
Design and Development of

Quadruped Robot

A Final Year Project Report

Presented to

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

Department of Mechanical Engineering

NUST

ISLAMABAD, PAKISTAN

In Partial Fulfillment

of the Requirements for the Degree of

Bachelors of Mechanical Engineering

by

Hinata Kashif

Jawad Akbar

June 2024

ii

ABSTRACT

This report outlines the complete journey of designing and developing a quadruped robot,

covering mechanical design, kinematic and dynamic analysis, control system development,

and prototype testing. The project begins with an extensive literature review highlighting

the evolution of quadrupedal robotics, emphasizing innovations in leg design, articulated

joints, and sensor integration. The methodology section discusses the kinematic analysis,

gait strategy, MATLAB simulations, and control algorithms implemented in the robot.

A kinematic analysis explores forward and inverse kinematics, crucial for the robot's gait

and stability. The team used finite element analysis (FEA) to validate their choice of leg

material, Polylactic Acid (PLA), ensuring it met stress and deflection criteria for durability.

The control system employs PID controllers and Model Predictive Control, focusing on

balancing the robot's locomotion and maintaining stability.

The results and discussions include detailed insights into the microcontroller, actuator,

battery, and IMU selection for precise control. MATLAB Simulink simulations validated

the design approach, leading to refined control strategies and improved performance. The

prototype testing demonstrated accurate inverse kinematics through its servo calibration

and foot placement, with ongoing adjustments for stable walking and overcoming noise in

PWM signals. The integration of a PWM driver improved signal integrity, leading to

smoother robot movement.

The conclusion emphasizes the project's achievements in gait analysis, mechanical design,

and control systems. Recommendations include exploring new materials for enhanced

durability, integrating learning-based strategies, and refining energy storage. Future work

focuses on terrain testing, multi-robot communication, and user interface development for

broader applicability.

iii

ACKNOWLEDGEMENTS

We are profoundly grateful to our parents, whose unwavering encouragement and support

have been the cornerstone of our journey throughout this project.

Our sincere gratitude also goes to our project advisor, Dr. Khawaja Fahad Iqbal, whose

expertise, understanding, and patience added considerably to our experience.

Additionally, we would like to thank our classmates for not only giving us friendship but

also providing constructive criticism in fulfilling our project ideas. A special thanks to

Saad Jameel from the Department of Robotics and AI, whose assistance was vital and

hugely appreciated. Finally, our thanks go to Lincoln Corner at NUST Central Library for

providing us with the financial and material support that enabled us to use the 3D printer,

making this project possible.

iv

CONTENTS

Abstract.. ii

Acknowledgements .. iii

Originality Report ... 1

List of Tables: ... 2

List of Figures: ... 2

Abbreviations ... 5

CHAPTER 1: INTRODUCTION .. 6

Motivation .. 6

Problem We are Solving. .. 6

Objective .. 7

CHAPTER 2: LITERATURE REVIEW .. 8

History .. 8

Leg Design.. 10

Kinematic Analysis ... 10

Forward Kinematics (FK) ... 11

Inverse Kinematics (IK) .. 11

Denavit-Hartenberg (D-H) Convention .. 11

Jacobian Matrix ... 12

Dynamic Analysis .. 13

v

The Lagrangian mechanics ... 13

Newton Euler Method ... 14

Locomotion and Gait Analysis ... 16

Foundational Research and Innovations in Quadruped Robot Locomotion

... 16

Dynamic Stability and Adaptability in Legged Robots 17

Inverted Pendulum Model... 18

Raibert's Strategy .. 19

Control Strategies and Algorithms.. 21

PID Controller ... 21

Other Controllers .. 21

CHAPTER 3: Methodology .. 23

Kinematics .. 23

Gaits and Algorithm .. 25

Matlab Simulation ... 27

Finite Element analysis: .. 31

CAD: ... 34

Assembly: ... 38

Self-Balancing Algorithm: .. 39

vi

CHAPTER 4: RESULTS and DISCUSSIONS ... 45

Microcontroller, Actuator, Battery and IMU selection 41

Kinematics equations .. 45

Forward Kinematics .. 45

Inverse Kinematics.. 45

FEA Results .. 46

Trajectory Generation ... 48

PID controller.. 49

Simulation: PID controller .. 50

Prototype Testing .. 51

CHAPTER 5: CONCLUSION AND RECOMMENDATION 53

REFRENCES ... 55

APPENDICES .. 67

Appendix 1: MATLAB Controller Code (Trot Gait) 67

Appendix 2: MATLAB Variable Initialization: ... 73

Appendix 3: Arduino Code (Balancing) ... 75

3.1 Maincode .. 75

3.2 Structures.h ... 79

3.3 functions.h.. 81

3.4 Classes.h ... 81

vii

3.5 PID.cpp .. 82

3.6 IK.cpp .. 83

3.7 constructBody.cpp .. 87

3.8 constructLeg .. 87

1

ORIGINALITY REPORT

2

LIST OF TABLES:

Table 1: Properties of Material ..32

Table 2: Parameters of Robot Dimensions ..44

Table 3: FEA Results ...48

LIST OF FIGURES:

Figure 1: Jacobian Matrix Format..12

Figure 2: Inverse Pendulum Working ..18

Figure 3: Inverse Pendulum Mathematical Formulation ...19

Figure 4: Reference Frame assignment and Link definition ..24

Figure 5: Inverse Kinematics - 2 .. Error! Bookmark not defined.

Figure 6: Inverse Kinematics - 1 .. Error! Bookmark not defined.

Figure 8: Hip Actuation Mechanism..37

Figure 9: Leg Modeling in Simulink ……………………………………………………29

Figure 10: Thigh Link model in COMSOL ……………………………………………..33

Figure 11: Thigh link Meshing in COMSOL …………………………………………...33

Figure 12: Calf Link Model in COMSOL ………………………………………………33

3

Figure 13: Calf Link Meshing in COMSOL……………………………………………34

Figure 14: Hip Assembly……………………………………………………………….34

Figure 15: Leg Assembly……………………………………………………………….35

Figure 16: Robot Body…………………………………………………………………..36

Figure 17: Robot Body (Top View)……………………………………………………..36

Figure 18: Hip Actuation Mechanism…………………………………………………..37

Figure 19: Complete Assembly………………………………………………………….37

Figure 20: Arduino Mega……………………………………………………………….41

Figure 21: DS3218 - 20KG Digital Servo……………………………………………….42

Figure 22: MPU-6050……………………………………………………………………42

Figure 23: 3S 2800 mAh LiPo Battery………………………………………………….43

Figure 24: Simulink model of a single leg………………………………………………46

Figure 25: FEA Analysis – Thigh Link – Von Mises…………………………………..46

Figure 26: FEA Analysis – Thigh Link – Total Displacement………………………….47

Figure 27: FEA Analysis – Calf link – Von Mises Stress………………………………47

Figure 28: FEA Analysis - Calf link – Total Displacement…………………………….47

Figure 29: Foot Trajectory………………………………………………………………49

4

Figure 30: Stance Hip Trajectory……………………………………………………..49

Figure 31: Simulink Multibody Simulation - Trot Gait (Sideview)…………………..50

Figure 32: Simulink Multibody Simulation - Trot Gait (Isometric View)…………….51

Figure 33: Stance Position under self-weight with no support…………………………51

Figure 34: Step motion using IK (a) : Upward motion………………………………….52

Figure 35: Step motion using IK (b) :Forward motion………………………………….52

 Figure 36: Step motion using IK (c) : Step complete…………………………………..52

5

ABBREVIATIONS

AI Artificial Intelligence

ASME American Society of Mechanical Engineers

CAD Computer Aided Design

CPG Central Pattern Generators

DOF Degrees Of Freedom

FEA Finite Element Analysis

FK Forwards Kinematics

FL Forward Left

FR Forward Right

IEEE Institute of Electrical and Electronics Engineers

IK Inverse Kinematics

IMU Inertial Measurement Unit

MPC Model Predictive Control

PD Proportional Derivative

PID Proportional Integral Derivative

PLA Polylactic Acid

PWM Pulse Width Modulation

WBC Whole Body Control

ZMP Zero Moment Point

6

CHAPTER 1: INTRODUCTION

Motivation

The advent of robotics has ushered in a transformative era in technology, engineering, and

automation, marked by the aspiration to transcend human limitations and venture into

realms hitherto unattainable. This project is born out of an acute awareness of the

burgeoning need for advanced robotic systems capable of performing tasks in

environments that are beyond human reach, either due to inherent dangers or physical

inaccessibility. The motivation behind this endeavor is to harness the potential of robotics

to foster innovations that significantly reduce human exposure to hazardous conditions,

enhance operational efficiency, and open new avenues for exploration and development.

The concept of quadrupedal robots has emerged as a beacon of versatility and resilience in

the robotics landscape. These robots, inspired by the locomotion of animals, offer a

dynamic solution [2] to the challenges of navigating through terrains that would otherwise

be insurmountable for traditional wheeled or tracked robots. Their ability to adapt to

various surfaces, from the rugged outcrops of disaster-hit zones to the uneven grounds of

natural landscapes, presents a compelling case for their development and deployment. The

pioneering work of companies such as Boston Dynamics and Ghost Robotics in creating

quadruped robots that can carry payloads, scout dangerous areas, and perform an array of

tasks autonomously, serves as both inspiration and a benchmark for this project. These

industrially applicable solutions not only showcase the technological prowess achieved

thus far but also highlight the immense potential for quadruped robots in revolutionizing

sectors ranging from disaster management and defense to agriculture and beyond.

However, the journey towards realizing such advanced robotic systems is fraught with

challenges. The primary concern addressed by this project revolves around the current

limitations faced by existing robotic models in navigating uneven and complex terrains

[27, 28]. The rugged or unpredictable nature of such landscapes poses significant obstacles

to the operational viability of conventional robots, thereby limiting their effectiveness in

critical applications such as disaster response, environmental monitoring, and exploration.

Moreover, the high cocompliantsts associated with developing and manufacturing

sophisticated robotic systems further exacerbate the issue, putting these technological

marvels out of reach for many potential applications, particularly in resource-limited

settings.

Problem We are Solving.

Considering these challenges, this project aims to conceptualize, design, and develop an

affordable, autonomous quadruped robot capable of expertly navigating a multitude of

7

terrains. This endeavor seeks to combine the agility and adaptability inherent in

quadrupedal locomotion with cutting-edge design and control mechanisms, thereby

producing a robot that is not only cost-effective but also robust enough to operate

autonomously in diverse environments. The ultimate goal is to enhance the capabilities of

disaster response teams, provide viable solutions for tasks that are risky or impractical for

humans, and pave the way for future innovations in robotic mobility and autonomy.

Objective

To achieve these ambitious goals, the project is structured around a series of key

deliverables, each focusing on a distinct aspect of the robot's development. The first

deliverable concentrates on the mechanical design of the leg mechanism and its actuation

systems, laying the groundwork for the robot's movement and interaction with its

environment. Following this, the second deliverable delves into the kinematic and dynamic

analysis of the robot [2], ensuring that its movements are not only precise but also

optimized for energy efficiency and adaptability. The third deliverable transitions the

project from theoretical models to tangible reality through the manufacture, assembly, and

exhaustive testing of the prototype. This phase is critical for identifying and addressing any

unforeseen challenges that may arise, thereby refining the robot's design and functionality.

Lastly, the fourth deliverable encompasses the integration of a sophisticated control system

and the comprehensive evaluation of the robot's performance across a range of scenarios.

This final stage is instrumental in validating the project's success and setting the stage for

further enhancements and applications.

Through these deliverables, the project aims to forge a path towards a new generation of

robotic systems that are not only technologically advanced but also accessible and practical

for a wide array of applications. By addressing the critical challenges of terrain adaptability

and cost-effectiveness, this project aspires to make a significant contribution to the field of

robotics, pushing the boundaries of what is possible and opening up new horizons for

exploration, innovation, and impact.

8

CHAPTER 2: LITERATURE REVIEW

History

The evolution of quadruped robotics is a testament to the field's relentless pursuit of

creating machines capable of navigating the complexities of real-world environments with

agility and precision. From Marc Raibert's initial [3] experiments that introduced the

foundational principles of dynamic balance and legged locomotion, the journey of

quadruped development has been marked by significant milestones.

Early in this journey, the focus was on developing reflexive responses to slipping in bipedal

running robots [1, 3], alongside the creation of bounding gaits in quadrupeds such as the

Scamper [4] and Patrush robots [5,6]. These robots, leveraging sophisticated control

schemes, laid the groundwork for advanced locomotion strategies. Notably, Patrush's

control was inspired by neural oscillator theories, emphasising the role of bio-inspired

mechanisms in robotic movement which also underlies the control of the simulated planar

biped of Taga et a1 [19].

The exploration of adaptive dynamic walking techniques on irregular [6] and natural

terrains [7] brought forward innovations in control systems based on Central Pattern

Generators (CPGs) [9] and compliance strategies [8], significantly enhancing terrain

adaptability[10]. This period also witnessed the emergence of robots like Boston

Dynamics' BigDog [11, 12, 13] and LittleDog [14, 15, 16, 17], which showcased

autonomous navigation and advanced terrain adaptability through bio-inspired leg

compliance and sophisticated control strategies.

The introduction of the HyQ [18] robot marked a leap in actuation methods, incorporating

torque-controlled hydraulic and electrical actuators. This era also saw the refinement of

control methodologies, including PID control [20] for precise actuation and fuzzy

controllers[21] for managing uncertain environments, alongside advancements in detection

technologies for improved environmental interaction [22, 23, 24]

Modern quadrupeds feature highly advanced mechanical designs that prioritise efficiency,

durability, and adaptability. For instance, MIT's Cheetah [43] robot incorporates

lightweight, high-strength materials and novel actuation systems that allow for rapid,

energy-efficient movement. Its design emphasises minimising inertia, enabling the robot

9

to perform high-speed manoeuvres and jumps with remarkable agility. Similarly, the

ANYmal [26, 42] robot utilises a modular design, allowing for easy customization and

repair, which is crucial for its deployment in challenging environments like industrial

inspection sites.

The control strategies employed by modern quadrupeds have evolved significantly,

incorporating advanced algorithms like Model Predictive Control (MPC) [45], Whole-

Body Control (WBC) [44, 45], and learning-based methods. MPC, used by robots like

ANYmal, allows for real-time planning and adaptation to terrain, optimising the robot's

movements to ensure stability and efficiency. WBC, exemplified by the Mini-Cheetah,

integrates the control of all joints and limbs, enabling the execution of complex

manoeuvres like backflips and dynamic recovery from falls. Learning-based methods,

including reinforcement learning, have been explored in the context of these robots to

enhance their adaptability and performance in unpredictable environments.

Software development [46, 48] for modern quadrupeds leverages sophisticated simulation

[2s] environments, real-time operating systems, and modular, open-source frameworks.

This ecosystem allows for rapid prototyping, testing, and deployment of control

algorithms, sensor fusion strategies, and autonomy modules. The use of simulation not only

accelerates the development process but also enables the safe exploration of the robots'

capabilities in virtual environments that mimic real-world challenges.

Research on modern quadrupeds has focused on improving locomotion efficiency,

autonomy, and interaction with humans and the environment. Notable advancements

include the development of energy-efficient gaits, autonomous navigation capabilities in

unstructured terrains, and the integration of advanced perception systems for environment

mapping and obstacle avoidance. These advancements have been validated in real-world

applications, from search and rescue missions and industrial inspection to entertainment

and educational purposes

This rich history of quadruped development showcases the field's evolution from

foundational experiments to the sophisticated, adaptable machines of today, capable of

seamlessly navigating our complex world.

10

Leg Design

The evolution of quadrupeds in leg design perspective has witnessed significant

advancements over time, reflecting a journey of innovation driven by both biological

inspiration and engineering ingenuity. Initially, early quadrupeds often emulated simplistic

leg structures, typically featuring rigid designs with limited degrees of freedom. However,

as research progressed, there was a notable shift towards more biomimetic designs,

drawing inspiration from the intricate biomechanics of animals to enhance agility, stability,

and adaptability.

1. Articulated Joints: Unlike earlier rigid structures, modern quadruped legs often

incorporate multiple articulated joints, providing greater flexibility and enabling a

wider range of motion. This increased degree of freedom allows for more dynamic

and adaptive locomotion, essential for navigating complex and uneven terrains.

2. Compliant Mechanisms: Many contemporary leg designs integrate compliant

mechanisms, such as springs or pneumatic actuators, to enhance shock absorption

and energy efficiency. These compliant elements mimic the elasticity and damping

properties observed in biological limbs, improving stability and reducing impact

forces during locomotion.[29]

3. Modular Construction: Modular leg designs have gained popularity due to their

versatility and ease of maintenance. By utilising interchangeable components, such

as modular joints or actuators, designers can tailor leg configurations to specific

tasks or environments, facilitating rapid prototyping and experimentation.

4. Sensor Integration: Advanced sensor technologies, including force sensors,

encoders, and inertial measurement units (IMUs), are often integrated into

quadruped legs to provide real-time feedback on terrain conditions, leg position,

and ground contact forces. This sensory feedback enables precise control and

adaptive responses, enhancing stability and performance in dynamic environments.

5. Optimised Kinematics: Modern leg designs leverage sophisticated kinematic

algorithms and optimization techniques to achieve efficient and agile locomotion.

By carefully tuning parameters such as leg length, joint angles, and trajectory

profiles, designers can optimise gait patterns for speed, endurance, or terrain

traversal, maximising overall performance.

Kinematic Analysis

Kinematic analysis in robotics is the study of motion without regard to the forces that cause

it. It involves understanding how the joints and links of a robot move to achieve desired

11

positions, orientations, and paths of the robot's end-effector or other points of interest. The

kinematic analysis is fundamental for designing robotic systems, programming their

movements, and ensuring they perform tasks accurately and efficiently. The primary

approaches in kinematic analysis include Forward and Inverse kinematics. [30[32[]

Forward Kinematics (FK)

 This approach determines the position and orientation of the robot's end-effector given

the set of joint parameters (angles for revolute joints and distances for prismatic joints).

FK involves the sequential application of transformations from the robot's base to its end-

effector, using the kinematic chain of the robot. It's relatively straightforward since it

directly computes the end-effector's pose from known joint angles through a series of

matrix multiplications.

Forward kinematics calculates the position and orientation of the end-effector of a robot

given the joint parameters. In a robotic manipulator with n joints, the forward kinematics

equations can be represented as a series of homogeneous transformation matrices,

typically denoted as T.

𝑇0
𝑛 = 𝑇1

0𝑇2
1 … 𝑇𝑛

𝑛−1

Where:

• 𝑇𝑖
𝑖−1 represents the transformation matrix from frame i-1 to frame i.

• 𝑇0
𝑛 represents the transformation from the base frame to the end-effector frame.

Inverse Kinematics (IK)

 IK is the process of calculating the joint parameters needed to place the robot's end-effector

at a desired position and orientation. Unlike FK, IK can be significantly more complex due

to the possibility of multiple solutions, or sometimes no solution, and often requires solving

a set of nonlinear equations. IK is crucial for planning and control [32] in robotics,

especially when the robot must interact with objects or environments in precise ways.

Denavit-Hartenberg (D-H) Convention

The D-H Convention [33, 36] is a systematic method to describe the geometry and

kinematics of a robot arm. It simplifies the representation of the robot by assigning four

12

parameters to each link: two for its dimensions (link length and link twist) and two for its

position (joint angle and joint distance). These parameters are used to construct

transformation matrices that define the spatial relationship between adjacent links,

facilitating the calculation of FK and IK solutions:

1. Link Length (a): The distance between the axes of adjacent joints along the

common normal.

2. Link Twist (α): The angle about the common normal from the old z-axis to the

new z-axis.

3. Joint Angle (θ): The angle about the previous z-axis, from the old x-axis to the

new x-axis.

4. Joint Distance (d): The distance along the previous z-axis to the point where the

common normal intersects the old z-axis.

Jacobian Matrix

The Jacobian matrix is a fundamental tool in kinematic analysis that relates the velocities

of the robot's joints to the velocity of the end-effector in both linear and angular terms. It

is essential for understanding how variations in joint speeds affect the movement of the

end-effector, and is used in controlling the robot's motion, especially for tasks requiring

speed and precision. The Jacobian also plays a key role in dynamics analysis, force control,

and dealing with singularities in robotic manipulators. For a robot with n joints, the

Jacobian matrix can be represented as

Figure 1: Jacobian Matrix Format

Here, T is given by T(x1,x2,...,xn) = (y1,y2,...,ym).

The Jacobian matrix, derived from the transformation matrix, establishes the connection

between joint velocity and end-effector velocities. It comprises three elements for

positional velocity and three for rotational velocity.

𝑉 = 𝐽 × 𝜃̇

13

To relate joint accelerations to end-effector accelerations, we utilize the velocity equation

[38, 39]. This equation encompasses three translational and three rotational components.

𝐴 = 𝐽𝜃̈ + 𝐽𝜃̇̇

Dynamic Analysis

The Lagrangian mechanics

The Lagrangian mechanics approach is predicated on the principle of stationary action,

with the Lagrangian (𝐿) representing the difference bettyween the kinetic energy (𝑇) and

potential energy (𝑉) of a system:

𝐿 = 𝑇 − 𝑉

To derive the equations of motion, the Lagrange equation is applied for each degree of

freedom:

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞𝑖̇
) −

𝜕𝐿

𝜕𝑞̇
= 𝑄𝑖

where:

● 𝑞𝑖 are the generalized coordinates, representing the configuration of the system,

● 𝑞𝑖̇ represent the velocities (time derivatives of qiqi),

● 𝑄𝑖 denotes the generalized forces acting on the system.

The kinetic energy (𝑇) is often expressed as a quadratic form of the velocities, while the

potential energy (𝑉) depends on the configuration of the system. The mass matrix

𝑀(𝑞), appearing in the kinetic energy term, is symmetric and positive definite, reflecting

the inertial properties of the system. The equations can be further elaborated in matrix form:

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝑄

where:

● 𝑀(𝑞) is the mass matrix, dependent on the generalized coordinates,

● 𝐶(𝑞, 𝑞̇) represents the Coriolis and centrifugal forces, which are velocity-

dependent,

● 𝐺(𝑞) is the gravity force vector, a function of the configuration,

● 𝑄 is the generalized force vector, including external forces and torques.

14

This approach is particularly powerful for systems with complex interactions and

constraints, offering a systematic way to derive the dynamics of multi-body systems with

multiple degrees of freedom.

Advantages

• Provides a systematic and elegant approach for deriving equations of motion.

• Utilizes generalized coordinates, which can simplify the representation of complex

systems.

• Suitable for systems with many degrees of freedom.

• Offers clear physical insights into the system dynamics.

Newton Euler Method

The Newton-Euler approach combines Newton's second laws of motion for translational

dynamics with Euler's rotation equations for rotational dynamics, applied to each rigid

body in a robotic mechanism. For linear motion, Newton's second law is given by:

𝐹 = 𝑚𝑎

where 𝐹 is the total external force, 𝑚 is the mass, and 𝑎 is the linear acceleration. For

rotational motion, Euler's equations can be expressed as:

𝜏 = 𝐼𝛼 + 𝜔 × (𝐼𝜔)

where:

● 𝜏 is the total external torque acting on the body,

● 𝐼 is the moment of inertia matrix (which may also depend on the configuration for

complex systems),

● 𝛼 is the angular acceleration,

● 𝜔 is the angular velocity vector, and

● 𝜔 × (𝐼𝜔) represents the gyroscopic term.

Advantages

• Particularly suitable for serial-link manipulators and articulated systems.

• Provides a recursive algorithm (the recursive Newton-Euler algorithm) that can be

computationally efficient for systems with a tree-like structure.

• Suitable for real-time control applications where computational speed is crucial.

The Newton-Euler method systematically applies these principles to each link of a robot,

starting from the base and moving towards the end-effector (forward recursion) to calculate

velocities and accelerations, and then proceeding in the reverse direction (backward

recursion) to compute forces and torques. This method is particularly useful for deriving

explicit dynamic equations and for real-time control applications, as it can be efficiently

15

implemented and provides a clear physical interpretation of the forces and torques

involved.

In robotics, particularly among quadruped and biped robots, the choice of dynamic analysis

method—ranging from Lagrangian mechanics, Newton-Euler methods, to a combination

of both—is pivotal for modelling and controlling their complex movements [37]. For

instance, the MIT Cheetah [34] and ETH Zurich's StarlETH and ANYmal extensively

employ Lagrangian mechanics to optimize energy efficiency and ensure dynamic stability,

enabling high-speed maneuvers and adaptive locomotion across challenging terrains. On

the other hand, robots like Boston Dynamics' BigDog and the bipedal hyq primarily utilize

Newton-Euler methods for precise real-time control of forces and torques, critical for

achieving stability and agility on rough terrains. Spot, also by Boston Dynamics, along

with IIT's HyQ and HyQ2Max, demonstrates the effectiveness of combining both

approaches, leveraging the advantages of Lagrangian mechanics for planning and Newton-

Euler methods for execution, ensuring agility, efficiency, and stability in dynamic

environments. This strategic selection and integration of dynamic analysis methods

facilitate the development of robots capable of navigating the physical world with an

unprecedented level of sophistication.

Justification for using Lagrange Method for our robot

• The Lagrange method is well-suited for systems with relatively simple mechanical

structures and a limited number of degrees of freedom.

• Lagrange's equations of motion are derived from the principle of least action, which

inherently captures the underlying physics of the system. This makes the Lagrange

method particularly suitable when you seek a physically intuitive model of your

robot's dynamics.

• The Newton-Euler method, particularly its recursive algorithm, is known for its

computational efficiency, making it suitable for real-time control applications or

simulations where fast computation of dynamic responses is crucial. If your project

evolves to involve more complex robot designs or if computational efficiency

becomes a significant concern, you may consider transitioning to the Newton-Euler

method or other methods optimized for such applications.

16

Locomotion and Gait Analysis

Locomotion and Gait Analysis in quadruped robots is essential for designing robots

capable of efficiently navigating various terrains. It involves studying different movement

patterns—such as walking, trotting, galloping, and bounding—to determine their

suitability for different speeds and environmental challenges. Walking gaits prioritise static

stability, ensuring the robot remains balanced over slippery or complex terrains with

minimal energy use. Faster gaits like trotting and galloping rely on dynamic stability, where

balance is maintained through motion and speed, suitable for smoother terrains requiring

quick navigation. Energy efficiency is crucial across all gaits, with strategies like the

Spring-Loaded Inverted Pendulum (SLIP) model [46] being employed to conserve energy

by mimicking natural muscle elasticity. Speed optimization entails selecting the

appropriate gait for the task and terrain, using advanced control algorithms and sensory

feedback to adapt the robot's movement in real-time. This analysis underpins the

development of quadruped robots that balance stability, energy use, and speed to tackle a

wide range of operational environments effectively.

Foundational Research and Innovations in Quadruped Robot Locomotion

Raibert's initial research [3] focused on applying balance and dynamic stability principles

to create terrain-navigating vehicles, starting with simplified models like one-legged

hoppers. This laid the groundwork for future legged robotics innovations. A key milestone

was the development of a 3D One-Legged Hopping Machine, proving that simple control

algorithms could manage balance and dynamic locomotion in legged systems. This

foundation was crucial for advancing to more complex systems such as quadrupeds.

Research on the "planar dog" demonstrated the simulation of distinct gaits using

decomposed control algorithms, a vital step towards applying these strategies to multi-

legged robots and emphasising the need for leg coordination. The practical creation of a

dynamic quadruped robot represented a significant advancement, showing the potential for

legged robots to agilely navigate complex terrains.

The concept that mechanical systems' natural oscillation modes can influence gait selection

and transition suggested a reduced need for explicit neural control [35]. Innovative methods

allowing robots to change direction using lateral foot placement and hip torques marked a

major improvement in maneuverability and efficiency. Raibert's work [3] culminated in

exploring ways to refine control algorithms and foot placement strategies, underlining the

importance of experimental validation and theoretical development for enhancing dynamic

legged locomotion.

17

His notable study [3] on quadruped robot running gaits—trotting, pacing, and bounding—

managed by a unified control algorithm through a virtual biped concept, enabling

adaptation with minimal adjustments. It bypasses the complexity of animal biomechanics,

utilizing digital control for robot movement, emphasizing simple gaits involving leg pairs

in alternation. Key aspects include propelling the body at desired velocities and directions

while maintaining posture and vertical stability. The control strategy involves adjusting

foot positioning for speed, using hip actuators for posture, and managing vertical motion

with hydraulic leg adjustments. Implementation includes virtual leg coordination, yaw

control, and state machine sequencing for gait transitions, noting the absence of clear gait

selection criteria, and suggesting factors like energy efficiency and mechanical

effectiveness.

Dynamic Stability and Adaptability in Legged Robots

Dynamic stability in legged robots is crucial for ensuring that robots can navigate a variety

of terrains while maintaining balance, adjusting to disturbances, and performing tasks

efficiently. Several models are used to analyses and enhance dynamic stability:

1. The Single Leg Hopper Model, foundational to the dynamics of vertical hopping

and attributed to Marc Raibert, is exemplified by MIT Leg Lab's one-legged robots,

showcasing controlled hopping and stability. [3]

2. The SLIP model, emphasizing leg compliance and body inertia for running and

hopping, informs the MIT Cheetah's energy-efficient design and control across

terrains.

3. The Zero Moment Point (ZMP) model [40] , crucial for dynamic stability in robots

like Honda's ASIMO, identifies the ground point where the net moment from

gravity and inertia is zero, guiding balance maintenance during movement.

4. Dynamic Walking Using Limit Cycles leverages closed trajectories in the robot's

state space for stable, natural walking patterns, as exemplified by RHex's robust

navigation across challenging terrains.

5. The Linear Inverted Pendulum Model (LIPM) simplifies a robot to a point mass

atop an inverted pendulum for CoM control, used by Toyota's Human Support

Robot (HSR) for stable navigation and walking phase transitions.

6. Hybrid dynamic models integrate discrete and continuous dynamics to capture the

complexities of legged locomotion, enabling robots like Boston Dynamics' Spot

and Atlas to achieve stable, adaptive movement across varied terrains.

18

7. Whole-Body Dynamic Control optimizes forces and torques across a robot's joints

for stable, efficient motion, exemplified by ANYmal's versatile operations in

complex environments.

Inverted Pendulum Model

 A classic problem in dynamics and control theory, the inverted pendulum model is used

to demonstrate and study the principles of equilibrium, stability, and control in systems

that are inherently unstable. It consists of a pendulum with its mass above its pivot point,

requiring active control to maintain its upright position. This model is analogous to many

real-world applications, including Atlas and humanoid robots, where maintaining balance

is crucial. The simplicity yet challenging nature of the inverted pendulum makes it a staple

in control systems education and research, serving as a benchmark for testing control

strategies.

Figure 2: Inverse Pendulum Working

Applying Forward Speed Method inverted pendulum model to obtain forward position of

foot at the touchdown:

𝑥𝐹,𝑑 =
𝑇𝑠𝑥̇

2
+ 𝑘𝑥̇(𝑥̇𝑓 − 𝑥̇𝑑)

Where,

𝑇𝑠, is expected duration of the next stance phase,

 𝑥̇, is the expected forward speed during the stance phase,

𝑥̇𝑓 is the present forward speed (during flight),

𝑥̇𝑑is the desired forward speed for the next flight phase, and

19

𝑘𝑥̇, is an empirically determined gain.

Figure 3: Inverse Pendulum Mathematical Formulation

Raibert's Strategy

Developed by Marc Raibert in the 1980s as part of his pioneering work on dynamic legged

locomotion, Raibert's strategy focuses on the control of hopping robots and later extended

to bipedal and quadrupedal robots. The core idea is to control the balance of a robot by

adjusting the position of its center of mass (CoM) and manipulating its leg thrusts and

placement to achieve stable hopping or walking. Raibert's strategy includes the division of

control tasks into separate components for balance, forward motion, and body orientation,

allowing for simplified yet effective management of dynamic locomotion. This approach

has significantly influenced the development of dynamically stable walking and running

robots.

The control system used the three-part algorithms of Marc Raibert to specify desired

behavior for each virtual leg and it used the rules of the virtual leg to coordinate the

behavior of the physical legs.

To control the forward running speed, the control system positioned the foot of the virtual

leg with respect to the center of mass of the body during each flight phase:

𝑥𝑓,𝑑 =
𝑥̇𝑇𝑠

2
+ 𝑘𝑥̇(𝑥̇ − 𝑥̇)

20

𝑦𝑓,𝑑 =
𝑦̇𝑇𝑠

2
+ 𝑘𝑦̇(𝑦̇ − 𝑦̇𝑑)

Where,

𝑥𝑓,𝑑, 𝑦 𝑓,𝑑 is the desired displacement of the foot with respect to the projection of the center

of mass,

𝑥̇, 𝑦̇ is the forward running speed,

𝑥̇𝑑, 𝑦̇𝑑 is the desired forward running speed,

𝑇𝑠 is the duration of a support period, and

𝑘𝑥̇, 𝑘𝑦̇ are gains.

To control the pitch and roll attitude of the body during stance, the control system applied

torques about the virtual hips, using linear servos

𝑢𝑥 = −𝑘𝑝,𝑥(𝜑𝑃 − 𝜑𝑃,𝑑) − 𝑘𝑣,𝑥(𝜑𝑃)−𝑘𝑓,𝑥(𝑓𝑥) − 𝑘𝛾̇(𝛾̇𝑑)

𝑢𝑦 = −𝑘𝑝,𝑦(𝜑𝑅 − 𝜑𝑅,𝑑) − 𝑘𝑣,𝑥(𝜑𝑅)−𝑘𝑓,𝑦(𝑓𝑦)

Where,

𝑢𝑥, 𝑢𝑦 are the servovalve output signals for the hip actuators,

𝜑𝑃, 𝜑𝑅 are the pitch and roll angles of the body,

𝛾̇𝑑 is the desired hip rate of the actuator,

𝑓𝑥, 𝑓𝑦 are the forces measured in the hip actuators, and

𝑘𝑝, 𝑘𝑣, 𝑘𝑓 , 𝑘𝛾̇ are gains.

To obtain the desired position of the virtual foot with respect to the virtual hip could be

used as the desired position of the physical feet with respect to the physical hips:

𝑥ℎ,𝑖,𝑑 = 𝑥ℎ,𝑗,𝑑 = 𝑥𝑓,𝑑

𝑦ℎ,𝑖,𝑑 = 𝑦ℎ,𝑗,𝑑 = 𝑦𝑓,𝑑

Where,

𝑥ℎ,𝑖,𝑑, 𝑦ℎ,𝑖,𝑑 is the desired displacement of the ith foot with respect to the projection of the

ith hip,

𝑥𝑓,𝑑, 𝑦𝑓,𝑑 is the desired displacement of the virtual foot with respect to the projection of the

virtual hip,

𝑖, 𝑗 are indices of two physical legs that form one virtual leg

21

An average yaw rate is taken for an entire stride. Use of the average yaw rate over the stride

permits there to be variations in yaw rate within the stride, without interfering with the

control of the machine's facing direction. Using average yaw rate to include turning:

𝑥𝑓,𝑖,𝑑 =
𝑥̇𝑇𝑠

2
+ 𝑘𝑥̇(𝑥̇ − 𝑥̇𝑑) + 𝐷 cos(𝛽 + 𝛽0,𝑖)

𝑦𝑓,𝑖,𝑑 =
𝑦̇𝑇𝑠

2
+ 𝑘𝑦̇(𝑦̇ − 𝑦̇𝑑) + 𝐷 cos(𝛽 + 𝛽0,𝑖)

Where,

𝑖 indicates the physical leg,

𝛽0,𝑖 is 𝑎𝑟𝑐𝑡𝑎𝑛(𝑊/𝐿) for 𝑖 = 1,3 and − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑊/𝐿) for 𝑖 = 2,4,

𝐷 = √(𝑊2/ 2 + 𝐿2/2)

Control Strategies and Algorithms

PID Controller

Standing for Proportional-Integral-Derivative, the PID controller is a widely used feedback

control mechanism in industrial control systems. It calculates an error value as the

difference between a desired setpoint and a measured process variable, then applies a

correction based on proportional, integral, and derivative terms. The PID controller adjusts

the control input to minimise the error over time, ensuring the system's output behaves as

intended. Its simplicity, ease of implementation, and effectiveness in a wide range of

conditions make the PID controller a ubiquitous tool in the automation and control of

processes, including the control of robots for tasks requiring precise movement and

stability.

Other Controllers

Controllers for quadruped robots span a spectrum from basic reactive systems to complex

algorithms that fuse perception, planning, and action to navigate and interact with varied

environments. At the foundational level, Proportional-Derivative (PD) Controllers are

pivotal for joint-level management, ensuring balance and precise movement by adjusting

to the desired position and its rate of change, a technique employed across many

quadrupeds for stabilizing and achieving various gaits. Central Pattern Generators

(CPGs) [47], drawing inspiration from biological locomotion, generate rhythmic

movement patterns, enabling dynamic walking and running, as exemplified by the Cheetah

robot's agile maneuvers. Model Predictive Control (MPC) offers a forward-looking

22

strategy, optimizing control inputs over a predictive horizon to navigate uneven terrains

efficiently, a method harnessed by robots like ANYmal and the MIT Cheetah for adaptive

locomotion.

Whole-Body Control (WBC) treats the robot as an integrated system, optimizing

command signals across all joints and limbs to follow desired trajectories or maintain

balance while conserving energy, a strategy that underpins the Mini-Cheetah's capability

to execute complex maneuvers and recover from disturbances. The Raibert Control

Strategy, foundational to early hopping robots, focuses on foot placement and body

equilibrium for maintaining momentum, influencing designs such as Boston Dynamics'

BigDog for stable traversal. Hybrid Control Systems merge force and position control,

enabling responsive adaptation to environmental interactions, seen in HyQ [18] and

HyQ2Max as they dynamically adjust to varying terrains.

Feedforward and Feedback Controllers blend predictive model-based actions with real-

time sensor feedback to refine locomotion precision, a combined approach enabling

advanced navigation capabilities in robots like Spot. Lastly, Adaptive and Learning-

Based Controllers leverage machine learning to evolve robot behavior over time,

enhancing efficiency and robustness through continual interaction with the environment, a

path pursued by ANYmal for ongoing locomotion improvement. Together, these diverse

controller types equip quadruped robots with a broad toolkit, from the simplicity and

directness of PD control to the nuanced, anticipatory strategies of MPC and adaptive

learning, enabling them to tackle an expansive array of tasks across challenging and

unpredictable environments.

23

CHAPTER 3: METHODOLOGY

Kinematics

Each leg of a quadrupedal robot can be treated as a separate manipulator to compute its

forward and inverse kinematics. The result of these formulations can then be simply related

to the world frame (frame connected to the COM of the body) via translation vectors.

During the swing phase, the foot is considered the end-effector while during the stance

phase, the prediction between the ground and the foot causes the body to move in relation

to the ground hence the shoulder is considered the end-effector.

Mathematical Formulation:

1. We started off by assigning a reference frame to the bot. The selected convention

is shown in the figure below. This frame was selected as the global frame of

reference and all the calculations were carried out on these conventions.

2. The hip, thigh and calf lengths were identified. The Hip link is in the YZ plane

while the thigh and calf links lie in the XZ plane. Cumulatively, this forms the XYZ

coordinated form the foot to the shoulder.

3. In order to link the foot frame to the Centre of Mass (COM) of the body, we

calculated the offset vectors of each shoulder from the body.

4. Using these geometric parameters and reference points we were able to formulate

a series of linear equations using trigonometric manipulation to relate the XYZ

coordinates of the feet to the respective joint angle.

5. However, there still remains the issue of multiple solutions for the same set of

coordinates. In order to remove this ambiguity, we limited the joint angles to the

prescribed workspace such that

−90 < 𝜃ℎ < 90

−90 < 𝜃𝑡 < 90

0 < 𝜃𝑐 < 180

6. The kinematics were implemented using the stick figure (Figure 7) modelled in

SolidWorks to eliminate multiple solutions and cater for reachability and

workspace constraints. The mathematical model was finalized via iterations based

on this model to keep the signs and directions consistent with the reference frame

selected.

24

Figure 4: Reference Frame assignment and Link definition

Figure 6: Inverse Kinematics - 2 Figure 5: Inverse Kinematics - 1

25

Figure 7: Stick Figure

Gaits and Algorithm

Gait and Stability

Currently our bot is being tested for trot gait. Trotting involves moving alternate legs in

tandem to achieve forward motion. Raiberts’s inverted pendulum and virtual leg strategies

are used to create this motion. The virtual leg analogy clumps the alternate legs together

into an imaginary single leg connected to the COM of the quadruped such that two virtual

legs need to be controlled in order to generate the gait. Hence the problem of quadrupedal

control is reduced to controlling a biped robot.

1. Balance and Stability:

○ The inverted pendulum model is used to maintain the robot's balance by

dynamically adjusting the position of the legs to keep the robot's centre of

mass (CoM) over its base of support. This involves calculating the

necessary adjustments in the leg's position and force to counteract the

gravitational force and any external disturbances.

For any velocity there exists a neutral point at which, under ideal conditions,

the velocity of the body when entering the stance phase is equal to the

velocity when it leaves the stance phase. The positioning of the foot ahead

26

or behind this neutral point determines the acceleration or deceleration and

is calculated by the error signal in velocity.

○ The virtual leg strategy simplifies these calculations by providing a unified

model for controlling the movement of all legs in coordination, effectively

acting as a single point of control for balance.

2. Locomotion Control:

○ The virtual leg strategy offers a method to control the robot's movement

direction and speed by adjusting the length and angle of the virtual leg,

which in turn influences the real legs' movements. This is particularly useful

for varying the gait, stride length, and speed of the robot dynamically.

○ The inverted pendulum model complements this by ensuring that, as the

robot moves, it remains balanced. Adjustments made to the virtual leg for

locomotion are continuously monitored and modified as necessary to

prevent the robot from falling over, using the principles of the inverse

pendulum to maintain stability.

3. Implementation:

○ Sensors and feedback mechanisms are critical for the successful

implementation of these combined strategies. Sensors provide real-time

data on the robot's orientation, acceleration, and the position of its CoM,

which are used to adjust the legs' actions continually.

An Inertial Measurement Unit (IMU) is an electronic device that

measures and reports a body's specific force, angular rate, and sometimes

the magnetic field surrounding the body, using a combination of

accelerometers, gyroscopes, and magnetometers.

An IMU is integral to maintaining and managing the stability of a

quadrupedal robot by providing vital data on its orientation and movement.

The IMU, with its accelerometers and gyroscopes, feeds real-time

information about linear accelerations and angular rates to the robot's

control system. This enables the robot to make instantaneous adjustments

to its leg positions and body posture to balance actively, adapt its gait to

different terrains, navigate with precision, and initiate fall recovery

processes. Essentially, the IMU's inputs are critical for the robot to

understand and react to its physical state and the dynamics of its

27

environment, ensuring stable and efficient movement across various

activities and conditions.

○ Control algorithms calculate the necessary adjustments to the virtual leg's

parameters and translate these adjustments into movements of the actual

legs, ensuring that the robot remains stable and moves according to the

desired trajectory.

Matlab Simulation

Simulink Model

● Solver: The model uses time equation formulation and default solver type

(variable-step). Additionally, the linear algebra type is set to sparse.

● Environment: The ground sub-system contains the blocks to initialise the

environment of the simulation. This includes a world frame connected to the ground

block and a solver configuration block. It also includes a mechanical configuration

block to introduce gravity.

● 6 DOF Joint and Body: In order to make the bot freely mobile in the environment

a 6 DOF joint is used. All the components of the bot are connected to this 6 DOF

Joint via Rigid Transform blocks. These Rigid Transform blocks introduce

appropriate translations and rotations from one reference frame to another. The 6

DOF joint is connected to the body of the block which is a solid rectangular block.

● Leg Subsystems: The leg subsystems contain 3 Solid blocks representing the hip,

thigh and calf limbs respectively. They are connected by Revolute Joint blocks. The

revolute joints are set to rotate about the Z axis (default). The appropriate direction

of the Z axis is ensured by adding reference frames within each solid block.

● Foot: The foot is represented by a Solid Sphere block connected to the final

reference frame of the calf. A spherical foot profile is selected to simulate ideal

point contact and use the Hertzian contact theory (Sphere and Plane Surface) to

estimate normal force values.

● Joint Control: The joints are torque actuated via a feedback mechanism. The

Feedback block takes the target angle, current angle and the current angular velocity

and using a cascade control system obtains a torque signal that is fed into the joint.

28

Figure 8: Control Algorithm

29

Figure 9: Leg Modeling in Simulink

Control System

The implemented code in the control system of the model can be explained in a series of

steps.

1. Initialise variables for body velocity, leg angles, end-effector positions, state

and timer.

2. Calculate Leg Angles:

○ For each leg (front-left, front-right, rear-left, rear-right), unpack the angles

for the shoulder, upper limb, and knee joints.

3. Perform Forward Kinematics:

○ Calculate the position of each leg's end-effector using forward kinematics

functions.

4. Compute Shoulder Offsets:

○ Determine the distance from the COM of the body to the shoulders of each

leg.

5. Virtual Leg Positions:

○ Calculate the current positions of the virtual legs, which are the averages of

the diagonal pairs of real legs.

30

6. State Machine Logic:

○ Standby State (State 0):

■ Check if all feet are on the ground and if the body's velocity is below

a certain threshold.

■ Transition to State 1 if conditions are met for a specified duration.

○ Initial Velocity Swing (State 1):

■ Swing the whole body to achieve initial velocity.

■ Transition to State 2 if the body's velocity exceeds a certain

threshold for a specific time.

○ Stance/Swing Phase (State 2):

■ For the stance phase, disable upper limb control and balance the

body.

■ For the swing phase, consider the body's angle and move the legs

accordingly.

■ Transition to State 3 based on time and contact states.

○ Swing/Stance Phase (State 3):

■ Same as State 2 but with roles of virtual legs swapped.

■ Transition back to State 2 based on time and contact states.

○ Loop: Based on timer and contact state sensing, the roles of virtual legs are

swapped alternatively between stance and swing. During the state 2 virtual

leg 1 (forward left and rear right legs) are in stance phase and virtual leg 2

(forward right and rear left legs) are in swing phase. When the virtual leg 2

reaches stance phase, the controller switches to state 3 where the virtual leg

1 swings. This alternate action of virtual leg continuously causes the bot to

trot.

7. Inverse Kinematics:

○ For each leg, calculate the target joint angles from the desired end-effector

positions.

8. Return Values:

○ Output the target control angles for each leg, the control state, and

debugging information.

9. PID Controller:

○ The target control angles are fed into the respective leg subsystems. Here,

these signals are unpacked into three separate signals i.e Hip, Thigh and

31

Calf angles fed into their respective PID subsystems.

The PID subsystem uses a cascade control system involving two PIDs in

series to generate a torque signal. The first PID inputs a differential

between the current and the target angle. This controller is configured to

minimise the error in the angle effectively acting as a position controller.

The output of this PID is differentiated with the current angular velocity of

the joint. This differentiation helps to take into account the rate of change

of the joint's angle, adding a derivative control aspect that anticipates

future error based on current motion.

The result from the differentiation step is used as the input for the second

PID controller. This PID controller is tuned to control the velocity of the

joint, aiming to match the desired velocity as determined by the first PID

controller's output and the current motion of the joint.

Benefit of Cascade Control System

1. Precision in Tracking Target Position: The cascaded arrangement allows for

precise control of the joint's position by first addressing the position error and then

fine-tuning the velocity to reach and maintain that position.

2. Improved Response and Stability: The differentiation step provides predictive

control, which helps in improving the response time and stability of the system by

countering the oscillations that might occur due to sudden changes in the target

position.

3. Decoupling of Position and Velocity Control: By using two separate PID

controllers, the control of position and velocity are decoupled. The first controller

focuses on achieving the desired position, while the second controller ensures that

the velocity is controlled during this process. This can lead to smoother motion and

better handling of dynamic changes.

Finite Element analysis:

As our quadrupedal bot was designed with a low cost in mind we had to choose an

appropriate material for 3D printing that is cheap and offers adequate strength

simultaneously. Another parameter that was kept in mind was the availability of the

selected material in the local market. Therefore, we selected Polylactic Acid (PLA) as our

material of choice.

32

Table 1: Properties of Material

Property Value Unit

Young’s Modulus 3.5 GPa

Poisson’s Ratio 0.36 N/A

Density 1240 kg/m^3

To validate our material selection and leg design we performed finite element analysis on

COMSOL Multiphysics. This was performed for two different load conditions on each

limb i.e.

1. The limb is vertical and maximum compressive stress acts on it.

2. The limb is horizontal and a maximum shear stress acts on it.

Model parameters:

● Study Type: Solid Mechanics

● Solver Type: Stationary

● Geometry: 3D

● Mesh Size: Extra Fine

● Physics: The servo ends of the thigh and calf were treated as fixed constraints

and boundary loads were applied to the lower ends of both the limbs.

● Load: FEA was conducted on the estimated maximum load that the legs had to

bear. During trotting, the entire weight of the body is rested on two legs at a time.

Hence each leg bears half the weight of the entire quadruped (1.65 kg). Upon

applying the concepts of statics each limb had to bear a maximum of ~8.2 N.

The servo housing contains the thigh and calf actuation servos so that all the servos are

situated on the body of the quadruped. This eliminates unwanted inertias in the design.

The housing is externally connected to the shoulder servo.

33

Figure 10: Thigh Link model in COMSOL

Figure 11: Thigh link Meshing in COMSOL

Figure 12: Calf Link Model in COMSOL

34

Figure 13: Calf Link Meshing in COMSOL

CAD:

Figure 14: Hip Assembly

35

Figure 15: Leg Assembly

The thigh is actuated directly by the thigh servo. However, due to the positioning of the

calf servo, the lower limb has to be actuated via a 4-bar kinematic linkage. The calf acts

as a rocker, the servo acts as the crank and a connecting rod is designed to act as a coupler.

Designing a 4 bar kinematic linkage was also an iterative process. Several industrial

designs were studied including 5-bar linkages and 6-bar linkages. However, such a

complex system added weight to the bot and a 4-bar mechanism sufficed for the mobility

requirements of our leg hence it was opted.

36

Figure 16: Robot Body

The body of the robot is designed to house the shoulder servos and provide support to the

servo housing. In addition to this, the body will provide a platform to mount the

microcontroller, IMU and the battery.

Figure 17: Robot Body (Top View)

The upper and lower plates of the body are made of acrylic sheets. The supports between

the plates are of 3D printed PLA. The supports are designed specially to house the shoulder

servos.

37

Figure 18: Hip Actuation Mechanism

Figure 19: Complete Assembly

38

The final assembly showcases how all components including all four legs, servos, Arduino

and battery are connected and mounted onto the body of the robot.

Assembly:

The robot is designed so that it assists in easy assembly and disassembly. We shall now

provide a breakdown of the parts and the entire assembly process that was employed.

Part List:

• Servo Housing Front Bracket (4x)

• Servo Housing Rear Bracket (4x)

• Thigh (4x)

• Calf (4x)

• Knee Joint Servo Extension Link (4x)

• Coupler Link (4x)

• Hip Servo Support (2x)

• Base Plate Supports (2x)

• SKF 639 Bearing (28x)

• M3 Nuts and Bolts and Washers

• Base Plates (2x)

• DS3218 20kg Servos (12x)

Procedure:

1. Start off by mounting the hip servos on the dedicated supports. Each support holds

two servos. All the fastening is done using M3 Nuts and Bolts.

2. Fasten the circular servo horns onto the rear housing bracket against the dedicated

holes.

3. Attach the horn to the hip servo and screw it.

4. Next, place the other two servos (thigh and calf) inside the housing bracket and

close them off by placing the front housing bracket. Fasten the motors and housing

securely. The housing is designed in a way that the motors hold both the brackets

together.

5. Press fit a bearing onto the shaft extending from the front housing bracket. We shall

call these hip bearings.

6. Carry out these steps for all the 4 legs.

7. Now press fit the base plate supports on the hip bearings.

39

8. Finally adjust the position of the base plates and fasten them onto the supports. One

base plate will be on the top of the bot and the other one on the bottom.

9. We will now move on to the assembly of the legs. First of all press fit bearings in

all the dedicated holes on the limbs. There will be a total of 6 bearings per leg.

These bearings ensure the smooth movement of pin joints.

10. Now form the knee joint by inserting an M3 bolt through the bearings making sure

the holes of the thigh and calf limb align. Insert washers on both sides and between

the bearings to ensure space and avoid unwanted friction. The washers also make

sure that the nut and grip the inner ring of the bearing instead of the entire bearing

in which case the purpose of the bearing will be lost.

11. In similar manner form pin joints between calf and coupler and coupler and Knee

Joint Servo Extension Link. This forms one leg.

12. In a similar manner assemble all four legs.

13. Once all the legs are assembled, mount the thigh link on the lower servo in the

housing and the Knee Joint Servo Extension Link on the upper servo in the housing

using one arm servo horns. (3mm holes had to be drilled into the servo horns in

order to fit M3 bolts in them).

Self-Balancing Algorithm:

The code for the elf balancing of the robot is divided into two main parts i.e. the setup()

function where all the instances are initialised and the robot is brought to its stance position

and the loop() function that runs continuously afterwards in order to ensure that the trunk

of the robot remains in an upright position no matter the orientation of the ground. The

working algorithm of the oecd is explained as follows:

1. Initialization (setup function):

• Serial communication and I2C setup:

o Serial communication is initialised for debugging purposes.

o I2C communication is started for interfacing with the MPU6050 sensor and

the PWM driver for servos.

• Body and Leg Initialization:

o Body and each leg of the quadruped are initialised.

o Parameters like leg lengths, servo IDs, and other physical properties are set.

o Initial servo angles are set using inverse kinematics.

40

2. Main Loop (loop function):

Sensor Reading and Orientation Calculation:

1. Sensor Reading (MPU6050):

o The loop continuously reads data from the MPU6050 sensor.

o The MPU6050 sensor provides raw data from its accelerometer and

gyroscope.

2. Tilt Calculation:

o The gyroscope data is used to calculate the rate of change of the roll, pitch,

and yaw angles.

o These rates are integrated over time to determine the current roll, pitch, and

yaw angles.

o These angles represent the orientation of the robot with respect to its

horizontal plane (roll and pitch) and its vertical axis (yaw).

Inverse Kinematics and Servo Control:

3. Inverse Kinematics (IK):

o For each leg of the quadruped, inverse kinematics calculations are

performed.

o Inverse kinematics determines the joint angles required for each leg to

achieve a desired orientation of the robot.

o These joint angles are calculated based on the desired roll, pitch, and yaw

angles of the robot.

4. Servo Control:

o The joint angles obtained from inverse kinematics are converted to servo

PWM values.

o These PWM values are sent to the servos.

o The servos adjust their positions based on these PWM values, thus adjusting

the position of each leg.

o By controlling the servos, the robot maintains its upright orientation by

adjusting the positions of its legs.

Timing Control:

5. Fixed Time Interval:

o The loop ensures a fixed time interval (dt) between iterations.

o This interval controls the frequency of updates and movements of the robot.

o By maintaining a constant time interval, the robot's movements are smooth

and controlled.

41

Microcontroller, Actuator, Battery and IMU selection

Microcontroller: Arduino MEGA + WiFi R3 ATmega2560+ESP8266

• The Arduino MEGA 2560 provides plenty of processing power and memory so it

can perform the computational tasks related to our quadruped robot's control

system well.

• Featuring an expansive array of digital and analog I/O ports, as well as a

multitude of communication interfaces, the board offers endless possibilities for

the integration of sensors, actuators, and peripherals that the robot will need to

operate.

• Compatibility with Arduino platform helps to integrate into a big community of

developers where they have access to libraries and online resources to make

development and troubleshooting processes simpler.

• In addition, the Arduino MEGA 2560offers 12 PWM ports for controlling servos

at the initial testing stage. Such a feature simplifies the initial setup and the

calibration of the servo motors, especially important for the desired smooth and

precise movement within the quadruped robot. In fact, thanks to the dedicated

PWM ports it simplifies the servo signal managing process and makes the

application more stable.

• While the MEGA 2560has many powerful features, it has compact size so that it

can fit within the chassis space constraints of the robot.

• Besides, it ensures that our project remains within budget without being required

to compromise on performance or functionality.

 Figure 20: Arduino Mega

42

Actuator: DS3218 180-degree Position Control servo motor

• The DS3218 servo motor, with its torque rating of 20kgcm, fulfills my size,

affordability, and torque requirements perfectly. Its durable metal gears ensure

reliable operation, even under heavy loads or continuous use.

• With a wide operating voltage range, it offers flexibility in power supply options,

accommodating various battery types or power sources.

• Position control capability is present in the DS3218 servo motor, making it ideal

for easy control in quadruped robots. This feature allows precise manipulation of

the servo's position, enabling smooth and accurate movement of the robot's limbs.

By setting specific target positions, users can easily command the robot to

perform desired actions such as walking, turning, or standing still. This simplifies

the control process and enhances the overall user experience, especially for

beginners or those seeking intuitive control solutions for their robotic projects.

Figure 21: DS3218 - 20KG Digital Servo

MPU – 6050

Figure 22: MPU-6050

43

• The MPU-6050 accelerometer and gyroscope module nables motion sensing,

crucial for maintaining balance and stability in the quadruped robot. It provides

Inertial Measurement Unit (IMU) functionality, allowing accurate tracking of the

robot's movement in real-time.

• Advantages include comprehensive motion sensing, sensor fusion for accuracy,

inertial navigation support, and dynamic stability control

• It is further advantageous due to the availability of Arduino libraries. These

libraries simplify the integration of the MPU-6050 into your quadruped robot

project, streamlining the development process and enabling quick and efficient

access to its sensor data and functionalities.

• Compact integration ensures efficient use of space within the robot

• Availability and cost-effectiveness made it a convenient choice for timely

implementation without compromising performance

Lipo Battery: 3S 2800mAh

Figure 23: 3S 2800 mAh LiPo Battery

• The 3S LiPo battery, with a lighter weight and advanced power, would be ideal to

set up the agile and mobile robot. The battery has got 2800mAh capacity which

44

allows this device to operate for a while in normal usage. The average of 11.1

volts that we regulate for Arduino’s 5 volts, and 6 volts for each servo without

compromising on current distribution.

• The size and lightweight features of LiPo batteries make them easy to fit with

almost any robotic design, hence they not only help with weight distribution but

space utilization also.

Table 2: Parameters of Robot Dimensions

Parameter Assigned Value (mm)

Hip length 27 mm

Calf Length 115 mm

Thigh Length 110.5 mm

Body Dimensions 306 x 122.3 x 225.5 mm

Hip-hip distance (x-axis) 136.5 mm

Foot radius 15 mm

Stance height 180 mm

45

CHAPTER 4: RESULTS AND DISCUSSIONS

Kinematics equations

Following are the forward and inverse kinematic equations:

Forward Kinematics

𝑥 = −𝑙2 cos(𝜃1) sin(𝜃2) − 𝑙3 cos(𝜃1) sin(𝜃2 − 𝜃3)

𝑦 = 𝑙2sin(𝜃1) 𝑐𝑜𝑠(𝜃2) + 𝑙3 sin(𝜃1) cos(𝜃3 − 𝜃2)

𝑧 = −𝑙2cos(𝜃1) 𝑐𝑜𝑠(𝜃2) + 𝑙3 cos(𝜃1) cos(𝜃3 − 𝜃2)

Inverse Kinematics

𝜃1 = tan−1 (
𝑦

𝑧
) − sin−1(

𝑙1

√𝑥2+𝑦2
)

𝜃2 = tan−1 (
−𝑥

𝑙1 sin(𝜃1) − (−𝑧)
) − sin−1(

𝑙3 cos(𝜃1) sin(𝜑)

√(𝑙1 sin(𝜃1) − (−𝑧))2 + 𝑥2
)

Given, 𝜑 = cos−1 (
𝑙2

2 cos2(𝜃1)+𝑙3
2 cos2(𝜃1)−(𝑙1 sin(𝜃1)−(−𝑧))2+𝑥2

2𝑙2𝑙3 cos2(𝜃1)
)

𝜃3 = 𝜋 − cos−1 (
𝑙2

2 cos2(𝜃1) + 𝑙3
2 cos2(𝜃1) − (𝑙1 sin(𝜃1) − (−𝑧))2 + 𝑥2

2𝑙2𝑙3 cos2(𝜃1)
)

Dynamic Analysis

With the help of Lagrangian equations, we integrated it onto the Simulink model for our

quadruped robot. The use of this method helped us establish the patterns in the function

of mechanical components of the plant, and it helped us in the optimization of control

algorithms. We achieved such insights as joint forces and motor operation by simply

46

working with scopes in Simulink to compute torques in MATLAB. This helped make

informed choices for servo motors.

Figure 24: Simulink model of a single leg

Scripted motion planning and parameter finalisation

Scripted motion planning facilitated the meticulous optimization of parameters for our

quadruped robot, focusing on body dimensions and leg lengths to determine the ideal centre

of mass and stance positions. By systematically iterating through various configurations,

we balanced stability and agility, ensuring efficient locomotion. This approach allowed us

to explore different trajectories, refining our understanding of the robot's dynamics and

interaction with its environment. Through simulation and testing, optimal configurations

were identified, emphasising a balance between stability, manoeuvrability, and energy

efficiencyq. The optimization outcomes that are calculated once the process is finalized

signify the comprehensive optimization that was achieved, which can later be used to make

necessary improvements. This calibrated approach enabled to obtain the value for

conversion between PWM and robot motion angles in order to preserve accuracy in the

final robot movement.

FEA Results

Figure 25: FEA Analysis – Thigh Link – Von Mises

47

Figure 26: FEA Analysis – Thigh Link – Total Displacement

Figure 27: FEA Analysis – Calf link – Von Mises Stress

Figure 28: FEA Analysis - Calf link – Total Displacement

48

Table 3: FEA Results

Limb Orientation (w.r.t

Ground)

Maximum Von Mises

Stress (MPa)

Maximum

Deflection (mm)

Thigh Vertical 0.3 30E-4

Thigh Horizontal 6 0.7

Calf Vertical 1 0.14

Calf Horizontal 5 0.7

The leg design was an iterative process to compensate between a durable design that could

bear high loads to the weight of the leg itself so that any unwanted inertias and overshoots

can be eliminated. Finite element analysis helped us in optimising the leg design under

these parameters.

The material opted for leg manufacture is Polylactic Acid (PLA) which is a high strength,

low cost and easily available material. The tensile strength of PLA is 70 MPa. As the results

of FEA show that the stresses are well within the tensile limit of the material.

A rather more interesting parameter is the deflection. Although the stresses are well within

the tensile limit of the material, due to the high elasticity of the material, large deflection

of the order >1mm were seen in the design. This can cause serious computational errors in

the control system of the robot. Hence a more stiff leg design was preferred and the final

design caters all these needs.

Trajectory Generation

The foot trajectory is generated via a second order polynomial. The step height and the

stride length are calculated based on the length of the virtual leg during the initial stance

phase. The plot shows how the value of this coefficient varies with the time fraction of

the swing leg. The trajectory formed by the foot is a quadratic curve.

A similar approach was used for the stance leg to generate the hip pattern for the inverted

pendulum model. However, the magnitude of the coefficient for the stance leg is lower

than the swing leg. This, too, was obtained using a second order polynomial.

49

Figure 29: Foot Trajectory

Figure 30: Stance Hip Trajectory

PID controller

The transition from a scripted motion planner to a PID controller marks a step towards

sophistication of our quadruped robot's control system. With the realisation that the robot's

base would not remain balanced during locomotion, necessitating continuous adjustments

to maintain stability, the adoption of a PID controller offers a more dynamic and adaptive

solution. Unlike the scripted motion planner, which pre-defines specific movements, the

PID controller utilises feedback from sensors to continuously adjust motor commands,

ensuring smoother and more stable motion. This shift represents a step forward in our quest

to develop a sophisticated smart controller capable of responding to real-time

50

environmental changes and robot dynamics. By leveraging principles of feedback control,

the PID controller enhances the robot's ability to navigate uneven terrain and adapt to

unforeseen obstacles, ultimately improving its overall agility and performance. This

transition underscores our commitment to innovation and continuous improvement,

bringing us closer to achieving our goal of creating a highly capable and versatile

quadruped robot.

Simulation: PID controller

The results of these simulations were particularly promising, as they demonstrated the

successful implementation of a trot gait using a PID (Proportional-Integral-Derivative)

controller. Through meticulous tuning of the PID controller parameters, we achieved

smooth and stable motion during the trotting gait. The Simulink simulations allowed us to

observe the robot's behavior in a virtual environment, providing valuable insights into its

dynamics and performance. We iteratively adjusted the PID controller gains to optimize

the gait for efficiency and stability. The successful trot gait demonstrated the effectiveness

of our control algorithm in coordinating the movement of the robot's limbs. This

achievement signifies a significant milestone in our project, indicating progress towards

realizing a fully functional quadruped robot. Moving forward, we plan to further refine and

validate our control strategies through experimentation and real-world testing. Overall, the

MATLAB Simulink simulations played a crucial role in validating our approach and

guiding future development efforts.

Figure 31: Simulink Multibody Simulation - Trot Gait (Sideview)

51

Figure 32: Simulink Multibody Simulation - Trot Gait (Isometric View)

Prototype Testing

Figure 33: Stance Position under self-weight with no support

During prototype testing, the assembled quadruped robot demonstrated stability while

standing on a table in a stance position, successfully supporting its weight. It also exhibited

the capability to perform up and down motions when propped onto a raised surface. The

calibration of leg servos ensured accurate movement control, facilitating tasks such as

inverse kinematics testing. By providing foot positions in the code, the robot executed

inverse kinematics and accurately placed its feet as intended, specifically the path of foot

for step motion. Despite these achievements, stable walking is still under development,

with ongoing testing focused on refining PID constants and IMU-PWM conversion

constants for the physical model. These iterative tests are essential for enhancing the robot's

52

stability and overall performance, guiding further improvements in its locomotion

capabilities.

A notable observation during testing was the haphazard motion exhibited by the robot when

PWM signals were affected by noise. To address this issue, a PWM driver was integrated

into the model, resulting in improved performance and stability. This integration

effectively mitigated the impact of noise on the PWM signals, ensuring smoother and more

consistent motion of the robot. By enhancing signal integrity, the PWM driver contributed

to the overall reliability and accuracy of the control system, minimizing disruptions caused

by external factors.

 Figure 36: Step motion using IK (c) : Step complete.

Figure 34: Step motion using IK (a) : Upward motion Figure 35: Step motion using IK (b) :Forward motion

53

CHAPTER 5: CONCLUSION AND RECOMMENDATION

The project on the design and development of a quadruped robot has been a comprehensive

journey into the realms of robotics, combining mechanical engineering principles with

innovative control strategies to create a robot capable of agile and dynamic movement.

Throughout this endeavor, we have delved into the historical evolution of quadruped

robotics, the intricacies of leg design, the critical aspects of kinematic and dynamic

analysis, and the implementation of sophisticated control algorithms to achieve stability

and efficient locomotion.

Our exploration began with a detailed literature review, tracing the milestones in quadruped

robotics, from early reflexive responses to advanced locomotion strategies. The leg design

section highlighted the shift towards biomimetic approaches, emphasizing articulated

joints, compliant mechanisms, and sensor integration for adaptive movement. Kinematic

analysis provided the mathematical foundation for understanding the robot's movement,

while dynamic analysis, through the Lagrangian and Newton-Euler methods, offered

insights into managing forces and torques for stable motion.

The methodology focused on the kinematics of each leg, gait analysis, and the

implementation of control strategies, including PID controllers and Model Predictive

Control, to navigate various terrains. Our experiments with finite element analysis (FEA)

ensured that our design choices—specifically, the use of Polylactic Acid (PLA) for leg

construction—were validated against stress and deflection criteria, ensuring durability and

performance.

In the results and discussions chapter, we shared the outcomes of our design choices, from

the selection of the Arduino MEGA 2560 PRO Mini and TIANKONGRC servos to the

integration of the GY-951 IMU for motion sensing. The kinematics equations laid out the

mathematical groundwork for our robot's movement, and the motion planning and

parameter finalization process underscored the importance of optimizing the robot's design

for balance, agility, and energy efficiency.

Recommendations

• Explore composite materials or advanced polymers for better weight, strength, and

flexibility balance, enhancing performance in rugged environments.

• Integrate adaptive and learning-based strategies like reinforcement learning for

improved adaptability and efficiency.

• Incorporate diverse sensors (LiDAR, depth cameras, tactile sensors) to improve

environment interaction and enable complex tasks.

• Research into energy storage and management, like regenerative braking and solar

power, to extend the robot's operational life.

54

Future Work

• Extensive field testing across different terrains (e.g., sand, rocks, and vegetation)

to evaluate the robot's performance and identify areas for improvement in

locomotion strategies and terrain adaptability.

• Development of communication protocols and algorithms for multi-robot

cooperation, enabling a team of quadruped robots to perform coordinated tasks or

explore complex environments more efficiently.

• Creation of an intuitive user interface for non-expert users to interact with the robot,

including task programming, status monitoring, and manual control options, to

broaden the robot's applicability in educational, research, and industrial settings.

• Implementation of safety and compliance mechanisms to ensure that the robot can

operate safely in environments shared with humans, adapting its behavior to

prevent collisions and injuries.

55

REFRENCES

[1] G. N. Boone and J. K. Hodgins, "Reflexive responses to slipping in bipedal running

robots," in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots

and Systems. Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA,

1995, pp. 158-164 vol.3, doi: 10.1109/IROS.1995.525878. [Online]. Available:

https://ieeexplore.ieee.org/document/525878

[2] Md Hasibur Rahman, Saadia Alam, Trisha Das Mou, Faisal Uddin, and Mahady

Hasan, "A Dynamic Approach to Low-Cost Design, Development, and Computational

Simulation of a 12DoF Quadruped Robot," Robotics, vol. 12, p. 24, 2023, doi:

10.3390/robotics12010028. [Online]. Available:

https://www.researchgate.net/publication/368636484_A_Dynamic_Approach_to_Low-

Cost_Design_Development_and_Computational_Simulation_of_a_12DoF_Quadruped_R

obot

[3] M. H. Raibert, B. Brown Jr., M. Chepponia, J. Koechilig, J. K. Hodgins, D. Duatman,

and W. K. Brennan, "Dynamically Stable Legged Locomotion," [Online]. Available:

https://apps.dtic.mil/sti/tr/pdf/ADA225713.pdf

[4] J. Furusho, A. Sano, M. Sakaguchi, and E. Koizumi, "Realization of bounce gait in a

quadruped robot with articular-joint-type legs," in Proceedings of 1995 IEEE International

Conference on Robotics and Automation, Nagoya, Japan, 1995, pp. 697-702 vol.1, doi:

10.1109/ROBOT.1995.525365. [Online]. Available:

https://ieeexplore.ieee.org/document/525365

https://ieeexplore.ieee.org/document/525878
https://www.researchgate.net/publication/368636484_A_Dynamic_Approach_to_Low-Cost_Design_Development_and_Computational_Simulation_of_a_12DoF_Quadruped_Robot
https://www.researchgate.net/publication/368636484_A_Dynamic_Approach_to_Low-Cost_Design_Development_and_Computational_Simulation_of_a_12DoF_Quadruped_Robot
https://www.researchgate.net/publication/368636484_A_Dynamic_Approach_to_Low-Cost_Design_Development_and_Computational_Simulation_of_a_12DoF_Quadruped_Robot
https://apps.dtic.mil/sti/tr/pdf/ADA225713.pdf
https://ieeexplore.ieee.org/document/525365

56

[5] K. Matsuoka, "Sustained oscillations generated by mutually inhibiting neurons with

adaptation," Biological Cybernetics, vol. 52, pp. 367-376, 1985. [Online]. Available:

https://www.researchgate.net/publication/20158913_Sustained_oscillations_generated_b

y_mutually_inhibiting_neurons_with_adaptation

[6] Y. Fukuoka, H. Kimura, and A. H. Cohen, "Adaptive Dynamic Walking of a Quadruped

Robot on Irregular Terrain Based on Biological Concepts," The International Journal of

Robotics Research, vol. 22, no. 3-4, pp. 187-202, 2003, doi:

10.1177/0278364903022003004. [Online]. Available:

https://journals.sagepub.com/doi/abs/10.1177/0278364903022003004

[7] H. Kimura, Y. Fukuoka, and A. Cohen, "Adaptive Dynamic Walking of a Quadruped

Robot on Natural Ground Based on Biological Concepts," I. J. Robotic Res., vol. 26, pp.

475-490, 2007, doi: 10.1177/0278364907078089. [Online]. Available:

https://www.researchgate.net/publication/220122045_Adaptive_Dynamic_Walking_of_a

_Quadruped_Robot_on_Natural_Ground_Based_on_Biological_Concepts

[8] J. Buchli and A. J. Ijspeert, "Self-organized adaptive legged locomotion in a

compliant quadruped robot," Autonomous Robots, vol. 25, no. 3, pp. 331–347, 2008.

[Online]. Available: https://doi.org/10.1007/s10514-008-9099-2

[9] Y. Fukuoka, H. Kimura, Y. Hada, and K. Takase, "Adaptive dynamic walking of a

quadruped robot 'Tekken' on irregular terrain using a neural system model," in Proceedings

- IEEE International Conference on Robotics and Automation, 2003, vol. 2, pp. 2037-2042,

doi: 10.1109/ROBOT.2003.1241893. [Online]. Available:

https://www.researchgate.net/publication/20158913_Sustained_oscillations_generated_by_mutually_inhibiting_neurons_with_adaptation
https://www.researchgate.net/publication/20158913_Sustained_oscillations_generated_by_mutually_inhibiting_neurons_with_adaptation
https://journals.sagepub.com/doi/abs/10.1177/0278364903022003004
https://www.researchgate.net/publication/220122045_Adaptive_Dynamic_Walking_of_a_Quadruped_Robot_on_Natural_Ground_Based_on_Biological_Concepts
https://www.researchgate.net/publication/220122045_Adaptive_Dynamic_Walking_of_a_Quadruped_Robot_on_Natural_Ground_Based_on_Biological_Concepts
https://doi.org/10.1007/s10514-008-9099-2

57

https://www.researchgate.net/publication/4041451_Adaptive_dynamic_walking_of_a_qu

adruped_robot_'Tekken'_on_irregular_terrain_using_a_neural_system_model

[10] Y. Fukuoka and H. Kimura, "Dynamic Locomotion of a Biomorphic Quadruped

‘Tekken’ Robot Using Various Gaits: Walk, Trot, Free-Gait and Bound," Applied Bionics

and Biomechanics, vol. 6, pp. 63-71, 2009, doi: 10.1080/11762320902734208. [Online].

Available:

https://www.researchgate.net/publication/232891655_Dynamic_Locomotion_of_a_Biom

orphic_Quadruped_%27Tekken%27_Robot_Using_Various_Gaits_Walk_Trot_Free-

Gait_and_Bound

[11] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, "BigDog the Rough-Terrain

Quadruped Robot," IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10822-10825, 2008,

doi: 10.3182/20080706-5-KR-1001.01833. [Online]. Available:

https://doi.org/10.3182/20080706-5-KR-1001.01833

[12] D. Wooden, M. Malchano, K. Blankespoor, A. Howardy, A. A. Rizzi, and M. Raibert,

"Autonomous navigation for BigDog," in 2010 IEEE International Conference on Robotics

and Automation, Anchorage, AK, USA, 2010, pp. 4736-4741, doi:

10.1109/ROBOT.2010.5509226. [Online]. Available: http://refhub.elsevier.com/S2405-

8440(18)32693-8/sref8

[13] D. V. Lee and A. A. Biewener, "BigDog-inspired studies in the locomotion of goats

and dogs," Integrative and Comparative Biology, vol. 51, no. 1, pp. 190-202, 2011, doi:

10.1093/icb/icr061. [Online]. Available: https://doi.org/10.1093/icb/icr061

https://www.researchgate.net/publication/4041451_Adaptive_dynamic_walking_of_a_quadruped_robot_'Tekken'_on_irregular_terrain_using_a_neural_system_model
https://www.researchgate.net/publication/4041451_Adaptive_dynamic_walking_of_a_quadruped_robot_'Tekken'_on_irregular_terrain_using_a_neural_system_model
https://www.researchgate.net/publication/232891655_Dynamic_Locomotion_of_a_Biomorphic_Quadruped_%27Tekken%27_Robot_Using_Various_Gaits_Walk_Trot_Free-Gait_and_Bound
https://www.researchgate.net/publication/232891655_Dynamic_Locomotion_of_a_Biomorphic_Quadruped_%27Tekken%27_Robot_Using_Various_Gaits_Walk_Trot_Free-Gait_and_Bound
https://www.researchgate.net/publication/232891655_Dynamic_Locomotion_of_a_Biomorphic_Quadruped_%27Tekken%27_Robot_Using_Various_Gaits_Walk_Trot_Free-Gait_and_Bound
https://doi.org/10.3182/20080706-5-KR-1001.01833
http://refhub.elsevier.com/S2405-8440(18)32693-8/sref8
http://refhub.elsevier.com/S2405-8440(18)32693-8/sref8
https://doi.org/10.1093/icb/icr061

58

[14] M. P. Murphy, A. Saunders, C. Moreira, A. A. Rizzi, and M. Raibert, "The littledog

robot," The International Journal of Robotics Research, vol. 30, no. 2, pp. 145-149,

2011. [Online]. Available: http://refhub.elsevier.com/S2405-8440(18)32693-8/sref11

[15] P. Filitchkin and K. Byl, "Feature-based terrain classification for littledog," in 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-

Algarve, Portugal, 2012, pp. 1387-1392, doi: 10.1109/IROS.2012.6386042. [Online].

Available: https://ieeexplore.ieee.org/document/6386042

[16] A. Shkolnik, M. Levashov, I. R. Manchester, and R. Tedrake, "Bounding on rough

terrain with the LittleDog robot," The International Journal of Robotics Research, vol. 30,

no. 2, pp. 192-215, 2011, doi: 10.1177/0278364910388315. [Online]. Available:

https://journals.sagepub.com/doi/abs/10.1177/0278364910388315

[17] P. Filitchkin and K. Byl, "Feature-based terrain classification for LittleDog," in 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-

Algarve, Portugal, 2012, pp. 1387-1392, doi: 10.1109/IROS.2012.6386042. [Online].

Available: https://ieeexplore.ieee.org/document/6386042

[18] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G.

Caldwell, "Design of HyQ–a hydraulically and electrically actuated quadruped robot,"

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and

Control Engineering, vol. 225, no. 6, pp. 831-849, 2011. [Online]. Available:

https://www.researchgate.net/publication/262048609_Design_of_HyQ_-

A_hydraulically_and_electrically_actuated_quadruped_robot

[19] G. Taga, Y. Yamaguchi, and H. Shimizu, "Self-organized control of bipedal

locomotion by neural oscillators in unpredictable environment," Biological Cybernetics,

http://refhub.elsevier.com/S2405-8440(18)32693-8/sref11
https://ieeexplore.ieee.org/document/6386042
https://journals.sagepub.com/doi/abs/10.1177/0278364910388315
https://ieeexplore.ieee.org/document/6386042
https://www.researchgate.net/publication/262048609_Design_of_HyQ_-A_hydraulically_and_electrically_actuated_quadruped_robot
https://www.researchgate.net/publication/262048609_Design_of_HyQ_-A_hydraulically_and_electrically_actuated_quadruped_robot

59

vol. 65, no. 3, pp. 147–159, 1991, doi: 10.1007/BF00198086. [Online]. Available:

https://doi.org/10.1007/BF00198086

[20] P. T. Doan, H. D. Vo, H. K. Kim, and S. B. Kim, "A new approach for development

of quadruped robot based on biological concepts," International Journal of Precision

Engineering and Manufacturing, vol. 11, pp. 559-568, 2010. [Online]. Available:

https://www.researchgate.net/publication/227334049_A_New_Approach_for_Developm

ent_of_Quadruped_Robot_Based_on_Biological_Concepts

[21] X. Chen, K. Watanabe, K. Kiguchi, and K. Izumi, "An ART-based fuzzy controller

for the adaptive navigation of a quadruped robot," IEEE/ASME Transactions on

Mechatronics, vol. 7, no. 3, pp. 318-328, Sept. 2002, doi: 10.1109/TMECH.2002.802722.

[Online]. Available: https://doi.org/10.1109/TMECH.2002.802722

[22] E. Jumantoro, A. H. Alasiry, and H. Hermawan, "Stability optimization on

quadruped robot using trajectory algorithm," in 2017 International Electronics

Symposium on Engineering Technology and Applications (IES-ETA), Surabaya,

Indonesia, 2017, pp. 93-98, doi: 10.1109/ELECSYM.2017.8240385. [Online]. Available:

https://ieeexplore.ieee.org/document/8240385

[23] K. Izumi, K. Watanabe, M. Shindo, and R. Sato, "Acquisition of Obstacle

Avoidance Behaviors for a Quadruped Robot Using Visual and Ultrasonic Sensors,"

2006, pp. 1-6, doi: 10.1109/ICARCV.2006.345078. [Online]. Available:

https://www.researchgate.net/publication/221144151_Acquisition_of_Obstacle_Avoidan

ce_Behaviors_for_a_Quadruped_Robot_Using_Visual_and_Ultrasonic_Sensors

[24]https://www.researchgate.net/publication/221786637_Selection_of_Obstacle_Avoida

nce_Behaviors_Based_on_Visual_and_Ultrasonic_Sensors_for_Quadruped_Robots

https://doi.org/10.1007/BF00198086
https://www.researchgate.net/publication/227334049_A_New_Approach_for_Development_of_Quadruped_Robot_Based_on_Biological_Concepts
https://www.researchgate.net/publication/227334049_A_New_Approach_for_Development_of_Quadruped_Robot_Based_on_Biological_Concepts
https://doi.org/10.1109/TMECH.2002.802722
https://ieeexplore.ieee.org/document/8240385
https://www.researchgate.net/publication/221144151_Acquisition_of_Obstacle_Avoidance_Behaviors_for_a_Quadruped_Robot_Using_Visual_and_Ultrasonic_Sensors
https://www.researchgate.net/publication/221144151_Acquisition_of_Obstacle_Avoidance_Behaviors_for_a_Quadruped_Robot_Using_Visual_and_Ultrasonic_Sensors
https://www.researchgate.net/publication/221786637_Selection_of_Obstacle_Avoidance_Behaviors_Based_on_Visual_and_Ultrasonic_Sensors_for_Quadruped_Robots
https://www.researchgate.net/publication/221786637_Selection_of_Obstacle_Avoidance_Behaviors_Based_on_Visual_and_Ultrasonic_Sensors_for_Quadruped_Robots

60

[25] M. H. Rahman, S. Alam, T. Das Mou, F. Uddin, and M. Hasan, "A Dynamic

Approach to Low-Cost Design, Development, and Computational Simulation of a 12DoF

Quadruped Robot," Robotics, vol. 12, p. 24, 2023, doi: 10.3390/robotics12010028.

[Online]. Available:

https://www.researchgate.net/publication/368636484_A_Dynamic_Approach_to_Low-

Cost_Design_Development_and_Computational_Simulation_of_a_12DoF_Quadruped_R

obot

[26] M. Hutter et al., "ANYmal - a highly mobile and dynamic quadrupedal robot," in

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Daejeon, Korea (South), 2016, pp. 38-44, doi: 10.1109/IROS.2016.7758092. [Online].

Available: https://ieeexplore.ieee.org/document/7758092

[27] J. Gabriel, M. Khorram, and S. A. A. Moosavian, "Stable Stair-Climbing of a

Quadruped Robot," 2018. [Online]. Available:

https://www.researchgate.net/publication/327571191_Stable_Stair-

Climbing_of_a_Quadruped_Robot

[28] [28] Novel Design of a Wheeled Robot with Double Swing Arms Capable of

Autonomous Stair Climbing, doi: 10.1145/3230876.3230899. [Online]. Available:

https://doi.org/10.1145/3230876.3230899

[29] D. Papadopoulos and M. Buehler, "Stable running in a quadruped robot with

compliant legs," in Proceedings 2000 ICRA. Millennium Conference. IEEE International

Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),

San Francisco, CA, USA, 2000, pp. 444-449 vol.1, doi: 10.1109/ROBOT.2000.844095.

[Online]. Available: https://ieeexplore.ieee.org/document/844095

https://www.researchgate.net/publication/368636484_A_Dynamic_Approach_to_Low-Cost_Design_Development_and_Computational_Simulation_of_a_12DoF_Quadruped_Robot
https://www.researchgate.net/publication/368636484_A_Dynamic_Approach_to_Low-Cost_Design_Development_and_Computational_Simulation_of_a_12DoF_Quadruped_Robot
https://www.researchgate.net/publication/368636484_A_Dynamic_Approach_to_Low-Cost_Design_Development_and_Computational_Simulation_of_a_12DoF_Quadruped_Robot
https://ieeexplore.ieee.org/document/7758092
https://www.researchgate.net/publication/327571191_Stable_Stair-Climbing_of_a_Quadruped_Robot
https://www.researchgate.net/publication/327571191_Stable_Stair-Climbing_of_a_Quadruped_Robot
https://doi.org/10.1145/3230876.3230899
https://ieeexplore.ieee.org/document/844095

61

[30] M. H. Rahman, M. M. Islam, M. F. Al Monir, S. B. Alam, M. M. Rahman, M.

Shidujaman, and R. Islam, "Kinematics analysis of a quadruped robot: Simulation and

Evaluation," in 2022 2nd International Conference on Image Processing and Robotics

(ICIPRob), March 2022, pp. 1-6, doi: 10.1109/ICIPRob55092.2022.9776498. [Online].

Available:

https://www.researchgate.net/publication/361466674_Kinematics_analysis_of_a_quadru

ped_robot_Simulation_and_Evaluation

[31] J. A. Buford, R. F. Zernicke, and J. L. Smith, "Adaptive control for backward

quadrupedal walking. I. Posture and hindlimb kinematics," Journal of Neurophysiology,

vol. 64, no. 3, pp. 745-755, 1990, doi: 10.1152/jn.1990.64.3.745. [Online]. Available:

https://doi.org/10.1152/jn.1990.64.3.745

[32] R. Rodrigo and R. Murillo Aranda, "CONTROL OF A QUADRUPED LEG USING

AN ANALYTICAL APPROACH," Thesis for obtaining the degree of Master in

Optomechatronics, 2022, doi: 10.13140/RG.2.2.29418.24006. [Online]. Available:

https://www.researchgate.net/publication/357791580_CONTROL_OF_A_QUADRUPE

D_LEG_USING_AN_ANALYTICAL_APPROACH_Thesis_for_obtaining_the_degree_

of_Master_in_Optomechatronics

[33] M. M. U. Atique and M. A. R. Ahad, "Inverse Kinematics solution for a 3DOF

robotic structure using Denavit-Hartenberg Convention," in 2014 International

Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 2014, pp.

1-5, doi: 10.1109/ICIEV.2014.6850854. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6850854

https://www.researchgate.net/publication/361466674_Kinematics_analysis_of_a_quadruped_robot_Simulation_and_Evaluation
https://www.researchgate.net/publication/361466674_Kinematics_analysis_of_a_quadruped_robot_Simulation_and_Evaluation
https://doi.org/10.1152/jn.1990.64.3.745
https://www.researchgate.net/publication/357791580_CONTROL_OF_A_QUADRUPED_LEG_USING_AN_ANALYTICAL_APPROACH_Thesis_for_obtaining_the_degree_of_Master_in_Optomechatronics
https://www.researchgate.net/publication/357791580_CONTROL_OF_A_QUADRUPED_LEG_USING_AN_ANALYTICAL_APPROACH_Thesis_for_obtaining_the_degree_of_Master_in_Optomechatronics
https://www.researchgate.net/publication/357791580_CONTROL_OF_A_QUADRUPED_LEG_USING_AN_ANALYTICAL_APPROACH_Thesis_for_obtaining_the_degree_of_Master_in_Optomechatronics
https://ieeexplore.ieee.org/abstract/document/6850854

62

[34] J. Carlo, "Software and control design for the MIT Cheetah quadruped robots,"

2020. [Online]. Available:

https://www.researchgate.net/publication/349476726_Software_and_control_design_for_

the_MIT_Cheetah_quadruped_robots

[35] C. Scharzenberger, J. Mendoza, and A. Hunt, "Design of a Canine Inspired

Quadruped Robot as a Platform for Synthetic Neural Network Control," in Martinez-

Hernandez, U., et al. Biomimetic and Biohybrid Systems. Living Machines 2019, Lecture

Notes in Computer Science, vol. 11556, Springer, Cham, 2019, doi: 10.1007/978-3-030-

24741-6_20. [Online]. Available: https://doi.org/10.1007/978-3-030-24741-6_20

[36] K. Abdel-Malek and S. Othman, "Multiple sweeping using the Denavit–Hartenberg

representation method," *Computer-Aided Design*, vol. 31, no. 9, pp. 1999, 1999, doi:

10.1016/S0010-4485(99)00053-6. [Online]. Available: https://doi.org/10.1016/S0010-

4485(99)00053-6

[37] M. W. Spong, S. Hutchinson, and M. Vidyasagar, *Robot Modeling and Control*.

John Wiley & Sons, Inc., 2006. [Online]. Available:

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.

researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configur

ations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%2540146

9278586939/download/Spong%2B-

%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR

_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSIhttps://w

https://www.researchgate.net/publication/349476726_Software_and_control_design_for_the_MIT_Cheetah_quadruped_robots
https://www.researchgate.net/publication/349476726_Software_and_control_design_for_the_MIT_Cheetah_quadruped_robots
https://doi.org/10.1007/978-3-030-24741-6_20
https://doi.org/10.1016/S0010-4485(99)00053-6
https://doi.org/10.1016/S0010-4485(99)00053-6
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI

63

ww.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.research

gate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/a

ttachment/59d6361b79197b807799389a/AS%253A386996594855942%2540146927858

6939/download/Spong%2B-

%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR

_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI

[38] M. Z. Huang, S.-H. Ling, and Y. Sheng, "A study of velocity kinematics for hybrid

manipulators with parallel-series configurations," in *[1993] Proceedings IEEE

International Conference on Robotics and Automation*, Atlanta, GA, USA, 1993, pp.

456-461 vol.1, doi: 10.1109/ROBOT.1993.292022. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/292022

[39] A. Kelly and N. Seegmiller, "A Vector Algebra Formulation of Mobile Robot

Velocity Kinematics," in *Springer Tracts in Advanced Robotics*, vol. 92, pp. 613-627,

2014, doi: 10.1007/978-3-642-40686-7_41. [Online]. Available:

https://www.researchgate.net/publication/288437144_A_Vector_Algebra_Formulation_o

f_Mobile_Robot_Velocity_Kinematics

[40] E. Taşkiran, M. Yilmaz, Ö. Koca, U. Seven, and K. Erbatur, "Trajectory generation

with natural ZMP references for the biped walking robot SURALP," in *2010 IEEE

International Conference on Robotics and Automation*, Anchorage, AK, USA, 2010, pp.

4237-4242, doi: 10.1109/ROBOT.2010.5509792. [Online]. Available:

https://ieeexplore.ieee.org/document/5509792

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%253A386996594855942%25401469278586939/download/Spong%2B-%2BRobot%2Bmodeling%2Band%2BControl.pdf&ved=2ahUKEwikwOnT2eyFAxXvR_EDHczCBB0QFnoECBEQAQ&usg=AOvVaw0SmJvmoTWd1k0O3PyRfDSI
https://ieeexplore.ieee.org/abstract/document/292022
https://www.researchgate.net/publication/288437144_A_Vector_Algebra_Formulation_of_Mobile_Robot_Velocity_Kinematics
https://www.researchgate.net/publication/288437144_A_Vector_Algebra_Formulation_of_Mobile_Robot_Velocity_Kinematics
https://ieeexplore.ieee.org/document/5509792

64

[41] Z. Li, S. S. Ge, and S. Liu, "Contact-Force Distribution Optimization and Control for

Quadruped Robots Using Both Gradient and Adaptive Neural Networks," in IEEE

Transactions on Neural Networks and Learning Systems, vol. 25, no. 8, pp. 1460-1473,

Aug. 2014, doi: 10.1109/TNNLS.2013.2293500. [Online]. Available:

https://ieeexplore.ieee.org/document/6687263

[42] M. Hutter et al., "ANYmal - a highly mobile and dynamic quadrupedal robot," in

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Daejeon, Korea (South), 2016, pp. 38-44, doi: 10.1109/IROS.2016.7758092. [Online].

Available: https://ieeexplore.ieee.org/document/7758092

[43] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, "MIT

Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot," in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,

Spain, 2018, pp. 2245-2252, doi: 10.1109/IROS.2018.8593885. [Online]. Available:

https://ieeexplore.ieee.org/document/8593885

[44] D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, "Highly Dynamic Quadruped

Locomotion via Whole-Body Impulse Control and Model Predictive Control," ArXiv,

abs/1909.06586, 2019. [Online]. Available:

https://www.semanticscholar.org/paper/Highly-Dynamic-Quadruped-Locomotion-via-

Whole-Body-Kim-Carlo/90e8e65532a647074fa705e8c84d70fa0e1af266

[45] S. Fahmi, C. Mastalli, M. Focchi, and C. Semini, "Passive Whole-Body Control for

Quadruped Robots: Experimental Validation Over Challenging Terrain," IEEE Robotics

https://ieeexplore.ieee.org/document/6687263
https://ieeexplore.ieee.org/document/7758092
https://ieeexplore.ieee.org/document/8593885
https://ieeexplore.ieee.org/document/8593885
https://ieeexplore.ieee.org/document/8593885
https://ieeexplore.ieee.org/document/8593885
https://ieeexplore.ieee.org/document/8593885
https://www.semanticscholar.org/paper/Highly-Dynamic-Quadruped-Locomotion-via-Whole-Body-Kim-Carlo/90e8e65532a647074fa705e8c84d70fa0e1af266
https://www.semanticscholar.org/paper/Highly-Dynamic-Quadruped-Locomotion-via-Whole-Body-Kim-Carlo/90e8e65532a647074fa705e8c84d70fa0e1af266

65

and Automation Letters, vol. 4, no. 3, pp. 2553-2560, July 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8678400. doi: 10.1109/LRA.2019.2908502.

[46] Y. Ogura and T. Komuro, "The Simplest Balance Controller for Dynamic Walking,"

2022. [Online]. Available:

https://www.researchgate.net/publication/365349123_The_Simplest_Balance_Controller

_for_Dynamic_Walking.

[47] T. Joseph, A. Shaikh, M. Sarode, and Y. Srinivasa Rao, "Quadruped Robots: Gait

Analysis and Control," 2020 IEEE 17th India Council International Conference

(INDICON), 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9342521.

doi: 10.1109/INDICON49873.2020.9342521.

[48] A. Tuleu, "Hardware, software and control design considerations towards low-cost

compliant quadruped robots," 2016. [Online]. Available:

https://www.semanticscholar.org/paper/Hardware%2C-software-and-control-design-

towards-Tuleu/d142aaae1f17de6a6cb2a511e37df6d2b5e3ebcf.

[49] M. M. U. Atique, M. R. I. Sarker, and M. A. R. Ahad, "Development of an 8DOF

quadruped robot and implementation of Inverse Kinematics using Denavit-Hartenberg

convention," Heliyon, vol. 4, no. 12, p. e01053, 2018. [Online]. Available:

https://doi.org/10.1016/j.heliyon.2018.e01053.

[50] Y. Gao, "Towards the Design and Evaluation of Robotic Legs of Quadruped

Robots," 2018. [Online]. Available: https://www.semanticscholar.org/paper/Towards-the-

Design-and-Evaluation-of-Robotic-Legs-

Gao/e55b9f9bb6590b4909f94e098266afc454b31194

https://ieeexplore.ieee.org/document/8678400
https://www.researchgate.net/publication/365349123_The_Simplest_Balance_Controller_for_Dynamic_Walking
https://www.researchgate.net/publication/365349123_The_Simplest_Balance_Controller_for_Dynamic_Walking
https://ieeexplore.ieee.org/document/9342521
https://www.semanticscholar.org/paper/Hardware%2C-software-and-control-design-towards-Tuleu/d142aaae1f17de6a6cb2a511e37df6d2b5e3ebcf
https://www.semanticscholar.org/paper/Hardware%2C-software-and-control-design-towards-Tuleu/d142aaae1f17de6a6cb2a511e37df6d2b5e3ebcf
https://doi.org/10.1016/j.heliyon.2018.e01053
https://www.semanticscholar.org/paper/Towards-the-Design-and-Evaluation-of-Robotic-Legs-Gao/e55b9f9bb6590b4909f94e098266afc454b31194
https://www.semanticscholar.org/paper/Towards-the-Design-and-Evaluation-of-Robotic-Legs-Gao/e55b9f9bb6590b4909f94e098266afc454b31194
https://www.semanticscholar.org/paper/Towards-the-Design-and-Evaluation-of-Robotic-Legs-Gao/e55b9f9bb6590b4909f94e098266afc454b31194

66

[51] E. Yu, "Design and Prototyping of a Transformable Quadruped Robot,"

Undergraduate Honors Thesis, Dept. of Mech. Eng., Ohio State Univ., Columbus, OH,

USA. [Online]. Available: http://kb.osu.edu/handle/1811/84714.

[52] Z. Li, "Mechanical Design, Analysis and Simulation of a Quadruped Robot,"

Undergraduate Honors Thesis, Dept. of Mech. Eng., Ohio State Univ., Columbus, OH,

USA, 2019. [Online]. Available: https://core.ac.uk/download/196228673.pdf.

http://kb.osu.edu/handle/1811/84714
https://core.ac.uk/download/196228673.pdf

67

APPENDICES

Appendix 1: MATLAB Controller Code (Trot Gait)

function [tgt_ctrl_fl,tgt_ctrl_fr,tgt_ctrl_rl,tgt_ctrl_rr, ctrl_state, debug]
= ...
 controller(fl_ang, fr_ang, rl_ang, rr_ang, ...
 contact_state, body_R, sensing_info, t, body, planner)

% the sample time of the block is set to be 0.0025 (400Hz);
dt = 0.0025;
%unpack sensing_info
body_vx = sensing_info(1);
body_vy = sensing_info(2);

fl_ang_s = fl_ang(1); fl_ang_u = fl_ang(2); fl_ang_k = fl_ang(3);
fr_ang_s = fr_ang(1); fr_ang_u = fr_ang(2); fr_ang_k = fr_ang(3);
rl_ang_s = rl_ang(1); rl_ang_u = rl_ang(2); rl_ang_k = rl_ang(3);
rr_ang_s = rr_ang(1); rr_ang_u = rr_ang(2); rr_ang_k = rr_ang(3);
% forward kinematics
fl_end_effector = fk_left(fl_ang_s, fl_ang_u, fl_ang_k, body);
rl_end_effector = fk_left(rl_ang_s, rl_ang_u, rl_ang_k, body);
fr_end_effector = fk_right(fr_ang_s, fr_ang_u, fr_ang_k, body);
rr_end_effector = fk_right(rr_ang_s, rr_ang_u, rr_ang_k, body);

% distance from center of mass to shoulder
fl_offset = [body.shoulder_distance;body.y_length/2+body.shoulder_size/2;0];
fr_offset = [body.shoulder_distance;-body.y_length/2-body.shoulder_size/2;0];
rl_offset = [-body.shoulder_distance;body.y_length/2+body.shoulder_size/2;0];
rr_offset = [-body.shoulder_distance;-body.y_length/2-body.shoulder_size/2;0];

%virtual leg1 fl (front left) rr(rear right) body frame
curr_virtual_leg1 = (fl_end_effector + fl_offset + rr_end_effector +
rr_offset)*0.5;
%virtual leg2 fr (front right) rl(rear left) body frame
curr_virtual_leg2 = (fr_end_effector + fr_offset + rl_end_effector +
rl_offset)*0.5;

%decide state and state transition helpers
persistent state;
persistent timer;
persistent timer2;
if isempty(state)
 state = 0;
end
if isempty(timer)
 timer = 0;
end
if isempty(timer2)
 timer2 = 0;

68

end

% init variables
 % fl fr rl rr
has_u_ctrl = [1 1 1 1];
normal_virtual_leg1 = [0;0;planner.stand_height];
normal_virtual_leg2 = [0;0;planner.stand_height];
move_fl_end_effector = normal_virtual_leg1;
move_rr_end_effector = normal_virtual_leg1;
move_fr_end_effector = normal_virtual_leg2;
move_rl_end_effector = normal_virtual_leg2;

% state machine

if state == 0 % standby state
 % in this state, just do nothing, but use time to make sure that alL feet
stands on the ground
 if contact_state(1) == 1 && contact_state(2) == 1 && contact_state(3) == 1
&& contact_state(4) == 1
 %all foot on ground
 if abs(body_vx) < planner.state0_vel_thres
 timer = timer + 1;
 else
 timer = 0;
 end
 if timer > planner.state0_trans_thres
 state = 1;
 timer = 0;
 end
 end
elseif state == 1 % swing whole body to get a inital velocity
 timer2 = timer2 + 1;
 move_theta =
planner.state0_swing_ang*sin(2*pi/planner.state0_swing_T*timer2);
 move_leg_Rx = [cos(move_theta) 0 sin(move_theta);
 0 1 0;
 -sin(move_theta) 0 cos(move_theta)];
 tgt_virtual_leg1_b = move_leg_Rx*normal_virtual_leg1;
 tgt_virtual_leg2_b = move_leg_Rx*normal_virtual_leg2;
 move_fl_end_effector = tgt_virtual_leg1_b;
 move_rr_end_effector = tgt_virtual_leg1_b;
 move_fr_end_effector = tgt_virtual_leg2_b;
 move_rl_end_effector = tgt_virtual_leg2_b;

 if body_vx > planner.state12_trans_speed
 timer = timer + 1;
 else
 timer = 0;
 end
 if timer > 40 %(keep a velocity larger than 0.2 for 0.1s)
 state = 2;

69

 timer = 0;
 timer2 = 0;
 end

elseif state == 2 % stance virtual leg1, swing virtual leg2
 timer2 = timer2 + 1;
 if timer2 > planner.leg_swing_time %(0.5s finish movement)
 timer2 = planner.leg_swing_time;
 end
 % stance leg no u control but need to balance the body
 % fl fr rl rr
 has_u_ctrl = [0 1 1 0];
 t = timer2/planner.leg_swing_time;
% stance_length_coeff = 0.95+0.05*(timer2/planner.leg_swing_time);
 stance_length_coeff = 0.2*t^2 - 0.2*t + 1;
 tgt_virtual_leg1_b = stance_length_coeff*normal_virtual_leg1;
 move_fl_end_effector = tgt_virtual_leg1_b;
 move_rr_end_effector = tgt_virtual_leg1_b;

 % swing leg must consider body angle
 length_coeff = 0.8*t^2-0.8*t+1;
 % move leg in x direction
 move_theta = get_move_angle(length_coeff*normal_virtual_leg2,body_vx,
planner.tgt_body_vx, planner);
 move_leg_Rx = [cos(move_theta) 0 sin(move_theta);
 0 1 0;
 -sin(move_theta) 0 cos(move_theta)];
 tgt_virtual_leg2_b = length_coeff*move_leg_Rx*normal_virtual_leg2;
 % move leg in y direction
 sagittal_angle = get_sagittal_angle(tgt_virtual_leg2_b,body_R, body_vy,
planner);
 move_leg_Ry =[1 0 0;
 0 cos(sagittal_angle) -sin(sagittal_angle);
 0 sin(sagittal_angle) cos(sagittal_angle)];
 tgt_virtual_leg2_b = move_leg_Ry*tgt_virtual_leg2_b;

 move_fr_end_effector = body_R'*(tgt_virtual_leg2_b+fr_offset)-fr_offset;
 if norm(move_fr_end_effector) > body.max_stretch
 move_fr_end_effector =
move_fr_end_effector/norm(move_fr_end_effector)*body.max_stretch;
 end
 move_rl_end_effector = body_R'*(tgt_virtual_leg2_b+rl_offset)-rl_offset;
 if norm(move_rl_end_effector) > body.max_stretch
 move_rl_end_effector =
move_rl_end_effector/norm(move_rl_end_effector)*body.max_stretch;
 end

 % state transition

70

 if timer2 > 0.5*planner.leg_swing_time && contact_state(2) == 1 &&
contact_state(3) == 1
 timer = timer + 1;
 else
 timer = 0;
 end
 if timer > 5 % to be determined
 state = 3;
 timer = 0;
 timer2 = 0;
 end

elseif state == 3 % swing virtual leg1, stance virtual leg2
 timer2 = timer2 + 1;
 if timer2 > planner.leg_swing_time %(0.5s finish movement)
 timer2 = planner.leg_swing_time;
 end
 % stance leg no u control but need to balance the body
 % fl fr rl rr
 has_u_ctrl = [1 0 0 1];
 t = timer2/planner.leg_swing_time;
 stance_length_coeff = 0.2*t^2 - 0.2*t + 1;
 tgt_virtual_leg2_b = stance_length_coeff*normal_virtual_leg2;
 move_fr_end_effector = tgt_virtual_leg2_b;
 move_rl_end_effector = tgt_virtual_leg2_b;

 % swing leg must consider body angle
 length_coeff = 0.8*t^2-0.8*t+1;
 move_theta = get_move_angle(length_coeff*normal_virtual_leg1,body_vx,
planner.tgt_body_vx, planner);
 move_leg_Rx = [cos(move_theta) 0 sin(move_theta);
 0 1 0;
 -sin(move_theta) 0 cos(move_theta)];
 tgt_virtual_leg1_b = length_coeff*move_leg_Rx*normal_virtual_leg1;
 % move leg in y direction
 sagittal_angle = get_sagittal_angle(tgt_virtual_leg1_b,body_R, body_vy,
planner);
 move_leg_Ry =[1 0 0;
 0 cos(sagittal_angle) -sin(sagittal_angle);
 0 sin(sagittal_angle) cos(sagittal_angle)];
 tgt_virtual_leg1_b = move_leg_Ry*tgt_virtual_leg1_b;

 move_fl_end_effector = body_R'*(tgt_virtual_leg1_b+fl_offset)-fl_offset;
 if norm(move_fl_end_effector) > body.max_stretch
 move_fl_end_effector =
move_fl_end_effector/norm(move_fl_end_effector)*body.max_stretch;
 end
 move_rr_end_effector = body_R'*(tgt_virtual_leg1_b+rr_offset)-rr_offset;
 if norm(move_rr_end_effector) > body.max_stretch
 move_rr_end_effector =
move_rr_end_effector/norm(move_rr_end_effector)*body.max_stretch;

71

 end

 % state transition
 if timer2 > 0.5*planner.leg_swing_time && contact_state(1) == 1 &&
contact_state(4) == 1
 timer = timer + 1;
 else
 timer = 0;
 end
 if timer > 5 % to be determined
 state = 2;
 timer = 0;
 timer2 = 0;
 end
end

%% fl to joint
[inv_s,inv_u,inv_k] = IK_left(move_fl_end_effector, body);
fl_tgt_ang_s = inv_s;
fl_tgt_ang_u = inv_u;
fl_tgt_ang_k = inv_k;
tgt_ctrl_fl = [fl_tgt_ang_s;fl_tgt_ang_u;fl_tgt_ang_k;has_u_ctrl(1)];

%% fr to joint
[inv_s,inv_u,inv_k] = IK_right(move_fr_end_effector, body);
fr_tgt_ang_s = inv_s;
fr_tgt_ang_u = inv_u;
fr_tgt_ang_k = inv_k;
tgt_ctrl_fr = [fr_tgt_ang_s;fr_tgt_ang_u;fr_tgt_ang_k;has_u_ctrl(2)];

%% rl to joint
[inv_s,inv_u,inv_k] = IK_left(move_rl_end_effector, body);
rl_tgt_ang_s = inv_s;
rl_tgt_ang_u = inv_u;
rl_tgt_ang_k = inv_k;
tgt_ctrl_rl = [rl_tgt_ang_s;rl_tgt_ang_u;rl_tgt_ang_k;has_u_ctrl(3)];

%% rr to joint
[inv_s,inv_u,inv_k] = IK_right(move_rr_end_effector, body);
rr_tgt_ang_s = inv_s;
rr_tgt_ang_u = inv_u;
rr_tgt_ang_k = inv_k;
tgt_ctrl_rr = [rr_tgt_ang_s;rr_tgt_ang_u;rr_tgt_ang_k;has_u_ctrl(4)];

ctrl_state = state;
debug = timer;

end

function move_angle = get_move_angle(virtual_leg,body_vx, tgt_body_vx,
planner)

72

 distance = body_vx* planner.Ts/2 + planner.Kv*(tgt_body_vx-body_vx);

 if distance > 0.5*norm(virtual_leg)
 distance = 0.5*norm(virtual_leg);
 elseif distance < -0.5*norm(virtual_leg)
 distance = -0.5*norm(virtual_leg);
 end

 move_angle = asin(distance/norm(virtual_leg));
 if move_angle > 20/180*pi
 move_angle = 20/180*pi;
 elseif move_angle < -20/180*pi
 move_angle = -20/180*pi;
 end

end

function move_angle = get_sagittal_angle(virtual_leg,body_R, body_vy, planner)

 distance = body_vy* planner.y_Ts/2 + planner.y_Kv*(0-body_vy);

 if distance > 0.5*norm(virtual_leg)
 distance = 0.5*norm(virtual_leg);
 elseif distance < -0.5*norm(virtual_leg)
 distance = -0.5*norm(virtual_leg);
 end

 move_angle = asin(distance/norm(virtual_leg));
 if move_angle > 20/180*pi
 move_angle = 20/180*pi;
 elseif move_angle < -20/180*pi
 move_angle = -20/180*pi;
 end

end

73

Appendix 2: MATLAB Variable Initialization:

% Add library path for robot control utilities
addpath(genpath(fullfile(pwd,'contact_library')));

% Define ground plane properties for simulation
groundPlane.stiffness = 50000; % N/m
groundPlane.damping = 1000; % Ns/m
groundPlane.surfaceHeight = 0.4; % meters

% Set the physical dimensions of the robot's body
robotBody.length = 0.3; % meters along the x-axis
robotBody.width = 0.1; % meters along the y-axis
robotBody.height = 0.027; % meters along the z-axis
robotBody.shoulderDiameter = 0.027;
robotBody.upperArmLength = 0.1105;
robotBody.forearmLength = 0.115;
robotBody.footDiameter = 0.03; % radius of foot in meters
robotBody.distanceBetweenShoulders = 0.1365;
robotBody.maximumLimbExtension = robotBody.upperArmLength +
robotBody.forearmLength;
robotBody.jointDamping = 0.1; % damping coefficient at the knee joint

% Parameters for leg motion control using PID regulators
motionControl.positionP = 8; % Proportional gain for position
motionControl.positionI = 0; % Integral gain for position
motionControl.positionD = 0; % Derivative gain for position
motionControl.velocityP = 1.2; % Proportional gain for velocity
motionControl.velocityI = 0; % Integral gain for velocity
motionControl.velocityD = 0; % Derivative gain for velocity

% High-level planning parameters for leg movement
movementPlanner.touchdownHeight = robotBody.footDiameter / 2; % Distance from
foot center to ground
movementPlanner.initialShoulderAngle = 0;
movementPlanner.upperArmAngle = 37.91 * pi / 180; % Radians
movementPlanner.forearmAngle = -74.1 * pi / 180; % Radians
currentPosition = forwardKinematics_left(movementPlanner.initialShoulderAngle,
movementPlanner.upperArmAngle, movementPlanner.forearmAngle, robotBody);
movementPlanner.standingHeight = currentPosition(3);
movementPlanner.flyingHeight = 1.1 * movementPlanner.standingHeight; %
Elevated height during leg flight

% Gait control parameters for locomotion
gaitControl.cycleDuration = 3; % Time for one complete gait cycle in seconds
gaitControl.swingAngle = 12 * pi / 180; % Radians
gaitControl.initialShakeAngle = 3 * pi / 180; % Radians

% Target orientations and velocities for gait control
gaitControl.targetBodyAngle = 0; % Radians
gaitControl.targetBodyVelocityX = 0.4; % Velocity in m/s

74

gaitControl.legPlacementTimeX = 0.1; % Time to place leg in the x-direction
gaitControl.xDirectionVelocityCoefficient = 0.5; % Coefficient for x-
direction leg placement
gaitControl.legPlacementTimeY = 0.21; % Time to place leg in the y-direction
gaitControl.yDirectionVelocityCoefficient = -0.34; % Coefficient for y-
direction leg placement

% Define state transition thresholds for control logic
stateTransitions.velocityThreshold = 0.025; % m/s
stateTransitions.transitionTime = 300; % Time threshold for transitioning
states
stateTransitions.swingAngleThreshold = 10 * pi / 180; % Radians
stateTransitions.swingTime = 1200; % Time to complete a leg swing
stateTransitions.transitionSpeedThreshold = 0.05; % Speed threshold for state
transitions
stateTransitions.legSwingDuration = 70; % Time to generate leg motion in
milliseconds

75

Appendix 3: Arduino Code (Balancing)

3.1 Maincode

#include <Arduino.h>

#include <Servo.h>

#include <Wire.h>

#include "Structures.h"

#include "functions.h"

#include "classes.h"

#include <Adafruit_PWMServoDriver.h>

#include <math.h>

#include "SimpleMPU6050.h"

#define MPU6050_DEFAULT_ADDRESS 0x68

SimpleMPU6050 mpu;

unsigned long timer = 0;

float delT = 50;

CONSTRUCTBODY Body;

CONSTRUSTLEG LegFR;

CONSTRUSTLEG LegFL;

CONSTRUSTLEG LegBR;

CONSTRUSTLEG LegBL;

Adafruit_PWMServoDriver Servodriver = Adafruit_PWMServoDriver(0x40);

PID_controller myPIDController(0.35, 0.2, 0);

tilt_Vector tilt;

void MPUgetAngle(int16_t *gyro, int16_t *accel, int32_t *quat) {

 Quaternion q;

 VectorFloat gravity;

 float ypr[3] = {0, 0, 0};

 float xyz[3] = {0, 0, 0};

 mpu.GetQuaternion(&q, quat);

 mpu.GetGravity(&gravity, &q);

 mpu.GetYawPitchRoll(ypr, &q, &gravity);

 mpu.ConvertToDegrees(ypr, xyz);

 tilt.roll = xyz[1];

76

 tilt.pitch = xyz[2];

 tilt.yaw = xyz[0]; // yaw has a lot of drift

 tilt.yaw = 0;

}

xyz angleToPWM(CONSTRUSTLEG *Leg, xyz ServoAngles) {

 xyz PWM_value;

 PWM_value.x = Leg->conversion[0] * ServoAngles.x;

 PWM_value.y = Leg->conversion[1] * ServoAngles.y;

 PWM_value.z = Leg->conversion[2] * ServoAngles.z;

 return PWM_value;

}

xyz setServoAng(CONSTRUSTLEG *Leg, xyz Ang_theta, Adafruit_PWMServoDriver

Servodriver) {

 bool RightLeg = (Leg->legID == 2) || (Leg->legID == 4);

 bool FrontLeg = (Leg->legID == 1) || (Leg->legID == 2);

 xyz ServoAngles;

 if (!RightLeg) {

 if (Leg->theta1OverYaxis) {

 if (FrontLeg) ServoAngles.x = 90 - (Ang_theta.x), ServoAngles.y =

300 - Ang_theta.y, ServoAngles.z = 180 - Ang_theta.z;

 else ServoAngles.x = 90 - (-Ang_theta.x), ServoAngles.y = 300 -

Ang_theta.y, ServoAngles.z = 180 - Ang_theta.z;

 }

 else {

 if (FrontLeg) ServoAngles.x = 90 + (Ang_theta.x), ServoAngles.y =

300 - Ang_theta.y, ServoAngles.z = 180 - Ang_theta.z;

 else ServoAngles.x = 90 + (-Ang_theta.x), ServoAngles.y = 300 -

Ang_theta.y, ServoAngles.z = 180 - Ang_theta.z;

 }

 }

 else if (RightLeg) {

 if (Leg->theta1OverYaxis) {

 if (FrontLeg) ServoAngles.x = 90 + (Ang_theta.x);

 else ServoAngles.x = 90 + (-Ang_theta.x);

 }

 else {

 if (FrontLeg) ServoAngles.x = 90 - (Ang_theta.x);

 else ServoAngles.x = 90 - (-Ang_theta.x);

77

 }

 ServoAngles.y = Ang_theta.y - 120;

 ServoAngles.z = Ang_theta.z;

 }

 xyz servoAnglesPWM = angleToPWM(Leg, ServoAngles);

 xyz PWM;

 PWM.x = Leg->Servo_MIN_PWM[0] + servoAnglesPWM.x;

 PWM.y = Leg->Servo_MIN_PWM[1] + servoAnglesPWM.y;

 PWM.z = Leg->Servo_MIN_PWM[2] + servoAnglesPWM.z;

 if (PWM.x < Leg->safe_PWM_MAX[0] && PWM.x > Leg->safe_PWM_MIN[0]) {

 return PWM.x = PWM.x;

 }

 if (PWM.y < Leg->safe_PWM_MAX[1] && PWM.y > Leg->safe_PWM_MIN[1]) {

 return PWM.y = PWM.y;

 }

 if (PWM.z < Leg->safe_PWM_MAX[2] && PWM.z > Leg->safe_PWM_MIN[2]) {

 return PWM.z = PWM.z;

 }

 return PWM;

}

void setup() {

 Serial.begin(115200);

 Wire.begin();

 Servodriver.begin();

 Servodriver.setPWMFreq(60);

 Body.final_rotation.pitch = 0;

 Body.final_rotation.roll = 0;

 Body.final_rotation.yaw = 0;

 tilt.roll = 0;

 tilt.pitch = 0;

 tilt.yaw = 0;

 Serial.println("Startup delay 2 seconds: ");

 delay(2000);

78

 constrctBody(&Body, 0.2075, 0.13, 0.15, 0.03, 0.105, 0.14);

 constructLeg(&LegFR, &Body, 2);

 constructLeg(&LegFL, &Body, 1);

 constructLeg(&LegBR, &Body, 4);

 constructLeg(&LegBL, &Body, 3);

 xyz InputPWM[4];

 InputPWM[0] = setServoAng(&LegFL, legIK(&LegFL, &Body, tilt),

&Servodriver);

 InputPWM[1] = setServoAng(&LegFR, legIK(&LegFR, &Body, tilt),

&Servodriver);

 InputPWM[2] = setServoAng(&LegBL, legIK(&LegBL, &Body, tilt),

&Servodriver);

 InputPWM[3] = setServoAng(&LegBR, legIK(&LegBR, &Body, tilt),

&Servodriver);

 Servodriver.setPWM(LegBL.ServoID[0], 0, InputPWM[2].x);

 Servodriver.setPWM(LegBL.ServoID[1], 0, InputPWM[2].y);

 Servodriver.setPWM(LegBL.ServoID[2], 0, InputPWM[2].z);

 Servodriver.setPWM(LegBR.ServoID[0], 0, InputPWM[3].x);

 Servodriver.setPWM(LegBR.ServoID[1], 0, InputPWM[3].y);

 Servodriver.setPWM(LegBR.ServoID[2], 0, InputPWM[3].z);

 Servodriver.setPWM(LegFL.ServoID[0], 0, InputPWM[0].x);

 Servodriver.setPWM(LegFL.ServoID[1], 0, InputPWM[0].y);

 Servodriver.setPWM(LegFL.ServoID[2], 0, InputPWM[0].z);

 Servodriver

.setPWM(LegFR.ServoID[0], 0, InputPWM[1].x);

 Servodriver.setPWM(LegFR.ServoID[1], 0, InputPWM[1].y);

 Servodriver.setPWM(LegFR.ServoID[2], 0, InputPWM[1].z);

}

void loop() {

 unsigned long now = millis();

 if ((now - timer) > delT) {

 int16_t accel[3], gyro[3];

 int32_t quat[4];

 float angle[3];

79

 MPUgetAngle(gyro, accel, quat);

 tilt.roll = (tilt.roll + gyro[0] * delT / 1000);

 tilt.pitch = (tilt.pitch + gyro[1] * delT / 1000);

 tilt.yaw = (tilt.yaw + gyro[2] * delT / 1000);

 xyz InputPWM[4];

 InputPWM[0] = setServoAng(&LegFL, legIK(&LegFL, &Body, tilt),

&Servodriver);

 InputPWM[1] = setServoAng(&LegFR, legIK(&LegFR, &Body, tilt),

&Servodriver);

 InputPWM[2] = setServoAng(&LegBL, legIK(&LegBL, &Body, tilt),

&Servodriver);

 InputPWM[3] = setServoAng(&LegBR, legIK(&LegBR, &Body, tilt),

&Servodriver);

 Servodriver.setPWM(LegBL.ServoID[0], 0, InputPWM[2].x);

 Servodriver.setPWM(LegBL.ServoID[1], 0, InputPWM[2].y);

 Servodriver.setPWM(LegBL.ServoID[2], 0, InputPWM[2].z);

 Servodriver.setPWM(LegBR.ServoID[0], 0, InputPWM[3].x);

 Servodriver.setPWM(LegBR.ServoID[1], 0, InputPWM[3].y);

 Servodriver.setPWM(LegBR.ServoID[2], 0, InputPWM[3].z);

 Servodriver.setPWM(LegFL.ServoID[0], 0, InputPWM[0].x);

 Servodriver.setPWM(LegFL.ServoID[1], 0, InputPWM[0].y);

 Servodriver.setPWM(LegFL.ServoID[2], 0, InputPWM[0].z);

 Servodriver.setPWM(LegFR.ServoID[0], 0, InputPWM[1].x);

 Servodriver.setPWM(LegFR.ServoID[1], 0, InputPWM[1].y);

 Servodriver.setPWM(LegFR.ServoID[2], 0, InputPWM[1].z);

 FIFO_Delay_timer = millis();

 }

}

3.2 Structures.h

#ifndef STRUCTURES_H

#define STRUCTURES_H

80

struct tilt_Vector {

 float roll;

 float pitch;

 float yaw;

};

struct xyz {

 float x;

 float y;

 float z;

};

struct CONSTRUCTBODY {

 float bodywidth;

 float bodylength;

 float bodyheight;

 float Link1;

 float Link2;

 float Link3;

 tilt_Vector final_rotation;

};

struct CONSTRUCTLEG {

 xyz leg_Origin;

 xyz foot_Pos;

 short LegID;

 int ServoID[3];

 float Angles[3];

 float Conversion[3];

 float Servo_MIN_PWM[3];

 float Neutral_Zero_PWM[3];

 bool theta1OverYaxis;

 float safe_PWM_MAX[3];

 float safe_PWM_MIN[3];

81

};

#endif

3.3 functions.h

#ifndef FUNCTIONS_H

#define FUNCTIONS_H

#include "Structures.h"

void LegGeometry(CONSTRUCTLEG *Leg, CONSTRUCTBODY *Body, int LegID);

void BodyGeometry(CONSTRUCTBODY *Body, float bodylength, float bodywidth,

float bodyheight, float Link1, float Link2, float Link3);

xyz x_rotate(xyz PointCoord, tilt_Vector Tilt);

xyz y_rotate(xyz PointCoord, tilt_Vector Tilt);

xyz z_rotate(xyz PointCoord, tilt_Vector Tilt);

xyz R_Matrix(xyz PointCoord, tilt_Vector Tilt);

xyz T_Matrix(xyz PointCoord, float theta1);

xyz IK(CONSTRUSTLEG *Leg, CONSTRUCTBODY *Body, tilt_Vector Tilt);

#endif

3.4 Classes.h

#ifndef CLASSES_H

#define CLASSES_H

#include "Structures.h"

82

class PID_controller {

public:

 PID_controller(double kp, double ki, double kd);

 float calc(float ref, float read_value, float delT);

private:

 double kp, ki, kd;

 float previousError, SUM_error;

};

#endif // CLASSES_H

3.5 PID.cpp

#ifndef CLASSES_H

#define CLASSES_H

class PID_controller {

private:

 double kp;

 double ki;

 double kd;

 double previousError;

 double SUM_error;

public:

 PIDControlle_c(double kp, double ki, double kd) : kp(kp), ki(ki),

kd(kd), previousError(0), SUM_error(0) {}

 float calc(float ref, float read_value, float delT) {

 float error = ref - read_value;

 float derivativeError = (error - previousError) / delT;

 SUM_error += error * delT;

 float output = kp * error + ki * SUM_error + kd * derivativeError;

 previousError = error;

 return output;

 }

};

#endif // CLASSES_H

83

3.6 IK.cpp

//IK.cpp

#include "Structures.h"

#include <math.h>

#include "functions.h"

#include <Arduino.h>

// Calculates angle B1 based on dx and dz' considering the quadrant

float B1Calculation(float dx, float dzPrim) {

 if (dx > 0 && dzPrim >= 0) {

 return atan(dzPrim / dx);

 } else if (dx == 0 && dzPrim >= 0) {

 return M_PI / 2;

 } else if (dx < 0) {

 return atan(dzPrim / dx) + (dzPrim >= 0 ? M_PI : 2 * M_PI);

 } else if (dx > 0 && dzPrim < 0) {

 return atan(dzPrim / dx) + 2 * M_PI;

 } else {

 return 3 * M_PI / 2;

 }

}

// Converts radians to degrees

float radToDegree(float Ang_radian) {

 return Ang_radian * 180 / M_PI;

}

// Rotation around the x-axis

xyz x_rotate(xyz PointCoord, tilt_Vector Tilt) {

 float x = PointCoord.x;

 float y = PointCoord.y * cos(Tilt.roll) - PointCoord.z * sin(Tilt.roll);

 float z = PointCoord.y * sin(Tilt.roll) + PointCoord.z * cos(Tilt.roll);

 return xyz{x, y, z};

}

// Rotation around the y-axis

xyz y_rotate(xyz PointCoord, tilt_Vector Tilt) {

84

 float x = PointCoord.x * cos(Tilt.pitch) + PointCoord.z *

sin(Tilt.pitch);

 float y = PointCoord.y;

 float z = -PointCoord.x * sin(Tilt.pitch) + PointCoord.z *

cos(Tilt.pitch);

 return xyz{x, y, z};

}

// Rotation around the z-axis

xyz z_rotate(xyz PointCoord, tilt_Vector Tilt) {

 float x = PointCoord.x * cos(Tilt.yaw) - PointCoord.y * sin(Tilt.yaw);

 float y = PointCoord.x * sin(Tilt.yaw) + PointCoord.y * cos(Tilt.yaw);

 float z = PointCoord.z;

 return xyz{x, y, z};

}

// Applies rotations around all axes to a PointCoord

xyz R_Matrix(xyz PointCoord, tilt_Vector Tilt) {

 // Convert Tilt angles from degrees to radians

 Tilt.roll *= M_PI / 180;

 Tilt.pitch *= M_PI / 180;

 Tilt.yaw *= M_PI / 180;

 // Apply rotations

 PointCoord = x_rotate(PointCoord, Tilt);

 PointCoord = y_rotate(PointCoord, Tilt);

 PointCoord = z_rotate(PointCoord, Tilt);

 return PointCoord;

}

// Transformation matrix given a rotation around the z-axis

xyz T_Matrix(xyz PointCoord, float theta1) {

 xyz result;

 result.x = PointCoord.x;

 result.y = PointCoord.y * cos(theta1) - PointCoord.z * sin(theta1);

 result.z = PointCoord.y * sin(theta1) + PointCoord.z * cos(theta1);

 return result;

}

// Inverse kinematics for a Leg

xyz IK(CONSTRUCTLEG *Leg, CONSTRUCTBODY *Body, tilt_Vector Tilt) {

85

 // Check if the Leg is front or back and if it is right or left (viewed

from the back).

 bool theta1OverYaxis;

 bool RightLeg = (Leg->LegID == 2) || (Leg->LegID == 4);

 bool FrontLeg = (Leg->LegID == 1) || (Leg->LegID == 2);

 // Transform foot position based on Body Tilt

 xyz foot_Pos = R_Matrix(Leg->foot_Pos, Tilt);

 // Calculate deltas between foot and Leg origin

 xyz Delta;

 Delta.x = foot_Pos.x - Leg->legOrigin.x;

 Delta.y = foot_Pos.y - Leg->legOrigin.y;

 Delta.z = foot_Pos.z - Leg->legOrigin.z;

 // Calculate DX, DY, DZ

 float DX = fabs(Delta.x);

 float DY = fabs(Delta.y);

 float DZ = fabs(Delta.z);

 // Theta1 calculation

 float A = sqrt(pow(DY, 2) + pow(DZ, 2));

 float beta1 = atan2(DY, DZ);

 float alpha2 = asin(Body->link1 / A);

 float alpha3 = M_PI / 2 - alpha2;

 float theta1;

 // Determine if theta1 is above or below the Y-axis

 if (RightLeg) {

 if (Delta.y <= Body->link1) {

 theta1 = M_PI / 2 - alpha3 - beta1;

 theta1OverYaxis = false;

 } else {

 theta1 = alpha3 + beta1 - M_PI / 2;

 theta1OverYaxis = true;

 }

 } else { // if it's left Leg

 if (Delta.y >= -Body->link1) {

 theta1 = M_PI / 2 - alpha3 - beta1;

 theta1OverYaxis = false;

 } else {

 theta1 = alpha3 + beta1 - M_PI / 2;

86

 theta1OverYaxis = true;

 }

 }

 // Find J2 coordinate with regard to the Leg origin

 xyz J2;

 J2.x = 0;

 J2.y = Body->link1 * cos(theta1) * (RightLeg ? 1 : -1);

 J2.z = Body->link1 * sin(theta1) * (theta1OverYaxis ? 1 : -1);

 // Calculate J4J2 Delta vector

 xyz J4J2;

 J4J2.x = Delta.x - J2.x;

 J4J2.y = Delta.y - J2.y;

 J4J2.z = Delta.z - J2.z;

 // Transform the J4J2 vector to the coordinate system xz' tilted by

theta1

 xyz latestJ4J2 = T_Matrix(J4J2, theta1OverYaxis ? theta1 : -theta1);

 // Theta2 and Theta3 calculation

 float B = sqrt(pow(latestJ4J2.z, 2) + pow(latestJ4J2.x, 2));

 float b1 = B1Calculation(latestJ4J2.x, latestJ4J2.z);

 float b2 = acos((pow(Body->link2, 2) + pow(B, 2) - pow(Body->link3, 2))

/ (2 * Body->link2 * B));

 float b3 = acos((pow(Body->link2, 2) + pow(Body->link3, 2) - pow(B, 2))

/ (2 * Body->link2 * Body->link3));

 //4 bar linkage transformation

 float thetaFollower = b1 - b2;

 float gamma = theta2 - M_PI/2 //gamma is the angle in the triangle

used to calculate ground

 float l4 = sqrt(a*a + b*b - 2*a*b*cos(gamma)); //l4 is ground length

//l1 = , l2= , l3=

 float l1_3 = sqrt(l3*l3 + l4*l4 - 2*l3*l4*cos(thetaFollower));

 float cosBeta = (l2*l2 + l4*l4 - l3*l3) / (2 * l2 * l4);

 float beta = acos(cosBeta);

 float cosThetaCrank = (l1*l1 + l4*l4 - l1_3*l1_3) / (2 * l1 * l4);

 float theta2 = acos(cosThetaCrank);

 float theta3 = M_PI - b3;

87

 // Convert calculated radians to degrees

 xyz Ang_theta;

 Ang_theta.x = radToDegree(theta1);

 Ang_theta.y = radToDegree(theta2);

 Ang_theta.z = radToDegree(theta3);

 return Ang_theta;

}

3.7 constructBody.cpp

//constrctBody.cpp

#include "Structures.h"

void constrctBody(CONSTRUCTBODY *Body, float bodylength, float bodywidth,

float bodyheight, float Link1, float Link2, float Link3) {

 Body->bodylength = bodylength;

 Body->bodywidth = bodywidth;

 Body->bodyheight = bodyheight;

 Body->Link1 = Link1;

 Body->Link2 = Link2;

 Body->Link3 = Link3;

}

3.8 constructLeg

//constructLeg.cpp

#include "Structures.h"

#include "functions.h"

#include <Arduino.h>

void constructLeg(CONSTRUCTLeg *Leg, CONSTRUCTBODY *Body, int LegID) {

88

 float footOffset = 0.03;

 Leg->LegID = LegID;

 if (LegID == 1) { // left front Leg

 Leg->leg_Origin.x = Body->bodylength / 2;

 Leg->leg_Origin.y = Body->bodywidth / 2 * (-1);

 Leg->leg_Origin.z = 0;

 Leg->foot_Pos.x = Body->bodylength / 2;

 Leg->foot_Pos.y = Body->bodywidth / 2 * (-1) - footOffset;

 Leg->foot_Pos.z = Body->bodyheight * (-1);

 Leg->ServoID[0] = 0;

 Leg->ServoID[1] = 1;

 Leg->ServoID[2] = 2;

 Leg->Servo_MIN_PWM[0] = 84;

 Leg->Servo_MIN_PWM[1] = 84;

 Leg->Servo_MIN_PWM[2] = 84;

 Leg->Conversion[0] = 2.619;

 Leg->Conversion[1] = 2.619;

 Leg->Conversion[2] = 2.610;

 Leg->Neutral_Zero_PWM[0] = Leg->Servo_MIN_PWM[0] + 90 * Leg-

>Conversion[0];

 Leg->Neutral_Zero_PWM[1] = Leg->Servo_MIN_PWM[1] + 130 * Leg-

>Conversion[1];

 Leg->Neutral_Zero_PWM[2] = Leg->Servo_MIN_PWM[2] + 0 * Leg-

>Conversion[2];

 Leg->safe_PWM_MAX[0] = Leg->Servo_MIN_PWM[0] + 125 * Leg-

>Conversion[0];

 Leg->safe_PWM_MAX[1] = Leg->Servo_MIN_PWM[1] + 135 * Leg-

>Conversion[1];

 Leg->safe_PWM_MAX[2] = Leg->Servo_MIN_PWM[2] + 180 * Leg-

>Conversion[2];

 Leg->safe_PWM_MIN[0] = Leg->Servo_MIN_PWM[0] + 55 * Leg-

>Conversion[0];

89

 Leg->safe_PWM_MIN[1] = Leg->Servo_MIN_PWM[1] + 30 * Leg-

>Conversion[1];

 Leg->safe_PWM_MIN[2] = Leg->Servo_MIN_PWM[2];

 }

 // Continue the same pattern for other Leg IDs...

 if (LegID == 2) { // right front Leg

 Leg->leg_Origin.x = Body->bodylength / 2;

 Leg->leg_Origin.y = Body->bodywidth / 2;

 Leg->leg_Origin.z = 0;

 Leg->foot_Pos.x = Body->bodylength / 2;

 Leg->foot_Pos.y = Body->bodywidth / 2 + footOffset;

 Leg->foot_Pos.z = Body->bodyheight * (-1);

 Leg->ServoID[0] = 3;

 Leg->ServoID[1] = 4;

 Leg->ServoID[2] = 5;

 Leg->Servo_MIN_PWM[0] = 84;

 Leg->Servo_MIN_PWM[1] = 84;

 Leg->Servo_MIN_PWM[2] = 84;

 Leg->Conversion[0] = 2.605;

 Leg->Conversion[1] = 2.610;

 Leg->Conversion[2] = 2.576;

 Leg->Neutral_Zero_PWM[0] = Leg->Servo_MIN_PWM[0] + 90 * Leg-

>Conversion[0];

 Leg->Neutral_Zero_PWM[1] = Leg->Servo_MIN_PWM[1] + 60 * Leg-

>Conversion[1];

 Leg->Neutral_Zero_PWM[2] = Leg->Servo_MIN_PWM[2] + 180 * Leg-

>Conversion[2];

 Leg->safe_PWM_MAX[0] = Leg->Servo_MIN_PWM[0] + 125 * Leg-

>Conversion[0];

 Leg->safe_PWM_MAX[1] = Leg->Servo_MIN_PWM[1] + 135 * Leg-

>Conversion[1];

 Leg->safe_PWM_MAX[2] = Leg->Servo_MIN_PWM[2] + 180 * Leg-

>Conversion[2];

 Leg->safe_PWM_MIN[0] = Leg->Servo_MIN_PWM[0] + 55 * Leg-

>Conversion[0];

90

 Leg->safe_PWM_MIN[1] = Leg->Servo_MIN_PWM[1] + 30 * Leg-

>Conversion[1];

 Leg->safe_PWM_MIN[2] = Leg->Servo_MIN_PWM[2];

 }

 if (LegID == 3) { // left back Leg

 Leg->leg_Origin.x = Body->bodylength / 2 * (-1);

 Leg->leg_Origin.y = Body->bodywidth / 2 * (-1);

 Leg->leg_Origin.z = 0;

 Leg->foot_Pos.x = Body->bodylength / 2 * (-1);

 Leg->foot_Pos.y = Body->bodywidth / 2 * (-1) - footOffset;

 Leg->foot_Pos.z = Body->bodyheight * (-1);

 Leg->ServoID[0] = 6;

 Leg->ServoID[1] = 7;

 Leg->ServoID[2] = 8;

 Leg->Servo_MIN_PWM[0] = 84;

 Leg->Servo_MIN_PWM[1] = 84;

 Leg->Servo_MIN_PWM[2] = 84;

 Leg->Conversion[0] = 2.595;

 Leg->Conversion[1] = 2.619;

 Leg->Conversion[2] = 2.614;

 Leg->Neutral_Zero_PWM[0] = Leg->Servo_MIN_PWM[0] + 90 * Leg-

>Conversion[0];

 Leg->Neutral_Zero_PWM[1] = Leg->Servo_MIN_PWM[1] + 120 * Leg-

>Conversion[1];

 Leg->Neutral_Zero_PWM[2] = Leg->Servo_MIN_PWM[2] + 0 * Leg-

>Conversion[2];

 Leg->safe_PWM_MAX[0] = Leg->Servo_MIN_PWM[0] + 125 * Leg-

>Conversion[0];

 Leg->safe_PWM_MAX[1] = Leg->Servo_MIN_PWM[1] + 150 * Leg-

>Conversion[1];

 Leg->safe_PWM_MAX[2] = Leg->Servo_MIN_PWM[2] + 180 * Leg-

>Conversion[2];

 Leg->safe_PWM_MIN[0] = Leg->Servo_MIN_PWM[0] + 55 * Leg-

>Conversion[0];

91

 Leg->safe_PWM_MIN[1] = Leg->Servo_MIN_PWM[1] + 30 * Leg-

>Conversion[1];

 Leg->safe_PWM_MIN[2] = Leg->Servo_MIN_PWM[2];

 }

 if (LegID == 4) { // right back Leg

 Leg->leg_Origin.x = Body->bodylength / 2 * (-1);

 Leg->leg_Origin.y = Body->bodywidth / 2;

 Leg->leg_Origin.z = 0;

 Leg->foot_Pos.x = Body->bodylength / 2 * (-1);

 Leg->foot_Pos.y = Body->bodywidth / 2 + footOffset;

 Leg->foot_Pos.z = Body->bodyheight * (-1);

 Leg->ServoID[0] = 9;

 Leg->ServoID[1] = 10;

 Leg->ServoID[2] = 11;

 Leg->Servo_MIN_PWM[0] = 85;

 Leg->Servo_MIN_PWM[1] = 84;

 Leg->Servo_MIN_PWM[2] = 85;

 Leg->Conversion[0] = 2.610;

 Leg->Conversion[1] = 2.725;

 Leg->Conversion[2] = 2.500;

 Leg->Neutral_Zero_PWM[0] = Leg->Servo_MIN_PWM[0] + (90 * Leg-

>Conversion[0]);

 Leg->Neutral_Zero_PWM[1] = Leg->Servo_MIN_PWM[1] + (60 * Leg-

>Conversion[1]);

 Leg->Neutral_Zero_PWM[2] = Leg->Servo_MIN_PWM[2] + (180 * Leg-

>Conversion[2]);

 Leg->safe_PWM_MAX[0] = Leg->Servo_MIN_PWM[0] + 125 * Leg-

>Conversion[0];

 Leg->safe_PWM_MAX[1] = Leg->Servo_MIN_PWM[1] + 150 * Leg-

>Conversion[1];

 Leg->safe_PWM_MAX[2] = Leg->Servo_MIN_PWM[2] + 180 * Leg-

>Conversion[2];

 Leg->safe_PWM_MIN[0] = Leg->Servo_MIN_PWM[0] + 55 * Leg-

>Conversion[0];

92

 Leg->safe_PWM_MIN[1] = Leg->Servo_MIN_PWM[1] + 30 * Leg-

>Conversion[1];

 Leg->safe_PWM_MIN[2] = Leg->Servo_MIN_PWM[2];

 }

}

