first and second derivatives
can be calculated using a local bivariate interpolation routine that enforces
continuous first derivatives [90].

In most free boundary equilibrium calculations, there are a number of
fixed limiter points as well, corresponding to the location of nearby material
structures. The outermost flux value in the plasma, Ψ`, is then defined as the
minimum Ψ contour that either passes through a limiter point or a saddle
point; see Figure 4.7.

4.6.6 Magnetic Feedback Systems

The boundary value iteration described in Section 4.6.3 normally involves
the implementation of one or more magnetic feedback systems. These can be
classified as (i) radial position control, (ii) vertical position control, and (iii)
shape control.

The radial position feedback system is needed because Eq. (4.33) only
gives an approximate condition for the vertical component of the external
magnetic field required for a plasma of minor radius a and major radius R0.
It is common to use this formula as the initial guess for the vertical field, and
to add to this an additional field determined from a feedback system designed
to locate the plasma major radius at a particular position.

The basic magnetic feedback system strives to make the difference in the
poloidal flux at two locations zero. Consider the feedback algorithm that in-
creases the current in a coil located at (Rci , Z

c
i ) for each iteration in proportion

to the difference in the measured poloidal flux at two locations (R1, Z1) and
(R2, Z2). We can write this as

δIi = α× [Ψ(R1, Z1)−Ψ(R2, Z2)] , (4.75)

for some proportionality constant α. It is convenient to define the normalized
proportionality constant α∗ so that in the absence of the plasma response,
Eq. (4.75) would be satisfied exactly for α∗ = 1. Using the Green’s functions
from Section 4.6.3, we have:

α = − α∗

[G(R1, Z1;Rci , Z
c
i )−G(R2, Z2;Rci , Z

c
i )]
. (4.76)
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For α∗ > 0, the vacuum field response will be such as to decrease the flux
difference. In general, we would choose α∗ as large as possible in order to
reduce the flux difference to near zero, but if the gain is chosen to be too
large, the feedback system itself can become unstable.

A vertical position feedback system is required to keep the plasma from
drifting off in the Z direction if the system is physically unstable to a vertical
displacement and if the solution is not constrained to be symmetric about the
midplane [73, 74]. Basic physics considerations show that in order to make a
shaped plasma, the external “vertical” field will have some curvature to it.
The externally produced magnetic field curvature index n is defined as

n = − R

BZ

∂BZ
∂R

∣∣∣∣
R0

. (4.77)

If n defined this way is negative, the system will be unstable to a rigid vertical
displacement and a vertical position feedback system must be present, both
in the equilibrium calculation and in the experiment. This can be stabilized in
the equilibrium calculation in a manner similar to what was described above,
but with the observation points chosen symmetrically above and below the
desired Z location of the plasma and with the feedback coil system chosen to
be one that is effective in producing a radial magnetic field. Such a system
would be a a pair of coils located some distance ±LZ with respect to the
midplane, and with currents constrained to be of opposite polarity.

Shape control systems can be defined by taking superpositions of the basic
feedback system defined above. However, once one goes beyond the basic ver-
tical and radial feedback systems, it becomes increasingly important that the
different feedback systems be nearly orthogonal, otherwise they will interfere
with one another and potentially cause instabilities.

If enough shape control points are present, the coil currents are best de-
termined by solving the overdetermined problem of finding the least squares
error [87, 89] in the poloidal flux at the M plasma boundary points (Rbj , Z

b
j )

produced by N coils at set locations Ii(Rci , Z
c
i ) with M > N . Assuming that

the plasma boundary points lie interior to the computational boundary, we
use Eq. (4.72) to express the function we seek to minimize as

ε =
M∑
j=1

[∫
d`

R
G(R;Rb

j)
∂U

∂n
+ U(Rb

j) +
N∑
i=1

G(Rc
i ;R

b
j)Ii −Ψb

]2

(4.78)

+γ
N∑
i=1

I2
i ,

where Ψb is the desired value of flux at the boundary points (Rbj , Z
b
j ), j = 1,M .

Differentiating ε with respect to each of the coil currents and setting to zero
leads to a linear matrix equation that can be solved for the coil currents Ii.
Note that the last term, with a small positive value for γ, is needed to keep
the system from becoming ill posed [89].
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FIGURE 4.8: A double-nested iteration loop is used to converge the interior
and boundary values.

4.6.7 Summary of Numerical Solution

Finally, we summarize the equilibrium algorithm in Figure 4.8. Initially, we
guess a distribution for the plasma current. We use this to give a first guess for
the flux on the boundary using Eq. (4.71). With this boundary flux held fixed,
we solve for a consistent solution in the interior. When this converges, we use
the current distribution so computed to update the boundary flux. This whole
process is repeated until the flux stops changing between successive iterations.

4.7 Experimental Equilibrium Reconstruction

An important application of the equilibrium equation is to interpret mag-
netic and other diagnostic measurements in order to reconstruct the plasma
equilibrium [62, 91, 92]. This is an essential capability that is part of all mod-
ern magnetic fusion experiments. For this application, instead of the plasma
pressure and toroidal field functions being prescribed, they are expanded in
basis functions, and the coefficients in the expansion are determined as best
fits to whatever magnetic and other measurements are available.

In the most straightforward equilibrium reconstruction problem, the flux,
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Ψ, is measured at N locations close to the plasma by an array of axisymmetric
flux loops by time integrating the voltage induced in the loop using Eq. (6.13).
Thus, the data consist of an array of measured values ΨM

i corresponding to
locations (Ri, Zi). The pressure and toroidal field functions are expanded in
terms of known basis functions:

p′(Ψ) =
∑
j

αjyj(ψ̃), gg′(Ψ) =
∑
j

βjyj(ψ̃). (4.79)

Here, ψ̃ = (Ψl −Ψ)/(Ψl −Ψ0) is the normalized poloidal magnetic flux, with
Ψ0 and Ψl the poloidal magnetic flux at the magnetic axis and the plasma
boundary, and 0 < ψ̃ < 1. Simple polynomial basis functions would correspond
to yj(ψ̃) = ψ̃j , although it is generally found to be desirable to choose a basis
that incorporates the boundary conditions and is more nearly orthogonal.

We then use the Green’s function formula, Eq. (4.65), to express the com-
puted flux at the flux loop locations as a function of the αj and βj , as well as
the measured coil currents in the external coils:

ΨC
i (Ri, Zi) =

∫
P

G(R,Z;Ri, Zi)Jφ(R,ψ, αj , βj)dRdZ

+

Nc∑
l=1

G(Rcl , Z
c
l ;Ri, Zi)Il. (4.80)

The problem is then best formulated as a least squares problem where at each
iteration, we choose the αj and βj to minimize the weighted sum of the squares
of the error. For each measurement ΨM

i we define an experimental uncertainty
weighting value σi and use this to define the error function,

χ2 = Σi

(
ΨM
i −ΨC

i

σi

)2

. (4.81)

Differentiating with respect to the αj and βj leads to the matrix equation:

R · x = M, (4.82)

which is solved for the unknown x = (αj , βj) at each step in the iteration for
the plasma current. This equilibrium reconstruction technique can be readily
extended to include toroidal flow [62] or anisotropic pressure [93].

4.8 Summary

The plasma equilibrium equation is probably the most widely used equa-
tion in plasma physics. It is extensively used in theoretical studies and in the



118 Computational Methods in Plasma Physics

design and interpretation of experiments. The basic Grad–Shafranov equation
is readily extended to handle equilibrium states with flow and with a particu-
lar type of anisotropic pressure tensor. It is seen that the poloidal flux function
Ψ is of central importance in equilibrium studies. There are some limited ana-
lytic solutions for Ψ(R,Z), but generally it needs to be solved for numerically.
We described the standard technique for solving for Ψ if a given set of coils
are present, and also how to use this equation to reconstruct many features of
an equilibrium from magnetic measurements. These applications are normally
called the free boundary solution and equilibrium reconstruction methods. We
will return to this equation in the next chapter to discuss fixed boundary tech-
niques using magnetic flux coordinates to produce an equilibrium with a given
shape for the last closed flux surface.

Problems

4.1: Verify that the components of the equilibrium equation with flow,
Eq. (4.9), in the ∇R and the ∇Ψ directions are satisfied for the velocity
u given by Eq. (4.11) and the pressure p given by Eq. (4.14), if Eq. (4.22) is
satisfied.

4.2: Verify that the forms of the parallel and perpendicular pressure profiles
given by Eq. (4.30) satisfy the constraint given in Eq. (4.26).

4.3: Evaluate `i from Eq. (4.35) in the large aspect ratio, circular cross section
limit where the major radius R → R0, a constant, and the minor radius is
a, where a � R0. Using circular, cylindrical coordinates, assume the current
density has the form:

J(r) = ∇2Ψ =
1
r

d

dr
r
dΨ
dr

= J0

(
1−

( r
a

)α)
,

where α is a constant.

4.4: Show that at large aspect ratio, (R2 + Z2)/R2
0 >> 1, substitution of

R = R0 +X into the expressions in Section 4.4.1 for multipolar fields yields
to lowest order

Ψ2m + iΨ2m+1 =
(X + iZ)m

mRm−2
0

.

4.5: Verify that the analytic functions given in Eq. (4.39) satisfy the Grad–
Shafranov equation, Eq. (4.8).

4.6: Ampere’s law is that for any closed curve δΩ surrounding an area Ω, we
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have the integral relation:∮
δΩ

B · d` = µ0

∫
Ω

J · dA.

Show that the discrete form of this equation is exactly satisfied if the con-
servative difference formula Eq. (4.54) is used and the integration contour is
chosen correctly.

4.7: How is Eq. (4.69) modified if we take the limit that as ε→ 0, we approach
the boundary from inside the computational domain?

4.8: Derive the Newton iteration formula, Eq. (4.73), by Taylor expanding
ΨR and ΨZ about the point (R,Z) and solving for the point where they both
vanish.

4.9: Since the equilibrium equation, Eq. (4.8), only depends on the toroidal
field function g(Ψ) through gdg/dΨ, show that once a single solution for
Ψ(R,Z) is obtained, a family of related solutions can be generated by varying
the boundary value g0, Eq. (4.37). This is called Bateman scaling [94]. What
similarities do the different solutions in this family have? What differences?





Chapter 5

Magnetic Flux Coordinates in a Torus

5.1 Introduction

A strongly magnetized high-temperature plasma is very anisotropic due to
the presence of the magnetic field itself. Physically, this anisotropy is due to the
fact that particles are relatively free to stream in the direction along the field,
but exhibit gyro-orbits in the directions perpendicular to the field, and also
due to the fact that two out of three of the wave characteristics are aligned with
the field direction. Mathematically, this anisotropy manifests itself in the fact
that the MHD equations are higher order in the direction along the magnetic
field than in the directions perpendicular to it. Because of this anisotropy,
there is often considerable simplification to be gained in performing analysis
or numerical solutions using a coordinate system aligned with the magnetic
field. Here, we lay some of the groundwork for these coordinate systems in
toroidal geometry [95, 96, 97, 98].

5.2 Preliminaries

To define a coordinate system, we need to introduce three spatial functions

ψ(x), θ(x), φ(x),

which have non-coplanar gradients. Mathematically, this is a condition on the
triple vector product of the gradients, or the Jacobian J ,

∇ψ ×∇θ · ∇φ ≡ J−1 ≥ 0, (5.1)

where the equality can hold only at isolated singular points, for example at
the origin of the coordinate system (or at the magnetic axis).

The infinitesimal volume element associated with the differentials
dψ, dθ, dφ is given by

dτ = Jdψdθdφ =
dψdθdφ

[∇ψ ×∇θ · ∇φ]
. (5.2)

121
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To make this a magnetic flux coordinate system, we choose ψ to be a flux
function, i.e.,

B · ∇ψ = 0. (5.3)

We take θ to be a poloidal angle (increasing the short way around the torus)
and φ to be a toroidal angle (increasing the long way around the torus), each
varying between 0 and 2π:

0 ≤ θ < 2π , 0 ≤ φ < 2π .

Here we will choose φ to be the same angle as that in a cylindrical coordinate
system, making these axisymmetric magnetic flux coordinates. Thus, we have
∂/∂φ = 0 for axisymmetric quantities, and |∇φ|2 = 1/R2. This is not the
only choice possible for the toroidal angle φ, but it is a convenient one for
calculating if the geometry is axisymmetric such as in a tokamak or reversed
field pinch. This restriction is relaxed in Section 5.4.2.

All physical quantities must be periodic functions of the toroidal angle φ,
and of the poloidal angle θ if the ψ = constant contours form closed nested
surfaces, as is normally the case of interest. These coordinates are illustrated
in Figure 5.1.

5.2.1 Jacobian

The magnetic flux coordinate ψ need not be the poloidal flux function Ψ,
it need only be some function of the poloidal flux so that B · ∇ψ = 0. For
example, ψ could be identified with the toroidal flux, or with the volume inside
a ψ = constant surface, or with the pressure, if it is strictly a function of ψ.
Also, the poloidal angle θ could vary between 0 and 2π in many different ways.

R

Z

φ

ψ = const.

θ

(R,φ,Z) Cylindrical

(ψ,θ,φ) Flux

FIGURE 5.1: Flux coordinates use a magnetic flux ψ and a poloidal angle
θ.
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equal arc length equal area

FIGURE 5.2: Two definitions of the angle θ are illustrated. Many more are
possible.

For example, it could increase in such a way that the arc length d` along a
constant ψ contour is everywhere proportional to dθ or in such a way that the
area associated with an infinitesimal area element dA = (J/R)dθdψ is equal
to a constant as the constant ψ contour is transversed. These two possibilities
are illustrated in Figure 5.2, but many other definitions of the angle θ are, of
course, possible. We will return to this in Section 5.3.

Note that in general, ∇θ · ∇ψ 6= 0, so that we will have a non-orthogonal
coordinate system. The complication due to this is more than compensated
for by the flexibility which can be used to achieve additional simplifications.
In axisymmetric magnetic flux coordinates, both ∇ψ and ∇θ lie in constant
φ planes so that ∇θ · ∇φ = 0 and ∇ψ · ∇φ = 0.

It is usual to complete the definition of the ψ and the θ coordinates by
specifying the functional form of the Jacobian J . To see how this uniquely
defines the coordinate ψ, we go back to the definition of the differential volume
element in cylindrical and flux coordinates and equate these:

dR dZ Rdφ = Jdψdθdφ.

Noting that the angle φ is the same in both coordinate systems, and dividing
by the Jacobian gives

dR dZ R

J
= dψdθ. (5.4)

Next integrate both sides of Eq. (5.4) over the area interior to the contour ψ
= const as shown in Figure 5.3a. Noting that the θ integral on the right side
of Eq. (5.4) is 2π, we obtain∫ ∫

A

RdRdZ

J
= 2π

∫ ψ

ψ0

dψ′, (5.5)

or,

ψ − ψ0 =
1
2π

∫ ∫
A

RdRdZ

J
, (5.6)
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θ=0

θ=const.

ψ = const.
ψ+δψ

ψ

(a) (b)

ψ0

FIGURE 5.3: Choosing the Jacobian determines both the (a) ψ and the (b)
θ coordinate.

where the integral is over the area inside the contour ψ = const. Similarly, if
we integrate Eq. (5.4) over the shaded area in Figure 5.3b, which is defined
by

ψ < ψ′ < ψ + δψ , 0 ≤ θ′ < θ,

we obtain the defining relation for θ, where A is the shaded area in Figure 5.3b.
Therefore, both θ and ψ are determined (up to a constant) if the form of the
Jacobian is given.

θ =
1
δψ

∫ ∫
A

dRdZR

J
,

5.2.2 Basis Vectors

There are two separate systems of basis vectors formed from the gradients
of the coordinate functions ψ, θ, φ. These are the covariant basis

∇ψ, ∇θ, ∇φ,

and the contravariant basis

∇θ ×∇φJ, ∇φ×∇ψJ, ∇ψ ×∇θJ.

We note that the scalar product between a vector in either of these two bases
with its corresponding vector in the other basis gives unity, while it is orthog-
onal to the remaining members of the other basis. For example,

∇ψ · ∇θ ×∇φJ = 1,
∇ψ · ∇φ×∇ψJ = 0,
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etc. Both of these bases are useful for representing vectors, and we need to be
able to transform from one representation to the other. If A is an arbitrary
vector quantity, we can represent it in terms of the covariant vectors

A = A1∇ψ +A2∇θ +A3∇φ, (5.7)

where

A1 = A · ∇θ ×∇φJ,
A2 = A · ∇φ×∇ψJ,
A3 = A · ∇ψ ×∇θJ,

or, alternatively, in terms of the contravariant vectors

A = A1∇θ ×∇φJ +A2∇φ×∇ψJ +A3∇ψ ×∇θJ, (5.8)

where

A1 = A · ∇ψ,
A2 = A · ∇θ,
A3 = A · ∇φ.

5.2.3 Grad, Div, Curl

The gradient of a scalar function f(ψ, θ, φ) is readily calculated from the
chain rule of differentiation,

∇f =
∂f

∂ψ
∇ψ +

∂f

∂θ
∇θ +

∂f

∂φ
∇φ. (5.9)

Note that the gradient operation produces a vector in the covariant represen-
tation. The inverse to Eq. (5.9) is the calculation of the derivative of f with
respect to one of the coordinates. By taking the scalar product of Eq. (5.9)
with each of the contravariant basis vectors, we obtain

J∇θ ×∇φ · ∇f =
∂f

∂ψ
,

J∇φ×∇ψ · ∇f =
∂f

∂θ
,

J∇ψ ×∇θ · ∇f =
∂f

∂φ
.

It is useful to keep in mind that ∂f/∂ψ is proportional to the projection of
∇f in the direction orthogonal to the other remaining coordinates, and not
in the ∇ψ direction, as illustrated in Figure 5.4.
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φ

∇θ×∇φ

∇ψ

FIGURE 5.4: The vector ∂f
∂ψ is proportional to the projection of ∇f in the

direction orthogonal to the other remaining coordinates, and not in the ∇ψ
direction.

To take the divergence of a vector, it should first be in the contravari-
ant representation since we can use the fact that the divergence of the cross
product of any two gradients is zero, i.e.,

∇ · (∇α×∇β) = 0 (5.10)

for any scalar quantities α and β. Using this, Eq. (5.9), and the orthogonality
properties, we can easily compute

∇ ·A = ∇ ·
[
A1∇θ ×∇φJ +A2∇φ×∇ψJ +A3∇ψ ×∇θJ

]
=

1
J

[
∂

∂ψ

(
A1J

)
+

∂

∂θ
(A2J) +

∂

∂φ
(A3J)

]
. (5.11)

To take the curl of a vector, it should be in the covariant representation since
we can make use of the fact that the curl of a gradient is zero, i.e.,

∇× (∇α) = 0, (5.12)

for any scalar α. This, Eq. (5.9), and the orthogonality properties give

∇×A = ∇× [A1∇ψ +A2∇θ +A3∇φ]

=
1
J

[
∂A3

∂θ
− ∂A2

∂φ

]
∇θ ×∇φJ +

1
J

[
∂A1

∂φ
− ∂A3

∂ψ

]
∇φ×∇ψJ

+
1
J

[
∂A2

∂ψ
− ∂A1

∂θ

]
∇ψ ×∇θJ. (5.13)

Note that taking the curl leaves a vector in the contravariant basis.
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5.2.4 Metric Tensor

In carrying out vector manipulations, we sometimes need to convert a
vector in the covariant representation to one in the contravariant, or vice
versa. To do this, we need relations of the form

∇ψ = a1∇θ ×∇φJ + a2∇φ×∇ψJ + a3∇ψ ×∇θJ,

etc. Taking the scalar product successively with ∇ψ, ∇θ, ∇φ, and using the
orthogonality property gives

a1 = |∇ψ|2

a2 = ∇θ · ∇ψ
a3 = 0.

Repeating for the other basis vectors gives the metric tensor ∇ψ
∇θ
∇φ

 =

 |∇ψ|2 ∇θ · ∇ψ 0
∇θ · ∇ψ |∇θ|2 0

0 0 1/R2

 ·
 ∇θ ×∇φJ
∇φ×∇ψJ
∇ψ ×∇θJ

 . (5.14)

Similarly, to transform from contravariant to covariant, we need relations of
the form

∇θ ×∇φJ = a1∇ψ + a2∇θ + a3∇φ.

Taking the scalar product with the other contravariant basis vectors gives
expressions for a1, a2, and a3. Again, we can summarize this in terms of the
inverse metric tensor ∇θ ×∇φJ

∇φ×∇ψJ
∇ψ ×∇θJ

 =

 |∇θ|2 J
2

R2 −∇θ · ∇ψ J2

R2 0
−∇θ · ∇ψ J2

R2 |∇ψ|2 J
2

R2 0
0 0 R2

 ·
 ∇ψ
∇θ
∇φ

 .
(5.15)

The matrices in (5.14) and (5.15) are the inverse of one another. This can be
used to give the identity

|∇ψ|2|∇θ|2 − (∇θ · ∇ψ)2 = R2/J2. (5.16)

5.2.5 Metric Elements

In the last section, we introduced the coordinate functions ψ(R,Z) and
θ(R,Z) and proceeded to construct a coordinate system from them. However,
computationally it is often more convenient to work in the inverse represen-
tation where we consider the cylindrical coordinates R and Z to be functions
of ψ and θ:

R = R(ψ, θ),
Z = Z(ψ, θ). (5.17)
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φ

ψ = const

θ = const R(ψ,θ), Z(ψ,θ)

R

Z

FIGURE 5.5: In the inverse representation we consider the cylindrical co-
ordinates R and Z to be functions of ψ and θ.

Note that for ψ fixed, and θ varying between 0 and 2π, the curve defined by
[R(ψ, θ), Z(ψ, θ)] will trace out a closed flux surface as shown in Figure 5.5.

We begin by computing the gradients of R and Z, which are orthogonal
unit vectors. Using Eq. (5.9), we have

∇R = R̂ = Rψ∇ψ +Rθ∇θ
∇Z = Ẑ = Zψ∇ψ + Zθ∇θ. (5.18)

Here and elsewhere in this section, we will denote partial differentiation with
subscripts. Using Eq. (5.18), we can compute the triple product

∇R×∇φ · ∇Z =
1
R

= (RθZψ −RψZθ)∇ψ ×∇θ · ∇φ

or, using the definition of the Jacobian, Eq. (5.1),

J = R (RθZψ −RψZθ) . (5.19)

We can write the relations in Eq. (5.18) in matrix form:[
R̂
Ẑ

]
=
[
Rψ Rθ
Zψ Zθ

]
·
[
∇ψ
∇θ

]
. (5.20)

Inverting this gives[
∇ψ
∇θ

]
=
R

J

[
−Zθ Rθ
Zψ −Rψ

]
·
[

R̂
Ẑ

]
. (5.21)

From Eq. (5.21), we can now compute the metric elements that appear in
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Eq. (5.14):

|∇ψ|2 =
R2

J2

(
R2
θ + Z2

θ

)
,

|∇θ|2 =
R2

J2

(
R2
ψ + Z2

ψ

)
,

∇θ · ∇ψ = −R
2

J2
(RψRθ + ZψZθ). (5.22)

The first of these provides a useful relation between the arc length along
a constant ψ surface, d`, and the angle differential dθ. Using the relation
d`2 = (R2

θ + Z2
θ )dθ

2, we have

d` =
|∇ψ|J
R

dθ. (5.23)

5.3 Magnetic Field, Current, and Surface Functions

Recall that the equilibrium magnetic field is represented as

B = ∇φ×∇Ψ + g(Ψ)∇φ,
= Ψ′∇φ×∇ψ + g(Ψ)∇φ, (5.24)

where we have denoted dΨ/dψ by Ψ′. This is a mixed representation. We can
convert to a covariant form by using the inverse metric tensor, Eq. (5.15):

B =
[
−Ψ′∇θ · ∇ψ J

R2

]
∇ψ +

[
Ψ′|∇ψ|2 J

R2

]
∇θ + g∇φ. (5.25)

The current density is calculated directly by taking the curl of Eq. (5.25),
using the identity in Eq. (5.13):

µ0J = ∇×B

=

{[
Ψ′|∇ψ|2 J

R2

]
ψ

+
[
Ψ′∇θ · ∇ψ J

R2

]
θ

}
∇ψ ×∇θ − g′∇φ×∇ψ.

(5.26)

Another useful expression related to the current parallel to the magnetic field
is obtained by taking the dot product of Eqs. (5.25) and (5.26),

µ0J ·B =
g2

J

{[
Ψ′

g
|∇ψ|2 J

R2

]
ψ

+
[
Ψ′

g
∇θ · ∇ψ J

R2

]
θ

}
. (5.27)
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We can now compute some surface functions of interest. The volume within a
flux surface is given simply by

V (ψ) =
∫
dτ = 2π

∫ ψ

ψ0

dψ

∫ 2π

0

dθJ. (5.28)

This allows us to define the differential volume as

V ′(ψ) ≡ dV

dψ
= 2π

∫ 2π

0

dθJ = 2π
∮

Rd`

|∇ψ|
, (5.29)

where the second equality follows from Eq. (5.23). For any scalar quantity
a(ψ, θ) we define the surface average of a as the following integral over a
constant ψ contour:

〈a〉 =
2π
V ′

∫ 2π

0

dθJa. (5.30)

Following Kruskal and Kulsrud [95], we compute magnetic and current
fluxes that are best expressed as volume integrals interior to a given magnetic
surface. Since both ∇ ·B = 0 and ∇ · J = 0, the following integrands can be
written as divergences of a scalar times a divergence-free vector. Using Gauss’s
theorem, and noting that since θ and φ are not single valued, it is necessary to
cut the region of integration at θ = 0 or φ = 0. Since the field and current lie
within surfaces, the boundary contribution vanishes except at the cut where
it is seen to reduce to area integrals over the surface area. The area integral
at θ = 0 or φ = 0 vanishes since it is multiplied by the angle, and only the
contribution from the cut at 2π survives.

Using this technique and the expression for the volume element in Eq. (5.2),
the toroidal flux inside a magnetic surface is

Φ(ψ) =
1
2π

∫
B · ∇φdτ =

1
2π

∫ ψ

ψ0

dψg(ψ)V ′
〈
R−2

〉
. (5.31)

The poloidal flux inside a magnetic surface is

Ψp(ψ) =
1
2π

∫
B · ∇θdτ = 2π (Ψ−Ψ0) . (5.32)

The poloidal current within a magnetic surface is

K(ψ) =
1
2π

∫
J · ∇θdτ =

2π
µ0

[g(0)− g(ψ)] . (5.33)

And the toroidal current within a magnetic surface is

I(ψ) =
1
2π

∫
J · ∇φdτ =

Ψ′

2πµ0
V ′
〈
|∇ψ|2

R2

〉
. (5.34)
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We can now compute the safety factor as

q(ψ) = dΦ/dΨp = Φ′/Ψ′
p =

gV ′

(2π)2Ψ′

〈
R−2

〉
. (5.35)

Another quantity of interest is related to the surface-averaged parallel
current density, obtained by using Eq. (5.27),

J‖(ψ) ≡ 〈J ·B〉
〈B · ∇φ〉

=
g

µ0V ′ 〈R−2〉

[
Ψ′V ′

g

〈
|∇ψ|2

R2

〉]
ψ

. (5.36)

5.4 Constructing Flux Coordinates from Ψ(R,Z)

Suppose we are given the poloidal flux on an (R,Z) grid such as we would
obtain from the equilibrium solution method discussed in Section 4.6. Here
we discuss how to go about calculating an associated (ψ, θ) flux coordinate
system with the desired Jacobian. The first step is to divide the flux in the
plasma into N intervals with interval boundaries given by

Ψj = Ψ0 + j∆Ψ; j = 0, · · · , N. (5.37)

Here, the flux increment is defined by ∆Ψ = (Ψl −Ψ0)/N , where the limiter
and axis fluxes, Ψl and Ψ0, are those defined in Section 4.6. Next, calculate
the differential volume with respect to Ψ, V ′(Ψj), by contouring each Ψj level
as follows. Define a sequence of M rays extending outward from the magnetic
axis that intersect each contour Ψ(R,Z) = Ψj . Denote the intersection point
of ray i and contour j by xi,j = (Ri,j , Zi,j). These can be equally spaced in
polar angle, and should be periodic such that ray i = M+1 would be the same
as ray i = 1. Using a suitable 2D interpolation method such as Akima [90] or
cubic spline, solve for the intersection points xi,j using standard root-finding
techniques such as binary search or Newton’s method.

Once the four points denoted i − 1, i, i + 1, and i + 2 illustrated in Fig-
ure 5.6 have been located in this fashion, a simple and accurate method for
approximating the section of the arc length δ` between points denoted i and
i+ 1 is to use points i− 1 and i+ 1 to define a tangent value at point i, and
to use points i+2 and i to define a tangent value at point i+1. We construct
a cubic polynomial that goes through the points i and i+ 1 with the desired
tangent values at those endpoints. This can be integrated analytically to give
a high-order approximation to the arc length for that segment. If we construct
a local coordinate system (x′, z′) with the origin at xi,j such that the x′ axis
passes through the point xi+1,j and require that the interpolating cubic have
slopes m1 and m2 in this local coordinate system at the two points, then a
good approximation to the arc length of the curve passing through xi,j and
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i-1

i

i+1 i+2

ds

d

m1

m2

FIGURE 5.6: Points on a constant Ψ contour are found using root-finding
techniques. The two slopes m1 and m2 relative to the line segment passing
through points i and i+ 1 are used to define the local arc length d`.

xi+1,j with the required endpoint slopes is given by

d`i+1/2 = dsi+1/2

[
1 + (2m2

1 + 2m2
2 −m1m2)/30

]
. (5.38)

Here dsi+1/2 is the length of the straight-line segment passing through xi,j
and xi+1,j .

Approximating the integral in Eq. (5.29) by a finite sum, we have the
following expression for the derivative of the volume within a flux surface
with respect to the poloidal flux function:

dV

dΨ
= 2π

M∑
i=0

(
R

|∇Ψ|

)
i+1/2

d`i+1/2. (5.39)

Quantities at the half-integer points are best evaluated as averages over the
two neighboring integer points that lie on the contour,(

R

|∇Ψ|

)
i+1/2

≡ 1
2

[(
R

|∇Ψ|

)
i

+
(

R

|∇Ψ|

)
i+1

]
.

As discussed in Section 5.2.1, choosing a form for the Jacobian determines
both the properties of the θ coordinate and the physical meaning of the ψ
coordinate. Because of this, it is useful to prescribe the Jacobian as the product
of two functions:

J(ψ, θ) = f(ψ)h(ψ, θ). (5.40)

The function h(ψ, θ) will be prescribed to fix the properties of the θ coordinate
on each surface, and the function f(ψ) will determine the physical meaning of
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TABLE 5.1: The poloidal angle θ is determined by the function h(ψ, θ) in
the Jacobian as defined in Eq. (5.40).

h(ψ, θ) θ
R/|∇ψ| constant arc length
R2 straight field lines
R constant area
1 constant volume

TABLE 5.2: Once the θ coordinate is determined, the ψ coordinate can be
determined by the function f(ψ) in the Jacobian definition, Eq. (5.40).

f(ψ) ψ[
2π
∫ 2π

0
dθh(ψ, θ)

]−1

volume within surface[∫ 2π

0
dθh(ψ, θ)g/R2

]−1

toroidal flux within surface

the ψ coordinate. Once h(ψ, θ) is chosen, we can use the relation in Eq. (5.23)
to calculate the value of θ at a given point along the contour Ψj by performing
the line integral:

θi = 2π
[∮

Rd`

h(ψ, θ)|∇ψ|

]−1 ∫ xi,j

0

Rd`

h(ψ, θ)|∇ψ|
. (5.41)

Common choices for h(ψ, θ) and the corresponding name of the θ coordinate
are given in Table 5.1. Once a function h(ψ, θ) is chosen, if we need to switch
from the poloidal flux function to another physical meaning for the coordinate
ψ, the function f(ψ) can be defined appropriately. Two additional common
choices for the surface coordinate are given in Table 5.2. These follow from
Eqs. (5.29) and (5.31).

5.4.1 Axisymmetric Straight Field Line Coordinates

We call a flux coordinate system straight field line if it allows a magnetic
field vector to be written in the form

B = ∇φ×∇F (ψ) +∇H(ψ)×∇θ, (5.42)

where F (ψ) and H(ψ) are only functions of the coordinate ψ. When plotted
as a function of the angles θ and φ, magnetic field lines on a surface appear
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0 2π

2π

0
φ

θ
B

FIGURE 5.7: With straight field line angular coordinates, magnetic field
lines on a surface ψ=const. appear as straight lines when plotted in (θ, φ)
space.

straight as illustrated in Figure 5.7 since the ratio B · ∇θ/B · ∇φ depends
only on the coordinate ψ. We will see in Chapter 8 that a straight field line
coordinate system can greatly simplify some analysis and make certain linear
stability calculations much more efficient.

An axisymmetric equilibrium magnetic field is straight if we choose the
Jacobian function h(ψ, θ) in Eq. (5.40) to be proportional to R2, as indicated
in Table 5.1. In a straight field line system, the equilibrium magnetic field can
be written as

B = ∇φ×∇Ψ + g(ψ)∇φ,

= Ψ′
[
∇φ×∇ψ +

gJ

Ψ′R2
∇ψ ×∇θ

]
,

= Ψ′ [∇φ×∇ψ + q(ψ)∇ψ ×∇θ] , (5.43)

where the second line follows from Eq. (5.14) and q(ψ) is the safety factor
defined in Eq. (5.35).

It follows from this form that we can write the gradient along the field line
of an arbitrary scalar variable α as

B · ∇α =
Ψ′

J
[αθ + q(ψ)αφ] . (5.44)

Straight field line coordinates are especially useful for linear stability calcula-
tions where one often uses a spectral representation in the θ and φ directions. If
the (m,n)th harmonic varies like exp i(mθ−nφ), the above operator becomes

B · ∇α =
Ψ′

J
i [m− nq(ψ)]α. (5.45)



Magnetic Flux Coordinates in a Torus 135

It is seen that if the bracket vanishes anywhere, it will vanish over the entire
flux surface. Therefore, in a straight field line system, all the resonant behavior
of a given rational q value will be captured in the rational harmonics that
satisfy the resonance condition m/n = q(ψ). Some implications of this are
discussed in Chapter 8.

5.4.2 Generalized Straight Field Line Coordinates

For some applications that require straight field line coordinates, the re-
striction that J ∼ R2 is too restrictive as this effectively determines the spac-
ing and hence relative resolution of the θ coordinate. It has been shown [99]
that one can obtain straight field line coordinates for any θ coordinate if we
are willing to generalize what choice we make for the toroidal angle. Let us
make the substitution φ→ ζ in the toroidal angle, where φ is the cylindrical
coordinate angle, and ζ is a generalized toroidal angle related to it by

ζ ≡ φ− q(ψ)δ(ψ, θ), (5.46)

for some function δ(ψ, θ). The requirement that the field lines be straight in
the (ψ, θ, ζ) coordinate system is that we can write the magnetic field in the
form

B = Ψ′ [∇ζ ×∇ψ + q(ψ)∇ψ ×∇θ] . (5.47)

Now, since ∇ζ ×∇ψ =
(
∇φ− q ∂δ∂θ∇θ

)
×∇ψ, we have

B = Ψ′
[
∇φ×∇ψ + q(ψ)

(
1 +

∂δ

∂θ

)
∇ψ ×∇θ

]
. (5.48)

However, if B is an equilibrium magnetic field, we know that it can also be
written in the form of Eq. (5.24), i.e.,

B = Ψ′∇φ×∇ψ + g(ψ)∇φ. (5.49)

Equating the ∇φ components of Eqs. (5.48) and (5.49) gives the relation

∂δ

∂θ
=
(
J

R2

g(ψ)
Ψ′(ψ)q(ψ)

− 1
)
, (5.50)

where J is the Jacobian of both the (ψ, θ, φ) and the (ψ, θ, ζ) coordinate
systems. Note the requirement, that comes from periodicity, that the Jacobian
satisfy

1
2π

∫ 2π

0

J

R2
dθ =

Ψ′(ψ)q(ψ)
g(ψ)

.

Since it is the form of the Jacobian that determines the spacing of the θ co-
ordinate [for example, see Eq. (5.23)], this new flexibility allows us to obtain



136 Computational Methods in Plasma Physics

a straight field line system for any choice of θ coordinate by defining δ appro-
priately and using ζ as the toroidal angle instead of φ. This is at the expense
of some additional complexity since the the metric quantities ∇ψ · ∇ζ and
∇θ · ∇ζ will no longer be zero, and |∇ζ|2 6= 1/R2. However, the coordinate
ζ is still ignorable with respect to axisymmetric equilibrium quantities, and
the linear stability analysis (Chapter 8) can still be reduced to the study of a
single mode varying as exp (inζ).

A particularly useful straight field line coordinate system, known as Boozer
coordinates [100], is obtained if we take the Jacobian to be proportional to
the inverse of the square of the magnetic field,

J ≡ [∇ψ ×∇θ · ∇ζ]−1 =
f(ψ)
B2

, (5.51)

for some function f(ψ). It follows that an equilibrium magnetic field can then
also be written in the covariant form

B = g(ψ)∇ζ + I(ψ)∇θ + β∗∇ψ. (5.52)

From Eqs. (5.47)–(5.52), we have the relation f(ψ) = Ψ′ [g(ψ)q(ψ) + I(ψ)].
These coordinates have been shown to be particularly useful for calculating
guiding center drift orbits in magnetic confinement devices [100, 101, 102].

5.5 Inverse Equilibrium Equation

We now are in a position to construct the inverse equilibrium equation

∇p = J×B.

Substituting from Eqs. (5.25) and (5.26), we have

Ψ′R
2

J

{[
Ψ′|∇ψ|2 J

R2

]
ψ

+
[
Ψ′∇θ · ∇ψ J

R2

]
θ

}
+ gg′ +R2µ0p

′ = 0. (5.53)

Equation (5.53) is equivalent to the Grad–Shafranov equation, Eq. (4.8). If
we prescribe the two functions p(ψ) and g(ψ), and the form of the Jacobian
J , this determines the coordinate functions R(ψ, θ), Z(ψ, θ) and the poloidal
flux function Ψ(ψ).

A technique for solving this equation, known as the iterative metric method,
has been developed [103] that uses approximate flux coordinates (ψ, θ) to
iteratively solve the general coordinate form of the Grad–Shafranov equation,
Eq. (4.8), for the poloidal flux function Ψ(ψ, θ) where the toroidal elliptic
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operator takes the form

∆∗Ψ =
R2

J

{[
Ψψ|∇ψ|2

J

R2

]
ψ

+
[
Ψψ∇θ · ∇ψ

J

R2

]
θ

+
[
Ψθ∇θ · ∇ψ

J

R2

]
ψ

+
[
Ψθ|∇θ|2

J

R2

]
θ

}
.

The coordinates R(ψ, θ) and Z(ψ, θ) are adjusted each metric iteration cycle
so that constant ψ surfaces lie on the computed constant Ψ contours, and
so that the Jacobian integrals are satisfied. Once the iterations converge to a
tolerance, the computed Ψ is only a function of the single coordinate ψ, and
Eq. (5.53) is then satisfied.

5.5.1 q-Solver

An advantage of working in the flux coordinates is that one or both of
the free functions needed for solution of the Grad–Shafranov equation can be
specified in terms of quantities requiring surface averages to evaluate. Since
stability studies depend sensitively on the q-profile, it is often desired to pre-
scribe the functions p(Ψ) and q(Ψ) for an equilibrium solution. We can then
eliminate the term gg′ in Eqs. (4.8) and (5.53) using Eq. (5.35),

gg′ =
[
(2π)2Ψ′q

V ′ 〈R−2〉

] [
(2π)2Ψ′q

V ′ 〈R−2〉

]
ψ

. (5.54)

Since this involves two ψ derivatives acting on the poloidal flux function Ψ,
direct substitution into Eq. (5.53) or (4.8) does not lead to an elliptic equa-
tion of standard form. Instead, we can use the surface average of R−2 times
Eq. (5.53), with the gg′ eliminated using Eq. (5.54),

Ψ′
[
Ψ′
〈
|∇ψ|2

R2

〉
V ′
]
ψ

= −µ0V
′p′ − (2π)4Ψ′q

[
Ψ′q

V ′ 〈R−2〉

]
ψ

, (5.55)

to eliminate Ψ′′ from Eq. (5.54). Insertion into Eq. (4.8) or (5.53) then yields
the desired form of the Grad–Shafranov equation with the q-profile held fixed,(

∆∗ −A
∂

∂ψ

)
Ψ = −Bµ0

dp

dΨ
. (5.56)

Here,

A =
(2π)4

D

[
q

V ′ 〈R−2〉

]3 [〈 |∇ψ|2
R2

〉〈
R−2

〉 V ′
q

]
ψ

, (5.57)

B =
1
D

[
R2

〈
|∇ψ|2

R2

〉
+

(2π)4

〈R−2〉

( q

V ′

)2
(
R2 − 1

〈R−2〉

)]
, (5.58)

D =
[〈
|∇ψ|2

R2

〉
+

(2π)4

〈R−2〉

( q

V ′

)2
]
. (5.59)
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Note that these expressions depend on q and V ′ only through the combination
q/V ′ and are thus well behaved in the vicinity of a magnetic separatrix where
q →∞ and V ′ →∞, but the ratio q/V ′ remains finite [104, 105]. Numerical
codes using finite differences to solve this form of the equation using iteration
methods have been developed [103].

5.5.2 J-Solver

Another function that is sometimes specified is the surface-averaged par-
allel current density, J‖, defined in Eq. (5.36). This is useful in characterizing
the stationary state of a resistive plasma in which the magnetic field is time-
independent. It follows from Eq. (1.56) that the electric field can be written
in the form

E = −∇ΦP +
VL
2π
∇φ = −u×B + ηJ. (5.60)

Here, ΦP is a single-valued electrical potential and the term involving ∇φ is
then needed to represent the most general axisymmetric curl-free electric field.
We have introduced the constant VL, which will be seen to be the loop voltage
the long way around the torus.

It follows from taking the dot product of Eq. (5.60) with the magnetic field
vector B and then surface averaging that the surface average parallel current
in a stationary state is related to the plasma parallel resistivity profile η‖ and
the loop voltage by the relation

J‖(ψ) ≡ 〈J ·B〉
〈B · ∇φ〉

=
VL

2πη‖(ψ)
. (5.61)

Since η‖ is related to the plasma temperature in a known way, for example
by Eq. (1.44), and the temperature can be measured accurately, this gives
a powerful constraint on the current profile in a steady-state axisymmetric
fusion device.

As in the discussion of the q-solver option above, Eq. (5.36) is not in a
form to be solved directly to eliminate the g function that appears in the
Grad–Shafranov equation because of the term involving Ψ′′. We again use the
surface average of R−2 times Eq. (5.53) to eliminate this term in order to
obtain the following relation involving the function G(ψ) ≡ 1

2g
2,

[
µ0J‖

〈
R−2

〉
Ψ′ + µ0p

′]G +
〈
R−2

〉
GG′ +

1
2
Ψ′2

〈
|∇ψ|2

R2

〉
G′ = 0. (5.62)

We finite difference and let Gj = G(ψj) with ψj = jδψ and evaluate the
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following two coefficients at the half-integer grid points

aj+1/2 = δψ ×

[
µ0J‖(ψ)

〈
R−2

〉
Ψ′ + µ0p

′

〈R−2〉

]
j+1/2

,

bj+1/2 =

Ψ′2
〈
|∇ψ|2
R2

〉
〈R−2〉


j+1/2

.

By using centered differences and averaging appropriately, we can determine
Gj from the following quadratic equation once Gj+1 and the metric terms
aj+1/2 and bj+1/2 are known,

G2
j − (a− b)j+1/2Gj −

[
G2
j+1 + (a+ b)j+1/2Gj+1

]
= 0. (5.63)

This is used to integrate G inward from the plasma boundary to the magnetic
axis. Differentiating G then gives the function gg′ that appears in Eq. (4.8)
or (5.53).

5.5.3 Expansion Solution

We can obtain an asymptotic analytic solution to the inverse equilibrium
equation, Eq. (5.53), by performing an expansion in the inverse aspect ratio
a/R0 [106]. We introduce an expansion tag ε which does not have a value but
merely indicates the order in the inverse aspect ratio expansion. We look for a
solution with circular cross section with low β ordered such that µ0p/B

2 ∼ ε2.
It is convenient to prescribe the form of the Jacobian (which is ordered ε0) as

J = R (RθZψ −RψZθ) =
a2
0

2R0
R2. (5.64)

This is consistent with R(ψ, θ) and Z(ψ, θ) being parameterized as

R(ψ, θ) = R0 + εa0

√
ψ cos θ − ε2∆ + ε2ψ

(
∆ψ +

a2
0

2R0

)
[cos 2θ − 1] + · · · ,

Z(ψ, θ) = −εa0

√
ψ sin θ − ε2ψ

(
∆ψ +

a2
0

2R0

)
sin 2θ + · · · . (5.65)

Here the magnetic axis shift, ∆(ψ), is a function yet to be determined. Pre-
scribing R(ψ, θ) and Z(ψ, θ) of this form is consistent with the prescribed form
of the Jacobian in Eq. (5.64) to order ε2. We can now compute the metric el-
ements needed to evaluate Eq. (5.53). Direct computation yields, to lowest
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order,

|∇ψ|2 J
R2

=
1
J

(
R2
θ + Z2

θ

)
=

2ψ
R0

ε2
(

1 +
4ε
a0

√
ψ∆ψ cos θ

)
,

∇θ · ∇ψ J

R2
=

−1
J

(RθRψ + ZθZψ) =
−4ε3

R0a0

√
ψ sin θ

[
(ψ∆ψ)ψ +

a2
0

4R0

]
,

R2 = R2
0

(
1 + 2

εa0

R0

√
ψ cos θ

)
.

We now specify the functional forms of the pressure and the current density:

p(ψ) = ε2
1
2
β0(1− ψ),

Ψ′(ψ) =
1
2
a2
0

q0
.

The equilibrium equation, Eq. (5.53), then gives, to the first two orders,

g(ψ) = R0

[
1 + ε2g(2)(ψ)

]
,

g(2)(ψ) =
a2
0

q20R
2
0

(1− βθ)(1− ψ), (5.66)

∆(ψ) = −
(
a2
0/8R

)
(1 + 4βθ) (1− ψ). (5.67)

Here, the poloidal beta is defined as

βθ = q20R
2
0µ0β0/2a2

0.

Equation (5.66) illustrates that a tokamak plasma switches from being param-
agnetic (g(2) > 0) to being diamagnetic (g(2) < 0) when βθ > 1. The result in
Eq. (5.67) is known as the Shafranov shift [72] of the magnetic axis. These re-
lations provide a useful check on numerical solutions to the inverse equilibrium
equation.

5.5.4 Grad–Hirshman Variational Equilibrium

Here we demonstrate the usefulness of a variational form for calculating
axisymmetric inverse equilibrium. Recall the Grad–Hirshman variational prin-
ciple from Section 4.5 in which we define the Lagrangian functional:

L =
∫
V

dτ

[
B2
P

2µ0
− B2

T

2µ0
− p(Ψ)

]
.

Here, the integral is over the plasma volume and from Eq. (5.24), the square
of the poloidal and toroidal magnetic fields are given by B2

P = |∇Ψ|2/R2, and
B2
T = g2(Ψ)/R2. The functional L is stationary with respect to variations



Magnetic Flux Coordinates in a Torus 141

of Ψ (with δΨ = 0 on the boundary) for Ψ satisfying the Grad–Shafranov
equation. This variational statement is coordinate system independent, so we
can use it to compute inverse equilibrium. We introduce the normalized flux
coordinate ψ which is constrained to be 0 at the magnetic axis and 1 at the
plasma boundary. Upon making the coordinate transformation

(R,φ, Z) → (ψ, θ, φ)

the action integral becomes

L =
∫ 1

0

dψ

∫ 2π

0

dθJ

[
Ψ′2 (R2

θ + Z2
θ )

2J2
− g2(Ψ)

2R2
− µ0p(Ψ)

]
, (5.68)

where J is defined by Eq. (5.19).
The variational statement now is that δL as defined by Eq. (5.68) is sta-

tionary with respect to variations of the dependent variables R(ψ, θ), Z(ψ, θ),
and Ψ(ψ) for those functions satisfying the inverse equilibrium equation,
Eq. (5.53). It can be verified by direct, although lengthy, calculation that
the Ψ, R, and Z variations of the functional L in Eq. (5.68) yield

δL =
∫ 1

0

dψδΨ
∫ 2π

0

dθJG, (5.69)

δL =
∫ 1

0

dψ

∫ 2π

0

dθRZθGδR, (5.70)

δL = −
∫ 1

0

dψ

∫ 2π

0

dθRRθGδZ, (5.71)

respectively, where

G =
Ψ′

J

{
∂

∂ψ

[
R2
θ + Z2

θ

J
Ψ′
]
− ∂

∂θ

[
RθRψ + ZθZψ

J

]
Ψ′
}

+ µ0p
′ +

1
R2

gg′.

(5.72)

Since δR, δZ, δΨ are arbitrary, the fact that δL must vanish for each of the
variations in Eq. (5.68) implies that G = 0.

A technique has been developed [86] that makes use of the variational state-
ment of the inverse equilibrium problem by expanding R(ψ, θ) and Z(ψ, θ) in
a truncated set of basis functions, and determining the amplitudes in this ex-
pansion by the appropriate Euler-Lagrange equations. Many different choices
for the basis functions are possible. Efficiency dictates that a small number of
terms be able to adequately approximate shapes of interest. The basis func-
tions should be nearly orthogonal (or linearly independent) so that two or
more parameters do not have nearly the same effect on the shape of the sur-
faces. The representation should be compatible with the singularity at the
origin so that the basis functions remain regular there.
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For up-down symmetric configurations, a good representation in light of
these considerations is given by

R(ψ, θ) = R0
A(ψ) +

√
ψTE(ψ) cos(θ) +

M∑
m=2

ψ
m
2 −1RmA (ψ) cosmθ,

Z(ψ, θ) =
√
ψTE−1(ψ) sin(θ) +

M∑
m=2

ψ
m
2 −1RmA (ψ) sinmθ. (5.73)

Here, the area of the ψ contour is seen to be πTψ, where T is a normalization
constant that can be fixed. In this way, the remaining spectral amplitudes
will vary the shape of a constant-ψ curve of fixed area. The basis functions
R0
A(ψ), E(ψ), and RmA (ψ) are defined such that they will each be linear in ψ

near ψ = 0. We can identify R0
A with the axis shift, E−2 with the ellipticity,

R2
A with the triangularity of the surface, R3

A with the squareness, and so on.
In the representation of Eq. (5.73) the poloidal angle θ and the Jacobian are
implicitly defined.

Substituting these expansions into the action integral, Eq. (5.68), and per-
forming the variation, we obtain an Euler equation for each harmonic ampli-
tude. First, consider the Ψ variation. This just gives

∂L

∂Ψ
− d

dψ

∂L

∂Ψ′ = 0,

or, from Eq. (5.69),

〈G〉 = 0, (5.74)

where the flux surface average is defined in Eq. (5.30). Next, consider the E
variation,

∂L

∂E
− d

dψ

∂L

∂Eψ
= 0.

Since L depends on E only through R and Z, and on Eψ only through Rψ
and Zψ, this is equivalent to

∂R

∂E

[
∂L

∂R
− d

dψ

∂L

∂Rψ

]
+
∂Z

∂E

[
∂L

∂Z
− d

dψ

∂L

∂Zψ

]
= 0,

or, from Eqs. (5.70) and (5.71),〈(
cos θZθ + E−2 sin θRθ

) RG
J

〉
= 0. (5.75)

By a similar argument, the variation with respect to the RmA gives〈
(− cosmθZθ + sinmθRθ)

RG

J

〉
= 0. (5.76)
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Suppose that we wish to use this method to solve a problem in which the
shape of the outermost flux surface is fixed. This corresponds to prescribing
E(1) and RmA (1) as well as the free functions p(Ψ) and g(Ψ). We denote by
S(ψ) the geometry vector defined as the (M + 1) component vector,

S(ψ) =
[
E(ψ), R0

A(ψ), R2
A(ψ), · · ·RmA (ψ)

]
.

Since the second-derivative terms only appear linearly in Eqs. (5.75) and
(5.76), they can be written symbolically as

A(S,Sψ, ψ) · Sψψ + D(S,Sψ, ψ) = 0. (5.77)

Here we have introduced the (M + 1) × (M + 1) matrix A and the (M + 1)
component vector D. Equation (5.77) is a system of (M + 1) second-order
ordinary differential equations (ODEs) which requires 2(M + 1) boundary
conditions. Half of these are specified at the boundary ψ = 1 by specifying the
shape of the boundary surface, and half are specified as regularity conditions
at the origin. This is solved by a quasi-linearization iteration, each step of
which is a boundary value problem. At the kth iteration, we want next to
approximate

A · Sk+1
ψψ + Dk+1 = 0. (5.78)

To linearize, we compute algebraically the derivatives ∂Di/∂Sj and ∂Di/∂Sψj .
The vector D is Taylor expanded about its value at iteration k,

Dk+1 ≈ Dk +
∂D
∂S

·
(
Sk+1 − Sk

)
+
∂D
∂Sψ

·
(
Sk+1
ψ − Skψ

)
.

Insertion into Eq. (5.78) gives

A · Sk+1
ψψ +

∂D
∂S

· Sk+1 +
∂D
∂Sψ

· Sk+1
ψ + D̃k = 0. (5.79)

Here we have defined

D̃k = Dk − ∂D
∂S

· Sk − ∂D
∂Sψ

· Skψ.

Equation (5.79) is now linear in the unknown. We finite difference in ψ to
obtain the block-tridiagonal system

aj · Sj+1 − bj · Sj + cj · Sj−1 + dj = 0. (5.80)

Here, the coefficient blocks are defined as

aj =
1

(∆ψ)2
Ak
j +

1
(2∆ψ)

∂D
∂Sψ

∣∣∣∣
j

,

bj =
2

(∆ψ)2
Ak
j ,

cj =
1

(∆ψ)2
Ak
j −

1
(2∆ψ)

∂D
∂Sψ

∣∣∣∣
j

,

dj = D̃k.
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Equation (5.80) is solved using the standard block-tridiagonal techniques in-
troduced in Section 3.3.3. The regularity conditions at the origin are enforced
by noting that at the origin, the following asymptotic forms are valid:

E = E1ψ + · · · ,
R0
A = R0

0 +R0
1ψ + · · · ,

RmA = Rm1 ψ + · · · ,
Ψ = Ψ0 + Ψ1ψ + Ψ2ψ

2 + · · · . (5.81)

Substituting these forms into Eqs. (5.74), (5.75), and (5.76) gives, after con-
siderable algebra, the relations:

R0
1 =

−T
2R0

0

(
E2

0 + 3E−2
0

) [1− p′0E
2
0(R0

0)
2T

Ψ1

]
,

E1 =
1

1 + E−4
0

[
T

6E0(R0
0)2

− E0T
2p′0

24Ψ1
+

2(R0
1)

2

TE5
0

+
R0

1

6E0R0

(
E2

0 + 4E−2
0

)
− Ψ2

3Ψ1

(
E0 − E−3

0

)]
,

Ψ1 =
−T

2
(
E2

0 + E−2
0

) [(gg′)0 + (R0
0)

2p′0
]
.

Here, we have defined

(gg′)0 ≡ g
dg

dΨ

∣∣∣∣
Ψ=Ψ0

, p′0 ≡
dp

dΨ

∣∣∣∣
Ψ=Ψ0

.

5.5.5 Steepest Descent Method

Another method for calculating inverse equilibrium is based on minimizing
the energy functional W defined in Eq. (4.41) while maintaining the ideal
MHD constraints [107]. It was shown in Section 5.4.1 that if θ∗ is a straight
field line poloidal angle, we can write an axisymmetric equilibrium magnetic
field as

B = ∇φ×∇Ψ +∇H ×∇θ∗. (5.82)

Here, 2πΨ(ψ) is the poloidal magnetic flux, 2πH is the toroidal magnetic flux,
and q(ψ) ≡ H ′/Ψ′ is the safety factor as defined in Eq. (5.35). A parameter
λ(ψ, θ) is introduced to allow flexibility in the angular expansion so that the
straight field line coordinate θ∗ is related to the expansion angle θ by

θ∗ = θ + λ(ψ, θ).

The parameter λ will be determined by the condition that the Jacobian in
the (ψ, θ∗, φ) coordinate system be proportional to R2. If the Jacobian in the
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(ψ, θ, φ) coordinate system is J ≡ [∇ψ×∇θ ·∇φ]−1, then we have the defining
relation

λ(ψ, θ) =
∫ θ

0

[
α(ψ)J
R2

− 1
]
dθ, α(ψ) ≡ 1

2π

∫ 2π

0

J

R2
dθ. (5.83)

This form for the magnetic field manifestly conserves the magnetic flux profiles
Ψ′ and Φ′. It is shown in [95] that the adiabatic conservation of mass between
neighboring flux surfaces can be enforced by expressing the pressure as p(ψ) =
M(ψ) [V ′]γ . Here V ′, defined in Eq. (5.29), is the surface differential volume
element, γ is the adiabatic index (γ = 5/3 for an ideal gas or plasma), and
the mass function, M(ψ) is held fixed during the variation.

To perform the variation of W , we suppose that the cylindrical coordinates
R(ψ, θ) and Z(ψ, θ) depend on an artificial time parameter t. Then, for any
scalar function S(R,Z), we have

∂S

∂t
=
∂S

∂R
Ṙ+

∂S

∂Z
Ż.

We can therefore compute the time derivative of W , holding Ψ′(ψ), Φ′(ψ),
and M(ψ) fixed, and holding the boundary shape fixed, from the relation

dW

dt
= −

∫ ψmax

0

dψ

∫ 2π

0

dθ
(
FRṘ+ FZŻ

)
, (5.84)

where FR = RZθG, FZ = −RRθG, with G given by Eq. (5.72).
A solution technique has been implemented whereby the functions R(ψ, θ)

and Z(ψ, θ) are represented by Fourier series in the angle θ,

R(ψ, θ) =
∑
m

[Rmc (ψ) cosmθ +Rms (ψ) sinmθ] ,

Z(ψ, θ) =
∑
m

[Zmc (ψ) cosmθ + Zms (ψ) sinmθ] . (5.85)

Substitution into Eq. (5.84) gives

dW

dt
= −

∫ ψmax

0

(
FmcR Ṙmc + FmsR Ṙms + FmcZ

˙Zmc + FmsZ
˙Zms
)
V ′dψ, (5.86)

where we have defined

FmcR =
1
V ′

∫ 2π

0

FR cosmθdθ, FmsR =
1
V ′

∫ 2π

0

FR sinmθdθ, (5.87)

and similarly for FmcZ and FmsZ .
Since W is bounded from below due to flux and mass conservation and

is positive definite, the equilibrium corresponds to a minimum energy state.
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Thus, by finding the path along which Ẇ decreases monotonically, an equilib-
rium will eventually be reached. Such a path is defined by the steepest descent
path

∂Rmc
∂t

= FmcR ,
∂Rms
∂t

= FmsR (5.88)

again, with similar equations for Zmc and Zms . Substitution into Eq. (5.86)
gives for the rate of decrease in W along this descent path

dW

dt
= −

∫ ψmax

0

(
|FmcR |2 + |FmsR |2 + |FmcZ |2 + |FmsZ |2

)
V ′dψ. (5.89)

Equations (5.88) and (5.89), together with the prescription for renormal-
izing the poloidal angle, Eq. (5.83), provide a prescription for relaxing W to
its minimum energy state, but for the same reasons given in the discussion of
Jacobi relaxation in Section 3.5.1, since the Fmc,sR,Z correspond to second-order
differential operators, explicit time differencing leads to a prohibitively slow
algorithm. The convergence can be greatly accelerated by converting them to
damped hyperbolic equations. For example, we replace the Ṙmc equation in
Eq. (5.88) by

∂2Rmc
∂t2

+
1
τ

∂Rmc
∂t

= FmcR , (5.90)

and similarly for Rms , Zmc , and Zms . This is essentially the dynamic relaxation
method introduced in Section 3.5.2. Here the parameter τ has little effect
on numerical stability and should be chosen to critically damp the slowest
mode. Here we note that by multiplying Eq. (5.90) by V ′Ṙmc , inserting into
Eq. (5.86), and doing the same for the other Fourier coefficients Rms , Zmc , and
Zms , we obtain a descent equation corresponding to a second-order method,

d

dt
(WK +W ) = −2

τ
WK , (5.91)

where

WK =
1
2

∫ ψmax

0

(
|Ṙmc |2 + |Żmc |2 + |Ṙms |2 + |Żms |2

)
V ′dψ

is the kinetic energy in the system.
Boundary conditions must be supplied for the Rmc , Rms , Zmc , and Zms at

the origin (ψ = 0) and at the boundary, where they prescribe the shape of the
last closed flux surface. At the origin, the requirement that these functions
remain analytic gives the condition that for m > 0 they each vanish, and for
m = 0 their derivatives with respect to ψ should have the same asymptotic
behavior near ψ = 0 as does V ′(ψ) [107].
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5.6 Summary

Many stability and transport calculations are greatly facilitated by the use
of coordinates aligned with the magnetic field. For toroidal confinement con-
figurations where the magnetic field lines form surfaces, these surfaces can be
used to construct coordinates. If the geometry is axisymmetric, or close to it,
there are many advantages to using axisymmetric magnetic coordinates where
the toroidal angle φ is unchanged from the angle in cylindrical coordinates.
The poloidal angle θ can be chosen by specifying the form of the Jacobian. It
is often required to solve the equilibrium equation in the flux coordinate sys-
tem. The quantities to be determined are the cylindrical coordinates in terms
of the flux coordinates, R(ψ, θ) and Z(ψ, θ). There are many approaches to
solving for these quantities. The use of flux coordinates makes it convenient
to specify surface functions as one of the free functions in the Grad–Shafranov
equation.

Problems

5.1: Show that by applying Ampere’s law to a closed constant-ψ contour, you
will get the same result for the current interior to the contour as you would
by integrating Eq. (5.34) over the contour area.

5.2: A constant ψ magnetic surface has a local normal vector n̂ = (nR, nZ)
and a local tangent vector t̂. Let α be the angle that the tangent vector makes
with the horizontal. Then the curvature, κ, of the boundary curve is defined
as the rate of change of the angle α with respect to the arc length s,

κ =
dα

ds
.

Let R(ψ, θ) and Z(ψ, θ) be cylindrical coordinates:
(a) Show that the local curvature is given by:

κ =
RθZθθ − ZθRθθ

(R2
θ + Z2

θ )
3/2

,

where subscripts on R and Z denote partial differentiation.
(b) Show that an equivalent expression for the curvature is given by:

κ =
n2
ZψRR + n2

RψZZ − 2nRnZψRZ
|∇ψ|

,

where subscripts on ψ again denote partial differentiation.
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5.3: Christoffel symbols arise from differentiating the basis vectors and project-
ing the results back onto the original basis. The first two Christoffel symbols
are defined by:

∂

∂ψ
∇ψ = Γ1

11∇ψ + Γ2
11∇θ.

(a) Show that

Γ1
11 =

R

J
(RψψZθ − ZψψRθ) .

(b) Calculate Γ2
11.

5.4: Use the methods in Section 5.2.3 to calculate formulas for curl, div, and
grad in the standard spherical coordinate system (r, θ, φ).

5.5: Starting from the first line in Eq. (5.43), derive the next two lines using
relations in this chapter.

5.6: Derive the q-solver form of the equilibrium equation, Eq. (5.56).

5.7: Derive the expression given in Eq. (5.62) that the function G obeys in
the J-solver form of the equilibrium equation.

5.8: Helical Grad–Shafranov equation. Let (r, θ, z) be a standard cylindrical
coordinate system. Define a new helical coordinate, τ ≡ θ + εz, where ε is a
constant, and work in the (r, τ, z) non-orthogonal coordinate system. Assume
helical symmetry so that all scalar quantities are functions only of r and τ .
(a) Show that the most general expression for the magnetic field B, a vector
field that satisfies ∇ ·B = 0 and B · ∇Ψ(r, τ) = 0, is

B = ∇z ×∇Ψ + F (r, τ)∇r ×∇τ,

where F (r, τ) is an arbitrary function.
(b) Show that in equilibrium, when J×B−∇p = 0, where J = µ−1

0 ∇×B is
the current density, F and and scalar pressure p must satisfy

F = rg2

[
f(Ψ) + εr

∂Ψ
∂r

]
,

p = p(ψ),

where g ≡
(
1 + ε2r2

)−1/2 and f(Ψ) and p(Ψ) are functions only of Ψ.
(c) Derive the helical Grad–Shafranov equation [108, 109]:

1
r

∂

∂r

(
g2r

∂Ψ
∂r

)
+

1
r2
∂2Ψ
∂τ2

− 2εfg4 + g2ff ′ + µ0p
′ = 0.



Chapter 6

Diffusion and Transport in
Axisymmetric Geometry

6.1 Introduction

In this chapter we consider the time evolution of magnetically confined
plasmas over time scales that are very long compared to the Alfvén transit
time, and are thus characterized by resistive diffusion and particle and heat
transport. This will lead into and provide motivation for a discussion of finite
difference methods for parabolic equations in Chapter 7. Because the electron
and ion heat fluxes qe and qi are extremely anisotropic in a highly magnetized
plasma, it becomes essential to work in a coordinate system that is aligned
with the magnetic field. The derivation of an appropriate set of transport
equations to deal with this is presented in Section 6.2 and its subsections.
These transport equations need to be supplemented by an equilibrium con-
straint obtained by solving a particular form of the equilibrium equation as
described in Section 6.3. Together, this system of equations provides an accu-
rate description of the long time scale evolution of a MHD stable plasma.

6.2 Basic Equations and Orderings

Here we consider the scalar pressure two-fluid MHD equations of Sec-
tion 1.2.1, which for our purposes can be written:

nmi

(
∂u
∂t

+ u · ∇u
)

+∇p = J×B, (6.1)

∂n

∂t
+∇ · (nu) = Sn, (6.2)

∂B
∂t

= −∇×E, (6.3)

149
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E + u×B = R, (6.4)

3
2
∂p

∂t
+∇ ·

[
q +

3
2
pu
]

= −p∇ · u + J ·R + Se, (6.5)

3
2
∂pe
∂t

+∇ ·
[
qe +

3
2
peu
]

= −pe∇ · u + J ·R +Q∆ei + See. (6.6)

We have denoted by R the inhomogeneous term in the generalized Ohm’s
law, Eq. (6.4), by q = qi + qe the random heat flux vector due to ions and
electrons, by Q∆ei the electron-ion equipartition term, and by Sn and Se =
Sei + See sources of particles and energy. Note that in comparing Eq. (6.4)
with Eq. (1.32), we have the relation

R =
1
ne

[Re + J×B−∇pe −∇ · πe]. (6.7)

We are also neglecting (assumed small) terms involving the ion and electron
stress tensors πe, πi, and the heating due to ∇Te · J.

We now apply a resistive time scale ordering [110, 111, 112] to these equa-
tions to isolate the long time scale behavior. This consists of ordering all the
source and transport terms to be the order of the inverse magnetic Lundquist
number, Eq. (1.59), S−1 = ε � 1, where ε is now some small dimensionless
measure of the dissipation. Thus

η ∼ R ∼ Sn ∼ Se ∼ q ∼ ε� 1. (6.8)

We look for solutions in which all time derivatives and velocities are also small,
of order ε ,

∂

∂t
∼ u ∼ ε� 1, (6.9)

as is the electric field, E ∼ ε.
Applying this ordering to Eqs. (6.1)–(6.6), we find that the last five equa-

tions remain unchanged, merely picking up the factor ε in every term, which
can then be canceled. However, the momentum equation, Eq. (6.1), does
change, with a factor of ε2 multiplying only the inertial terms,

ε2nmi

(
∂u
∂t

+ u · ∇u
)

+∇p = J×B. (6.10)

Thus in the limit ε → 0 we can neglect the inertial terms, replacing the
momentum equation with the equilibrium condition

∇p = J×B. (6.11)
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Equation (6.11) is correct to second order in ε, and provides significant simpli-
fications since replacing Eq. (6.10) by this removes all the wave propagation
characteristics from the system.

We note here that the system of equations given by Eqs. (6.11) and (6.2)
through (6.6) involve the plasma velocity u, but there is no longer a time
advancement equation for u. We will derive a method to solve this system
asymptotically in spite of this apparent difficulty. We restrict consideration
here to axisymmetric geometry. The most general form for an axisymmetric
magnetic field consistent with Eq. (6.11) was shown in Section 4.2 to be given
by

B = ∇φ×∇Ψ + g(Ψ)∇φ. (6.12)

Let us first consider the poloidal part of the magnetic field evolution equa-
tion, Eq. (6.3). Insertion of Eq. (6.12) into Eq. (6.3) and taking the (R̂, Ẑ)
projections gives an equation to evolve the poloidal flux function

∂Ψ
∂t

= R2E · ∇φ+ C(t). (6.13)

The integration constant C(t) can be set to zero by adopting the convention
that Ψ be proportional to the actual poloidal flux that must vanish at R = 0.
Setting C(t) = 0 and using Eq. (6.4) to eliminate the electric field, we have

∂Ψ
∂t

+ u · ∇Ψ = R2∇φ ·R. (6.14)

(Note that the symbol R is being used to represent the cylindrical coordi-
nate, while R, defined in Eq. (6.7), is the vector inhomogeneous term in the
generalized Ohm’s law.) The ∇φ projection of Eq. (6.3) gives

∂g

∂t
= R2∇ · [∇φ×E],

or, upon substituting from Eq. (6.4),

∂g

∂t
+R2∇ ·

[ g
R2

u− (∇φ · u)∇φ×∇Ψ−∇φ×R
]

= 0. (6.15)

The system of time evolution equations that we are solving is thus reduced
to the five scalar equations (6.2), (6.5), (6.6), (6.14), and (6.15) as well as the
equilibrium equation (6.11).

6.2.1 Time-Dependent Coordinate Transformation

We adopt here the axisymmetric magnetic flux coordinate system devel-
oped in Chapter 5. Since the magnetic field and flux surfaces evolve and
change in time, the coordinate transformation being considered will be a time-
dependent one. At any given time we have the flux coordinates (ψ, θ, φ) and
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θ = const.

ψ = const.

Cu

FIGURE 6.1: uC is the velocity of a fluid element with a given ψ,θ value
relative to a fixed Cartesian frame.

the inverse representation x(ψ, θ, φ), where x are Cartesian coordinates. We
define the coordinate velocity at a particular (ψ, θ, φ) location as the time rate
of change of the Cartesian coordinate at a fixed value of the flux coordinate
as shown in Figure 6.1,

uC =
∂x
∂t

∣∣∣∣
ψ,θ,φ

. (6.16)

Consider now a scalar function, α, that may be thought of either as a
function of Cartesian coordinates and time, α(x, t), or of flux coordinates and
time, α(ψ, θ, φ, t). Time derivatives at a fixed spatial location x and at fixed
coordinates (ψ, θ, φ) are related by the chain rule of partial differentiation,

∂α

∂t

∣∣∣∣
ψ,θ,φ

=
∂α

∂t

∣∣∣∣
x

+
∂α

∂x
· ∂x
∂t

∣∣∣∣
ψ,θ,φ

.

Using Eq. (6.16), we therefore have the relation

∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
ψ,θ,φ

− uC · ∇. (6.17)

We will also make use of the relation for the time derivative of the Jacobian,
defined in Eqs. (5.1) and (5.19),

∂J

∂t

∣∣∣∣
ψ,θ,φ

= J∇ · uC . (6.18)

This may be verified directly.
With the introduction of the coordinate velocity in Eq. (6.16), it follows
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that the fluid velocity appearing in the MHD equations can be thought of as
consisting of two parts,

u = uC + uR, (6.19)

where uC is the coordinate velocity already discussed, and uR is the velocity
of the fluid relative to the coordinates. Since the total velocity u is a physical
quantity which must be determined by the MHD equations, constraining either
uC or uR to be of a particular form will determine the other.

The two parts of the velocity field can be thought of as a Lagrangian part
and an Eulerian part. If the total velocity were represented with uC only
and there were no dissipation, the coordinates would be frozen into the fluid
as it moves and distorts. If the total velocity were represented with uR, the
coordinates would be fixed in space, and the fluid would move through them.
We will see that an attractive choice is to split the velocity between these two
parts so that the coordinates can move just enough to stay flux coordinates,
but we allow the fluid to diffuse relative to them.

6.2.2 Evolution Equations in a Moving Frame

We now transform each of the scalar evolution equations, Eqs. (6.14),
(6.15), (6.2), (6.5), and (6.6), into the moving flux coordinate frame by using
the identities in Eqs. (6.17), (6.18), and (6.19). After some manipulations, we
obtain the scalar equations

∂Ψ
∂t

+ uR · ∇Ψ = R2∇φ ·R, (6.20)

∂

∂t

(
g
J

R2

)
+ J∇ ·

[ g
R2

uR − (∇φ · uR)∇φ×∇Ψ−∇φ×R
]

= 0, (6.21)

∂

∂t
(nJ) + J∇ · (nuR) = JSn, (6.22)

∂

∂t

(
p3/5J

)
+ J∇ ·

[
p3/5uR

]
+

2
5
Jp−2/5[∇ · q − J ·R− Se] = 0, (6.23)

∂

∂t

(
p3/5
e J

)
+ J∇ ·

[
p3/5
e uR

]
+

2
5
Jp−2/5

e [∇ · qe − J ·R−Q∆ei − See] = 0.

(6.24)

Here, and in what follows, the time derivatives are with ψ and θ held fixed,
and are thus in a moving flux coordinate frame. We note that the coordinate
velocity uC does not appear in Eqs. (6.20)–(6.23), but only the velocity of
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the fluid relative to the moving coordinate, uR = u − uC , is present. This is
because the equations are of conservation form, and thus valid in a moving
frame. We will use this fact to define a coordinate transformation in which
the velocity vanishes altogether.

We first derive a reduced set of equations by integrating Eqs. (6.21)–(6.24)
over the angle θ at fixed values of the coordinate ψ. This flux surface averaging
leads to a set of one-dimensional evolution equations that depend only on the
coordinate ψ and time t. Furthermore, by using the fact that g = g(ψ, t)
and p = p(ψ, t) from the equilibrium constraint, and that n ' n(ψ, t) and
pe ' pe(ψ, t) from the fact that the temperatures are nearly constant on
flux surfaces because the parallel conductivities are large compared to their
perpendicular values, we can obtain a closed set of equations that depend only
on these surface averages.

From Eqs. (5.8) and (5.11), and the definition of differential volume and
surface average in Eqs. (5.29) and (5.30), it follows that for any vector A, we
have the identity

2π
∫ 2π

0

J∇ ·Adθ =
∂

∂ψ
[V ′ 〈A · ∇ψ〉] .

Using this, the following set of equations are obtained by integrating
Eqs. (6.21)–(6.24) over the angle θ at fixed value of the flux coordinate ψ:

∂

∂t

[
gV ′

〈
R−2

〉]
+

∂

∂ψ

[
gV ′

〈
R−2uR · ∇ψ

〉
− V ′ 〈∇φ×R · ∇ψ〉

]
= 0, (6.25)

∂

∂t
[nV ′] +

∂

∂ψ
[nV ′ 〈∇ψ · uR〉] = V ′ 〈Sn〉 , (6.26)

∂

∂t

[
p

3
5V ′

]
+

∂

∂ψ

[
p

3
5V ′ 〈uR · ∇ψ〉

]
(6.27)

+
2
5
p−

2
5

[
∂

∂ψ
(V ′ 〈q · ∇ψ〉)− V ′ 〈J ·R〉 − V ′ 〈Se〉

]
= 0.

∂

∂t

[
p

3
5
e V

′
]

+
∂

∂ψ

[
p

3
5
e V

′ 〈uR · ∇ψ〉
]

(6.28)

+
2
5
p
− 2

5
e

[
∂

∂ψ
(V ′ 〈qe · ∇ψ〉)− V ′ (〈J ·R〉+ 〈Q∆ei〉+ 〈See〉)

]
= 0.

As discussed above, an important constraint that must be incorporated is
that the coordinates (ψ, θ, φ) remain flux coordinates as they evolve in time.
To this end, we require that in the moving frame, the flux function Ψ evolve
in time in such a way that the coordinate ψ remain a flux coordinate, i.e.,

∇φ×∇ψ · ∂Ψ
∂t

= 0. (6.29)
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From Eq. (6.20), this implies

∇Ψ · uR −R2R · ∇φ = f(ψ). (6.30)

Here f(ψ) is a presently undetermined function only of ψ. Equation (6.30)
puts an important constraint on the relative velocity uR and hence on the
coordinate velocity uC through Eq. (6.19), but it also leaves some freedom in
that we are free to prescribe the function f(ψ). This freedom will be used to
identify the flux coordinate ψ with a particular surface function.

The system of equations given by Eqs. (6.20), (6.25)–(6.28), and (6.30)
still depend upon the relative velocity uR · ∇ψ. This is determined up to
a function only of ψ by Eq. (6.30), which follows from the constraint that
constant Ψ surfaces align with constant ψ surfaces as they both evolve. We
thus have a freedom in the velocity decomposition that we can use to simplify
the problem. The remaining function of ψ is determined by specifying which
flux function ψ is. Three common choices are the following.

(i) Constant poloidal flux:

uR · ∇Ψ = R2∇φ ·R. (6.31)

(ii) Constant toroidal flux:

−g
〈
R−2uR · ∇ψ

〉
= 〈∇φ×∇ψ ·R〉 . (6.32)

(iii) Constant mass:

〈∇ψ · uR〉 = 0. (6.33)

Here, we choose number (ii), the toroidal magnetic flux, as it is most ap-
propriate for most magnetic fusion applications, particularly for describing
tokamaks. The toroidal field in the tokamak is primarily produced by the ex-
ternal field magnets, and is generally much stronger than the poloidal field.
This makes it the most immobile, and thus most suitable for use as a coordi-
nate. Also, unlike the poloidal magnetic flux, the toroidal flux at the magnetic
axis does not change in time, always remaining zero.

6.2.3 Evolution in Toroidal Flux Coordinates

By combining Eq. (6.32) and the constraint Eq. (6.30), we can eliminate
the free function f(ψ) and solve explicitly for the normal relative velocity.
This gives

f(ψ) = − 〈B ·R〉
〈B · ∇φ〉

,

which when inserted into Eq. (6.30) yields

uR · ∇ψ =
1
Ψ′

[
R2R · ∇φ− 〈B ·R〉

〈B · ∇φ〉

]
. (6.34)



156 Computational Methods in Plasma Physics

Using Eq. (6.34) to eliminate the relative velocity uR from the surface aver-
aged transport equations allows us to identify the flux coordinate ψ with the
toroidal magnetic flux inside a constant flux surface, Φ. This can be verified
by calculating directly from the definition of Φ in Eq. (5.31),

∂Φ
∂t

∣∣∣∣
ψ

=
1
2π

∫ ψ

0

[
gV ′

〈
R−2

〉]
t
dψ = 0,

where we used Eqs. (6.25) and (6.34). It is seen that the use of Eq. (6.34)
causes Φ and ψ to be stationary with respect to each other, and we may
therefore adopt Φ as the flux surface label. Equation (6.25) need no longer be
solved as it is intrinsically satisfied by our adoption of Φ as the flux coordinate.
Since ψ and Φ are the same, we obtain a useful identity, valid for toroidal flux
coordinates, by differentiating each side of Eq. (5.31) by ψ ≡ Φ,

V ′ =
2π

g 〈R−2〉
. (6.35)

Using Eq. (6.34) to eliminate the relative velocity from Eqs. (6.20), (6.26),
(6.27), and (6.28) then yields the surface-averaged transport equations relative
to surfaces of constant toroidal flux. In deriving Eqs. (6.46) and (6.47) that
follow, we make use of the equilibrium conditions in Eqs. (4.4)–(4.8) to express
the equilibrium current density as

J = −R2 dp

dΨ
∇φ− 1

µ0

dg

dΨ
B.

We also use Eq. (6.34) and the surface average of the inverse equilibrium
equation, Eq. (5.53), to obtain the intermediate result

V ′ 〈J ·R〉 = −p′V ′ 〈uR · ∇Φ〉+
〈B ·R〉
〈B · ∇φ〉

d

dΦ

[
V ′

2πµ0q

〈
|∇Φ|2

R2

〉]
. (6.36)

To express the final form of the surface-averaged transport equations, we
first define the rotational transform

ι ≡ 1
q

= 2π
dΨ
dΦ

, (6.37)

the loop voltage

VL ≡ 2π
〈B ·R〉
〈B · ∇φ〉

, (6.38)

the differential particle number, or number of particles in the differential vol-
ume between surfaces Φ and Φ + dΦ,

N ′ ≡ nV ′, (6.39)
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the particle flux

Γ ≡ 2πqn
[〈
R2R · ∇φ

〉
− 〈B ·R〉
〈B · ∇φ〉

]
, (6.40)

the differential total and electron entropy densities

σ = pV ′
5
3 , σe = peV

′ 53 , (6.41)

the surface integrated current density

K ≡ V ′

(2π)2µ0q

〈
|∇Φ|2

R2

〉
, (6.42)

and the electron and ion heat fluxes

Qe ≡ V ′
[
〈qe · ∇Φ〉+

5
2
pe
n

Γ
]
,

Qi ≡ V ′
[
〈qi · ∇Φ〉+

5
2
pi
n

Γ
]
. (6.43)

With these definitions, the basic transport equations take on the compact
form:

∂Ψ
∂t

=
1
2π
VL, (6.44)

∂N ′

∂t
+

∂

∂Φ
V ′Γ = V ′ 〈Sn〉 , (6.45)

3
2
(V ′)−

2
3
∂σ

∂t
+

∂

∂Φ
(Qe +Qi) = VL

∂K

∂Φ
+ V ′ 〈Se〉 , (6.46)

3
2
(V ′)−

2
3
∂σe
∂t

+
∂Qe
∂Φ

+ V ′
(

Γ
n

∂pi
∂Φ

−Q∆ei

)
= VL

∂K

∂Φ
+ V ′ 〈See〉 . (6.47)

By differentiating Eq. (6.44) with respect to the toroidal flux Φ, we obtain
an evolution equation for the rotational transform, defined in Eq. (6.37),

∂ι

∂t
=

∂

∂Φ
VL. (6.48)

In a similar manner, we can obtain an evolution equation for the toroidal
angular momentum density, Ω(Φ) = miN

′ 〈R2
〉
ω(Φ), where ω is the toroidal

angular velocity as defined in Eq. (4.11):

∂Ω
∂t

+
∂

∂Φ
V ′ΓΩ = V ′ 〈SΩ〉 . (6.49)
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The physical reason we were able to eliminate the fluid velocity entirely
from the system of transport equations derived here is that transport coeffi-
cients only determine the relative transport of the magnetic field and plasma
densities and energies with respect to one another. We cast these equations
in a frame moving with the toroidal magnetic flux, and so only the relative
motion remains. The absolute motion of the toroidal magnetic surfaces is de-
termined by the equilibrium constraint and the interaction with externally
applied magnetic fields. This is addressed in Section 6.3.

6.2.4 Specifying a Transport Model

Specifying a transport model consists of providing the transport fluxes, Γ,
〈qi · ∇Φ〉, 〈qe · ∇Φ〉, VL, and ΓΩ and the equipartition term Q∆ei as functions
of the thermodynamic and magnetic field variables and the metric quantities.
Also required are the source functions for mass, energy, electron energy, and
angular momentum, 〈Sn〉, 〈Se〉,〈See〉,〈SΩ〉. The radiative loss function 〈SRAD〉
must be subtracted from the energy and electron energy source functions.

At a given time, when the geometry is fixed, the plasma pressures, densi-
ties, and toroidal angular velocities are obtained from the adiabatic variables
through the relations, valid for a two-component plasma with charge Z = 1
and with ne = ni = n,

pe(Φ) = σe/V
′5/3,

pi(Φ) = p− pe = (σ − σe)/V ′5/3,
n(Φ) = N ′/V ′,

kBTe(Φ) = pe/n,

kBTi(Φ) = pi/n,

ω(Φ) = Ω/
(
miN

′ 〈R2
〉)
.

The electron-ion equipartition term, Q∆ei, is normally taken to be the classical
value given by Eq. (1.45).

It is convenient to define a five-component force vector given by Φ deriva-
tives of the density, total and electron pressures, current density, and toroidal
angular velocity relative to the toroidal magnetic flux,

F =
[
n′(Φ), p′(Φ), p′e(Φ), (A(Φ)ι(Φ))′ , ω′(Φ)

]
. (6.50)

Here we have defined the geometrical quantity

A(Φ) ≡ V ′

g

〈
|∇Φ|2

R2

〉
.

This is related to the surface-averaged parallel current density by

〈J ·B〉
〈B · ∇φ〉

=
g2

(2π)2 µ0

[
V ′

g

〈
|∇Φ|2

R2

〉
ι

]′
=

g2

(2π)2 µ0

(A(Φ)ι(Φ))′ .
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The transport fluxes can now be expressed as a matrix of functions multi-
plying the force vector:

Γ =
5∑
j=1

ΓjFj , 〈qi · ∇Φ〉 =
5∑
j=1

qjiFj , 〈qe · ∇Φ〉 =
5∑
j=1

qjeFj ,

VL =
5∑
j=1

V jLFj + V 6
L , ΓΩ =

5∑
j=1

ΓjΩFj .

With this convention, specification of the 25 scalar functions Γ1,Γ2, · · ·Γ5
Ω

will specify the transport model. The additional term V 6
L will be used to

incorporate a source term for current drive.

A. Pfirsch–Schlüter regime plasma
The non-zero scalar coefficients needed to evaluate the transport fluxes for an
electron-ion plasma in the collision-dominated regime are as follows [113, 114]:

Γ1 = −L12pe, Γ2 = −L11n, Γ3 = L12n,

Γ4 = −
η‖qg

2n

2πµ0

〈
|∇ψ|2

R2

〉〈
B2
〉−1

, q1i = Lip
2
i /n,

q2i = −Lipi, q3i = Lipi, q1e = L22p
2
e/n,

q2e = L12pe, q3e = −L22pe, V 4
L =

η‖g
2

2πµ0
.

The transport coefficients are:

L11 = L0

[
1 + 2.65(η‖/η⊥)q2∗

]
,

L12 = (3/2)L0

[
1 + 1.47(η‖/η⊥)q2∗

]
,

L22 = 4.66L0

[
1 + 1.67(η‖/η⊥)q2∗

]
,

Li =
√

2L0(mi/me)1/2(Te/Ti)3/2
[
1 + 1.60q2∗

]
,

L0 =
η⊥
µ0

〈
|∇Φ|2/B2

〉
.

Here, we have introduced the function

q2∗ =
1
2

[〈
B−2

〉
−
〈
B2
〉−1
] g2

〈|∇Ψ|2/B2〉
, (6.51)

which reduces to the square of the safety factor, q2, in the low beta, large
aspect ratio limit. The resistivity functions η‖ and η⊥ are given by Eqs. (1.43)
and (1.44).

If an external source of current drive is present, we can incorporate it into
this model with the V 6

L coefficient by defining

V 6
L = −2πη‖JCD‖ , (6.52)
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where

JCD‖ ≡
〈
JCD ·B

〉
〈B · ∇φ〉

, (6.53)

with JCD being the external current drive vector.

B. Banana Regime Plasma
The transport coefficients for a low-collisionality plasma including trapped
and circulating particles have been computed for an arbitrary aspect ratio
and cross section shape [114] with the restriction that |B| have only a single
maximum on each flux surface [112, 114, 115, 116]. The fraction of trapped
particles on a flux surface is given by [112]

ft = 1− (3/4)
〈
B2
〉 ∫ B−1

c

0

λdλ/
〈
(1− λB)1/2

〉
, (6.54)

where Bc is the maximum value of |B| on a flux surface. Using this, we can
express the banana regime transport model as follows:

Γ1 = piL
bp
11y − pe

(
Lbp12 + L̃12 + LEL13L23

)
,

Γ2 = n (1 + y)
[
−Lbp11 − LE(L13)2

]
− nL̃11,

Γ3 = n
[
Lbp11y + Lbp12 + L̃12 + LEL13(L23 + yL13)

]
,

Γ4 = −LEL13(2π)−2g3n
〈
R−2

〉
,

q1i = Lnci p
2
i /n

2,

q2i = −Lnci pi/n,
q3i = Lnci pi/n,

q1e =
[
−Lbp12ypi + Lnc22pe + LEL23 (−L13ypi + L23pe)

]
pe/n,

q2e =
[(
Lbp12 + LEL23L13

)
(1 + y) + L̃12

]
pe,

q3e =
[
−Lnc22 − Lbp12y − LEL23(L13y + L23)

]
pe,

q4e = LEL23(2π)−2g3
〈
R−2

〉
,

V 1
L = L∗EL13p/n,

V 2
L = L∗EL13n(y + 1),
V 3
L = L∗E (L13 − L23)n,
V 4
L = LEg

2
〈
B2
〉
/2π.
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Here, the transport coefficients are:

Lbp11 = L∗(1.53− 0.53ft),

Lbp12 = L∗(2.13− 0.63ft),
L13 = (2πq)gft(1.68− 0.68ft),
L23 = 1.25(2πq)gft(1− ft),

L̃11 = L0(1 + 2q2∗),
L̃12 = (3/2)L0(1 + 2q2∗),

Lnc22 = 4.66
[
L0(1 + 2q2∗) + L∗

]
,

Lnci =
√

2(mi/me)1/2(Te/Ti)3/2
[
L0(1 + 2q2∗) + 0.46L∗(1− 0.54ft)−1

]
,

y = −1.17(1− ft)(1− 0.54ft)−1,

L33 = −1.26ft(1− 0.18ft),

L∗ = ft(2πqg)2
η⊥
µ0
/
〈
B2
〉
,

LE =
η‖(1 + L33)−1

µ0 〈B2〉
,

L∗E = LE
2π
〈
B2
〉

g 〈R−2〉

Note that in steady state, when the loop voltage VL is a spatial constant, the
banana regime model implies a current driven by the temperature and density
gradients,〈

1
R2

〉
〈J ·B〉
〈B · ∇φ〉

= −ft p
[
L∗13
n

dn

dΨ
+
L∗13(1 + y)
Te + Ti

dTi
dΨ

+
L∗13 − L∗23
Te + Ti

dTe
dΨ

]
.

(6.55)

Here L∗13 ≡ L13/(2πqgft), L∗23 ≡ L23/(2πqgft), and y are all dimensionless
and of order unity. In deriving Eq. (6.55) we have used the relation 2πqd/dΦ =
d/dΨ, where Ψ is the poloidal flux function. This current is called the bootstrap
current. These relations have been extended to multi-charged ions [117] and
to arbitrary collisionality [118]. An excellent overview of the results for the
transport coefficients in all of the collisionality regimes is given in Helander
and Sigmar [119].

As in the collisional regime case, an external source of current drive can be
included by defining the equivalent of Eq. (6.52). In the presence of external
current drive, we would add the coefficient

V 6
L = −2πη‖ (1 + L33)

−1
JCD‖ ,
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where JCD‖ is defined in Eq. (6.53).

C. Anomalous Transport Model
Although this is still an area of active research, there are a number of anoma-
lous transport models available that purport to calculate local values of the
surface averaged transport coefficients based on local values of the surface
averaged profiles of density, the temperatures, angular velocity, and current
profile, and their gradients. These profiles are often obtained from a fit to a
subsidiary micro-instability calculation [120, 121, 122, 123].

A typical model would return the particle diffusivity D, the electron ther-
mal diffusivity χe, the ion thermal diffusivity χi, and the toroidal angular
velocity diffusivity, χω, all with dimension m2/s, and a parallel resistivity
function η‖ with units Ω−m. A relatively simple diagonal model would fit into
the above formalism as follows [124]:

Γ1 = −D
〈
|∇Φ|2

〉
,

q1i = χi
pi
n

〈
|∇Φ|2

〉
, q2i = −χi

〈
|∇Φ|2

〉
, q3i = χi

〈
|∇Φ|2

〉
,

q1e = χe
pe
n

〈
|∇Φ|2

〉
, q3e = −χe

〈
|∇Φ|2

〉
,

V 4
L =

η‖g
2

2πµ0
,

Γ5
Ω = −χω

〈
|∇Φ|2

〉
min

〈
R2
〉
.

Bootstrap and current drive terms are included in these models by defining
the additional V iL coefficients as discussed above.

The micro-instability-based models tend to return transport coefficients
that have strong dependences on the gradients of the corresponding surface
averaged profiles. We discuss in the next chapter special computational tech-
niques for dealing with these.

6.3 Equilibrium Constraint

The variables N ′, σ, ι, σe, and Ω introduced in Section 6.2 are called
adiabatic variables. If there is no dissipation and no explicit sources of mass
or energy, then the time derivatives of these quantities are zero in the toroidal
flux coordinate system being used here.

In the presence of dissipation, the surface-averaged transport equations
of the last section describe how these adiabatic variables evolve relative to
equilibrium magnetic surfaces with fixed values of toroidal magnetic flux. To
complete the description, we need to solve a global equation to describe how
these surfaces evolve relative to a fixed laboratory frame in which the toroidal
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field and poloidal field magnetic coils are located. This is the associated equi-
librium problem. In the next subsection, we describe the circuit equations
that describe how the nearby coil currents evolve in time due to applied and
induced voltages. Then, we describe two approaches for incorporating the
equilibrium constraint, the Grad–Hogan method and an accelerated form of
the Taylor method.

6.3.1 Circuit Equations

The toroidal plasma is coupled electromagnetically to its surroundings;
both passive structures and poloidal field coils that are connected to power
supplies. We assume here that the external conductors are all axisymmetric,
and that their currents and applied voltages are in the toroidal (φ) direction.
Although the passive structures are continuous, it is normally adequate to
subdivide them into discrete elements, each of which obeys a discrete circuit
equation. Thus, each of the poloidal field coils and passive structure elements
obeys a circuit equation of the form

d

dt
ΨPi +RiIi = Vi, (6.56)

where the poloidal flux at each coil i is defined by

ΨPi = LiIi +
∑
i6=j

MijIj + 2π
∫
P

Jφ(R′)G(Ri,R′)dR′. (6.57)

Here, Ri and Vi are the resistance and applied voltage at coil i, Li is the
self-inductance of coil i, and Mij is the mutual inductance of coil i with coil
j. For a passive conductor, the corresponding Vi = 0.

The last term in Eq. (6.57) is an integral over the plasma volume. This
represents the mutual inductance between the distributed plasma current and
the conductor with index i.

6.3.2 Grad–Hogan Method

The Grad–Hogan method [110, 125] splits every time step into two parts.
In the first part, the adiabatic variables, including the poloidal flux at the con-
ductors, are advanced from time t to time t+ δt by solving Eqs. (6.45)–(6.49)
and (6.56) using techniques discussed in Chapter 7. In the second part, these
adiabatic variables are held fixed while we solve the appropriate form of the
equilibrium equation, where the “free functions” p′(Ψ) and gg′(Ψ) have been
expressed in terms of the adiabatic variables σ(Φ) and ι(Φ). The individual
PF coil and conductor currents will change during this part of the time step
in order to keep the poloidal flux fixed at each coil location and at the plasma
magnetic axis. This part of the time step effectively determines the absolute
motion of the toroidal flux surfaces relative to a fixed frame.
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The adiabatic variables may also be expressed in terms of the poloidal
flux function Ψ. This is most convenient when solving the Grad–Shafranov
equation in the Grad–Hogan method as the poloidal flux function is what is
being solved for. Thus, if we define VΨ ≡ dV/dΨ and σΨ ≡ pV

5/3
Ψ , the form

of the equilibrium equation that needs to be solved is:

∆∗Ψ + µ0R
2 d

dΨ

[
σΨ(Ψ)

V
5/3
Ψ

]
+

(2π)4q(Ψ)
VΨ 〈R−2〉

d

dΨ

[
q(Ψ)

VΨ 〈R−2〉

]
= 0. (6.58)

The functions σΨ(Ψ) and q(Ψ) must be held fixed while finding the equilibrium
solution.

Equation (6.58) for Ψ can be solved using a free boundary analogue to
the techniques discussed in Section 5.5.1. Note that the poloidal flux at the
magnetic axis, ΨMA, must be held fixed during the equilibrium solution as
well. Since ∇Ψ = 0 at the magnetic axis, from Eq. (4.42), the evolution
equation for Ψ at the axis is simply

∂ΨMA

∂t
= R2∇φ ·R. (6.59)

(Note that this is equivalent to applying Eq. (6.44) to Ψ at the magnetic axis.)
The value of ΨMA is evolved during the transport part of the time step using
Eq. (6.59) and ΨMA and the adiabatic variables are then held fixed during
the equilibrium solution part of the time step.

This completes the formalism needed to describe the transport in an ax-
isymmetric system. The one-dimensional evolution equations, Eqs. (6.45)–
(6.49), advance the adiabatic variables in time on the resistive time scale.
Equation (6.59) is used to advance the value of Ψ at the magnetic axis, and
Eq. (6.56) is used to advance the value of Ψ at the nearby conductors. The
equilibrium equation, Eq. (6.58), defines the flux surface geometry consistent
with these adiabatic variables and the boundary conditions. It does not intro-
duce any new time scales into the equations.

6.3.3 Taylor Method (Accelerated)

J. B. Taylor [126] suggested an alternative to the Grad–Hogan method
that does not require solving the equilibrium equation with the adiabatic
constraints, Eq. (6.58). His approach involves solving for the velocity field u,
which when inserted into the field and pressure evolution equations, Eqs. (6.3),
(6.4), and (6.5), will result in the equilibrium equation, Eq. (6.11), continuing
to be satisfied as time evolves. It was shown by several authors [111, 112]
that an elliptic equation determining this velocity field could be obtained by
time differentiating the equilibrium equation and substituting in from the time
evolution equations. Taking the time derivative of Eq. (6.11) gives

∇ṗ = J̇×B + J× Ḃ, (6.60)
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or, by substituting in from Eqs. (6.3), (6.4), and (6.5),

2
3
∇
[
−∇ ·

(
q +

5
2
pu
)

+ J · (−u×B + R) + Se

]
+µ−1

0 ∇× [∇× (u×B−R)]×B + J× [∇× (u×B−R)] . (6.61)

This equation can, in principle, be solved for u, and that velocity field u can
be used to keep the system in equilibrium without repeatedly solving the equi-
librium equation. While this approach has been shown to be viable [127], it
suffers from “drifting” away from an exact solution of the equilibrium equa-
tion. A preferred approach [128, 129] to obtaining this velocity is to use the
accelerated steepest descent algorithm which involves obtaining the velocity
from the residual equation,

u̇ +
1
τ
u = D [J×B−∇p] . (6.62)

By choosing the proportionality and damping factors, D and τ , appropriately,
the system can be kept arbitrarily close to an equilibrium state as it evolves.
This is equivalent to applying the dynamic relaxation method of Section 3.5.2
to the plasma equilibrium problem.

In using this approach, the magnetic field variables Ψ and g must be
evolved in time as two-dimensional functions from Eqs. (6.14) and (6.15) in
order to preserve the magnetic flux constraints. Equation (6.48) for ι is then
redundant but is useful as a check. The total entropy constraint is preserved
by representing the pressure as p(ψ) = σ(ψ)/V ′5/3. The other adiabatic vari-
ables, including the poloidal flux at the conductors, are still evolved by solving
Eqs. (6.45), (6.46), (6.47), (6.49), and (6.56).

6.4 Time Scales

Here we discuss some of the time scales associated with diffusion of the
particles, energy and fields in a collisional regime tokamak plasma. In doing
so, we show the relation of the variables and equations introduced here to
more common variables used in simpler geometries and in more approximate
descriptions.

A. Flux Diffusion
Recall that the rotational transform evolves according to Eq. (6.48) where,
for an arbitrary inhomogeneous term R in Ohm’s law, the loop voltage is
defined by Eq. (6.38). Here, for simplicity in discussing the basic time scales,
we consider the Ohm’s law appropriate for a single fluid resistive MHD plasma,

R = η‖J‖ + η⊥J⊥. (6.63)
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When inserted into Eq. (6.38), this gives

VL = 2πη‖
〈B · J〉
〈B · ∇φ〉

. (6.64)

Evaluating Eq. (6.64) and inserting into Eq. (6.48) yields a diffusion-like equa-
tion for the rotational transform ι(Φ, t),

∂

∂t
ι =

d

dΦ

[
η‖g

V ′ 〈R−2〉µo
d

dΦ

(
V ′

g

〈
|∇Φ|2

R2

〉
ι

)]
. (6.65)

We can rewrite this equation in the circular cross section large aspect ratio
limit in which the major radius and toroidal field strength can be assumed
constants and the cylindrical coordinate r is the only independent variable.
Thus, we have

R→ Ro(constant), g → RoB
0
z ,

Bz → Boz � Bθ, V ′ → 2πR0/B
0
Z ,

Φ → πr2Boz , ι = q−1 → R0Bθ
rB0

z

.

In this limit, Eq. (6.65) becomes

∂

∂t
Bθ =

d

dr

[
η‖
µo

1
r

d

dr
(rBθ)

]
. (6.66)

From this, we can evaluate the characteristic time for the solution to decay,

to =
a2µo
η‖

,

where a is the minor radius. This is known as the skin time of the device.

B. Particle Diffusion
The evolution equation for the differential particle number N ′ is given by
Eq. (6.45). In this resistive MHD model, the particle flux is completely defined
in terms of the inhomogeneous term R in Eq. (6.40). By making use of the
identity

R2∇φ =
1
B2

[gB−B×∇Ψ] , (6.67)

it can be seen that Γ can be written in the following form

Γ = 2πqn
[
g

(〈
R ·B
B2

〉
− 〈R ·B〉

〈B2〉

)
−
〈

R×B · ∇Ψ
B2

〉
− VL

2π

〈
B2
p

〉
〈B2〉

]
. (6.68)

Here
〈
B2
p

〉
=
〈
|∇Ψ|2/R2

〉
. The first term in brackets, which only depends on
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the part of R parallel to the magnetic field B, corresponds to neo-classical
Pfirsch–Schlüter diffusion, the second term to classical diffusion, and the third
term to the classical inward pinch. We evaluate this for the simple Ohm’s law
in Eq. (6.63) to find

∂N ′

∂t
=

d

dΦ
N ′
[
η⊥

〈
|∇Φ|2

B2

〉[
1 + 2q2∗

(
η‖/η⊥

)] dp
dΦ

+ qVL

〈
B2
p

〉
〈B2

T 〉

]
. (6.69)

Again, we can evaluate Eq. (6.69) in the large aspect ratio, circular limit to
find

∂

∂t
(nr) =

d

dr
n

[
r

B2
(η⊥ + 2q2η‖)

dp

dr
+ r

EφBθ
B2

]
.

The first term in brackets corresponds to diffusion, and the second term to
an inward E×B drift. Noting that p = 2nkBT , we can estimate the classical
diffusion time in this limit,

tn =
a2µo

η (1 + 2q2)β
, (6.70)

where β ≡ µ0p/B
2. We note that tn � to if β � 1.

C. Heat Conduction Equation
The evolution of the differential entropy density is given by Eq. (6.46). Since
the inhomogeneous vector R does not enter into the heat flux relation, we
must rely on an additional kinetic calculation to define this. The heat flux in
a collisional plasma has been shown to be [130]

Q = −pη⊥
(

2mi

me

) 1
2 (

1 + 2q2∗
)〈 |∇Φ|2

B2

〉
nV ′

dT

dΦ
.

By balancing the time derivative term with the heat conduction term, and
evaluating in the large aspect ratio limit, we obtain the heat conduction time

th =
a2µo

η̂ (1 + 2q2)β
(

2mi
me

) 1
2
.

Normally, for tokamak parameters, we have

tn > to > th � ta,

where ta is the Alfvén wave transit time of the device.

D. Equilibration
For times longer than each of the characteristic times computed above, one or
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more of the evolution equations will be in steady state. Thus for t > tA the
system will be in force balance equilibrium with

∇p = J×B,

or, in particular, the form of the Grad–Shafranov equation given by (6.58)
will be satisfied. For t > th the ion heat conduction will balance Joule heating
in an ohmically heated tokamak, thus

VL
d

dΦ

[
V ′

(2π)2 q

〈
|∇Φ|2

R2

〉]

+
d

dΦ

[
pη⊥

(
2mi

me

) 1
2

(1 + 2q2)
〈
|∇Φ|2

B2

〉
N ′ dT

dΦ

]
= 0. (6.71)

This will determine the temperature profile. For longer times t > to, the
toroidal current, or ι, evolves diffusively to obtain the steady-state condition

VL = const. =
η‖g

µoV′ 〈R−2〉
d

dΦ

[
V′

g

〈
|∇Φ|2

R2

〉
ι

]
.

Note that this allows the energy equation, Eq. (6.46), to be integrated so that
we have the steady-state relation

Qe +Qi = VLK + c, (6.72)

where c is an integration constant. Evaluating this for our collisional transport
model gives

VL

(2π)2 q

〈
|∇Φ|2

R2

〉
+ pη⊥

(
2mi

me

) 1
2 (

1 + 2q2
)〈 |∇Φ|2

B2

〉
n
dT

dΦ
= c.

6.5 Summary

In a magnetic confinement device such as a tokamak, the magnetic field
lines form nested surfaces. Because the thermal conductivities and particle
diffusivities are so much greater parallel to the field than across it, we can as-
sume that the temperatures and densities are constant on these surfaces when
solving for the relatively slow diffusion of particles, energy, magnetic field,
and angular momentum across the surfaces. Because this cross-field diffusion
is slow compared to the Alfvén time, we can assume that the plasma is always
in force balance equilibrium. The toroidal magnetic flux is a good coordinate
because it is relatively immobile and is always zero at the magnetic axis. We
surface average the evolution equation to get a set of 1D evolution equations
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for the adiabatic invariants. These are given by Eqs. (6.45), (6.46), (6.48),
(6.47), and (6.49). These need to be closed by supplying transport coefficients
from a subsidiary transport or kinetic calculation. These 1D evolutions need
to be solved together with the 2D equilibrium constraint, which defines the
geometry and relates the magnetic fluxes to the coil currents and other bound-
ary conditions. The time scales present in the equations were estimated for a
collisional regime plasma and it was found that the the heating time is fastest,
followed by the magnetic field penetration time (or the skin time), followed by
the particle diffusion time. These times are all much longer than the Alfvén
transit time.

Problems

6.1: Derive Eq. (6.18) using the definition of uC in Eq. (6.16) and the expres-
sion for the Jacobian in Eq. (5.19).

6.2: Derive the evolution equations in a moving frame, Eqs. (6.20)–(6.24).

6.3: Derive the intermediate result, Eq. (6.36).

6.4: Derive a set of evolution equations analogous to Eqs. (6.45), (6.46), and
(6.48) using the poloidal flux velocity, defined by Eq. (6.31) as the reference
velocity (instead of the toroidal flux velocity).

6.5: Show that the expression for q∗ in Eq. (6.51) reduces to the normal
definition for the safety factor q in the large aspect ratio, low β limit.

6.6: Calculate the time scales as done in Section 6.4, but for the banana
regime plasma model introduced in Section 6.2.4.





Chapter 7

Numerical Methods for Parabolic
Equations

7.1 Introduction

In this chapter we consider numerical methods for solving parabolic equa-
tions. The canonical equation of this type is given by

∂u

∂t
= ∇ ·D · ∇u. (7.1)

This is sometimes called the heat equation as it describes the conduction of
heat throughout a material. It is also prototypical of many types of diffusive
processes that occur in a magnetized plasma, including the transport of heat,
particles, angular momentum, and magnetic flux in real space, and the evo-
lution of the distribution function in velocity space due to particle collisions.
By allowing the diffusion coefficient D in Eq. (7.1) to be a tensor, we can
describe anisotropic processes such as the diffusion of heat and particles when
a magnetic field is present. In the next section we discuss the basic numerical
algorithms for solving equations of the parabolic type in one dimension, such
as the surface-averaged equations derived in the last chapter. We then discuss
extension of these methods to multiple dimensions.

7.2 One-Dimensional Diffusion Equations

We begin by analyzing common methods for solving scalar linear diffusion
equations in one dimension. We next consider treatment of non-linear diffu-
sion equations such as those that often arise in practice. We further discuss
considerations when solving diffusion equations in cylindrical-like geometries
that possess a singularity at the origin. We then generalize to vector forms
and illustrate how the surface-averaged transport equations derived in the last
chapter can be put into this form.

171
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7.2.1 Scalar Methods

Consider the basic one-dimensional scalar diffusion equation in slab geom-
etry

∂u

∂t
= σ

∂2u

∂x2
, (7.2)

where σ is a positive constant. We discretize time and space with the notation
tn = nδt and xj = jδx, and denote u (xj , tn) by unj . Consider the following
methods for solving Eq. (7.2).

A. Forward-Time Centered Space (FTCS)
The forward-time centered-space algorithm is an explicit method defined by

un+1
j = unj +

δt σ

δx2

[
unj+1 − 2unj + unj−1

]
.

We perform von Neumann stability analysis as described in Section 2.5 by
examining the amplification factor for an individual wavenumber. Letting

unj → ũkr
neijθk ,

and defining s = δtσ/δx2, we find for the amplification factor

r = 1 + 2s [cos θk − 1] .

The stability condition, |r| ≤ 1 for all θk, gives s ≤ 1
2 , or

δt ≤ δx2

2σ
. (7.3)

The leading order truncation error for this method is found by Taylor series
analysis to be

T∆ = −δt
2
∂2u

∂t2
+
σ δx2

12
∂4u

∂x4
+ · · · . (7.4)

If we always operate at the stability limit, we can use the equality in Eq. (7.3)
to eliminate δt from Eq. (7.4) to give an expression for the truncation error
at the stability limit

TSL∆ = −δx
2

4σ

[
∂2u

∂t2
− σ2

3
∂4u

∂x4

]
+ · · · . (7.5)

This illustrates that the leading order error terms arising from the time and
spatial discretization are of the same order.

The disadvantage of this method, of course, is that the condition Eq. (7.3)
on the time step is very restrictive. If the spatial increment δx is reduced
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by a factor of 2, then the time step δt must be reduced by a factor of 4 to
remain stable, resulting in a factor of 8 more space-time points that need to
be computed to get to the same integration time T .

B. DuFort–Frankel Method
The method of DuFort and Frankel [132] is defined by

un+1
j = un−1

j +
2δtσ
δx2

[
unj+1 −

(
un+1
j + un−1

j

)
+ unj−1

]
. (7.6)

This method looks implicit since advanced time variables, un+1, appear on
the right side of the equal sign. However, it can be rewritten in the form

un+1
j =

[
1− 2s
1 + 2s

]
un−1
j +

2s
1 + 2s

(
unj+1 + unj−1

)
,

showing that it is actually explicit. Von Neumann stability analysis yields for
the amplification factor

r =
2s cos θk ±

[
1− 4s2 sin2 θk

] 1
2

1 + 2s
,

which is less than or equal to 1 in magnitude for all values of θk, making
this method unconditionally stable. This is an example of an explicit method
which is stable for any value of the time step.

Let us examine the form of the leading order truncation error for Eq. (7.6).
Taylor expanding about unj gives

T∆ = −σ
(
δt

δx

)2
∂2u

∂t2
+O

(
δt2
)

+O
(
δx2
)

+O
(
δt4

δx2

)
.

Consistency requires that when a convergence study is performed, it must
be done such that (δt/δx) → 0 as δt → 0. That is, the DuFort–Frankel fi-
nite difference equation, Eq. (7.6), is consistent with the differential equation,
Eq. (7.2), if and only if we take the zero time step zero gridsize limit in such
a way that δt goes to zero faster than δx. If, on the other hand, the ratio
δt/δx is kept fixed, say (δt/δx) = β, then Eq. (7.6) is consistent not with the
diffusion equation, Eq. (7.2), but with the damped wave equation

σβ2 ∂
2u

∂t2
+
∂u

∂t
= σ

∂2u

∂x2
.

Nevertheless, Eq. (7.6) is still a useful method since it is numerically stable
and it interfaces naturally when using the leap frog method for convective or
hyperbolic terms as we will see in Chapter 9. To perform convergence studies,
we must let δt decrease more rapidly than proportional to δx, i.e.,

δt ∼ δx1+α
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for some α > 0.

C. Backward-Time Centered-Space (BTCS)
Consider the implicit backward-time centered-space method

un+1
j = unj +

δtσ

δx2

[
un+1
j+1 − 2un+1

j + un+1
j−1

]
. (7.7)

The amplification factor for BTCS is given by

r = [1− 2s (cos θk − 1)]−1
,

which has amplitude |r| ≤ 1 for all θk. This method is unconditionally stable
for constant coefficient σ, which is typical for implicit methods. The truncation
error can be found by expanding about un+1

j . We find

T∆ =
δt

2
∂2u

∂t2
+
σδx2

12
∂4u

∂x4
+ · · · ,

which will be dominated by the first-order δt term, unless δt ∼ δx2 as required
by the stability condition Eq. (7.3) for the explicit FTCS method. Thus, for
accuracy reasons, we would normally be required to choose the time step such
that δt ∼ δx2, even though stability allows a larger time step. A discussion
of the generalization of this method to the case where the coefficient σ is a
strong non-linear function of the solution u is given in Section 7.2.2.

D. θ-Implicit and Crank–Nicolson
Consider now the θ-implicit method. We introduce the implicit parameter θ
and consider the method

un+1
j = unj + θ

δtσ

δx2

[
un+1
j+1 − 2un+1

j + un+1
j−1

]
+ (1− θ)

δtσ

δx2

[
unj+1 − 2unj + unj−1

]
. (7.8)

The amplification factor is given by

r =
1− s∗(1− θ)

1 + s∗θ
, (7.9)

where s∗ = 2s [1− cos θk] ≥ 0. We see that for θ ≥ 1
2 , we have |r| ≤ 1 which

implies the algorithm given by Eq. (7.8) is stable for all values of δt. For θ < 1
2 ,

we have the stability condition s∗ < 2/(1− 2θ), or

δt <
δx2

2σ(1− 2θ)
.

Choosing θ = 1
2 in Eq. (7.8) gives the Crank–Nicolson method. This is seen to
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be time centered as well as unconditionally stable. Because it is time centered,
the truncation error for θ = 1

2 is of the form

T∆ = O
(
δt2
)

+O
(
δx2
)
. (7.10)

The truncation error term arising from the time differencing is therefore of
the same order as that arising from the spatial differencing for δt ∼ δx. This
implies that for the Crank–Nicolson method with θ = 1

2 , unlike for either
the DuFort–Frankel method or the BTCS method, it is clearly advantageous
to use a value of δt substantially larger than the explicit limit as given by
Eq. (7.3) because there is no degradation in accuracy for δt up to the size
of δx. This is a substantial advantage in practice, as it implies that if δx is
reduced by 2, then we need only reduce δt by 2 to reduce the truncation error
by 4. This results in only a factor of 4 more space-time points to get to the
same integration time T instead of the factor of 8 required for the fully explicit
FTCS method.

E. Modified Crank–Nicolson
The Crank–Nicolson method is desirable because it is unconditionally stable
and second-order accurate in both space and time. However, it is seen from
Eq. (7.9) that the absolute value of the amplification factor approaches unity
for large values of s∗, i.e.,

|r| → 1 for s∗ →∞ at θ =
1
2
. (7.11)

This can lead to difficulty for large values of the time step because the short
wavelength perturbations are not damped.

Let δ2xuj ≡ uj+1 − 2uj + uj−1 be the centered second difference operator.
Consider now the modified Crank–Nicolson method [131] that takes a weighted
sum of the spatial derivatives at three time levels:

un+1
j = unj +

δtσ

δx2

[
9
16
δ2xu

n+1
j +

3
8
δ2xu

n
j +

1
16
δ2xu

n−1
j

]
. (7.12)

This can be shown to be second-order accurate in space and time and uncon-
ditionally stable, and the amplification factor has the property that

|r| → 1
3

for s∗ →∞. (7.13)

It therefore exhibits strong damping of the short, gridscale wavelength modes,
in the limit of very large time steps, and for that reason may be preferred over
the standard Crank–Nicolson method for some applications.

7.2.2 Non-Linear Implicit Methods

When micro-instability-based anomalous transport models are used to cal-
culate the thermal conductivity in the flux-surface-averaged equations de-
scribed in Chapter 6, the thermal conductivity functions can have a strong
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non-linear dependence on the local temperature gradient [120]. If a method
such as BTCS or Crank–Nicolson is used without accounting for this non-
linearity, large oscillations or numerical instability can occur. Here we describe
a modification to the standard Crank–Nicolson algorithm to account for this
non-linearity [133].

Consider the one-dimensional diffusion equation for the temperature T in
cylindrical geometry,

∂T

∂t
=

1
r

∂

∂r

[
rχ
∂T

∂r

]
. (7.14)

Here r is the radial coordinate. We consider the case where the diffusion
coefficient χ is a strong function of the spatial gradient of the solution. It
is convenient to introduce as the dependent variable the quantity Φ ≡ 1

4r
2,

which can be thought of as a toroidal flux coordinate. Then, Eq. (7.14) can
be written in the form

∂T

∂t
=

∂

∂Φ

[
Φχ (T ′)

∂T

∂Φ

]
. (7.15)

Here we have emphasized the dependence of the diffusion coefficient χ on the
gradient of the solution T ′ ≡ ∂T/∂Φ by writing χ (T ′).

It is shown in [134] that if the implicit BTCS method of Eq. (7.7) is applied
to this equation with the diffusion coefficient χ (T ′) evaluated at the old time
level n when advancing to the new time level n + 1, instability can develop.
They considered a particular analytic form where the thermal conductivity
was proportional to the temperature gradient raised to some power p, χ =
χ0 (T ′)p. In this case, a linearized analysis shows that the BTCS method will
be numerically unstable for |p| > 1. It is not possible to evaluate the numerical
stability of the general case where χ is an unknown, possibly non-analytic,
function of T ′, but we must assume that it can be unstable.

Consider now the θ-implicit method applied to Eq. (7.15), but with the
diffusion coefficient being evaluated at the same time level as the derivatives
of the solution. Using the convention Φj ≡

(
j − 1

2

)
δΦ (so that Φ 1

2
= 0) and

introducing s1 ≡ δt/δΦ2, conservative differencing gives

Tn+1
j = Tnj + s1θ

[
Φχ|n+1

j+ 1
2

(
Tn+1
j+1 − Tn+1

j

)
− Φχ|n+1

j− 1
2

(
Tn+1
j − Tn+1

j−1

)]
+ s1(1− θ)

[
Φχ|nj+ 1

2

(
Tnj+1 − Tnj

)
− Φχ|nj− 1

2

(
Tnj − Tnj−1

)]
. (7.16)

To approximate the diffusion coefficient at the advanced time, we Taylor ex-
pand in time as follows:

χ|n+1
j+ 1

2
= χ|nj+ 1

2
+

∂χ

∂T ′

∣∣∣∣n
j+ 1

2

(
T ′n+1
j+ 1

2
− T ′nj+ 1

2

)
.

It is convenient to define the change in temperature in going from time step
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n to n+ 1 at grid point j as

δTj ≡ Tn+1
j − Tnj .

In terms of this, we have the relations

Tn+1
j = Tnj + δTj ,

and

T ′n+1
j+ 1

2
− T ′nj+ 1

2
=

1
δΦ

(δTj+1 − δTj) .

Substituting into Eq. (7.16), and keeping terms to first order in δT ∼ δt, we
get a tridiagonal system for δTj ,

AjδTj+1 −BjδTj + CjδTj−1 = Dj . (7.17)

Here,

Aj = s1θΦj+ 1
2

[
χ|nj+ 1

2
+

∂χ

∂T ′

∣∣∣∣n
j+ 1

2

T ′nj+ 1
2

]
,

Cj = s1θΦj− 1
2

[
χ|nj− 1

2
+

∂χ

∂T ′

∣∣∣∣n
j− 1

2

T ′nj− 1
2

]
,

Bj = 1 +Aj + Cj ,

Dj = −s1
[
Φj+ 1

2
χ|nj+ 1

2

(
Tnj+1 − Tnj

)
− Φj− 1

2
χ|nj− 1

2

(
Tnj − Tnj−1

)]
.

Equation (7.17) is equivalent to the first iteration of a multivariable Newton’s
method iteration applied to Eq. (7.16). If the function χ(T ′) is well behaved,
this will normally give an accurate solution. However, if χ(T ′) exhibits strong
non-linearities, Newton’s method can be applied recursively to solve for the
value of Tn+1

j that solves this equation exactly. Keeping the non-linear terms,
Eq. (7.16) can be written as

Fj(Tn+1
k ) = −Tn+1

j + Tnj + s1θ
[
Φ χ|n+1

j+ 1
2

(
Tn+1
j+1 − Tn+1

j

)
− Φ χ|n+1

j− 1
2

(
Tn+1
j − Tn+1

j−1

)]
(7.18)

+ s1(1− θ)
[
Φ χ|nj+ 1

2

(
Tnj+1 − Tnj

)
− Φ χ|nj− 1

2

(
Tnj − Tnj−1

)]
= 0.

Multivariable Newton’s method applied to Eq. (7.18) corresponds to the
iteration (with iteration index i out of N)

∂Fj

∂
(
Tn+1
k

) ∣∣∣∣∣
n+(i−1)/N (

T
n+i/N
k − T

n+(i−1)/N
k

)
= −Fn+(i−1)/N

j , (7.19)
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where the sum over index k is implied. Written without implied summation
but keeping only the non-zero terms, this takes the form

A∗j T
n+i/N
j+1 −B∗

j T
n+i/N
j + C∗j T

n+i/N
j−1 = D∗

j . (7.20)

Here, we have defined

A∗j = s1θΦj+ 1
2

[
χ|n+(i−1)/N

j+ 1
2

+
∂χ

∂T ′

∣∣∣∣n+(i−1)/N

j+ 1
2

T
′n+(i−1)/N

j+ 1
2

]
,

C∗j = s1θΦj− 1
2

[
χ|n+(i−1)/N

j− 1
2

+
∂χ

∂T ′

∣∣∣∣n+(i−1)/N

j− 1
2

T
′n+(i−1)/N

j− 1
2

]
,

B∗
j = 1 +A∗j + C∗j ,

D∗
j = −Tnj

− s1(1− θ)
[
Φj+ 1

2
χ|nj+ 1

2

(
Tnj+1 − Tnj

)
− Φj− 1

2
χ|nj− 1

2

(
Tnj − Tnj−1

)]
− s1θ

[
Φj+ 1

2

∂χ

∂T ′

∣∣∣∣n+(i−1)/N

j+ 1
2

T
′n+(i−1)/N

j+ 1
2

(
T
n+(i−1)/N
j − T

n+(i−1)/N
j+1

)
+ Φj− 1

2

∂χ

∂T ′

∣∣∣∣n+(i−1)/N

j− 1
2

T
′n+(i−1)/N

j− 1
2

(
T
n+(i−1)/N
j − T

n+(i−1)/N
j−1

)]
Equation (7.20) is iterated from i = 1, · · · , N , where N is chosen according to
some tolerance. It is seen that Eqs. (7.17) and (7.20) are equivalent if N = 1.

As an illustration, we present comparison results of solving Eq. (7.15)
with a model thermal conductivity function that mimics the critical gradient
thermal diffusivity model GLF23 [120], which is in wide use. The functional
specification is:

χ(T ′) =
{
k (|T ′| − T ′c)

α + χ0 for |T ′| > T ′c,
χ0 for |T ′| ≤ T ′c.

(7.21)

This is a non-analytic function with discontinuous derivatives in the vicinity
of |T ′| = T ′c.

In this example we set χ0 = 1.0, α = 0.5, k = 10, and T ′c = 0.5. We define
a mesh going from 0 to 1 with 100 mesh points. We initialize the solution to
T = 1 − Φ, set the source term to S = 1, apply the boundary condition of
T = 0 at Φ = 1, and integrate forward in time. In Figure 7.1 we plot the
computed solution at a particular space-time point, (Φ, t) = (.10, 0.16) as a
function of the value of the time step δt for a series of calculations to compare
the convergence properties of two algorithms applied to the same equation. In
the curve labeled “Backward Euler,” we used the BTCS method of Eq. (7.7),
where the thermal conductivity function χ(T ′) was evaluated at the old time
level. In the curve labeled “Newton Method,” we used the single iteration non-
linear implicit method, Eq. (7.17). It is seen that for this highly non-linear
problem, the non-linear implicit method is far superior to the BTCS method,
allowing a time step several orders of magnitude larger for the same accuracy.
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Convergence plot with logarithmic horizontal scale
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FIGURE 7.1: Comparison of the convergence properties of the Backward
Euler method (BTCS) and the non-linear implicit Newton iterative method.

7.2.3 Boundary Conditions in One Dimension

One-dimensional scalar diffusion equations such as Eq. (7.2) would nor-
mally require two boundary conditions, one at each physical boundary. These
can either be of the Dirichlet (fixed value) or Neumann (fixed derivative) type,
or some linear combination such as u+ a∂u/∂x = b for some constants a and
b.

Coordinate systems such as magnetic flux coordinates or cylindrical co-
ordinates have a singularity at the origin. For one-dimensional systems, such
as the surface-averaged transport equations or theta-independent solutions in
cylindrical coordinates such as in Eq. (7.14) or Eq. (7.15), one of the coor-
dinate boundaries can be the coordinate origin. The origin is not a physical
boundary, but it can be a computational boundary. The “boundary condi-
tion” applied at the coordinate origin is thus not a true boundary condition
but rather a condition that the solution be regular there. These regularity
conditions can all be derived from performing a Taylor series expansion near
the origin and imposing symmetry constraints to eliminate terms.

For example, if we were solving Eq. (7.15), we would note that the tem-
perature T must have a Taylor series expansion about the origin. In Cartesian
coordinates, this takes the form

T (x, y) = T0 + Txx+ Tyy +
1
2
Txxx

2 + Txyxy +
1
2
Tyyy

2 + . . . (7.22)
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FIGURE 7.2: Cylindrical symmetry restricts the allowable terms in a Taylor
series expansion in x and y about the coordinate origin.

However, we see from Figure 7.2 that by symmetry, all terms in the series that
are odd in x or y must vanish, and the even terms must only be functions of
r2 = x2 + y2, or equivalently Φ = 1

4r
2. We therefore have the expansion, valid

near the origin,

T (Φ) = T0 + C1Φ +O(δΦ2), (7.23)

where T0 and C1 are constants obtained by fitting to the values at the first
two grid values. One can often center the definition of variables so that it is
the heat flux that needs to be evaluated at the origin, where it vanishes by
symmetry. As in the previous section, if we define Tj = T (Φj) with the index
j offset by 1

2 so that Φj ≡
(
j − 1

2

)
δΦ for j ≥ 1, then Φj− 1

2
in Eq. (7.16)

vanishes for j = 1 and no other boundary condition needs to be supplied. We
can then fit the truncated series expansion, Eq. (7.23), to the first two zone
values, T1 and T2, shown in Figure 7.3, to calculate to second-order in δΦ

T0 =
3
2
T1 −

1
2
T2. (7.24)

Equation (7.24) looks like an extrapolation formula, but it is actually per-
forming a second-order interpolation, since the center point is surrounded on
all sides by the first and second zones as can be seen in Figure 7.2.

7.2.4 Vector Forms

We saw in Section 6.2.2 that by choosing a suitable set of coordinates
and dependent variables, the transport equations describing the resistive time
scale evolution of an axisymmetric high-temperature toroidal plasma can be
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Φ=0
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FIGURE 7.3: Temperatures are defined at equal intervals in δΦ, offset 1
2δΦ

from the origin so that the condition of zero flux can be imposed there.

written as a set of non-linear one-dimensional evolution equations. These can
be written in the general form:

D(1) · ∂
∂t

Y =
∂

∂Φ

[
K(1) · ∂

∂Φ

(
D(2) ·Y

)]
+ K(2) · ∂

∂Φ

(
D(2) ·Y

)
+ K(3) ·Y + S. (7.25)

For the model described in Chapter 6, the vector of unknowns consists of the
five surface functions

Y(Φ, t) =


N ′(Φ, t)
σ(Φ, t)
σe(Φ, t)
ι(Φ, t)
Ω(Φ, t)

 .

In Eq. (7.25), D(1) and D(2) are diagonal matrices, and K(1), K(2), and K(3)

are in general full matrices with the rank of Y. The general transport model
defined in Chapter 6 could be put in this form by defining the two diagonal
matrices:

D(1) = diag


1

3
2 (V ′)−2/3

3
2 (V ′)−2/3

1
1

 , D(2) = diag


(V ′)−1

(V ′)−5/3

(V ′)−5/3

A[
mi

〈
R2
〉
N ′]−1

 ,
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and the non-zero elements of the matrices K(1) - K(3), which contain the
transport coefficients, are given by, for j = 1, · · · , 5:

K
(1)
1j = −V ′Γj ,

K
(1)
2j = −V ′

(
qje + qji + 5

2
p
nΓj

)
,

K
(1)
3j = −V ′

(
qje + 5

2
pe
n Γj

)
,

K
(1)
4j = V jL ,

K
(1)
5j = ΓjΩ

K
(2)
32 = −V ′Γ/n,

K
(2)
33 = V ′Γ/n,

K
(3)
32 = (V ′)−2/3 τ−1

ei ,

K
(3)
33 = −2(V ′)−2/3 τ−1

ei ,

τ−1
ei = 3e2n

mi
η⊥.

The vector S contains the source terms:

S =


V ′ 〈Sn〉

VL
dK
dΦ + V ′ 〈Se〉

VL
dK
dΦ + V ′ 〈See〉

∂
∂ΦV

6
L

V ′ 〈SΩ〉

 .
Equation (7.25) is a non-linear one-dimensional vector diffusion equation.

Note that it is not purely parabolic since it contains both a first derivative
term and a zero derivative term. In many applications the non-parabolic terms
involving K(2) and K(3) may be dominant. Because the θ-implicit method is
unconditionally stable for linear parabolic and hyperbolic equations, it is nor-
mally the method of choice for numerical solution of this general form for
the equations. The θ-implicit method applied to the vector diffusion equation,
Eq. (7.25), using conservative centered differencing, leads to a block tridiago-
nal system of the form

Aj ·Yn+1
j+1 −Bj ·Yn+1

j + Cj ·Yn+1
j−1 = Dj . (7.26)

This is solved for the solution at the advanced time level Yn+1
j for j =

1, · · · , N − 1. Here Aj ,Bj and Cj are N × N matrices and Dj is an N vector.
These are defined at each mesh point j as follows:

Aj = θδt

[
1
δΦ2

K(1)

j+ 1
2

+
1

2δΦ
K(2)
j

]
·D(2)

j+1

Cj = θδt

[
1
δΦ2

K(1)

j− 1
2
− 1

2δΦ
K(2)
j

]
·D(2)

j−1

Bj = D(1)
j + θ

δt

δΦ2

[
K(1)

j+ 1
2

+ K(1)

j− 1
2

]
·D(2)

j − θδtK(3)
j

Dj = −D(1)
j ·Yn

j − δtS

− (1− θ) δt
{

1
δΦ2

[
K(1)

j+ 1
2

(
D(2)
j+1 ·Y

n
j+1 −D(2)

j ·Yn
j

)
− K(1)

j− 1
2

(
D(2)
j ·Yn

j −D(2)
j−1 ·Y

n
j−1

)]
+

1
2δΦ

K(2)
j

(
D(2)
j+1 ·Y

n
j+1 −D(2)

j−1 ·Y
n
j−1

)
+ K(3)

j ·Yn
j

}



Numerical Methods for Parabolic Equations 183

Equation (7.26) is solved by introducing the N × N matrices Ej and the N
vectors Fj and using the block tridiagonal method introduced in Section 3.3.3.

It should be noted that θ-implicit method, even for θ = 1, does not guar-
antee that non-linear instabilities will not occur or that the solution of the
non-linear equations will be accurate. Depending on the nature of the non-
linearities, techniques such as presented in Section 7.2.2 or some “predictor-
corrector” treatment may be needed for the non-linear terms. It has also been
found by several authors that if the convective terms, such as those involv-
ing K(2), are dominant, it may be better to treat those terms using “upwind
differencing,” such as described in Section 9.3. These modifications are still
compatible with the block tridiagonal structure of the equations.

It is normally also necessary to monitor the change in the solution from
time step to time step, and to adjust the time step so that the solution changes
only to within some tolerance from step to step. Repeating a step with a
smaller time step may sometimes be required.

7.3 Multiple Dimensions

There are some applications in which we desire to solve a parabolic equa-
tion in more than one spatial dimension. This would be the case, for example,
if one were solving the magnetic flux diffusion equations in real space, rather
than magnetic flux coordinates. The methods to be discussed here are also
applicable to the treatment of viscous terms in the momentum equation.

Let us then consider a model equation of the form

∂u

∂t
= σ∇2u, (7.27)

where ∇2 is the Laplacian operator in either two or three Cartesian coordi-
nates. The one-dimensional form of Eq. (7.27) is just Eq. (7.2). In one dimen-
sion, implicit difference equations for parabolic equations lead to tridiagonal
matrix equations that are readily solved. In two or more dimensions, these
matrix equations are no longer tridiagonal and, as is the case for elliptic equa-
tions in two or more dimensions, there are a variety of techniques for solving
them.

7.3.1 Explicit Methods

The forward-time centered-space (FTCS) and DuFort–Frankel explicit
methods discussed in Section 7.2.1 for one-dimensional equations have
straightforward generalization to 2D or 3D. For the (FTCS) method, we find
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that the stability condition in M dimensions becomes

δt ≤ δx2

2σM
, (7.28)

where we have assumed δx = δy = δz. The DuFort–Frankel method is
easily generalized and remains unconditionally stable. In 2D, with uj,k =
u(jδx, kδy), it is given by

un+1
j,k = un−1

j,k +
2σδt
δx2

[
unj+1,k −

(
un+1
j,k + un−1

j,k

)
+ unj−1,k

]
+

2σδt
δy2

[
unj,k+1 −

(
un+1
j,k + un−1

j,k

)
+ unj,k−1

]
.

7.3.2 Fully Implicit Methods

The θ-implicit (or Crank–Nicolson for θ = 1
2 ) method can be defined in

two dimensions as a straightforward generalization of Eq. (7.8). If δx = δy,
we have

un+1
j,k = unj,k + θ

σδt

δx2

[
un+1
j+1,k + un+1

j−1,k + un+1
j,k+1 + un+1

j,k−1 − 4un+1
j,k

]
+ (1− θ)

σδt

δx2

[
unj+1,k + unj−1,k + unj,k+1 + unj,k−1 − 4unj,k

]
. (7.29)

It is readily shown that this is unconditionally stable for θ ≥ 1
2 and second-

order accurate in space and time for θ = 1
2 , however, it requires solving a

sparse matrix equation each time step. If the matrix is not of a special form,
as considered in the next section, then one of the iterative methods discussed
in Sections 3.6 or 3.7 can be used. It should be kept in mind that the resulting
implicit method is only worthwhile if the number of iterations required to
solve the matrix equation to sufficient tolerance is less than the ratio of the
time step used to the explicit time step given by Eq. (7.28).

7.3.3 Semi-Implicit Method

The semi-implicit method is a technique for the implicit differencing of
Eq. (7.27) so that the difference equations can be solved using the fast Fourier
transform techniques of Section 3.8.2 even when σ is a function of position.
To implement the semi-implicit method, we first define a constant σo, which
is greater than or equal to σ/2 in Eq. (7.27) every place in the domain,

σ0 ≥
1
2
σ(x). (7.30)

We then rewrite Eq. (7.27) in the form

∂u

∂t
= σo∇2u+ (σ − σo)∇2u. (7.31)
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The first term on the right side is spatially differenced at the advanced time
(n+1), while the second term is differenced using the old time level n. In two
dimensions, the finite difference equation being considered is

un+1
j,k = unj,k +

δtσo
δx2

[
un+1
j+1,k + un+1

j−1,k + un+1
j,k+1 + un+1

j,k−1 − 4un+1
j,k

]
+

δt (σ − σo)
δx2

[
unj+1,k + unj−1,k + unj,k+1 + unj,k−1 − 4unj,k

]
. (7.32)

Equation (7.32) can be solved for the un+1
j,k using transform methods since

So = δtσo/ (δx)2 is a spatial constant. Von Neumann stability analysis shows
the method to be stable for σo ≥ σ/2, which is just the condition given in
Eq. (7.30).

The truncation error associated with the finite difference equation (7.32)
is given by

T∆ =
1
2
δt (2σo − σ)∇2 ∂u

∂t
+O

(
δt2
)

+O
(
δx2
)
· · · . (7.33)

We note that the first term, which is absent from the Crank–Nicolson method,
will dominate for either δt� δx2/σ or for σo � σ/2, so that one cannot make
σ0 arbitrarily large.

7.3.4 Fractional Steps or Splitting

There is an interesting class of methods known as alternating direction,
splitting, and fractional steps [135] that replace the solution of a compli-
cated multidimensional problem by a succession of simpler one-dimensional
problems. To illustrate the fractional step method, let us consider the time-
centered (θ = 1

2 ) Crank–Nicolson method in multiple dimensions. It is conve-
nient to define some new notation so that the Crank–Nicolson method applied
to Eq. (7.27) is given by

un+1 − un

δt
= σ

(
δ2x + δ2y + · · ·+ δ2q

) (
un+1 + un

)
2δx2

= − (A1 + · · ·+Aq)
(
un+1 + un

2

)
. (7.34)

Here δ2x = u (x+ δx)−2u (x)+u (x− δx), etc. are second difference operators,
and Ai = −σ/ (δx)2 δ2xi . The fractional step method replaces Eq. (7.34) by a
sequence of difference equations defined by

un+i/q − un+(i−1)/q

δt
= −Ai

un+i/q + un+(i−1)/q

2
(7.35)

for i = 1, ..., q. The time step between n and n+1 is broken up into fractional
values of size δt/q, where q is the number of spatial dimensions. To advance
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from one fractional time to the next, one need only invert a one-dimensional
implicit operator of the tridiagonal form.

The von Neumann stability amplification factor r for going from time level
n to level n + 1 is seen to be just the product of the amplification factors of
each of the 1D difference equations defined by Eq. (7.35) for fixed i. Since each
fractional operator is the same as the Crank–Nicolson operator evaluated in
Section 7.2.1, each amplification factor is always less than or equal to unity,
making the combined method unconditionally stable.

To examine the accuracy of Eq. (7.35), we rewrite it in the form(
I +

δt

2
Ai

)
un+i/q =

(
I − δt

2
Ai

)
un+(i−1)/q; i = 1, 2, · · · , q. (7.36)

Now if the operators Ai commute, as they do in our example, Eq. (7.36) is
equivalent to(

I +
δt

2
A1

)
· · ·
(
I +

δt

2
Aq

)
un+1 =

(
I − δt

2
A1

)
· · ·
(
I − δt

2
Aq

)
un.

Multiplying out gives

un+1 − un + δtA
un+1 + un

2

= − (δt)2

4
(A1A2 + · · ·+Aq−1Aq)

(
un−1 − un

)
+O

(
δt3
)
.

Since the left side is just the Crank–Nicolson operator, and since un+1 −
un ∼ δt, the truncation error is O

(
δt2
)
+O

(
δx2
)
. The split difference scheme

will therefore be second-order accurate if the split operators are commutable.
Otherwise, it is only first order accurate.

If the split operators A1 did not commute, the split scheme of only first or-
der accuracy can give second-order results in two cycles if the cycle is repeated
in the opposite direction. For every even n value, we replace Eq. (7.36) by the
equivalent method, but with i running backwards from q to 1. Examination
of the truncation error shows that the non-commutative terms would then
cancel.

7.3.5 Alternating Direction Implicit (ADI)

The fractional step method outlined in the last subsection was not meant
to be applied to steady-state problems because each of the fractional time
solutions un+1/q satisfy different equations, and none of them approximates
the steady-state equations. Even if the exact steady-state solution of a given
problem is substituted and used as the initial data, the fractional time step
method will generate solutions for different fractional steps which will not
quite settle down to a steady-state limit.
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The situation can be remedied by retaining at each fractional step the
derivative terms in the other directions, but evaluated at the previous or
otherwise known fractional time level. For example, for the two-dimensional
approximation to Eq. (7.27) we consider

un+ 1
2 − un =

1
2
σ

δt

(δx)2
[
δ2xu

n+ 1
2 + δ2yu

n
]
, (7.37)

un+1 − un+ 1
2 =

1
2
σ

δt

(δx)2
[
δ2xu

n+ 1
2 + δ2yu

n+1
]
. (7.38)

Each step in Eqs. (7.37) and (7.38) only involves inversion of a tridiagonal
matrix. The two fractional time steps constitute a cycle of the calculation
so that the amplification factor r is a product r = r′r′′ of two factors, one
coming from each equation. If θ1 and θ2 are the angles appearing from Fourier
transforming in the x and y directions and s = σδt/δx2 then the amplification
factors are given by

[1 + s (1− cos θ1)] r′ = 1− s (1− cos θ2) ,

[1 + s(1− cos θ2)]r′′ = 1− s(1− cos θ1),

and thus

r = r′r′′ =
[1− s(1− cos θ1)] · [1− s(1− cos θ2)]
[1 + s(1− cos θ1)] · [1 + s(1− cos θ2)]

.

Since s(1 − cos θ1,2) ≥ 0, r lies between 0 and 1, and unconditional stability
follows.

To find the order of accuracy of Eqs. (7.37) and (7.38), we subtract
Eq. (7.38) from Eq. (7.37) to give an expression for un+ 1

2 which is then sub-
stituted into the sum of the two equations to give

un+1 − un

δt
= σ

(
δ2x + δ2y

) (
un+1 + un

)
2δx2

− σ2δt
δ2xδ

2
y

(
un+1 − un

)
4δx4

.

The last term is O(δt2) and the other terms are centered as in the Crank–
Nicolson equation with θ = 1

2 . The truncation error is seen to be T∆ =
O(δt2) +O(δx2).

The ADI method is also useful for hyperbolic problems, especially for equa-
tion sets of mixed type. This is discussed in Section 9.5.2.

7.3.6 Douglas–Gunn Method

Unfortunately, the method described in the last section does not generalize
to three or more dimensions in a way that retains unconditional stability
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and second-order accuracy. However, a different method exists [136] which
does have these properties. This procedure is best described as a succession
of approximate solutions u∗, u∗∗ to the Crank–Nicolson difference equations.
The last of the sequence, u∗∗∗ for three dimensions, is simply renamed un+1

for use in the next cycle. The equations are

u∗ − un = s

[
1
2
δ2x (u∗ + un) + δ2yu

n + δ2zu
n

]
,

u∗∗ − un = s

[
1
2
δ2x (u∗ + un) +

1
2
δ2y (u∗∗ + un) + δ2zu

n

]
,

un+1 − un = s

[
1
2
δ2x (u∗ + un) +

1
2
δ2y (u∗∗ + un) +

1
2
δ2z
(
un+1 + un

)]
.

(7.39)

This method can be generalized in an obvious way to any number of space
variables. In the case of two variables x and y, it can be shown to be equivalent
to Eqs. (7.37) and (7.38), but in a modified form. Again, evaluation of un+1

consists only of solving a succession of tridiagonal linear systems.
The amplification factor for a complete cycle can be calculated to give

r =
1− a− b− c+ ab+ ac+ bc+ abc

(1 + a) (1 + b) (1 + c)
,

where a, b, c stand for s (1− cos θi), for i = 1, 2, 3. The denominator, when
multiplied out, contains exactly the same terms as the numerator, except that
the signs are all + so that again 0 ≤ r ≤ 1 and the method is uncondition-
ally stable. The exact prescription given by Eq. (7.39) must be followed to
guarantee unconditional stability. For example, if u∗ is replaced by u∗∗ in the
x-derivative term in the third line of Eq. (7.39) the method can be unstable.

The accuracy of Eq. (7.39) can be found by eliminating u∗ and u∗∗. The
result is

un+1 − un

δt
= σ

(
δ2x + δ2y + δ2z

) (
un+1 + un

)
2δx2

− σ2δt

(
δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z

) (
un+1 − un

)
4δx4

+ σ3δt2
δ2xδ

2
yδ

2
z

(
un+1 − un

)
8δx6

.

The total truncation error is therefore

T∆ = O(δt2) +O(δx2).

7.3.7 Anisotropic Diffusion

As has been previously discussed, the presence of a strong magnetic field
results in the heat conductivity being highly anisotropic. Chapter 6 discussed
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the method of constructing magnetic flux coordinates and performing flux
surface averaging, which is valid when the anisotropy ratio approaches infinity
and closed magnetic surfaces are present. Here we consider the fully two- or
three-dimensional treatment of strongly anisotropic heat conductivity when
one of the coordinates is not aligned with the magnetic field.

The method described here is due to Günter, et al. [137]. It is based on
the observation that symmetrically defining all components of the parallel
temperature gradient at the same points on a staggered grid with respect to
the temperatures dramatically improved the convergence behavior for large
anisotropy ratios. Consider now the temperature evolution equation in the
presence of anisotropic thermal conduction. Neglecting terms arising from
convection and compression heating, we have

3
2
n
∂

∂t
T = −∇ · q + S, (7.40)

where the heat flux vector is of the form

q = −n
[
χ‖bb + χ⊥ (I− bb)

]
· ∇T. (7.41)

Here, χ‖ and χ⊥ are the thermal conductivities parallel and perpendicular to
the direction of the magnetic field, b is a unit vector in the direction of the
magnetic field, and S represents a volumetric source term.

The temperature is defined on integer grid indices, Ti,j . The finite differ-
ence scheme involves first defining temperature gradients at staggered loca-
tions,

∂T

∂x

∣∣∣∣
i+ 1

2 ,j+
1
2

=
1

2δx
[(Ti+1,j+1 + Ti+1,j)− (Ti,j+1 + Ti,j)] , (7.42)

∂T

∂y

∣∣∣∣
i+ 1

2 ,j+
1
2

=
1

2δy
[(Ti+1,j+1 + Ti,j+1)− (Ti+1,j + Ti,j)] , (7.43)

and defining the parallel heat flux vector at these same locations as

q‖,x,i+ 1
2 ,j+

1
2

= −
(
nχ‖bx

)
i+ 1

2 ,j+
1
2

×

(
bx,i+ 1

2 ,j+
1
2
· ∂T
∂x

∣∣∣∣
i+ 1

2 ,j+
1
2

+ by,i+ 1
2 ,j+

1
2
· ∂T
∂y

∣∣∣∣
i+ 1

2 ,j+
1
2

)
,

q‖,y,i+ 1
2 ,j+

1
2

= −
(
nχ‖by

)
i+ 1

2 ,j+
1
2

×

(
bx,i+ 1

2 ,j+
1
2
· ∂T
∂x

∣∣∣∣
i+ 1

2 ,j+
1
2

+ by,i+ 1
2 ,j+

1
2
· ∂T
∂y

∣∣∣∣
i+ 1

2 ,j+
1
2

)
.
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The divergence of the parallel heat flux is then calculated as

∇ · q‖
∣∣
i,j

=
1

2δx

[(
q‖,x,i+ 1

2 ,j+
1
2

+ q‖,x,i+ 1
2 ,j−

1
2

)
−

(
q‖,x,i− 1

2 ,j+
1
2

+ q‖,x,i− 1
2 ,j−

1
2

)]
+

1
2δy

[(
q‖,y,i+ 1

2 ,j+
1
2

+ q‖,y,i− 1
2 ,j+

1
2

)
−

(
q‖,y,i+ 1

2 ,j−
1
2

+ q‖,y,i− 1
2 ,j−

1
2

)]
. (7.44)

This method of differencing is seen to be conservative and also to maintain
the self-adjointness of the operator ∇ · χ‖bb · ∇T . It is shown in [137] that
this method can provide accurate solutions for extreme anisotropic ratios of
χ‖/χ⊥ = 109 or higher.

While this technique, referred to as “the symmetric method,” is able to
handle large anisotropy ratios, it is shown in [138] that it does not strictly pre-
serve monotonicity and can lead to negative temperatures in some extreme
applications where very large temperature gradients suddenly appear. Mod-
ifications to this method have been proposed using slope limiters [138] that
cure the monotonicity problem, but which also destroy the desirable property
that the perpendicular numerical diffusion is independent of the anisotropy
ratio χ‖/χ⊥.

For large values of χ‖/χ⊥ , the spatial difference scheme defined by
Eqs. (7.40)–(7.44) is normally solved with a fully implicit method as dis-
cussed in Section 7.3.2 due to the time scale discrepancy implied by this ratio.
However, the next section discusses an alternative solution method that is less
computationally demanding.

7.3.8 Hybrid DuFort–Frankel/Implicit Method

A noteworthy hybrid time advance for the anisotropic diffusion equation
has recently been proposed [139, 140] and demonstrated. It is motivated by the
desire to reduce the size of the matrices compared to those of a fully implicit
solution of the anisotropic diffusion equations. The computational domain is
decomposed into Nx subdomains by introducing domain boundaries at various
coordinate values Xk, k = 1, 2, · · · , Nx as shown in Figure 7.4. For the grid
points that lie inside each of these boundaries, we apply a fully implicit BTCS
method as defined in Section 7.3.7, with the temperatures being defined at
the advanced level. Equations (7.42) and (7.43) become

∂T

∂x

∣∣∣∣
i+ 1

2 ,j+
1
2

=
1

2δx
[(
Tn+1
i+1,j+1 + Tn+1

i+1,j

)
−
(
Tn+1
i,j+1 + Tn+1

i,j

)]
,

∂T

∂y

∣∣∣∣
i+ 1

2 ,j+
1
2

=
1

2δy
[(
Tn+1
i+1,j+1 + Tn+1

i,j+1

)
−
(
Tn+1
i+1,j + Tn+1

i,j

)]
. (7.45)

However, at the subdomain boundaries, the heat fluxes are calculated using a
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X1 X2
i

j

FIGURE 7.4: In the hybrid DuFort–Frankel/implicit method, BTCS differ-
encing, Eq. (7.45), is used in the subdomain interiors, but DuFort–Frankel
differencing, Eqs. (7.46) and (7.47), are used on the subdomain boundaries.
The matrix equation for the new time level quantities then decomposes into
separate smaller matrices for each subdomain.

generalization of the DuFort–Frankel method which uses advanced time values
only along the domain boundaries. For example, if the index i is on a domain
boundary, we calculate the temperature gradients to the right of the boundary
as:

∂T

∂x

∣∣∣∣
i+ 1

2 ,j+
1
2

=
1

2δx
[(
Tni+1,j+1 + Tni+1,j

)
− 1

2
(
Tn+1
i,j+1 + Tn+1

i,j + Tn−1
i,j+1 + Tn−1

i,j

)]
,

∂T

∂y

∣∣∣∣
i+ 1

2 ,j+
1
2

=
1

2δy
[(
Tni+1,j+1 − Tni+1,j

)
+

1
2
(
Tn+1
i,j+1 − Tn+1

i,j + Tn−1
i,j+1 − Tn−1

i,j

)]
, (7.46)

and those to the left of the boundary as:

∂T

∂x

∣∣∣∣
i− 1

2 ,j+
1
2

=
1

2δx

[
1
2
(
Tn+1
i,j+1 + Tn+1

i,j + Tn−1
i,j+1 + Tn−1

i,j

)
−
(
Tni−1,j+1 + Tni−1,j

)]
,

∂T

∂y
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i− 1

2 ,j+
1
2

=
1

2δy

[
1
2
(
Tn+1
i,j+1 − Tn+1

i,j + Tn−1
i,j+1 − Tn−1

i,j

)
+
(
Tni−1,j+1 − Tni−1,j

)]
, (7.47)

etc. Once all the temperature gradients are defined adjacent to each domain
boundary using the generalized DuFort–Frankel differencing as per Eqs. (7.46)
and (7.47), we can compute the divergence of the heat flux using Eq. (7.44)
(and the corresponding expression for∇·q⊥). The temperatures on the domain



192 Computational Methods in Plasma Physics

boundaries can then be advanced to time level n + 1 using only time level n
values of the temperatures within the domains. The difference equations for
each of the domain boundaries will therefore be of tridiagonal form, coupling
together only the new time temperatures on the same domain boundary. Once
these temperatures are advanced to the new time levels, the solutions at the
subdomain boundaries will give the Dirichlet boundary conditions which are
applied for the implicit scheme in each of the the subdomain interiors. This
leads to smaller, decoupled matrix equations for the new time temperatures
in each of the subdomains.

It is shown in [140] that this hybrid method is unconditionally stable.
However, as for the standard DuFort–Frankel method, there is a time-step
constraint to avoid spurious oscillations of the solution. It is given by

δt <
(δx)l
χeff

√
NDF. (7.48)

Here, δx is the zone size, l is the spatial scale of the spurious oscillation that
is being excited, χeff is an effective heat conductivity perpendicular to the
boundaries of the subdomains, and NDF is the number of rows of zones within
each subdomain. (For a fixed total number of zones, the number of subdomains
scales like N−1

DF.) It is clear from this scaling that if one of the coordinates (the
x coordinate and i index in this example) lies nearly parallel to the magnetic
field, the method will provide the most benefit.

7.4 Summary

In one dimension, parabolic equations can be solved using the θ-implicit
algorithm without any significant performance penalty since the difference
equations are in the tridiagonal form. Strongly non-linear equations may re-
quire special treatment to obtain accurate solutions with large time steps,
but even iterative methods for converging the non-linear terms remain in
tridiagonal form and are thus not computationally expensive. In multiple di-
mensions, implicit methods lead to an “elliptic-like” equation which must be
solved each time step. Implicit methods in 2D or 3D are worthwhile as long
as the ratio of the work required in solving the implicit equations compared
to that required in solving the explicit equations is less than the ratio of time
step used in the implicit method to that used in the explicit method (for the
same accuracy). For Cartesian (or other orthogonal) coordinates, some type
of splitting method may be used. Anisotropic transport can be computed ac-
curately by first defining the “heat flux” vector in staggered zone locations.
The anisotropic equations normally need to be solved implicitly, but a hybrid
DuFort–Frankel/implicit method may offer some advantages.
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Problems

7.1: Consider the explicit second-order “leapfrog” centered-time centered-
space algorithm applied to the 1D diffusion problem.

un+1
j = un−1

j +
2δtσ
δx2

[
unj+1 − 2unj + unj−1

]
.

Use the von Neumann stability analysis method to show that the method is
unconditionally unstable.

7.2: The Lax–Friedrichs method applied to the 1D diffusion problem is

un+1
j =

1
2
(
unj+1 + unj−1

)
+
δtσ

δx2

[
unj+1 − 2unj + unj−1

]
.

Recall that this method was described in Section 2.5.2 as a means of stabilizing
the FTCS method for a hyperbolic problem. Use the von Neumann stability
analysis to show that the method is unconditionally unstable for the diffusion
equation.

7.3: Verify that the modified Crank–Nicolson method as defined by Eq. (7.12)
is second-order accurate in time, and that the amplification factor obeys
Eq. (7.13) in that limit.

7.4: Consider the non-linear diffusion equation in one-dimensional slab geom-
etry:

∂T

∂t
=

∂

∂x

[
χ
∂

∂x
T

]
,

where the thermal conductivity is proportional to the temperature gradient
raised to the power p, χ = χ0

(
∂T
∂x

)p
. Perform a linear analysis of the stability

of the BTCS method where the thermal conductivity term is evaluated at the
old time level, i.e.,

Tn+1 = Tn + δt
∂

∂x

[
χn

∂

∂x
Tn+1

]
. (7.49)

Assume the temperature is slightly perturbed from its equilibrium value, Tn =
T0 + T̃n, where T0 satisfies the steady-state equation ∂

∂x

[
χ0

∂
∂xT0

]
= 0 and

T̃ � T0. Let T̃n = rneikx. Show that for short wavelength perturbations, the
criteria for instability is

(p+ 1)
[
−2 + (p− 1)k2χδt

]
> 0. (7.50)

7.5 Consider the anisotropic diffusion equation in two dimensions with a co-
ordinate system that is aligned with the anisotropy:

∂T

∂t
= κx

∂2T

∂x2
+ κy

∂2T

∂y2
.
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Assume that κx � κy. (a) Write down a finite difference equation for this that
is implicit (BTCS) in the x direction and explicit (FTCS) in the y direction.
(b) Use von Neumann stability analysis to calculate the stability criteria. (c)
What are the leading order truncation errors?



Chapter 8

Methods of Ideal MHD Stability
Analysis

8.1 Introduction

In this and the following chapters we discuss methods for determining
the stability and subsequent evolution of configurations that deviate from the
equilibrium solutions discussed in Chapters 4, 5, and 6. We begin in this chap-
ter by discussing the theoretical basis for linear methods which are suitable
for computing the stability of small deviations from equilibrium using the
ideal MHD description of the plasma given in Section 1.2.3. It is shown that
a variational form is especially convenient for this. We then discuss special
theoretical techniques that have been developed for cylindrical and toroidal
geometry to enable efficient computation. In the following chapters we present
different computational techniques for solving the equations presented here in
both the linear and the non-linear regimes, and for extending the solutions to
include non-ideal effects.

8.2 Basic Equations

Here we are working with the ideal MHD equations as presented in Sec-
tion 1.2.3. We divide the configuration into two regions as illustrated in Fig-
ure 8.1. A plasma region is surrounded by either a vacuum region or by a pres-
sureless, currentless plasma region, which is in turn surrounded by a perfectly
conducting wall. We employ an Eulerian description, for which we summarize
the relevant equations.

8.2.1 Linearized Equations about Static Equilibrium

The linearized ideal MHD equations are found by looking for solutions
which deviate only infinitesimally from the equilibrium, and by keeping terms
only to first order in this small deviation. We take as equilibrium quantities

195
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vacuum or 
pressureless 
plasma

conducting wall

plasma

FIGURE 8.1: In ideal MHD, plasma is surrounded by either a vacuum region
or a pressureless plasma, which is in turn surrounded by a conducting wall.

the current density J0(x), the magnetic field B0(x), the pressure p0(x), and
the fluid velocity V0(x). These satisfy

J0 ×B0 = ∇p0, (8.1)
∇×B0 = µ0J0, (8.2)
∇ ·B0 = 0, (8.3)

V0 = 0. (8.4)

Equations (8.1) through (8.3) are equivalent to the Grad–Shafranov equa-
tion, Eq. (4.8), in axisymmetric toroidal geometry. Note that Eq. (8.4) is an
important restriction on the equilibrium being considered. We remove this
constraint in Section 8.2.5.

The quantities B,J, p, and v are decomposed into equilibrium and per-
turbed parts,

B(x, t) = B0(x) + B1(x, t),
J(x, t) = J0(x) + J1(x, t),
p(x, t) = p0(x) + p1(x, t),
v(x, t) = v1(x, t),

where the perturbed variables B1,J1, and p1 are much smaller than their
equilibrium parts. (From here on we drop the subscripts “0” from the equilib-
rium quantities.) It is customary to introduce a displacement field ξ(x, t) as
shown in Figure 8.2, which is just the displacement of a fluid element origi-
nally located at position x. If we take as initial conditions that the perturbed
quantities vanish at time zero,

ξ(x, 0) = B1(x, 0) = p1(x, 0) = 0,
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x
( , )x tξ

FIGURE 8.2: ξ(x, t) is the displacement field.

then the linearized ideal MHD equations for the pressure and magnetic field
can be integrated once in time to take the form

p1 = −ξ · ∇p− γp∇ · ξ, (8.5)
B1 = ∇× (ξ ×B). (8.6)

The perturbed current density follows from Eq. (1.26),

J1 =
1
µ0
∇×B1. (8.7)

The linearized momentum equation then becomes

ρ0 ·
∂2ξ

∂t2
= J×B1 + J1 ×B−∇p1,

or

ρ0
∂2ξ

∂t2
= F{ξ}. (8.8)

Here, we have introduced the ideal MHD linear force operator, given by [141]

F(ξ) =
1
µ0

[(∇×B)×Q + (∇×Q)×B] +∇(ξ · ∇p+ γp∇ · ξ), (8.9)

and the perturbed magnetic field in the plasma

Q(x, t) ≡ B1(x, t) = ∇× (ξ ×B). (8.10)

Equation (8.8) is known as the linear equation of motion for an ideal MHD
plasma. Note that only the equilibrium density, ρ0, appears so there is no need
to include an evolution equation for the linearized density in the absence of
equilibrium flow.

The equations for the magnetic field in the vacuum are already linear. If
we denote the perturbed field in the vacuum as Q̂, then these become

∇× Q̂ = 0,
∇ · Q̂ = 0.
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x

( , )x x tξ+

unperturbed

perturbed

FIGURE 8.3: The physical boundary conditions are applied at the per-
turbed boundary, which is related to the unperturbed boundary through the
displacement field ξ(x, t).

The pressure balance boundary condition, Eq. (1.77), simplifies to[[
p+

1
2µ0

B2

]]
= 0.

This is applied to the perturbed values at the perturbed plasma-vacuum in-
terface as shown in Figure 8.3. If we denote the vacuum equilibrium field by
B̂, we have the matching condition at the plasma-vacuum boundary:

p1 (x + ξ, t) +
1
µ0

B ·Q (x + ξ, t) =
1
µ0

B̂ · Q̂ (x + ξ, t) .

Letting p1 (x + ξ, t) = p1 + ξ · ∇p, etc. and substituting from Eq. (8.5), we
have

−γp∇ · ξ +
1
µ0

B ·Q +
1

2µ0
ξ · ∇B2 =

1
µ0

B̂ · Q̂ +
1

2µ0
ξ · ∇B̂2. (8.11)

Equation (8.11) is to be applied at the unperturbed boundary.
Note that we have denoted the boundary equilibrium magnetic field in the

plasma as B and that in the vacuum as B̂. If these are not equal, it implies
that there is an infinitesimally thin “surface current” present in the equilib-
rium. While an equilibrium with surface currents is mathematically allowable
and sometimes useful for analytic studies, it is not physical and normally
not allowed in computational studies. For the remainder of this chapter we
will assume that there are no equilibrium surface currents. This implies that
the equilibrium plasma and vacuum fields are equal on the plasma/vacuum
boundary, B = B̂, and furthermore that the equilibrium pressure p = 0 at the
boundary. With these assumptions and using the pressure balance condition
on the equilibrium fields, together with Eq. (8.5) for the perturbed pressure,
Eq. (8.11) reduces to a boundary condition on the total perturbed pressure
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at the unperturbed boundary,

p1 +
1
µ0

B ·Q =
1
µ0

B · Q̂. (8.12)

The remaining boundary condition at the plasma-vacuum interface is the
continuity of the normal component of the magnetic field at the perturbed
boundary. Let n̂ be a unit vector oriented so as to be perpendicular to the
tangent of the equilibrium boundary curve. The requirement that the normal
field be continuous can be shown to be equivalent to the following condition
evaluated at the unperturbed boundary:

n̂ · Q̂ = n̂ · ∇ ×
(
ξ × B̂

)
.

Again, if there are no equilibrium surface currents, this becomes simply

n̂ · Q̂ = n̂ · ∇ × (ξ ×B) . (8.13)

8.2.2 Methods of Stability Analysis

There are two distinctly different methods for studying the stability of the
system described by Eq. (8.8). These are the initial value approach and the
normal modes approach.

(i) Initial Value Approach
The most straightforward method of analyzing Eq. (8.8) is to specify initial
conditions ξ(x, 0), ∂ξ(x, 0)/∂t and the boundary conditions on ξ, and to in-
tegrate Eq. (8.8) forward in time as an initial value problem. This has the
advantage of being physical and closely modeling the evolution of the phys-
ical system for small departures from equilibrium. It also has the advantage
that it easily extends to non-linear equations and non-ideal effects and is, in
fact, the method overwhelmingly used in non-linear analysis. The disadvan-
tage of this approach is that it can only find the most unstable mode as this
will grow up exponentially and quickly dominate the solution.

(ii) Normal Modes Approach
In this approach, we look for separable eigenmode solutions. If we assume time
dependence

ξ(x, t) = ξ(x)e−iωt,

then Eq. (8.8) takes the time-independent form

−ρ0ω
2ξ(x) = F(ξ). (8.14)

This is an eigenvalue equation for the frequency ω2. Eq. (8.14) needs only
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boundary conditions to define a problem. Its advantages are that it is efficient
numerically and can be amenable to analysis. The disadvantages of this ap-
proach is that it is strictly linear, and that it requires the eigenvalues to be
discrete and distinguishable.

Some stability studies start directly from Eq. (8.14), which, like Eq. (8.8),
is often referred to as “the equation of motion.” However, since the operator F
in ideal MHD without equilibrium flow is self-adjoint, a variational statement
of Eq. (8.14) is possible and offers many advantages over a direct solution.
This is discussed in the following sections.

8.2.3 Self-Adjointness of F

It can be proven by explicit calculation [142] that for any two vector fields
η(x) and ξ(x) that satisfy the boundary conditions,∫

dτη · F(ξ) =
∫
dτξ · F(η), (8.15)

where the integral is over the plasma volume. This property is called self-
adjointness. It has several consequences which we now discuss.

(i) The eigenvalues of F are real
To prove this we subtract the inner product of ξ∗(x), the complex conjugate
of ξ(x), with Eq. (8.14) from the inner product of ξ(x) with the complex
conjugate of Eq. (8.14) to obtain

(ω2 − ω∗2)ρ0

∫
|ξ|2dτ = −

∫
dτ [ξ∗ · F(ξ)− ξ · F(ξ∗)] = 0,

where we used Eq. (8.15). It follows that

ω2 = ω∗2

or, in words, that ω2 is purely real. This is an important feature which we
make much use of. It greatly simplifies the process of finding roots or searching
for eigenvalues since it allows one to search only on the real axis, and it tells
us that mode crossings from stable to unstable behavior always occur at the
origin in the ω2 plane.

(ii) Orthogonality
Suppose ξn is an eigenvector of the operator F with eigenvalue ω2

n and ξm is
an eigenvector with eigenvalue of ω2

m. We subtract∫
dτξ∗m ·

[
−ρ0ω

2
nξn = F(ξn)

]
from ∫

dτξn ·
[
−ρ0ω

2
mξ∗m = F(ξ∗m)

]
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to obtain

ρ0

(
ω2
n − ω2

m

) ∫
dτξ∗m · ξn = 0.

This implies that the inner product of ξm and ξn is zero, or that the eigen-
functions are orthogonal, if ω2

n and ω2
m are different.

(iii) Completeness
If we restrict ourselves to physical solutions ξ that are square integrable, that
is
∫
dτ |ξ|2 is finite, then it can be shown that F has a complete set of eigen-

functions ξn with eigenvalues ω2
n [143, 144, 145]. It follows that any square

integrable displacement field ξ can be represented as a linear combination of
the ξn,

ξ =
∞∑
n=0

anξn.

However, there is a complication due to the existence of the continuous
spectrum. These are bands of “improper eigenvalues” for which the eigenvalue
equation is solved, but not by square integrable functions. We can understand
these further by classifying solutions according to the spectral properties of
the operator F.

8.2.4 Spectral Properties of F

Suppose there is a time periodic forcing term S so that the equation of
motion, Eq. (8.14), becomes

(− F
ρ0
− ω2)ξ = S.

We look for solutions which are formally denoted by

ξ =
(
− F
ρ0
− ω2

)−1

S.

There are three possibilities which we consider [146, 147, 148].

(i) The operator (−F/ρ0 − ω2)−1 does not exist because(
− F
ρ0
− ω2

)
ξ = 0.

In this case, ω2 belongs to the discrete spectrum of F and the displacement
vector ξ is a square integrable eigenfunction of the operator.

(ii) The operator (−F/ρ0−ω2)−1 exists, but is unbounded. This implies that
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FIGURE 8.4: A typical ideal MHD spectrum.

the displacement vector ξ is not square integrable, even though the forcing
function S is. Since this normally occurs for a range of ω2 values for which
a resonance condition is met, in this case we say that ω2 belongs to the
continuous spectrum of F.

(iii) The operator (−F/ρ0−ω2)−1 exists and is bounded. Here, ω2 belongs to
the resolvent set of F.

We illustrate a typical, although simplified, ideal MHD spectrum in Fig-
ure 8.4. In a low-β magnetized plasma, the spectrum largely separates into
subsets associated with the three wave types identified in Chapter 1. Both the
sound (or slow magnetoacoustic) wave and the shear Alfvén wave have con-
tinuous bands associated with them. This is explored more in Section 8.4.1 for
cylindrical geometry and in Section 8.5.1 for toroidal geometry. In cylindrical
geometry, there may also be a small number of discrete stable or unstable
modes that are shear Alfvén oscillations modified by gradients in the back-
ground pressure and current profiles.

In toroidal geometry, the shear Alfvén continuous spectrum can break
up into several bands, and discrete, global, toroidicity-induced shear Alfvén
eigenmodes (TAE modes) can exist with frequencies that lie in the gaps be-
tween the bands [149]. The spectrum becomes even more complex in fully
three-dimensional equilibrium such as in stellarators [150].

The fast magnetoacoustic wave is associated with the high frequency dis-
crete band of stable oscillations as shown in the figure. The exact details will,
of course, depend on the configuration being analyzed.

The continuum modes often present a practical problem when trying to
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solve numerically for the discrete spectrum. A truncated numerical basis may
make these appear to be finite, when in reality they are not. The discrete
TAE and other modes that appear in the gaps between the bands of the the
shear Alfvén continuous spectrum have special physical importance because
instabilities can occur when these modes resonate with an energetic particle
population that may be present [151, 152, 153].

8.2.5 Linearized Equations with Equilibrium Flow

In the presence of equilibrium plasma flow it is still possible to formulate a
linear stability problem by linearizing about this equilibrium. In analogy with
Eqs. (8.1)–(8.4) we take as equilibrium quantities J0(x), B0(x), p0(x), V0(x),
which now must satisfy

ρ0V0 · ∇V0 = −∇p0 + J0 ×B0,

∇×B0 = µ0J0,

∇ ·B0 = 0,
∇ · (ρ0V0) = 0,

∇× (V0 ×B0) = 0,
V0 · ∇

(
p0ρ

−γ
0

)
= 0.

We again linearize the ideal MHD equations, Eqs. (1.60)–(1.63), now in the
presence of an equilibrium flow field V0. Again, dropping the subscript “0”
from the equilibrium quantities, and introducing the linear perturbed velocity
field v1(x) and linear perturbed density ρ1(x), we obtain [154]:

∂ρ1

∂t
+∇ · ρ1V +∇ · ρv1 = 0, (8.16)

∂B1

∂t
= ∇× (v1 ×B + V ×B1), (8.17)

∂p1

∂t
+ v1 · ∇p+ V · ∇p1 + γp1∇ ·V + γp∇ · v1 = 0, (8.18)

ρ
∂v1

∂t
+ ρ1V · ∇V + ρv1 · ∇V + ρV · ∇v1

+∇p1 = J1 ×B + J×B1. (8.19)

The linear perturbed current density is again given by J1 ≡ µ−1
o ∇×B1.

We introduce the displacement field ξ(x, t) that represents the infinitesimal
displacement relative to a location that is moving with the equilibrium velocity
V(x). By equating the velocity of an element displaced a distance ξ from a
point moving with the equilibrium velocity, as viewed in the fixed Eulerian
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frame, with the velocity of the fluid element as viewed in a Lagrangian frame
moving with the element, and then transforming the time derivative back to
the fixed Eulerian frame, we obtain the relation between v1 and ξ [155, 156]:

v1 + ξ · ∇V =
∂ξ

∂t
+ V · ∇ξ. (8.20)

Taking the time dependence as exp(−iωt) and insertion of Eq. (8.20) into
Eqs. (8.16)–(8.18) gives expressions for the perturbed density, magnetic field,
and pressure:

ρ1 = −∇ · (ρξ), (8.21)
B1 = ∇× (ξ ×B) . (8.22)

p1 = −ξ · ∇p− γp∇ · ξ, (8.23)

These are seen to be the same as the relations that hold without flow. Using
Eqs. (8.20) and (8.21) in Eq. (8.19) yields the generalization of the equation
of motion

−ω2ρξ − 2iωρ (V · ∇ξ) = F(ξ) +∇ · (ξK)− ρ (V · ∇)2 ξ, (8.24)

where K = ρV·∇V and F is defined in Eq. (8.9). Since the eigenvalue ω enters
non-linearly in Eq. (8.24), it is convenient to break it into two equations, in
each of which ω appears only linearly. We can introduce a new variable u, and
write [156]

ωρξ = −iρV · ∇ξ + ρu,

ωρu = −F(ξ)−∇ · (ξK)− iρV · ∇u. (8.25)

This system is no longer self-adjoint and cannot be solved by the variational
methods described in the next section, but the normal mode equations can be
solved directly [157].

8.3 Variational Forms

Variational forms play a central role in the evaluation of linear ideal MHD
stability. We first discuss the basic concepts, and then go on to use the prop-
erties of the variational form to simplify the evaluation of ideal MHD stability
in both cylindrical and toroidal geometry.

8.3.1 Rayleigh Variational Principle

Let us define the quantity δW which is the change in potential energy due
to a perturbation

δW (ξ∗, ξ) = −1
2

∫
dτξ∗ · F(ξ). (8.26)
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Let us also define the quantity K such that ω2K is the kinetic energy

K(ξ∗, ξ) =
1
2

∫
dτρ|ξ|2. (8.27)

Consider now the functional Ω2, known as the Rayleigh quotient,

Ω2(ξ∗, ξ) ≡ δW (ξ∗, ξ)
K(ξ∗, ξ)

. (8.28)

The Rayleigh variational principle says that any allowable function ξ (and ξ∗)
for which Ω2 becomes stationary is an eigenfunction of the ideal MHD normal
mode equations with eigenvalue

ω2 = Ω2(ξ∗, ξ). (8.29)

To prove this, consider the variation

δ
[
Ω2
]

=
δ [δW ]
K

− δWδ[K]
K2

=
1
K

[
δ[δW ]− Ω2δ[K]

]
= − 1

2K

∫
dτ

{
δξ∗ ·

[
F(ξ) + ρΩ2ξ

]
+ δξ ·

[
F(ξ∗) + ρΩ2ξ∗

]}
= 0. (8.30)

Here use was made of the self-adjointness property of F. Since the functions
δξ∗ and δξ are arbitrary variations, for the variation of Ω2 to vanish, we must
have

F(ξ) = −ρΩ2ξ. (8.31)

This completes the proof that Ω2(ξ, ξ∗) is stationary when ξ is an eigenfunc-
tion of F(ξ), at which point it is equal to the frequency ω2. It is also possible to
prove that the most negative stationary value of Ω2 corresponds to a minimum
in δW [158].

8.3.2 Energy Principle

The energy principle [141, 159] states that there is an instability if, and
only if, there exists a vector field η(x) that satisfies the boundary conditions,
and such that

δW (η∗,η) < 0. (8.32)

It follows that for a given vector field η, Eq. (8.32) is sufficient to show insta-
bility.
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One can thus investigate the stability of a system by looking at the sign
of δW for various trial functions η without ever solving for the eigenfunc-
tions ξ(x). Noting that since K is positive definite, it follows from Rayleigh’s
principle that an actual eigenvalue ω2 must exist such that

ω2 ≤ δW (η∗,η)
K(η∗,η)

,

so that the actual system will always be more unstable than that found with
the trial function.

The existence of the energy principle provides insight into the significance
of the different terms in δW . In particular, positive definite terms will always
be stabilizing. Terms which can be negative will in general be destabilizing.
The minimizing vector field η then tries to make the destabilizing terms neg-
ative without making the positive definite terms more positive to offset. Note
that it follows from Rayleigh’s principle that if the trial function η is within
some small distance ε of the actual eigenfunction, ξ, so that (η− ξ) ∼ ε, then
since we are near a stationary point, the eigenvalue ω2 will be correct to order
ε2.

The energy principle forms the basis for most linear ideal MHD numeri-
cal stability codes such as PEST [160] and ERATO [161]. Suppose we have
a truncated set of basis functions (ξn;n = 0, 1, · · · , N). We can form trial
functions ξ by taking linear combinations of these

ξ =
N∑
n=0

anξn. (8.33)

We can then evaluate δW as a quadratic form

δW =
N∑
n=0

N∑
m=0

Anmaman, (8.34)

where

Anm = δW (ξm, ξn).

We can then minimize Eq. (8.34), subject to any convenient normalization,
with respect to the amplitudes an. This leads to a matrix equation for the set
of an which define a minimizing trial function through Eq. (8.33).

8.3.3 Proof of the Energy Principle

Here we consider a proof of the assertion that a system is unstable if,
and only if, there exists some displacement ξ which makes δW negative. The
proof which we quote is from Bernstein et al. [141]. It has more recently been
shown to be flawed because it doesn’t treat the continuum eigenfunctions
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correctly, but it is simple and intuitive. A mathematically correct proof, based
on conservation of energy, is given by Laval [158].

The Bernstein et al. proof assumes that the eigenfunctions of F, ξn, form
a complete set for any functions which satisfy the boundary conditions. Let ξ
be a displacement which satisfies the boundary conditions, and which makes
δW negative. By completeness, we can expand ξ in the ξn,

ξ =
∞∑
n=0

anξn.

Now, we can compute

δW = −1
2

∞∑
n=0

∞∑
m=0

a∗nam

∫
dτξn · F(ξm),

=
1
2
ρ

∞∑
n=0

|an|2ω2
n, (8.35)

where we used the orthonormality of the eigenfunctions. It therefore follows
from Eq. (8.35) that δW can be made negative if, and only if, there exists at
least one negative eigenvalue ω2

n.

8.3.4 Extended Energy Principle

By starting from Eq. (8.9) and using simple vector identities, one can
obtain

−ξ∗ · F(ξ) = − ξ∗ · J×Q +
1
µ0
|Q|2 + (∇ · ξ∗) (ξ · ∇p+ γp∇ · ξ)

+ ∇ ·
[

1
µ0

Q× (ξ∗ ×B)− ξ∗ (ξ · ∇p+ γp∇ · ξ)
]
.

We can therefore write

δW = δWf +BT,

where

δWf =
1
2

∫
dτ

[
1
µ0
|Q|2 − ξ∗ · J×Q + γp|∇ · ξ|2 + (∇ · ξ∗ ) ξ · ∇p

]
.

(8.36)

By using Eq. (8.11), the boundary term can be shown to be

BT = δWs +
1

2µ0

∫
s

dS (n̂ · ξ∗⊥) B̂ · Q̂, (8.37)
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where

δWs =
1
2

∫
dS|n̂ · ξ|2n̂ ·

[[
∇(p+

1
2µ0

B2)
]]
. (8.38)

The double bracket indicates the jump (or discontinuity) in the equilibrium
quantities across the plasma/vacuum interface. It vanishes unless the equilib-
rium has surface currents which, as per the discussion preceding Eq. (8.12),
will not be considered further here. The final integral in Eq. (8.37) is the
perturbed magnetic energy in the vacuum. It can be written as

δWv =
1

2µ0

∫
dS (n̂ · ξ∗⊥) B̂ · Q̂ (8.39)

=
1

2µ0

∫
v

dτ |Q̂|2. (8.40)

The last step follows from the fact that in the vacuum, we can write Q̂ =
∇×A, where ∇×∇×A = 0. It follows from Eq. (8.40) that

δWv =
1

2µ0

∫
v

dτ (∇×A∗) · ∇ ×A

= − 1
2µ0

∫
s

dSn̂ ·A∗ × Q̂.

Note the minus sign because we are using the normal that points outward
from the plasma region. Now, using the boundary condition, Eq. (8.13), in
the form A∗ = ξ∗ × B̂, we obtain Eq. (8.39).

We can now summarize the extended energy principle. We define the quan-
tity

δW = δWf + δWs + δWv (8.41)

where δWf , δWs, and δWv are defined by Eq. (8.36), (8.38), and (8.40). In the
vacuum, the vector field Q̂ satisfies ∇× Q̂ = 0 and ∇ · Q̂ = 0, with boundary
conditions

n̂ · Q̂|wall = 0

n̂ · Q̂|p/v = n̂ · ∇ ×
(
ξ × B̂

)
For stability, one must show that δW ≥ 0 for all allowable perturbations ξ.
Note that in the application of the extended energy principle, one need not
impose the pressure balance condition across the plasma vacuum interface,
Eq. (8.12), as it has already been incorporated into the formulation.

8.3.5 Useful Identities

There are a number of mathematical identities that follow from Eq. (8.1)
and (8.2) that can be used to rewrite δWf in more useful and intuitive forms.
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(i) Curvature vector of the magnetic field
Consider the curvature vector

κ ≡ b · ∇b, (8.42)

where b = B/|B| is a unit vector in the direction of the magnetic field.
The vector κ is of length |κ| = 1/Rc and points toward the center of a
locally tangent circle of radius Rc. Using the vector identity A × (∇×A) =
1
2∇A2 −A · ∇A and noting that ∇b2 = 0, we have

κ = (∇× b)× b.

Writing the equilibrium magnetic field as B = Bb, and the current density as
J = µ−1

0 ∇×Bb, the equilibrium equation, Eq. (8.1), can then be written

κ =
1
B2
∇⊥

[
µ0p+

1
2
B2

]
, (8.43)

where we have dropped the subscript 0 from the equilibrium quantities. Here,
and elsewhere, the subscript ⊥ indicates “perpendicular to the magnetic field.”

Since κ · B = 0, it is often useful to project the curvature onto its two
non-zero directions. If we utilize the straight field line coordinate system of
Section 5.4.1, we can write the magnetic field in the form B = s×∇Ψ, where
s = ∇φ− q∇θ. A convenient form for the curvature vector is then

κ = − (κψ∇Ψ + κss) . (8.44)

Here, the normal and geodesic curvatures are defined, respectively, as

κψ ≡ κ · s×B
B2

, κs ≡ κ · B×∇Ψ
B2

.

It is also sometimes useful to project the curvature vector onto the reciprocal
basis,

κ = κψ
B× s
B2

+ κs
∇Ψ×B
B2

, (8.45)

where κψ ≡ κ · ∇Ψ and κs ≡ κ · s.

(ii) Divergence of ξ
We decompose the plasma displacement vector ξ into its components par-

allel to and perpendicular to the magnetic field,

ξ = ξ‖ + ξ⊥

=
(ξ ·B)B
B2

+
B× (ξ ×B)

B2
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Consider now the divergence of the parallel part,

∇ · ξ‖ = B · ∇
(

ξ ·B
B2

)
, (8.46)

and of the perpendicular part,

∇ · ξ⊥ =
1
B2

[ξ ×B · ∇ ×B−B · ∇ × (ξ ×B)] + B× (ξ ×B) · ∇ 1
B2

,

=
−1
B2

[
Q ·B + ξ · ∇⊥

(
µ0p+B2

)]
,

=
−1
B2

[Q ·B− µ0ξ · ∇⊥p]− 2ξ · κ. (8.47)

(iii) Normal Component of Perturbed Magnetic Field
Consider the inner product of the equilibrium pressure and the perturbed

magnetic field

Q · ∇p = [∇× (ξ ×B)] · ∇p
= ∇ · [(ξ ×B)×∇p]
= B · ∇ (ξ · ∇p) . (8.48)

Since p could have been any flux function for the derivation of this identity,
we have shown that the normal component of the perturbed magnetic field
is proportional to the variation along B of the normal component of the dis-
placement.

8.3.6 Physical Significance of Terms in δWf

By using the identities in the last section, we can write δWf , Eq. (8.36),
as follows:

δWf =
1
2

∫
dτ

[
1
µ0

Q2
⊥ +

1
µ0
B2 [∇ · ξ⊥ + 2ξ⊥ · κ]2

+ γp|∇ · ξ|2 − 2 (ξ⊥ · ∇p) (κ · ξ⊥)− σξ⊥ ×B ·Q⊥
]
. (8.49)

Here, we have introduced the normalized parallel current,

σ ≡ J ·B
B2

. (8.50)

In deriving Eq. (8.49) we have used the fact that terms of the form B ·∇a, for
any single-valued scalar a, integrate to zero when integrated over the plasma
volume. Each of the terms in this equation has a physical interpretation which
we now discuss.
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(i) Shear Alfvén wave term: 1
µ0

Q2
⊥

This is the energy necessary to bend the magnetic field lines. It is always
stabilizing, and is the dominant potential energy contribution to the shear
Alfvén waves.

(ii) Fast magnetoacoustic wave term: 1
µ0
B2 [∇ · ξ⊥ + 2ξ⊥ · κ]2

This is the energy necessary to compress the magnetic field lines. It is al-
ways stabilizing, and is the dominant potential energy for compressional
fast magnetosonic waves. Note that if a pure toroidal field were present,
so that κ = −R̂/R in cylindrical coordinates, this would be equivalent to
B2
[
R2∇ ·

(
ξ⊥/R

2
)]2.

(iii) Sound (slow magnetoacoustic) wave term: γp|∇ · ξ|2
This is the energy required to compress the plasma (not the magnetic field).
It is always stabilizing and is the potential energy for the slow magnetosonic
(sound) waves. Note that it is the only term that contains the parallel dis-
placement ξ‖. This is consistent with the discussion of the three wave types
following Eq. (1.96).

(iv) Interchange instability term: −2 (ξ⊥ · ∇p) (κ · ξ⊥)
This term is not positive definite and therefore contributes to MHD instabil-
ities. When this term is dominant, we have an interchange instability. Note
that when ∇p and κ are parallel, this term is destabilizing. We call this bad
curvature. Anytime that ∇p and κ are not parallel, it is possible to find a
displacement ξ that makes this term destabilizing.

(v) Kink instability term: −σξ⊥ ×B ·Q⊥
This term is not positive definite and is proportional to the parallel current.
When this term is dominant, we have a kink instability. We see from the
definition of Q, Eq. (8.10), that this term is proportional to the scalar product
of a vector field ξ⊥ ×B and its curl. It is a measure of the twist of the vector
field.

8.3.7 Comparison Theorem

Let us compare the perturbed energy in two configurations: I. A plasma
region surrounded by a vacuum region, and II. The same plasma region, but
surrounded by a currentless pressureless plasma which occupies the same re-
gion as the vacuum in configuration I. The terms in the energy principle are
the same, except for the one in the surrounding region. In configuration I it
is:

δWV =
1
2

∫
dτ |∇ ×A|2 , (8.51)
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whereas in configuration II, we see from Eq. (8.36) that it is:

δWPP =
1
2

∫
dτ |∇ × (ξ ×B)|2 . (8.52)

Here, A is the magnetic vector potential in the vacuum region, and ξ is the
plasma displacement in the region with zero equilibrium pressure or current.
Since ξ ×B and A satisfy the same boundary conditions, and the same min-
imization conditions, if you find that configuration II is unstable, then con-
figuration I will also be unstable, since you can just set A = ξ × B and the
energy terms will be the same.

However, the converse is not true. Say that you find the field Q̂ = ∇×A
that minimizes the integral in configuration I, and you want to find the corre-
sponding displacement field ξ for configuration II. Consider the∇ψ component
of the following equation:

∇× (ξ ×B) = Q̂

∇ψ · ∇ × (ξ ×B) = ∇ψ · Q̂
B · ∇ (ξ · ∇ψ) = ∇ψ · Q̂. (8.53)

It is seen that in order to solve for the ∇ψ component of the displacement,
you must invert the operator B · ∇.

We saw in Section 5.4.1 that if we define the poloidal angle θ appropriately
we can form a straight field line coordinate system (ψ, θ, φ). If we Fourier
analyze in these coordinates, the (m,n)th harmonic of the displacement varies
like

ξ · ∇ψ = ξ
(m,n)
ψ (ψ)ei(mθ−nφ).

Applying the result from Eq. (5.45) to Eq. (8.53) for this harmonic gives the
relation

Ψ′

J
i [m− nq(ψ)] ξ(m,n)

ψ = ∇ψ · Q̂(m,n). (8.54)

Since this operator vanishes at the rational magnetic surface where q = m/n,
this equation cannot be solved for the displacement harmonic ξ(m,n)

ψ there
and hence one cannot find the same minimizing field that was found for the
vacuum case. We can thus say that the configurations surrounded by the
vacuum region and the pressureless, currentless plasma region will have the
same stability properties unless there is a rational surface in the region, and
then the configuration surrounded by the vacuum region will be more unstable.
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8.4 Cylindrical Geometry

Many calculations are performed in periodic “straight” circular cylindrical
geometry for simplicity. If we impose periodic boundary conditions in z at
[0, 2πR], this geometry has the same periodicity properties as a torus of major
radius R. We employ normal cylindrical coordinates (r, θ, z); see Figure 8.5.
A circular cross section equilibrium is described by the equilibrium fields Bθ
and Bz, the total field B2 = B2

θ +B2
z , and by the pressure p, which are related

by the equilibrium condition

dp

dr
+
Bz
µ0

dBz
dr

+
Bθ
µ0r

d

dr
(rBθ) = 0.

We decompose the displacement vector into components in cylindrical co-
ordinates, and Fourier analyze in θ and z such that

ξ =
[
ξr(r)r̂ + ξθ(r)θ̂ + ξz(r)ẑ

]
ei(mθ−kz).

The primary simplification of the cylinder over the torus comes because the
equilibrium depends only on the single coordinate r. This implies that all the
linear modes with a given m and k value are uncoupled and can be examined
separately.

Note that in the analogy with a torus, we would define the effective toroidal
mode number n and safety factor q in this geometry as:

n = kR, (8.55)

q(r) =
rBz
RBθ

. (8.56)

(Recall that R is just a constant that appears in the periodicity length of
the cylinder as can be seen in Figure 8.5.) The safety factor can also be
expressed in terms of the total longitudinal current interior to radius r, Ip(r).
Since Ampere’s law can be integrated in this geometry to give the relation
2πrBθ = µ0Ip, we have the alternate expression

q(r) =
2πr2Bz
µ0RIp

. (8.57)

The value of the safety factor on axis, r = 0, can be seen to be related to the
longitudinal current density on axis, J0, by

q(0) =
2Bz
µ0RJ0

. (8.58)
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r

z

θ

FIGURE 8.5: Straight circular cylindrical geometry with periodicity length
2πR.

8.4.1 Eigenmode Equations and Continuous Spectra

To better understand the structure of the linear ideal MHD equations in
the cylinder, in this section we take the time dependence to be e−iωt. Five
of the equations satisfied by the Fourier transforms of the quantities p1,Q, ξ,
Eqs. (8.5), (8.6), and (8.8), become algebraic equations. These can be used to
eliminate the variables ξθ,ξz, and Q in favor of ξr and p1. By introducing a
new quantity, the perturbed fluid plus magnetic pressure P = p1 + Q ·B/µ0,
one obtains the following system of two first-order equations:

D
d

dr
(rξr) = C1rξr − rC2P, (8.59)

D
d

dr
P =

1
r
C3rξr − C1P. (8.60)

Here,

D =
(
ρω2 − F 2

µ0

)[
ρω2

(
γp+

B2

µ0

)
− γp

F 2

µ0

]
,

C1 =
2Bθ
µ0r

{
ρ2ω4Bθ −

m

r
F

[
ρω2

(
γp+

B2

µ0

)
− γp

F 2

µ0

]}
,

C2 = ρ2ω4 −
(
k2 +

m2

r2

)[
ρω2

(
γp+

B2

µ0

)
− γp

F 2

µ0

]
,

C3 = D

[
ρω2 − F 2

µ0
+

2Bθ
µ0

d

dr

(
Bθ
r

)]
+ρω2

(
ρω2 − F 2

µ0

)(
2B2

θ

µ0r

)2

−
[
γp

(
ρω2 − F 2

µ0

)
+ ρω2B

2
z

µ0

](
2BθF
µ0r

)2

,

F =
m

r
Bθ − kBz =

Bθ
r

(m− nq) . (8.61)
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It is clear from this form that the system of equations (8.59) and (8.60) only
has a singularity when D = 0, and from the form of D, it is seen that this will
give rise to two continuous spectra [147]. When the first bracket in D vanishes,
it is referred to as the “Alfvén continuum,” and when the second bracket
vanishes, it is the “sound continuum.” While this form of the equations is
useful in identifying the spectral properties, it is not normally the most useful
for obtaining solutions since the eigenvalue ω2 appears in a complicated non-
linear way in the coefficients.

It is, however, possible to solve these equations using a “shooting” tech-
nique. The solution that is regular at the origin can be shown to have the
expansion near r = 0

rξr = Crm, (8.62)

P =
1
m

[
B2
θ

µ0r2
(
2(m− nq)− (m− nq)2

)
+ ρω2

]
rξr, (8.63)

where C is an arbitrary constant. If the plasma extends to a conducting wall
at radius a, the boundary condition there is

ξr(a) = 0. (8.64)

It can be shown that the unstable eigenvalues of Eqs. (8.59) and (8.60)
behave like the eigenvalues of the Sturm–Liouville problem [162, 163]. This
suggests employing an iteration scheme where one guesses an initial eigenvalue
ω2 and integrates the equations for rξr and P from the origin to the edge. If
the edge boundary condition is not satisfied, one then changes the guess for
the eigenvalue ω2 and integrates again. This is repeated until the boundary
condition is satisfied to some tolerance. The next section explains how to
extend the boundary condition to that appropriate for a cylindrical plasma
surrounded by a vacuum region, which is in turn surrounded by an ideal wall.

8.4.2 Vacuum Solution

If there is a vacuum region surrounding the plasma, the vacuum field can
be expressed in terms of a scalar potential Q̂ = ∇Φm that satisfies Laplaces
equation,

∇2Φm = 0. (8.65)

The solution in cylindrical coordinates for a given (m, k) mode is the sum
of modified (hyperbolic) Bessel functions Im and Km. The vacuum fields are
thus given by:

Bvr = k [C1I
′
m(kr) + C2K

′
m(kr)] ,

Bvθ =
im

r
[C1Im(kr) + C2Km(kr)] ,

Bvz = −ik [C1Im(kr) + C2Km(kr)] .
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By requiring that Bvr = 0 at the radius of a perfectly conducting wall (at
r = b), and by making Bvr continuous at the plasma-vacuum interface, the
constants C1 and C2 are determined in terms of the radial displacement at
the edge of the plasma, ξa. Imposing the condition that P be continuous at
the plasma vacuum interface then yields the boundary condition

ξa =
(
µ0k

F 2

)
I ′m(ka)K ′

m(kb)−K ′
m(ka)I ′m(kb)

Km(ka)I ′m(kb)− Im(ka)K ′
m(kb)

P (a). (8.66)

When using the extended energy principle rather than the equation of mo-
tion, it is δWv that is needed from the vacuum region, not a relation between
ξa and P (a). Using this same analysis, we can use Eq. (8.39) to evaluate:

δWv = πa
F 2

µ0k

Km(ka)I ′m(kb)− Im(ka)K ′
m(kb)

I ′m(ka)K ′
m(kb)−K ′

m(ka)I ′m(kb)
ξ2a. (8.67)

The expression in Eq. (8.67) is often evaluated in the large aspect ratio
limit where the expansions Im(x) ∼ xm and Km(x) ∼ x−m are valid. This
yields

δWv = πB2
θ

(m− nq)2

µ0m

1 + (a/b)2m

1− (a/b)2m
ξ2a, (8.68)

which can be seen to be always non-negative since m here is always positive.

8.4.3 Reduction of δWf

The quantity δWf depends in a complicated way on all three components of
the displacement field ξ. Minimizing δWf in this form is therefore equivalent to
minimizing with respect to three arbitrary scalar fields, one corresponding to
each of the three components of the vector field ξ. Considerable simplification
can be achieved if δWf can be minimized with respect to one or more of these
components analytically.

This has been shown to be possible to do algebraically [164] if we restrict
consideration to cylindrical geometry. It is convenient to introduce new vari-
ables ξ, η, ζ for the displacement, related to ξr(r), ξθ(r), ξz(r) by

ξ = ξr,

η =
im

r
ξθ − ikξz = ∇ · ξ − 1

r

d

dr
(rξr) ,

ζ = iξθBz − iξzBθ = i(ξ ×B)r.

Now ξθ and ξz may be eliminated in favor of ζ and η by

ξθ = i
krζ − rBθη

krBz −mBθ
,

ξz = −i mζ − rBzη

krBz −mBθ
.
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It can be shown, by straightforward though lengthy algebra, that δWf can be
written for this system as

δWf =
∫ a

0

rdr

{
1
µ0

Λ(ξ, ξ′) + γp

[
η +

1
r
(rξ)′

]2
+

k2r2 +m2

µ0r2

[
ζ − ζ0(ξ, ξ′)

]2}
. (8.69)

Here we have introduced the quantities

Λ(ξ, ξ′) =
B2
θ

k2r2 +m2

[
(m− nq)ξ′ − (m+ nq)

ξ

r

]2
+

[
B2
θ (m− nq)2 − 2Bθ(rBθ)′

]
ξ2

r2
, (8.70)

ζ0(ξ, ξ′) =
r

k2r2 +m2

[
(−krBθ −mBz)ξ′ − (−krBθ +mBz)

ξ

r

]
. (8.71)

We see from Eq. (8.69) that ζ and η each occur in only one term in δWf and
in each case that term is positive definite. We can therefore minimize δWf

algebraically with respect to η and ζ by choosing

η = −1
r
(rξ)′, (8.72)

ζ = ζ0(ξ, ξ′). (8.73)

In doing this, δWf is seen to depend only on the single scalar field ξ(r), so
the minimum δWf can be obtained by minimizing the functional

δW = δWf + δWv, (8.74)

where

δWf =
∫ a

0

rdrΛ(ξ, ξ′), (8.75)

with respect to arbitrary scalar displacements fields ξ. Note that Eq. (8.72) is
equivalent to ∇ · ξ = 0, so that δWf is minimized by incompressible displace-
ments.

Another form of the energy principle is obtained by integrating Eq. (8.75)
by parts to eliminate the term in ξξ′. This yields:

δW = δWf + δWa + δWv.

Here, δWa is the surface term from the integration by parts,

δWa =
B2
θξ

2
a

µ0(k2r2 +m2)
(
n2q2 −m2

)∣∣∣∣
r=a

, (8.76)
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and the plasma term becomes

δWf =
1
µ0

∫ a

0

rdr

[
f

(
dξ

dr

)2

+ gξ2

]
. (8.77)

The coefficients f and g are given by

f =
rB2

θ (m− nq)2

k2r2 +m2
, (8.78)

g =
1
r

B2
θ (nq +m)2

k2r2 +m2
+

B2
θ

r
(m− nq)2 − 2Bθ

r

d

dr
(rBθ)

− d

dr

[
B2
θ

(
n2q2 −m2

k2r2 +m2

)]
. (8.79)

The quantity f is seen to be never negative, but g can be either sign. Another
useful expression for g is derived by using the equilibrium equation to obtain:

g =
2k2r2µ0

k2r2 +m2

dp

dr
+

B2
θ

r
(m− nq)2

k2r2 +m2 − 1
k2r2 +m2

+
2k2rB2

θ

(k2r2 +m2)2
(
n2q2 −m2

)
. (8.80)

The solution ξ(r) that minimizes δWf in Eq. (8.77) satisfies the associated
Euler-Lagrange equation

d

dr

(
f
dξ

dr

)
− gξ = 0. (8.81)

This equation has a singular point, rs wherever f(r) vanishes, i.e., wherever
m − nq(rs) = 0. In general, it is not possible to continue an Euler-Lagrange
solution past a singular point, so each subinterval bounded by the origin, a
singular point, or the plasma radius, should be minimized separately. The
configuration is then stable for specified values of m and k if and only if it is
stable in each subinterval.

It is shown in [164] that in the vicinity of a singular point, if we define
the local coordinate x = |r − rs|, we can expand the functions f and g locally
such that f = αx2 and g = β, where

α =
rsB

2
θB

2
z

B2

(
q′

q

)2

, (8.82)

β =
2B2

θµ0

B2

dp

dr
. (8.83)

The solutions are of the form x−n1 and x−n2 , where n1 and n2 are roots of
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the indicial equation n2 − n − (β/α) = 0. The condition for non-oscillatory
solutions, α+ 4β > 0 yields Suydam’s condition:

−dp
dr

<
r

8
B2
z

µ0

(
q′

q

)2

. (8.84)

This can be shown to be necessary, but not sufficient, for stability. Since the
pressure decreases going outward from the origin, it is a limitation on the local
pressure gradient.

If Suydam’s condition is satisfied, the two roots n1 and n2 are real and
satisfy n1 + n2 = 1. If we take n2 > n1, we call x−n1 the small solution at rs.
(The small solution at the origin is the one that is regular there.) It is shown
in [164] that a sufficient condition for stability is the following: For specified
values of m and k (or equivalently n ≡ kR), a cylindrical configuration is
stable in a given subinterval if, and only if, Eq. (8.84) is satisfied at the
endpoints, and the solution of Eq. (8.81) that is small at the left does not
vanish anywhere in the interval. This provides a straightforward prescription
for evaluating stability of a cylindrical configuration.

8.5 Toroidal Geometry

In toroidal geometry as illustrated in Figure 8.1 the equilibrium depends
on the poloidal angle θ and so one cannot Fourier analyze in the poloidal angle
and obtain a separate, uncoupled equation for each poloidal harmonic as is
possible in the cylinder. However, if the configuration has an axisymmetric
equilibrium, it is still possible to Fourier analyze in the toroidal angle φ so
that

ξ(ψ, θ, φ) =
N∑

n=−N
ξn(ψ, θ)e

−inφ, (8.85)

and each n harmonic ξn(ψ, θ) is linearly independent of the others.
The finite element method, presented in Chapter 11, has been used [160] to

evaluate δWf as given by Eq. (8.49) along with δWv, Eq. (8.39), and the kinetic
energy K, Eq. (8.27). However, for many applications, some analytic simpli-
fications can be used to obtain an asymptotic form of the stability equations
that are appropriate for most applications. We discuss two such simplifica-
tions that target global and localized eigenfunctions, respectively, in Sections
8.5.3 and 8.5.4. However, as with Section 8.4 in cylindrical geometry, we start
by deriving a form for solving the toroidal eigenmode equations directly that
displays the role of the continuous spectra and follow this by a discussion of
the vacuum calculation.
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8.5.1 Eigenmode Equations and Continuous Spectra

The toroidal geometry analogue of the eigenmode equations presented for
the cylinder in Section 8.4.1 employs the variables ∇ · ξ, ξs, ξψ, and P =
p1 + Q ·B/µ0 [165]. We again take the time dependence ξ(x, t) = ξ(x)e−iωt.
The displacement vector and perturbed magnetic field are decomposed as

ξ =
ξψ

|∇Ψ|2
∇Ψ +

ξs
B2

(B×∇Ψ) +
ξb
B2

B, (8.86)

and

Q =
Qψ

|∇Ψ|2
∇Ψ +

Qs

|∇Ψ|2
(B×∇Ψ) +

Qb
B2

B. (8.87)

The components are seen to be defined by the projections

ξψ = ξ · ∇Ψ, ξs = ξ · B×∇Ψ
|∇Ψ|2

, ξb = ξ ·B,

Qψ = Q · ∇Ψ, Qs = Q · B×∇Ψ
B2

, Qb = Q ·B.

After eliminating the time dependence, the three components of the equation
of motion, Eq. (8.14), can be written

∇Ψ · ∇P = ω2ρξψ + |∇Ψ|2 B · ∇

(
B · ∇ξψ
|∇Ψ|2

)
(8.88)

−

(
S
|∇Ψ|2

B2
+ σ

)
|∇Ψ|2 (B · ∇ξs + Sξψ) + 2κ · ∇ΨQb,

(B×∇Ψ) · ∇P = ω2ρ |∇Ψ|2 ξs +B2σB · ∇ξψ (8.89)

+ B2B · ∇

[
|∇Ψ|2

B2
(B · ∇ξs + Sξψ)

]
+ 2κ · (B×∇Ψ)Qb,

ω2ρξb = B · ∇ (p1 + p′ξψ) . (8.90)

Here, p′ = dp/dΨ, κ and σ are defined in Eqs. (8.42) and (8.50), and

S = −

(
B×∇Ψ
|∇Ψ|2

)
· ∇ ×

(
B×∇Ψ
|∇Ψ|2

)
(8.91)



Methods of Ideal MHD Stability Analysis 221

is the local magnetic shear. The three components of the induction equation,
Eq. (8.10), can similarly be written as

Qψ = B · ∇ξψ, (8.92)

Qs =

(
|∇Ψ|2

B2

)
(B · ∇ξs + Sξψ) , (8.93)

Qb = B2B · ∇
(
ξb
B2

)
−B2∇ · ξ − 2κ · (B×∇Ψ) ξs

−2 (κ · ∇Ψ)
B2

|∇Ψ|2
ξψ + p′ξψ, (8.94)

and ∇ · ξ can be explicitly expressed as

∇ · ξ =
∇Ψ · ∇ξψ
|∇Ψ|2

+

[
∇ ·

(
∇Ψ
|∇Ψ|2

)]
ξψ +

B×∇Ψ · ∇ξs
B2

−2κ · (B×∇Ψ) ξs + B · ∇
(
ξb
B2

)
. (8.95)

The next step is to eliminate ξb, Qψ, Qs, and Qb by using Eqs. (8.90) and
(8.92)–(8.94). Then, by using Eqs. (8.5), (8.88), (8.89), and (8.95) the toroidal
form of the linearized ideal MHD eigenmode equations can be written [165]

∇Ψ · ∇
[
P
ξψ

]
= C

[
P
ξψ

]
+D

[
ξs
∇ · ξ

]
, (8.96)

and

E

[
ξs
∇ · ξ

]
= F

[
P
ξψ

]
, (8.97)

where C,D,E, F are 2× 2 matrix operators involving only surface derivatives
B · ∇ and (B×∇Ψ) · ∇. The matrix operators are given by

C =

[
2κψ G

0 − |∇Ψ|2∇ ·
(

∇Ψ
|∇Ψ|2

) ]
,

D =

 −
(
S |∇Ψ|2

B2 + σ
)
|∇Ψ|2 B · ∇ 2γpκψ

|∇Ψ|2
(
2κs − B×∇Ψ

B2 · ∇
)

|∇Ψ|2
[
1 + γp

ω2ρB · ∇
(
B·∇
B2

)]
 ,

E =

 ω2ρ|∇Ψ|2
B2 + B · ∇

(
|∇Ψ|2B·∇

B2

)
2γpκs

2κs γp+B2

B2 + γp
ω2ρB · ∇

(
B·∇
B2

)
 ,
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F =

[
−2κs + B×∇Ψ

B2 · ∇ −B · ∇ |∇Ψ|2
B2 S − σB · ∇ − 2p′κs

− 1
B2 −2 κψ

|∇Ψ|2

]
.

In these matrix operator expressions, B · ∇ operates on all the quantities to
its right. The curvature projections κψ and κs are defined in Eqs. (8.45) and
(8.44) and we have introduced the quantities

∇Ψ · ∇ = |∇Ψ|2 ∂

∂Ψ
+ (∇Ψ · ∇θ) ∂

∂θ
,

G = ω2ρ+ 2p′κψ + |∇Ψ|2 B · ∇

(
B · ∇
|∇Ψ|2

)
−

(
σ + S

|∇Ψ|2

B2

)
S |∇Ψ|2 .

The boundary condition at the axis is that ξψ be regular there. For fixed
boundary modes, the boundary condition is ξψ = 0 at the plasma-wall inter-
face. For free boundary modes, the boundary condition at the plasma-vacuum
interface, Eq. (8.13), becomes ∇Ψ · Q̂ = B · ∇ξψ, where Q̂ is the vacuum
magnetic field which must be solved from the vacuum equations ∇ · Q̂ = 0
and ∇× Q̂ = 0. Once this is solved, the pressure balance boundary condition,
Eq. (8.12), is applied. This effectively relates ξψ and P at the interface.

For a given equilibrium we first solve for ξs and ∇· ξ in terms of P and ξψ
from Eq. (8.97) by inverting the surface matrix operator E. Equation (8.96)
then reduces to an equation for P and ξψ. Admissible solutions must be regular
and satisfy the appropriate boundary conditions. This procedure fails if the
inverse of the surface matrix operator E does not exist for a given ω2 at some Ψ
surface. Then, only non-square-integrable solutions with spatial singularities
at the singular surface are possible. If at each surface nontrivial single-valued
periodic solutions in θ and φ can be found for the equation

E

[
ξs
∇ · ξ

]
= 0, (8.98)

the corresponding set of eigenvalues ω2 forms the continuous spectrum for
the equilibrium. Equation (8.98) represents the coupling of the sound waves
and the shear Alfvén waves through the surface component of the magnetic
curvature and the plasma pressure. It is the toroidal generalization of the
condition D = 0 in the cylindrical equations, Eq. (8.61).

Because the formulation presented here is not variational, it does not make
use of the self-adjointness property of the MHD operator. It therefore can
and has been extended to included non-ideal effects such as plasma resistiv-
ity [166], wall resistivity [167], and certain kinetic effects associated with a
small energetic particle population [168].
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8.5.2 Vacuum Solution

In the vacuum region, which may be surrounded by a conducting wall,
there are no currents and so both ∇× Q̂ = 0 and ∇· Q̂ = 0. We can therefore
express the perturbed magnetic field in terms of a scalar potential that satisfies
Laplace’s equation,

Q̂ = ∇χ, (8.99)

where

∇2χ = 0. (8.100)

We shall assume in this section that the scalar potential χ is single valued.
However, Lüst and Martensen [169] have shown that the most general solution
in a toroidal annulus requires that χ be multivalued. They showed that one
can decompose the gradient of a multivalued scalar potential into the gradient
of a single-valued piece χ∗ and a linear combination of vectors Di; i = 1, 2 such
that

Q̂ = ∇χ = ∇χ∗ +
2∑
i=1

γiDi. (8.101)

The coefficients of the non-periodic parts of the potential can be uniquely
determined by the path-independent integrals [170]

γi =
∫
Ci
∇χ · dS, (8.102)

where Ci; i = 1, 2 are closed curves which thread the vacuum region in the
poloidal and toroidal sense. The vectors Di; i = 1, 2 lie point in the poloidal
and toroidal directions, respectively, and are used to determine a set of induc-
tance matrices from which the coefficients γi; i = 1, 2 can be found.

Green’s second identity for the Laplacian with the observer points inside
the vacuum region and the source points on the plasma and conductor surfaces
surrounding it gives

4πχ(x) =
∫

dS′ · [G(x,x′)∇′χ(x′)− χ(x)∇′G(x,x′)] , (8.103)

where the free-space Green’s function satisfies

∇2G(x,x′) = −4πδ(x− x′). (8.104)

The solution that vanishes at infinity is given by

G(x,x′) =
1

|x− x′|
. (8.105)
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For linear modes with φ dependence einφ, we can perform the φ integration
analytically to give [170]

2πḠn(R,Z;R′, Z ′) ≡
∫ 2π

0

G(x,x′)ein(φ−φ′) =
2π1/2Γ(1/2− n)

H
Pn−1/2(s),

(8.106)

where Pn−1/2 is the associated Legendre function of the first kind, ρ2 = (R −
R′)2 + (Z − Z ′)2, H4 = ρ2

(
ρ2 + 4RR′

)
, and

s =
R2 +R′2 + (Z − Z ′)2

H2
.

A given Fourier harmonic χn(R,Z), defined by χ(x) = χne
inφ, then satisfies

2χn +
∫
p+c

dS · ∇Ḡnχn =
∫
p

dS · ∇χnḠn, (8.107)

where the first integral is over both the plasma/vacuum boundary (p) and the
conductor (c), but the second does not include the conductor since n̂·∇χn = 0
there.

Equation (8.107) is best solved by the method of collocation. By taking a
finite number of points along the plasma/vacuum boundary and the wall, the
integral becomes a sum and the integral equation a matrix equation relating
χn and n̂ · ∇χn at points on the boundary curves.

If we define a coordinate system (ψ, θ, φ) on each contour such that
ψ=const. on a given integration contour, then the normal to that bound-
ary contour can be written n̂ = ∇ψ/|∇ψ| and the Jacobian is J =
[∇ψ ×∇θ · ∇φ]−1

. On the plasma/vacuum boundary we can take ψ = Ψ,
the equilibrium flux function.

The integrals in Eq. (8.107) are then only over the poloidal angle θ, which is
defined separately on each of the two contours. Since the integrals are singular,
care must be taken to take the appropriate analytic continuation. We can write
this as

χn(θ) + P

∫
p+c

dθ′J∇ψ · ∇Ḡn(θ, θ′)χn(θ′)

=
∫
p

dθ′JḠn(θ, θ′)∇ψ · ∇χn(θ′). (8.108)

Here P denotes the principal value of the integral where the singular term
appears. Note that the residue from the analytic continuation has canceled
one factor of χ from the first term on the left side of the equation. This
integral equation is evaluated at N discrete points on the the plasma/vacuum
boundary and N discrete points on the conductor. If the integrals are each
replaced by a sum over these same N points on each contour, Eq. (8.108)
becomes a 2N×2N matrix equation that can be solved for χn on the boundary
as a function of n̂ · ∇χn.
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8.5.3 Global Mode Reduction in Toroidal Geometry

It has been shown [171] that a reduction similar to that described in Sec-
tion 8.4.3 is possible in toroidal geometry, although it is no longer strictly
algebraic. It involves solving for the minimizing in-surface displacements as
functions of the displacements normal to the surfaces by solving a set of in-
surface differential operator equations. This reduction forms the basis for the
PEST-II [160] stability program. The derivation uses straight field line coordi-
nates as introduced in Section 5.4.1, so that the magnetic field is represented
as

B = ∇φ×∇Ψ + g(Ψ)∇φ
= ∇φ×∇Ψ + q(Ψ)∇Ψ×∇θ.

Here q(Ψ) is the safety factor profile. If φ is the cylindrical coordinate angle,
then this implies that the Jacobian is given by

J = R2 q(Ψ)
g(Ψ)

.

It is shown in [171] that the kinetic and potential energies can be written as

K =
1
2

∫
p

ρ|ξ|2dτ, (8.109)

δW =
1
2

∫
P

dτ

{[
Q + (ξ · ∇Ψ)

J×∇Ψ
|∇Ψ|2

]2
+ γp|∇ · ξ|2 − 2U |ξ · ∇Ψ|2

}
+

∫
V

dτ |∇ ×A|2, (8.110)

where

2U = −2p′κψ +
σ2B2

|∇Ψ|2
−B · ∇

[
σs · ∇Ψ
|∇Ψ|2

]
+ σ

q′

J
.

Here, we have defined

s = ∇φ− q∇θ,

and the normalized parallel current σ and the field line curvature κ and its
projections are defined in Eqs. (8.50) and (8.44). Noting that B = s × ∇Ψ,
the displacement vector is decomposed as

ξ = ξψ
B× s
B2

+ ξs
B×∇Ψ
B2

+ ξb
B
B2

. (8.111)

In analogy with the Newcomb method in cylindrical geometry, the proce-
dure is to analytically eliminate the B and B×∇Ψ components of ξ from the
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δW functional. Operationally, this is accomplished by employing the model
normalization

2K̃(ξ∗, ξ) =
∫
p

dτξ∗ ·
↔
ρ · ξ, (8.112)

with the anisotropic density tensor
↔
ρ = ρ∇Ψ∇Ψ, and extremizing the func-

tional

L = ω2K̃(ξ∗, ξ)− δW (ξ∗, ξ). (8.113)

Since only ξψ enters into the modified kinetic energy K̃, equations for the
components ξs and ξb are obtained from the Euler equation that results from
extremizing δW . The field-aligned displacement ξb appears only in the positive
definite term γp|∇ ·ξ|2. This term can be made to vanish by extremizing with
respect to ξb. To extremize with respect to the other surface component ξs,
we note that

ξ ×B = ξψs + ξs∇Ψ,
Q = ∇× (ξ ×B) = ∇×

(
ξψs
)

+∇× (ξs∇Ψ) .

Insertion of this expression for Q into Eq. (8.110) and extremizing δW with
respect to ξs gives the Euler equation

∇ · |∇Ψ|2∇sξs = ∇ ·
[
∇Ψ×∇× (ξψs) + ξψJ

]
, (8.114)

where ∇s is the surface operator

∇s ≡
[
I − ∇Ψ∇Ψ

|∇Ψ|2

]
· ∇.

Equation (8.114) is then solved surface by surface to relate ξs to ξψ. This is
used to eliminate ξs from Eq. (8.113) so that the final extremization needed
to be carried out using numerical basis functions (such as finite elements, see
Chapter 11) is only with respect to the single component of the displacement
vector ξψ.

8.5.4 Ballooning Modes

There is an important class of instabilities in toroidal geometry that have
displacements that are localized about a small band of magnetic surfaces for
which they are locally resonant, but that have significant variation in the
poloidal angle on those surfaces. There is an extensive literature on the ana-
lytic properties of these modes [172, 173]. Here we present a short derivation
of the ballooning equation that can be solved numerically to determine the
stability of this class of modes.
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The derivation starts with the straight field line representation of the mag-
netic field given by Eq. (5.43) which we write as

B = ∇ (φ− qθ)×∇Ψ,
= Ψ′∇ (φ− qθ)×∇ψ, (8.115)

where q(ψ) is the safety factor. The ballooning formalism uses a new coordi-
nate that follows the field lines, β ≡ φ− qθ, instead of φ, so that we construct
a (ψ, β, θ) coordinate system. In this system, Eq. (8.115) becomes

B = Ψ′∇β ×∇ψ.

For any scalar function f , the operator B · ∇ in these coordinates becomes
simply

B · ∇f =
Ψ′

J

∂f

∂θ
. (8.116)

Note that the gradient of β is given by

∇β = ∇φ− q∇θ − θq′∇ψ. (8.117)

The last term is seen to be non-periodic because θ appears explicitly (as
opposed to just ∇θ).

It is convenient to express the displacement vector in terms of three scalar
quantities (ξ, ξs, ξb) as follows:

ξ = ξΨ′B×∇β
B2

+ ξs
B×∇Ψ
B2

+ ξb
B
B2

. (8.118)

These quantities represent the plasma displacement across surfaces, ξ = ξ·∇ψ,
within surfaces, ξs = ξ · ∇β, and parallel to the field, ξb = ξ ·B.

Ballooning mode displacements have the property that gradients of the
displacement are large compared to gradients of equilibrium quantities. We
therefore introduce a small ordering parameter, ε, and order the displacement
gradients large,[

1
ξ
|∇ξ|

]−1

∼
[

1
β
|∇β|

]−1

∼
[

1
ξb
|∇ξb|

]−1

∼ ε, (8.119)

whereas the gradients of all equilibrium quantities are order unity. We see
from examining Eq. (8.49) that the first three terms in δWf will be of higher
order

(
ε−2
)

than the others in this ordering. To order ε−2 we therefore have

δW (−2) =
1
2

∫
dV

[
1
µ0
|Q⊥|2 +

1
µ0
B2 |∇ · ξ⊥|

2 + γp |∇ · ξ|2
]
, (8.120)

where we have dropped the lower-order curvature piece of the second term.
The third term is the only one that involves the parallel displacement ξb, and
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so we can choose ξb to make this term vanish and proceed to minimize with
respect to ξ and ξs.

It is readily verified that for the first two terms to vanish to leading order,
we require a first-order stream function Φ(1) ∼ ε that varies along the field on
the same scale as the equilibrium, i.e.,

ξ
(0)
⊥ =

B×∇Φ(1)

B2
, B · ∇Φ(1) ∼ Φ(1) ∼ ε, (8.121)

or, in component form

ξ(0) =
1
Ψ′
∂Φ(1)

∂β
, ξ(0)s =

1
Ψ′
∂Φ(1)

∂ψ
,

∂Φ(1)

∂θ
∼ ε. (8.122)

We now turn our attention to the terms that appear in δW
(0)
f . The com-

pressive terms can again be minimized to zero by the first-order terms in the
displacement, ξ(1) and ξ

(1)
s , so we do not need to consider them further. We

seek an equation determining Φ(1). Returning to Eq. (8.49), we see that there
will be two terms giving order unity contributions when the substitution from
Eq. (8.121) is made. These are the field line bending and pressure-curvature
terms,

|Q⊥|2 =
1
B2

∣∣∣∇(B · ∇Φ(1)
)∣∣∣2 ,

and

−2 (ξ · ∇p) (ξ · κ) = −2
[
∇p×B
B2

· ∇Φ(1)

] [
κ×B
B2

· ∇Φ(1)

]
.

The final term in Eq. (8.49), associated with kink modes, vanishes to this
order when integrated by parts since the parallel current σ is an equilibrium
function with no fast spatial variation. The zero-order energy can therefore
be written

δW (0) =
1
2

∫
dV

{
1

µ0B2

∣∣∣∇̃(B · ∇Φ(1)
)∣∣∣2

− 2
[
∇p×B
B2

· ∇̃Φ(1)

] [
κ×B
B2

· ∇̃Φ(1)

]}
. (8.123)

Note that the plasma displacement is described in terms of a single scalar
function Φ(1). In Eq. (8.123) we denote the fast derivatives, of order ε−1, by
∇̃, whereas the equilibrium scale derivatives are denoted by ∇. The Euler
equation associated with Eq. (8.123) is

B · ∇
[

1
µ0B2

∇̃2 (B · ∇Φ)
]

+ 2
κ×B
B2

· ∇̃
[
∇p×B
B2

· ∇̃Φ
]

= 0, (8.124)

where here and in what follows we have dropped the superscript (1) on Φ.
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FIGURE 8.6: All physical quantities must satisfy periodicity requirements
Φ(ψ, θ, β) = Φ(ψ, θ, β + 2π)= Φ(ψ, θ + 2π, β − 2πq).

Ballooning Representation
To solve Eq. (8.124) one must deal with the periodicity properties of Φ, the
θ-secularity in ∇β, and the multiple spatial scales. Consider first the period-
icity. Any physical quantity must be single valued and thus have periodicity
properties with the conventional angles

Φ(ψ, θ, φ) = Φ(ψ, θ, φ+ 2π) = Φ(ψ, θ + 2π, φ). (8.125)

Now, since β = φ− q(ψ)θ, the periodicity requirements become

Φ(ψ, θ, β) = Φ(ψ, θ, β + 2π) = Φ(ψ, θ + 2π, β − 2πq). (8.126)

This is illustrated in Figure 8.6. Since this periodicity condition would be
difficult to implement, one is led to a different approach in which we first
suspend all periodicity conditions and look for an aperiodic solution Φ̂ with
boundary conditions that it vanish at θ equals plus infinity or minus infinity,
i.e.,

Φ̂(ψ, θ, β) = 0 θ → ±∞. (8.127)

Having obtained an aperiodic solution Φ̂, we can construct a periodic solution
by taking linear superpositions of solutions as illustrated in Figure 8.7.

Φ(ψ, θ, β) =
∞∑

l=−∞

Φ̂ (ψ, θ − 2πl, β + 2πlq) . (8.128)

This manifestly satisfies the periodicity conditions

Φ(ψ, θ, β) = Φ(ψ, θ, β + 2π) = Φ(ψ, θ + 2π, β − 2πq). (8.129)
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2π−2π 0

Periodic Solution Φ

FIGURE 8.7: A solution with the correct periodicity properties is con-
structed by taking a linear superposition of an infinite number of offset ape-
riodic solutions.

To deal with the multiple spatial scales, we Fourier analyze in φ, the ignor-
able coordinate for the equilibrium. For toroidal mode number n, Eq. (8.128)
thus becomes

Φ(ψ, θ, β) =
∞∑

l=−∞

Φ̂ (ψ, θ − 2πl) e−in(β+2πlq). (8.130)

For n� 1, all the rapid phase variation is in the exponent. We therefore have

∇̃Φ̂ (ψ, θ − 2πl, β + 2πlq)
= −inΦ̂ (ψ, θ − 2πl) (∇β + 2πlq′∇ψ) e−in(β+2πlq),

= −inΦ̂ (ψ, θ − 2πl)∇ (Φ− q(θ − 2πl)) e−in(β+2πlq),

where we made use of Eq. (8.117). We can now make the substitution θ−2πl→
θ to obtain

∇̃Φ̂ (ψ, θ, β + 2πlq) = −inΦ̂ (ψ, θ)∇βe−in(β+2πlq). (8.131)

Since all the fast variation is in the exponent, we can return to Eq. (8.124)
and make the substitutions ∇̃ → ∇β and B · ∇ → (Ψ′/J)∂/∂θ. Finally, we
evaluate

∇p×B
B2

· ∇β = − p′

Ψ′ ,
κ×B · ∇β

B2
= − (κψ − q′θκs) , (8.132)

where the geodesic curvature, κs, and the normal curvature, κψ, are defined
in Eq. (8.44). These substitutions lead to the canonical form for the balloon
equation,

Ψ′

J

∂

∂θ

[
|∇β|2

µ0B2

Ψ′

J

∂Φ̂
∂θ

]
+ 2

p′

J
(κψ − q′θκs) Φ̂ = 0, (8.133)
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where, from Eq. (8.117), we have

|∇β|2 = q′2|∇ψ|2θ2 + 2qq′ (∇ψ · ∇θ) θ + |∇φ− q∇θ|2.

It can be shown that the configuration is unstable with an eigenfunction lo-
calized near the surface ψ if the function Φ̂(ψ, θ) that satisfies Eq. (8.133)
vanishes twice in the interval −∞ < θ < ∞. The determination of stability
with respect to this class of modes is thus reduced to solving a single second-
order ordinary differential equation on each magnetic surface and looking for
zero crossings.

Mercier Criterion
By analyzing the asymptotic behavior of the ballooning equation, Eq. (8.133),
as θ approaches infinity and requiring that the solution not be oscillatory
there, we obtain a necessary condition for stability known as the Mercier
criterion [97, 174, 175]. If we define an arbitrary magnetic surface label ψ and
denote the derivatives with respect to ψ of the volume within a surface as V ′,
the poloidal magnetic flux as Ψ′, the poloidal current flux as K ′, the toroidal
magnetic flux as Φ′, and the toroidal current flux as I ′, and then define the
function (here we adopt the standard convention for this equation that we use
rationalized MKS units in which µ0 → 1)

F =
1

4V ′2
(Φ′Ψ′′ −Ψ′Φ′′)2 − 1

V ′
(Φ′Ψ′′ −Ψ′Φ′′)

〈
σB2

|∇ψ|2

〉
+

[〈
σB2

|∇ψ|2

〉2

−
〈
σ2B2

|∇ψ|2

〉〈
B2

|∇ψ|2

〉]
− (p′)2

〈
1
B2

〉〈
B2

|∇ψ|2

〉
+

1
V ′

(p′V ′′ + I ′Ψ′′ −K ′Φ′′)
〈

B2

|∇ψ|2

〉
, (8.134)

the Mercier criterion is then that you must have F > 0 on all surfaces for
stability. Evaluation of this at the magnetic axis for a circular cross section
toroidal plasma (now using MKS units) gives the criterion for stability [176]

−dp
dr

(1− q2) <
r

8
B2
z

µ0

(
q′

q

)2

. (8.135)

Note now that q′ = dq/dr. Comparison of this criterion with the Suydam
criterion in a cylinder, Eq. (8.84), we see that the left side has picked up a
factor (1− q2) which will be stabilizing if q > 1 on the axis since the pressure
is normally decreasing away from the magnetic axis.

Edge Localized Instabilities The ballooning mode formalism presented
above has been extended by a number of authors [177, 178] to include higher-
order terms in the expansion. The ballooning equation, Eq. (8.133), can be
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regarded as the lowest-order result in a formal expansion in the inverse toroidal
mode number n−1. The next order in this expansion still has the property that
two components of the displacement can be eliminated. However, the terms
that provide the kink drive, proportional to the radial derivative of the parallel
current density, are retained in this order, as are cross-surface derivative terms
that determine the global mode structure, and the vacuum region. This is the
basis for the ELITE [177] stability code which is able to obtain very high
accuracy for modes with high toroidal mode number n that are localized near
the plasma edge.

8.6 Summary

The ideal MHD equations play a very important role in the stability anal-
ysis of magnetically confined plasmas since the terms retained (from the full
magnetohydrodynamic equations) in the ideal MHD description are normally
the dominant terms in the equations. The analysis of ideal MHD linear sta-
bility is a very mature field. The self-adjointness property of the linear ideal
MHD operator (in the absence of equilibrium flow) leads one to a variational
formulation. If concerned only with the determination of stability or instabil-
ity, the energy principle provides a powerful framework in which significant
simplifications are possible by minimizing the quadratic form for the energy
analytically or quasi-analytically for the surface components of the displace-
ment in terms of the cross-surface component. Further expansions in which
multiple spatial scale orderings are applied offer additional important sim-
plifications for important classes of localized modes. We will discuss in the
remaining chapters methods for solving some of the sets of equations derived
here.

Problems

8.1: Show that Eq. (8.16) is satisfied if we replace the perturbed density, ρ1,
by Eq. (8.21) and the perturbed velocity, v1, by Eq. (8.20). Let ∂/∂t→ −iω
and make use of the equilibrium condition ∇ · ρV = 0 .

8.2: Show that Eq. (8.24) follows from Eq. (8.19) once ρ1 and v1 are eliminated
using Eqs. (8.21) and (8.20).

8.3: Derive the form for δWf given in Eq. (8.49), starting from Eq. (8.36).

8.4: Derive the form of the displacement field ξ that minimizes the fast mag-
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netosonic wave term in Eq. (8.49) for a torus with a purely toroidal magnetic
field.

8.5: Derive the cylindrical normal mode equations, Eqs. (8.59) and (8.60).

8.6: Derive the forms for the plasma displacement ξ and perturbed pressure
P at the origin as given in Eqs. (8.62) and (8.63).





Chapter 9

Numerical Methods for Hyperbolic
Equations

9.1 Introduction

In this chapter we begin the study of finite difference methods for solving
hyperbolic systems of equations. Some excellent general references for this
material are books by Hirsch [179], Leveque [180], and Roache [24]. If we
denote by U the vector of unknowns, then a conservative system of equations
can be written (in one dimension) either as

∂U
∂t

+
∂F
∂x

= 0, (9.1)

or, in the non-conservative form

∂U
∂t

+ A · ∂U
∂x

= 0. (9.2)

The matrix A = ∂F/∂U has real eigenvalues for a pure hyperbolic system.
Since the stability analysis we perform is linear, the stability properties of
the same method as applied to either Eq. (9.1) or Eq. (9.2) will be identical.
Systems of linear equations will be of the form Eq. (9.2) from the outset. We
begin by examining the numerical stability of several finite difference methods
applied to the system Eq. (9.2).

9.2 Explicit Centered-Space Methods

Perhaps the simplest method one could apply to Eq. (9.2) is to finite
difference forward in time and centered in space (FTCS). However, this is
unstable as can be shown by simple stability analysis. Consider the FTCS
method

Un+1
j −Un

j

δt
+ A ·

[
Un
j+1 −Un

j−1

2δx

]
= 0. (9.3)

235
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We saw in Section 2.5.2 that von Neumann stability analysis corresponds to
making the substitution

Un
j → Vkr

neijθk (9.4)

and using a transformation where the matrix A becomes diagonal with the
eigenvalues λA along the diagonal. Here θk = kδx, with k being the wavenum-
ber.

Substitution of Eq. (9.4) into Eq. (9.3), making the matrix transformation,
and canceling common terms yields

r = 1− i
δt

δx
λA sin(θk). (9.5)

For stability, the magnitude of the amplification factor r must be less than
or equal to unity for all values of θk. Since the eigenvalues of A are real for
a hyperbolic system, we see that |r| > 1 for all combinations of δt and δx,
making the FTCS method unconditionally unstable for hyperbolic equations.
Note that this is in contrast to what was found in Chapter 7, that FTCS is
conditionally stable for parabolic equations.

9.2.1 Lax–Friedrichs Method

A simple modification to the difference method Eq. (9.3) will lead to a
stable difference scheme. In the Lax–Friedrichs method [181, 182], the old
time value is replaced by the average of its two nearest neighbors,

Un+1
j − 1

2

(
Un
j+1 + Un

j−1

)
δt

+ A ·
[
Un
j+1 −Un

j−1

2δx

]
= 0. (9.6)

Substitution of Eq. (9.4) into Eq. (9.6) and making the matrix transformation
yields for the amplification factor

r = cos(θk)− i
δt

δx
λA sin(θk). (9.7)

For stability, we require that |r| ≤ 1 , which implies that the ellipse in the
complex plane defined by Eq. (9.7) as θk increases from 0 to 2π lie inside the
unit circle. Since the eigenvalues λA are real, this stability condition implies

δt ≤ δx

|λA|
, (9.8)

for all eigenvalues of the matrix A. This is just the Courant–Friedrichs–Lewy
(CFL) condition [183, 184] that we first saw in Section 2.5.2. It is typical for
an explicit difference method applied to a hyperbolic system.

Let us examine the truncation error of the Lax–Friedrichs method,
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Eq. (9.6). Expanding in a Taylor’s series about Un
j we find the leading or-

der truncation error to be

T∆ = −1
2
δt
∂2U
∂t2

+
1
2
δx2

δt

∂2U
∂x2

+O
(
δx2, δt2

)
. (9.9)

It is important to notice that, as δt → 0 for fixed δx, the truncation error
becomes unbounded and so, in contrast to most methods, one will not obtain
a more accurate solution simply by reducing the time step.

We can apply the stability analysis of Hirt [28] to this method by using the
differential equation, Eq. (9.2), to eliminate time derivatives in Eq. (9.9) in
favor of spatial derivatives. This converts the leading order truncation error,
Eq. (9.9), into a diffusion-like term,

T∆ = −1
2

[
δtA2 − δx2

δt
I
]
· ∂

2U
∂x2

+O
(
δx2, δt2

)
.

The requirement that the eigenvalues of the effective diffusion matrix be pos-
itive gives back the stability condition Eq. (9.8).

The Lax–Friedrichs method is mostly of historical importance because of
the low-order truncation error, and of the accuracy problem in the limit as
δt→ 0. However, because it is easily programmed and dependable, it is often
used to advantage in the early stages of the development of a program after
which it is replaced by a higher-order more complex method.

9.2.2 Lax–Wendroff Methods

One of the most popular methods for solving a hyperbolic system of
equations, especially the compressible fluid equations, is the Lax–Wendroff
method [185]. The two-step version, as applied to Eq. (9.1), is as follows:

Un+ 1
2

j+ 1
2

=
1
2

[
Un
j+1 + Un

j

]
− δt

2δx

[
Fnj+1 − Fnj

]
, (9.10)

Un+1
j = Un

j −
δt

δx

[
Fn+ 1

2
j+ 1

2
− Fn+ 1

2
j− 1

2

]
. (9.11)

The first step, Eq. (9.10), which is seen to be equivalent to the Lax–
Friedrichs method, Eq. (9.6), applied to a single zone spacing, defines pro-
visional values which are used in the second step. If we linearize the equation
so that F = A · U, with A a constant, then Eqs. (9.10) and (9.11) can be
combined to give the single step difference equation

Un+1
j = Un

j −
δt

2δx
A ·

[
Un
j+1 −Un

j−1

]
+

1
2

(
δt

δx

)2

A2 ·
[
Un
j+1 − 2Un

j + Un
j−1

]
, (9.12)
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or, in a conservative form:

Un+1
j = Un

j −
δt

2δx
[
Fnj+1 − Fnj−1

]
(9.13)

+
1
2

(
δt

δx

)2 [
An
j+ 1

2
·
(
Fnj+1 − Fnj

)
−An

j− 1
2
·
(
Fnj − Fnj−1

)]
.

Von Neumann stability analysis of Eq. (9.12) leads to the amplification
factor

r = 1− iλA
δt

δx
sin θk +

(
λA

δt

δx

)2[
cos θk − 1

]
. (9.14)

This is seen to be stable with |r| ≤ 1 for λAδt/δx ≤ 1. The amplification
factor r in Eq. (9.14) can be written

|r|2 = 1− 4s2
(
1− s2

)
sin4 1

2
θk,

where s = δtλA/δx so that the difference scheme is dissipative of fourth order
in the long-wavelength limit of small θk [181]. The truncation error is seen to
be second-order in both space and time, O(δx2, δt2).

To gain some insight into the origin of Eqs. (9.12) and (9.13), let us start
with a Taylor series expansion in time up to third order so as to achieve
second-order accuracy:

Un+1
j = Un

j + δt
∂U
∂t

∣∣∣∣
j

+
1
2
δt2

∂2U
∂t2

∣∣∣∣
j

+O(δt3).

Now, make the substitution from the PDE, Eq. (9.2), ∂
∂t → −A · ∂∂x to obtain

up to order δt2:

Un+1
j = Un

j − δtA · ∂U
∂x

∣∣∣∣
j

+
1
2
δt2A2 · ∂

2U
∂x2

∣∣∣∣
j

. (9.15)

When centered spatial finite difference operators replace the spatial deriva-
tives in Eq. (9.15), we obtain Eq. (9.12). We see that the second-order spatial
difference term in brackets is just that required to provide second-order accu-
racy in time.

9.2.3 MacCormack Differencing

An interesting variation on the two step Lax–Wendroff method which has
been used for aerodynamic calculations is known as MacCormack differencing.
MacCormack’s method [186] applied to Eq. (9.1) is as follows:

Un+1
j = Un

j −
δt

δx

[
Fnj+1 − Fnj

]
,
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Un+1
j =

1
2

{
Un
j + Un+1

j − δt

δx

[
Fn+1
j − Fn+1

j−1

]}
. (9.16)

A provisional value of the solution is computed at the new time using a one-
sided spatial difference, and that provisional value is used to compute a one-
sided spatial difference in the opposite direction and is also averaged into the
final solution. This can also be shown to be second-order accurate in space
and time and, in fact, to be equivalent to the Lax–Wendroff method if A is a
constant matrix.

9.2.4 Leapfrog Method

The leapfrog method applied to Eq. (9.1) can be written as follows:

Un+1
j = Un−1

j − δt

δx

[
Fnj+1 − Fnj−1

]
. (9.17)

Note that this involves three time levels, and is centered in both time and
space, making its truncation error O

(
δt2, δx2

)
. Letting F = A ·U, we find

for the amplification factor

r = is sin θk ±
[
1− s2 sin2 θk

]1/2
, (9.18)

where s = λAδt/δx. The method has |r| = 1 identically for s ≤ 1 and is
therefore non-dissipative. It is unstable for s > 1.

We have seen in Problem 1 of Chapter 7 that the leapfrog method is
unstable when applied to diffusion equations. However, the DuFort–Frankel
method combines naturally with the leapfrog method when dissipative terms
are present. For example, the mixed type equation

∂φ

∂t
+ u

∂φ

∂x
= D

∂2φ

∂x2
(9.19)

would be differenced using the combined leapfrog/DuFort–Frankel method as

φn+1
j − φn−1

j

2δt
+ u

[
φnj+1 − φnj−1

2δx

]
= D

[
φnj+1 + φnj−1 − φn+1

j − φn−1
j

δx2

]
. (9.20)

Since φn+1
j is the only new time value in Eq. (9.20), it can be solved for

algebraically without matrix inversion.
The combined method, Eq. (9.20), has many advantages and is used often,

but it has some shortcomings. One is that the grid points at even and odd
values of time and space indices n + j are completely decoupled, as shown
in Figure 9.1, and can drift apart after many time cycles. Using an FTCS
method instead for the diffusive term will couple the grids together. This
implies evaluating the diffusion term at the n− 1 time level:

φn+1
j − φn−1

j

2δt
+ u

[
φnj+1 − φnj−1

2δx

]
= D

[
φn−1
j+1 − 2φn−1

j + φn−1
j−1

δx2

]
. (9.21)
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FIGURE 9.1: In the combined DuFort–Frankel/leapfrog method, the space-
time points at odd and even values of n+ j are completely decoupled.

If the time step restriction from the explicit diffusion term in Eq. (9.21),
δt ≤ δx2/4D, is too severe, one can take a weighted combination of the right
sides of Eqs. (9.20) and (9.21) where the diffusion term D in the first is
multiplied by some parameter (1−α) and the D in the second by α. The value
of α can be chosen small enough so that the associated time step restriction
δt < δx2/4αD does not limit the time step.

Often, a slight variation of the leapfrog method involving a staggering in
space and/or in time offers significant advantages in removing the decoupled
grid problem, or in incorporating boundary conditions more easily. For exam-
ple, consider the wave equation

∂2φ

∂t2
= c2

∂2φ

∂x2
, (9.22)

where the wave propagation velocity c is a constant. This can be written in
terms of the variables v = ∂φ/∂t and ω = c∂φ/∂x as

∂v

∂t
= c

∂ω

∂x
,

∂ω

∂t
= c

∂v

∂x
. (9.23)

If we adopt the convention, as shown in Figure 9.2, that v is defined at
half-integer time points and integer space points, and ω is defined at integer
time and half-integer space points as shown, then the leapfrog method applied
to Eq. (9.22) becomes

v
n+ 1

2
j = v

n− 1
2

j +
cδt

δx

(
ωnj+ 1

2
− ωnj− 1

2

)
, (9.24)

ωn+1
j+ 1

2
= ωnj+ 1

2
+
cδt

δx

(
v
n+ 1

2
j+1 − v

n+ 1
2

j

)
. (9.25)
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FIGURE 9.2: Staggering variables in space and time can remove the decou-
pled grid problem from leapfrog.

Stability analysis of the system given by Eqs. (9.24)–(9.25) again shows that
the amplification factor is given by

r2 − (2− 4a2)r + 1 = 0, (9.26)

where a = cδt/δx sin(θk/2). Both roots of Eq. (9.26) have absolute value unity
for a2 ≤ 1, which implies cδt/δx ≤ 1 for stability.

9.2.5 Trapezoidal Leapfrog

A popular method used to overcome the grid decoupling problem with
leapfrog is the leapfrog-trapezoidal method [187]. Instead of Eq. (9.17), the
two-step finite difference approximation to Eq. (9.1) is

Un+ 1
2

j =
1
2
(
Un−1
j + Un

j

)
− δt

δx

[
Fnj+ 1

2
− Fnj− 1

2

]
,

Un+1
j = Un

j −
δt

δx

[
Fn+ 1

2
j+ 1

2
− Fn+ 1

2
j− 1

2

]
. (9.27)

Here, Fj+ 1
2

= (1/2)(Fj + Fj+1), etc. The first step, called the trapezoidal
step, effectively couples the two leapfrog grids by strongly damping any as-
sociated computational mode. Time and space centering in both steps guar-
antees second-order accuracy in both time and space. Variants of this that
require spatial differencing over only a single zone spacing can also be applied
by staggering the spatial locations of the different variables.

Von Neumann stability analysis of this difference equation is complicated
by the need to solve a quadratic equation with complex coefficients, but it
can readily be verified numerically that the algorithm given by Eq. (9.27) is
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stable for s = λAδt/δx <
√

2. If explicit diffusive terms are to be added to
Eq. (9.27), they should be evaluated at the (n− 1) time level on the first step
and the n time level on the second step so they would effectively be FTCS for
each step.

9.3 Explicit Upwind Differencing

Suppose we are concerned with solving a simple one-dimensional conser-
vation equation such as the continuity equation,

∂ρ

∂t
+

∂

∂x
(ρu) = 0. (9.28)

This is of the form of Eq. (9.1) if we identify U = ρ, F = ρu, A = u.
An explicit, two-time-level method which is conditionally stable involves the
use of one-sided, rather than space-centered, differencing. Backward spatial
differences are used if the velocity u is positive, and forward spatial differences
are used if u is negative.

The basic method is then

ρn+1
j − ρnj
δt

= −
[
(ρu)nj − (ρu)nj−1

δx

]
for u > 0

= −
[
(ρu)nj+1 − (ρu)nj

δx

]
for u < 0. (9.29)

This method is known as “upwind,” “upstream,” or “donor cell” differencing.
It has a truncation error T∆ = O(δt, δx), and is stable for δt ≤ δx/u. It
is instructive to examine the leading order truncation error for the constant
u case. Expanding in Taylor series and using Eq. (9.28) to eliminate time
derivatives in favor of space derivatives gives for the truncation error

T∆ =
(

1
2
|u|δx− 1

2
u2δt

)
∂2ρ

∂x2
+O

(
δx2, δt2

)
. (9.30)

We see that the upwind difference method introduces an artificial (or numer-
ical) diffusion term which makes the method stable if δt ≤ δx/u so that the
effective diffusion coefficient in brackets is positive.

To gain further insight as to why the upwind method works and is robustly
stable, let us apply it to the simplified case where the velocity u is constant
and positive, u > 0. Eq. (9.29) then reduces to

ρn+1
j = sρnj−1 + (1− s)ρnj , (9.31)

where s ≡ uδt/δx. This is illustrated schematically in Figure 9.3. We see that
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n-1

j-1 j j+1

FIGURE 9.3: The upwind method corresponds to linear interpolation for
the point where the characteristic curve intersects time level n as long as
s ≡ uδt/δx ≤ 1

for s ≤ 1, the new value ρn+1
j is obtained by following the characteristic curve

back to the previous time level n and using linear interpolation to evaluate
the intersection point. This also implies that there will be no new minima or
maxima since the interpolated value will aways be bounded by the values at
the two endpoints. This guarantees stability of the upwind method for s ≤ 1.

As a generalization of Eq. (9.31), we see that it can be written in the form

ρn+1
j = ρnj +

∑
j 6=k

Cj,k
(
ρnk − ρnj

)
, (9.32)

where the coefficients are all non-negative and are zero except for nearest
neighbors, i.e.,

Cj,k =
{
≥ 0 k = j ± 1
= 0 else (9.33)

If ρnj is a local maximum, then
(
ρnk − ρnj

)
≤ 0, and so ρn+1

j ≤ ρnj . Conversely,
if ρnj is a local minimum, then

(
ρnk − ρnj

)
≥ 0, and so ρn+1

j ≥ ρnj . The scheme
is therefore local extremum diminishing. It is clear that a method built on
these principles can readily be extended to multiple dimensions.

The difference method described by Eq. (9.29) is conservative if the velocity
u doesn’t change sign in the computational domain. If it does change sign,
there will be a non-conservative error which introduces an artificial source or
sink of mass, although it will be proportional to the local u which would be
small since it is passing through zero near that point.

There is a variant of the upwind differencing method which is fully conser-
vative. We first define average interface velocities on each of the mesh points.
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The sign of these velocities determines, by upwind differencing, which cell
values of ρ to use. The method can be expressed as

ρn+1
j − ρnj
δt

= −

[
un
j+ 1

2
ρn
j+ 1

2
− un

j− 1
2
ρn
j− 1

2

δx

]
, (9.34)

where

uj+ 1
2

=
1
2

[uj+1 + uj ] ,

uj− 1
2

=
1
2

[uj + uj−1] . (9.35)

Alternatively, because of the staggered locations, the uj+ 1
2

may be the funda-
mental variables. In either case, we would define the ρ values as follows:

ρj+ 1
2

= ρj for uj+ 1
2
> 0,

= ρj+1 for uj+ 1
2
< 0,

ρj− 1
2

= ρj−1 for uj− 1
2
> 0,

= ρj for uj− 1
2
< 0.

Because the method of Eq. (9.34) is conservative and also takes centered
derivatives of u, it is generally preferred to that of Eq. (9.29).

9.3.1 Beam–Warming Upwind Method

We can use the analysis of Eq. (9.15), introduced in conjunction with the
Lax–Wendroff method, to construct a second-order accurate upwind method.
Suppose all the eigenvalues of A are positive. In place of the centered difference
formulas used in Eq. (9.12), we could use the one-sided difference formulas:

∂U
∂x

=
1

2δx
(3Uj − 4Uj−1 + Uj−2) +O(δx2),

∂2U
∂x2

=
1
δx2

(Uj − 2Uj−1 + Uj−2) +O(δx).

Substitution of these one-sided difference operators into Eq. (9.15) gives
the second-order accurate upwind method known as the Beam–Warming
method [188],

Un+1
j = Un

j −
δt

2δx
A ·

(
3Un

j − 4Un
j−1 + Un

j−2

)
+

1
2

(
δt

δx

)2

A2 ·
(
Un
j − 2Un

j−1 + Un
j−2

)
. (9.36)

This can also be expressed in conservative form as

Un+1
j = Un

j −
δt

δx

[
Fnj+ 1

2
− Fnj− 1

2

]
, (9.37)
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where the fluxes are defined as

Fnj+ 1
2

= Fnj +
1
2

(
I− δt

δx
Aj− 1

2

)[
Fnj − Fnj−1

]
. (9.38)

9.3.2 Upwind Methods for Systems of Equations

The simple upwind method described in the previous sections will nor-
mally not work for systems of equations with multiple characteristic velocities
which could be of either sign. However, there are extensions of this method
that form the basis for many modern methods of exceptional stability and ac-
curacy. The basic idea of these methods is to locally decompose the solution
into right-going and left-going subproblems, and then to use an appropriate
upwind method for each of the subproblems. This idea goes back to a paper by
Courant, Isaacson, and Rees [189] and is sometimes called the CIR method.

As an example, consider the linear system of m equations given by
Eq. (9.2):

∂U
∂t

+ A · ∂U
∂x

= 0, (9.39)

where U is an m vector and A is an m×m matrix.
We first construct two diagonal matrices from A, each of which has either

the positive, D+, or negative, D−, eigenvalues of A along the diagonal. Let
the p-th eigenvalue of the matrix A be denoted λp. We introduce the compact
notation

λ+
p = max(λp, 0), D+ = diag(λ+

1 , · · · , λ+
m), (9.40)

λ−p = min(λp, 0), D− = diag(λ−1 , · · · , λ−m). (9.41)

Note that D+ + D− = D, where D = T ·A ·T−1 is the diagonal matrix with
the same eigenvalues as A. In terms of the vector V = T · U, the upwind
method can be written

Vn+1
j = Vn

j −
δt

δx
D+ · (Vn

j −Vn
j−1)−

δt

δx
D− · (Vn

j+1 −Vn
j ). (9.42)

Note that for the ideal MHD equations, the unknown vector U can be
thought of as the sum of eight scalar amplitudes times the eight orthonormal
eigenvectors found in Eq. (1.95),

U =
8∑
i=1

αiSi. (9.43)

The matrix T is constructed by making each row one of the eigenvectors.
Then, using the orthonormal property, we see that the vector V just contains
the eight amplitudes and that the inverse matrix T−1 is just the transpose of
T.
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We can transform Eq. (9.42) back to the physical U variables by multi-
plying on the left by T−1,

Un+1
j = Un

j −
δt

δx
A+ · (Un

j −Un
j−1)−

δt

δx
A− · (Un

j+1 −Un
j ), (9.44)

where

A+ = T−1 ·D+ ·T, A− = T−1 ·D− ·T. (9.45)

Note that A = A+ + A−, and if all of the eigenvalues have the same sign,
then either A+ or A− is zero, and the method given by Eq. (9.44) reduces to
a standard upwind method.

There have been several efforts to extend this method to the conservative
form, Eq. (9.1). Godunov [190] is credited with being the first to do so for a
nonlinear system of equations. His approach was to treat each computational
zone as if it had uniform properties for the conserved quantities, and thus
“discontinuities” would exist at the zone boundaries. An initial value problem
with discontinuities such as this is known as a Riemann problem. . The method
consists of solving the Riemann problem for a small time, δt, evolving each
eigenmode according to its characteristic velocity as in the CIR method, and
then reconstructing the conserved variables in each zone by averaging the time-
evolved variables over each zone volume. When applied to a linear problem,
it yields just the CIR method discussed above.

In general, this Riemann problem cannot be solved exactly over the time
interval δt and some approximations need to be made. Consider the space-
centered conservative differencing form in one dimension:

Un+1
j = Un

j −
1
δx

[
F̄nj+ 1

2
− F̄nj− 1

2

]
. (9.46)

Let us define the upwind differenced fluxes as

F̄nj+ 1
2
≡ 1

2
(Fj + Fj+1)−Hj+ 1

2
,

where

Hj+ 1
2

=
1
2
[(

F+
j+1 − F+

j

)
−
(
F−j+1 − F−j

)]
.

Here, the signed fluxes F+
j and F−j have the property that

Fj = F+
j + F−j , (9.47)

and the corresponding eigenvalues of ∂F+/∂U are all positive or zero, and
those of ∂F−/∂U are all negative or zero. This is seen to lead to a conservative
analogue of Eq. (9.44).

There still remains a question of how F+
j and F−j are to be evaluated.
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We saw in Eq. (9.45) how A = ∂F/∂U can be split in the linearized form.
However, for the conservative form, we need to find matrices Ā+ and Ā− such
that, in addition to Eq. (9.47), the fluxes F+

j and F−j satisfy

F+
j − F+

j−1 = Ā+ · (Uj −Uj−1) ,

F−j+1 − F−j = Ā− · (Uj+1 −Uj) ,

For the Euler equations, these matrices were derived by Roe by showing that
there is a unique interface state (the Roe-averaged state) that has certain
desired properties [191]. For the MHD equations, several authors have shown
that by applying suitable averaging techniques, acceptable solutions can be
found [192, 193, 194]. Various limiter schemes, as described in the next section,
have also been combined with the method presented here to improve the
accuracy away from discontinuities [195, 196].

9.4 Limiter Methods

Second- or higher-order accurate methods such as Lax–Wendroff or Beam–
Warming give much better accuracy on smooth solutions than does the simple
upwind method, but they can fail near discontinuities where oscillations are
generated. This is because the Taylor series expansion upon which these meth-
ods are based breaks down when the solution is not smooth.

The first-order upwind method has the advantage of keeping the solution
monotonic in regions where it should be and not producing spurious maxima
or minima, but the accuracy is not very good. The idea of high-accuracy
limiter methods is to combine the best features of both the high-order and
the upwind methods. They try to obtain second-order accuracy away from
discontinuities, but also to avoid oscillations in regions where the solution is
not smoothly varying.

To better understand some of the concepts involved, let us apply the Lax–
Wendroff method, Eq. (9.12), to the simple linear scalar equation

∂u

∂t
+ a

∂u

∂x
= 0, (9.48)

where a is a constant, assumed here to be positive. It is readily verified that
the Lax–Wendroff method applied to this equation can be written as

un+1
j = unj − s

(
unj − unj−1

)
− 1

2
s(1− s)

(
unj+1 − 2unj + unj−1

)
, (9.49)

where s = aδt/δx.
The first term in brackets in Eq. (9.49) is seen to be just upwind differ-

encing, while the second term can be considered to be a diffusive correction.
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However, note that since the CFL condition requires s < 1, the second term
will have a negative coefficient which corresponds to anti-diffusion. The way
to interpret this is that the upwind method has so much intrinsic numerical
diffusion associated with it that the Lax–Wendroff method needs to subtract
off some of the diffusion term in order to get a higher-accuracy method.

The idea of the limiter methods is to modify the last term in Eq. (9.49)
in a way that modifies this anti-diffusion term so that it does not produce
undesirable results in regions with sharp gradients. This idea goes back to the
1970s with the flux corrected transport (FCT) method [187, 197], the hybrid
method [198], and others [199]. An excellent discussion of limiter methods can
be found in Leveque [180].

The most common methods can be described by writing Eq. (9.49) in the
form:

If a > 0:

un+1
j = unj − s

(
unj − unj−1

)
− 1

2
s(1− s)

[
φ
(
θnj+ 1

2

) (
unj+1 − unj

)
− φ

(
θnj− 1

2

) (
unj − unj−1

)]
.

Else, if a < 0:

un+1
j = unj − s

(
unj+1 − unj

)
+

1
2
s(1 + s)

[
φ
(
θnj+ 1

2

) (
unj+1 − unj

)
− φ

(
θnj− 1

2

) (
unj − unj−1

)]
.

The argument of the limiter function is defined as follows:

θnj− 1
2

=


unj−1 − unj−2
uj − uj−1

if a > 0 ,
unj+1 − unj
uj − uj−1

if a < 0 .
(9.50)

The different methods are defined by their choice for the limiter function
φ(θ). (Note that the upwind method is recovered if we let φ(θ) = 0, the Lax–
Wendroff method is recovered if we let φ(θ) = 1 and the Beam–Warming
method is recovered for φ(θ) = θ.)

Four popular high-resolution limiter methods can be expressed as:

minmod [180] : φ(θ) = minmod(1, θ),
superbee [200] : φ(θ) = max (0,min(1, 2θ),min(2, θ)) ,

MC [180] : φ(θ) = max (0,min ((1 + θ)/2, 2, 2θ)) ,

van Leer [201] : φ(θ) =
θ + |θ|
1 + |θ|

Here the minmod function of two arguments is defined as

minmod(a, b) =

 a if |a| < |b| and ab > 0,
b if |b| < |a| and ab > 0,
0 if ab ≤ 0.

(9.51)
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If a and b have the same sign, this selects the one that is smaller in modulus,
otherwise it returns zero.

These prescriptions can all be shown to have the property that they are
total variation diminishing (TVD) [202]. If we define the total variation of a
grid function uj by

TV(u) ≡
∞∑

j=−∞
|uj − uj−1| , (9.52)

then the TVD property is that

TV(un+1) ≤ TV(un). (9.53)

It can be shown that any TVD method is also monotonicity preserving, that
is, if unj ≥ unj+1 for all j, then this implies that un+1

j ≥ un+1
j+1 for all j.

The limiting process described above is, of course, complicated by the
fact that a hyperbolic system of equations such as described by Eq. (9.2)
actually consists of a superposition of more than one type of wave. In this case
the correction term must be decomposed into eigencomponents as discussed
in Section 9.3.2 and each scalar eigencoefficient must be limited separately,
based on the algorithm for scalar advection. A more complete description of
the implementation of flux-limiter methods to systems of equations, as well as
some subtleties involving non-linear systems, can be found in Leveque [180].

9.5 Implicit Methods

If all the eigenvalues of the matrix A, λA, are close together in magnitude,
it is generally not worthwhile to use an implicit method for a purely hyperbolic
problem. The reasons for this are as follows: It requires more computational
work per time step using an implicit method compared to that required for
an explicit method. This difference becomes greater as the rank of the matrix
A increases or especially when working in two or higher dimensions. Also,
to take advantage of the unconditional stability of the implicit method, we
would need to significantly violate the CFL condition so that δt � δx/|λA|.
Since the truncation error is normally of the same order in both δt and δx, this
would imply that the O(δt2) term would dominate in the truncation error and
thus solutions using larger time steps would be less accurate than those with
smaller time steps. This is in contrast to a Crank–Nicolson implicit solution
of a diffusion equation where we saw in Section 7.2.1 that the time step can
be increased from δt ∼ δx2 to δt ∼ δx without substantially increasing the
overall truncation error.

Another possible disadvantage of implicit methods applied to hyperbolic
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FIGURE 9.4: Characteristics for the Alfvén wave (dotted) and the fast
magnetoacoustic wave (solid) are shown in this schematic diagram. (a) Space-
time plot for fully explicit method. (b) Same for partially implicit method
where the time step is at CFL limit for the Alfvén wave.

equations is that they result in an infinite signal propagation speed. Physi-
cally, all information should be propagated along the characteristics, which
corresponds to a finite velocity of propagation. An explicit finite difference
method normally has a domain of dependence that very closely resembles the
domain of dependence of the physical system, while the domain of dependence
of the implicit method is totally different.

Explicit finite difference methods are also ideally suited to pure hyper-
bolic problems with with a wide range of characteristic velocities but where
interest lies in phenomena associated with the fastest wave speed (or equiva-
lently, the largest eigenvalue λA). However, in a strongly magnetized plasma
we normally have the situation where there are multiple characteristic veloc-
ities that differ widely, and where primary interest lies not with the fastest
wave speed (which is the fast magnetoacoustic wave which compresses the
strong background field), but rather with the slower Alfvén wave, which is
nearly incompressible [203]. The situation is then as depicted in Figure 9.4,
where we draw the characteristics associated with the fast wave as a solid line,
and those associated with the slower shear Alfvén wave with a dotted line.

Figure 9.4a illustrates the space-time points in an explicit calculation
where the time step is determined by the CFL condition for the fast wave. It
is seen that it takes many time steps for the shear Alfvén wave to traverse one
zone spacing. In contrast, Figure 9.4b shows the same characteristics but with
a time step chosen so that the CFL condition is just satisfied for the shear
Alfvén wave. It is seen that the CFL condition for the fast wave is strongly vio-
lated and so an implicit treatment is needed, at least for the eigencomponents
associated with the fast wave.

There are also many situations where there are additional terms in the
equations, such as resistivity, that lead to even longer time scales that need
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to be followed, for example the slow growth of a resistive instability in a fu-
sion device [11, 12, 13]. In these cases, the CFL time step restriction based
on the fast wave would be much too restrictive and some form of implicit
solution is required. The next few sections describe some different approaches
to solving the implicit system in multiple dimensions. We discuss both im-
plicit and partially implicit methods that are all aimed at producing efficient
algorithms for studying plasma motion that is associated with other than the
fastest characteristic.

9.5.1 θ-Implicit Method

We first consider an implicit method for the hyperbolic system of Eq. (9.2)
that is similar to the θ-implicit and Crank–Nicolson methods for parabolic
equations discussed in Section 7.2.1,

Un+1
j −Un

j

δt
+ A ·

[
θ

(
Un+1
j+1 −Un+1

j−1

2δx

)
+ (1− θ)

(
Un
j+1 −Un

j−1

2δx

)]
,(9.54)

where 0 ≤ θ ≤ 1 is the implicit parameter. Von Neumann analysis yields for
the amplification factor

r =
1 + is(θ − 1)

1 + isθ
, (9.55)

where s = (δtλA/δx) sin θk, with λA being each of the eigenvalues of the matrix
A. We see that |r| ≤ 1, implying unconditional stability, for 0.5 ≤ θ ≤ 1.0. For
θ = 0.5 we have |r| = 1, implying no dissipation, and the method described by
Eq. (9.54) is centered in both space and time and therefore has a truncation
error T∆ = O(δx2, δt2). In this sense, it is analogous to the Crank–Nicolson
method for parabolic equations.

The θ-implicit method as described by Eq. (9.54) uses the quasi-linear form
of conservation equations, and does not deal with any non-linearity present
in A. If A is a strongly non-linear function of U, or if we wish to solve the
problem in conservation form, the method can be modified in several ways.
One obvious way is to update the solution to a provisional time, (n+ 1)∗, to
evaluate the matrix A at this time, and then repeat the update of the solution
from time n to (n+ 1) but using some linear combination of A at time n and
(n+ 1)∗.

A straightforward linearization technique can also be used to apply the
θ-implicit method to the conservative formulation of a hyperbolic system as
given by Eq. (9.1) in one dimension [204]. We first Taylor expand Fn+1 in
time about Fn

Fn+1 = Fn + An ·
(
Un+1 −Un

)
+O(δt2). (9.56)

Applying the θ-implicit method to the system of conservation equations,
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Eq. (9.1), and rearranging terms gives[
I + θδt

∂

∂x
An

]
·Un+1 =

[
I + θδt

∂

∂x
An

]
·Un − δt

∂F
∂x

∣∣∣∣n . (9.57)

Note that the derivative is acting on A · U for both bracketed terms. If A
is a constant matrix, Eq. (9.57) is equivalent to Eq. (9.54) if centered spatial
difference operators are used. For θ = 1/2, the method is seen to be time and
space centered and thus have a truncation error O(δx2, δt2).

9.5.2 Alternating Direction Implicit (ADI)

In one dimension, the operator in brackets on the left in Eq. (9.57) leads
to a block tridiagonal matrix which is easily and efficiently inverted using the
methods of Section 3.3.3. Consider now the two-dimensional equation

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0. (9.58)

We introduce the second Jacobian matrix C = ∂G/∂U. A straightforward
generalization of the one-dimensional method leads to the time advance[

I + θδt

(
∂

∂x
An +

∂

∂y
Cn

)]
·Un+1 =

[
I + θδt

(
∂

∂x
An +

∂

∂y
Cn

)]
·Un

−δt
(
∂F
∂x

+
∂G
∂y

)n
. (9.59)

The two-dimensional operator in brackets on the left in Eq. (9.59) needs to
be inverted each time step. This is more problematic than the operator in
Eq. (9.57) because it no longer leads to block tridiagonal matrices with small
block size, and the difference terms involving An and Cn are not diagonally
dominant. Some type of good preconditioner is needed if one of the iterative
methods of Chapter 3 is to be used.

However, in two dimensions, we can consider use of the ADI scheme in-
troduced in Section 7.3.5 [204, 205]. Specializing to θ = 1/2, we establish a
factorable operator by adding to each side of Eq. (9.59) a higher-order term:

1
4
δt3

∂

∂x
An · ∂

∂y
C ·
(

Un+1 −Un

δt

)
. (9.60)

Then, a factored scheme with the same order of accuracy as Eq. (9.59) can be
written as[

I +
1
2
δt
∂

∂x
An

]
·
[
I +

1
2
δt
∂

∂y
Cn

]
·Un+1

=
[
I +

1
2
δt
∂

∂x
An

]
·
[
I +

1
2
δt
∂

∂y
Cn

]
·Un

− δt

(
∂F
∂x

+
∂G
∂y

)n
. (9.61)
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This is seen to be similar to the ADI method which breaks the full time step
into two half-steps, in each of which only a single direction is treated implicitly
which leads to just tridiagonal matrices. This can be solved in two steps, each
involving the solution of block tridiagonal systems of equations as follows:[

I +
1
2
δt
∂

∂x
An

]
U∗ =

[
I +

1
2
δt
∂

∂x
An

]
·
[
I +

1
2
δt
∂

∂y
Cn

]
·Un

−δt
(
∂F
∂x

+
∂G
∂y

)n
,[

I +
1
2
δt
∂

∂y
Cn

]
·Un+1 = U∗. (9.62)

9.5.3 Partially Implicit 2D MHD

As discussed at the start of Section 9.5, a fully explicit solution of a system
of hyperbolic equations can be very inefficient if the range of propagation
velocities, or eigenvalues of A, |λmaxA |/|λminA | is large. If this is the case, we
say that the system of equations is “stiff,” or contains multiple time scales.
This is only a difficulty when the fastest time scale in the problem is not the
one that is dominantly contributing to the physical phenomena of interest.

This is exactly the situation for the case of the MHD equations being
applied to tokamak geometry. We have seen in Chapter 1 that the fast com-
pressible wave, the shear Alfvén wave, and the slow compressible wave can
have characteristic wave transit times that can each be separated by an order
of magnitude in a strongly magnetized plasma for propagation directions that
are nearly perpendicular to the background magnetic field.

It is the fast compressible wave propagating perpendicular to the mag-
netic field that will normally set the limit on the time step for a fully explicit
method, while the physical phenomena of interest normally develop on the
shear Alfvén time scale, or slower. Since the fast compressible wave will man-
ifest itself in small amplitude stable compressible oscillations, one strategy is
to isolate it and treat only this phenomenon with implicit differences, and to
use explicit differencing on the remaining terms. The goal would be to end
up with a set of difference equations that form a relatively small and well-
conditioned sparse matrix equation which can be solved efficiently and which
allows the time step to be determined only by the CFL condition based on
the shear Alfvén wave.

To illustrate the application of these methods to a tractable but non-
trivial system of equations, let us consider the two-dimensional resistive MHD
equations of Section 1.2.2. We will allow propagation only in the x̂, ŷ plane by
taking ∂/∂z = 0 and adopt a notation that incorporates ∇ ·B = 0 and thus
allows us to represent the magnetic field with just two scalar variables. We also
anticipate different propagation velocities for compressible and incompressible
motions. These considerations lead us to represent the magnetic field in terms
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of a poloidal flux ψ and a longitudinal field b,

B = ẑ×∇ψ + bẑ, (9.63)

and to represent the velocity vector in terms of a stream function, a potential,
and a longitudinal part as follows:

u = ẑ×∇A+∇Ω + vẑ. (9.64)

The current density is given by the curl of the magnetic field:

µ0J = ∇2ψẑ +∇b× ẑ.

Note that in terms of the velocity stream function A and potential Ω, the
Cartesian components of the velocity are given by

ux = −∂A/∂y + ∂Ω/∂x,
uy = ∂A/∂x+ ∂Ω/∂y,
uz = v.

In what follows we neglect the density variation (set ρ = 1) and also assume
that the convective derivative (u · ∇u) term, the pressure gradient term, and
the viscous term in the equation of the motion are negligible for simplicity.
We take the following projections of the momentum equation, Eq. (1.54):

∇ ·
[
∂u
∂t

= J×B
]
,

ẑ · ∇ ×
[
∂u
∂t

= J×B
]
,

z ·
[
∂u
∂t

= J×B
]
,

and of the field evolution equation, Eq. (1.56):

ẑ ·
[
∂B
∂t

= ∇× (u×B− ηJ)
]
,

ẑ · [∇×]−1 ·
[
∂B
∂t

= ∇× (u×B− ηJ)
]
.
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This gives the five scalar evolution equations

∂

∂t
∇2Ω =

−1
µ0

∂

∂x

[
b
∂b

∂x
+
∂ψ

∂x
∇2ψ

]
− 1
µ0

∂

∂y

[
b
∂b

∂y
+
∂ψ

∂y
∇2ψ

]
, (9.65)

∂

∂t
∇2A = − 1

µ0

∂ψ

∂y

∂

∂x

[
∇2ψ

]
+

1
µ0

∂ψ

∂x

∂

∂y

[
∇2ψ

]
, (9.66)

∂v

∂t
=

∂ψ

∂x

∂b

∂y
− ∂ψ

∂y

∂b

∂x
, (9.67)

∂b

∂t
+ ux

∂b

∂x
+ uy

∂b

∂y
= −b∇2Ω +

∂ψ

∂x

∂v

∂y
− ∂ψ

∂y

∂v

∂x
+

η

µ0
∇2b, (9.68)

∂ψ

∂t
+ ux

∂ψ

∂x
+ uy

∂ψ

∂y
=

η

µ0
∇2ψ. (9.69)

We are interested in solving Eqs. (9.65)–(9.69) in the strong longitudinal field
regime where |∇Ψ|/b ∼ ε� 1. Here we have introduced a small dimensionless
parameter ε. It follows from equilibrium considerations [106] that the gradients
of the longitudinal field will be of second-order in this parameter, ∇b/b ∼ ε2.
There are a multiplicity of time scales present in the equations associated with
the fast wave, the shear Alfvén wave, and with field diffusion, which will be
much slower than the wave propagation time of the slowest MHD wave for
Lundquist number S � 1.

We could perform a purely explicit time advance, for example, using the
combined leapfrog and DuFort–Frankel methods. However, the time step cri-
terion becomes unacceptable since the fast wave will be controlling the time
step while the shear Alfvén wave will be dominating the physics. A fully im-
plicit solution would be inefficient due to the size and the lack of diagonal
dominance of the resulting matrices. It is often better to select only certain
terms (which in this case are the order ε0 terms that contribute to the fast
wave) and treat them implicitly, thereby allowing the time step to be set by
the slower shear Alfvén wave.

If we define new variables for the divergence of the velocity,

U ≡ ∇2Ω

and the total pressure of the longitudinal magnetic field,

P ≡ 1
2µ0

b2,

we can effectively isolate the fast wave dynamics. We also define the (higher
order in ε) auxiliary variables

R =
−1
µ0

{
∂

∂x

(
∂ψ

∂x
∇2ψ

)
+

∂

∂y

(
∂ψ

∂y
∇2ψ

)}
,

S = −
[
ux
∂P

∂x
+ uy

∂P

∂y

]
+ b

[
∂ψ

∂x

∂v

∂y
− ∂ψ

∂y

∂v

∂x

]
+

η

µ0
b∇2b.
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Equations (9.65) and (9.68) then take the form

∂U

∂t
+∇2P = R, (9.70)

∂P

∂t
+ b2U = S. (9.71)

We see that the order ε0 terms have been isolated on the left in Eqs. (9.70)
and (9.71). Consider now the BTCS partially implicit time advance:

Un+1 − Un

δt
+∇2Pn+1 = Rn, (9.72)

Pn+1 − Pn

δt
+ b2Un+1 = Sn. (9.73)

We can eliminate Un+1 from the second equation to give[
I − δt2b2∇2

]
Pn+1 = Pn + δtSn − δtb2 [Un + δtRn] . (9.74)

The elliptic operator in Eq. (9.74), which is now symmetric and positive defi-
nite, can either be inverted as is, or the semi-implicit method of Section 7.3.3
can be used to replace it with a similar constant coefficient elliptic opera-
tor. We return to this in Section 9.5.6. Once Pn+1 is obtained, we can ob-
tain Un+1 from Eq. (9.72), and then Ωn+1 from solving the elliptic equation
∇2Ωn+1 = Un+1. The first-order equations, Eqs. (9.66), (9.67), and (9.69) are
then advanced using the new time values of bn+1 =

√
2µ0Pn+1 and Ωn+1, but

with the other terms evaluated using an explicit method such as leapfrog plus
DuFort–Frankel. This would involve introducing a new variable for the vor-
ticity, ω ≡ ∇2A, advancing this in time using Eq. (9.66) and then obtaining
A from solving ∇2An+1 = ωn+1.

9.5.4 Reduced MHD

We include a brief discussion of reduced MHD here since it can be thought
of as taking the limit of the equations in the last section as |∇ψ|/b ∼ ε → 0.
The strong longitudinal field b becomes a spatial constant and is not solved
for. It follows that U = 0 and v = 0, and the velocity is incompressible and in
the (x, y) plane. The remaining equations (now including the convective term
and adding a viscosity term with coefficient µ) can be written in the compact
form:

∂ω

∂t
+ [A,ω] =

1
µ0

[
ψ,∇2ψ

]
+ µ∇2ω, (9.75)

∂ψ

∂t
+ [A,ψ] =

η

µ0
∇2ψ, (9.76)

∇2A = ω. (9.77)



Numerical Methods for Hyperbolic Equations 257

Here we have introduced the Poisson bracket, which for any two scalar vari-
ables a and b is defined as

[a, b] ≡ ∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
. (9.78)

The two-variable reduced equation set given by Eqs. (9.75)–(9.77) has been ex-
tended to 3D Cartesian geometry by Strauss [18] and to 3D toroidal geometry
by Breslau [30].

The Poisson bracket operator, or some equivalent to it, appears in most
all formulations of reduced MHD. The most obvious centered difference ap-
proximation to it on an equally spaced rectangular grid would be

[a, b]++
i,j =

1
4h2

[(ai+1,j − ai−1,j) (bi,j+1 − bi,j−1)

− (ai,j+1 − ai,j−1) (bi+1,j − bi−1,j)] , (9.79)

where δx = δy = h is the grid spacing.
Arakawa [206] has shown that if a time-centered difference scheme is used

together with this form of spatial differencing of this operator, a non-linear
computational instability can develop. He attributed this instability to the
fact that the finite difference operator in Eq. (9.79) does not maintain certain
integral constraints that the differential operator does. He considered two
other second-order approximations to the Poisson bracket:

[a, b]+×i,j =
1

4h2
[ai+1,j (bi+1,j+1 − bi+1,j−1)− ai−1,j (bi−1,j+1 − bi−1,j−1)

− ai,j+1 (bi+1,j+1 − bi−1,j+1) + ai,j−1 (bi+1,j−1 − bi−1,j−1)] ,

[a, b]×+
i,j =

1
4h2

[ai+1,j+1 (bi,j+1 − bi+1,j)− ai−1,j−1 (bi−1,j − bi,j−1)

− ai−1,j+1 (bi,j+1 − bi−1,j) + ai+1,j−1 (bi+1,j − bi,j−1)] .

By taking the average of these three approximations,

[a, b]i,j =
1
3

{
[a, b]++

i,j + [a, b]+×i,j + [a, b]×+
i,j

}
, (9.80)

it can be shown [206] that the integral constraints that correspond to conser-
vation of the mean vorticity, the mean kinetic energy, and the mean square
vorticity in an incompressible fluid flow calculation would be conserved and
the non-linear instability will not occur. This form of differencing of the Pois-
son bracket, or a fourth-order analogue of it, is now widely used in plasma
physics as well as in meteorology and other disciplines.

9.5.5 Method of Differential Approximation

Here we describe an approach for solving stiff hyperbolic systems that is
based on the method of differential approximations [207] and is now used in
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several contemporary multidimensional MHD codes [7, 208]. We start with
again considering the second-order hyperbolic system in one dimension given
by Eq. (9.23),

∂v

∂t
= c

∂ω

∂x
, (9.81)

∂ω

∂t
= c

∂v

∂x
. (9.82)

These can be combined to give the single second-order equation,

∂2v

∂t2
= L(v), (9.83)

where we have introduced the linear second-order spatial operator,

L(v) ≡ c2
∂2

∂x2
v. (9.84)

Consider now the following algorithm for advancing the system in time:(
1− θ2δt2L

)
vn+1 =

(
1− αδt2L

)
vn + δtc

(
∂ω

∂x

)m
(9.85)

ωm+1 = ωm + δtcφ

(
∂v

∂x

)n+1

+ δtc(1− φ)
(
∂v

∂x

)n
. (9.86)

We have introduced the implicit parameters θ, α, and φ and the time step δt.
The derivatives are to be replaced by centered finite difference (or spectral or
finite element) operators. For θ = α = 0 and φ = 1, the algorithm described
by Eqs. (9.85) and (9.86) is just the explicit leapfrog method, equivalent to
that described by Eqs. (9.24) and (9.26).

To examine the numerical stability of the general case, we make the sub-
stitutions

∂

∂x
→ −ike,

L → −c2k2
e ,

where ke = −(1/δx) sin θk is the effective wavenumber when the centered finite
difference operator is substituted for the spatial derivative. Letting vn+1 = rvn

and ωm+1 = rωm, the amplification factor r can then be determined from the
quadratic equation

(1 + θ2D)(r − 1)2 +D(θ2 + φ− α)(r − 1) +D = 0, (9.87)

where we have defined D ≡ δt2c2k2
e . Equation (9.87) has roots

r =
1 + 1

2D
(
θ2 − φ+ α

)
± i

√
D +

[
θ2 − 1

4 (θ2 + φ− α)2
]
D2

1 + θ2D
, (9.88)
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for which

|r|2 =
1 + (1 + α− φ)D

1 + θ2D
(9.89)

when the quantity within the square root in Eq. (9.90) is non-negative. There
are two cases that are of interest.

For the Caramana method [207], we set φ = 1 and α = θ2. From Eq. (9.89),
this yields |r|2 = 1 for any D, as long as θ ≥ 1

2 . Thus the method is linearly
stable and non-dissipative for θ ≥ 1

2 . Truncation error analysis shows the time
discretization error to be second-order in δt for any stable value of θ. This
method has the additional feature that the multiplier of the operator L is the
same on both sides of Eq. (9.86), so that in steady state, when vn+1 = vn,
the operator will have no affect on the solution.

For the split θ-implicit method, we set φ = θ and α = θ(θ−1). This is what
one would obtain if both Eqs. (9.81) and (9.82) were time differenced using
the θ-implicit method, and then the differenced form of Eq. (9.82) was used
to algebraically eliminate ωn+1 from the differenced form of Eq. (9.81). The
amplification factor is |r|2 = 1 + (1 − 2θ)D/(1 + θ2D), which is less than or
equal to 1 (and hence stable) when θ ≥ 1

2 . The quantity within the square root
in Eq. (9.88) is exactly D for this method, which is assumed to be positive.
Note that |r|2 = 1 only when θ = 1

2 for this method. The truncation error
analysis for this method is exactly the same as it would be for the θ-implicit
method, yielding second-order accuracy only for θ = 1

2 .
In each of these algorithms, the operator

(
1− θ2δt2L

)
needs to be inverted

each time step. However, this is a well-conditioned symmetric diagonally dom-
inant operator, and so the iterative methods discussed in Chapter 3 should
perform well on this. Also, we see that the two equations, Eqs. (9.85) and
(9.86), can be solved sequentially, and so the associated sparse matrix equa-
tion is only for a single scalar variable. Both of these features offer clear
advantages over the unsplit θ-implicit method discussed in Section 9.5.1.

To obtain the operator L for the ideal MHD equations, we start with the
momentum equation, again ignoring for simplicity the density and convective
derivative terms, assumed small. Denoting time derivatives with a dot, i.e.,
u̇ ≡ ∂u/∂t, we have

ρ0u̇ +∇p =
1
µ0

[(∇×B)×B] . (9.90)

Time differentiating gives

ρ0ü +∇ṗ =
1
µ0

[(
∇× Ḃ

)
×B + (∇×B)× Ḃ

]
. (9.91)

Next, we take the ideal MHD components of the magnetic field and pressure
equations:

Ḃ = ∇× [u×B] , (9.92)
ṗ = −u · ∇p− γp∇ · u. (9.93)
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We substitute for Ḃ and ṗ from Eqs. (9.92) and (9.93) into Eq. (9.90), whereby
in analogy with Eq. (9.83), we can identify

L (u) ≡ 1
µ0
{∇ × [∇× (u×B)]} ×B

+
1
µ0
{(∇×B)×∇× (u×B)}

+ ∇ (u · ∇p+ γp∇ · u) . (9.94)

We note that this is equivalent to the ideal MHD operator F used in Eq. (8.26).
Applying the Caramana method to this equation gives the following equa-

tion to advance the velocity to the new time level{
ρ0 − θ2δt2L

}
un+1 =

{
ρ0 − θ2δt2 L

}
un

+ δt

{
−∇p+

1
µ0

[(∇×B)×B]
}n+ 1

2

. (9.95)

When finite difference or finite element methods are used to discretize the
spatial operators in Eq. (9.95), it becomes a sparse matrix equation for the
advanced time velocity un+1. When this matrix equation is solved using the
methods of Chapter 3, the new velocity can be used to advance the magnetic
field and pressure according to Eqs. (9.92) and (9.93), which now take the
form:

Ḃ = ∇×
[(
θun+1 + (1− θ)un

)
×B

]
, (9.96)

ṗ = −
(
θun+1 + (1− θ)un

)
· ∇p

−γp∇ ·
(
θun+1 + (1− θ)un

)
. (9.97)

A von Neumann stability analysis shows this method to be linearly stable for
all δt as long as θ ≥ 1/2. We also note that it gives accurate solutions in
steady state when the terms in Eq. (9.95) on the two sides of the equation
which involve the operator L cancel.

Non-ideal terms such as resistivity and viscosity can be added to
Eqs. (9.95)–(9.97) by treating them implicitly and this will not affect the
form of the operator in Eq. (9.94) or the numerical stability. The challenge
in this method is to find an efficient method for inverting the matrix corre-
sponding to the operator on the left in Eq. (9.95). This is presently an area
of active research.

9.5.6 Semi-Implicit Method

The semi-implicit method as applied to hyperbolic problems is very simi-
lar to the method of differential approximation presented in the last section,
except that it approximates the operator L such as is defined in Eq. (9.84) or
Eq. (9.94) with a simpler form that is easier to invert but that still provides
numerical stability [209].
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As an almost trivial example, let us consider the system given by
Eqs. (9.85) and (9.86) with α = θ2 and φ = 1, but instead of defining the
operator L by Eq. (9.84), we define it by

L(v) ≡ a2
0

∂2

∂x2
v, (9.98)

for some constant a0. In this case, the analogue of Eq. (9.89) gives stability for
4θ2a2

0 > c2. There is no advantage in using a2
0 instead of c2 in this case, since

it can be compensated by the choice of θ used. However, if c was not constant
but had spatial variation, then replacing the operator c ∂∂xc

∂
∂x by a2

0
∂2

∂x2 could
offer advantages as it would allow use of a transform-based solver as discussed
in Section 3.8.2.

Now, let us consider semi-implicit approximations to the ideal MHD oper-
ator, Eq. (9.94). Harned and Schnack [210] proposed replacing the ideal MHD
operator in Eq. (9.94) with the simplified operator

L (u) ≡ 1
µ0
{∇ × [∇× (u×C0)]} ×C0, (9.99)

where C0 is a vector with constant coefficients, but with a crucial modification
in the evaluation of Eq. (9.99). In Cartesian coordinates, they require that each
component of C0 be larger than each component of B in magnitude, and that
all terms of the form CiCj be replaced by CiCjδij where δij is the Kronecker
delta. They present a two-dimensional stability analysis that shows stability
for this modified operator, but instability if the CiCj cross terms are retained
in the semi-implicit operator.

Harned and Mikic [211] have also developed a semi-implicit operator for
the Hall term in the magnetic field advance equation for two-fluid MHD. If
we insert Eq. (1.32) into Eq. (1.24), the term they were concerned with is

∂B
∂t

= ∇×
[
− 1
ne

J×B + · · ·
]
. (9.100)

By time differentiating this equation, and substituting in for the time deriva-
tive of J from this same equation, using Eqs. (1.25) and (1.26) and some vector
identities, they proposed the semi-implicit operator

L (B) = − 1
(neµ0)2

(B0 · ∇)2∇2B. (9.101)

Using this, Eq. (9.100) would be time differenced as{
1− δt2L

}
Bn+1 =

{
1− δt2 L

}
Bn

+δt∇×
[
− 1
ne

J×B + · · ·
]n

(9.102)

They were able to show numerical stability and second-order accuracy with



262 Computational Methods in Plasma Physics

analysis in simplified geometry and in numerical tests for B0 comparable to
the largest value of B in the domain.

The semi-implicit method can also be combined with the partially implicit
method of Section 9.5.3 to change the implicit equation, Eq. (9.74), to[

I − δt2b20∇2
]
Pn+1 =

[
I − δt2(b20 − b2)∇2

]
Pn

+ δtSn − δtb2 [Un + δtRn] , (9.103)

where b0 is some constant satisfying b20 ≥ b2 everywhere. In a simple geometry,
this would allow the operator on the left to be inverted by fast transform
techniques such as discussed in Section 3.8.2.

9.5.7 Jacobian-Free Newton–Krylov Method

A technique that is gaining in popularity is the Jacobian-free Newton–
Krylov method [212]. This is a non-linear implicit algorithm that consists
of at least two levels of iterations. Suppose that we have used spatial finite
differences or finite elements to express the MHD (or any other) system of
equations as the vector system,

F(U) = 0, (9.104)

where F is a large vector function representing all of the discretized equations
at all of the grid points, and U represents all of the unknowns. For the MHD
equations, these would normally be the velocities, densities, pressures, and
magnetic field components at all of the grid points. If there were M equations
and M unknowns at each grid point, and N grid points, then the system given
by Eq. (9.104) would be M ×N non-linear equations with the same number
of unknowns. In a time-dependent problem, the unknown U would be the
complete solution vector at the new time level (n+ 1).

The multivariate Newton iteration for F(U) = 0 is based on a first-order
Taylor expansion about a current point Uk:

F(Uk+1) ' F(Uk) + F′(U) · (Uk+1 −Uk). (9.105)

Setting the right side to zero yields the basic Newton method

J(Uk) · (δUk) = −F(Uk). (9.106)

Here, we have introduced the notation

Uk+1 = Uk + δUk, k = 0, 1, ... (9.107)

given U0, J ≡ F′ ≡ ∂F/∂U is the Jacobian matrix, and k is the non-linear
iteration index. The Newton iteration is terminated when the solution stops
changing to some tolerance.
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Forming the Jacobian matrix J requires taking analytic or discrete deriva-
tives of the system of equations with respect to U: Jij = ∂Fi(U)/∂Uj . For
a complicated system like the MHD equations, this can be both error-prone
and time consuming, and since J is a large sparse matrix, some sparse storage
convention is required. However, we will see that it is not actually necessary
to form J explicitly in order to solve Eq. (9.106).

Recall from Section 3.7 the Krylov subspace approach for solving equations
of the form of Eq. (9.106), which we generically write as Ax = b. This involves
forming an initial residual r0 = b − Ax0 and then constructing a Krylov
subspace, Kj ,

Kj = span
{
r0,Ar0,A2r0, ....,Aj−1r0

}
.

A property of Krylov methods is that they require only matrix-vector products
to carry out the iteration. This is the key feature that makes them compatible
with the Newton method, Eq. (9.106).

The Krylov method applied to Eq. (9.106) defines the initial linear residual,
r0, given the initial guess, δU0, for the Newton correction,

r0 = −F(U)− J · δU0. (9.108)

The non-linear iteration index, k, has been dropped since the Krylov iteration
is performed at a fixed k. Let us introduce j as the Krylov iteration index.
The jth approximate to the solution is obtained from the subspace spanned
by the Krylov vectors, {r0,Jr0,J2r0, ...,Jj−1r0}, and can be written

δUj = δU0 +
j−1∑
i=0

βiJir0, (9.109)

where the scalars βi are chosen to minimize the residual. Krylov methods such
as GMRES, described in Section 3.7.2, thus require the action of the Jaco-
bian only in the form of matrix-vector products, which can be approximated
by [212, 213, 214]

Jv ≈ [F(U + εv)− F(U)]/ε, (9.110)

where ε is a small perturbation. The entire process of forming and storing
the Jacobian matrix and multiplying it by a vector is replaced by just two
evaluations of the function F(U), Eq. (9.104), hence the name “Jacobian-free.”
While the Jacobian-free Newton–Krylov method is potentially very powerful,
there are a number of practical issues in their application. Convergence of
the Newton iteration in Eq. (9.105) is not guaranteed. The Krylov iteration,
Eq. (9.109), requires a good preconditioner. Techniques for addressing both
of these are topics of current research, and [212] presents an excellent review
of progress in these areas.
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9.6 Summary

The most straightforward differencing, forward in time and centered in
space, is numerically unstable for hyperbolic equations. Explicit time advance
methods can be made stable by including additional terms, such as the Lax–
Wendroff class of methods, or by time-centering such as is done in the leapfrog
class of methods. The other possibility is to use one-sided differences, with
the side chosen by the sign of the corresponding characteristic velocity. These
one-sided methods are of lower-accuracy than centered difference methods,
but limiter techniques can be used to effectively use the lower-accuracy dif-
ferencing only where it is required for numerical stability, and to use the
higher-order differencing elsewhere. Many problems in MHD require implicit
time differencing because the time step restriction associated with the fastest
of the MHD characteristics can be unacceptably small. Both the method of
differential approximation and the Jacobian-free Newton–Krylov method are
being used in contemporary simulation efforts.

Problems

9.1: Consider the Beam–Warming method, Eq. (9.36).
(a) Perform a Taylor series analysis to find the leading order truncation error.
(b) Perform von Neumann stability analysis to calculate the amplification
factor and stability limits.

9.2: The equations of linear acoustics in a medium with equilibrium velocity
u0 in one dimension can be written in terms of the pressure p and the velocity
u as

∂

∂t

[
p
u

]
+
[

u0 K0

1/ρ0 u0

]
· ∂
∂x

[
p
u

]
= 0. (9.111)

Here ρ0 is the equilibrium density and K0 = ρ0∂p/∂ρ0.
(a) Determine the matrices A+ and A− as defined in Eq. (9.45).
(b) What are the associated eigenvectors?

9.3: Show that the conservative upwind method of Eq. (9.44) is equivalent
to the non-conservative form, Eq. (9.46), if the matrices A+ and A− have
constant coefficients.
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9.4: Show that Eq. (9.49) is equivalent to the Lax–Wendroff method when s
is constant.

9.5: Consider the implicit upwind method applied to Eq. (9.48),

Un+1
j = Unj − s

[
θ
(
Un+1
j − Un+1

j−1

)
+ (1− θ)

(
Unj − Unj−1

)]
, (9.112)

where 0 ≤ θ ≤ 1 is a parameter and s = aδt/δx.
(a) Show that the finite difference equation is consistent with the differential
equation. What is the leading order truncation error?
(b) Use von Neumann stability analysis to calculate the range of values of δt
for which the method is stable as a function of θ and a.

9.6: Show that the MacCormack difference method, Eq. (9.16), is equivalent
to the Lax–Wendroff method, Eq. (9.12), if the matrix A is constant.

9.7: Consider the Wendroff method applied to Eq. (9.48):

Un+1
j+ 1

2
= Unj+ 1

2
− s

(
U
n+ 1

2
j+1 − U

n+ 1
2

j

)
. (9.113)

The half-integer subscripts refer to evaluating the quantity halfway between
two grid points by simple averaging, i.e.,

Unj+ 1
2

=
1
2
(
Unj + Unj+1

)
, U

n+ 1
2

j =
1
2
(
Unj + Un+1

j

)
, (9.114)

etc. Substitute the definitions of the half-integer points into the finite differ-
ence formula and calculate the numerical stability using the von Neumann
method.

9.8: Consider the one-dimensional electron-MHD equation for the time evo-
lution of the (x, y) Cartesian components of the magnetic field which vary in
the z dimension:

∂B
∂t

= −∇× [α (∇×B)×B] .

Here, the magnetic field is given by

B = bx(z)x̂ + by(z)ŷ +B0ẑ,

with B0 and α being real constants.
(a) Find the 2×2 matrix A for which the linearized form of the electron-MHD
equation can be written as:

∂

∂t

[
bx
by

]
= αB0A · ∂

2

∂z2

[
bx
by

]
. (9.115)
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(b) Write down a forward in time and centered in space finite difference
method for solving Eq. (9.115), and analyze the stability using the von Neu-
mann stability analysis.
(c) Devise an implicit method for solving Eq. (9.115) and show that it is
unconditionally stable.

9.9: Linearize the reduced MHD equations, Eqs. (9.75)–(9.77), around an
equilibrium state with A = 0, ∇2ψ0 = 0, ∂ψ0

∂x = 0, ∂ψ0
∂y = B0, where B0 is a

spatial constant. Show that you obtain a single wave equation. What direction
does the wave propagate? What is its velocity?

9.10: Derive the split θ-implicit method, corresponding to Eqs. (9.85) and
(9.86) with φ = θ and α = θ(θ − 1), by starting with both Eqs. (9.81) and
(9.82) and time differencing using the θ-implicit method, and then using the
differenced form of Eq. (9.82) to algebraically eliminate ωn+1 from the differ-
enced form of Eq. (9.81).



Chapter 10

Spectral Methods for Initial Value
Problems

10.1 Introduction

Spectral methods are fundamentally different from finite difference meth-
ods for obtaining approximate numerical solutions to partial differential equa-
tions. Instead of representing the solution by a truncated Taylor’s series ex-
pansion, we expand the solution in a truncated series using some set of basis
functions, or trial functions. To obtain the discrete equations to be solved
numerically, we minimize the error in the differential equation, produced by
using the truncated expansion, with respect to some measure. A set of test
functions are used to define the minimization criterion.

This same description could be applied to finite element methods, which
are discussed in the next chapter. The choice of trial functions is the main fea-
ture that distinguishes spectral methods from finite element methods. Spectral
methods utilize infinitely differentiable global functions. Finite element meth-
ods, on the other hand, utilize local trial functions with derivatives only up
to some order.

In general, we will see that the finite element method leads to sparse ma-
trices which do not require much storage and are relatively easy to invert, but
have convergence properties such that the error decreases only as hp or as
N−p, where h is the typical element size, N is the number of elements, and
p is a small integer which depends on the type of finite element being used.
Spectral methods, on the other hand, will generally lead to full matrices, al-
beit with lower dimension, since a small number of global basis functions may
be able to adequately represent the solution. Also, the asymptotic conver-
gence rates of spectral methods can be very good, faster than any power of
N , where N is the number of basis functions. This is normally referred to as
exponential convergence. However, for finite values of N , spectral methods are
not necessarily superior to either finite element or finite difference methods.
Enough basis functions as needed to represent all the essential structure in
the solution before the superior asymptotic convergence rates begin to apply.

267
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10.1.1 Evolution Equation Example

Let us consider the one-dimensional first-order evolution equation

∂u

∂t
= L(u), (10.1)

where u(x, t) is the solution, to be determined, and L(u) is an operator which
contains spatial derivatives of u. For example, for a simple constant coefficient
convection equation, L(u) = −v∂u/∂x, where v is a constant. We also need
to supply initial conditions u(x, 0) and boundary conditions, which for now
we will take to be periodic over the interval [0, 2π].

We represent the approximate solution to Eq. (10.1) as

uN (x, t) =
N/2∑

k=−N/2

uk(t)φk(x), (10.2)

where the φk(x) are a set of known trial functions, or basis functions, which
are compatible with the boundary conditions, and the uk(t) are expansion
coefficients which remain to be determined. To obtain equations for the uk(t),
we multiply Eq. (10.1) by a test function ψk(x) and integrate over all space,∫ 2π

0

[
∂uN

∂t
− L

(
uN
)]
ψk (x) dx = 0, (10.3)

for k = −N/2, · · · , N/2. This is effectively enforcing the condition that the
error be orthogonal to each of the test functions with respect to the inner
produce defined by Eq. (10.3).

For a concrete example, let us take as trial and test functions

φk(x) = eikx, ψk(x) = e−ikx. (10.4)

These satisfy the orthogonality relation∫ 2π

0

φk (x)ψ`(x)dx = 2πδk`, (10.5)

where δk` is the Kronecker delta. Substituting Eqs. (10.2) and (10.4) into
Eq. (10.3), we have

∫ 2π

0

e−ikx

( ∂

∂t
+ v

∂

∂x

) N/2∑
`=−N/2

u` (t) ei`x

 dx = 0.

After analytic differentiation and integration, and using Eq. (10.5), this yields

d

dt
uk + ikvuk = 0, k = −N/2, · · · , N/2. (10.6)
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Equation (10.6) is a system of ordinary differential equations. The initial con-
ditions are the coefficients for the expansion of the initial condition u(x, 0),

uk(0) =
1
2π

∫ 2π

0

u(x, 0)e−ikxdx.

10.1.2 Classification

There are several types of spectral methods which differ with respect to
which type of test functions are used. In the pure Galerkin method, as illus-
trated above, the test functions are the same as (or the complex conjugate
of) the trial functions, and they each individually satisfy the boundary condi-
tions. In the collocation method, the test functions are translated Dirac delta
functions centered at special collocation points. There are also variations, such
as the so-called tau methods which are similar to Galerkin’s method; however,
none of the test functions needs to satisfy the boundary conditions. With tau
methods, there is a supplementary set of equations which enforce the bound-
ary conditions.

10.2 Orthogonal Expansion Functions

The theory underlying the spectral method is built upon the expansion of
a function u(x) over a finite interval (here taken to be [0, 2π]) in terms of an
infinite sequence of orthogonal functions φk(x),

u(x) =
∞∑

k=−∞

ûkφk(x). (10.7)

The coefficients ûk are determined by the integral

ûk =
1
2π

∫ 2π

0

u(x)φ̄k(x)dx, (10.8)

where the expansion function and its complex conjugate satisfy the orthogo-
nality relation which we now take to have the normalization∫ 2π

0

φk(x)φ̄`(x)dx = 2πδk`. (10.9)

Certain classes of expansion functions yield what is called spectral accuracy,
by which is meant exponentially rapid decay of coefficients for sufficiently
large number of expansion functions N . Trigonometric functions exhibit this
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for periodic boundary conditions, but it can also be proven for the eigen-
functions of any singular Sturm–Liouville operator with no restriction on the
boundary conditions [215].

The transform indicated in Eqs. (10.7)–(10.9) is called the finite transform
of u between physical space and transform space because the integral is over a
finite interval. If the system of orthogonal functions is complete, the transform
can be inverted. Functions can therefore be described either by their values
in physical space or by their coefficients in transform space. Note that the
expansion coefficients, Eq. (10.8), depend on all the values of u in physical
space, and hence they cannot in general be computed exactly.

If a finite number of approximate expansion coefficients are instead com-
puted using the values of u at a finite number of selected points, perhaps
the nodes of a high-precision quadrature formula, we call the procedure a
discretetransform between the set of values of u at the quadrature points and
the set of approximate, or discrete coefficients. For the most common orthog-
onal systems, Fourier and Chebyshev polynomials, the discrete transform of
a function defined at N points can be computed in a “fast” way, as we saw in
Section 3.8.1, requiring on the order of N log2N operations rather than N2.

10.2.1 Continuous Fourier Expansion

This is the most common expansion and is natural for problems with
periodic boundary conditions. The basis functions are proportional to those
introduced in Eq. (10.4),

φk (x) = eikx. (10.10)

Here, we consider several properties associated with the Fourier expansion,
namely (i) What is the relation between the series and the function u? and
(ii) How rapidly does the series converge?

The basic issue we address is how well the function u(x) is approximated
by the sequence of trigonometric polynomials

PNu(x) =
N/2∑

k=−N/2

ûke
ikx, (10.11)

as N →∞. The function PNu(x) is the N th order truncated Fourier series of
u. We define the L2 inner product and norm in the standard way, so that for
any two functions u(x) and v(x),

(u, v) =
∫ 2π

0

u(x)v(x)dx, (10.12)

and

‖u‖2 =
∫ 2π

0

|u(x)|2dx. (10.13)
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From inserting Eq. (10.7) into (10.13), and making use of the orthogonality
relation, Eq. (10.9), we obtain the Parseval identity

‖u‖2 = 2π
∞∑

k=−∞

|ûk|2. (10.14)

From this, it follows, using (10.11), that

‖u− PNu‖2 = 2π
∑

|k|≥N/2

|ûk|2. (10.15)

Hence, the size of the error created by replacing u with its N th order truncated
Fourier series depends upon how fast the Fourier coefficients of u decay to zero.
We can show that this depends on the regularity of u in the domain [0, 2π].
Thus, integrating Eq. (10.8) by parts, we obtain

ûk =
1
2π

∫ 2π

0

u(x)e−ikxdx,

=
1

2πik

∫ 2π

0

u′(x)e−ikxdx,

where ()′ denotes differentiation with respect to x, and use was made of the
periodic boundary conditions. Iterating on this result, we find that if u is m
times continuously differentiable in [0, 2π] and if the jth derivative of u, u(j),
is periodic for all j ≤ m− 2, then

ûk = O(k−m). (10.16)

It follows that the kth Fourier coefficient of a function which is infinitely
differentiable and periodic decays faster than any negative power of k.

As an example, consider the function

U(x) =
3

5− 4 cosx
.

It is infinitely differentiable and periodic with all its derivatives in [0, 2π]. We
can calculate directly that its Fourier coefficients are

ûk = 2−|k|; k = 0,±1, · · · ,

which is an example of exponential decay, or spectral accuracy.
It is to be emphasized that the asymptotic rate of decay of the Fourier

coefficients does not convey the entire story of the error made in a given
truncation. If a series has an asymptotic rate of decay as given by Eq. (10.16),
this decay is observed only for k > k0, where k0 is indicative of the smoothness
of the function. If the series is truncated below k0, then the approximation
can be quite bad.



272 Computational Methods in Plasma Physics

10.2.2 Discrete Fourier Expansion

In most applications, the discrete Fourier expansion is preferred to the
continuous Fourier expansion described in the last section since it provides
an efficient way to compute the Fourier coefficients of a function that is only
known at discrete points, and to recover in physical space the information that
is calculated in transform space. As we have seen in Section 2.5, the discrete
Fourier transform makes use of the points

xj =
2πj
N

, j = 0, 1, · · · , N − 1,

normally referred to as grid points, to define the transform pair

ũk =
1
N

N−1∑
j=0

u(xj)e−ikxj , (10.17)

u(xj) =
N/2−1∑
k=−N/2

ũke
ikxj . (10.18)

Equations (10.17) and (10.18) define an exact transform pair between the N
grid values u(xj) and the N discrete Fourier coefficients ũk. We can transform
from one representation to the other without loss of information. This can
be shown by inserting Eq. (10.17) into Eq. (10.18) and making use of the
orthogonality property

1
N

N/2−1∑
k=−N/2

e−2πik(j−j′)/N = δjj′ . (10.19)

We can find the relation between the discrete Fourier coefficients ũk and
the exact Fourier coefficients as given in Eq. (10.8) by equating u(xj) from
Eq. (10.7) to that given by Eq. (10.18) to obtain

ũk = ûk +
∞∑

m=−∞
m6=0

ûk+Nm. (10.20)

We see that the kth mode of the discrete transform depends not only on
the kth mode of u, but also on all the modes that “alias” the kth one on the
discrete grid. This is illustrated in Figure 10.1. The error associated with the
difference between the discrete transform representation and the truncated
Fourier series is called the aliasing error . It is orthogonal to the truncation
error, but can be shown to be of the same asymptotic order for N large.
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k=2 k=10

FIGURE 10.1: Example of a k = 2 and k = 2 +N mode aliasing on a grid
with N = 8. The two modes take on the same values at the grid points.

Note that for the transform pair defined by Eqs. (10.17) and (10.18), the
derivatives of u defined at the grid points are given by

u′(xj) =
N/2−1∑
k=−N/2

uke
ikxj , (10.21)

where

uk = ikũk =
ik

N

N−1∑
j=0

u(xj)e−ikxj . (10.22)

Thus, if a function is known in real space, to evaluate the derivative one must
evaluate the discrete Fourier coefficients, multiply by ik, and transform back
to physical space.

It has been noted by several authors [217] that the wavenumber k = −N/2
appears asymmetrically in the representation given by Eq. (10.18) and those
that follow. This can cause a problem, for example in a time-dependent prob-
lem, if ũ−N/2 has a non-zero imaginary part, since u(xj) would then not be
a real-valued function. The recommended solution is to enforce the condition
that ũ−N/2 be zero throughout the time dependence. The problem occurs be-
cause N is normally taken to be even in order to utilize FFT algorithms, but
an even number does not result in a symmetric distribution about 0.

10.2.3 Chebyshev Polynomials in (−1, 1)

The eigenfunctions of a suitable Sturm–Liouville problem in the interval
(−1, 1) form a complete set of orthogonal basis functions. The ones of special
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interest are those such that the expansion of a smooth infinitely differentiable
function in terms of their eigenfunctions guarantees spectral accuracy. This is
the case if the associated Sturm–Liouville problem is singular, i.e., of the form{

(−pu′)′ + qu = λwu in (−1, 1),
+boundary conditions for u,

(10.23)

where λ is the eigenvalue. The coefficients p, q, and w are each prescribed,
real-valued functions with the following properties: p is continuously differen-
tiable, positive in (−1, 1), and zero at the boundaries x = ±1; q is continuous,
non-negative, and bounded in (−1, 1), and the weight function w is is contin-
uous, non-negative, and integrable over the interval (−1, 1). Equations whose
eigenfunctions are algebraic polynomials are of particular importance because
of the efficiency with which they are evaluated.

There are several sets of eigenfunctions that have these desirable prop-
erties, but we will consider here the Chebyshev polynomials [216], denoted
{Tk(x), k = 0, 1, · · · }, which are the eigenfunctions of the singular Sturm–
Liouville problem[√

1− x2T ′k(x)
]′

+
k2

√
1− x2

Tk(x) = 0, (10.24)

or (
1− x2

)
T ′′k − xT ′k + k2Tk = 0. (10.25)

Equation (10.24) is of the form of Eq. (10.23) if we identify

p(x) = (1− x2)
1
2 ,

q(x) = 0,

w(x) = (1− x2)−
1
2 .

For any k, Tk(x) is even if k is even, and odd if k is odd. If Tk(x) is such that
Tk(1) = 1, then

Tk(x) = cos kθ, θ = arccosx. (10.26)

Hence, Tk(cos θ) = cos kθ. The Chebyshev polynomials are therefore just co-
sine functions after a change of independent variables. The transformation
x = cos θ allows many results of the Fourier system to be adapted to the
Chebyshev system.

The Chebyshev polynomials can be expanded in power series as

Tk(x) =
k

2

[k/2]∑
`=0

(−1)k
(k − `− 1)!
`!(k − 2`)!

(2x)k−2`,



Spectral Methods for Initial Value Problems 275

where [k/2] denotes the integral part of k/2. One can make use of the trigono-
metric relation cos(k+1)θ+cos(k−1)θ = 2 cos θ cos kθ to obtain the recurrence
relation

Tk+1(x) = 2xTk(x)− Tk−1(x). (10.27)

For the Chebyshev polynomials of the first kind, this recurrence relation is
initialized with T0(x) = 1, T1(x) = x. This gives for the first few polynomials:

T2(x) = −1 + 2x2,

T3(x) = −3x+ 4x3,

T4(x) = 1− 8x2 + 8x4,

T5(x) = 5x− 20x3 + 16x5,

T6(x) = −1 + 18x2 − 48x4 + 32x6.

The Chebyshev polynomials satisfy the orthonormalization condition∫ 1

−1

Tk(x)Tk′(x)
dx√

1− x2
= δkk′ck

π

2
, (10.28)

where

ck =
{

2 if k = 0,
1 if k ≥ 1. (10.29)

Some other useful integral relations involving the Chebyshev polynomials are∫ 1

−1

Tn(x)Tm(x)dx =
{

0, n+m odd,
1

1−(n+m)2 + 1
1−(n−m)2 n+m even, (10.30)

∫ 1

−1

T ′n(x)T
′
m(x)dx =

{
0, n+m odd,
nm
2

[
J|(n−m)/2| − J|(n+m)/2|

]
n+m even, (10.31)

where

Jk =

 −4
k∑
p=1

1
2p− 1

, k ≥ 1,

0, k = 0.

(10.32)

The Chebyshev expansion of a function u defined on (−1, 1) is given by

u(x) =
∞∑
k=0

ûkTk(x), (10.33)

ûk =
2
πck

∫ 1

−1

u(x)Tk(x)w(x)dx. (10.34)
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The result in Eq. (10.34) follows from Eq. (10.33) by using the orthogonality
condition, Eq. (10.28). By the same integration by parts argument developed
for the Fourier series, the Chebyshev coefficients can be shown to decay faster
than algebraically.

The derivative of a function u(x) expanded in Chebyshev polynomials can
be written as

u′(x) =
∞∑
m=0

û(1)
m Tm(x). (10.35)

A recurrence relation for the û(1)
m can be obtained by making use of the relation

2Tk(x) =
1

k + 1
T ′k+1(x)−

1
k − 1

T ′k−1(x), k ≥ 1. (10.36)

This follows from the trigonometric identity

2 sin θ cos kθ = sin(k + 1)θ − sin(k − 1)θ.

By differentiating Eq. (10.33), equating it to Eq. (10.35), and making use of
the recurrence relation in Eq. (10.36), we obtain the relation

2kûk = ck−1û
(1)
k−1 − û

(1)
k+1; k ≥ 1. (10.37)

This provides an efficient way of differentiating a polynomial of degree N in
Chebyshev space. Since û(1)

k = 0 for k ≥ N , the non-zero coefficients can be
computed in decreasing order by the recurrence relation

ckû
(1)
k = û

(1)
k+2 + 2(k + 1)ûk+1; 0 ≤ k ≤ N − 1. (10.38)

The generalization of this to higher derivatives is

ckû
(q)
k = û

(q)
k+2 + 2(k + 1)û(q−1)

k+1 . (10.39)

The expressions for û(1)
k and û(2)

k can also be expressed as

û
(1)
k =

2
ck

∞∑
p=k+1
p+k odd

pûp, (10.40)

and

û
(2)
k =

1
ck

∞∑
p=k+2

p+k even

p(p2 − k2)ûp. (10.41)
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10.2.4 Discrete Chebyshev Series

As for the Fourier series, a discrete Chebyshev series can be defined. In a
discrete transform, the fundamental representation of a function u(x) on the
interval (−1, 1) is in terms of the values at discrete points. Derivatives are
approximated by analytic derivatives of the interpolating polynomial.

In a discrete Chebyshev transform we seek discrete polynomial coefficients
ũk and a set of collocation points xj such that

u(xj) =
N∑
k=0

ũkTk(xj); j = 0, 1, · · · , N. (10.42)

One can readily verify that if we introduce as the discrete points those known
as the Gauss–Lobatto points,

xj = cos
πj

N
; j = 0, 1, · · · , N, (10.43)

we then have the discrete transform pair,

ũk =
2

Nc̄k

N∑
j=0

1
c̄j
u(xj)Tk(xj); k = 0, 1, · · · , N, (10.44)

=
2

Nc̄k

N∑
j=0

1
c̄j
u(xj) cos

πjk

N
; k = 0, 1, · · · , N,

u(xj) =
N∑
k=0

ũkTk(xj); j = 0, 1, · · · , N, (10.45)

=
N∑
k=0

ũk cos
πjk

N
; j = 0, 1, · · · , N.

Here,

c̄j =
{

2 if j = 0, N,
1 if 1 ≤ j ≤ N − 1.

These can be evaluated using a variant of the fast Fourier transform algo-
rithm [217]. Equation (10.42) can be regarded as an interpolating formula for
x values that are away from the discrete points xj . For any value of x in the
interval, we thus have as the interpolating formula:

u(x) =
N∑
k=0

ũkTk(x). (10.46)

As with the case of Fourier series, a relation exists between the finite and
discrete Chebyshev coefficients,

ũk = ûk +
∑

j=2mN±k
j>N

ûj , (10.47)



278 Computational Methods in Plasma Physics

which exhibits the form of the aliasing error.

10.3 Non-Linear Problems

Here we consider the application of spectral methods to the non-linear
Burgers’s equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, (10.48)

where ν is a positive constant, and initial conditions u(x, 0) and boundary
conditions are assumed to be given. We will consider several different methods
for discretizing Eq. (10.48) corresponding to different choices of trial functions
and of test functions.

10.3.1 Fourier Galerkin

Let us look for a solution which is periodic on the interval (0, 2π). We take
as the trial space the set of all trigonometric polynomials of degree ≤ N/2.
The approximation function uN is represented as the truncated Fourier series

uN (x, t) =
N/2−1∑
k=−N/2

ûk(t)eikx. (10.49)

The fundamental unknowns are the coefficients ûk(t), k = −N/2, · · · , N/2−
1. Using the complex conjugate of the trial functions as test functions, a set
of ODE’s for ûk are obtained by requiring that the residual of Eq. (10.48) be
orthogonal to all the test functions, i.e.,

1
2π

∫ 2π

0

(
∂uN

∂t
+ uN

∂uN

∂x
− ν

∂2uN

∂x2

)
e−ikxdx = 0;

k = −N
2
, · · · , N

2
− 1. (10.50)

Due to the orthogonality property of the test and trial functions, we have

∂ûk
∂t

+
( ̂
uN

∂uN

∂x

)
k

+ k2νûk = 0 ; k = −N
2
, · · · , N

2
− 1, (10.51)

where the convolution sum is defined by

̂(
uN

∂uN

∂x

)
k

=
1
2π

∫ 2π

0

uN
∂uN

∂x
e−ikxdx. (10.52)
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Equation (10.52) is a special case of the more general quadratic non-linear
term

(ûv)k =
1
2π

∫ 2π

0

uve−ikxdx, (10.53)

where u and v denote generic trigonometric polynomials of degree N/2. When
their expansions are inserted into Eq. (10.53) and the orthogonality property
is invoked, the expression

(ûv)k =
∑
p+q=k

ûpv̂q (10.54)

results. This is a convolution sum. In the “pure spectral” method, the higher
harmonics generated in Eq. (10.54) with |k| > N/2 are neglected.

When fast transform methods are applied to evaluate the convolution sums
such as indicated in Eq. (10.53), it is known as the pseudo-spectral method.
The procedure is to use the FFT to transform ûm and v̂n to physical space,
perform the multiplication, and then use the FFT to transform back again.
There is a subtle point, however, in that the result one gets in doing this,
which we will call (ujvj)k, differs from the pure Galerkin spectral result given
in Eq. (10.54) as follows:

(ujvj)k = (ûv)k +
∑

p+q=k±N

ûpv̂q. (10.55)

The second term on the right-hand side is the aliasing error. It arises from
the fact that higher harmonics are generated when performing the product,
and since the representation is not capable of accurately representing these
higher harmonics, they manifest themselves as modifications to the lower-order
harmonics.

There are several techniques for getting rid of an aliasing error. The most
popular is to use a discrete transform with M rather than N points, where
M ≥ 3/2N , and to pad ûk and v̂k with zeros for all the higher harmonics with
|k| > N/2. This will cause one of the factors in the aliasing error product to
be zero for all |k| < N/2 which are kept in the final product.

There is some debate on how important it is to remove the aliasing error.
It appears to be more important to do so in problems that are marginally
resolved. There is some support for the claim that, for any given problem, an
aliased calculation will yield just as acceptable an answer as a de-aliased one,
once sufficient resolution has been achieved.

10.3.2 Fourier Collocation

Here we again take periodicity on (0, 2π) and take the same trial functions
as in Eq. (10.49), but use delta functions as test functions. We now think of
the approximate solution uN as represented by its values at the grid points
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xj = 2πj/N ; j = 0, · · · , N − 1. The delta function test functions require that
the equation be satisfied exactly at the grid points.

∂uN

∂t
+ uN

∂uN

∂x
− ν

∂2un

∂x2

∣∣∣∣
x=xj

= 0; j = 0, 1, · · · , N − 1. (10.56)

Initial conditions for this are simply

uN (xj , 0) = u0(xj). (10.57)

The derivative terms are evaluated as in Eq. (10.21), which involves performing
a discrete transform, differentiating, and transforming back to real space. The
non-linear term is evaluated in real space as the pointwise product of two
vectors uN (xj) and ∂uN/∂x|xj . The Fourier collocation method is very similar
to, and in many cases identical to, the Fourier Galerkin method when pseudo-
spectral techniques are used to evaluate the convolutions of the latter.

10.3.3 Chebyshev Tau

Let us now consider solving Eq. (10.48) on the interval (−1, 1) subject to
the Dirichlet boundary conditions

u(−1, t) = u(1, t) = 0. (10.58)

We expand the solution as a Chebyshev series

uN (x, t) =
N∑
k=0

ûkTk(x), (10.59)

with the Chebyshev coefficients comprising the fundamental representation of
the approximation. Using the Tk(x) as test functions, we enforce Eq. (10.48)
as follows

2
πck

∫ 1

−1

(
∂uN

∂t
+ uN

∂uN

∂x
− ν

∂2uN

∂x2

)
Tk(x)

(
1− x2

)− 1
2 dx = 0;

k = 0, · · · , N − 2. (10.60)

The boundary conditions impose the additional constraints

uN (−1, t) = uN (1, t) = 0.

Using the orthogonality relations, Eq. (10.60) reduces to

∂ûk
∂t

+
̂(
uN

∂uN

∂x

)
k

− νû
(2)
k = 0;

k = 0, 1, · · · , N − 2, (10.61)
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where, from Eq. (10.41),

û
(2)
k =

1
ck

N∑
p=k+2

p+k even

p

(
p2 − k2

)
ûp,

and, from Eq. (10.60),( ̂
uN

∂uN

∂x

)
k

=
2
πck

∫ 1

−1

(
uN

∂uN

∂x

)
Tk(x)

(
1− x2

)− 1
2

dx.

In terms of the Chebyshev coefficients, the boundary conditions become

N∑
k=0

ûk = 0, (10.62)

N∑
k=0

(−1)kûk = 0. (10.63)

The initial conditions are

ûk(0) =
2
πck

∫ 1

−1

u0(x)Tk(x)(1− x2)−
1
2 dx ; k = 0, 1, · · · , N. (10.64)

Equations (10.61)–(10.64) provide a complete set of ODEs for this approxi-
mation. An implicit time advance results in a upper triangular matrix that
needs to be solved each time step. This normally requires O(N2) operations.
However, in many cases the recursion relations can be used to simplify this
matrix into a near tridiagonal matrix that only requires O(N) operations per
time step [217].

10.4 Time Discretization

Here we consider how to evolve the spectral amplitudes in time. Say that
the original partial differential equation is an initial value problem given by

∂u
∂t

= f(u, t). (10.65)

We expand in the set of trial functions and apply a projection operator QN

which corresponds to multiplying by test functions and integrating over all
space. We can then write the discrete time-dependent problem as

QN
duN

dt
= QNFN

(
uN , t

)
, (10.66)
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where uN is the spectral approximation to u, and FN is the spectral ap-
proximation to F. Now let U(t) = QNuN (t) be either the grid values for a
collocation method or the expansion amplitudes for a Galerkin method, so
that it is enough to consider

dU
dt

= F(U), (10.67)

or, in the linearized version

dU
dt

= A ·U, (10.68)

where A is the matrix resulting from the linearization of Eq. (10.67).
The definition of stability of a spectral method is largely the same as

that discussed in Section 2.4, except that now we look for a condition on the
maximum time step as a function of N rather than of δx. If the maximum
allowable time step, δtmax, is independent of N , the method is unconditionally
stable.

The time advancement equation (10.68) is a system of ordinary differential
equations (ODEs). In this form it is sometimes called the method of lines.
There is an extensive literature on numerical methods for systems of ODEs
which examine their stability. Some excellent reference books are [217, 218,
219, 220]. The crucial property of A is its spectrum, for this will determine
the stability of the time discretization.

The spatial eigenfunctions for Fourier approximations are eikx. The corre-
sponding eigenvalues for basic convection or diffusion equations are obvious.

∂

∂x
→ ik,

∂2

∂x2
→ −k2.

For Chebyshev and other approximations, the eigenvalues can be computed,
but are more complicated [217].

In most applications of spectral methods to partial differential equations,
the temporal discretization uses conventional finite differences. As an exam-
ple, consider the leapfrog method applied to the spectral formulation of a
convection problem as given by Eq. (10.6),

un+1
k = un−1

k − 2ik δt vunk .

The amplification factor r satisfies the quadratic equation

r2 + 2ibr − 1 = 0,

with b = k δt v. The stability condition |r| ≤ 1 is equivalent to |b| ≤ 1, which
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translates into the time step restriction

δt ≤ 1
vkmax

,

≤ 2
vN

.

This is the spectral equivalent of the CFL condition.
Many of the same considerations that enter into choosing a time advance

scheme for a system of finite difference equations also enter into that for a
spectral system. Parabolic and hyperbolic terms often need to be treated by
different methods. However, because of the orthogonality of the eigenfunctions,
there is typically no penalty for using an implicit method for the linear terms,
even if explicit methods are used for the non-linear terms.

10.5 Implicit Example: Gyrofluid Magnetic
Reconnection

As as example of the power of the spectral representation, we will consider
the normalized set of equations solved by Loureiro and Hammett [221] in their
two-dimensional two-field magnetic reconnection studies,

∂ne
∂t

+ [φ, ne] =
[
ψ,∇2

⊥ψ
]
+ ν∇2

⊥ne, (10.69)

∂ψ

∂t
+ [φ, ψ] = ρ2

s [ne, ψ] + η∇2
⊥ψ, (10.70)

ne =
1
ρ2
i

[
Γ̂0(b)− 1

]
φ. (10.71)

Here, ne is the perturbed electron density, the in-plane velocity is represented
as u⊥ = ẑ×∇φ, the in-plane magnetic field is given by B⊥ = ẑ×∇ψ, ρi and
ρs are the ion and ion-sound Larmor radius, assumed to be constants, ν is the
(constant) viscosity, and η is the (constant) resistivity. We have also adopted
the notation that ∇2

⊥ ≡ ∂2
x + ∂2

y , and introduced the Poisson bracket between
two scalar fields A and B as [A,B] ≡ ∂xA∂yB − ∂yA∂xB.

Equation (10.71) is known as the gyrokinetic Poisson equation [222]. In
this approximation and normalization, the electric potential is the same as the
velocity stream function φ. The integral operator Γ̂0(b) expresses the average
of the electrostatic potential over rings of radius ρi. In Fourier space, this
operator takes a particularly simple form,

Γ̂0(b) = e−bI0(b), (10.72)

where b = k2
⊥ρ

2
i ≡ (k2

x+k2
y)ρ

2
i and I0 is the modified Bessel function of zeroth
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order. When implemented numerically in real space, a Padé approximation to
the operator is normally used [223],

Γ̂0(b)− 1 ≈ − b

1 + b
.

Equation (10.71) then takes the real space form(
1− ρ2

i∇2
⊥
)
ne = ∇2

⊥φ. (10.73)

There is a clear advantage in treating this term in Fourier space where
Eq. (10.71) becomes just an algebraic equation, as opposed to Eq. (10.73),
which is a two-dimensional elliptic partial differential equation.

Linearizing Eqs. (10.69)–(10.71) about an equilibrium with B⊥ = B0ŷ,
with B0 a constant, and with the equilibrium perturbed density ne and stream
function φ zero, and ignoring the diffusive terms for now, one can combine the
equations to give a single second-order (in time) equation of the form

∂2ψ

∂t2
= L(ψ), (10.74)

where L is just a linear operator that becomes a multiplicative operator in
k-space, i.e., L(ψ) = −ω̂2ψ, with

ω̂2 = k2
⊥

(
ρ2
s −

ρ2
i

Γ̂0(b)− 1

)
k2
yB

2
0 . (10.75)

It is seen that Eq. (10.74) is of the same form as Eq. (9.83) and thus the
method of differential approximation can be applied. In [221] they have found
that a good approximation to Eq. (10.75) that remains valid even when the
magnetic field has some spatial variation is given by

ω̂2 = k4
⊥

(
ρ2
s −

ρ2
i

Γ̂0(b)− 1

)
B2
⊥,max, (10.76)

where B2
⊥,max is the maximum value of B⊥ on the grid.

To solve Eqs. (10.69)–(10.71), we expand ψ in Fourier basis functions,

ψ(x, y, t) =
N/2−1∑

kx=−N/2

N/2−1∑
ky=−N/2

ψke
i(kxx+kyy), (10.77)

and similarly for φ, and ne. We multiply each equation by a test function of
the form e−i(k

′
xx+k

′
yy), and integrate over one period of the periodic domain.

Equation (10.71) becomes just an algebraic equation relating nek and φk. We
can use this to eliminate nek from the other equations, which can then be
written in the form

∂ψk

∂t
= F̂ (φ, ψ)k − ηk2ψk, (10.78)

∂φk

∂t
= Ĝ(φ, ψ)k − νk2φk, (10.79)
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where we have written the combined non-linear convolution terms as F̂ (φ, ψ)k
and Ĝ(φ, ψ)k for notational simplicity.

It is noted that the diffusion terms can be integrated analytically. If we
defineDη = k2η andDν = k2ν, then we can make the variable transformations

ψk(t) = e−Dηtψ̃k(t), φk(t) = e−Dνtφ̃k(t). (10.80)

This allows Eqs. (10.78) and (10.79) to be written in the form

∂ψ̃k

∂t
= eDηtF̂ (φ, ψ)k, (10.81)

∂φ̃k

∂t
= eDνtĜ(φ, ψ)k. (10.82)

The following two-step method has been used to advance Eqs. (10.81) and
(10.82) from time tn = nδt to time tn+1 = (n+ 1)δt [221],

ψ∗k = e−Dηδtψnk +
δt

2
(
1 + e−Dηδt

) ̂F (φn, ψn)k, (10.83)

φ∗k = e−Dνδtφnk +
δt

2
(
1 + e−Dνδt

) ̂G(φn, ψn)k, (10.84)

ψn+1
k = e−Dηδtψnk +

δt

2
e−Dηδt ̂F (φn, ψn)k

+
δt

2
̂F (φ∗, ψ∗)k −

ω̂2δt2

4
(
ψn+1

k − ψnk
)
, (10.85)

φn+1
k = e−Dνδtφnk +

δt

2
e−Dνδt ̂G(φn, ψn)k

+
δt

2
̂G(φ∗, ψn+1)k. (10.86)

Equation 10.85 is solved algebraically for ψn+1
k , which is inserted into Eq. 10.86

to solve for ψn+1
k It is seen that in the absence of diffusion (Dη = Dν = 0),

the method described by Eqs. (10.83)–(10.86) is very similar to the method
of differential approximation described by Eqs. (9.85) and (9.86), except that
the time centering is achieved by a predictor-corrector method rather than a
leapfrog time staggering. It is shown in Problem 10.5 that this method gives
unconditional stability. The use of the spectral representation has not only
greatly simplified the gyrokinetic Poisson equation, but it has converted the
operator in the method of differential approximation from a differential oper-
ator to a simple multiplicative operator, thus greatly simplifying the solution
procedure.
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10.6 Summary

Spectral methods use global orthogonal functions as basis functions. They
are especially powerful and efficient in problems with periodic boundary con-
ditions so that Fourier series can be used, and in situations where a small
number of basis functions do a reasonable job of representing the true so-
lution. For non-linear problems, the fast Fourier transform (FFT) algorithm
allows computation of non-linear products, or convolutions, in a time that
scales like N logN instead of N2, making the calculation of non-linear terms
feasible for large problems. In problems without periodic boundary conditions,
orthogonal polynomials such as the Chebyshev polynomials can be used and
have many of the desirable properties of trigonometric functions. Considera-
tions for time advance of spectral methods are very similar to those for finite
difference methods. It often happens that one uses a mixed representation,
which treats one or more (usually periodic) coordinates with the spectral rep-
resentation, and one or more with either finite difference or finite element.

Problems

10.1: Derive the relation between the discrete Fourier coefficients ũk and the
exact Fourier coefficients ûk as given by Eq. 10.20.

10.2: Derive the orthonormalization condition for the Chebyshev polynomials,
Eq. (10.28), by using the relations in Eq. (10.26) and trigonometric identities.

10.3: By differentiating Eq. (10.33), equating it to Eq. (10.35), and making
use of the recurrence relation in Eq. (10.36), derive the relation

2kûk = ck−1û
(1)
k−1 − û

(1)
k+1; k ≥ 1. (10.87)

Show that this implies

û
(1)
k =

2
ck

∞∑
p=k+1
p+k odd

pûp, (10.88)

10.6: Verify that the discrete transform pair given by Eqs. (10.44) and (10.45)
is an exact transform pair.

10.5: Consider the time advance described by Eqs. (10.83)–(10.86). In the
approximation where ̂F (φn, ψn)k = fφnk and ̂G(φn, ψn)k = gφnk , and there is
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no diffusion so that Dη = Dν = 0, derive an expression for the amplification
factor and a condition for numerical stability.





Chapter 11

The Finite Element Method

11.1 Introduction

The finite element method has emerged as an extremely powerful technique
for solving systems of partial differential equations. As described in the now-
classic textbook by Strang and Fix [224], the method was originally developed
on intuitive grounds by structural engineers. It was later put on a sound the-
oretical basis by numerical analysts and mathematicians once it was realized
that it was, in fact, an instance of the Rayleigh–Ritz technique. It is similar
to the finite difference method in that it is basically a technique for gener-
ating sparse matrix equations that describe a system. However, it provides a
prescription for doing this that is in many ways more straightforward than
for finite differences, especially when going to high-order approximations. We
start with an example using the Ritz method in one dimension with low-order
elements. In subsequent sections this is extended to higher-order elements, the
Galerkin method, and multiple dimensions.

11.2 Ritz Method in One Dimension

Suppose that the problem to be solved is in a variational form, i.e., find a
function U(x) which minimizes a given functional I(U). The basic idea of the
Ritz method is to choose a finite number of trial functions φ0(x), · · · , φN (x),
and among all their linear combinations,

u(x) =
N∑
j=0

qjφj(x), (11.1)

find the one that is minimizing.
The unknown weights qj appearing in Eq. (11.1) are determined by solving

a system of N discrete algebraic equations. The minimizing process then au-
tomatically seeks out the combination which is closest to U(x). The trial func-
tions φj(x) must be convenient to compute with, and also general enough to

289
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closely approximate the unknown solution U(x). In the finite element method,
they are piecewise low-order polynomials.

11.2.1 An Example

We wish to find the function v(x) that minimizes the quadratic functional

I(v) =
∫ 1

0

[
p(x)[v′(x)]2 + q(x)[v(x)]2 − 2f(x)v(x)

]
dx, (11.2)

subject to the boundary conditions v(0) = 0 and v′(1) = 0. (We have denoted
derivatives with respect to x by ()′.) Here, p(x), q(x), and f(x) are prescribed
functions which satisfy the positivity constraints p(x) ≥ 0 , q(x) > 0.

Note that the associated Euler equation for this variational problem is[
− d

dx

(
p(x)

d

dx

)
+ q(x)

]
v(x) = f(x), (11.3)

where we have used the boundary conditions to set the boundary term pvv′|10
to zero. Mathematically, we want to minimize I(v) over the space of all func-
tions v(x) such that I(v) is finite, i.e., we require that∫

(
dv

dx
)2dx and

∫
v2dx

be finite. This is equivalent to the requirement that v belongs to H1, which is
the infinite dimensional Hilbert space of functions whose first derivatives have
finite energy.

The Ritz method is to replace H1 by a finite dimensional subspace S
contained inH1. The elements of S are the trial functions. The minimization of
I leads to the solution of a system of simultaneous linear equations, the number
of equations coinciding with the dimension of S. The Ritz approximation to
the solution is the function u which minimizes I over the space S, so that

I(u) ≤ I(v) (11.4)

for all v in S. We will consider how to determine u(x) by using an example
solution space, and also how to estimate the error, or the difference between
u(x) and the true minimizing solution in H1, U(x).

11.2.2 Linear Elements

We divide the interval [0, 1] into N equally spaced intervals of spacing
h = 1/N . The simplest choice for the subspace S is the space of functions
that are linear over each interval [(j − 1)h, jh] and continuous at the nodes
x = jh. For j = 0, · · · , N let φj be the function in S which equals one at the
particular node x = jh, and vanishes at all the others (Figure 11.1). Every
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j h (j+1) h

( )j xφ

x
(j-1) h

1

0 h Nh2 h (N-1)h

0 ( )xφ ( )N xφ

FIGURE 11.1: Linear finite elements φj equals 1 at node j, 0 at all others,
and are linear in between. A half element is associated with the boundary
nodes at j = 0 and j = N .

member of S can be written as a linear combination of the φj ,

v(x) =
N∑
j=0

qjφj . (11.5)

The “tent functions” φj are the simplest members of the more general set
of piecewise polynomials. Note that the amplitudes qj are the nodal values
of the function and thus have direct physical significance. Also, note that the
functions φj form a local basis in that they are orthogonal to all other elements
except φj+1 and φj−1. Only adjacent elements are directly coupled.

Let us now return to minimizing the functional I(v), Eq. (11.2), using the
linear elements so that we approximate v(x) as in Eq. (11.5). For simplicity, we
will now take the functions p and q to be constants. Computing one subinterval
at a time, we find, as shown in Figure 11.2a,∫ (j+1)h

jh

v2dx =
∫ (j+1)h

jh

[
qj+1

(x
h
− j
)

+ qj

(
−x
h

+ (j + 1)
)]2

dx

=
h

3
[
q2j + qjqj+1 + q2j+1

]
.

Similarly, as shown in Figure 11.2b,∫ (j+1)h

jh

(v′)2dx =
1
h

[qj − qj+1]
2
.

We also need to compute the vector corresponding to the linear term, which
corresponds to a load. This is given by∫ 1

0

f(x)v(x)dx =
N∑
j=1

qj

∫ 1

0

f(x)φj(x)dx. (11.6)
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j h (j+1) h
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φ′ = −

x
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FIGURE 11.2: Expressions needed for overlap integrals for functions (a)
and derivatives (b) for linear elements.

The usual method to evaluate Eq. (11.6) is to approximate f by linear inter-
polation at the nodes, i.e.,

f(x) =
N∑
k=0

fkφk(x), (11.7)

where fk is the value of f at the node points x = kh. We therefore approximate
the integral

I =
∫ 1

0

[
p(v′)2 + qv2 − 2fv

]
dx

=
N−1∑
j=0

{
p (qj − qj+1)

2

h
+
qh
(
q2j + qjqj+1 + q2j+1

)
3

− 2
(
h

3
qj+1fj+1 +

h

6
qj+1fj +

h

6
qjfj+1 +

h

3
qjfj

)}
. (11.8)

We next take note of the leftmost boundary condition to set q0 = 0 and thus
eliminate it from the system so that we only need to solve for the amplitudes
q1, · · · , qN . To extremize Eq. (11.8) with respect to the nodal values, we obtain
a matrix equation to determine the qj . Noting that each of the amplitudes
away from the boundary appears in two terms in the sums, the conditions
∂I/∂qi = 0; for i = 1, · · · , N yields the matrix equation

K · q = F, (11.9)

where q is the vector of unknown amplitudes

q = [q1, q2, · · · , qN ] , (11.10)
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and the matrix K is given by the sum of two matrices, commonly called the
“stiffness” matrix and the “mass” matrix.

K =
p

h


2 −1

−1 2 −1
−1 2 ·

· · ·
−1 2 −1

−1 1

+
qh

6


4 1
1 4 1

1 4 ·
· · ·

1 4 1
1 2


(11.11)

The load vector is given by

F =
h

6


f0 + 4f1 + f2
f1 + 4f2 + f3

· · ·
fj−1 + 4fj + fj+1

· · ·
fN−1 + 2fN

 . (11.12)

Finally, the solution is obtained by solving the matrix equation in Eq. (11.8).
We see that in this example K is a tridiagonal matrix (that is also diagonally
dominant and symmetric) so that this matrix equation can be solved efficiently
with methods discussed in Section 3.2.2.

We note that we did not need to explicitly apply the boundary condition
v′(1) = 0 since this occurs naturally as a result of minimizing the functional
I, Eq. (11.2). This can be understood because the minimizing function v(x)
must both satisfy Eq. (11.3) and make the boundary term vanish. One can
verify that the last row of the matrix equation, Eq. (11.9), is consistent with
the imposition of this boundary condition (see Problem 11.1).

11.2.3 Some Definitions

The finite element subspace is said to be of degree k − 1 if it contains in
each element a complete polynomial of this degree. For linear elements, as
considered in Section 11.2.2, the degree is one and k = 2.

The subspace S is said to possess continuity Cq−1 if the qth derivative
exists everywhere but is discontinuous at element boundaries. The linear ele-
ments have q = 1 and are therefore C0. The Ritz method can be applied to
a differential equation of order 2m if q ≥ m. This is because the associated
variational statement is only of order m, but the integrations by parts such as
in going from Eq. (11.2) to Eq. (11.3) can increase the order of the differential
equation over that of the variational integral by a factor of 2.

For the subsequent error analysis, we introduce norms of the square roots
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of the energies. For an interval [a, b] and a function u(x), we define the norms

‖u‖0 ≡

[∫ b

a

(u(x))2 dx

] 1
2

,

‖u‖2 ≡

[∫ b

a

[
(u′′(x))2 + (u′(x))2 + (u(x))2

]
dx

] 1
2

,

etc.

11.2.4 Error with Ritz Method

Let us write the functional I(v) in Eq. (11.2) as follows:

I(v) = a(v, v)− 2(f, v), (11.13)

where the energy integral is given by

a(v, ω) =
∫ 1

0

[p(x)v′(x)ω′(x) + q(x)v(x)ω(x)] dx. (11.14)

We will show that the energy in the error, U − u, is a minimum.
The demonstration goes as follows: Let u(x) be the computed function

that minimizes I over the finite element function space S. It follows that for
any ε and for any other function v belonging to S,

I(u) ≤ I(u+ εv)
= a(u+ εv, u+ εv)− 2(f, u+ εv)
= I(u) + 2ε[a(u, v)− (f, v)] + ε2a(v, v).

It therefore follows that

0 ≤ 2ε [a(u, v)− (f, v)] + ε2a(v, v).

Since ε may be of either sign, it follows that the quantity in brackets must
vanish. We therefore have the result that

a(u, v) = (f, v),

for all functions v in S. Now, if U is the exact solution, it satisfies

a(U, v) = (f, v)

for all v. Subtracting gives

a(U, v)− a(u, v) = 0,
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or

a(U − u, v) = 0. (11.15)

Therefore, the error between the computed solution and the exact solution is
orthogonal to all elements of v with respect to the energy inner product.

A detailed error analysis [224] shows that the energy integral of the error
and the error norms will scale with the inter-element spacing h as

a(u− U, u− U) = O
(
hk, h2(k−m)

)
, (11.16)

and

‖u− U‖s = O
(
hk−s, h2(k−m)

)
, (11.17)

where the approximation space is of order k− 1, and the variational problem
is of order m. Applying this to the example in Section 11.2.2, where linear
elements give k = 2 and the variational problem is first order so that m = 1,
we find that both the energy integral and the s = 0 error norm will scale like
O(h2).

11.2.5 Hermite Cubic Elements

The linear elements discussed in Section 11.2.2 are continuous, but their
first derivatives are not. (However, the first derivatives have finite energy,
and hence they belong to H1.) These elements are therefore classified as C0.
It is also possible to define a class of piecewise quadratic or piecewise cubic
elements that are C0 [224]. However, there is a special class of C1 cubic ele-
ments, called Hermite cubics, that are constructed such that not only is the
solution guaranteed to be continuous across element boundaries, but so is the
first derivative. These can therefore be used on variational problems up to
second order, or on differential equations up to fourth order by performing
two integrations by parts.

There are two elements, or basis functions, associated with each node j
that we will refer to as ν1,j(x) and ν2,j(x) (or sometimes just as ν1 and ν2 in
context). The first, ν1,j(x), has value unity at node j but its derivative ν′1,j(x)
vanishes there. The second basis function, ν2,j(x), is zero at node j but its
derivative, ν′2,j(x), takes on the value of unity there. Both ν1,j(x) and ν2,j(x)
and their derivatives ν′1,j(x) and ν′2,j(x) vanish at nodes j+1 and j−1. These
elements are defined as follows and illustrated in Figure 11.3:

ν1(y) = (|y| − 1)2 (2|y|+ 1) ,

ν2(y) = y (|y| − 1)2 ,

ν1,j(x) = ν1

(
x− xj
h

)
,

ν2,j(x) = h ν2

(
x− xj
h

)
.



296 Computational Methods in Plasma Physics

(j-1)h jh (j+1)h

(j-1)h jh (j+1)h

1, ( )j xν 2, ( )j xν

FIGURE 11.3: C1 Hermite cubic functions enforce continuity of v(x) and
v′(x). A linear combination of these two functions is associated with node j.

Since a cubic polynomial has four coefficients, it is completely determined
in an interval by the value of the function and its derivative at the endpoints.
The cubic polynomial in the interval between grid point j and j + 1 can
therefore be written

v(x) = vj ν1,j(x) + v′j ν2,j(x) + vj+1 ν1,j+1(x) + v′j+1 ν2,j+1(x),

= vj + v′jx+
(
−3vj − 2hv′j + 3vj+1 − hv′j+1

) (x
h

)2

+
(
2vj + hv′j − 2vj+1 + hv′j+1

) (x
h

)3

,

= a0 + a1x+ a2x
2 + a3x

3.

In matrix form, the four coefficients of the cubic polynomial in the interval
[xj , xj+1] can thereby be related to the values of the function and its derivative
at the endpoints by

a0

a1

a2

a3


=



1 0 0 0

0 1 0 0

− 3
h2 − 2

h
3
h2 − 1

h

2
h3

1
h2 − 2

h3
1
h2


·



vj

v′j

vj+1

v′j+1


. (11.18)

If we call the above matrix H, the vector containing the four polynomial
coefficients A = (a0, a1, a2, a3), and the vector containing the four nodal pa-
rameters qj = (vj , v′j , vj+1, v

′
j+1), we can write this relation in the interval

[xj , xj+1] as A = H · qj .
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The integration of v2 =
(
a0 + a1x+ a2x

2 + a3x
3
)2 is readily obtained:

∫ xj+1

xj

v2dx = [a0 a1 a2 a3]



h h2

2
h3

3
h4

4

h2

2
h3

3
h4

4
h5

5

h3

3
h4

4
h5

5
h6

6

h4

4
h5

5
h6

6
h7

7


·



a0

a1

a2

a3


. (11.19)

If this matrix is denoted as N0, the result can be written∫ xj+1

xj

v2dx = AT ·N0 ·A = qT ·HT ·N0 ·H · q. (11.20)

Therefore, the contribution to the mass matrix from this interval is given by

K0 = HT ·N0 ·H. (11.21)

If we add the contributions from interval [xj−1, xj ] to those of the interval
[xj , xj+1], multiply by 1/2, and differentiate with respect to the nodal coeffi-
cients vj and v′j , we obtain the rows of the mass matrix corresponding to node
j for application to the differential equation given in Eq. (11.3). For K0 · q,
we have a matrix vector product that takes the form

qh

420



8h2 13h −3h2 0 · · ·
13h 312 0 54 −13h 0 · · ·

−3h2 0 8h2 13h −3h2 0 · · ·
0 54 13h 312 0 54 −13h 0
0 −13h −3h2 0 8h2 13h −3h2 0

· · · 0 54 13h 312 0 54
· · · 0 −13h −3h2 0 8h2 13h

· · · 0 54 13h 312


·



...
vj−1

v′j−1

vj
v′j
vj+1

v′j+1
...


.

The non-zero entries for the two rows corresponding to vj and v′j are complete
as shown. The others (partially shown) are obtained by recursively shifting
these two patterns over by 2 and down by 2. This matrix is the analogue of
the second matrix in Eq. (11.11) calculated for the linear elements.

Similarly, we can integrate (v′)2 =
(
a1 + 2a2x+ 3a3x

2
)2:

∫ xj+1

xj

(v′)2dx = [a0 a1 a2 a3]



0 0 0 0

0 h h2 h3

0 h2 4h3

3
3h4

2

0 h3 3h4

2
9h5

5


·



a0

a1

a2

a3


. (11.22)
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If this matrix is denoted as N1, the contribution to the stiffness matrix from
this interval is given by

K1 = HT ·N1 ·H. (11.23)

Again, we add the contributions from interval [xj−1, xj ] to those of the
interval [xj , xj+1], multiply by 1/2, and differentiate with respect to the nodal
coefficients vj and v′j to obtain the rows of the mass matrix corresponding to
node j for application to the differential equation given in Eq. (11.3). The
matrix vector product K1 · q then takes the form:

p

30h



8h2 −3h −h2 0 · · ·
−3h 72 0 −36 3h 0 · · ·
−h2 0 8h2 −3h −h2 0 · · ·

0 −36 −3h 72 0 −36 3h 0
0 3h −h2 0 8h2 −3h −h2 0

· · · 0 −36 −3h 72 0 −36
· · · 0 3h −h2 0 8h2 −3h

· · · 0 −36 −3h 72


·



...
vj−1

v′j−1

vj
v′j
vj+1

v′j+1
...


.

This is the analogue of the first matrix in Eq. (11.11) calculated for the linear
elements.

The error ‖u − U‖0 in these elements when applied to a second-order
differential equation such as Eq. (11.3) is seen from Eq. (11.17) to be O(h4).
This is also what we would infer from the fact that a local piecewise cubic
expansion can match the terms in a Taylor series expansion through x3 and
so we would expect the local error would be of order x4 ≈ h4. Boundary
conditions at node J are readily incorporated into these matrices by replacing
the row corresponding to either vJ or v′J by a row with a 1 on the diagonal
and the other elements zero, and with the boundary value on the right side.

11.2.6 Cubic B-Splines

The basic cubic B-spline is shown in Figure 11.4. It is a piecewise contin-
uous cubic polynomial which extends over four subintervals. The coefficients
of the polynomial in each subinterval are such that φ(x), φ′(x), and φ′′(x) are
continuous across subinterval boundaries, making it a C2 element that could
potentially be used for differential equations up to sixth order. For the uniform
mesh spacing case shown in Figure 11.4, these are given in the four intervals
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FIGURE 11.4: The basic cubic B-spline is a piecewise cubic with continuous
value, first, and second derivatives.

as follows:

φ1 = 4
3 + 2y + y2 + y3

6 ; −2 ≤ y < −1,

φ2 = 2
3 − y2 − y3

2 ; −1 ≤ y < 0,

φ3 = 2
3 − y2 + y3

2 ; 0 ≤ y < 1,

φ4 = 4
3 − 2y + y2 − y3

6 ; 1 ≤ y ≤ 2.

(11.24)

These basic functions are translated so that

φj(x) = φ(
x

h
− j).

In contrast to the Hermite cubic, there is only one basis function per node,
but the basis functions extend over two intervals on either side so that a
given basis function will overlap with itself and six neighbors as shown in
Figure 11.5. Because the second derivative is forced to be continuous across
node boundaries, the function space represented by the cubic B-spline is a
subspace of that represented by the Hermite cubic.

Consider the interval jh < x < (j+1)h. The function v will be represented
by the sum of contributions from the four neighboring elements. Assuming
this interval is sufficiently away from the boundary, the representation in that
interval will be

v(x) = qj−1φ
4
(x
h
− j + 1

)
+ qjφ

3
(x
h
− j
)

+ qj+1φ
2
(x
h
− j − 1

)
+ qj+2φ

1
(x
h
− j − 2

)
. (11.25)
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FIGURE 11.5: Overlapping elements for cubic B-spline. A given element
overlaps with itself and six neighbors.

The derivative function v′ is obtained by differentiating Eq. (11.25) with re-
spect to x. We can then form v2 and v′2, integrate over the interval, and dif-
ferentiate with respect to the amplitudes qj to obtain the contribution to the
matrix from that interval. Note that a given amplitude qj will appear in four
different interval integrals, corresponding to the four intervals in Eq. (11.24).
This results in each amplitude being coupled to its six neighbors.

To incorporate the boundary conditions in a convenient manner, it is nec-
essary to extend the sum over basis elements from [0, N ] to [−1, N +1] and to
modify slightly the form of the basis elements near the boundaries. For this
purpose we introduce three new elements at each boundary, and use these
to replace φ−1(x), φ0(x), φ1(x), φN−1(x), φN (x), φN+1(x). For the case of the
left boundary, taken here to be x = 0, these boundary elements are defined
as follows and illustrated in Figure 11.6. The element associated with x = 2h
is the basic B-spline shown in Figure 11.4. Defining y ≡ x/h the element at
x = h (corresponding to j = 1) is defined over three intervals as follows:

φ1
1 = 1

2y
2 − 11

36y
3; 0 ≤ x < h,

φ2
1 = − 1

2 + 3
2y − y2 + 7

36y
3; h ≤ x < 2h,

φ3
1 = 3

2 −
3
2y + 1

2y
2 − 1

18y
3; 2h ≤ x < 3h.

(11.26)

The element corresponding to j = 0 is defined over only two intervals, and
has a non-zero value of φ′ at the origin:

φ1
0 = y − 3

2y
2 + 7

12y
3; 0 ≤ x < h,

φ2
0 = 2

3 − y + 1
2y

2 − 1
12y

3; h ≤ x < 2h.
(11.27)
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0 3h2hh

2 ( )xφ
1( )xφ0 ( )xφ1( )xφ−

FIGURE 11.6: Special elements are utilized near boundary. Boundary con-
ditions at x = 0 are set by specifying φ−1 (Dirichlet) or constraining a linear
combination of φ−1 and φ0 (Neumann).

Also required is an element associated with j = −1 that is defined over only
a single interval, and which has a non-zero value at the origin:

φ1
−1 = 1− 3y + 3y2 − y3; 0 ≤ x < h (11.28)

Dirichlet boundary conditions for φ involve replacing the row corresponding
to j = −1 with with a row with all zeros except a one on the diagonal, and
with the boundary value specified on the right. Because both φ1

0 and φ1
−1 have

non-zero derivatives at the origin, Neumann boundary conditions (say φ′ = 0)
would be implemented by constraining that −3q−1 + q0 = 0. The special
boundary elements at the right are just the reflections of these elements.

11.3 Galerkin Method in One Dimension

The Ritz technique applies only to problems of the classical variational
type, in which a convex functional is minimized. The corresponding Euler dif-
ferential equation is self-adjoint and elliptic. The Galerkin method is a means
for extending the finite element technique to differential equations which are
not necessarily the Euler equation for a corresponding variational statement.

Consider the differential equation

L(U) = f, (11.29)

where L is a linear differential operator, f(x) is a known function, and U(x)
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is the function to be solved for. We multiply by a test function V (x) and
integrate over the domain,

(L(U), V ) = (f, V ). (11.30)

Here we have introduced the notation that for two functions f and g, and a
one-dimensional domain a ≤ x ≤ b, we define the inner product to be

(f, g) ≡
∫ b

a

f(x)g(x)dx. (11.31)

If we introduce a solution space S to which U belongs, and require that
Eq. (11.30) be satisfied for every test function V (x) in that function space,
it is called the weak form of Eq. (11.29). The Galerkin method is just the
discretization of the weak form.

There is a close connection between the Galerkin method and the Ritz
method if L is a self-adjoint operator. Let us return to our example in Sec-
tion 11.2.1 and take as our operator that in Eq. (11.3),

L = − d

dx

(
p(x)

d

dx

)
+ q(x),

and as our interval [a, b] = [0, 1]. After an integration by parts, we obtain

a(U, V ) = (f, V ), (11.32)

where a(U, V ) is the energy integral defined in Eq. (11.14). Here, we assumed
that the boundary conditions are such that the boundary terms in the inte-
gration by parts vanish. In general, if the order of L is 2m, we can shift m
derivatives to v by repeated integration by parts.

To discretize Eq. (11.30), let us take φ1, · · · , φN as the basis for both the
solution space and for the test function space. We represent the solution as a
linear combination of the φj ,

U =
N∑
j=1

qjφj ,

where the amplitudes qj are to be solved for. We then have the system

N∑
j=1

qj (Lφj , φk) = (f, φk) ; k = 1, · · · , N,

or, in matrix form

G ·Q = F, (11.33)
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where

Gkj = (Lφj , φk),
Fk = (f, φk).

Assuming that the solution and test space are polynomials with finite en-
ergy for the mth derivative, the elements in the matrix in Eq. (11.33) can be
integrated by parts m times so that

(Lφj , φk) → a(φj , φk),

in which case it becomes identical with the discretization of the Ritz case.
The expected rate of convergence for the Galerkin method is [224]

‖U − u‖0 = O
(
hk, h2(k−m)

)
,

where the finite element solution space and test space S is of degree k − 1,
and the differential equation is order 2m. This is in agreement with the result
in Eq. (11.17) for the Ritz method.

Let us now consider an example problem in which we solve using the
Galerkin method with cubic B-spline elements. The equation we will consider
is

−p d
2

dx2
U + τ

d

dx
U + qU = f(x), (11.34)

where p, τ , and q are constants. Note that the presence of the term with τ
causes the operator to be non-self-adjoint.

For the solution and projection function spaces we have

u(x) =
N+1∑
j=−1

qjφj(x), (11.35)

vj(x) = φj(x); j = −1, · · · , N + 1. (11.36)

Insertion of Eq. (11.35) into Eq. (11.34) and projecting with each element of
Eq. (11.36), we obtain after integrating the first term by parts

N+1∑
j=−1

[
p
(
φ′k, φ

′
j

)
+ τ

(
φk, φ

′
j

)
+ q (φk, φj)

]
qj = (f, φk) , (11.37)

which can be written as a matrix equation

gkjqj = fk. (11.38)

To calculate the matrix gkj , one must compute the overlap integrals shown in
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0

0

FIGURE 11.7: Band structure of the matrix gkj that arises when the
Galerkin method for a second-order differential equation is implemented using
cubic B-spline elements.

Figure 11.5. A given element will overlap with itself and six neighbors. This
will lead to a sparse matrix with seven non-zero diagonal bands as shown in
Figure 11.7. The matrix elements are modified to include boundary conditions
as discussed in Section 11.2.6. The matrix equation can then be solved using
a LU decomposition algorithm for a banded matrix similar to that used in the
tridiagonal matrix algorithm introduced in Section 3.2.2.

The presence of the first derivative term, with coefficient τ , in Eq. (11.34)
spoils the self-adjointness property of the equation. It follows that the Galerkin
method no longer corresponds to minimizing a positive definite functional,
and therefore there is no guarantee that the solution found using the Galerkin
method is a “good” approximation to the true solution in a meaningful sense.
In practice, we find that as τ becomes larger so that the term τu′ dominates
the second derivative term, large point-to-point oscillations can develop in
the solution computed by the Galerkin method. In this case, finite difference
methods, perhaps using one-sided (upstream) differences for this term, would
yield a superior solution.

11.4 Finite Elements in Two Dimensions

In two dimensions, finite elements occupy a finite area rather than a finite
interval. This area can be a rectangle or a triangle as shown in Figure 11.8.
Rectangular elements have the advantage that they have a regular structure,
which will simplify programming requirements, but they generally cannot be
locally refined. Triangular elements have the advantage that they can more
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FIGURE 11.8: Rectangular elements cannot be locally refined without intro-
ducing hanging nodes. Triangular elements can be locally refined, but require
unstructured mesh data structures in programming.

easily fit complex shapes and can be locally refined, but they generally require
unstructured mesh logic which can make the programming more complex.

Elements are also characterized by the order of the polynomial that is
defined within them. If an element with typical size h contains a complete
polynomial of order M , then the error will be at most of order hM+1. This
follows directly from a local Taylor series expansion:

φ(x, y) =
M∑
k=0

k∑
l=0

1
l!(k − l)!

[
∂kφ

∂xk∂yk−1

]
x0,y0

(x− x0)l(y − y0)k−l +O(hM+1).

Linear elements will therefore have an error O(h2), quadratic elements will
have an error O(h3), etc.

Another property that characterizes elements is their interelement conti-
nuity. As discussed in Section 11.2.3, a finite element with continuity Cq−1

belongs to Hilbert space Hq, and hence can be used for differential operators
with order up to 2q. This applicability is made possible using the correspond-
ing variational statement of the problem (Ritz method) or by performing
integration by parts in the Galerkin method, and thereby shifting derivatives
from the unknown to the trial function.

11.4.1 High-Order Nodal Elements in a Quadrilateral

Suppose we have a structured mesh of quadrilateral elements, each of ar-
bitrary shape as shown in Figure 11.9. We can map each element into the unit
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FIGURE 11.9: Each arbitrary quadrilateral element in the Cartesian space
(x, y) is mapped into the unit square in the logical space for that element,
(ξ, η).

square (0 ≤ ξ ≤ 1), (0 ≤ η ≤ 1) by means of the coordinate change

x(ξ, η) = x1 + (x2 − x1)ξ + (x3 − x1)η + (x4 − x3 − x2 + x1)ξη,
y(ξ, η) = y1 + (y2 − y1)ξ + (y3 − y1)η + (y4 − y3 − y2 + y1)ξη.

(11.39)

This mapping is invertible if the Jacobian is everywhere non-vanishing inside
the element, which can be shown to be the case if the original quadrilateral
in (x, y) space is convex: All of its angles must be less than π [224]. It can
also be shown that the order of convergence is maintained by the mapping
so that, for example, if the trial function space contains all biquadratics or
bicubics in ξ and η, then it contains all quadratics or cubics in x and y and
thus the error for a properly posed problem should scale like hk with k = 3
or 4, respectively.

Let (m,n) be the indices of a particular quadrilateral element in the global
space which includes all elements. For definiteness, let m = 1, · · · ,M and
n = 1, · · · , N so that there are M ×N global 2D elements. For each element,
one can then form a tensor product in the local logical coordinates ξ and η,
so that within global element (m,n) we have the local expansion of a scalar
field

U(x, y) =
P∑
j=0

P∑
k=0

Ûm,nj,k hj(ξ)hk(η). (11.40)

In a C0 nodal expansion, we take the one-dimensional functions hj to be
Lagrange polynomials associated with a set of nodal points within the global
element. The nodal points must include the ends of the domain and hence be
shared with the neighboring domain in order for the solution to be continuous.
There is a freedom, however, in how to choose the location of the interior
points. This is discussed further in Section 11.4.2, but here we will take them to
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FIGURE 11.10: Relation between global numbering of elements and local
numbering within an element in one dimension. In order for the solution to be
continuous, the variable with (global number, local number) = (m,P ) must
be the same as that with (m+ 1, 0) for m = 1, · · · ,M − 1.

be equally spaced. Figure 11.10 illustrates the relation between the global and
local numbering in one dimension. In order for the solution to be continuous,
we require Ûm,nP,k =Ûm+1,n

0,k , etc. In this two-dimensional example there would
therefore be a total of (M × P + 1) × (N × P + 1) unknowns (or degrees of
freedom).

For both ξ and η, if we are given a set of (P + 1) nodal points within
the element, which, for example, we denote by ξq, 0 ≤ q ≤ P , the Lagrange
polynomial hp(ξ) is the unique polynomial of order P which has a unit value
at ξp and is zero at ξq (q 6= p), i.e.,

hq(ξq) = δpq,

where δpq is the Kronecker delta. The Lagrange polynomial can be written in
product form as

hp(ξ) =

P∏
q=0,q 6=p

(ξ − ξq)

P∏
q=0,q 6=p

(ξp − ξq)

. (11.41)

The Lagrange approximation of a one-dimensional function f(ξ) that passes
through the (P + 1) nodal points ξj can thus be written

f(ξ) ∼=
P∑
j=0

f(ξj)hj(ξ) ≡
P∑
j=0

f̂jhj(ξ). (11.42)

If f(ξ) is a polynomial of order P then the relationship is exact.
As an example, we consider solving the Helmholtz equation in an arbitrary

global domain that can be approximated by straight boundary segments. For
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a given function ρ(x, y) and real constant λ, the 2D Helmholtz equation to
determine U(x, y) is given by

∇2U − λ2U = ρ. (11.43)

We assume the values of U on the domain boundary are specified (Dirichlet
boundary conditions). Equation (11.43) corresponds to minimizing the func-
tional

I(u) =
∫ ∫ [

1
2
|∇U |2 +

1
2
λ2U2 + Uρ

]
dxdy,

=
M∑
m=0

N∑
n=0

Im,n, (11.44)

where Im,n involves an integral over a single global element. Using the non-
orthogonal coordinate techniques of Chapter 5, we can use the local coordinate
transformation given by Eq. (11.39) (different for each global element) to write

Im,n =
∫ 1

0

∫ 1

0

{
1
2
[
U2
ξ |∇ξ|2 + 2UξUη(∇ξ · ∇η) + U2

η |∇η|2

+ λ2U2
]
+ Uρ

}
Jdξdη. (11.45)

Here, the metric coefficients and Jacobian are given in terms of ξ and η deriva-
tives of the transformations for x and y given in Eq. (11.39), using the same
techniques as in Section 5.2.5. We have

|∇ξ|2 = J−2
(
x2
η + y2

η

)
, (∇ξ · ∇η) = −J−2 (xξxη + yξyη) ,

|∇η|2 = J−2
(
x2
ξ + y2

ξ

)
, J = xξyη − xηyξ.

(11.46)

We next substitute the expansion for U from Eq. (11.40) into Eq. (11.45),
noting that

Uξ =
P∑
j=0

P∑
k=0

Ûm,nj,k h′j(ξ)hk(η),

Uη =
P∑
j=0

P∑
k=0

Ûm,nj,k hj(ξ)h′k(η).

We proceed to minimize Im,n with respect to each of the Ûm,nj,k . In the global
element (m,n), we have the following contribution to the matrix equation
A · x = b:

ajk;pq =
∫ 1

0

∫ 1

0

[
h′j(ξ)hk(η)h

′
p(ξ)hq(η)|∇ξ|2

+
(
h′j(ξ)hk(η)hp(ξ)h

′
q(η) + hj(ξ)h′k(η)h

′
p(ξ)hq(η)

)
(∇ξ · ∇η)

+ hj(ξ)h′k(η)hp(ξ)h
′
q(η)|∇η|2 + λ2hj(ξ)hk(η)hp(ξ)hq(η)

]
Jdξdη,

bpq =
∫ 1

0

∫ 1

0

hp(ξ)hq(η)ρ (x(ξ, η), y(ξ, η)) Jdξdη. (11.47)
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The matrix is assembled by adding the contributions from each global element,
taking into account the identity of points with (global, local) indices of (m,P )
and (m+ 1, 0), etc., as discussed above and illustrated in Figure 11.10.

Once the matrix is assembled, it is modified in several ways. The Dirichlet
boundary conditions are implemented simply by replacing the row and column
in the matrix A corresponding to the boundary element by a row and column
of zeros, except for a 1 on the diagonal and the value of the boundary condition
in the corresponding location in the vector b. In the example being considered
here, this would be the case for (global element, local element): (m = 1, p = 0),
(m = M,p = P ), (n = 1, q = 0), (n = N, q = P ).

The matrix A can then be reduced in size substantially through static
condensation. This takes note of the fact that the interior Lagrange nodes for
each global rectangle, corresponding to those with both local numbering p =
1, · · · , P−1 and q = 1, · · · , P−1, are coupled only to the other Lagrange nodes
of that rectangle. For each global rectangle, we can invert a (P − 1)× (P − 1)
matrix to give a matrix equation for the values at the interior points in terms
of the values at the boundary points corresponding to p = 0, P or q = 0, P .
These matrix relations can then be used to remove the interior values from
the large matrix without introducing any new non-zero entries.

11.4.2 Spectral Elements

The spectral element method combines aspects of the spectral method de-
scribed in Chapter 10 with the high-order nodal finite element method dis-
cussed in the last section. In fact, several of the most popular spectral element
methods are just high-order nodal finite element methods, but with the spac-
ing of the nodes non-uniform, as determined by the zeros of a polynomial
or trigonometric function. A Lagrange polynomial is then put through these
nodes. The set of special Lagrange polynomials so obtained have a number
of desirable properties. They are more nearly orthogonal than are the set of
Lagrange polynomials through uniformly spaced nodes. This leads to better
conditioned matrices for most applications, and also to an expansion that
exhibits improved convergence (spectral convergence) [225].

Let us first consider the Chebyshev spectral element method in one di-
mension [226]. The domain is broken up into discrete elements, with the mth

element being of length h and defined in the interval [a, b], where b = a + h.
Within the mth global element, we represent the function U(x) as the La-
grangian interpolant through the P + 1 Chebyshev–Gauss–Lobatto points

x̄j = cos
πj

P
, j = 0, 1, · · · , P. (11.48)

The overbar represents the local element coordinate system defined by

x̄ =
2
h

(x− a)− 1, (11.49)
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so that −1 ≤ x̄ ≤ 1 for x within a ≤ x ≤ b. The Chebyshev interpolant of a
function u(x) within this interval is written as

U(x) =
P∑
j=0

Ujhj(x̄), (11.50)

where the hj(x̄) are Lagrange interpolation functions defined within the ele-
ment that satisfy

hj(x̄k) = δjk. (11.51)

The coefficients Uj in Eq. (11.50) are thus the values of U(x) at the Gauss–
Lobatto points defined in Eq. (11.48). (Here = δjk is the Kronecker delta.)
Using the relations from Section 10.2.4, the interpolation functions can be
expressed as

hj(x̄) =
2
P

P∑
k=0

1
c̄j c̄k

Tk(x̄j)Tk(x̄), (11.52)

where if follows from Eqs. (10.26) and (11.48) that Tk(x̄j) = cos πkjP . If the
solution is sufficiently differentiable, the arguments of Chapter 10 can be used
to show that the error will decay faster than any power of P and thereby
exhibit “spectral convergence.”

The methods of the last section can be used to map an arbitrary shaped
quadrilateral to the unit square in (ξ, η) space which can then be simply
transformed by ξ̄ = 2ξ − 1 and η̄ = 2η − 1 to the intervals [−1, 1]. The
Chebyshev interpolant of a variable U(x, y) can be written for the (m,n)th

element as a tensor product

U(x, y) =
P∑
j=0

P∑
k=0

Um,nj,k hj(ξ̄)hk(η̄). (11.53)

The expansion in Eq. (11.53) is seen to be identical to that used in Eq. (11.40),
except that the interpolation functions are to be defined by Eq. (11.52) rather
than Eq. (11.41), and thus the results of that section can be used.

A similar procedure could be followed by using the Lagrange polynomial
through the Gauss–Lobatto–Legendre points which are defined by the roots
of the polynomial (1−x2)L′P (x). This leads to the Legendre spectral element
method.

11.4.3 Triangular Elements with C1 Continuity

A particularly useful triangular finite element in two dimensions with C1

continuity is known as the reduced quintic [7, 227, 228, 229] and is depicted
in Figure 11.11. In each triangular element, the unknown function φ(x, y) is
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FIGURE 11.11: Reduced quintic finite element is defined by the four ge-
ometric parameters a, b, c, θ. A local (ξ, η) Cartesian system is used. The
function and first two derivatives are constrained at the three vertex points,
and C1 continuity is imposed at the edges. Exponents mi and ni are given in
Table 11.1.

written as a general polynomial of 5th degree in the local Cartesian coordinates
ξ and η: φ(ξ, η) =

∑20
i=1 aiξ

miηni (where the exponents mi and ni are given
in Table 11.1), which would have 21 coefficients were not there additional
constraints. Eighteen of the coefficients are determined from specifying the
values of the function and its first five derivatives: φ, φx, φy, φxx, φxy, φyy at
each of the three vertices, thus guaranteeing that globally all first and second
derivatives will be continuous at each vertex. Since the one-dimensional quintic
polynomial along each edge is completely determined by these values specified
at the endpoints, it is guaranteed that the expansion is continuous between
elements.

The remaining three constraints come from the requirement that the nor-
mal derivative of φ at each edge, φn, reduce to a one-dimensional cubic polyno-
mial along that edge. This implies that the two sets of nodal values completely
determine φn everywhere on each edge, guaranteeing its continuity from one
triangle to the next so that the element is C1. One of these three constraints
is trivial and has been used to reduce the number of terms from 21 to 20 in
the sum.

In imposing these continuity constraints, the expansion is no longer a com-
plete quintic, but it does contain a complete quartic with additional con-
strained quintic coefficients to enforce C1 continuity between elements. Thus,
the name “reduced quintic.” If the characteristic size of the element is h, then
it follows from a local Taylor’s series analysis that the approximation error in
the unknown function, φ− φh, will be of order h5.

Another advantage of this element is that all of the unknowns (or degrees
of freedom, DOF) appear at the vertices, and are thus shared with all the
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TABLE 11.1: Exponents of ξ and η for the reduced quintic expansion
φ(ξ, η) =

∑20
i=1 aiξ

miηni .

k mk nk k mk nk k mk nk k mk nk
1 0 0 6 0 2 11 4 0 16 5 0
2 1 0 7 3 0 12 3 1 17 3 2
3 0 1 8 2 1 13 2 2 18 2 3
4 2 0 9 1 2 14 1 3 19 1 4
5 1 1 10 0 3 15 0 4 20 0 5

triangular elements that connect to this vertex. This leads to a very compact
representation with relatively small matrices compared to other representa-
tions. Suppose that we are approximating a square domain by partitioning it
into n2 squares or 2n2 triangles. The reduced quintic will asymptotically have
N = 6n2 unknowns, or three unknowns for each triangle. This scaling can
be verified by the fact that if we introduce a new point into any triangle and
connect it to the three nearby points, we will have generated two new triangles
and introduced six new unknowns. We contrast this with a Lagrange quartic
element which has the same formal order of accuracy but asymptotically has
eight unknowns per triangle [224].

For a given triangle, if we locally number the unknowns φ, φx, φy, φxx,
φxy, φyy at vertex P1 as Φ1 −Φ6, at P2 as Φ7 −Φ12, and at P3 as Φ13 −Φ18,
then we seek a relation between the polynomial coefficients ai and the Φj .
This is done in two parts. We first define the 20× 20 matrix in each triangle
that relates the 18 local derivatives and two constraints to the 20 polynomial
coefficients. We call this matrix T. The 20 rows of T are given by:

φ1 = a1 − ba2 + b2a4 − b3a7 + b4a11 − b5a16

φ1
ξ = a2 − 2ba4 + 3b2a7 − 4b3a11 + 5b4a16

φ1
η = a3 − ba5 + b2a8 − b3a12

φ1
ξξ = 2a4 − 6ba7 + 12b2a11 − 20b3a16

φ1
ξη = a5 − 2ba8 + 3b2a12

φ1
ηη = 2a6 − 2ba9 + 2b2a13 − 2b3a17
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φ2 = a1 + aa2 + a2a4 + a3a7 + a4a11 + a5a16

φ2
ξ = a2 + 2aa4 + 3a2a7 + 4a3a11 + 5a4a16

φ2
η = a3 + aa5 + a2a8 + a3a12

φ2
ξξ = 2a4 + 6aa7 + 12a2a11 + 20a3a16

φ2
ξη = a5 + 2aa8 + 3a2a12

φ2
ηη = 2a6 + 2aa9 + 2a2a13 + 2a3a17

φ3 = a1 + ca3 + c2a6 + c3a10 + c4a15 + c5a20

φ3
ξ = a2 + ca5 + c2a9 + c314 + c4a19

φ3
η = a3 + 2ca6 + 3c2a10 + 4c3a15 + 5c4a20

φ3
ξξ = 2a4 + 2ca8 + 2c2a13 + 2c3a18

φ3
ξη = a5 + 2ca9 + 3c2a14 + 4c3a19

φ3
ηη = 2c6 + 6ca10 + 12c2a15 + 20c3a20

0 = 5b4ca16 + (3b2c3 − 2b4c)a17 + (2bc4 − 3b3c2)a18

+(c5 − 4b2c3)a19 − 5bc4a20

0 = 5a4ca16 + (3a2c3 − 2a4c)a17 + (−2ac4 − 3a3c2)a18

+(c5 − 4a2c3)a19 − 5ac4a20.

This satisfies Φ′ = TA, where Φ′ denotes the vector of length 20 pro-
duced by stringing together the 18 values of the function and derivatives with
respect to the local Cartesian coordinates ξ and η at the three vertices, and
with the final two elements zero, and A is the vector produced by the 20 poly-
nomial coefficients. This can be solved for the coefficient matrix by inverting
T, thus A = T−1Φ′. A useful check is to verify that the numerically evaluated
determinant of T has the value −64(a + b)17c20(a2 + c2)(b2 + c2). Since the
final two elements of Φ′ are zero, we can replace T−1 by the 20 × 18 matrix
T2 which consists of the first 18 columns of T−1.

To get the coefficient matrix A in terms of the vector containing the actual
derivatives with respect to (x, y), we have to apply the rotation matrix R. This
is compactly defined in terms of the angle θ appearing in Figure 11.11 by

R =

 R1

R1

R1

 , (11.54)
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where

R1 =


1 0 0 0 0 0
0 cos θ sin θ 0 0 0
0 − sin θ cos θ 0 0 0
0 0 0 cos2 θ 2 sin θ cos θ sin2 θ
0 0 0 − sin θ cos θ cos2 θ − sin2 θ sin θ cos θ
0 0 0 sin2 θ −2 sin θ cos θ cos2 θ

 .

If we then define the matrix G = T2R, this relates the coefficient matrix
directly to the unknown vector consisting of the function and derivatives with
respect to (x, y), i.e., A = GΦ, or in component notation: ai =

∑18
j=1 gi,jΦj

for i = 1, 20. The 20×18 matrix gi,j depends only on the shape and orientation
of the individual triangle, and in general will be different for each triangle.
The general expression for the unknown function φ in a given triangle is

φ(ξ, η) =
20∑
i=1

aiξ
miηni =

20∑
i=1

20∑
j=1

gi,jφjξ
miηni ,

=
18∑
j=1

νjφj , (11.55)

where we have defined the basis functions as

νj ≡
20∑
i=1

gi,jξ
miηni ; j = 1, 18. (11.56)

The 18 basis functions for each triangle, as defined by Eq. (11.56), have the
property that they have a unit value for either the function or one of its first
or second derivatives at one vertex and and zero for the other quantities at
this and the other nodes. They also have the C1 property embedded.

All of the integrals that need to be done to define the matrices that occur
in the Galerkin method are of the form of 2D integrals of polynomials in ξ
or η over the triangles. These can either be evaluated by numerical integra-
tion [230], or by making use of the analytic formula:

F (m,n) ≡
∫ ∫

triangle

ξmηndξdη = cn+1

[
am+1 − (−b)m+1

]
m!n!

(m+ n+ 2)!
. (11.57)

For example, to evaluate the mass matrix, we would have∫ ∫
νi(ξ, η)φ(ξ, η)dξdη =

18∑
k=1

[
20∑
i=1

20∑
l=1

gi,jgl,kF (mi +ml, ni + nl)

]
Φk

≡
18∑
k=1

MjkΦk. (11.58)
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The implementation of boundary conditions requires some discussion [231].
Recall that for each scalar variable being solved for, there are six unknowns at
each node corresponding to the function and all its first and second derivatives.
If Dirichlet or Neumann boundary conditions are being applied at a boundary
that is aligned with the x̂ or ŷ axis, the imposition of boundary conditions is
straightforward. Consider homogeneous Dirichlet boundary conditions being
applied at a boundary node where the boundary lies on the x axis. We then
replace the rows of the matrix that correspond to the trial functions νi having
non-zero values of φ, φx and φxx with a row from the identity matrix of
all zeros but a one on the diagonal, and with zero on the right side of the
equation. This is equivalent to removing these basis functions from the system.
If Neumann conditions were being applied, we would similarly replace the rows
corresponding to φy and φxy. If we define the operator

L(φ) = [φ, φx, φy, φxx, φxy, φyy] , (11.59)

then these conditions are all of the form Li(φ) = C. This is easily implemented
because the basis functions νj at the boundary point satisfy the orthogonality
conditions

Li(νj) = δij . (11.60)

But what if the boundaries are not aligned with the x or y axis? In this
case, if we define the vector corresponding to normal and tangential derivatives
of the solution as

L′(φ) = [φ, φn, φt, φnn, φnt, φtt] , (11.61)

then the boundary conditions we need to impose are of the form L′i(φ) = C.
Here n is the coordinate locally normal to the boundary, and t is locally
tangent to the boundary. We also define the local curvature as κ = n̂ · dt̂/ds
where ds is the arc length along the boundary curve. The derivatives of φ with
respect to the normal and tangential coordinates (n, t) are related to those
with respect to the global coordinates (x, y) at a given boundary point by the
transformation

L′i(φ) = MijLj(φ), (11.62)

where M is the unimodular matrix

M =


1 0 0 0 0 0
0 nx ny 0 0 0
0 −ny nx 0 0 0
0 0 0 n2

x 2nxny n2
y

0 −κny κnx −nxny n2
x − n2

y nxny
0 −κnx −κny n2

y −2nxny n2
x

 . (11.63)

In order to impose a boundary condition on a curved boundary (or even a
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straight boundary not aligned with the x̂ or ŷ axis) and for the residual to be
constrained as much as possible, we want to define a set of trial functions µi
at each boundary point that satisfy a similar orthogonality condition to that
in the axis-aligned boundary case, i.e.,

L′i(µj) = δij . (11.64)

The new trial functions must be a linear combination of the old basis functions
since the latter span the solution space, and thus we can write for some matrix
N,

µi = Nijνj . (11.65)

It follows from Eqs. (11.60), (11.62), (11.64), and (11.65) that Nij = (Mji)−1,

N =


1 0 0 0 0 0
0 nx ny κn2

y −κnxny κn2
x

0 −ny nx 2κnxny −κ(n2
x − n2

y) −2κnxny
0 0 0 n2

x nxny n2
y

0 0 0 −2nxny n2
x − n2

y 2nxny
0 0 0 n2

y −nxny n2
x

 . (11.66)

For each point that lies on the boundary, we therefore substitute the six trial
functions µi for the original six trial functions νi. These boundary vertex trial
functions obey an orthogonality condition on their derivatives with respect to
a local coordinate system (n, t) defined relative to the local boundary orienta-
tion. We then substitute the appropriate rows for rows imposing the boundary
conditions as in the case of the coordinate aligned boundaries. Using these lin-
early transformed trial functions to impose the boundary conditions is optimal
in the sense that the components of the residual associated with the boundary
vertex are maximally constrained.

11.5 Eigenvalue Problems

The finite element method is natural for solving eigenvalue problems of
the form

L(U) = λU, (11.67)

where L is a self-adjoint operator, λ is the scalar eigenvalue, and U is the
unknown function. This is exactly the form of the linear ideal MHD equation
of motion that was presented in Chapter 8. The basic idea is to formulate
the problem as the minimization of the Rayleigh quotient. Using piecewise
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polynomials as trial functions leads to a matrix eigenvalue problem to obtain
the solution.

For definiteness, let us take for the operator in Eq. (11.67) the same linear
operator considered in Section 11.3,

L(U) = − d

dx
(p(x)

dU

dx
) + q(x)U. (11.68)

The Raleigh-Ritz method is to form the Raleigh quotient and then substitute
a finite dimensional subspace S for the full admissible function space H1.
Choosing a basis φ1(x), · · · , φN (x) that spans S, we represent the solution as
the linear combination

U =
N∑
j=1

ajφj . (11.69)

The Rayleigh quotient is then defined as

R(U) =
a(U,U)
(U,U)

=
∫

[p(x)U ′2 + q(x)U2]dx∫
U2dx

. (11.70)

It is readily verified that the condition that R(U) be stationary is equivalent
to Eq. (11.67), with λ = R(U).

Insertion of Eq. (11.69) into Eq. (11.70) yields

R(a1, · · · , aN ) =

∑N
j=1

∑N
k=1 ajak

∫
(p(x)φ′jφ

′
k + q(x)φjφk)dx∑N

j=1

∑N
k=1 ajak

∫
φjφkdx

. (11.71)

The critical points of R are the solution to the matrix eigenvalue problem

Kjkak = λhMjkak, (11.72)

where

Kjk =
∫

(p(x)φ′jφ
′
k + q(x)φjφk)dx,

Mjk =
∫

(φjφk)dx.

Solving Eq. (11.72) using matrix eigenvalue techniques will yield a sequence
of eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN . The fundamental frequency λ1 is often
the quantity of greatest significance. It is an important property of the finite
element methods that the λh1 computed from Eq. (11.72) always lies above
the true result λ1,

λh1 ≥ λ1.

This follows since λh1 is the minimum value of R(u) over the subspace S, and
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λ1 is the minimum over the entire admissible spaceH1. For the MHD problem,
this says that the discrete approximation is always more stable than the true
system.

It is worth noting that the eigenvalue equation, Eq. (11.67), can also be
solved using the Galerkin method. In this case, we multiply Eq. (11.67) by
a trial function v and integrate by parts. If we expand U as in Eq. (11.69)
and require that the weak form hold for all functions v in the subspace S, we
obtain a matrix eigenvalue problem that is equivalent to Eq. (11.72).

11.5.1 Spectral Pollution

When using the finite element method to calculate the unstable eigenmodes
of a highly magnetized plasma, special care must be given to the representation
of the displacement field. When the ideal MHD stability problem is cast in
the form of Eq. (11.67), interest normally lies in calculating the most unstable
modes, or the eigenmodes with the smallest (or most negative) eigenvalues
λ = ω2.

However, as is illustrated in Figure 8.4, a wide range of other modes are
present with large positive eigenvalues corresponding to stable oscillations of
the plasma column. It has been recognized for some time that the existence of
these stable modes can “pollute” the unstable spectrum, making it practically
impossible to obtain meaningful solutions for the unstable modes.

The root cause of this phenomena can be seen by consideration of the
variational form of the potential energy as given in Eq.(8.49). The first three
terms in that equation are all positive definite, and thus stabilizing. The nu-
merical representation of the displacement field must be such as to allow the
discrete form of those terms to vanish to a high degree if the effect of the
smaller, potentially negative terms is to be computed.

In the development of the ideal MHD finite element eigenvalue code PEST,
the authors chose to represent the plasma displacement ξ in terms of three
scalar fields (ζ, δ, τ) defined by the relation

ξ =
R2

g
[iB×∇⊥ζ + δ∇θ ×B] + iτB. (11.73)

Here, B = ∇Ψ×∇φ+g∇φ is the equilibrium axisymmetric magnetic field, and
∇⊥ means “the gradient in the plane perpendicular to ∇φ”. The angle θ that
appears in Eq. (11.73) is the poloidal angle in a straight field line coordinate
system with J ∼ R2; see Table 5.1. The factors of i ≡

√
−1 are included

so that when a spectral representation is used for the θ and φ coordinates
and a dependence ≡ ei(mθ−nφ) is used with m and n integers, the scalar
fields will all be real. In the strong toroidal field limit, the magnetic field
is dominated by the term B ∼ g∇φ, and we see that the large stabilizing
second term in Eq. (8.49) is completely independent of the scalar fields ζ
and τ . This means that these fields will be used to minimize the smaller
terms associated with the Alfvén and slow magnetoacoustic branches without
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significant interference from the fast magnetoacoustic branch. Also, the scalar
field τ is predominantly associated with the slow wave as seen from Eq. (1.96)
and the discussion that follows it, and the scalar field δ is the dominant one
that is involved in perpendicular compressibility and hence the fast wave.
Thus, this representation of the displacement vector field helps to avoid one
part of the spectrum polluting the others.

In straight circular cylindrical geometry as discussed in Section 8.4, it is
common to use a spectral representation for the angle θ and the longitudinal
coordinate z and to use finite elements for the radial coordinate r. Assuming θ
and z dependence as as ei(mθ−kz), Appert et al. [232] introduced the following
displacement projection

ξ = ξ1(r)r̂ −
i

m
(rξ2(r)− ξ1(r)) θ̂ +

i

k
ξ3(r)ẑ, (11.74)

where ξi(r); i = 1 · · · 3 are functions of r to be solved for. This gives

∇ · ξ = ξ′1(r) + ξ2(r) + ξ3(r). (11.75)

They reason that in order to avoid pollution of the rest of the spectrum by
the fast wave, they should choose a finite element basis for the three functions
ξ1(r), ξ2(r), and ξ3(r) that will allow ∇ · ξ to be arbitrarily small over a given
grid interval in r. From the form of Eq. (11.75), we see that this will follow
if the order of the finite elements used to expand ξ1(r) is 1 higher than the
order used to expand ξ2(r) and ξ3(r). They chose linear (tent) functions to
expand ξ1(r) and constant (hat) functions to expand ξ2(r) and ξ3(r). Another
choice that has been used [233] is cubic B-spline for ξ1(r) and the derivative
of a cubic B-spline for ξ2(r) and ξ3(r).

This set of cylindrical projections was extended by Chance et al. [234]
to one that decouples the parallel from the perpendicular displacements and
allows for both ∇·ξ⊥ = 0 and ∇·ξ = 0. The displacement field is represented
as

ξ =
1
r

(ξ1 +mξ2) r̂ + i (ξ′2 +Bθξ3) θ̂ + i

(
−Bθ
Bz

ξ′2 + ξ3Bz

)
ẑ, (11.76)

or

ξ =
ξ1
r
r̂ + i

B
Bz

×∇⊥ξ2 + iξ3B, (11.77)

where we have again used ∇⊥ to indicate the gradient in the plane perpen-
dicular to ẑ. For finite elements, they used linear elements for ξ2(r), constant
elements for ξ3(r), and for ξ1(r) they used a special finite element φ1j(r)
defined by

φ1j =


R r
rj−1

Bθr/BzdrR rj
rj−1 Bθr/Bzdr

if rj−1 < r < rj ,R rj+1
r Bθr/BzdrR rj+1
rj

Bθr/Bzdr
if rj < r < rj+1,

0 otherwise.

(11.78)



320 Computational Methods in Plasma Physics

This form for φ1j was chosen to allow

∇ · ξ⊥ =
1
r

dξ1
dr

+ k
Bθ
Bz

dξ2
dr

= 0, (11.79)

to machine accuracy.

11.5.2 Ideal MHD Stability of a Plasma Column

Here we consider the problem of determining the stability of a large as-
pect ratio toroidal plasma surrounded by a vacuum region, which is in turn
surrounded by a perfectly conducting wall. A complete representation for the
plasma displacement and magnetic vector potential in a torus that is designed
to both minimize spectral pollution and be general enough to be used in a
non-linear calculation is given by [30]

ξ = R2∇U ×∇φ+ ωR2∇φ+R−2∇⊥χ, (11.80)
A = R2∇φ×∇f + ψ∇φ− F0 lnRẐ. (11.81)

Here (R,φ, Z) form a cylindrical coordinate system, the subscript ⊥ indicates
“perpendicular to ∇φ,” i.e., in the (R,Z) plane, and F0 is a constant which
represents an externally imposed toroidal magnetic field. The displacement is
thus determined by the three scalar functions (U, ω, χ). The magnetic field
is given by B = ∇ × A, where the magnetic vector potential is defined by
the two scalar functions (f, ψ), the constant F0, and the gauge condition
∇⊥ ·R−2A = 0.

Let a be a typical minor radius and R0 be a typical major radius. We take
the large aspect ratio limit a/R0 ∼ ε → 0. Gradients in the (R,Z) plane are
assumed ordered as ∇⊥ ∼ 1/a. The standard tokamak ordering corresponds
to ordering the quantities that appear in the magnetic field and pressure
as f ∼ R0ε

4f̃ , ψ ∼ R2
0ε

2ψ̃ p ∼ ε2p̃, F0 ∼ R0, ∇R ∼ 1. To the lowest non-
trivial order in ε, it is sufficient to consider the straight cylindrical equilibrium
geometry with circular cross section as shown in Figure 8.5. We then use a
(r, θ, z) cylindrical coordinate system where now ẑ is a unit vector replacing
R∇φ. In this geometry, the equilibrium only depends on the coordinate r.
We take the plasma region to be 0 < r < a and the vacuum region to be
a < r < b.

Dropping the ordering parameter ε for notational simplicity, and similarly
dropping the tilde, and normalizing lengths such that R0 = 1, we can write
the equilibrium magnetic field and current density as

B = ∇ψ0 × ẑ + F0ẑ, J0 = −∇2ψ0ẑ. (11.82)

Letting primes denote derivatives with respect to r, we have for the equilibrium
poloidal magnetic field and the safety factor

Bθ0 = −ψ′0, q(r) = rF0/B
θ
0 . (11.83)
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To lowest order, the only component of the displacement and perturbed mag-
netic field that enter are

ξ = ∇U × ẑ, Q = ∇× (ξ ×B0) = ∇ψ × ẑ. (11.84)

This is linearized reduced MHD in a cylinder. We adopt a spectral represen-
tation in the periodic variables θ and z, and only keep a single mode so that
for the perturbed variables, ψ,U = ψ(r), U(r) exp i(mθ − kz). It then follows
that

B · ∇U = i
Bθ0
r

(m− kq(r))U ≡ iF (r)U. (11.85)

To determine the ideal stability of this system, we vary the Rayleigh quo-
tient, Eq. (8.28), which is equivalent to varying the Lagrangian

L = ρ0ω
2T − δWf − δWV . (11.86)

To evaluate the plasma energy term, we start from Eq. (8.49). Applying the
above orderings, we find that to lowest order

δWf =
∫
P

dτ

{
|Q|2 +

J0 ·B0

B2
0

B0 × ξ∗ ·Q
}
,

=
∫
P

dτ
{
|∇ψ|2 − i∇2ψ0 [U∗, ψ]

}
,

=
∫
P

dτ
{
|∇(FU)|2 − i∇2ψ0 [U∗, FU ]

}
. (11.87)

We can make use of Eq. (8.68), derived in Section 8.4.2, to write the vacuum
contribution as

2δWv = 2πmF 2 1 + (a/b)2m

1− (a/b)2m
|U(a)|2. (11.88)

The kinetic energy term is simply

2T =
∫
P

dτ
{
|∇U |2

}
. (11.89)

Combining these, we obtain

1
π
L =

∫
P

rdr

{
ρ0ω

2

(
U ′2 +

m2

r2
U2

)
−
(

(FU)′2 +
m2

r2
(FU)2

)
− ∇2ψ0

m

r

(
2UU ′F + U2F ′

)}
−mF 2 1 + (a/b)2m

1− (a/b)2m
|U(a)|2. (11.90)
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To apply the finite element method, we expand the U(r) in basis functions,

U(r) =
N∑
i=1

aiφi(r). (11.91)

We proceed to substitute this expansion into Eq. (11.90) and take derivatives
with respect to each of the asi . We define the matrices

Aij = ρ0

∫ a

0

rdrφ′iφ
′
j + ρ0m

2

∫ a

0

dr
1
r
φiφj ,

Bij =
∫ a

0

rdr(Fφi)′(Fφj)′ +m2

∫ a

0

dr
1
r
F 2φiφj

+ m

∫ a

0

dr∇2ψ0

[
F ′φiφj + Fφ′iφj + Fφiφ

′
j

]
+ mF 2

[
1 + (a/b)2m

1− (a/b)2m

]
δNN . (11.92)

If we define the vector of unknown amplitudes as x = [a0, a1, · · · , aN ], then
the eigenvalue problem takes the form

ω2A · x = B · x. (11.93)

As a check, we observe that if the equilibrium current density is constant,
∇2ψ0 = J0, then F (r) becomes constant, so we can set F = F0. This has an
analytic solution [235] in that there is only one unstable mode given by

ρ0γ
2 = J0F −

2F 2

1− (a/b)2m
. (11.94)

A generalization of this calculation to the full ideal MHD equations in an
elliptical plasma column is given in [234], and to a circular cross-section ideal
MHD plasma with a vacuum region and a resistive wall in [233].

11.5.3 Accuracy of Eigenvalue Solution

The errors in the Ritz eigenfunctions,

‖U` − u`‖,

are of the same order as the errors in the approximate solution to the steady-
state problem Lu = f considered earlier. However, the eigenvalues are as
accurate as the energies in the eigenfunctions. It follows that for an approxi-
mation space of order k − 1,

‖λh` − λ`‖ < ‖U` − u`‖2m = O[hk−m]2,

for 2mth order problems. The reason, as we have seen before, is that the
Rayleigh quotient is flat near a critical point. Moderately accurate trial func-
tions yield very accurate eigenvalues.
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11.5.4 Matrix Eigenvalue Problem

There exist standard techniques for solving the matrix eigenvalue problem,
and an excellent reference for this is the book by Gourlay and Watson [236].
One of the most widely used methods is called inverse iteration. In its sim-
plest form, for the eigenvalue problem Ax = λx, inverse iteration proceeds by
solving a linear system at each step: yn+1 = A−1xn. Then the approximation
to λ is λn+1 = 1/‖yn+1‖, and the new approximation to x is the normalized
vector xn+1 = λn+1yn+1. If we imagine that the starting vector x0 is expanded
in terms of the true eigenvectors vj , x0 =

∑
cjvj , then the effect of n inverse

iterations is to amplify each component by (λj)−n. If λ1 is distinctly smaller
than the other eigenvalues, then the first component will become dominant,
and xn will approach the unit eigenvector v1. The convergence is like that of
a geometric series, depending on the fraction λ1/λ2, although the matrix A
can be replaced by A− λ0I to shift all eigenvalues uniformly by λ0.

There is another method for solving the generalized band eigenvalue prob-
lem,

KQ = λMQ, (11.95)

that is due to a matrix theorem due to Sylvester [236]: The number of eigen-
values less than a given λ0 can be determined just by counting the number of
negative pivots when Gauss elimination is applied to K − λoM . Thus, for ex-
ample, an algorithm based on bisection can be used. Suppose it is determined
that there are n0 eigenvalues below the first guess λ0. Then the Gaussian
pivots for K − λ0/2M reveal the number n1 which is below λ0/2; and the
remaining n0−n1 eigenvalues must lie between λ0/2 and λ0. Repeated bisec-
tion will isolate any eigenvalue. In other variations, this method can be sped
up by using the values of the pivots rather than just their signs, or it can be
supplemented with inverse iteration once λK is known approximately.

11.6 Summary

The finite element method is a natural choice if the problem to be solved
is of the classical variational type: Find a function U(x) that minimizes a
functional I(U). The Galerkin approach extends the finite element method to
any system of equations. You simply select a class of trial elements, multiply
the equation by every test element in the class, and integrate over the domain.
This implies that the residual will be orthogonal to all elements in the class.
Integration by parts is used to shift derivatives from the original equation to
the test element. It is essential that the elements have sufficient continuity to
be consistent with the final form of the equations. Because of the integration
by parts, C0 elements can be used for equations with up to second derivatives
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and C1 elements can be used for equations with up to fourth derivatives. If
the family of finite elements used is such that a complete Taylor series can
be represented to some order, then the error in the approximation will scale
like the error in truncating the Taylor series expansion. By using non-uniform
node spacing interior to a global finite element, spectral C0 elements can be
defined that have some advantages over high-order elements based on uniform
node spacing. If a linear stability problem can be put into variational form, it
is natural to use the finite element method to convert it to a matrix eigenvalue
problem which can be readily solved using standard mathematical libraries.
The eigenvalue will be more accurate than the eigenfunction if variational
principles are followed.

Problems

11.1: Verify that the last row of the matrix equation, Eq. (11.9), is consistent
with the imposition of the boundary condition v′(1) = 0.

11.2: Consider the analogue of the matrix equation, Eq. (11.9), for the Her-
mite cubic elements of Section 11.2.5 in which K = K0 + K1 as given by
the matrices following Eqs. (11.21) and (11.23). Using Taylor series expan-
sion, show that both the even and odd rows of the of the matrix equation are
consistent with the differential equation, Eq. (11.3) for the case p = q = const.

11.3: Calculate the “bending matrix” that corresponds to minimizing (v′′)2

for the Hermite cubic finite elements of Section 11.2.5.

11.4: Consider a 2D rectangular region with M × N global elements as in
Section 11.4.1. Each global element has (P+1)×(P+1) local Lagrange points
defined (including points on the inter-element boundaries) so that there are
(PM + 2) × (PN + 2) unknowns. How many unknowns would remain after
static condensation was applied?

11.5: Calculate the matrix elements one obtains when using the Chebyshev
spectral elements of Section 11.4.2 applied to the 2D Helmholtz equation given
by Eq. (11.43). Assume that the domain and elements are rectangular so that
the coordinate transformation given by Eq. (11.39) is just a renormalization.
Make explicit use of the integrals given in Eqs. (10.32) and (10.30) in express-
ing the result.

11.6: Using the linear finite elements of Section 11.2.2, write a computer
program to solve Eq. (11.67) in the domain 0 ≤ x ≤ 1 for the operator given
by Eq. (11.68) for p(x) = k2 = constant, q(x) = 0. Compare the solution
with the analytic solution λn = k2n2π, and show that the lowest-order mode,
λ1, converges as h2 as the element spacing h→ 0.
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