

Enhancing End-to-End Communication Security in

IoT Devices Using Model Driven Engineering

BY

Rimsha Zahid

(Registration No: MS-SE-20-330694)

Supervisor

Dr. Farooque Azam

 DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

August 21, 2024

Thesis Acceptance Certificate

Enhancing End-to-End Communication Security in

IoT Devices Using Model Driven Engineering

BY

Rimsha Zahid

(Registration No:0000330694)

A thesis submitted to National University of Science and Technology Islamabad in

partial fulfillment of the requirements for the degree of Master of Sciences in

Software Engineering

Supervisor:

Dr. Farooque Azam

Co Supervisor:

Dr Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

 COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

 ISLAMABAD

August 21, 2024

i

Dedicated to my beloved Parents for their endless

support and prayers, and to my Husband and

Daughter who always motivated and inspired me

with unwavering support.

ii

ACKNOWLEDGEMENTS

First, I would like to praise and honor the Almighty Allah, the most beneficent and the most

merciful, for granting me the ability, courage, knowledge, and skills required to undertake and

accomplish this task. No doubt, He has facilitated my journey, and I am unable to achieve

anything without His blessings.

I would also like to appreciate the sincere efforts of my supervisor Dr. Farooque Azam for

guiding me throughout the journey of my MS thesis. Furthermore, I am also grateful to him for

teaching us the courses of Model Driven Software Engineering (MDSE) and Software

Development and Architecture (SDA). He professionally taught us both subjects in depth and

from that; I developed my interest in continuing my research in the field of model-driven

software engineering.

 I would also like to express my gratitude to my Guidance Committee Members Dr. Wasi

Haider Butt, Dr. Arsalan Shaukat, and Dr. Mehwish Naseer for providing guidance and

assistance to further improve my work with their valuable recommendations. I would like to

express my sincere gratitude to Dr. Muhammad Waseem Anwar for his assistance and

cooperation throughout the journey of my thesis in achieving my research objectives. Without

his unwavering support, the completion of this dissertation would not have been possible. I

appreciate his patience and support throughout the whole thesis.

I am deeply grateful to my beloved parents for raising me and being available whenever I needed

them and for their unwavering support throughout every aspect of my life.

Finally, I would also like to extend my heartfelt gratitude to my husband and my family for their

steadfast support and cooperation through the research journey.

iii

ABSTRACT

The Internet of Things (IoT) has transformed the way software and hardware interact, enabling

users to control devices remotely. In environments like smart homes, offices, and industrial

setups, diverse sensors generate large amounts of data, raising significant security concerns

during transmission. Cloud-based systems enhance efficiency and cost-effectiveness but also

introduce authentication and authorization vulnerabilities. While past studies addressed specific

system issues, this research proposes a model-driven framework to tackle encryption challenges

at the application layer, ensuring data integrity during device communication. The absence of a

generic security-related solution that could be tailored to the specific needs of any IOT network

configuration increased the overall effort of making the system secure since every time you need

to devise a solution that solves the security concerns. Therefore, this research advocates for an

End-to-End encryption metamodel for message communication through the application layer,

safeguarding messages from unauthorized alterations by third parties. End-to-end encryption

standards ensure that the data as well as the processed information travelling between different

components of the network is not visible to any third party. With the introduction of metamodel

for security and by creating profiles, we extend a generic model by adding domain-specific

properties and constraints to tailor it for specialized security-related concerns. The proposed

framework IoT developers to input data details and model the encryption-decryption process,

ensuring data integrity during communication. This model can be used by the developers

working with IoTs to simply put the details of the data and they can model an encrypted IOT

network by ensuring data integrity while it is being communicated. By providing an atomic view

of IoT network configuration, the proposed framework incorporates the robust security

mechanism so that any network can be verified mapping with respect to the meta-model and thus

executed in a live environment ensuring the data sensing, transmitting, and then transferring into

pieces of information is safe throughout the way. Using Node-Red as a proof of concept, a case

study was implemented to validate the efficacy of encoding and decoding processes.

Keywords: MDSE (Model Driven Software Engineering), IOT (Internet of Things), End-to-

End Encryption, Communication, Security

iv

Table of Contents
ACKNOWLEDGEMENTS ... ii

ABSTRACT .. iii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. Background Study: ... 1

1.1.1. Internet of Things (IoT) .. 1

1.1.2. End-to-End Encryption ... 2

1.1.3. Security and its Significance in IOT... 4

1.1.4. Model Driven Software Engineering (MDSE) ... 5

1.2. Research Contribution .. 6

1.3. Thesis Organization .. 7

CHAPTER 2 ... 8

LITERATURE REVIEW ... 8

2.1. Security Challenges of IoT ... 8

2.1.1. Cyber Security and Communication ... 9

2.1.2. Detection Techniques ... 10

2.2. Security Enhancement Framework ... 10

2.2.1. MDD in IoT Security ... 11

2.2.2. Cloud Servers based Encryption: ... 13

2.3. Research Gap .. 14

CHAPTER 3 ... 15

PROPOSED METHODOLOGY.. 15

3.1. MDD-based Security Framework ... 16

3.2. Proposed Metamodel ... 18

3.2.1. Treeview of Metamodel ... 21

3.2.2. Transformation Rules ... 25

CHAPTER 4 ... 30

IMPLEMENTATION ... 30

4.1. Case Study 1 .. 30

Smart Grid Station ... 30

4.1.1. Sirius: ... 31

4.2. Case Study 2 ... 35

v

Smart Voice Pathology Monitoring System (SVPMS) .. 35

4.2.1. Acceleo Transformation ... 36

CHAPTER 5 ... 38

VALIDATION .. 38

5.1. NODE RED ... 38

5.2. Proof of Concept ... 39

5.2.1. Case Study 1. Grid Station ... 39

5.2.2. Case Study 2. Smart Voice Pathology .. 41

Summary .. 43

Data Collection: ... 43

Data Encryption: .. 43

Data Transmission: .. 43

Data Processing: .. 43

5.3. The Significance of the Modeling Approach .. 44

5.3.1. Complexity Reduction and Enhanced Abstraction: ... 44

5.3.2. Time Efficiency and Agile Development ... 44

5.3.3. Enhanced Security and Data Integrity ... 44

CHAPTER 6 ... 46

DISCUSSION .. 46

CHAPTER 7 ... 47

CONCLUSION .. 47

References

vi

List of Figures

Figure 1: Data Encryption Mechanism ………………………………………….…………………………….…...2

Figure 2: Overview of Model-Driven Development…………………………….………………………………....5

Figure 3: Flow of Research …………………………………………………….…………………………………...7

Figure 4: Traditional SDLC (left) Vs Modern SDLC (Right) ……………….…………………………………… 16

Figure 5: Overview of Model Driven Development ………………………….……………………………………17

Figure 6: Proposed Meta-Model ……………………………………………………………….………………..….19

Figure 7. Treeview of metamodel ……………………………………………………………...……………………21

Figure 8. Properties of Flow Node …………………………….……………………………….…………………...22

 Figure 9. Properties of Sensor Data ……………………….……………………………………………….………22

Figure 10. Properties of Encrypted Data ………………….……………………………………………………….23

Figure 11. Properties of Message Payload ………………………………………………………………………….23

Figure 12. Properties of MQTT …………………………………………….………………….………………..….24

Figure 13. Properties of Modbus Write. ……………………………………………..…………………………….24

Figure 14. Properties of COAP ……………………………………………………….………………….…………25

Figure 15. Smart Grid Station …………………………...…………………………………………………………31

Figure 16. Treeview of Sirs …………………………………………………….……………………………………32

Figure 17. Flow Node Sirus Architecture ………………………………………………………………………….33

Figure 18. Sensor Input Node Sirus Architecture …………………………………..………….………………….33

Figure 19. Encrypted Data Node in Sirius Architectures………………………………………………………….34

Figure 20. HTTP Request Node in Sirius Architectures ………….………………………………………………34

Figure 21. Graphical View of SVPMS ………………………………………….……….…………………………35

Figure 22. The architecture of Transformation Engine …………………………………………………………...36

Figure 23. Run configuration of Acceleo’s ………………………………………………………………………....37

Figure 24: Grid Station Case Study with Sirius ……………………………………………………….………….39

 Figure 25: Simulating Grid Station Case Study in Node-Red .………………………………………………….40

Figure 26: Simulating Case Study SVPMS……………………...………………………………………………….42

 Figure 27: Validation in Node-red …………………………………………………………………………………42

Figure 28: Flowchart of data processing through Node-Red ……...………………………………………………43

vii

List of Tables

Table 1. List of Security related concerns discussed by academia in the field of IoT …………..………………..9

Table 2. Distribution of papers by textual and graphical modeling language tools ……………………..……..12

Table 3. Transformation Rules …………………………………………………………………………………..…26

1

CHAPTER 1

INTRODUCTION

This chapter of the research is an explanation of the background of the topic, explaining the

important terms in the title along with their importance. The chapter also encompasses the

objectives, research problem, proposed methodology, and the structure of the thesis.

1.1. Background Study:

1.1.1. Internet of Things (IoT)

The Internet of Things (IoT) is a collective term to describe everyday objects connected to

computing devices [1]. This entails connecting numerous physical yet smart objects through the

internet so that they can work well in many areas of our lives for example smart transportation

systems, building and home automation, wearable healthcare technologies, industrial process

control, and infrastructure monitoring. When traditional devices are brought online with the help

of IoT, they are first transformed into smart devices. There are many benefits associated with the

integration of smart devices into our daily lives. They range from making things simple for

humans, enabling them to make informed decisions, and sharing information among other benefits.

Achieving the full potential of the Internet of Things (IoT) develops a pathway to gainful venture

making sure responses are quick and reliable, economic use of available infrastructure as well as

effortlessly combining different devices and technologies that work for it, scaling adequately to

support growth in network breadth; also having strong systems in place that allow it to collect,

exchange and process data more efficiently [2]. According to a study carried out in 2020, over 749

billion dollars was spent on these devices. Projections showed growth to 1.1 trillion in 2023 for

yearly spending on the same things for all nations. In 2018, there were 22 billion connected IoT

devices and twice that number will be surpassed, reaching 60 billion in 2030. [1] A milestone in

technological advancement is marked by the coming of 5G which sees an increase in computing

devices integrated into different daily life scenarios connected through the internet while a large

amount of data and processed information travels around the globe.

IoT is considered one the most important inventions as it has reduced lot of human manual work

while automating daily tasks and reduced labor cost. It is a network of devices over the web in

which embedded systems are used to collect, send, and transform the data. They mostly include

sensors, digital machines, and consumer objects along with mechanical. With the increase in ease

and satisfaction, a lot of businesses have been using the IoT to operate efficiently and effectively.

2

When a network of interrelated things connects and exchanges data with other devices in the group

or over a network and interacts with the cloud, the IoT network becomes vulnerable to third-party

access.

1.1.2. End-to-End Encryption

It is a form of secure communication that hides messages from non-potential users and safely and

securely sends the information to the one who needs it, whether it’s another system or merely a

device. It is a technique of securing useful data into unreadable format and then transporting it for

communication purpose. The transformed data format is usually known as cipher text while

turning it back to its original yet readable form requires a key that decrypts this cipher text into

human-readable form. This data security process has been widely used to ensure the confidentiality

of useful information while keeping its integrity intact.

Figure 1: Data Encryption Mechanism

3

This technique of hiding the information while its way of transformation protects sensitive

information whether it is stored on any wearable smart gadget, smartphone, or computer, just to

name a few. Encryption guarantees data confidentiality in all types of communication whether it

is being sent via email, message, shared over a call, or sent in a file. Finance takes great help from

the ciphers as it gives a seamless yet reliable online banking experience to their customers whereas

their credentials, transactions, or any other payment details are being protected from any kind of

breach. Also, it ensures that the updates they are getting are sources from a legitimate source. In a

nutshell, encryption is a fundamental part of the digital global world. It serves as a backbone for

security where threats are avoided and gives users a reliable environment to operate within. [3] [4]

Data encryption and generation of public/private keys are done by clients. Different data models

are allowed to be deployed to show that in a remote database, their instances can be serialized to

enable encryption. Different label features are introduced that allow data scope in different groups.

It is done to enhance trust and provide a trust system that authenticates the identity [5]. For

example, see

Figure , First A sends a trust invitation to B. Then they establish trust and verify with the help of

the other system which is known as a third-party mechanism. Then Alice generates a server request

to identify the identity of the author.

In end-to-end encryption, the sender only knows what he has sent and only the receiver receives

exactly what the sender has sent and no one can decrypt the message in the middle. It connects

millions of devices and protects from vulnerabilities like private information that may be exposed

when all IoT devices are connected. To ensure users' privacy and safety, it is important to enable

secure endpoints in IoT. [6]. So, to achieve guaranteed security without compromising its other

non-functional requirements such as performance, and scalability, this area is crucial to be

researched. The main problem that is faced these days is that the primitive security in

computations-constrained devices is costly for usage. [7] This protection of data through

encryption is further divided into two types:

1. Symmetric Encryption: This method makes use of the same key for encrypting the data

as well as decrypting it. Being the fast and efficient way of data security, this type of

encryption is usually preferred to protect large amounts. Data Encryption Standard (DES)

and Advanced Encryption Standard (AES) are commonly used symmetric encryption

algorithms.

2. Asymmetric Encryption: Commonly referred to as the public-key encryption method,

this type of encryption has a public key and private key which are used for encryption and

decryption respectively. This combination of keys makes it a reliable way of protecting the

data from unauthorized access. Elliptic Curve Cryptography (ECC) and Rivest-Shamir-

Adleman (RSA) are examples of asymmetric encryption algorithms.

4

End-to-end Encryption is a special case of data encryption where the encoding and decoding of

data are done at the sender and receiver’s end respectively – no intermediate parties are involved

in the encryption process whether it is any access granting body or service provider. End-to-end

encryption works in a manner where a message sent by the user is transformed into cipher text

with a key and this unreadable combination of alphanumeric characters is routed over the network

to the receiver. Afterwards, the receiving node decrypts this data into a readable form using their

private key ensuring even if someone gets access to the cipher text on its way to the receiver, there

is no chance that they would be able to read it without the key.

This method of encryption protects from man-in-the-middle attacks, safeguards data against

eavesdropping, and ensures data integrity as it is not being modified by anyone when it is in transit.

A high level of privacy of data is maintained since communicating users are the only ones having

access to the comprehendible form of the data. End-to-end encryption is the strongest form of

encryption which is being used for communication widely in the global world where any type of

data is being exchanged between different parties.

1.1.3. Security and its Significance in IOT

Security is defined as a collection of different measures to safeguard critical assets from being

stolen or taken hold of for illegal purposes. It involves safeguarding any physical object or

information that is stored digitally – the latter is common these days as we have entered into a

world of digital assets. Protection of these assets from any kind of harm from unauthorized persons

is the core of security. Unlike physical security measures which involve taking protective measures

like surveillance systems, control locks, and guards, network security involves the protection of

information in terms of its availability, integrity, and confidentially when it is being transmitted in

shared networks. Data security lies under this category where encryption techniques, firewalls,

and other algorithms are being employed to safeguard data from intrusions.

Confidentiality, Integrity, and Availability (CIA) is the core of security where confidentiality is the

limitation on data accessibility to authorized uses, integrity is the completeness and maintenance

of data and availability is to make sure that information remains accessible to the users when

needed. When discussing IoT, this CIA matrix is critical because enormous data are being

generated and transmitted from one node to another. For example, when tiny sensors in cities,

industries, or home smart meters that send data must be periodically connected to communicate

with a large number of groups, safekeeping this critical data is a resourceful task – failure of which

might lead to compromising the reliability of the data [8]. A Robust technique is needed to ensure

this data is protected such as the use of a secure communication path, implementing limitations on

the access of data, and implementing robust algorithms.

With the progression of remote servers over the Internet such as the cloud, and the potential risk

they pose - for example, limited resources and uncertainty in connectivity and a very large number

of potential users – a combination of all these factors makes it difficult for group communication.

To solve all the potential issues of data protection and to implement intermittent, low bandwidth,

5

intermediate edge servers with low range connections in the context of the base station – there is

a need to introduce an effective measure for meditating communication. [9]

IoT uses a mechanism that is widespread in indirect communication primitives, where IoT trusted

servers are installed close to IoT nodes. During all this time the risk still stands that arises from

untrusted servers as the network is being connected to multiple unknown, small yet smart devices

to make their operations smooth and worthy for us.

1.1.4. Model Driven Software Engineering (MDSE)

MDSE helps in increasing the quality of software products, enhancing productivity, reducing the

cost and time of software development, and making it more maintainable [10]. During the

development process subset of software engineering, model-driven software is treated as first-class

entities. Models in MDSE serve a specific purpose such as code generation, model integration

manipulation, and construction. Model is used as a development methodology, and it is only

specified for creating a model that is domain-specific and defines the specific problems of those

conceptual models [9].

Many real-time applications are developed using components and this is crucial for developing

many applications where timing is crucial. A metamodel is a model which is developed using

models. Thus, the analysis, construction, frame development, and some theories are defined

already. In General, Round-trip engineering is used as a concept for software design that is the best

approach for model-driven software engineering [11] [12].

Figure 2: Overview of Model-Driven Development

Metamodel is a model that is the representation of the actual model. It looks exactly like a

mathematical algorithm where you give the input, and it generates the output. Some of the abstract

6

syntax is defined in a metamodel and they are specified for creating rules in them. [13]. Below are

the fundamentals of meta-modeling:

• Abstraction Level: In this level, specific models are used that is used to create a schema

for other models

• Standardization: It is about how models are created and how they are used for

standardization to ensure consistency and interoperability

• Hierarchical Structure: For this, four layers are present in a hierarchy with M3 meta-

model layers and M0 an instance-level

The main aim of model-driven techniques is to increase productivity as it also helps simplify the

process of design. It promotes a culture of interaction among software development teams. Also,

working with modeling approaches increases the compatibility between two systems as it helps to

create the proper structure for the development of software products and results in the production

of documentation, source code tests, and more generated algorithms for domain models [6].

Model engineering is a method that is effective for the implementation of a software system that

is developed with the help of designers, developers, and managers that are specified for the

development domain specific for model-driven engineering [11]. It is also used to automate the

tasks that are specified for the analysis such as generation, analysis, and simulations [11].

Models are emphasized to use in the specific stage of development such as design, implementation,

coding, testing, or automation. They are used to automate, reducing the effort of coding and

helping in generation. It is used to separate one model from another model, and it is a widely used

concept that allows stakeholders to focus on a specific problem [11].

1.2. Research Contribution

This research addresses a critical gap in IoT security by leveraging Model-Driven Engineering

(MDE) to enhance end-to-end communication security. The growing complexity and ubiquity of

IoT devices make traditional security approaches increasingly inadequate. MDE provides a

structured methodology to model IoT systems at a high level of abstraction, enabling precise

specification of security requirements and behaviours. By systematically transforming these

models into secure and executable configurations, we ensure that IoT devices and their

communications adhere to stringent security protocols. This approach addresses the

inconsistencies and vulnerabilities inherent in manual security implementations, offering a robust

and scalable solution to IoT security challenges.

One of the significant contributions of this research is the demonstration of how MDE can

effectively bridge the gap between high-level security requirements and low-level implementation

details. Traditional approaches often struggle to keep up with the dynamic and heterogeneous

nature of IoT ecosystems, where devices vary widely in capability and function. By employing

MDE, we can create adaptable models that capture the security needs of diverse IoT devices and

7

their interactions. These models facilitate the automatic generation and validation of security

policies, ensuring that all devices within an IoT network comply with the established security

framework. This not only enhances the overall security posture of IoT systems but also simplifies

the process of maintaining and updating security measures as the network evolves.

1.3. Thesis Organization

In this chapter, we have given a comprehensive analysis of the research by defining some important

terms as well as the objectives the study would have had as well as the problem statement that led

to this research. The literature review highlights significant studies carried out on IOT, data

transmission and security in IoT, challenges like real-time processing, vulnerability to attacks, and

finally, we figure out the gaps/problem statement in current security mechanisms.

In Chapter 4, we look at how Model Driven Development (MDD) can simplify the protection of

data in IoT and introduce a generic model to improve security, and integrity in intricate IoT

systems. The next chapter presents the implementation of our model-driven methodology with a

focus on communication security for improving real-time data collection and transmission

encryption needed to make IoT configurations secure after which this will contribute to increased

system reliability and cybersecurity. In the validation part, we have discussed how our model

integrates advanced security techniques into IoT systems and shows how it can secure and manage

complex infrastructures with a case study, emphasizing its practical utility and adaptability.

Figure 3: Flow of Research

Literature Review

Problem Identification

Proposed Methodology

Implementation

Validation

8

CHAPTER 2

LITERATURE REVIEW

There is extensive work that is done in the field of IOT, specifically on its security, communication,

and data. In this chapter, we extensively discussed the previous research studies carried out in this

domain – majorly in terms of MDSE where solutions are simplified. We thoroughly explore the

current techniques and methodologies and conclude this chapter with the identification of the gap

leading to the motivation of carrying out this research i.e., in the form of the problem statement.

2.1. Security Challenges of IoT

To maintain hustle-free communication among devices, a dynamic and comprehensive system is

required and providing fast data processing [14]. To achieve this, a system that is recognized as an

Information Centric-Networking System (ICNS) is implemented in [15]. The method that is used

is known as the naming method where a unique name is assigned to each node. The unique naming

system is known as NOID. Only in-network communication is provided by them. A trust system

is implemented with optimization algorithms. It is based on cluster head section but ultimately

poses more threats [14]. It contains honest nodes that give positive answers to real nodes and

negative ones to malicious code. It lacks the effectiveness of the model and is not able to detect

the specific attacks of IoT networks thus making questionable performance in other networks. [14]

They have limited or no information and capacities to handle the sophisticated exploits these days

and zero attack vulnerability

Computational capabilities of IoT devices are limited and they are inherently vulnerable, and make

the system difficult when implementing robust techniques for security. [16]The problems that are

raised due to this are the weak authentication and prevalence of these vulnerabilities. The IoT

devices that are susceptible to hijacking and denial of service (DoS) attacks [17]. For the protection

of credentials of IoT Devices, a Mirai botnet was created which resulted in exploration with the

help of Dos attack [18]. Cloud-based devices and network channels offer an environment that is

quite scalable and provides the methods for securing IoT devices for the development of

computational tasks that are quite intensive. They use the SGX methods that provide hardware-

security-based technologies that run the enclaves of the creation of sensitive data. It provides the

type of information that is secured from unauthorized access, even for the type of operating system

that has a complex built [16].

9

2.1.1. Cyber Security and Communication

With the progression of the world, the IoT is introduced in farming as well to improve operations

[11]. But with the rapid increase in IoT, they pose a lot of serious risks. They are not considered

because they yield a very high cost. Potential risks result in perilous and unproductive farming

[19]. An entire field of a crop can be destroyed from exploits and their threats are more highlighted

that farmlands can be flooded through them, and pesticides sprayed over farms with the help of

drones. The attacks are coordinated largely, the term that is used to refer to them is known as Cyber

Agroterrorism [20] and as a result, the economy is destroyed. The other attack that is worth

mentioning is "The Night Dragon" where the information large petrochemical product was stolen

[21]. Another famous attack was at a German Steel Mill where the office network and the

production system of the plan were accessed by attackers using Spear Phishing [22]. The shift in

the usage of digital products has been widely seen and is difficult to catch the man in the middle

[20].

For over two and more decades the constant persistent in the world of the internet is Distributed

DoS (DDoS) attack. It causes issues like making it inaccessible to legitimate users and flooding

the servers with huge traffic thus disrupting network services [19]. These types of factors play a

role in the exploitation of the shared access of data to users and making it difficult for the

understanding the difference and making it difficult to recognize who are actual users and who is

forging it [23]. The major problems that arise in cyber security are to distinguish between the

legitimate users and the attackers [24].In traditional DOS mitigations, famous methods are used

such as reducing the traffic rate, IP whitelisting/whitelisting, and intrusion detection systems. They

are defined as

• Rate Limiting: I6t reduces the amount of traffic to be reduced only a specific number of

users can access it at a time and the chances of attacks reduce. Also, it limits the actual user

to access the information and perform other functionalities it provides.

• IP Blacklisting: Some IP addresses are classified as a malicious IP address, while some

people use lethal methods such as Botnet that changes the IP address of the device for

access [24]. Authors in [25] have addressed the basic data security concerns and have listed

down authenticity properties in Table I. The interest level of each requirement is

proportional to the percentage of academic discussion carried on that specific requirement

compared to the total number of studies available in that category.

Table 1. List of Security concerns discussed by academia in the field of IoT

ID Security Requirement Relative Interest % within category

01 Multi-factor Authentication Medium 9%

02 Transitive Authentication Low 1%

03 Mutual Authentication Medium 17%

04 Privacy-preserving Authentication Medium 8%

05 Non-Repudiation Low 4%

06 Attestation Low 5%

10

2.1.2. Detection Techniques

Authors in [26] have used Deep Learning models that Enable Threat Intelligence (DTLI) to allow

cloud edge networks to detect anomalies. Two main components are involved which help to

identify threats. Deep Pattern Extractor (DPE) and Threat Type Identification (TTI). DPE uses

generative deep-learning modules that are responsible for the automatic extraction of patterns [21].

They are used to capture the hidden patterns and transform the network traffic area that is not

properly defined into meaningful and comprehensible representations with the class labels. They

allow us to understand the behavior better [1]. SICON (Scalability, Control, and Isolation on Next-

Generation Networks), poses the new techniques that help in addressing the key challenges that

are faced these days. [27] The ISDs in them are used to organize the multiple autonomous systems

and they have their routing pane. This system helps in the separation of the path and clears

confusion and misconfiguration. They have their key which follows Public Key Infrastructure, that

authenticates messages and prevents attacks. With this technology, they prevent DDoS attacks and

by redesigning them they provide the proper structure and architecture that helps to achieve the

aim of SICON. However, if used on a massive scale, the error might be reduced and the risk and

potential failures it poses can be reduced [27].

Gated Recurrent Neural Network (GRNN) is used to identify the anomaly that the DPE model

provides that makes the TIDD more powerful. It distinguishes the patterns that are to be identified

as abnormal patterns with the help of the concurrent connections that are established and hidden

multiple times across different steps [26]. With the combination of supervised and unsupervised

behavior, it offers a heterogeneous network environment [26].Many Electric Circuit Units are

equipped together in modern vehicles that allow communication among smart nodes connected in

a network and a better user experience. The increase in electric units increases the chance of cyber-

attacks and the susceptibility of modern vehicles [28]. Therefore, the feasibility of modern

vehicles' automated systems emphasizes how security measures are necessary for the prevention

of penetrations through loopholes [28]. Other vectors that play a role in the detection of the attack

are the interfaces that provide the distance between the short-range and long-range devices [28].

Controller Area Networks (CAN) are more vulnerable to attacks since their design does not include

these smart devices' specifications. The results show that CANS are more susceptible to DoS

attacks and SQL injections as the system lacks authentication techniques [29]. This highlights that

the CAN needs a security framework that protects IoT from attacks. Authors have also implied an

Intrusion Detection System – it’s a framework that uses two methods to Signature IDS network

and an Anomaly-based IDS system. These detection techniques identify the common threats but if

a new thread or an intrusion technique is introduced to the system, this gets a point of failure [29].

2.2. Security Enhancement Framework

Smart cars are one of the critical use cases of the IoT world as they are dependent on lots of sensors

and actuators that are used to monitor vehicle functions. The optimal operation of the device is

dependent on the collection of data including environmental factors, the performance of its engine,

11

sensors, and the relevant actuators [17] The cooling system works by automated checking, if the

system is too hot the system has actuators, so it adjusts the temperature accordingly. When all the

small components are combined in the complex system, and they communicate with the help of

the IoT that is when we get a fully functional smart system.

IoT requires real-time processing and transmission of data thus it a very difficult to control its

latency to avoid human loss and financial loss. [12]The communication among devices in such

systems is done with the help of the various mobiles, cellular data, satellites, and infrastructure

that provide the framework for the running of the CAN. They allow communication among internal

devices and external services ensuring their remote capabilities and providing real-time updates

[21]. End-Devices Layer, Communication Layer, Services Layer, and Application Layer are the

crucial layers in an IoT-enabled system.

IoT has become much more sophisticated that ensures to provide safe communication. The IoT

Security Development Framework (ISDP) provides a sophisticated framework to ensure the safe

transmission of data. ISDP supports the architecture of the system and mitigates malicious

software [17]. From offering a top-notch authentication system to authorizing the users to use it

the legitimate way, this framework keeps an audit of the usage profiles to maintain the integrity of

the system.

2.2.1. MDD in IoT Security

The use of model-driven techniques for assisting developers in creating IoT applications through

separation of concerns as well as abstraction was first discussed in 2015 for high-level application

development for the Internet of Things [30]. The complexity of IoT app development was also

discussed. This was about the lack of migration pathways, the absence of high-level abstractions,

and life cycle phase challenges. The aim was to find a holistic solution whereby IoT applications

could be broken down into distinct compulsions, and a model for application development could

be created. This was made available through a methodology taking a paired set of languages

employing conceptual modeling standards for specifying different development concerns; it also

abstracts complexity due to size as well as variety.” It also used the first time a model borrowing

technique that combines task-mapping algorithms with code generators as well as linkers to make

for more automatic programming [30].

The role of MDE in mission-critical IoT (MC-IoT) systems is significant. Heterogeneity

management is a high-level abstraction provided by MDE, with separation of concerns for

maintainability as well as automated adaptation to runtime adjustments, therefore reducing

development effort through reusability. Together these advantages increase the reliability, safety,

and security of MC-IoT systems. [31] The areas of security in terms of MDD are crucial and pose

serious threats when IOT configurations are discussed - they must be analyzed and processed to

fill the gap between the shortcomings to make the system more efficient user friendly and secure

[19].

12

A research article introduced model-driven development (MDD) for a home security system,

highlighting an organized method to create systems [32]. The design process is initiated by

constructing high-level models depicted in Unified Modeling Language (UML) diagrams to

capture vital entities like human detection modules or authentication processes. The sensor and

doorbell signals interact with one another over Telegram along with a model for the access control

mechanism based on how telegraphy expertise is utilized to control GPIO pins that lock or unlock

the door from user commands [32]. The models are worked upon by iteration after which they are

converted into executable Python code that enhances Telegram communication as well as GPIO

management. In this Model Driven Development (MDD) approach there is an assurance that

information obtained during the design phase will adequately inform further development. [32].

A model-driven approach was applied to improve Smart Street Lights [33]. Smart street lighting

systems enable cars, bikes, and pedestrians to have their separate lighting zones through a system

of smart lamp posts. MDE4IoT helped the developers to make models of behavioral capacities for

software applications as well as hardware devices and their placements with the use of UML and

ALF [33]. Several studies reference the use of these tools, quantifiably six have focused on textual

languages implemented with the Xtext framework. For visual modeling languages with graphical

syntax, two studies reported the use of Sirius, two studies used Eugenia, two studies employed

GMF, and other studies noted the use of tools like Obeo Designer and MetaEdit+. [34]

Table 2. Distribution of papers by textual and graphical modeling language tools

Textual Modeling Language Tools Graphical Modeling Language Tools

PID Framework Xtext Manticore Sirius Obeo

Designer

GMF MetaEdit+ Eugenia

1 ML-

QUADRATE

(ML2)

Y N N N N N N

2 MONITOR-IOT N N Y N N N N

3 SIMULATEIOT-

FIWARE

N N

N N N Y

4 CYPRIOT-DSL N N N N N N N

5 HEALMA N N Y N N N N

6 CHESSIOT N N N N N N N

7 SIMULATE iot N N N N Y N Y

8 IoTSuite Y N N N N N N

9 cypiot Y N N N N N N

10 SiMoNa N N N N N Y N

11 EL4IOT Y N N N N N N

12 FRASAD N N N N Y N N

13

Another article [35] explained how simulation could be achieved using model-driven technology.

The focus was on the importance of models in the conception and regulation of simulation systems.

Due to formal modeling languages, developers can detail system behavior, architecture, and

communication. Apart from that, MDE contributes towards making simulation better by

generating codes and enhancing interoperability thus guaranteeing replicability [35]. This method

works by refining and transforming models, configuring physical components with deployment

diagrams, and finally generating executable simulation models. As a whole, this method helps to

make simulation software development easier and increases reliability in distributed systems [35].

2.2.2. Cloud Servers based Encryption:

As the client node is a resource-constrained device, and no matter the technology whether it is the

web, mobile app, or computer Share lock works with the device regardless of whether the device

is more powerful [36]. To manage clients, groups, and data through a public interface edge server

supports the service layer and the database. The cloud server receives the data as the more trusted

entity. The communication among groups takes place by untrusted edge servers. IoT, which serves

another member of the group is a client from the perspective of group communication protocol.

So, keeping given this analogy "servers" are the most trusted edge servers. As in the general

structure, only one server is shared by multiple independent groups [37].

To rectify the problem where the third party can interact with the system and steal sensitive

information about something very necessary to the party concerned, to rectify the problem a

solution is required where third parties or some malicious users don’t interact with the system and

the information and data remains within the two parties. A model is needed that is present at the

application layer and uses this layer to communicate with other devices we give input and it

processes it [38].

The API abstracts the complexities of the communication messages and helps to focus on bigger

things rather than small details. APIs provide the basic security methods that help to identify that

there is no intruder They are interoperable means they can connect regardless of their device type,

vendors, and manufacturers allowing a large number of devices to connect. We have used API

endpoints that if the attacker even attempts to attack the APIs, the chances of penetration are

lessened [39]:

o Authentication: Verifies the holder of the account of information is the same as

the one accessing it.

o Authorization: Ensures the person's request to perform specific have permission

to do that.

o Encryption: Converting message into some kind of Cipher text to ensure that no

other person reads, accesses, or performs changes in it.

14

2.3. Research Gap

IoT security has progressed over the years – specifically with the introduction and implementation

of Industry 4.0. However, gaps exist when we go through the previous research studies for securing

IoT networks from threats in terms of MDD. The proceedings articles focused on specific security

problems. Additionally, no suitable framework has been developed for comprehensive attack

prevention. Therefore, there is a need for a complete methodology based on Model-Driven

Architecture (MDA) to facilitate a driven Framework for the security of communicating devices

and data in an IoT network. The proposed framework is intended to ensure the communication

level security of an IoT-based network is simple, easy, and robust at the same time. This security

framework is intended to devise a rigorous security mechanism in an IoT configuration and

increase the reliability of the developers and ultimately users. The focus is to improve the integrity

and efficacy of the sensor-actuator network by guaranteeing that the developed system designs

satisfy the security requirements and will shield against vulnerabilities. The proposed framework

efficiently handles the heterogeneous formats of data to be processed in real-time scenarios while

protecting them from being preyed upon.

15

CHAPTER 3

PROPOSED METHODOLOGY

In the following chapter, we elaborate on the proposed technique for solving the complexities and

security challenges that are common to communication integrity in IoT systems. Often

conventional software development falls short of offering the requisite level of abstraction and

visualization for efficient system management considering that systems are growingly complex

and interconnected [40]. Model Driven Development (MDD) eliminates gaps between different

levels for the developers to work with higher abstraction levels, making design, code,

implementation, and testing simple [41].

This chapter explores different aspects of the Model-driven Technique, covering the utilization of

differing modeling levels as well as the Sirius tool in terms of validation and event-driven models

The main aim of integrating these tools and implementing a robust yet convenient way of making

the sensor-based network secure, efficient and reliable irrespective of the area of installation –

whether it is being configured in a smart home setting or a big industrial area, the MDE based

frameworks focus on the abstract level things which are common in the most configuration yet

ensuring the functional and non-functional concerns are also met concretely. [42]. This chapter

focuses on providing exemplary answers to how traditional models of software development are

changing to become more agile and flexible. How does real-time data collection as well as anomaly

detection contribute towards system stability? Finally, the significant role that security for

communication channels plays in guarding against exposure to sensitive information.

The Traditional Software Development Life Cycle (SDLC) involves the waterfall model [43],

which is a sequential way of doing things in software development, which is a phased process

where each stage has to be finished before moving into another thereby making it difficult for the

project if a change occurs at any point after commencement [44]. However, Current methodologies

(Modern) in the Software Development Life Cycle like Agile and DevOps have put more emphasis

on gradual and repetitive development allowing delivery and integration throughout [45]. They

stand out as more flexible to changes hence promoting collaboration and being alert all through

while developing software [46].

16

Figure 4: Traditional SDLC (left) Vs Modern SDLC (Right)

3.1. MDD based Security Framework

MDD is a standard change that helps to achieve higher degrees of abstraction and better

visualization for complicated systems. MDD promotes better comprehension through the

development of system models that operate at high levels of abstraction. These models and their

transformations play crucial roles in automating the design, development, implementation, testing,

maintenance, and other software engineering tasks. The key to the model-driven approach is its

capacity to simplify difficult situations while delivering greater visualization and comprehension.

To do this, one must first define and create a formal model, sometimes referred to as a domain

model or a platform-independent model. Notably, the model-driven method has applicability

across many fields, including the creation of information systems, small software companies,

large-scale operational applications, and mixed interactive systems. Low-level design and coding

are the focal points of the conventional software development life cycle, in this conventional

method, as soon as coding begins, the importance of documentation and architectural/design

diagrams decreases. As a result, only the code is altered as the system evolves, which widens the

gap between the code and the accompanying documentation and diagrams. Whereas in the MDD

life cycle, where modeling efforts are what guide the software development process. This method

creates formal models that are understandable to computers as artifacts. The following are the main

models used in model-driven architecture (MDA): There are three types of models: PIMs (Platform

Independent Models), PSMs (Platform Specific Models), and Java. Lang. Code. MDA transforms

the software development process by depending on this model-centric paradigm, providing

improved maintenance, more agility, and higher flexibility to changing needs.

17

Figure 5: Overview of Model-Driven Development

The methodology uses Model Driven Engineering (MDE) to increase the level of abstraction at

which developers work with complex systems. This way, it becomes easy for one to understand

better what is underpinning their codes and those of other individuals [47]. When MDE is

implemented, developers can come up with models of a system in its high form showing its

structure, behavior, and interaction so that such models can subsequently transformed

automatically into code that operates [48]. Less effort is exerted in coding manually by adopting

this method, hence reducing errors as the visual models give an inclusive description of system

purposes and changes [49]. Moreover, the approach exploits MDE for purposes of making the

construction, testing, and verification of systems easier especially with tools such as Node-Red

that enable the creation of IoT flows with the visual as well as support the integration of different

components [50]. MDE increases the effectiveness, stability, and dependability of the process of

creating software thereby making it possible to manage complex systems better and at the same

time ensure they are secure and keep working as expected [47].

The methodology includes a systematic approach to developing and applying models using Sirius,

Acceleo, and Eclipse. Using Eclipse, a metamodel at the M2 level is first created. This entails

carefully identifying and describing the crucial concepts, things, and relationships that your system

must represent. The characteristics, affiliations, inheritance, and constraints of the metamodel

components are specified using the Eclipse Modelling Framework (EMF), guaranteeing a

complete representation of the system's structure and semantics [52].

A case study is carried out using Sirius, an Eclipse-based tooling platform after the metamodel has

been created. With Sirius, you may create specialized graphical modeling editors that are tailored

to the needs and scope of your project. By defining perspectives, diagrams, and representations

that are unique to your system, you may create a user interface that is both simple to use and well-

suited for generating and modifying instances of the metamodel elements. The visual and

18

interactive modeling experience made possible by the Sirius editor improves the efficiency and

simplicity of model development. The next phase in your process is to use Acceleo to convert the

models into text-based artifacts, especially to produce. JSON files when the case study in Sirius

has been finished. Acceleo automates the transition of your models into text by acting as a potent

model-to-text transformation language and generator. To do this, you create Acceleo templates and

rules that get the necessary data from the models and produce the required. JSON files.

The process includes the step of importing the generated. JSON files into Node-RED for

validation. A well-liked tool for modeling, simulating, and validating real-time systems is called

Node-RED. You may use Node-RED strong encryption capabilities to validate the characteristics.

3.2. Proposed Metamodel

In our proposed framework a generic meta-model for End-to-End Encryption is shown in Figure

7. The proposed meta model provides a comprehensive framework for End-to-End Encryption

(E2EE) which makes sure that information sent between parties is encrypted at the source and only

decoded at the recipient's end, shielding it from any interceptors even when the communication

channel is open. For applications to implement robust E2EE, this model captures a variety of

entities and their interrelationships.

The proposed metamodel contains several entities, each playing a specific role in the encryption

and decryption processes. The main entities include Encryption, Decryption, Message Payload,

and Protocol. These entities are interconnected, forming the backbone of the encryption

architecture. The Encryption entity handles the process of converting plaintext into cipher text

using a specific Algorithm. On the other hand, the Decryption entity does the opposite, applying

the same or a similar method to translate the cipher text back to plaintext. All of the top-level

structure is defined within the Flow class. Encapsulating many classes including Sensor Input,

Algorithm, Message Payload, Encryption, Protocol, and so on, it functions as a meta-entity.

Explaining how data flows from inputs to outputs and how nodes are connected within the flow

structure. It makes sure that all parts, whether they are used for encryption or other data processing

duties, cooperate to produce the intended results.

The sensor input, which can come from virtual or actual sensors, is where data enters.

Alphanumeric data indicating measurements or status updates from various scenarios are provided

by these sources. They set off events within the flow, starting procedures like using algorithmic

scripting to encrypt data. In applications like IoT or industrial automation, each input is uniquely

identified by a sensor ID and classified by kind, which is essential for comprehending and reacting

to real-world situations. The scripting or logic used for encryption procedures is referred to as the

Algorithm class. It outlines the transformation and encryption processes used to protect the

integrity of data. To meet security needs, we incorporated characteristics like key sizes and

encryption standards in addition to using cryptographic techniques to secure sensitive data. The

data being processed within the flow is represented by the message payload. It contains data that

19

nodes alter, convert, or encrypt by the algorithm's definition. This class makes sure that the

integrity of the data is preserved over its entire travel through the system. Payloads of messages

are prepared by the specifications of the application, like XML or JSON, to enable easy integration

and interoperability with other systems or services.

Figure 6: Proposed Meta-Model

Ensuring the confidentiality and protection of sensitive information from unauthorized access is

an essential component of data processing. Data encryption before transmission is specified by the

encryption techniques, which are implemented and configured by the Encryption class. To ensure

safe communication and storage procedures, it incorporates encryption standards and key

management procedures. The output of the encryption procedure is referred to as encrypted data.

It symbolizes information that has been safely encrypted using the encryption techniques and

algorithms that have been outlined in the Encryption Data class. Additionally, the flow connects

with other protocols (Protocol), including HTTP, MQTT, CoAP, Modbus, and CoAP, to enable

data interchange and communication with external systems.

The class that communicates with Modbus-based systems or devices is represented by a Modbus

Client. Employing the Modbus protocol makes communication easier by reading and publishing

data to Modbus servers (Modbus Server). Equipment and industrial automation systems can be

20

seamlessly integrated thanks to the Modbus Client class, which offers options for data types,

device addresses, and communication settings. Modbus Server uses the Modbus protocol to

function as a server. It acts as a central repository to process variables, control parameters, and

other data used in industrial automation and control applications by responding to requests from

Modbus clients (Modbus Client) to read or write data. To provide dependable and effective data

interchange with Modbus clients, the Modbus Server class controls communication protocols,

security settings, and data access rights. Modbus Write is a meta-class that describes the operations

in charge of writing data to Modbus-based systems or devices.

CoAP is a lightweight communication protocol that defines characteristics that make use of UDP

or DTLS protocols to efficiently exchange data, such as endpoints, message formats, and security

configurations. Views from meta-modeling shed light on the connections between CoAP and other

classes, such as COAP IN and COAP OUT, and show how CoAP protocols affect interoperability

and communication within the larger flow structure. COAP IN stands for input nodes that get

CoAP messages from other services or devices. It specifies properties including payload handling,

message parsing rules, and endpoint settings that allow CoAP-based communication to be easily

integrated into applications. COAP OUT designates output nodes that are in charge of transmitting

CoAP messages to other services or devices.

An HTTP request is in charge of sending HTTP requests to web servers or APIs. It allows

integration with many HTTP-based systems and services by including configurations for URL

endpoints, request methods (GET, POST, PUT, DELETE), headers, and login credentials.

A message broker or server that carries out the MQTT (Message Queuing Telemetry Transport)

protocol is denoted as an MQTT Broker. It enables MQTT clients (MQTT IN and MQTT OUT)

connected to the broker to communicate and exchange messages asynchronously. The MQTT

Broker class ensures dependable and scalable MQTT communication within IoT applications by

including configurations for the broker address, port number, security settings (TLS/SSL), and

message persistence options. When input nodes subscribe to MQTT topics and receive messages

from MQTT clients or devices linked to the MQTT broker, they are represented as MQTT IN

nodes. Based on subscribed topics and message payloads, these nodes process incoming MQTT

messages, initiating actions or processing inside the flow. The MQTT IN class facilitates the

smooth integration of MQTT-based communication by providing configurable message parsing

rules, topic subscriptions, and quality of service (QoS) settings. Output nodes that publish MQTT

messages to MQTT topics housed on the MQTT broker are represented by MQTT OUT. Based on

data processing within the flow, these nodes start MQTT messages, enabling bidirectional

communication with MQTT clients or devices.

Together, these classes describe the functionality, structure, and integration capabilities of this

encryption meta-model, allowing developers to efficiently design, implement, and oversee

complex automation, data processing, and communication systems. Every class has a distinct

function in overseeing data flow, protocol communication, security, and interoperability,

21

facilitating an extensive array of applications spanning many industries including industrial

automation and the Internet of Things.

3.2.1. TreeView of Metamodel

The TreeView feature in Obeo Eclipse offers a potent method for visualizing and interacting with

a metamodel. Users may traverse, study, and change the elements and connections of the

metamodel using TreeView, which displays its hierarchical structure. The TreeView in Obeo

Eclipse shows a tree-like depiction of the metamodel's ideas and associations when the metamodel

has been loaded. Each metamodel component is represented as a node in the tree, with its name

and type visible for quick recognition. Users may browse around the metamodel's structure by

expanding and collapsing nodes, which reveals the hierarchical organization. Different forms of

interaction are supported by TreeView. Selecting a node allows users to access specific details

about the associated metamodel elements, including their attributes, operations, and references.

Additionally, they can operate on the elements by adding new instances, changing properties, or

forming connections between them. Working with metamodels is made simple and comprehensive

by TreeView in Obeo Eclipse. It offers visual cues and icons to denote the kind, visibility, and

connections of metamodel elements, facilitating comprehension and interpretation of the structure

and semantics. Users may better comprehend the metamodel's structure, construct instances that

correspond to its stated principles, and develop relationships by utilizing TreeView. By

instantiating relevant concepts from our proposed meta-model and setting relationships among

instances accordingly, this M1-level model maps the requirements of a given case study. In Figure

8, a tree view editor is developed to make the hierarchy of your case study before implementing it

in Sirius. The basic purpose of the tree view is to add or delete some attributes or classes in the

meta-model according to your case study [53].

Figure 7. Treeview of Metamodel

22

Clicking on the "Flow" node in Eclipse's TreeView opens an enlarged view that shows all the

attributes and information related to the "Flow" concept as shown in Figure 9. TreeView makes it

simple for users to explore and grasp the complexities of the "Flow" notion, providing a greater

comprehension of its attributes and behavior inside the metamodel.

Figure 8. Properties of Flow Node.

Clicking on the "Sensor Data" node in Eclipse's TreeView opens an enlarged view that shows all

the attributes and information related to the "Sensor Data " concept as shown in Figure 10. This

provides details about the " Sensor Data " an element of the metamodel, such as attributes,

operations, and references.

Figure 9. Properties of Sensor Data

Figure 11 provides details about the " Encrypted Data " an element of the metamodel, such as

attributes, operations, and references. TreeView makes it simple for users to explore and grasp the

complexities of the " Encrypted Data " notion.

23

Figure 10. Properties of Encrypted Data

Clicking on the "Message Payload” node in Eclipse's TreeView opens an enlarged view that shows

all the attributes and information related to the " Message Payload" concept as shown in Figure

12.

 Figure 11. Properties of Message Payload

Figure 13 shows all the attributes and information related to the "MQTT" concept. This provides

details about the "MQTT" an element of the metamodel, such as attributes, operations, and

references. TreeView makes it simple for users to explore and grasp the complexities of the

"MQTT" notion, providing a greater comprehension of its attributes and behavior inside the

metamodel.

24

Figure 12. Properties of MQTT

Figure 14 provides details about the " Modbus Write " an element of the metamodel, such as

attributes, operations, and references.

 Figure 13. Properties of Modbus Write

The "COAP" node in Eclipse's TreeView opens an enlarged view that shows all the attributes and

information related to the "COAP " concept as shown in Figure 9 - makes it simple for users to

explore and grasp the complexities, providing a greater comprehension of its attributes and

behavior inside the metamodel.

25

Figure 14. Properties of COAP

3.2.2. Transformation Rules

In model transformation procedures, transformation rules are essential. The logic and procedures

necessary to transform input models into desired output models or textual artifacts are specified

by these rules. The components, properties, and relationships in the input model are mapped and

converted into equivalent elements, attributes, and relationships in the output model or text

according to transformation rules. To explain transformation logic, transformation rules are often

expressed using specialized transformation languages or tools like Acceleo, ATL, or QVT.

Developers may automate and expedite the model transformation process by utilizing

transformation rules, resulting in accurate and reliable conversions throughout the different phases

of the software development lifecycle [54]. Our approach uses transformation rules to

automatically change the M2 level metamodel, acting as the input, into Node-Red, the intended

output. The elements, relationships, and constraints described in the metamodel are mapped to

their appropriate representations in Node-Red according to these transformation rules, which

create a systematic method for doing so. In this study, the M1 level models are transformed into a

JSON file format, which displays the model in textual form. The MWS Framework uses the

Acceleo transformation language to carry out the transformation process. While components in

the metamodel are defined by classes, objects, and relationships, components in Node-Red are

defined by templates, locations, and edges. The metamodel uses attributes and methods to specify

properties, whereas Node-Red uses local and global variables to express them. In Node-Red,

associations from the metamodel are converted to wires that connect the various components. The

Node-Red process transforms constraints from the metamodel into guard conditions for transitions.

In contrast to Node-Red, which allows automated verification through a runtime compilation

mechanism, verification in the metamodel is often carried out manually through testing and

debugging. Finally, Node-Red imports and exports the model as a JSON file suited for the

26

simulation of the IOT network while the metamodel is stored as source code files in programming

languages like Java, JS, C++, or Python [55].

 Table 3. Transformation Rules

Model Artifacts ICON Mapping Description

Sensor Input

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

Message Payload

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

Encryption

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

HTTP request

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

Modbus Flex Server

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

27

targeting the

corresponding

class

Modbus Write

& Modbus Client

 Class

→Attributes→

Name

& Class

→Operations→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

&

Fetching the name

of operations by

first targeting the

corresponding

class

MQTT IN

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

MQTT Out

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

28

targeting the

corresponding

class

Encrypted Data

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

COAP IN

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

COAP OUT

Class→

Attributes→

Name

Fetching the name

of attributes with

their corresponding

values by first

targeting the

corresponding

class

<<Connections>>

ConnectedElement

→Association

Name

ContainerClass→

Containments→

ContainingClass

→name

Fetching the

name of reference

or containment to

further fetch the

corresponding

attributes or

operations

29

In short, the technique entails utilizing Eclipse to create a metamodel at the M2 level, using Sirius

to perform a case study for customized graphical modeling, using Acceleo to convert the models

into JSON files, and then verifying these files in Node-Red. This thorough and iterative process

makes sure that system models are created accurately, that they are converted into textual

representations, and that they are then validated utilizing the Node-Red compiler. We guarantee a

smooth and automated process of building IoT models by precisely specifying these rules, which

capture the sensors' data and semantics inherent in the M2-level metamodel. To analyze and

validate the system modeled at a higher degree of abstraction and to close the gap between the

abstract metamodel and the concrete Node-Red representation, we may leverage the rigorous

verification capabilities of the tool. To make the transition from the metamodel to the Node-Red

process easier, transformation rules are required.

30

CHAPTER 4

IMPLEMENTATION

In this chapter, a thorough analysis of Sirius and its application, as well as an in-depth examination

of Acceleo transformation will be discussed. We will delve into Sirius' complexities to learn how

it permits the construction of domain-specific languages (DSLs) and the building of customized

graphical modeling editors. We will examine Sirius' capabilities and characteristics that enable

simple and attractive visual representations of complex structures. I will also focus on Acceleo’s

transformation features and how they help with model-to-text transformations. This knowledge

will empower readers to confidently employ these tools to produce expressive visual models and

generate customized textual artifacts that cater to their specific needs.

4.1. Case Study 1

Smart Grid Station

Our case study is based on cybersecurity threats in critical infrastructures like grid stations in a

smart city. [51]. Ensuring safety against threads is crucial in these infrastructures to guarantee

smooth continuity of operations. These power grids provide electricity supply for residential zones,

commercial sectors, and industrial areas. Deploying sensors in a grid assists in the smooth

continuity of operations with the real-time data collected from all the components of the grid thus

taking time accordingly. Any sort of security attack on this crucial data may cause disruption of

services which worsens espionage for larger geopolitical damage. Safeguarding power grids from

cyber-attacks ensures economic stability and public safety. In a power grid infrastructure, IoT

sensors are deployed to capture voltage levels and assess the temperature of key components such

as circuit breakers, power lines, and transformers. Sensors are also strategically installed to

measure the stability metrics of power stations such as phase, frequency, and power factors to

check the health status of the station. Overall line conditions are also checked with the help of

automated IoT devices which help in identifying potential issues in a line such as congestion or

faults.

Real-time data collected from the grid is collected and transmitted to the control center. This data

is then monitored by a centralized system which identifies incoming data and checks trends to

identify anomalies and hence initiates respective responses required to ensure the smooth

operations of the grid. This data also helps the operators to make informed decisions and take

timely actions to maintain the stability of the grid thus enhancing the overall efficiency of the

system.

31

Figure 15. Smart Grid Station [52]

We will be implementing our adaptable framework for safeguarding the power grid from cyber-

attacks. This robust encryption algorithm will be deployed to ensure that the data collected from

servers reaches the servers with all its authenticity. The process involves gathering the data,

processing it, and finally analyzing it to evaluate a finalized decree so that timely decisions can be

made on whether the power grid needs any form of operator assistance or maintenance or not. In

case any component of the grid doesn’t need any upkeep, then transmission of false data could

also be prohibited so that forged sensor values are not communicated to relevant control centers.

The model safeguards the lines of the control system so that no loopholes are left in the

communication pathway.

When validating the encryption made using the proposed framework, we have made use of AES

as it is an enhanced version of DES and utilized key shift rounds. In our case study, we have used

a block algorithm, a subtype of symmetric encryption. It operates on a group of bites having a

fixed length. A secret key is used for decryption whereas block completion is awaited to complete

the encryption or decryption process.

4.1.1. Sirius:

The open-source modeling tool Eclipse Sirius enables the development of unique graphical

modeling workbenches in the Eclipse environment. Because of its novel methodology, users may

create graphical editors and domain-specific languages (DSLs) that are customized to meet their

32

unique requirements. There are generally multiple phases involved in implementing a case study

with Eclipse Sirius. To identify the specific problem domain and the modeling ideas to be

represented, the case study's requirements and scope are first specified. Next, Sirius' easy graphical

modeling capabilities are used to develop the DSL for the case study. This entails establishing the

metamodel, creating graphical representations, and defining the layout and behavior of elements.

The case study's model instances are generated and modified using the custom graphical editor

when the DSL is specified.

 Figure 16. Treeview of Sirus

In this Figure, a network of nodes and their connections are graphically displayed to show how the

system's interconnected components relate to one another. The graphic is purposefully made to

explain the underlying architecture simply and understandably. Each node in the Sirius diagram

has specific properties that are accessible by clicking on the node. For instance, when you click on

the Flow node, a properties panel with important features is displayed, allowing you to efficiently

customize the node's depiction [57].

The following fields are present in the Flow node's properties panel:

1. ID: To distinguish the Flow node from other nodes in the diagram and to assist in

identifying it, you may give it a special identity using this field.

2. Domain Class: The domain class linked to the Flow node can be specified here.

The domain class establishes the node's fundamental data structure and behaviour,

guaranteeing the node's proper interaction with other system elements.

3. Semantic Candidates Expression: You can specify the possible semantic candidates

for the

33

4. Flow node using the robust expression language offered by this field. The data

components or entities that are allowed to be depicted in the diagram as Flow nodes

can be managed by specifying this expression.

You may guarantee that the final representation is coherent and functionally related by precisely

filling out these properties for each node as shown in Figures. To ensure that the final

representation appropriately depicts the underlying architecture and data exchanges, each node

develops into a well-defined and useful component of the system.

Figure 17. Flow Node Sirus Architecture.

Figure 18. Sensor Input Node Sirus Architecture.

34

Figure 19. Encrypted Data Node in Sirius Architectures.

Figure 20. HTTP Request Node in Sirius Architectures.

The process of representation in Sirius entails developing unique visual representations of models

within a customized modeling workbench. Designers create a user-friendly and engaging

environment using perspectives, diagrams, node and edge mappings, visual styles, tool extensions,

layouts, and expressive queries. Diagrams provide components of the model in accordance with

predefined rules, whereas viewpoints specify certain perspectives or elements of the model. For

users to build, edit, and visualize domain-specific models, Sirius's modeling environment offers a

simple and effective platform. The Diagram Area, Palette, and Attribute Assignment Area work

together to give users the ability to quickly instantiate ideas, define attributes, and create

35

relationships, resulting in a thorough and visually engaging representation of the modeled system.

A graphical representation of case study 1 is shown in Figure 16.

4.2. Case Study 2

Smart Voice Pathology Monitoring System (SVPMS)

Voice pitch and frequency is everyone’s unique feature. However, the natural phenomena of

generating the voice are sometimes disturbed when individuals continuously speak for longer

periods or habitual to communicate in a louder voice. Musicians, teachers, and sometimes the kids

who shout very often face some distortion in their voice, called voice pathology. Other than poor

vocal practices, smoking, dehydration, and laryngeal infection can also deteriorate voice quality

causing fatigue and strain in vocal cords. [53] Monitoring of voice pathology is an important

factor that most patients ignore when they get a temporary relief after medication. Whereas this

issue leads to severe health problems if not monitored.

We will be creating a Smart Voice Pathology Monitoring System (SVPMS) which would be

monitoring the patient’s health attributes to identify their current condition. This automated system

would be handled through IoT. SVPMS tracks patients’ health with sensors and sends encrypted

packets over the application layer to notify paramedics. The process involves gathering the data,

processing it, and finally analyzing it to evaluate a finalized decree so that patient gets on-time

medical assistance. In case any patient doesn’t need any help from medical staff, then transmission

of false data could also be prohibited so that forged sensor values are not communicated.

Figure 21. Graphical View of SVPMS

36

4.2.1. Acceleo Transformation

For a formal verification framework, we have developed a transformation engine. The Ecore

Metamodel diagram may be transformed into timed automata using this engine, simplifying formal

verification. With the help of this transformation, we may examine and verify the behavior of

complex systems under precise timing constraints, assuring the accuracy and dependability of

those systems. The architectural plan shown in Figure 27 is the foundation upon which the

Transformation Engine has been implemented. This engine's major objective is to automate the

whole verification and transformation process utilizing transformation mapping rules that preserve

the semantic parity of the two languages, namely the M2 level metamodel and timed automata.

We have selected the Acceleo tool, which serves as the foundation for carrying out these changes,

for the model-to-text transition [59]. The User Interface and the Model Generator are the two main

components of the Transformation Engine. Together, these elements make model changes quick

and smooth while maintaining semantic parity between the original metamodel and the timed

automata representation.

Figure 22. The architecture of the Transformation engine

The Ecore metamodel is transformed by the Model Generator into Json for validation and

verification. There are two main components to the process:

37

Generate File (Generate.java): The logic for the Model-to-Text transformation is handled in this

file, which also creates the JSON representation for the specified Ecore model from the user

interface.

Template File (Generate): The transformation's coding logic is contained in the template file. It

gives the rules for constructing the target model and describes how the Ecore elements are

transferred to JSON constructs. Two output files are produced after the Generate.java and related

template files have been successfully executed:

a. JSON This file contains the modified Encryption model, which simulates the system

behavior shown in the core model.

b. User requirements properties based on the score model is contained in this file. These

properties describe the system's desired properties and behaviors that need to be tested.

A model of the End-to-End Encryption was used to create Acceleo code, which then generates

code. The Acceleo language, a template-based code generator that employs the Eclipse Modelling

Framework (EMF) to convert models into executable code, was used to create the Acceleo code

[60]. To provide flexibility and automation in the software development process. Acceleo makes

it possible to generate code, documentation, or any other textual artifacts from models.

Once the code has been written in Acceleo, it is time to begin the run configurations by choosing

the model and case study, customizing it, and then executing to produce the output as shown in

Figure 28.

Figure 23. Run configuration of Acceleo

38

CHAPTER 5

VALIDATION

In this validation chapter, Node-Red will be used to thoroughly validate each case study. We will

make extensive evaluations of temporal dynamics, synchronization, and property adherence using

JSON files from Acceleo transformations

5.1. NODE-RED

It is an open-source programming tool that is explicitly meant to link hardware devices, APIs, and

online services in new and intriguing aspects. It is based on Node.js leveraging non-blocking,

event-driven models which are best for developing scalable network applications [54] [55]. Node-

Red's visual programming interface enables easy production of real-time, data-driven Internet of

Things (IoT) workflows in which devices and services have to be connected without any hitches.

Node-Red makes wiring straightforward through an interface where any node available can be

connected with another by just using the mouse. In addition, developers can use it for IoT projects

without much coding required thus saving time while improving efficiency. With it single-click

deployment feature; people do not have to spend long hours typing codes before getting started

hence making it possible for users who do not know programming languages at all to grasp how

things work within a few minutes [56]. Node-Red was chosen for the following various reasons:

• Event-driven Architecture: Node-Red is built using Node.js, Node-Red can handle non-

blocking asynchronous events, common in IoT environments [57].

• Ease of Use: Node. red incorporates graphics that make programming easier by visual

means. It should break the flow of creation and editing through cycles into small pieces so

that one may be able to implement complicated IoT apps more easily (and debug them too)

when necessary.

• Extensibility: In addition, Node-Red comes with several extensions that can be used on

any project without any constraints because they support many devices as well as different

types of connection methods including internet services (like Twitter), sensors, etc.

• Debugging Functionalities: Node-Red includes robust debugging tools, which allow

developers to see results at different levels and quickly identify and fix issues within the

flows. In this respect, it is important to ensure IoT systems have a reliable and secure

communication

• Continuous Monitoring: The Command Line Interface (CMD) keeps running in the

background; therefore, Node-Red continuously monitors and performs flows, tracks errors,

and assures their smooth operation. [58]

39

5.2. Proof of Concept

5.2.1. Case Study 1. Grid Station

Critical systems like grid stations in smart cities pose a lot of cybersecurity threats thus we made

this a part of this research as a proof of concept. To ensure a smooth execution of a program it is

crucial to ensure the safety of threads [59]. Power is supplied in homes, residential zones,

commercial sectors, and industrial zones from the power grid. The collection of real-time data

from all the components of the grid stations enables the smooth continuity of the operations and

the generous amount of time it takes. To capture the voltage level and other things with much more

efficiency and ensure economic stability and public safety from cyber-attacks. They are installed

to measure the stability of metrics such as phase, frequency, and power to check the status of the

station. Potential issues such as congestion systems and other things are also identified using the

automated IoT [60]. The data collected from the grid stations are then transferred to control centers.

To identify anomalies this data is then monitored by a centralized system and initiates the

respective response that is used to make sure that the system runs smoothly. To make sure that the

data that is collected from the servers reaches other servers with more authenticity. This involves

conventional steps like gathering data, analyzing the data, and then processing it to evaluate

whether it requires any further assistance or not.

Figure 24. Grid Station Case Study with Sirius

40

Figure 25. Simulating Grid Station Case Study in Node-Red

41

AES encryption is symmetric encryption and a well-known method that is used to encrypt sensitive

data [61]. This process is symmetric which means both the sender should have the same key to

encrypt or decrypt the data. A block cipher is defined as a method where the large chunks are

broken into smaller parts where the plaintext is converted into an incomprehensible form which is

a cipher text [62]. Multiple cryptographic methods are used and undergo multiple rounds for the

encryption of data and ultimately provide confidentiality and integrity. The AES method protects

it from brute force attacks. The security level is either achieved by a 128-bit key, 192 or 256. They

undergo 10, 12, and 14 rounds of encryption. There are many methods involved such as

substitution, transposition, and mixing of cipher text and plain text to obtain the final cipher output.

In this process, it passes through multiple rounds, and it is split into block ciphers and has 3 main

components which are as follows [63].

• Input block: It is the text that is received from the sender.

• Key: It converts the plain text into cipher text and protects the plain text and important

information the user has sent.

• Output block: It is the output block that is generated in response to plain text after passing

through some method that processes with keys and gives cipher text.

In this, a plain text is put into an array and then multiple techniques are applied to it. After putting

it into an array, it is passed through cipher transformation and repeated multiple encryption rounds.

Through this, a cipher is obtained which is predefined. Then it is put into a second transformation,

where all rows are shifted except for the first one. In the third transformation, it passes through the

Hill cipher. Hill cipher is performed on each column generating a mature cipher text. During

decryption, they use multiple and copy cipher, and the layers of encryption keys are removed

generating a plaintext [62].

5.2.2. Case Study 2. Smart Voice Pathology

Our case study is based on voice pathology. Voice pitch and frequency are everyone’s unique

features. However, the natural phenomena of generating the voice are sometimes disturbed when

individuals continuously speak for longer periods or are habitual to communicate in a louder voice.

Musicians, teachers, and sometimes the kids who shout very often face some distortion in their

voice, called voice pathology. Other than poor vocal practices, smoking, dehydration, and

laryngeal infection can also deteriorate voice quality causing fatigue and strain in vocal cords.

Monitoring of voice pathology is an important factor that most patients ignore when they get

temporary relief after medication. This issue leads to severe health problems if not monitored.

Smart Voice Pathology Monitoring System (SVPMS) monitors the patient’s health attributes to

identify their current condition. This automated system would be handled through IoT. SVPMS

tracks patients’ health with sensors and sends encrypted packets over the application layer to notify

paramedics. The process involves gathering the data, processing it, and finally analyzing it to

evaluate a finalized decree so that the patient gets on-time medical assistance. In case any patient

42

doesn’t need any help from medical staff, then transmission of false data could also be prohibited

so that forged sensor values are not communicated to relevant paramedics. We have simulated the

workflow in the Sirius dashboard and analyzed how packets are sent over different protocols. We

have evaluated the performance of encrypted data packets over application layer protocols using

their size and transmission time. Before sending packets over the network, they are encrypted

using a cloud-based encryption algorithm to ensure their safety on the way from sender to receiver.

Figure 26. Simulating Case Study SVPMS

Figure 27. Validation in Node-Red

43

Summary

As proof of the proposed concept, we have made a system, which changes according to different

circumstances, to keep off cyber-attacks on the electrical power grid. Every piece of information

collected from the servers remains undistorted owing to our tough encoding formula.

Data Collection:

The grid has various parameters tracked by sensors among them, are voltage levels, and

temperature of essential components e.g. circuit breakers; from power lines as well as

transformers; the other parameters are phase, frequency, and power factors. Real-time power data

is collected from Internet of Things (IoT) sensors and these continuously collect health and status

data for the power grid components.

Data Encryption:

We encrypt the collected data so that no one else can ever see what it holds unless they have been

given permission. Advanced Encryption Standard (AES) is employed when it comes to encrypting

information. AES is an example of a symmetric cryptosystem that turns plain text messages into

scrambled text by employing a secret key. The key length options vary from 128 bits to 256-bit

ones, this provides flexibility when determining which strengths may be needed for different

projects and scenarios, and in some cases where there are restrictions due to other technical or

policy reasons, 192 bits may also work well after all [63].

Data Transmission:

The central control center receives encrypted data using secure channels. To make certain that the

data is sent securely on the Web, secure communication protocols like HTTPS are used [64] [65]..

The secure APIs can handle many communication issues making sure that there is a common

interface for all data exchanges.

Figure 28. Flowchart of data processing through Node-Red.

Data Processing:

We use Node-Red to control what data is moving and to easily spot mistakes. There are algorithms

integrated directly into Node-Red to handle the decryption part. Tools for analysis plus models

that rely on machine learning can also assist us in seeing trends or irregularities within the

information thereby giving us a hint on how the grid behaves practically speaking.

Collection Encryption Transmission Processing &
Analysis

44

5.3. The Significance of the Modeling Approach

Modern software engineering critically depends on Model-Driven Development (MDD),

particularly in the face of IoT’s highly intricate nature and security challenges [35]. With modeling

methodologies like ours, the aim is to address encryption and data reliability issues in a structured

manner. The benefits of the Modelling approach used for this encryption process are mentioned

below [66]:

5.3.1. Complexity Reduction and Enhanced Abstraction:

The complexity level of trying to control interconnected connected systems when it comes to

standard program creation methods is generally higher. But if we use MDD we will have to think

less about code structure and more about how everything works together at a high level in our

applications [66]. By involving Node-red as a tool, a visual programming interface was possible

which helped in the process of creating, managing, and debugging the workflows in IoT become

easier and more fluent. The cognitive load on developers and the risk of errors is also minimized

[54]. With its drag-and-drop feature, Node-Red allows people to develop IoT apps faster because

they do not require a lot of coding skills. Those who know little about programming will also find

it easy to use. Node-Red is modular meaning that it enables new components or superior

functionalities to be integrated into it and makes sure that the system can be in tune with changing

needs without a major rewrite [50].

5.3.2. Time Efficiency and Agile Development

Quick prototyping and real-time iteration were possible due to involving MDD in the methodology

of the thesis, these characteristics of MDD are proven to be crucial IoT environments for quick

adaptation based on testing and feedback [31]. Node-red’s one-click change deployment capability

massively advances the development process through its characteristic ability to speed up update

frequency as well as improvements [50].

Node-Red provided strong debugging tools to troubleshoot and resolve issues at every phase of

development which reduces downtime and increases system reliability. This means anomalies and

errors are detected early enough and fixed immediately hence the system operates smoothly and

remains stable through continuous monitoring via the Command Line Interface (CMD).

5.3.3. Enhanced Security and Data Integrity

To ensure security at all times, we have incorporated Advanced Encryption Standard (AES) in the

design. This is crucial in securing data during storage and its transmission [63]. Cyber-attacks

could lead to the loss of sensitive information which requires protection. In the methodology we

use, data is safeguarded along its life cycle using end-to-end encryption forms while in transit or

when stored. Such systems as electrical grids which ought to have integrity of information are very

critical.

45

It is very important to keep alive the reliability of IoT systems by maintaining their data integrity.

The latter act is done through strong encryption techniques and secure communication channels

that determine the truthfulness of data reaching the server for monitoring. When it comes to Node-

Red, the application of artificial intelligence welcomes high-scale detection of error margins using

specific devices that indicate nonconformism [57]. Consequently, it enhances trust and

dependability of the overall function and safety of interconnected devices in the Internet of Things.

When IoT networks expand, it is no longer possible to manage security manually. Encipherment

was systemically implemented using modelling approaches that make security uniform and thus

consistent Interoperability, this process involved the creation of interfaces to allow communication

between diverse cryptographic protocols and standards hence systems from one manufacturer can

interact with devices produced by others within the same network

The Model developed helps to ensure that the information collected from IoT sensors remains

correct and reliable, which is crucial in making decisions based on real-time data. Inbuilt

automated divergence processes and validation in modeling tools aid in consistently checking data

credibility to reduce the chances of data corruption or manipulation.

46

CHAPTER 6

DISCUSSION

In this thesis, we have devised a methodology to deal with modern IoT system problems that are

complex and lack security features, especially in important infrastructures. This research combines

MDD along with enhanced methods of protecting to make strong, efficient frameworks that can

control these networks. The thesis contributed significantly by applying MDD to simplify and

improve the development of IoT applications. This involves using Eclipse and making the Sirius

tool representation to take the method up a notch in terms of abstraction and visualization making

it easier for programmers to put up testing environments and integration configuration files as well

as write complex systems. By reducing the cognitive load experienced by software engineers or

developers, we can hasten the rate at which software products are developed. It is dynamic and

therefore suited for IoT environments owing to their continuously changing needs and

configuration requirements.

The thesis integrates encryption standards and secure communication protocols to address critical

data integrity concerns. Within IoT networks, it is important to guarantee the reliability and

security of data since breaches can cause great disruptions which might make devices susceptible

to different forms of attacks. Sensitive data will continue to be protected from unauthorized access

and cyber-attacks by using cloud-based encryption practices. Especially in critical systems where

human and material resources are at stake, this is quite important because security breaches can

have widespread effects and are grave.

We demonstrated the practical utility of the suggested approach in a comprehensive examination

of grid stations in smart cities. It is shown that if actual-time information is collected through IOT

sensors and needs to be transmitted in a network where there exists a doubt of anomalies, this

framework is an appropriate solution to enhance the robustness while keeping the limited resources

in consideration. The proposed model is adaptable and thus makes a key contribution to the domain

of IoT security and system management. Utilizing MDD and cutting-edge security techniques, it

presents a scalable, effective, and secure way of handling intricate IoT networks, guaranteeing

their dependability as well as robustness in crucial applications.

47

CHAPTER 7

CONCLUSION

This thesis proposed the idea that aims at dealing with the problem of encrypting data in IoT

systems using Model Driven Approach. The basis of this lies in combining MDD (Model-Driven

Development) with advanced security techniques which leads to the creation of a strong, efficient,

and secure framework for managing these networks. Traditional software development models

like the waterfall model are inadequate for the dynamic and interconnected nature of modern

systems, the thesis addresses the issue by introducing MDD as a solution that eases the design,

implementation, and testing of complex systems through higher levels of abstraction and

visualization. Eclipse came in handy for its capability to simplify development through visual

programming and event-driven architecture are highlighted in the methodology of this thesis. The

central premise of this thesis is to boost end-to-end encryption of communication in the IoTs. By

relying on robust protocols, the leak of crucial data in IoT systems is minimized since the

methodology focuses on maintaining their security against intruders and cybercrimes. This is

especially important in ensuring consistency and confidence in the functioning of important

facilities like power grids.

A case study on smart city grid stations is carried out to examine the practical application of the

suggested methodology. The purpose of deploying IoT sensors is to collect real-time data

concerning various parameters that are afterward analyzed by Node-Red to ascertain their stability

and effectiveness. Additionally, integrating machine learning algorithms for detecting anomalies

enhances the system’s ability to preemptively identify any threats that may arise. In managing

complex IoT networks, by using MDD together with advanced security approaches, this research

work offers a scalable, efficient, and secure solution that assures the dependability and resilience

of such networks in important applications.

To prevent an increase in the size of data, encoding algorithms should be improved and made

secure as one possible direction for research in the future. It is further suggested that exploring

compression methods combined with encoding may reduce the problem of data expansion.

Therefore, simple forms of encryption protocols should be designed especially for IoT-based

environments so that they do not consume too much system power. To further strengthen the

model’s ability to detect and respond to threats, improving the anomaly detection mechanisms with

the application of some advanced machine learning techniques. Such practical insights would in

turn help researchers in doing further modifications and advancements on how they manage

security systems of devices used in IoT.

References

[1] K. A, P. Prombage and . L. M, "Introduction to iot," 2020.

[2] M. Liyanage, A. Braeken, P. Kumar and M. Ylianttila, "IoT security: Advances in

authentication," John Wiley \& Sons, 2020.

[3] G. Solomon, P. Zhang, R. Brooks, and Y. Liu, "A Secure and Cost-Efficient Blockchain

Facilitated IoT Software Update Framework," IEEE Access, 2023.

[4] A. Dorri, S. S. Kanhere and R. Jurdak, "Towards an optimized blockchain for IoT," in

Proceedings of the second international conference on Internet-of-Things design and

implementation, 2017, pp. 173--178.

[5] A. Singh and R. Gilhotra, "Data security using private key encryption system based on

arithmetic coding," International Journal of Network Security \& Its Applications (IJNSA),

vol. 3, no. 3, pp. 58-67, 2011.

[6] B. R. T. V. and M. V., "Internet of Things - A study on the security," 2015.

[7] A. W. Atamli and A. Martin, "Threat-based security analysis for the Internet of Things.,"

International Workshops on Secure Things 2014, 2014.

[8] L. S.-Y. C. K.-C. and L. Y., "Toward ubiquitous massive accesses in 3GPP machine-to-

machine communication," IEEE Commun Mag 2011, 2011.

[9] M.-S. Pan and Y.-C. Tseng, "ZigBee and their applications," in Sensor networks and

configuration: Fundamentals, standards, platforms, and applications, 2007, pp. 349--368.

[10] D. R. S. e. al, "Progress Report on the National Geologic Map Database, Phase 3: An Online

Database of Map Information," in Digital Mapping Techniques '01 -- Workshop

Proceedings U.S. Geological Survey Open-File Report 01-223., 2001.

[11] L. Barreto and A. Amaral, "Smart farming: Cyber Security challenges," in 2018

International Conference on Intelligent Systems, 2018.

[12] S. Bagchi, T. F. Abdelzaher, R. Govindan, P. Shenoy, A. Atrey, P. Ghosh and R. Xu, "New

Frontiers in IoT: Networking, Systems, Reliability, and Security Challenges," IEEE Internet

of Things Journal, vol. 7, no. 12, pp. 11330--11346, 2020.

[13] "International Organization for Standardization / International Electrotechnical

Commission," in Software Engineering - Metamodel for Development Methodologies.,

2007.

[14] Kokoris-Kogias E, Voutyras O, and Varvarigou T, "TRMSIoT: A scalable hybrid trust &

reputation model for the social Internet of things.," in 2016 IEEE 21st international

conference, on emerging technologies and factory automation ETFA, 2016.

[15] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, "Security, privacy, and trust in

internet of things," Computer networks, vol. 76, pp. 146-164, 2015.

[16] R. Tahir, A. Raza, F. Zaffar, F. U. Ghani and M. Zulfiqar, "Using SGX-Based Virtual Clones

for IoT Security," in 2018 IEEE 17th International Symposium on Network Computing and

Applications (NCA), 2018.

[17] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of Things for Smart

Cities," IEEE Internet of Things journal, vol. 1, no. 1, pp. 22--32, 2014.

[18] T. Denning, T. Kohno and H. M. Levy, "Computer security and the modern homes,"

Communications of the ACM, vol. 56, no. 1, pp. 94-103, 2014.

[19] S. Sontowski, M. Gupta, S. S. L. Chukkapalli, M. Abdelsalam, S. Mittal, A. Joshi and R.

Sandhu, "Cyber Attacks on Smart Farming Infrastructure," in IEEE 6th Internation

Conference on Collaboration and International Computing, 2020.

[20] O. S. Cupp, D. E. Walker and J. Hillison, "Agroterrorism inthe us: key security challenge

for the 21st century.," Biosecurity and bioterrorism: biodefense strategy, practice, and

science, vol. 2, no. 2, p. 97, 2004-105.

[21] M. B. Line, A. Zand, G. Stringhini and R. Kemmerer, "Targeted attacks against industrial

control systems: Is the power industry prepared," in Proceedings of the ACM Conference

on Computer and CommunicationSecurity 2014, 2014.

[22] BBC News, "Hack attack causes 'massive damage' at steel works," BBC, 22 December

2014. [Online]. Available: https://www.bbc.com/news/technology-30575104. [Accessed 1

6 2024].

[23] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk and P. Szalachowski, "The scion internet

architecture," Communications of the ACM, vol. 60, no. 06, pp. 56-65, 2017.

[24] A. Perrig, "Global Communication Guarantees in the Presence of Adversaries," in

Proceedings of the 15th ACM Asia Conference on Computer and Communications Security,

October 2020.

[25] K. Tange, M. D. Donno, X. Fafoutis and N. Dragoni, "A Systematic Survey of Industrial

Internet of Things Security: Requirements and Fog Computing Opportunities," IEEE

Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2489 - 2520, 2020.

[26] R. McMillan, "Definition: threat intelligence," 16th May 2013. [Online]. Available:

https://www.gartner.com/en/documents/2487216#:~:text=Threat%20intelligence%20is%2

0evidence-

based%20knowledge%2C%20including%20context%2C%20mechanisms%2C,the%20su

bject%27s%20response%20to%20that%20menace%20or%20hazard.. [Accessed 29 April

2024].

[27] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig and D. G. Andersen, "SCION:

Scalability, Control, and Isolation On Next-Generation Networks," in 2011 IEEE

Symposium on Security and Privacy, 2011.

[28] R. Schlegel, S. Obermeier and J. Schneider, "Structured system threat modeling and

mitigation analysis for industrial automation systems," in IEEE 13th International

Conference on Industrial Informatics (INDIN), 2015.

[29] A. Shostack, Threat modeling: Designing for security., John Wiley & Sons, 2014.

[30] P. Patel and D. Cassou, "Enabling high-level application development for the Internet of

Things," Journal of Systems and Software, vol. 103, pp. 62--84, 2015.

[31] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pelliccione and R. Spalazzese,

"Model-driven engineering for mission-critical iot systems," IEEE software, vol. 34, no. 1,

pp. 46--53, 2017.

[32] R. G. Anvekar and R. M. Banakar, "IoT application development: Home security system,"

in 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development

(TIAR), Chennai, India, 2017.

[33] F. Ciccozzi and R. Spalazzese, "Mde4iot: supporting the internet of things with model-

driven engineering," in International Symposium on Intelligent and Distributed

Computing}, Springer, 2016.

[34] Z. M. Korani, A. M. A. A. R. d. Silva and J. C. Ferreira, "Model-Driven Engineering

Techniques and Tools for Machine Learning-Enabled IoT Applications: A Scoping Review,"

Sensors, vol. 23, no. 3, 2023.

[35] M. Brumbulli and E. Gaudin, "Towards model-driven simulation of the internet of things,"

in Complex Systems Design \& Management Asia: Smart Nations--Sustaining and

Designing: Proceedings of the Second Asia-Pacific Conference on Complex Systems Design

\& Management, CSD\&M Asia 2016, Springer, 2016, pp. 17--29.

[36] B. B. Gupta and M. Quamara, "An overview of Internet of Things (IoT): Architectural

aspects, challenges, and protocols," Concurrency and Computation: Practice and

Experience, vol. 32, no. 21, p. e4946, 2020.

[37] S. Khan, S. Parkinson and Y. Qin, "Fog computing security: a review of current applications

and security solutions," Journal of Cloud Computing, vol. 6, pp. 1--22, 2017.

[38] J. Yuan and X. Li, "A reliable and lightweight trust computing mechanism for IoT edge

devices based on multi-source feedback information fusion," Ieee Access, vol. 6, pp. 23626-

-23638, 2018.

[39] B. Cooksey, An introduction to APIs, Zapier, Inc, 2014.

[40] A. Alawadhi, A. Almogahed and E. Azrag, "Towards Edge Computing for 6G Internet of

Everything: Challenges and Opportunities," in 2023 1st International Conference on

Advanced Innovations in Smart Cities (ICAISC), 2023.

[41] D. Ferraris, C. Fernandez-Gago and J. Lopez, "A model-driven approach to ensure trust in

the IoT," Human-centric Computing and Information Sciences, vol. 10, pp. 1--33, 2020.

[42] G. Fortino, C. Savaglio, G. Spezzano and M. Zhou, "Internet of things as system of systems:

A review of methodologies, frameworks, platforms, and tools," IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 223--236, 2020.

[43] G. Kumar and P. K. Bhatia, "Comparative analysis of software engineering models from

traditional to modern methodologies," in 2014 Fourth International Conference on

Advanced Computing \& Communication Technologies, IEEE, 2014, pp. 189--196.

[44] M. Awad, "A comparison between agile and traditional software development

methodologies," University of Western Australia, vol. 30, pp. 1--69, 2005.

[45] G. Papadopoulos, "Moving from traditional to agile software development methodologies

also on large, distributed projects," Procedia-Social and Behavioral Sciences, vol. 175, pp.

455--463, 2015.

[46] S. Najihi, S. Elhadi, R. A. Abdelouahid and A. Marzak, "Software Testing from an Agile

and Traditional view," Procedia Computer Science, vol. 203, pp. 775--782, 2022.

[47] S. Adams, P. A. Beling, S. Greenspan, M. Velez-Rojas and S. Mankovski, "Model-based

trust assessment for internet of things networks," in 2018 17th IEEE International

Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE

International Conference On Big Data Science And Engineering (TrustCom/BigDataSE,

2018.

[48] K. M. Abbasi, T. A. Khan and I. ul Haq, "Modeling-framework for model-based software

engineering of complex Internet of things systems," Mathematical Biosciences and

Engineering, vol. 18, no. 6, pp. 9312--9335, 2021.

[49] M. Bisma, F. Azam, Y. Rasheed and M. W. Anwar, "A model-driven framework for ensuring

role based access control in IoT devices," in Proceedings of the 2020 6th International

Conference on Computing and Artificial Intelligence, 2020, pp. 455--460.

[50] K. a. D. J. Ferencz, "Using Node-RED platform in an industrial environment," XXXV.

Jubileumi Kand Konferencia, Budapest, pp. 52--63, 2019.

[51] W. Fei, H. Ohno and S. Sampalli, "A Systematic Review of IoT Security: Research

Potential, Challenges, and Future Directions," ACM Computing Surveys, vol. 56, no. 5, pp.

1--40, 2023.

[52] C. Ozarpa, M. Aydin and İ. Avci, International Security Standards for Critical Oil, Gas, and

Electricity Infrastructures in Smart Cities: A Survey Study, 2021.

[53] K. Saeed, M. F. Adak and K. Javeed, "ML-based Smart Voice Analysis for Healthy and

Pathological Voice Detection," EXPERT: Jurnal Manajemen Sistem Informasi dan

Teknologi, vol. 13, 2023.

[54] D. a. F. L. a. D. G. Ancona, M. Leotta, M. Ribaudo and F. Ricca, "Towards runtime

monitoring of node. js and its application to the internet of things," arXiv preprint

arXiv:1802.01790, 2018.

[55] D. Torres, J. P. Dias and A. a. F. H. S. Restivo, "Real-time feedback in node-red for iot

development: An empirical study," in 2020 IEEE/ACM 24th International Symposium on

Distributed Simulation and Real Time Applications (DS-RT), IEEE, 2020, pp. 1--8.

[56] K. Anam, D. N. Rofi and R. Meiyanti, "Monitoring System for Temperature and Humidity

Sensors in the Production Room Using Node-Red as the Backend and Grafana as the

Frontend," Journal of Systems Engineering and Information Technology (JOSEIT), vol. 3,

no. 2, pp. 59--76, 2023.

[57] J. Kopjak and G. Sebestyen, "Event-driven Fuzzy Inference System Implementation in

Node-RED," in 2019 IEEE 17th International Symposium on Intelligent Systems and

Informatics (SISY), IEEE, 2019, pp. 000255--000260.

[58] A. Rajalakshmi and H. Shahnasser, "Internet of Things using Node-Red and alexa," in 2017

17th International Symposium on Communications and Information Technologies (ISCIT),

2017, pp. 1-4.

[59] M. Campusano, S. Hacks and E. Y. Kang, "Towards model driven safety and security by

design," in 10th international workshop on Quantitative Approaches to Software Quality

(QuASoQ 2022), CEUR Workshop Proceedings, 2022.

[60] V. K. Jain, A. P. Mazumdar, P. Faruki and M. C. Govil, "Congestion control in Internet of

Things: Classification, challenges, and future directions," Sustainable Computing:

Informatics and Systems, vol. 35, p. 100678, 2022.

[61] A. Saha and C. Srinivasan, "White-box cryptography based data encryption-decryption

scheme for iot environment," in 2019 5th International Conference on Advanced Computing

\& Communication Systems (ICACCS), IEEE, 2019, pp. 637--641.

[62] A. M. Abdullah, "Advanced encryption standard (AES) algorithm to encrypt and decrypt

data," Cryptography and Network Security, vol. 16, no. 1, 2017.

[63] M.-L. Akkar and C. Giraud, "An implementation of DES and AES, secure against some

attacks," in Cryptographic Hardware and Embedded Systems—CHES 2001: Third

International Workshop Paris, France, May 14--16, 2001 Proceedings 3, 2001, pp. 309--

318.

[64] S. Jaloudi, "Communication protocols of an industrial internet of things environment: A

comparative study," Future Internet, vol. 11, no. 3, p. 66, 2019.

[65] H. Amiri, "Investigation on Modbus protocol to develop an interoperable IIoT platform

using Node-RED with MQTT gateway," 2021.

[66] B. A. Mozzaquatro, C. Agostinho, R. Melo and R. Jardim-Goncalves, "A Model-Driven

Adaptive Approach for IoT Security," in Model-Driven Engineering and Software

Development: 4th International Conference, MODELSWARD 2016, Rome, Italy, February

19-21, 2016, Revised Selected Papers 4, Rome, Italy, 2017.

[67] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate, "A survey on

application layer protocols for the internet of things," Transaction on IoT and Cloud

computing, vol. 3, no. 1, pp. 11--17, 2015.

[68] P.-I. Lee, C.-H. Wang, and W.-C. Hsiao, "Implementation and Analysis on Efficient Proxy-

based Multicast Secure Data Sharing Mechanism with CP-ABE Supporting Outsourcing

Decryption in IoT Environment," in Proceedings of the 2023 11th International Conference

on Information Technology: IoT and Smart City, 2023, pp. 134--141.

[69] M. A. A. İ. A. Cevat Ozarpa, International Security Standards for Critical Oil, Gas, and

Electricity Infrastructures in Smart Cities: A Survey Study, 2021.

