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Abstract

The purpose of this dissertation is to analyze various algebraic invariants, including

Stanley depth, depth, regularity, and the projective dimension of the quotient rings

obtained from the bristled of some four and five regular circulent graph. The study

establishes exact values for the depth, regularity, and the projective dimension of these

quotient rings. Moreover we obtain a lower bound for stanley depth.
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Introduction

Abstract algebra is a branch of mathematics that concerns itself with the study of

algebraic structures, particularly rings and modules. Within this field, algebraic and

geometric invariants play a pivotal role in the characterization of rings and modules.

These invariants, such as Stanley depth, projective dimension, depth, and regularity,

provide valuable insights into the properties and characteristics of these mathematical

structures. They serve as useful tools for describing and analyzing modules and rings,

revealing their structural and algebraic properties.

Stanley depth, initially introduced by Stanley in 1982, is a significant invariant used

in the study of finitely generated Zn-graded modules over commutative rings. Stanley

also proposed a conjecture, known as Stanley’s conjecture, which relates the Stanley

depth to the depth of a module. This conjecture was presented in the reference [25].

However, in a subsequent work by Duval et al. [9], it was demonstrated that Stanley’s

conjecture does not hold for modules P/J , where P represents the ring of polynomials

over a field and J denotes a monomial ideal. Consequently, the task of identifying

classes of modules that satisfy Stanley’s inequality remains a challenging problem.

Several results related to Stanley depth can be found in the references [6, 10, 12, 15,

16]. The regularity of edge ideals (REIs) and projective dimension (pdim) have been

extensively investigated by various researchers. To explore these two invariants further,

one can refer to the references [1, 2, 7, 4]. These works provide additional insights into

the values and bounds associated with the regularity of edge ideals and pdim.

In this thesis exact values of Depth and projective dimension are computed moreover

we also compute bounds for the Stanley depth of the quotient ring corresponding edge

ideals of bristled of some four and five regular circulent graphes . Also exact values of

vii



regularity for such structures are calculated.

Chapter 1 of this thesis serves as an introductory chapter, providing an overview of

the fundamental concepts in Ring and Module Theory. It covers essential definitions,

examples, and results pertaining to these algebraic structures. Moreover, the chapter

includes a concise explanation of graph theory, along with relevant examples, which

will be employed in the subsequent analysis.

Chapter 2 of this thesis offers a comprehensive overview of Stanley depth, depth,

regularity, and projective dimension. It explores various results pertaining to these

algebraic invariants and includes illustrative examples. The chapter also introduces

Stanley’s conjecture and outlines the methodology for calculating Stanley depth for

squarefree monomial ideals, as well as for quotient rings associated with these ideals.

In Chapter 3, exact values for the depth, projective dimension and bound Stanley

depth of the quotient ring corresponding to some special subgraphs of Brt(C2n(1, n−
1)), Brt(C2n(1, 2)) and Brt(C2n(1, n− 1, n)) graphs are computed.

In Chapter 4, exact values for the depth, projective dimension and bound Stanley

depth of the quotient ring corresponding cyclic modules associated with bristles of some

four and five regular circulant Graphs are computed.

viii



Chapter 1

Preliminaries

In chapter 1, we discuss some concepts related to rings, modules, and graph theory,

along with providing relevant definitions and examples.

Ring Theory is a field of study that originated in the 1800s. Emmy Noether played

a significant role in introducing the general concept of commutative rings. Initially,

the focus was primarily on commutative rings, but later the study expanded to include

non-commutative rings.

Module Theory deals with the study of modules. A module is an algebraic structure

that is associated with a ring, where the ring acts on the module.

Graph Theory involves the examination of graphs and encompasses various oper-

ations performed on them. In this chapter, we introduce fundamental terminologies

used in Graph Theory and provide illustrative examples of graphs that will be utilized

in subsequent chapters of the study.

1.1 Ring Theory

This section delves into the properties of rings, offering examples to illustrate these

concepts. It explores different definitions that characterize various types of rings and

their associated properties. Additionally, the discussion covers the concept of ideals

and explores several related operations.

Definition 1.1.1. A ring P with binary operations namely addition “ + ” and multi-

plication “ × ” is a set such that the following hold:

1



• with respect to addition P is a commutative group,

• P is semigroup w.r.t. multiplication, i.e

a× (b× c) = (a× b)× c) and also distributive over addition i.e

1. (a× b) + (a× c) = a× (b+ c),

2. (b× a) + (c× a) = (b+ c)× a, ∀ a, b, c ∈ P .

Definition 1.1.2. Let P be a ring. Then,

• P is known as a ring having multiplicative identity if ∃ e, s.t. ∀ b ∈ P, b × e =

e× b = b.

• If b× a = a× b, ∀ a, b ∈ P , then P is commutative ring.

Throughout this thesis we will consider commutative rings having multiplicative

identity.

Example 1.1.1. • R,Z and Q are commutative rings with identity.

• For n ≥ 2 the ring nZ is a commutative ring without identity.

1.1.1 Polynomial Ring

Definition 1.1.3. Let P be a commutative ring with unity. For n ≥ 0 and si ∈
P, P (Z) = s0 + s1Z + s2Z

2 + · · · + sn−1Z
n−1 + snZ

n is termed as a polynomial in

indeterminate Z having co-efficients si.

Example 1.1.2. R[Y ], Q[Y ] and Z[Y ] are few examples of polynomial rings.

1.1.2 Noetherian Ring

Definition 1.1.4. (Chain conditions) Let R be a poset w.r.t ≤. Then the following

are equivalent:

• Every increasing sequence y1 ≤ . . . ≤ yp ≤ . . . in R is stationary i.e ∃ q such

that xm = xq ∀ m ≥ q,

• A maximal element is present in every non-empty subset of R.

2



If R represents the set containing all the ideals of the ring P which is ordered by the

relation ⊆ then the first chain condition is called the ascending chain condition.

Definition 1.1.5. A ring P is termed to be Noetherian if it has an ascending chain

condition on its ideal.

Example 1.1.3. Z, which is an example Noetherian ring.

1.1.3 Ring Homomorphisms and Quotient Rings

Definition 1.1.6. For rings U and V , a map α : U −→ V is a homomorphism that

satisfies the following:

• α(x+ y) = α(x) + α(y),

• α(xy) = α(x)α(y), for all x ∈ U and y ∈ U .

Definition 1.1.7. Suppose U and V are rings and if α : U −→ V is a homomorphism

then the kernal of α is given as kerα = {x ∈ U : α(x) = 0} and the image of α is

defined as α(U) = {y ∈ V : y = α(x)}.

Example 1.1.4. The map α : Z −→ Zn defined as α(z) = z(mod n) is a ring homo-

morphism with kerα = nZ and Imα = Zn.

Definition 1.1.8. Let P be a ring with ideal A, then the quotient ring P/A is the set

of cosets with addition and multiplication defined as (a1+A)+(a2+A) = (a1+a2)+A

and (a1 + A)(a2 + A) = a1a2 + A.

1.1.4 Ideals and Their Properties

Definition 1.1.9. Let A ⊆ P , then A is said to be an ideal of P if

• A is an additive abelian subgroup of P ,

• If a ∈ A and d ∈ P , then the product da ∈ A, i.e dA ⊆ A and also ad ∈ A, i.e

Ad ⊆ A.

Example 1.1.5. For the ring Z its ideals are of the type nZ, where n ∈ Z.

3



Every ideal is a subring but the converse doesnot necessarily hold. For example Z is

a subring of Q but not an ideal of Q.

Definition 1.1.10. Let C and D be the ideals of P . Then

• C +D is the sum of ideals C and D given by C +D = {i+ j : i ∈ C, j ∈ D},

• CD is the product of C and D given by CD = {i1j1+i2j2+ · · ·+irjr : i1, . . . , ir ∈
C, j1, . . . , jr ∈ D},

• The intersection C ∩D is defined as C ∩D = {a ∈ P : a ∈ C and a ∈ D}.

Example 1.1.6. Let k, l ∈ Z+. If C = (k) = kZ and D = (l) = lZ be ideals of P = Z.

Then

• C +D = gcd(k, l)Z,

• C ∩D = lcm(k, l)Z,

• CD = (kl) = klZ.

Example 1.1.7. Let C = 3Z and D = 9Z then, C + D = 3Z, C ∩ D = 9Z and

CD = 27Z.

Definition 1.1.11. Let C and D be two ideals of P . The ideal quotient of C and D,

also known as the colon ideal, is defined as (C : D) = {c ∈ P : cD ⊆ C}.

Definition 1.1.12. In a ring P , a maximal ideal M is a proper ideal that has no other

proper ideal lying between it and the entire ring P .

1.1.5 Monomial Ideals

Definition 1.1.13. Let P = ℜ[x1, . . . , xd] where ℜ represents a field. The product

xb1
1 x

b2
2 . . . xbd

n , with bi ∈ {0, 1, 2, . . . } is called a monomial of P . A monomial is square

free when bi ∈ {0, 1}.
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Definition 1.1.14. An ideal B ⊆ P = ℜ[x1, . . . , xd] if generated by monomials is

classified as a monomial ideal. Furthermore, we denote by G(B) the set of monomials

in B that are minimal w.r.t divisibility.

Example 1.1.8. Let P = ℜ[x1, . . . , x5]. Then A = (x2
4x3, x

2
1x2, x3, x5) is a monomial

ideal and B = (x2x3, x1x5, x2) is a monomial ideal which is square free.

Definition 1.1.15. Let P = ℜ[x1, . . . , xn], C = (a1, . . . , an) and D = (b1, . . . , bm) are

monomial ideals of P . Then

• C +D = (a1, a2, . . . , an, b1, b2, . . . , bm),

• CD = (a1b1, . . . , a1bm, a2b1, . . . , a2bm, anb1, . . . , anbm),

• C2 = (a21, a1a2, . . . , a2a1, . . . , a2an, . . . , ana1, . . . , a
2
n),

• C ∩D = {lcm(a, b) : a ∈ G(C), b ∈ G(D)},

• C : D = ∩b∈G(D)(C : b) = { a
gcd(b,b)

: a ∈ G(C)}.

Example 1.1.9. Let C and D be monomial ideals of P = ℜ[a1, a2, a3] such that

C = (a1a2, a
2
1a3, a2a

2
3, a1a

2
3) and D = (a1a3, a

2
2a3, a

2
1). Then

• C +D = (a1a2, a
2
1a3, a2a

2
3, a1a3, a

2
2a3, a

2
1) = (a1a2, a2a

2
3, a1a3, a

2
2a3, a

2
1),

• CD = (a21a2a3, a1a
3
2a3, a

3
1a2, a

3
1a

2
3, a

2
1a

2
2a

2
3, a

4
1a3, a1a2a

3
3, a

3
2a

3
3, a

2
1a2a

2
3, a

2
1a

3
3, a1a

2
2a

3
3,

a31a
2
3) = (a21a2a3, a1a

3
2a3, a

3
1a2, a

3
1a

2
3, a

4
1a3, a1a2a

3
3, a

3
2a

3
3, a

2
1a

3
3),

• C ∩ D = (a1a2a3, a1a
2
2a3, a

2
1a2, a

2
1a3, a

2
1a

2
2a3, a

2
1a3, a1a2a

2
3, a

2
2a

2
3, a

2
1a2a

2
3, a1a

2
3

a1a
2
2a

2
3, a

2
1a

2
3) = (a1a2a3, a

2
1a2, a

2
1a3, a2a

2
3, a1a

2
3),

• C : D = (C : a1a3) ∩ (C : a22a3) ∩ (C : a21)

= ( a1a2
gcd(a1a2,a1a3)

,
a21a3

gcd(a21a3,a1a3)
,

a2a23
gcd(a2a23,a

2
2a3)

,
a1a23

gcd(a1a23,a1a3)
) ∩ ( a1a2

gcd(a1a2,a22a3)
,

a21a3
gcd(a21a3,a

2
2a3)

,
a2a23

gcd(a2a23,a
2
2a3)

,
a1a23

gcd(a1a23,a
2
2a3)

) ∩ a1a2
gcd(a1a2,a21)

,
a21a3

gcd(a21a3,a
2
1)
,

a2a23
gcd(a2a23,a

2
1)
,

a1a23
gcd(a1a23,a

2
1)
)
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= (a2, a1, a3, a3) ∩ (a1, a
2
1, a3, a1a3) ∩ (a2, a3, a2a

2
3, a

2
3)

= (a1, a2, a3) ∩ (a1, a3) ∩ (a2, a3) = (a1a2, a1a3, a2a3, a3).

Example 1.1.10. Let C and D be monomial ideals of P = ℜ[a1, a2, a3, a4] such that

C = (a1a3, a3a4, a2a3) and D = (a1a4, a2a4, a1a3). Then

• C +D = (a1a3, a3a4, a2a3, a1a4, a2a4, a1a3) = (a1a3, a3a4, a2a3, a1a4, a2a4),

• CD = (a21a3a4, a1a2a3a4, a
2
1a

2
3, a1a3a

2
4, a2a3a

2
4, a1a

2
3a4, a

2
2a3a4, a1a2a3a4, a

2
2a3a4,

a1a2a
2
3) = (a21a3a4, a

2
1a

2
3, a1a3a

2
4, a2a3a

2
4, a

4
1a3, a1a

2
3a4, a1a2a3a4, a

2
2a3a4, a1a2a

2
3),

• C ∩ D = (a1a3a4, a1a2a3a4, a1a3, a1a3a4, a2a3a4, a1a3a4, a1a2a3a4, a
2
2a3a4,

a1a2a
2
3) = (a1a3, a2a3a4),

Example 1.1.11. Let C and D be monomial ideals of P = ℜ[a1, a2, a3, a4, a5] such

that C = (a1a3, a
2
2a4, a

2
5a1) and D = (a1a4, a2a3, a4a5). Then

• C +D = (a1a3, a
2
2a4, a1a

2
5, a1a4, a2a3, a4a5),

• CD = (a21a3a4, a1a2a
2
3, a1a3a4a5, a1a

2
2a

2
4, a

3
2a3a4, a

2
2a

2
4a5, a

2
1a4a

2
5, a1a2a3a

2
5,

, a1a4a
3
5) = (a21a3a4, a

2
1a

2
3, a1a3a

2
4, a2a3a

2
4, a

4
1a3, a1a

2
3a4, a1a2a3a4, a

2
2a3a4, a1a2a

2
3, a1a4a

3
5),

• C2 = (a21a
2
3, a1a

2
2a3a4, a

2
1a3a

2
5, a1a

2
2a

2
4, a

3
2a3a4, a

2
2a

2
4a5, a

2
1a4a

2
5, a1a2a3a

2
5,

, a1a4a
3
5) = (a21a

2
3, a

2
1a3a

2
5, a1a

2
2a

2
4, a

3
2a3a4, a

2
2a

2
4a5, a

2
1a4a

2
5, a1a2a3a

2
5, a1a4a

3
5),

• D2 = (a21a
2
4, a1a2a3a4, a1a

2
4a5, a1a2a3a4, a

2
2a

2
3, a2a3a4a5, a1a

2
4a5, a2a3a4a5,

, a24a
2
5) = (a21a

2
4, a1a

2
4a5, a1a2a3a4, a

2
2a

2
3, a2a3a4a5, a1a

2
4a5, a2a3a4a5, a

2
4a

2
5),

• C ∩ D = (a1a3a4, a1a2a3, a1a3a4a5, a1a
2
2a4, a2a3a4, a

2
2a4a5, a

2
5a1a4, a

2
5a1a2a3,

a1a4a5) = (a1a3a4, a1a2a3, a1a3a4a5, a1a
2
2a4, a2a3a4, a

2
2a4a5, a

2
5a1a4, a

2
5a1a2a3, a1a4a5),

• C : D = (C : a1a4) ∩ (C : a22a3) ∩ (C : a4a5)

= ( a1a3
gcd(a1a3,a1a4)

,
a22a4

gcd(a22a4,a1a4)
,

a1a25
gcd(a1a25,a1a4)

) ∩ ( a1a3
gcd(a1a3,a2a3)

,

6



a22a4
gcd(a22a4,a2a3)

,
a25a1

gcd(a25a1,a2a3)
), ∩ a1a3

gcd(a1a3,a4a5)
,

a22a4
gcd(a22a4,a4a5)

,

a1a25
gcd(a1a25,a4a5)

)

= (a3, a
2
2, a

2
5) ∩ (a1, a

2
1, a3, a1a3) ∩ (a2, a3, a2a

2
3, a

2
3)

= (a1, a2, a3) ∩ (a1, a3) ∩ (a2, a3) = (a1a2, a1a3, a2a3, a3).

1.2 Application of Ring Theory in Commutative Al-
gebra

The field of Commutative Algebra has greatly benefited from the application of ring

theory, a fundamental branch of abstract algebra. Commutative algebra, which fo-

cuses on the study of commutative rings and modules, often utilizes the concepts

and techniques of ring theory to gain deeper insights and develop powerful tools for

problem-solving.

One of the primary ways in which ring theory is applied in commutative algebra is

through the study of the structure of commutative rings. Ring theorists have developed

a rich set of tools and theorems for understanding the properties of rings, such as ideals,

homomorphisms, and various classes of rings (e.g., principal ideal domains, Noetherian

rings, and Artinian rings). These concepts are extensively used in commutative algebra

to characterize the structure of commutative rings and to investigate their fundamental

properties.

Another important application of ring theory in commutative algebra is the study of

module theory. Modules, which are generalizations of vector spaces over commutative

rings, are essential objects of study in commutative algebra. Ring theoretic concepts,

such as module homomorphisms, exact sequences, and projective and injective modules,

are crucial for understanding the structure and behavior of modules over commutative

rings. These insights have led to the development of important results.

Additionally, ring theory provides a powerful framework for the study of polynomial

rings and their ideals, which are central objects in commutative algebra. The theory of

Noetherian rings, which guarantees the existence of certain ideal-theoretic properties,
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has been instrumental in the study of polynomial rings and their applications in areas

such as algebraic geometry and computational algebra.

Furthermore, ring theory has applications in the study of commutative algebra

over non-traditional number systems, such as finite fields or modular arithmetic. In

these contexts, the understanding of the ring-theoretic properties of the underlying

number system can provide valuable insights into the structure and behavior of the

corresponding commutative rings.

The synergy between ring theory and commutative algebra has been a fruitful and

ongoing area of research, leading to the development of powerful tools and techniques

for understanding the structure and properties of commutative rings and modules. By

leveraging the insights and methods of ring theory, researchers in commutative algebra

have been able to make significant advancements in this field.

1.3 Module Theory

This section explores the various properties of modules, provides examples to il-

lustrate their characteristics, and discusses important results in the field of Module

Theory.

Definition 1.3.1. A module M over a commutative ring P is an abelian group (M,+)

together with a scalar multiplication operation P×M → M, denoted as (r,m) → r·m,

satisfying the aforementioned conditions: If m ∈ M and ∀r, s ∈ P then

1. Closure under scalar multiplication: The product r ·m is also an element of M.

2. Distributivity of scalar multiplication:

r ·m+ s ·m = (r + s) ·m

r ·m+ r · n = r · (m+ n)

3. Associativity of scalar multiplication:

(r · s) ·m = r · (s ·m)
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4. Compatibility with the ring operations:

(r · s) ·m = r · (s ·m)

The elements of a module M are called module elements or simply elements of M.

The commutative ring P is often referred to as the base ring or the coefficient ring of

the module M. If the ring contains unity then we have one more axiom that is,

• 1m = m ∀ m ∈ M.

Example 1.3.1. If P represents a ring and B ⊆ P is the ideal of P , then P/B is an

P -module under the scalar multiplication a(b+B) = ab+B ∀ a ∈ P, b+B ∈ P/B.

Definition 1.3.2. For a ring P and P -module M, a subset O ⊆ M which is non

empty is a submodule of M if O is a subgroup of M which is an additive group which

also satisfies the module axioms using the scalar multiplication on M.

Criteria for a Submodule

A subset N of M is considered a submodule of M if it satisfies the following criteria:

1. Closed under Addition: The subset N must be closed under the addition

operation inherited from the module M. This means that for any n1, n2 ∈ N ,

their sum n1+n2 is also an element of N . Additionally, N must be closed under

negation, so that for any n ∈ N , the additive inverse −n is also an element of

N . These properties ensure that N forms an abelian group under the addition

operation.

2. Closed under Scalar Multiplication: For any element r in the commutative

ring P and any element n in the subset N , the scalar product r · n must also be

an element of N . This property ensures that N inherits the module structure

from M and can be considered a module in its own right.
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These two conditions, collectively, ensure that a subset N of a module M over a

commutative ring P can be regarded as a submodule of M. In other words, N must

be both an abelian group and closed under the scalar multiplication operation defined

by the ring P in order to be considered a submodule of M.

1.3.1 Noetherian Modules

Definition 1.3.3. For a ring P , an P -module M is said to be Noetherian if every

increasing sequence of P -submodules of M eventually becomes stationary. In other

words, for any sequence N1 ⊆ N2 ⊆ N3 ⊆ · · · of P -submodules of M, ∃ N s.t.

Nn = NN for all n ≥ N .

Example 1.3.2. A finite additive abelain group G, which is a Z-module is Noetherian.

1.3.2 Exact Sequences

Definition 1.3.4. A sequence of P -modules and P -homomorphisms given by

. . . −→ Mi−1
ki−−→ Mi

ki+1−−−→ Mi+1
ki+2−−−→ . . .

is termed as exact at Mi if the condition Im(ki) = ker(ki+1) is satisfied. If it is exact

at every Mi then it is called exact sequence.

Definition 1.3.5. The sequence

0 −→ M′ k−→ M l−→ M′′ −→ 0

is defined to be an exact sequence iff the map k is injective (one-to-one), the map l

is surjective (onto), and the condition Im(k) = ker(l) is satisfied. Such a sequence is

referred to as a short exact sequence.

Example 1.3.3. Let n ≥ 2. Then the sequence

0 −→ Z k−−→ Z l−→ Z/nZ −→ 0

is said to be a short exact sequence where k : Z −→ Z is defined as h(x) = nx and

l : Z −→ Z/nZ is defined as k(x) = x+ nZ.
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1.3.3 Module Homomorphisms and Quotient Modules

Definition 1.3.6. For a ring P and P -modules M and N , a map α : M −→ N is

defined to be an P -module homomorphism if it preserves the P -module structure of

M and N . In other words, α satisfies the following conditions:

• α(n+ p) = α(n) + α(p) for all n, p ∈ M, and

• α(dn) = dα(n) for all n ∈ M and d ∈ M.

Definition 1.3.7. Let P be a ring, and consider an P -module homomorphism β :

M −→ N . The kernel of β, denoted as ker(β), is defined as the set {m ∈ M : β(m) =

0}, consisting of all elements in M that are mapped to zero under β. Similarly, the

image of β is defined as β(M) = {n ∈ N : n = β(m) for some m ∈ M}, which

represents the set of all elements in N that are obtained as the image of some element

in M under β.

1.4 Application of Module Theory in Commutative
Algebra

The field of commutative algebra has greatly benefited from the application of module

theory, a fundamental branch of abstract algebra. Commutative algebra, which focuses

on the study of commutative rings and their associated modules, relies heavily on the

concepts and techniques of module theory to gain deeper insights and develop powerful

tools for problem-solving.

One of the primary ways in which module theory is applied in commutative al-

gebra is through the study of module structures over commutative rings. Modules,

which are generalizations of vector spaces over CRs, are essential objects of study in

commutative algebra. Concepts from module theory, such as module homomorphisms,

exact sequences, and projective and injective modules, are crucial for understanding

the structure and behavior of modules over CRs.

For instance, the classification of modules over a commutative ring often relies on the

understanding of module structures and the decomposition of modules into direct sums
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of simpler modules. This approach has led to the development of important results.

These insights have had significant implications in areas like algebraic geometry, where

the study of sheaves and their modules is central.

Another application of module theory in commutative algebra is the investigation

of the ideal structure of commutative rings. Ideals, which are special subsets of commu-

tative rings, can be studied through the lens of module theory. By considering ideals as

modules over the ring itself, researchers can gain valuable information about the prop-

erties and behavior of these ideals, such as their generation, primary decomposition,

and associated primes.

Furthermore, module theory provides a powerful framework for the study of local-

ization and completion of commutative rings. These operations, which are essential

in many areas of commutative algebra, rely heavily on the understanding of module

structures and the behavior of modules under localization and completion.

Additionally, module theory has applications in the study of commutative algebra

over non-traditional number systems, such as finite fields or modular arithmetic. In

these contexts, the understanding of module structures and their properties can provide

valuable insights into the structure and behavior of the corresponding commutative

rings.

The integration of module theory and commutative algebra has been a fruitful and

ongoing area of research, leading to the development of powerful tools and techniques

for understanding the structure and properties of commutative rings and their associ-

ated modules. By leveraging the insights and methods of module theory, researchers

in commutative algebra have been able to make significant advancements in this field.

1.5 Application of Group Theory in Commutative Al-
gebra

The field of commutative algebra has greatly benefited from the application of group

theory, a fundamental branch of abstract algebra. Commutative algebra, which focuses
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on the study of commutative rings and modules, often utilizes group theory to gain

deeper insights and develop powerful tools for problem-solving.

One of the primary ways in which group theory is applied in commutative algebra

is through the study of group actions on commutative rings. By understanding how

a group acts on a commutative ring, researchers can gain valuable information about

the structure and properties of the ring. The concept of group invariants, which are

the elements of a ring that are fixed under the action of a group, is an important tool

in this context. These invariants can be used to characterize the structure of the ring

and to study various ideals and modules within it.

Another significant application of group theory in commutative algebra is the in-

vestigation of Galois groups. In the context of commutative algebra, Galois groups are

used to study the structure of field extensions, which are closely related to the study

of polynomial equations. The Galois group of a field extension encodes important in-

formation about the roots of the associated polynomial, and this information can be

used to develop powerful theorems and algorithms in commutative algebra.

Furthermore, group theory plays a crucial role to examined module structures over

commutative rings. The classification of modules over a CR often relies on the under-

standing of group actions and the decomposition of modules into direct sums of simpler

modules.

Additionally, group theory has applications in the study of commutative algebra

over non-traditional number systems, such as finite fields or modular arithmetic. In

these contexts, the understanding of group actions and group invariants can provide

valuable insights into the structure and properties of the corresponding commutative

rings.

The interplay between group theory and commutative algebra has been a fruit-

ful and ongoing area of research, leading to the development of powerful tools and

techniques for understanding the structure and properties of commutative rings and

modules. By combining the insights of group theory with the specific properties of

commutative algebra, researchers have been able to make significant advancements in

this field.
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1.6 Graph Theory

We discuss some definations related to Graph Theory in this section.

Definition 1.6.1. Let G(V,E) denotes the graph where V and E represented the

vertex and edge set, respectively. Furthermore, each edge is associated with a relation

that connects two vertices, referred to as its endpoints, which can be either identical

or distinct.

Definition 1.6.2. In graph theory, the simple graphs has no loop and no multiple

edges. On the other hand, multiple edges are edges that have the same pair of end-

points.

Definition 1.6.3. If, for every pair of vertices in a graph G, there exists a unique

path that connects these vertices, the graph is considered connected. A component of

a connected graph G is a connected subgraph that is not a part of any larger subgraph.

Definition 1.6.4. A graph having n vertices such that there is an edge which connects

the adjacent vertices is said to be a path graph denoted as Pn. A graph having n vertices

such that there is an edge which connects the adjacent vertices and also the first and

the last vertex is known as a cycle graph and is denoted by Cn.

(a) Path (b) Cycle

Figure 1.1

Definition 1.6.5. A circulant graph Cp(S) is a graph with vertex set {e1, . . . , ep}. In

this graph, an edge {ei, ej} belongs to the edge set E(Cp(S)) whenever the absolute

difference |i − j| or m-|i − j| is an element of S. Examples of circulant graphs can
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be seen in Figure1.2. It is worth noting that Cp can be considered a generalized

cycle since it represents Cp(1). For simplicity, the graph Cp({e1, . . . , em}), is denoted

as Cp(e1, . . . , em). A circulant graph Cp(a1, . . . , am) is 2p-regular, except in the case

where 2ap, equals p, in which case it is (2p− 1)-regular .

a1
a2

a3

a4

a5

a6 a7

a8

a9

a1a2

a3

a4 a5

a6

Figure 1.2: From left to right C9(1, 3) and C6(2, 4) .

a1a2a3

a4

a5
a6 a7

a8

a9

a1a2

a3

a4a5

a6

Figure 1.3: From left to right Br2(C9(1, 3)) and Br2(C6(2, 4)).

Definition 1.6.6. A graph is called t-fold bristled graph if we attach t pandents on

each vartex.

Definition 1.6.7. A caterpillar is a connected graph consisting of the path that has

p vertices and t pendants attached to each vertex along the path, which is represented

as Sp,t.

Definition 1.6.8. Consider t ≥ 1. A tree with one internal vertex and t leaves incident

on it is known as a t− star, denoted as St.
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Chapter 2

Stanley Depth, Depth, Regularity and
Projective Dimension and Some of Its
Applications

In this section, the aforementioned invariants of a P -module M and a few related

results are discussed. The ring considered throughout this section is the ring of poly-

nomials in d variables, denoted as P = ℜ[u1, . . . , ud].

2.1 Depth

In this subsection, the concept of depth in the context of graded modules is dis-

cussed. A few preliminary definitions are provided, followed by the presentation of

well-established results that set the groundwork for subsequent discussions.

Definition 2.1.1. For an P -module M, a non-zero element d ∈ P is a regular element

on M if whenever the product dn = 0 where n ∈ M implies that n = 0.

Definition 2.1.2. Let M be an P -module and u1, u2, . . . , un be a sequence of elements

of the ring P . This sequence is defined as M-regular if:

• uj is regular on M/(u1, u2, . . . , un) for any j and

• M = M/(u1, u2, ..., un)M.
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Example 2.1.1. Consider P = ℜ[u1, u2, u3, u4] as a module over itself. Then as u1 is

regular on P/(0)P , u2 is regular on P/(u1)P , u3 is regular on P/(u1, u2)P and u4 is

regular on P/(u1, u2, u3)P , so u1, u2, u3, u4 is the M-regular sequence in P .

Definition 2.1.3. The depth of the P -module M finitely generated over the Noethe-

rian ring P , w.r.t the unique maximal ideal n, is defined to be the common length of

all the maximal regular sequences in the ideal n when considered on P .

2.1.1 Applications of Depth in Commutative Algebra,Algebraic
Geometry and Homological Algebra

In commutative algebra, depth is a measure of the complexity of a module over a com-

mutative ring. The depth of a module captures its structural properties and provides

important information about the ring and the module. It helps in understanding the

behavior of prime ideals, regular sequences, and the Cohen-Macaulay property of rings.

Depth is used to study properties like the Hilbert function, depth stratification, and

depth formulas.

Depth has significant applications in algebraic geometry, particularly in the study

of singularities. The depth of a point on an algebraic variety measures the singularity of

the variety at that point. It helps in distinguishing between smooth points and singular

points, and it plays a crucial role in the classification and resolution of singularities.

Depth is related to the dimension of local rings and the computation of the local

cohomology of algebraic varieties. The depth of a module is related to the depth of its

associated homology modules, and it provides information about the complexity and

connectivity of the algebraic structure. Depth is used to analyze the behavior of derived

functors, projective resolutions, and injective resolutions in homological algebra.

2.1.2 Few Results Related to Depth

Lemma 2.1.4 ([3, Proposition 1.2.9]). For a given short exact sequence 0 −→ M1 −→
M2 −→ M3 −→ 0 of modules which is considered over a local ring or a graded

Noetherian ring having local ring P0, we have
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• depth(M2) ≥ min{depth(M3), depth(M1)},

• depth(M1) ≥ min{depth(M2), depth(M3) + 1},

• depth(M3) ≥ min{depth(M1)− 1, depth(M2)}.

Lemma 2.1.5 ([12, Lemma 3.6]). Let I be the monomial ideal of a ring P . If P ′ = P [u]

is a ring of polynomials over P in the variable u. Then depth(P ′/IP ′) = depth(P/I)+

1.

Lemma 2.1.6 ([8, Lemma 2.12]). Let I1 ⊂ P1 = ℜ[u1, . . . , ur] and I2 ⊂ P2 =

ℜ[ur+1, ur+2, . . . , ud] be monomial ideals where 1 ≤ r ≤ d. If P = P1 ⊗ℜ P2. Then

depthP (P1/I1⊗ℜP2/I2) = depthP (P/(I1P +I2P )) = depthP1
(P1/I1)+depthP2

(P2/I2).

Proposition 2.1.2 ([23, Corollary 1.3]). For I ⊂ P . and u /∈ I then depth(P/I) ≤
depth(P/(I : u)).

Corollary 2.1.3 ([5, Corollary 1.6]). Let I ⊆ P be a monomial ideal. Then sdepth(P/I) =

0 iff depth(P/I) = 0.

Theorem 2.1.4 ([11, Proposition 4.3]). Consider a graph G having c connected com-

ponents and let A = A(G) and d = d(G) represent the diameter of the graph G. Then

for t ≥ 1, we have depth ≥ c− t.

Lemma 2.1.5 ([19, Lemma 2.8]). Let B = B(Pn) be an edge ideal of a path graph with

n ≥ 2. Then depth(P/B) = ⌈n
3
⌉.

2.2 Stanley Depth

This subsection delves into the concept of Stanley depth, which is a combinatorial

property associated with modules. It provides a concise overview of Stanley’s conjecture

and outlines a methodology for determining the Stanley depth. Additionally, a few

results related to Stanley depth are discussed.
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Definition 2.2.1. Consider a Zl-graded P -module M which is finitely generated. Let

nℜ[Z] be the subspace of M which is generated by the elements of the type nx, where

n is an element in M and is homogenous, x is a monomial in the ring of polynomial

ℜ[Z], and Z is a subset of {u1, . . . , ul}. If say uℜ[Z] is a free ℜ[Z]-module, then it

is referred to as a Stanley space having dimension equal to |Z|. For the module M
its Stanley decomposition is its representation as a finite direct sum of these Stanley

spaces. The Stanley depth of

T : M =
s⊕

k=1

ukℜ[Zk],

is sdepth(D) = min{|Zk|: k = 1, . . . , s} and that of N is the number sdepth(M) =

max{sdepth(T ) : T is a Stanley decomposition of M}.

2.2.1 Application Of Stanley Depth in Commutative Algebra,
Algebraic Geometry and Homological Algebra

Stanley depth is primarily studied in the context of commutative algebra. It provides

refined information about the depth of modules over commutative rings. Depth is a

fundamental invariant in commutative algebra that measures the complexity of modules

and rings. Stanley depth extends this notion and provides more detailed information,

allowing for a deeper analysis of the algebraic structure.

Stanley depth has connections to algebraic geometry, particularly in the study of

singularities and the geometry of algebraic varieties. It provides information about

the singular locus of varieties, the depth of singular points, and the behavior of local

cohomology modules. Stanley depth helps in understanding the geometry and algebraic

properties of varieties, such as smoothness, irreducibility, and the intersection theory.

Stanley depth has applications in homological algebra, which studies algebraic

structures through their chain complexes and homology groups. It is used to ana-

lyze the depth of homology modules and the behavior of derived functors. Stanley

depth provides insights into the complexity and connectivity of algebraic structures

and helps in understanding the derived category and its properties.

19



2.2.2 Stanley’s Conjecture

Stanley in 1982 [25] gave a conjecture which stated that for a Z l-graded P -module M
which is finitely generated, we have that sdepth(M) ≥ depth(M). Duval et al in [9]

disproved this conjecture later with the help of a counterexample for the module of the

type P/M . An algorithm for the computation of Stanley depth is provided in [14] by

Ichim et al..

2.2.3 Method for The Computation of Stanley Depth for Square-
free Monomial Ideals

In 2009, Herzog et al. in [12] introduced an innovative approach for computing the

lower bound of the Stanley depth of monomial ideals. This method involves utilizing

posets and is designed to achieve this computation in a fixed number of steps. Let A

be a squarefree monomial ideal having generating set as G(A) = {e1, . . . , em}. Now

the characteristic poset of A w.r.t g = (1, . . . , 1), written as Q(1,...,1)
I is defined to be

Q(1,...,1)
I = {γ ⊂ [n] | γ contains supp(ej) for, some j},

where supp(ej) = {i : xi|ej} ⊆ [n] := {1, . . . , n}. For each ρ, σ ∈ Q(1,...,1)
I where ρ ⊆ σ,

and

[ρ , σ] = {γ ∈ Q(1,...,1)
I : ρ ⊆ γ ⊆ σ}.

Let Q : Q(1,...,1)
I = ∪k

j=1[γj , ηj] be a partition of Q(1,...,1)
I , and for every j, suppose

s(j) ∈ {0, 1}n is the tuple with supp(xs(j)) = γj, then the Stanley decomposition D(Q)

of A is given by

D(Q) : A =
r⊕

j=1

xs(j)ℜ[{xk | k ∈ ηj}].

Clearly, sdepthD(Q) = min{|η1|, . . . , |ηr|} and

sdepth(A) = max{sdepthD(Q) | Q is a partition of Q(1,...,1)
I }.

Example 2.2.1. Let P = ℜ[x1, x2, x3, x4, x5, x6], consider A = (x1x3, x2x5, x4x6, x1x4x6).

Then select g = (1, 1, 1, 1, 1, 1) and the poset Q = Qg
P/A is given by:
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Q = {(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0),

(1, 0, 0, 0, 0, 1), (0, 1, 1, 0, 0.0), (0, 1, 0, 1, 0.0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0),

(0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 0.1).(0, 0, 0, 0, 1, 1), (1, 1, 0, 1, 0, 0),

(1, 0, 0, 1, 1, 0), (1, 0, 0, 0, 1, 1), (0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 0), (0, 0, 1, 1, 0, 1),

(0, 0, 1, 0, 1, 1), (0, 0, 0, 1, 1, 1), (0, 0, 1, 1, 1, 1)}.

The partitions of Q can be written as :

Q1 : [(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)]
⋃

[(0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0)]
⋃

[(0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1)]
⋃

[(1, 1, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0)]
⋃

[(1, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 0)]
⋃

[(0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0)]
⋃

[(0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 1, 0.0), (1, 1, 0, 1, 0, 0)]
⋃

[(1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 1, 0, 0), (1, 1, 0, 1, 0, 0)]
⋃

[(1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 1, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0)]
⋃

[(0, 0, 1, 1, 1, 0), (0, 0, 1, 1, 1, 0)]
⋃

[(0, 0, 1, 1, 0, 1), (0, 0, 1, 1, 0, 1, )]
⋃

[(0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1, 1), (0, 0, 1, 1, 1, 1, )],

Q2 : [(0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0)]
⋃

[(0, 0, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 1, 1, 1, 0)]
⋃

[(0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 1, 1)].
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So the corresponding Stanley decomposition is of the partitions will be
D(Q1) := ℜ[x1]⊕ x2ℜ[x2]⊕ x3ℜ[x3]⊕ x4ℜ[x4]⊕ x5ℜ[x5]⊕ x6ℜ[x6]⊕

x1x2ℜ[x1, x2]⊕ x1x4ℜ[x1, x4]⊕ x2x4ℜ[x2, x4]⊕ x3x4ℜ[x3, x4]

⊕ x4x5ℜ[x4, x5]⊕ x4x6ℜ[x4, x6]⊕ x5x6ℜ[x5, x6]⊕ x1x2x4ℜ[x1, x2, x4]

⊕ x1x4x5ℜ[x1, x4, x5]⊕ x1x5x6ℜ[x1, x5, x6]⊕ x4x5ℜ[x4, x5]

⊕ x4x5ℜ[x4, x5]⊕ x5x6ℜ[x5, x6]⊕ x1x2x4ℜ[x1, x2, x4]⊕ x1x4x5ℜ[x1, x4, x5]

⊕ x1x5x6ℜ[x1, x5, x6]⊕ x2x3x4ℜ[x2, x3, x4]⊕ x3x4x5ℜ[x3, x4, x5]

⊕ x3x4x6ℜ[x3, x4, x6]⊕ x4x5x6ℜ[x4, x5, x6]⊕ x3x4x5x6ℜ[x3, x4, x5, x6],

D(Q2) := ℜ[x1, x2, x4]⊕ x3ℜ[x2, x3, x4]⊕ x5ℜ[x1, x4, x5]⊕ x6ℜ[x1, x5, x6]⊕

x4x5ℜ[x3, x4, x5]⊕ x3x6ℜ[x4, x6]⊕ x4x6ℜ[x4, x5, x6].

Then

sdepth(Q/A) ≥ max{sdepth(D(Q1)) , sdepth(D(Q2))}

= max{1, 3}

= 3.

2.2.4 Few Results Related to Sdepth

Lemma 2.2.2 ([23, Lemma 2.2]). Consider the sequence 0 −→ M1 −→ M2 −→
M3 −→ 0 of P - modules which are Zl-graded we have sdepth(M2) ≥ min{sdepth(M1),

sdepth(M3)}.

Lemma 2.2.3 ([12, Lemma 3.6]). For a monomial ideal I of a ring P . If P ′ = P [y] is a

ring of polynomials over P in the variable y. Then sdepth(P ′/IP ′) = sdepth(P/I)+1.

Lemma 2.2.4 ([8, Lemma 2.13]). Let I1 ⊂ P1 = ℜ[u1, ...., ur] and I2 ⊂ P2 =

ℜ[ur+1, ur+2, . . . , ud] be monomial ideals where 1 ≤ r ≤ d. If P = P1 ⊗ℜ P2. Then

sdepthP (P1/I1 ⊗ℜ P2/I2) ≥ sdepthP1
(P1/I1) + sdepthP2

(P2/I2).

Proposition 2.2.2 ([6, Proposition 2.7]). Consider a monomial ideal I of a ring P .

Then for any monomial u /∈ I, sdepth(P/I) ≤ sdepth(P/(I : u)).

Theorem 2.2.3 ([22, Theorem 2.3]). Let I ⊆ P be monomil ideal which is generated

by a minimal set of u elements. Then, we have sdepth(I) ≥ max{1, d− ⌊u
2
⌋}.
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2.3 Regularity

Definition 2.3.1. For a field ℜ let P = ℜ[u1, . . . , ud] be polynomials in d variables over

ℜ . Then for a Z-graded P -module M which is finitely generated having a minimal

free resolution

0 −→
⊕
j∈Z

P (−j)βr,j(M)−→
⊕
j∈Z

P (−j)βr−1,j(M)−→.....−→
⊕
j∈Z

P (−j)β0,j(M) −→ 0

the regularity of M is reg(M) = max{j − k : βk,j (M) ̸= 0}.

2.3.1 Application of Regularity in Commutative Algebra,Algebraic
Geometry And Homological Algebra

Regularity plays a central role in commutative algebra. It is used to study the algebraic

and geometric properties of rings, modules, and ideals. Regularity provides information

about the complexity and depth of modules, the behavior of prime ideals, and the

Cohen-Macaulay property of rings. It is a key ingredient in the study of homological

properties, such as the vanishing of Ext modules and the structure of resolutions.

Regularity has significant applications in algebraic geometry, where it is closely

related to the geometric properties of algebraic varieties. Regularity of a projective

variety is linked to the embedding of the variety in projective space and the behavior

of its homogeneous coordinate ring. It helps in understanding the birational geometry,

rational maps, and the classification of varieties. Regularity also plays a role in the

study of singularities and the resolution of singularities.

Regularity is employed in homological algebra, which studies algebraic structures

through their chain complexes and homology groups. It helps in analyzing the complex-

ity and connectivity of algebraic structures. Regularity provides information about the

regularity of homology modules, the behavior of derived functors, and the regularity

of resolutions.
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2.3.2 Few Results Related to Regularity

Lemma 2.3.1 ([4, Theorem 4.7]). Consider a monomial ideal I in the ring P , and let

ui be one of the variables in P . Then

(a) reg(P/I) = reg(P/(I : ui)) + 1, if reg(P/(I : ui)) ≥ reg(P/(I, ui)).

(b) reg(P/I) = reg(P/(I, ui)) if reg(P/(I : ui)) ≤ reg(P/(I, ui)).

(c) reg(P/I) ∈ reg(P/(I, ui)) + 1, reg(P/(I, ui)), if reg(P/(I : ui)) = reg(P/(I, ui)).

Lemma 2.3.2 ([20, Lemma 3.6]). Consider a monomial ideal I in the ring P . If

P ′ = P [y] is a ring of polynomials over P in the variable y. Then reg(P ′/I) = reg(P/I).

Lemma 2.3.3 ([27, lemma 8]). Let P1 = ℜ[u1, . . . , ur] and P2 = ℜ[ur+1, . . . , ud] be

rings of polynomials and I1 and I2 be edge ideals of P1 and P2, respectively. Then

reg(P/(I1P + I2P )) = reg(P1/I1) + reg(P2/I2).

Proposition 2.3.4 ([17, Lemma 2.2]). For a simple graph G which is finite we have,

reg(P/I(G)) ≥ indmat(G).

Lemma 2.3.5 ([18, Theorem 1.4]). Let I1 and I2 are the monomial ideals of P , then

reg(P/(I1 + I2)) ≤ reg(P/I1) + reg(P/I2).

2.4 Projective Dimension

Definition 2.4.1. For a field ℜ let P = ℜ[u1, . . . , ul] be the ring of polynomials in

l variables over the given field. Then for a Z-graded P -module M which is finitely

generated having a minimal free resolution

0 −→
⊕
j∈Z

P (−j)βr,j(M)−→
⊕
j∈Z

P (−j)βr−1,j(M)−→.....−→
⊕
j∈Z

P (−j)β0,j(M) −→ 0

the projective dimension of M is given by pdim(M) = max{k : βk,j (M) ̸= 0}.
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2.4.1 Application of Projective Dimension in Commutative Al-
gebra,Algebric Geometry and Representation Theory

Projective dimension plays a significant role in commutative algebra, where it helps in

understanding the algebraic and geometric properties of rings and modules. It is used

to study properties like the depth, regularity, and Cohen-Macaulayness of modules

and rings. Projective dimension is employed in the classification of modules and the

computation of local cohomology modules.

Projective dimension has applications in algebraic geometry, particularly in the

study of projective varieties and coherent sheaves. It is used to measure the complexity

and sheaf cohomology of coherent sheaves on projective varieties. Projective dimension

helps in understanding the geometry and algebraic properties of projective spaces,

projective curves, and higher-dimensional projective varieties.

Projective dimension is relevant in the study of representations of algebraic struc-

tures, such as groups, algebras, and Lie algebras. It provides information about the

complexity and structure of modules and representations. Projective dimension is used

to characterize projective and injective modules and to analyze the behavior of homo-

logical functors in representation theory.

2.4.2 Few Results Related to Projective Dimension

Lemma 2.4.1 ([3, Theorem 1.3.3]). (Auslander–Buchsbaum formula) Suppose P is a

local Noetherian ring and is also commutative, and M is a non-zero P -module which is

finitely generated and has finite projective dimension. Then, the sum of the projective

dimension and the depth of the module M is equal to the dimension of the ring P this

is pdim(M) + depth(M) = depth(P ).

Lemma 2.4.2 ([7, Lemma 5.1]). For I a square-free monomial ideal, and any subset

of the variables R relabeled as R = {u1, . . . , ul}, either ∃ a l with 1 ≤ l ≤ j such that

pdim(P/B) = pdim(P/((B, u1, . . . , ul−1) : ud)) or pdim(P/I) = pdim(P/((S, u1, . . . , uj))).

Lemma 2.4.3 ([2, Proposition 3.1.1]). Let A = A(Pn) ⊂ X , where Pn is a path of

length n. Then pdim(P/A(Pn)) = ⌈2n
3
⌉.
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Chapter 3

Algebraic Invariants of cyclic modules
associated to some special subgraphs
of Brt(C2n(1, n− 1)), Brt(C2n(1, 2)) and
Brt(C2n(1, n− 1, n)) graphs

In this chapter a Circulant graph is defined as in Definition 1.3.6. we discuss the

values for the regularity of the cyclic modules ℜ[V(Υn,t)]/I(Υn,t), ℜ[V(Φn,t)]/I(Φn,t),

ℜ[V(Ψn,t)]/I(Ψn,t). We also compute depth, Stanley depth, and projective dimension

of ℜ[V(Υn,t)]/I(Υn,t). These computations will be crucial in the subsequent section as

we proceed to calculate our key findings.

3.1 Preliminaries

We discuss a few preliminaries first which aid in proving the theorems given in this

chapter. These basic results include a few Lemma’s which help in simplifying the

structures under study and a few other basic theorems related to bipartite graphs and

trees in general are given.

Lemma 3.1.1 ([26, Lemma 2.2 and Lemma 2.26]). Let L = I(St). Then,

depth(P/L) = reg(P/L) = sdepth(P/L) = 1.

Lemma 3.1.2 ([26, Theorem 2.28]). Let L = I(Sp,t) Then,
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(a) reg(P/L) = ⌈n
2
⌉.

(b) depth(P/L) = sdepth(P/L) = ⌈n
2
⌉+ ⌈n−1

2
⌉t.

Lemma 3.1.3 ([26, Theorem 2.30 and Theorm 2.9]). Let L = I(Cn,t) Then,

(a) reg(P/L) = ⌈n−1
2
⌉.

(b) depth(P/L) = sdepth(P/L) = ⌈n
2
⌉+ ⌈n−1

2
⌉t.

Lemma 3.1.4 ([12, Lemma 3.6]). Let I1 ⊂ P be a monomial ideal. If P ′ = P ⊗ℜ

ℜ[zl+1] ∼= P [zl+1], then

(a) depth (P ′/I1P
′) = depth(P/I1) + 1.

(b) sdepth (P ′/I1P
′) = sdepth(P/I1)− 1.

(c) reg (P ′/I1P
′) = reg(P/I1).

Lemma 3.1.5 ([13, Lemma 3.2]). If I1 ⊂ P ′ = ℜ[z1, . . . , ul] and I2 ⊂ P ′′ = ℜ[zl+1, . . . , up]

are non-zero homogeneous ideals of P ′ and P ′′ and regard I1 + I2 as a homogeneous

ideal of P = P ′ ⊗ℜ P ′′, then

reg(P/(I1 + I2) = reg(P ′/I1) + reg(P ′′/I2).

Remark 3.1.6. We have some special cases of Υn,t, Φn,t, and Ψn,t, for n=0. That can

be defined as follows

• ℜ[V(Υ0,t/I(Υ0,t))] ∼= ℜ. Thus, reg(ℜ) = depth(ℜ) = sdepth(ℜ) = 0.

• ℜ[V(Φ0,t/I(Φ0,t))] ∼= ℜ. Thus, reg(ℜ) = depth(ℜ) = sdepth(ℜ) = 0.

• ℜ[V(Ψ0,t/I(Ψ0,t))] ∼= ℜ. Thus, reg(ℜ) = depth(ℜ) = sdepth(ℜ) = 0.

If n = 1, then we have ℜ[V(Υ1,t/I(Υ1,t))] ∼= ℜ[V(St)]/I(St) ⊗ℜ ℜ[V(St)]/I(St). By

Lemma 3.1.1 and Lemma 3.1.5, reg(ℜ[V(Υ1,t/I(Υ1,t))]) = 2.
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When n ≥ 1, we consider several types of graphs denoted as Υn, Φn,Ψn, and these

are the subsets of C2n(1, n− 1) and C2n(1, 2) and C2n(1, n− 1, n).

e1 en−1 en

f1 fn−1 fn

e1 en−1 en

f1 fn−1 fn

Figure 3.1: From left to right, Υn and Φn .

e1 en−1 en

f1 fn−1 fn

Figure 3.2: Ψn.

Now we define the pendents attached to different vertices with specific variables.

That is Ci := {ei,1, . . . , ei,t} and Di := {fi,1, . . . , fi,t} where 1 ≤ i ≤ n.

Let Υn,t := Brt(Υn), Φn,t := Brt(Φn), Ψn,t := Brt(Ψn). Now we discuss the edge

set of Υn,t, Φn,t, Ψn,t. Here G(I) denotes the minimal generating set of monomial ideal

I. If n = 2, then

G(Υ2,t) := {e1e2, e1e1,1, . . . , e1e1,t, e2e2,1, e2e2,2, . . . , e2e2,t, f1f2, f1f1,1, . . . , f1f1,t, f2f2,1,

f2f2,2, . . . , f2f2,t}.

For n ≥ 3,

G(Ψn,t) := ∪n−1
j=1{ejej+1, fjfj+1}∪n

j=1{ejfj}∪n−1
j=1 {ejfj+1, ej+1fj}∪t

j=1{e1e1j, . . . , enenj,

f1f1j, . . . , fnfnj},
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G(Φn,t) := ∪n−1
j=1{ejej+1, fjfj+1} ∪n

j=1 {ejfj} ∪n−1
j=1 {ejfj+1} ∪t

j=1 {e1e1j, . . . , enenj,

f1f1j, . . . , fnfnj},

G(Υn,t) := ∪n−1
j=1{ejej+1, fjfj+1} ∪n−1

j=1 {ejfj+1, ej+1fj} ∪t
j=1 {e1e1j, . . . , enenj,

f1f1j, . . . , fnfnj}.

In this part, we discuss the values for the regularity of the cyclic modules

ℜ[V(Υn,t)]/I(Υn,t), ℜ[V(Φn,t)]/I(Φn,t), ℜ[V(Ψn,t)]/I(Ψn,t). We also compute depth,

Stanley depth, and projective dimension of ℜ[V(Υn,t)]/I(Υn,t). These computations

will be crucial in the subsequent section as we proceed to calculate our key findings.

Let I ⊂ P be a squarefree monomial ideal that is minimally generated by a monomial

of degree at most 2. We define a graph GI associated with the ideal I, where V(GI)

represents the support of I and E(GI) consists of pairs {{ui, uj} : uiuj ∈ G(I)}. Within

the polynomial ring P , let et and el be variables such that et and el are not elements

of I. The ideals (I : el) and (I, et) are monomial ideals of P , and their corresponding

graphs G(I:el) and G(I,et) are subgraphs of GI .

3.2 Algebraic Invariants of cyclic modules associated
to some special subgraphs of Brt(C2n(1, n − 1)),
Brt(C2n(1, 2)) and Brt(C2n(1, n− 1, n)) graphs

Lemma 3.2.1. Let n, q ≥ 1 and P = ℜ[V(Υn,t)]. Then

reg(P/I(Υn,t)) =

{
n+ 1, if n is odd;
n, if n is even.

Proof. Let n = 2. Then we have ℜ[V(Υ2,t/(I(Υ2, q) : f2) ∼= ℜ[V(St)]/I(St). By Lemma

3.1.1 , reg(ℜ[V(Υ2,t)]/I(Υ2,t : f2)) = 1. Also ℜ[V(Υ2,t)/I(Υ2,t, f2) ∼= ℜ[V(S3,t)]/I(S3,t),

then by using Lemma 3.1.2, reg(ℜ[V(Υ2,t, f2)]/I(Υ2,t, f2)) = 2. Now finally by Lemma

2.3.1(b),

reg(ℜ[V(Υ2,t)/(I(Υ2, q))) = 2. Now, if n = 3, then Υ3,t
∼= Υ2,t ∪ U2,t, here

U2,t := {a1a2, b1b2, a1b1, a2b2, a1a11, . . . , a1a1t, a2a21, . . . , a2a2t, b1b11, . . . , b1b1t, b2b21, . . . , b2b2t}.
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Also Υ2,t ∩ U2,t ̸= ∅. By applying Lemma 2.3.5,

reg(ℜ[V(Υ3,t)/I(Υ3,t)) ≤ reg(ℜ[V(Υ2,t)]/I(Υ2,t)) + reg(ℜ[V(Υ2,t)]/I(Υ2, q)).

Thus by induction on n, we obtain reg(P/I(Υ3,t)) ≤ 2 + 2 = 4. As far as another

inequality is concerned, let M =
{
{f1, f1,1}, {e1, e1,1}, {f3, f3,1}, {e3, e3,1}

}
. Where M

is induced matching, thus, indmat(Υ3,t) ≥ 4. By Lemma 2.3.4, reg(P/I(Υ3,t)) ≥ 4.

Thus, reg(P/I(Υ3,t)) = 4. For n ≥ 4, we have;

Case 1 : Let n is even. Then

P/(I(Υn,t) : fn) ∼= ℜ[V(Υn−2,t)]/I(Υn−2,t)⊗ℜℜ[V(St)]/I(St)⊗ℜℜ[fn, Dn−1, Cn−1],
(3.1)

P/((I(Υn,t), fn), en) ∼= ℜ[V(Υn−1,t)]/I(Υn−1,t)⊗ℜ ℜ[Dn, Cn], (3.2)

P/((I(Υn,t), fn) : en) ∼= ℜ[V(Υn−2,t)]/I(Υn−2,t)⊗ℜℜ[en, Dn, Dn−1, Cn−1], (3.3)

By mathematical induction on n, along with the use of Lemma 3.1.5 and Lemma

3.1.4 on Eqs. (4.25)- (4.27) respectively, also apply Lemma 3.1.1 on Eq (4.25),

reg(P/(I(Υn,t) : fn) = reg(ℜ[V(Υn−2,t)]/I(Υn−2,t)) + reg(ℜ[V(St)]/I(St))

= n− 2 + 1 = n− 1,

reg (P/((I(Υn,t), fn), en)) = reg(ℜ[V(Υn−1,t)]/I(Υn−1,t)) = n− 1 + 1 = n,

reg (P/((I(Υn,t), fn) : en)) = reg(ℜ[V(Υn−2,t)]/I(Υn−2,t)) = n− 2.

As reg (P/((I(Υn,t), fn) : en))) < reg (P/((I(Υn,t), fn), en), by applying of Lemma

2.3.1(b), reg(P/(I(Υn,t), fn)) = n. Also,

reg (P/((I(Υn,t) : fn)) < reg (P/((I(Υn,t), fn).

Finally by Lemma 2.3.1(b), reg(P/(I(Υn,t)) = n.
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Case 2 Let n is odd. Then Υn,t
∼= Υn−1,t ∪H, where H ∼= Υ2,t also Υn−1,t ∩H ̸= ∅.

By induction on n and using Lemma 2.3.5,

reg(P/I(Υn,t) ≤ reg(ℜ[V(Υn−1,t)]/I(Υn−1,t)) + reg(ℜ[V(Υ2,t)]/I(Υ2,t)) = n+ 1.

To obtain the second inequality, let M =
{
{f1, f1,1}, {e1, e1,1}, {e3, e3,1}, {f3, f3,1} . . . ,

{en−2, en−2,1}, {fn−2, fn−2,1}, {en, en,1}, {fn, fn,1}
}

it is obvious that M forms an

induced matching, so, indmat(Υn,t) ≥ n+ 1. By Lemma 2.3.4, reg(P/I(Υn,t)) ≥
n+ 1. Therefore, reg(P/I(Υn,t)) = n+ 1.

Lemma 3.2.2. Let n, t ≥ 1 and P = ℜ[V(Φn,t)]. Then

reg(P/I(Φn,t)) =

{
2⌈n−1

3
⌉+ 1, if n = 1mod(3);

2⌈n
3
⌉, if n = 0, 2mod(3).

Proof. Let n = 2. Then

P/(I(Φ2,t) : f2) ∼= ℜ[V(Φ0,t)]/I(Φ0,t)⊗ℜ ℜ[f2, D1, C1, C2],

P/(I(Φ2,t), f2) ∼= ℜ[V(S3,t)]/I(S3,t)⊗ℜ ℜ[D2].

By Lemma 3.1.4, reg(P/(I(Φ2,t) : f2) = reg(ℜ[V(Φ0,t)]/I(Φ0,t)) and reg(P/(I(Φ2,t), f2) =

reg(ℜ[V(S3,t)]/I(S3,t)). By Remark 3.1.6 and Lemma 3.1.2, reg(P/(I(Φ2,t) : f2) = 0

and

reg(P/(I(Φ2,t), f2) = 2. As reg(P/((I(Φ2,t) : f2) < reg(P/((I(Φ2,t), f2)). Finally by

Lemma 2.3.1(b), reg(P/((I(Φ2,t)) = 2. Now let n = 3. Then

P/(I(Φ3,t) : f3) ∼= ℜ[V(S2,t)]/I(S2,t)⊗ℜ ℜ[f3, D2, C3, C2],

P/(I(Φ3,t), f3), e3) ∼= ℜ[V(Φ2,t)]/I(Φ2,t)⊗ℜ ℜ[f3, e3, D3, C3],

P/(I(Φ3,t), f3) : e3) ∼= ℜ[V(C3,t)]/I(C3,t)⊗ℜ ℜ[e3, C2].

By applying Lemma 3.1.4 we get,

reg(P/(I(Φ3,t) : f3) = reg(ℜ[V(S2,t)]/I(S2,t)),
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reg(P/(I(Φ3,t), f3), e3) = reg(ℜ[V(Φ2,t)]/I(Φ2,t)),

reg(P/(I(Φ3,t), f3) : e3) = reg(ℜ[V(C3,t)]/I(C3,t)).

By induction and applying Lemmas 3.1.2 and 3.1.3 we have,

reg(P/(I(Φ3,t) : f3) = 1,

reg(P/(I(Φ3,t), f3), e3) = 2,

and

reg(P/(I(Φ3,t), f3) : e3) = 1.

As reg(P/(I(Φ3,t), f3), e3) > reg(P/(I(Φ3,t), f3) : e3) So by Lemma 2.3.1(b), we have

reg(P/(I(Φ3,t), f3) = 2.

Also reg(P/(I(Φ3,t), f3) > reg(P/(I(Φ3,t) : f3)) so again by Lemma 2.3.1(b), we have

reg(P/(I(Φ3,t)) = 2.

For n = 4. we have

P/(I(Φ4,t) : f3) ∼= ℜ[V(S2,t)]/I(S2,t)⊗ℜ ℜ[V(St)]/I(St)⊗ℜ ℜ[f3, D2, C2,

C3, D4],

P/(I(Φ4,t), f3), e3) ∼= ℜ[V(Φ2,t)]/I(Φ2,t)⊗ℜ ℜ[V(S2,t)]/I(S2,t)⊗ℜ ℜ[f3, e3, D3, C3],

P/(I(Φ4,t), f3) : e3) ∼= Φ[V(C3,t)]/I(C3,t)⊗ℜ ℜ[e3, C2, D4].

By applying Lemma 3.1.4 we get,

reg(P/(I(Φ4,t) : f3) = reg(ℜ[V(S2,t)]/I(S2,t)) + reg(ℜ[V(St)]/I(St)),

reg(P/(I(Φ4,t), f3), e3) = reg(ℜ[V(Φ2,t)]/I(Φ2,t)) + reg(ℜ[V(S2,t)]/I(S2,t)),

reg(P/(I(Φ3,t), f3) : e3) = reg(ℜ[V(C3,t)]/I(C3,t)),

By applying Lemmas (3.1.1)and (3.1.3) we have,

reg(P/(I(Φ4,t) : f3) = 2,
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reg(P/(I(Φ4,t), f3), e3) = 3,

and

reg(P/(I(Φ4,t), f3) : e3) = 2.

As reg(P/(I(Φ4,t), f3), e3) > reg(P/(I(Φ4,t), f3) : e3) So by Lemma 2.3.1(b), we have

reg(P/(I(Φ3,t), f3) = 3

Also reg(P/(I(Φ4,t), f3) > reg(P/(I(Φ4,t) : f3)) so again by Lemma 2.3.1(b), we have

reg(P/(I(Φ4,t)) = 3.

Now for n ≥ 5 we have the following cases,

Case 1: Let n ≡ 0mod(3). Then

P/(I(Φn,t) : fn−1) ∼= ℜ[V(Φn−3,t)]/I(Φn−3,t)⊗ℜℜ[V(St)]/I(St)⊗ℜℜ[fn−1, Dn−2,

Cn−2, Cn−1, Dn], (3.4)

P/((I(Φn,t), fn−1), en−1)) ∼= ℜ[V(Φn−2,t)]/I(Φn−2,t)⊗ℜℜ[V(S2,t)]/I(S2,t)⊗ℜℜ[Dn−1,

Cn−1], (3.5)

P/((I(Φn,t), fn−1) : en−1), fn−2)) ∼= ℜ[V(Φn−3,t)]/I(Φn−3,t)⊗ℜ ℜ[en−1, Dn−1,

Cn−2, Dn, Cn, Dn−2], (3.6)

P/((I(Φn,t), fn−1) : en−1) : fn−2)) ∼= ℜ[V(Φn−4,t)]/I(Φn−4,t)⊗ℜ ℜ[en−1, fn−2,

Dn−1, Cn−2, Cn, Dn, Dn−3, Cn−3]. (3.7)

By applying Lemma 3.1.4 and Lemma 3.1.5 on Eqs. (3.4) - (3.7), respectively we

obtain,

reg(P/(I(Φn,t) : fn−1)) = reg(ℜ[V(Φn−3,t)]/I(Φn−3,t)) + reg(ℜ[V(St)]/I(St)),

(3.8)
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reg(P/((I(Φn,t), fn−1), en−1))) = reg(ℜ[V(Φn−2,t)]/I(Φn−2,t))

+ reg(ℜ[V(S2,t)]/I(S2,t)), (3.9)

reg(P/((I(Φn,t), fn−1) : en−1), fn−2))) = reg(ℜ[V(Φn−3,t)]/I(Φn−3,t)), (3.10)

reg(P/((I(Φn,t), fn−1) : en−1) : fn−2))) = reg(ℜ[V(Φn−4,t)]/I(Φn−4,t)). (3.11)

By using induction on n along with the use of Lemma 3.1.1 and Lemma 3.1.2 on

Eqs. (3.8) - (3.11), respectively we obtain,

reg(P/(I(Φn,t) : fn−1)) = 2⌈n− 3

3
⌉+ 1,

reg(P/I(Φn,t), fn−1), en−1)) = 2⌈n
3
⌉,

reg(P/(I(Φn,t), fn−1) : en−1), fn−2)) = 2⌈n− 3

3
⌉,

reg(P/(I(Φn,t), fn−1) : en−1) : fn−2)) = 2⌈n− 4

3
⌉.

As reg (P/((I(Φn,t), fn−1) : en−1) : fn−2)) < reg (P/((I(Φn,t), fn−1) : en−1), fn−2))),

so by Lemma 2.3.1(b), reg(P/I(Φn,t, fn−1) : en−1)) = 2⌈n−3
3
⌉. Also,

reg (P/((I(Φn,t), fn−1) : en−1))) < reg (P/((I(Φn,t), fn−1), en−1))).

Thus by Lemma 2.3.1(b),

reg(P/I(Φn,t, fn−1)) = 2⌈n
3
⌉.

Similarly reg (P/((I(Φn,t) : fn−1))) < reg (P/((I(Φn,t), fn−1))). Therefore by Lemma

2.3.1(b), reg(P/I(Φn,t) = 2⌈n
3
⌉.

Case 2: Let n ≡ 2mod(3). Then Φn,t
∼= Φn−2,t ∪ Φ3,t, where Φn−2,t ∩ Φ3,t ̸= ∅. By

induction on n and using Lemma 2.3.5,

reg(P/I(Φn,t) ≤ reg(ℜ[V(Φn−2,t)]/I(Φn−2,t))+reg(ℜ[V(Φ3,t)]/I(Φ3,t)) = 2⌈n− 1

3
⌉+2

= 2⌈n
3
⌉.
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To obtain the second inequality, let M =
{
{f1, f1,1}, {e2, e2,1}, {f3, f4,1}, {e5, e5,1} . . . ,

{fn−4, fn−4,1}, {en−3, en−3,1}, {fn−1, fn−1,1}, {en, en,1}
}

clearly M forms an induced

matching. Therefore, indmat(Φn,t) ≥ 2⌈n
3
⌉. By applying Lemma 2.3.4, reg(P/I(Φn,t)) ≥

2⌈n
3
⌉. Thus reg(P/I(Φn,t)) = 2⌈n

3
⌉.

Case 3: Let n ≡ 1 (mod 3). Then

P/(I(Φn,t) : fn−2) ∼= ℜ(Φn−4,t)]/I(Φn−4,t)⊗ℜℜ[V(C3,t)]/I(C3,t)⊗ℜℜ[fn−2, Dn−1,

Cn−2, Cn−3, Dn−3], (3.12)

P/((I(Φn,t), fn−2), en−2) ∼= ℜ[V(Φn−3,t)]/I(Φn−3,t)⊗ℜℜ[V(Φ2,t)]/I(Φ2,t)⊗ℜℜ[Dn−2,

Cn−2], (3.13)

P/((I(Φn,t), fn−2) : en−2), fn−3)) ∼= ℜ[V(Φn−4,t)]/I(Φn−4,t)⊗ℜℜ[V(S2,t)]/I(S2,t)⊗ℜ

ℜ[en−2, Cn−1, Dn−1, Dn−2, Cn−3, Dn−2, Dn−3], (3.14)

P/((I(Φn,t), fn−2) : en−2 : fn−3)) ∼= ℜ[V(Φn−5,q)]/I(Φn−5,q)⊗ℜℜ[V(S2,t)]/I(S2,t)

⊗ℜ ℜ[en−2, fn−3, Cn−3, Cn−1, Dn−2, Dn−1, Dn−4, Cn−3, Cn−4, Dn−2]. (3.15)

By applying Lemma 3.1.4 and Lemma 3.1.5 on Eqs. (3.12) - (3.15) we get,

reg(P/(I(Φn,t) : fn−2) = reg(ℜ(Φn−4,t)]/I(Ln−4,t)) + reg(ℜ[V(C3,t)]/I(C3,t)),

(3.16)

reg(P/((I(Φn,t), fn−2), en−2) = reg(ℜ[V(Φn−3,t)]/I(Φn−3,t))+reg(ℜ[V(Φ2,t)]/I(Φ2,t)),

(3.17)

reg(P/((I(Φn,t), fn−2) : en−2), fn−3)) = reg(ℜ[V(Φn−4,t)]/I(Φn−4,t))

+ reg(ℜ[V(S2,t)]/I(S2,t)), (3.18)
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reg(P/((I(Φn,t), fn−2) : en−2 : fn−3)) = reg(ℜ[V(Φn−5,q)]/I(Φn−5,q))

+ ℜ[V(S2,t)]/I(S2,t). (3.19)

By using induction on n along with the use of Lemma 3.1.2 and Lemma 3.1.3 on

Eqs. (3.16) - (3.19) ,

reg(P/(I(Φn,t) : fn−2)) = 2⌈n− 4

3
⌉+ 1,

reg(P/(I(Φn,t), fn−2), en−2)) = 2⌈n− 1

3
⌉+ 1,

reg(P/(I(Φn,t), fn−2) : en−2), fn−3)) = 2⌈n− 4

3
⌉+ 1,

reg(P/(I(Φn,t), fn−2) : en−2) : fn−3)) = 2⌈n− 5

3
⌉+ 1.

As reg (P/((I(Φn,t), fn−2) : en−2) : fn−3)) < reg (P/((I(Φn,t), fn−2) : en−2), fn−3))),

by Lemma 2.3.1(b), reg(P/I(Φn,t, fn−2) : en−2)) = 2⌈n−4
3
⌉+ 1. Also

reg (P/((I(Φn,t), fn−2) : en−2))) < reg (P/((I(Φn,t), fn−2), en−2))),

by Lemma 2.3.1(b),

reg(P/I(Φn,t, fn−2)) = 2⌈n− 1

3
⌉+ 1.

Furthermore, reg (P/((I(Φn,t) : fn−2)))) < reg (P/((I(Φn,t), fn−2))), by Lemma

2.3.1(b),

reg(P/I(Φn,t) = 2⌈n− 1

3
⌉+ 1.

Lemma 3.2.3. Let n, q ≥ 1 and P = ℜ[V(Ψn,t)], then reg (P/I(Ψn,t)) = ⌈n
2
⌉.

Proof. Let n = 2. We have

P/(I(Ψ2,t) : f1) ∼= ℜ[V(Ψ0,t)]/I(Ψ0,t)⊗ℜ ℜ[f1, D2, C1, C2]. (3.20)

Moreover, we have

P/((I(Ψ2,t), f1, e1)) ∼= ℜ[V(S2,t)]/I(S2,t)⊗ℜ ℜ[D1, C1], (3.21)
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also

P/(I(Ψ2,t), f1 : e1)) ∼= (ℜ/V(Ψ0,t)/I(Ψ0,t))⊗ℜ ℜ[e1, D1, C2, D2]. (3.22)

By applying Lemma 3.1.4 on Eqs. (4.4) - (4.6), respectively we get,

reg(P/(I(Ψ2,t) : f1) = reg(ℜ[V(Ψ0,t)]/I(Ψ0,t)), (3.23)

reg(P/((I(Ψ2,t), f1, e1)) = reg(ℜ[V(S2,t)]/I(S2,t)), (3.24)

reg(P/(I(Ψ2,t), f1) : e1)) = reg(ℜ[V(Ψ0,t)/I(Ψ0,t)). (3.25)

By using Lemma 3.1.2 and Remark 3.1.6, we have

reg(P/((I(Ψ2,t) : f1)) = 0, and reg(P/(I(Ψ2,t), f1, e1)) = 1. also

reg(P/((I(Ψ2,t), f1 : e1)) = 0.

As reg(P/((I(Ψ2,t), f1 : e1)) < reg(P/((I(Ψ2,t), f1, e1)), by applying Lemma 2.3.1(b),

reg(P/(I(Ψ2,t, f1))) = 1. Also reg(P/((I(Ψ2,t) : f1)) < reg(P/((I(Ψ2,t), f1)), so by

Lemma 2.3.1(b) reg(P/((I(Ψ2,t)) = 1. For n ≥ 3 we have:

P/((I(Ψn,t) : fn−1)) ∼= ℜ[V(Ψn−3,t)]/I(Ψn−3,t)⊗ℜℜ[fn−1, Dn, Dn−2, Cn, Cn−2], (3.26)

P/((I(Ψn,t), fn−1), en−1)) ∼= ℜ[V(Ψn−2,t)]/I(Ψn−2,t)⊗ℜ ℜ[V(S2,t)]/I(S2,t)⊗ℜ ℜ[Dn−1,

Cn−1], (3.27)

P/((I(Ψn,t), fn−1) : en−1)) ∼= ℜ[V(Ψn−3,t)]/I(Ψn−3,t)⊗ℜ ℜ[en−1, Dn−1,

Cn, Cn−2, Dn−1, Dn, Dn−2]. (3.28)

By using Lemma 3.1.4 and Lemma 3.1.5 on Eqs.(3.4) - (3.28) we have,

reg(P/((I(Ψn,t) : fn−1)) = reg(ℜ[V(Ψn−3,t)]/I(Ψn−3,t)), (3.29)

reg(P/((I(Ψn,t), fn−1), en−1)) = reg(ℜ[V(Ψn−2,t)]/I(Ψn−2,t) + reg(ℜ[V(S2,t)]/I(S2,t)),

(3.30)

reg(P/((I(Ψn,t), fn−1) : en−1)) = reg(ℜ[V(Ψn−3,t)]/I(Ψn−3,t)). (3.31)
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By induction on n and applying Lemma 3.1.1 on Eqs. (3.29) - (3.31), respectively we

have ,

reg(P/(I(Ψn,t) : fn−1)) = ⌈n− 3

2
⌉,

reg(P/(I(Ψn,t), fn−1), en−1)) = ⌈n− 2

2
⌉+ 1 = ⌈n

2
⌉,

reg(P/(I(Ψn,t), fn−1) : en−1))) = ⌈n− 3

2
⌉.

As, reg (P/((I(Ψn,t), fn−1) : en−1))) < reg (P/((I(Ψn,t), fn−1), en−1)))), by Lemma

2.3.1(b),

reg(P/I(Ψn,t, fn−1)) = ⌈n
2
⌉.

Also, reg(P/((I(Ψn,t) : fn−1))) < reg(P/((I(Ψn,t), fn−1))), by Lemma 2.3.1(b),

reg(P/I(Ψn,t)) = ⌈n
2
⌉.

Lemma 3.2.4. Let n ≥ 2, t ≥ 1 and P = ℜ[V(Υn,t)]. Then

sdepth (P/I(Υn,t)) ≥ depth (P/I(Υn,t)) =

{
n(t+ 1), if n is even;
n(1 + t)− t+ 1, if n is odd.

Proof. Let n = 2. We have,

0 −→ P/I(Υ2,t : f2)
·f2−→ P/I(Υ2,t) −→ P/I(Υ2,t, f2) −→ 0, (3.32)

and

P/(I(Υ2,t) : f2) ∼= ℜ[V(St)]/I(St)⊗ℜ ℜ[f2, D1, C1],

P/((I(Υ2,t), f2) ∼= ℜ[V(S3,t)]/I(S3,t)⊗ℜ ℜ[D2].

By Lemma 2.1.6 and Lemma 3.1.4, depth(P/(I(Υ2,t) : f2)) = depth(V(St)]/I(St)) +

1 + t + t, and depth (P/((I(Υ2,t), f2))) = depth(ℜ[V(S3,t)]/I(S3,t)) + t. By applying

Lemma 3.1.1 and Lemma 3.1.2, depth(P/(I(Υ2,t) : f2)) = 2t + 2 = 2(1 + t), and

depth (P/((I(Υ2,t), f2)) = 2 + t. By Lemma 2.1.4 and Lemma 2.1.2 along with the use

of short exact sequence 3.32, depth(P/(I(Υ2,t))) = 2t+ 2. Let n ≥ 3. Then

0 −→ P/I(Υn,t : fn)
·fn−→ P/I(Υn,t) −→ P/I(Υn,t, fn) −→ 0,
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P/(I(Υn,t) : fn) ∼= ℜ[V(Υn−2)]/I(Υn−2) ⊗ℜ ℜ[V(St)]/I(St)] ⊗ℜ ℜ[fn, Dn−1, Cn−1].
(3.33)

Let

L := (I(Υn,t), fn) = (I(Υn−1,t), en, fnfn+1, fn+1fn+1,1, fn+1fn+1,2, . . . , fn+1,t).

Again,

0 −→ P/I(L : en)
·en−→ S/I(L) −→ P/I(L, en) −→ 0.

P/I(L : en) ∼= ℜ[V(Υn−2,t)]/I(Υn−2,t)⊗ℜ ℜ[en, Dn−1, Cn−1], (3.34)

P/I(L, en) ∼= ℜ[V(Υn−1,t)]/I(Υn−1,t)⊗ℜ ℜ[Cn, Dn]. (3.35)

Case 1 If n is odd, then by Lemma 2.1.6 and Lemma 3.1.4 on Eqs. (3.33) - (3.35),

respectively,

depth(P/(I(Υn,t) : fn)) = depth(ℜ[V(Υn−2,t)]/I(Υn−2,t))

+ depth[(ℜ(V(St))]/I(St)) + 1 + 2t,

depth(P/(L, en)) = depth(ℜ[V(Υn−1,t)]/I(Υn−1,t)) + t+ t,

depth(P/(L : en)) = depth(ℜ[V(Υn−2,t)]/I(Υn−2,t)) + t+ t+ t.

By mathematical induction on n, along with the use of Lemma 3.1.1 ,

depth(P/(I(Υn,t) : fn)) = (n− 2)(t+1)− t+1+ 1+ 1+ 2t = n(t+1)− t+1, (3.36)

depth(P/(L, en)) = (n− 1)(t+ 1) + t+ t = n(1 + t) + t− 1, (3.37)

depth(P/(L : en)) = (n− 2)(t+ 1)− t+ 1 + t+ 1 + 2t = n(1 + t). (3.38)

By applying Lemma 2.1.4 and Lemma 2.1.2 on Eqs. 3.37 and 3.38, respectively,

depth(P/(I(Υn,t), fn)) = n(t+ 1). (3.39)

By applying Lemma 2.1.4 and Lemma 2.1.2 on Eqs. 3.36 and 3.39, respectively,

depth(P/(I(Υn,t)) = n(t+ 1)− t+ 1.
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Case 2 If n is even, then by applying Lemma 2.1.6 and Lemma 3.1.4 on Eqs. (3.33) -

(3.35), respectively,

depth(P/(I(Υn,t) : fn)) = depth(ℜ[V(Υn−2,t)]/I(Υn−2,t))+depth(V(St)]/I(St))+1+t+t,

depth(P/(L : en)) = depth(ℜ[V(Υn−2,t)]/I(Υn−2,t)) + 1 + t+ t+ t = n(1 + t) + t− 1,

depth(P/(L, en)) = depth(ℜ[V(Υn−1,t)]/I(Υn−1,t)) + t+ t.

By mathematical induction on n, along with the use of Lemma 3.1.1,

depth(P/(I(Υn,t) : fn)) = (n− 2)(t+ 1) + 1 + 1 + 2t = n(t+ 1), (3.40)

depth(P/(L : en)) = (n− 2)(t+ 1)− t+ 1 + 2t = n(1 + t), (3.41)

depth(P/(L, en)) = (n− 2)(t+ 1) + t+ 1 + 2t = n(1 + t) + t− 1. (3.42)

By applying Lemma 2.1.4 and Lemma 2.1.2 on Eqs. 3.41 and 3.42, respectively,

depth(P/(I(Υn,t), fn)) ≥ n(1 + t). (3.43)

Since en−1 /∈ L and

depth(P/I(L : en−1)) ∼= ℜ[V(Υn−3)]/I(Υn−3)⊗ℜℜ[V(St)]/I(St)⊗ℜℜ[en−1, en−2,1, . . . ,

en−2,t, fn−2,1, . . . , fn−2,t, en,1, . . . , en,t]. (3.44)

By using induction on n and applying Lemma 3.1.1, we get

depth(P/(I(L : en−1)) = (n− 3)(t+ 1)− t+ 1 + 1 + 1 + 3t+ t = n(t+ 1). (3.45)

By applying Lemma 2.1.2 on eq. 3.45 we have

depth(P/(I(Υn,t), fn))) ≤ n(1 + t). (3.46)

From Eqs (3.43) and (3.46), we get

depth(P/(I(Υn,t, fn)) = n(t+ 1). (3.47)

By applying depth Lemma on Eqs (3.40) and (3.47) we get

depth(P/(I(Υn,t) = n(t+ 1). (3.48)

To find the values of Stanley depth, the proof is similar, just by replacing Lemma 2.1.4

with Lemma 2.2.2.
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Lemma 3.2.5. Let t, n ≥ 1 and P = ℜ[V(Υn,t)]. Then

pdim (P/I(Υn,t)) =

{
n(1 + t), if n is even;
n(1 + t) + t− 1, if n is odd.

Proof. The desired outcome can be obtained by applying Lemma 2.4.1 and Lemma

3.2.4.
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Chapter 4

Algebraic Invariants of Cyclic
Modules Associated with Bristles of
Some Circulant Graphs

In this Chapter, we investigate the properties of edge ideals of certain families of

four and five-bristled circulant graphs. We analyze the depth and projective dimen-

sion of the cyclic module ℜ[V(Dn,t)]/I(Dn,t). Additionally, we provide a lower bound

for the Stanley depth of this module.Furthermore, the exact value of regularity of

ℜ[V(Dn,t)]/I(Dn,t), where Dn,t =: Brt[(C2n(1, n − 1))] and ℜ[V(En,t)]/I(En,t), where

En,t =: Brt[(C2n(1, 2))] also ℜ[V(Fn,t)]/I(Fn,t), where

Fn,t := Brt[(C2n(1, n− 1, n))]. It is worth noting that the labeling of the graphs corre-

sponds to the conventions shown in Figure 4.1 and Figure 4.2.
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Figure 4.1: From left to right, Dn,2 and En,2 .
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Figure 4.2: Fn,2 .

Theorem 4.0.1. Let n ≥ 3 and q ≥ 1, Dn,t = Brt[C(1, n−1)] and P = Brt[ℜ[V(Dn,t)].

Then

reg(P/I(Dn,t)) =

{
n, if n is even;
n− 1, if n is odd.

Proof. Let n = 3. Then
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P/(I(D3,t) : e3) ∼= ℜ[V(Υ0,t)]/I(Υ0,t)⊗ℜ ℜ[V(Sq)]/I(Sq)⊗ℜ ℜ[e3, C1, C2,

D1, D2], (4.1)

P/((I(D3,t), e3) : f3) ∼= ℜ[V(Υ0,t)]/I(Υ0,t) ⊗ℜ ℜ[f3, D1, D2, C1, C2, C3], (4.2)

P/((I(D3,t), e3), f3) ∼= ℜ[V(Υ2,t)]/I(Υ2,t)⊗ℜ ℜ[C3, D3]. (4.3)

By using Lemmas 3.1.4 and 3.1.5 on Eqs.(4.1) - (4.3) we obtain,

reg(P/(I(D3,t) : e3) = reg(ℜ[V(Υ0,t)]/I(Υ0,t) + reg(ℜ[V(Sq)]/I(Sq)), (4.4)

reg(P/((I(D3,t), e3) : f3) = reg(ℜ[V(Υ0,t)]/I(Υ0,t)), (4.5)

reg(P/((I(D3,t), e3), f3) = reg(ℜ[V(Υ2,t)]/I(Υ2,t)). (4.6)

By applying induction and applying Lemma 3.1.1 and Remark 3.1.6 we obtain,

reg(P/(I(D3,t) : e3)) = 1, and reg(P/((I(D3,t), e3) : f3)) = 0, moreover

reg(P/((I(D3,t), e3), f3)) = 2. Since

reg(P/((I(D3,t), e3) : f3)) < reg(P/((I(D3,t), e3), f3)).

By Lemma 2.3.1(b), reg(P/(I(D3,t), e3)) = 2 > reg(P/(I(D3,t) : e3)).

Again by applying Lemma 2.3.1(b), reg(P/I(D3,t) = 2. If n = 4, then

P/(I(D4,q) : e4) ∼= ℜ[V(Υ1,t)]/I(Υ1,t) ⊗ℜ ℜ[V(Sq)]/I(Sq) ⊗ℜ ℜ[e4, C1, C3, D1, D3],
(4.7)

P/((I(D4,t, e4) : f4) ∼= ℜ[V(Υ1,t)]/I(Υ1,t)⊗ℜ ℜ[f4, D1, D3, C1, C3, C4], (4.8)

P/((I(D4,t, e4), f4) ∼= ℜ[V(Υ3,t)]/I(Υ3,t)⊗ℜ ℜ[C4, D4]. (4.9)

By applying Lemma 3.1.4 on Eqs. (4.7) - (4.9) we get

reg(P/(I(D4,t) : e4) = reg(ℜ[V(Υ1,t)]/I(Υ1,t) + reg(ℜ[V(Sq)]/I(Sq)), (4.10)

reg(P/((I(D4,t, e4) : f4) = reg(ℜ[V(Υ1,t)]/I(Υ1,t)), (4.11)

reg(P/((I(D4,t, e4), f4) = reg(ℜ[V(Υ3,t)]/I(Υ3,t)), (4.12)
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By applying Remark 3.1.6 and Lemma 3.1.1 we have,

reg(P/(I(D4,t) : e4)) = 3,

reg(P/((I(D3,t), e4) : f4)) = 2. and, reg(P/((I(D4,t), e4), f4)) = 4. Since

reg(P/((I(D4,t), e4) : f4)) < reg (ℜ[V(D4,t)]/((I(D4,t), e4), f4)).

By Lemma 2.3.1(b),

reg(P/(I(D4,t), e4)) = 4 > reg(ℜ[V(D4,t)]/(I(D4,t) : e4)).

Again by applying Lemma 2.3.1(b),

reg(P/I(D4,t) = 4.

Now we have the following cases:

Case 1 In the case where n is an even number. By applying Lemma 2.3.1(b),

reg(P/I(Dn,t)) = reg(P/(I(Dn,t), en)), if,

reg(P/(I(Dn,t) : en)) < reg(P/(I(Dn,t), en)).

Since

P/((I(Dn,t) : en)) ∼= ℜ[V(Υn−3,t)]/I(Υn−3,t)]⊗ℜ ℜ[V(Sq)]/I(Sq)⊗ℜ ℜ[en, C1,

Cn−1, D1, Dn−1], (4.13)

P/((I(Dn,t), en) : fn) ∼= ℜ[V(Υn−3,t)]/I(Υn−3,t)⊗ℜ ℜ[fn, D1, Dn−1,

C1, Cn−1, Cn], (4.14)

P/((I(Dn,t), en), fn) ∼= ℜ[V(Υn−1,t)]/I(Υn−1,t)]⊗ℜ ℜ[Cn, Dn]. (4.15)

By applying Lemma 3.1.4, Lemma 3.1.5 on Eqs. (4.13) - (4.15),

reg (P/((I(Dn,t) : en)) = reg(ℜ[V(Υn−3,t)]/I(Υn−3,t)) + ℜ[V(Sq)]/I(Sq), (4.16)
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reg (P/((I(Dn,t), en) : fn)) = reg(ℜ[V(Υn−3,t)]/I(Υn−3,t)), (4.17)

reg (P/((I(Dn,t), en), fn)) = reg(ℜ[V(Υn−1,t)]/I(Υn−1,t)). (4.18)

By using induction on n and applying Lemma 3.2.1 and 3.1.1 on

Eqs.(4.16) - (4.18) we have,

reg(P/((I(Dn,t) : en))) = n− 3 + 1 + 1 = n− 1,

reg(P/((I(Dn,t), en : fn))) = n− 3 + 1 = n− 2,

reg(P/((I(Dn,t), en, fn))) = n− 1 + 1 = n.

As, reg (P/((I(Dn,t), en) : fn)) < reg(P/((I(Dn,t), en), fn)),

by applying Lemma 2.3.1(b),

reg(P/(I(Rn,t), en)) = n.

Also, reg (P/(((I(Dn,t) : en))) < reg (P/(((I(Dn,t), en))),

again by applying Lemma 2.3.1(b), reg (P/((I(Dn,t))) = n.

Case 2 When n is odd.

P/((I(Dn,t) : en) ∼= ℜ[V(Υn−3,t)]/I(Υn−3,t)]⊗ℜ ℜ[V(Sq)]/I(Sq)⊗ℜ ℜ[en, C1,

Cn−1, D1,1, Dn−1]., (4.19)

P/((I(Dn,t), en) : fn) ∼= ℜ[V(Υn−3,t)]/I(Υn−3,t)⊗ℜ ℜ[fn, D1, Dn−1,

C1, Cn−1, Cn], (4.20)

P/((I(Dn,t), en), fn) ∼= ℜ[V(Υn−1,t)]/I(Υn−1,t)]⊗ℜ ℜ[Cn, Dn], (4.21)

By Lemma 3.1.4 and Lemma 3.1.5 on Eqs.(4.19) - (4.21) we get,

reg (P/((I(Dn,t) : en)) = reg(ℜ[V(Υn−3,t)]/I(Υn−3,t)) + ℜ[V(Sq)]/I(Sq), (4.22)

reg (P/((I(Dn,t), en) : fn)) = reg(ℜ[V(Υn−3,t)]/I(Υn−3,t)), (4.23)
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reg (P/((I(Dn,t), en), fn)) = reg(ℜ[V(Υn−1,t)]/I(Υn−1,t)). (4.24)

By applying induction on n along with the use of Lemma 3.2.1 and 3.1.1 on Eqs.

(4.22) - (4.24) we have,

reg(P/((I(Dn,t) : en)) = n− 3 + 1 = n− 2,

reg(P/((I(Dn,t), en : fn)) = n− 3,

reg(P/((I(Dn,t), en, fn)) = n− 1.

As, reg (P/((I(Dn,t), en) : fn)) < reg(P/((I(Dn,t), en), fn)), by applying Lemma

2.3.1(b),

reg(P/(I(Dn,t), en)) = n− 1.

Also reg (P/(((I(Dn,t) : en))) < reg (P/(((I(Dn,t), en))), again by applying Lemma

2.3.1(b), reg (P/((I(Dn,t))) = n− 1.

Theorem 4.0.2. Let n ≥ 3, t ≥ 1 and En,t = Brt[(C2n(1, 2))]. and P = ℜ[V(En,t)]
Then

reg(ℜ[V(En,t)]/I(En,t)) =

{
2⌈n−1

3
⌉, if n ≡ 1 (mod 3);

2⌈n−1
3
⌉ − 1, if n ≡ 2 (mod 3);

if n ≡ 0 (mod 3).

⌈n
2
⌉ ≤ reg(K[V(En,t)]/I(En,t)) ≤ 2⌈n− 1

3
⌉+ 2

Proof. Case 1 In the case where n ≡ 2 (mod 3) . By applying Lemma 2.3.1(b),

reg(P/I(En,t)) = reg(P/(I(En,t), en)),

if, reg(P/(I(En,t) : en)) < reg(P/(I(En,t), en)). We have the following K-algebric

isomorphism:

P/((I(En,t) : en−1) : fn−2) ∼= ℜ[V(Φn−4,t)]/I(Φn−4,t)]⊗ℜ ℜ[en−1, fn−2,

Cn, Cn−2, Dn−1, Dn, Cn−3, Dn−3], (4.25)
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P/((I(En,t) : en−1) , fn−2) ∼= ℜ[V(Φn−3,t)]/I(Φn−3,t)⊗ℜ ℜ[en−1, Cn,

Cn−2, Dn−1, Dn−2], (4.26)

P/((I(En,t), en−1) , fn−1) ∼= ℜ[V(Φn−1,t)]/I(Φn−1,t) ⊗ℜ ℜ[Cn−1, Dn−1], (4.27)

P/((I(En,t), en−1) : fn−1) , en) ∼= ℜ[V(Φn−3,t)]/I(Φn−3,t)⊗ℜ ℜ[fn−1, Cn, Dn,

Dn−2, Cn−1, Cn−2], (4.28)

P/((I(En,t), en−1) : fn−1) : en) ∼= (ℜ[V(Φn−4,t)]/I(Φn−4,t))⊗ℜ ℜ[fn−1, en,

Cn−1, C1, D1, Dn, Cn−2, Dn−2]. (4.29)

By applying induction on n and using Lemma 3.2.2 and 3.1.4 we get,

reg(P/((I(En,t) : en−1) : fn−2)) = reg(ℜ[V(Φn−4,t)]/I(Φn−4,t)) = 2⌈n− 1

3
⌉ − 3,

since n− 1 ≡ 1 (mod 3).

reg(P/((I(En,t) : en−1), fn−2)) = reg(ℜ[V(Φn−3,t)]/I(Φn−3,t)) = 2⌈n− 1

3
⌉ − 2,

since n− 3 ≡ 0 (mod 3).

reg(P/((I(En,t), en−1), fn−1)) = reg(ℜ[V(Φn−1,t)]/I(Φn−1,t)) = 2⌈n− 1

3
⌉ − 1,

as we have n− 1 ≡ 0 (mod 3).

reg(P/((I(En,t), en−1) : fn−1), en) = reg(ℜ[V(Φn−3,t)]/I(Φn−3,t)) = 2⌈n− 1

3
⌉ − 2,

since n− 3 ≡ 0 (mod 3).

reg(P/((I(En,t), en−1) : fn−1 : en)) ∼= ℜ[V(Φn−1,t)]/I(Φn−1,t) = 2⌈n− 1

3
⌉ − 3.

Since

reg (ℜ[V(En,t)]/((I(En,t) : en−1) : fn−2)) < reg (ℜ[V(En,t)]/((I(En,t) : en−1), fn−2)).
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By using Lemma 2.3.1(b),

reg(ℜ[V(En,t)]/(I(En,t) : en−1)) = 2⌈n− 1

3
⌉ − 2.

Also reg (ℜ[V(En,t)]/((I(En,t) : en−1) : fn−1) : en)) < reg (ℜ[V(En,t)]/((I(En,t) :

en−1), fn−1), en). By using Lemma 2.3.1(b),

reg(ℜ[V(En,t)]/(I(En,t), en−1) : fn−1)) = 2⌈n− 1

3
⌉ − 2.

And reg (ℜ[V(En,t)]/((I(En,t), en−1) : fn−1))) < reg (ℜ[V(En,t)]/((I(En,t) : en−1), fn−1)).

By using Lemma 2.3.1(b),

reg(ℜ[V(En,t)]/(I(En,t), en−1)) = 2⌈n− 1

3
⌉ − 1.

Also reg (ℜ[V(En,t)]/((I(En,t) : en−1) < reg (ℜ[V(En,t)]/((I(En,t), en−1). By using

Lemma 2.3.1(b),

reg(ℜ[V(En,t)]/(I(En,t)) = 2⌈n− 1

3
⌉ − 1.

Case 2 When n ≡ 1 (mod 3) We have the following isomorphism:

P/((I(En,t) : en−1) : fn−2)) ∼= ℜ[V(Φn−4,t)]/I(Φn−4,t)]⊗ℜ ℜ[en−1, fn−2, Cn,

Cn−2, Dn−1, Dn, Cn−3, Dn−3], (4.30)

P/((I(En,t) : en−1), fn−2) ∼= ℜ[V(Φn−3,t)]/I(Φn−3,t)⊗ℜ ℜ[en−1, Cn,

Cn−2, Dn−1, Dn−2], (4.31)

P/((I(En,t), en−1), fn−1) ∼= ℜ[V(Φn−1,t)]/I(Φn−1,t)] ⊗ℜ ℜ[Cn−1, Dn−1], (4.32)

P/((I(En,t), en−1) : fn−1), en) ∼= ℜ[V(Φn−3,t)]/I(Φn−3,t)]⊗ℜ ℜ[fn−1, Cn, Dn,

Dn−2, Cn−1, Cn−2], (4.33)
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P/((I(En,t), en−1) : fn−1) : en) ∼= ℜ[V(Φn−4,t)]/I(Φn−4,t)⊗ℜ ℜ[fn−1, en, Cn−1,

C1, D1, Dn, Cn−2, Dn−2]. (4.34)

By using induction on n and using Lemmas 3.2.2 and 3.1.4 on Eqs.(4.30) - (4.34),

we have

reg (P/((I(En,t) : en−1) : fn−2) = reg(ℜ[V(Φn−4,t)]/I(Φn−4,t)) = 2⌈n− 4

3
⌉

= 2⌈n− 1

3
⌉ − 2,

since n− 4 ≡ 0 (mod 3). Furthermore

reg (P/((I(En,t) : en), fn−2)) = reg(ℜ[V(Φn−3,t)]/I(Φn−3,t)) = 2⌈n− 3− 1

3
⌉+ 1

= 2⌈n− 1

3
⌉ − 1,

as we have n− 3 ≡ 1 (mod 3).

reg (P/((I(En,t), en−1), fn−1)) = reg(ℜ[V(Φn−1,t)]/I(Φn−1,t)) = 2⌈n− 1

3
⌉.

as n− 1 ≡ 0 (mod 3).

And

reg (P/((I(En,t), en−1) : fn−1), en) = reg(ℜ[V(Φn−3,t)]/I(Φn−3,t)) = 2⌈n− 1

3
⌉ − 1,

since n− 3 ≡ 1 (mod 3). Moreover

reg (P/((I(En,t), en−1) : fn−1) : en) = reg(ℜ[V(Φn−4,t)]/I(Φn−4,t)) = 2⌈n− 1

3
⌉−2.

As n − 4 ≡ 0 (mod 3). As, reg (P/((I(En,t) : en−1) : fn−2)) < reg(P/((I(En,t) :

en−1), fn−2)), by applying Lemma 2.3.1(b), reg(P/(I(En,t) : en−1)) = 2⌈n−1
3
⌉ − 1.

Also, reg (P/(((I(En,t), en−1)) : fn−1) : en) < reg (P/(((I(En,t), en−1)) : fn−1), en),

by applying Lemma 2.3.1(b), reg (P/((I(En,t), en−1) : fn−1) = 2⌈n−1
3
⌉ − 1. Sim-

ilarly, reg (P/(((I(En,t), en−1)) : fn−1) < reg (P/(((I(En,t), en−1)) : fn−1), by ap-

plying Lemma 2.3.1(b), reg (P/((I(En,t), en−1) = 2⌈n−1
3
⌉. Also we have,

reg (P/(((I(En,t) : en−1)) < reg (P/(((I(En,t), en−1)),

by applying Lemma 2.3.1(b), reg (P/((I(En,t) = 2⌈n−1
3
⌉.
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Case 3 :As En,t = Φn−1,t ∪H where H ∼= Φ2,t and Φn−1,t ∩H ̸= ∅ by applying Lemma

2.3.4 and 3.2.2

reg(P/I(En,t) ≤ reg(ℜ[V(Φn−1,t)]/I(Φn−1,t))+reg(ℜ[V(Φ2,t)]/I(Φ2,t)) = 2⌈n− 1

3
⌉+2.

To obtain the second inequality, let M =
{
{f1, f1,1}, {e3, e3,1}, {f5, f5,1}, {e7, e7,1} . . . ,

{fn−2, fn−2,1}, {en, en,1} clearly M forms an induced matching. Therefore, indmat(En,t) ≥
⌈n
2
⌉. By applying Lemma 2.3.4, reg(P/I(En,t)) ≥ ⌈n

2
⌉.

Theorem 4.0.3. Let n ≥ 3, t ≥ 1, Fn,t=Brt[(C2n(1, n − 1, n))], and P = ℜ[V(Fn,t)].

Then

reg (P/I(Fn,t)) = ⌈n− 1

2
⌉.

Proof. We have the following isomorphism

P/((I(Fn,t) : fn) ∼= ℜ[V(Ψn−3,t)]/I(Ψn−3,t) ⊗ℜ ℜ[fn, Dn−1, D1, Cn, Cn−1, C1], (4.35)

P/((I(Fn,t), fn), en) ∼= ℜ[V(Ψn−1,t)]/I(Ψn−1,t)⊗ℜ ℜ[Dn, Cn], (4.36)

P/((I(Fn,t), fn) : en) ∼= ℜ[V(Ψn−3,t)]/I(Ψn−3,t) ⊗ℜ ℜ[en, Dn, Cn−1, C1], (4.37)

Applying Lemma 3.2.3 and Lemma 3.1.4 on (4.35) - (4.37) we have:

reg (P/((I(Fn,t) : fn) = reg(ℜ[V(Ψn−3,t)]/I(Ψn−3,t)) = ⌈n− 3

2
⌉,

reg (P/((I(Fn,t), fn), en) = reg(ℜ[V(Ψn−1,t)]/I(Ψn−1,t)) = ⌈n− 1

2
⌉,

reg (P/((I(Fn,t), fn) : en) = reg(ℜ[V(Ψn−3,t)]/I(Ψn−3,t)) = ⌈n− 3

2
⌉.

Since, reg (P/(((I(Fn,t), fn)) : en) < reg (P/(((I(Fn,t), en)) : fn), by applying Lemma

2.3.1(b),

reg (P/((I(Fn,t), fn) = ⌈n− 1

2
⌉.

Also, reg (P/(((I(Fn,t) : fn)) < reg (P/(((I(Fn,t), fn))), by applying Lemma 2.3.1(b),

reg (P/((I(Fn,t) = ⌈n−1
2
⌉.
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Theorem 4.0.4. Let n ≥ 3, t ≥ 1, Dn,t=Brt[(C2n(1, n − 1))], and P = ℜ[V(Dn,t)].

Then

sdepth (P/I(Dn,t)) ≥ depth (P/I(Dn,t)) =

{
n(q + 1), if n is odd;
n(q + 1) + q − 1, if n is even.

Proof. Let n = 3, then we have the following short exact sequence,

0 −→ P/I(D3,t : e3)
·e3−→ P/I(D3,t) −→ P/I(D3,t, e3) −→ 0.

And,

P/(I(D3,t) : e3) ∼= ℜ[V(St)]/I(St)⊗ℜ ℜ[e3, C2, C1, D2], (4.38)

and,

P/(I(D3,t), e3) ∼= ℜ[V(Υ2,t)]/I(Υ2,t)⊗ℜ ℜ[D3], (4.39)

By applyin Lemma 3.1.4 we have,

depth(P/(I(D3,t) : e3)) = depth(ℜ[V(St)]/I(St)) + 1 + t+ t+ t+ t, (4.40)

depth(P/(I(D3,t), e3)) = depth(ℜ[V(Υ2,t)]/I(Υ2,t)) + t+ t, (4.41)

Now by applying Lemma 3.1.1 and 3.2.4 on Eq. 4.40 and 4.41 we get

depth(P/(I(D3,t) : e3)) = 2 + 2t. (4.42)

And

depth(P/(I(D3,t), e3)) = 2(1 + t) + 2t. (4.43)

by using 2.1.4 we get

depth(P/(I(D3,t)) ≥ 2 + 2t. (4.44)

Also x3 /∈ I so By applying Lemma 2.1.2 we get

depth(P/(I(D3,t)) ≤ depth(P/(I(D3,t : e3)) = 2 + 2t, (4.45)

From Eqs. 4.44 and 4.45 we get

depth(P/(D3,t)) = 2 + 2t. (4.46)
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Suppose n ≥ 4,

0 −→ P/I(Dn,t : en)
·en−→ P/I(Dn,t) −→ P/I(Dn,t, en) −→ 0.

And

0 −→ P/I(L : fn)
·fn−→ P/I(L) −→ P/I(L, fn) −→ 0.

Where

L := (I(Dn,t), en) = (I(Dn−1,t), en, en,1, ..., en,t),

then,

P/(I(Dn,t) : en) ∼= ℜ[V(Υn−3,t)]/I(Υn−3,t)⊗ℜ ℜ[V(St)]/I(St))⊗ℜ ℜ[en, Cn−1,

C1, Dn−1, D1], (4.47)

P/(L : fn) ∼= ℜ[V(Υn−3,t)]/I(Υn−3,t) ⊗ℜ ℜ[fn, Dn−1, D1, Cn−1, C1], (4.48)

P/(L, fn) ∼= ℜ[V(Υn−1)]/I(Υn−1)⊗ℜ ℜ[Cn, Dn]. (4.49)

Now we have two cases:

Case 1 If n is odd, then by applying Lemma 2.1.6, and Lemma 3.1.4 on Eq. 4.47,

depth(P/(I(Dn,t) : en)) = depth(ℜ[V(Υn−3,t)]/I(Υn−3,t))+

depth(ℜ[V(St)]/I(St)) + 1 + 4t, (4.50)

depth(P/(L : fn)) = depth(ℜ[V(Υn−3,t)]/I(Υn−3,t))+ 1+ t+ t+ t+ t+ t, (4.51)

depth(P/(L, fn)) = depth(ℜ[V(Υn−1)]/I(Υn−1)) + t+ t. (4.52)

Now by induction and applying Lemma 3.1.1 and Lemma 3.2.4 on Eqs.(4.50) -

(4.52) respectively,

depth(P/(I(Dn,t) : en)) = n(1 + t) + t− 1, (4.53)

depth(P/(L : fn)) = n(1 + t) + 2t− 2, (4.54)
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depth(P/(L, fn)) = n(1 + t) + t− 1. (4.55)

By applying Lemma 2.1.4 we have ,

depth(P/(I(L)) ≥ n(t+ 1) + t− 1. (4.56)

Also since x1 /∈ L and depth (P/(L : x1)) = n(1 + t) + t− 1,

so By applying Lemma 2.1.2 ,

depth(P/(I(L)) ≤ n(t+ 1) + t− 1.

So

depth(P/(I(L)) = n(t+ 1) + t− 1. (4.57)

Now by applying depth lemma on Eqs. 4.53 and 4.58 we get,

depth(P/(I(Dn,t)) = n(t+ 1) + t− 1.

Case 2 If n is even, applying Lemma 2.1.6 and 3.1.4 on Eqs. (4.47) - (4.49),

depth(P/(I(Dn,t) : en)) = depth(ℜ[V(Υn−3,t)]/I(Υn−3,t))

+ depth(ℜ[V(St)]/I(St)) + 1 + 4t+ 1, (4.58)

depth(P/(L : fn)) = depth(ℜ[V(Υn−3,t)]/I(Υn−3,t)) + 1 + 5t, (4.59)

depth(P/(L, fn)) = depth(ℜ[V(Υn−1)]/I(Υn−1)) + 2t, (4.60)

By using Lemma 3.1.1 and Lemma 3.2.4 on Eqs. (4.58) - (4.60) we get,

depth(P/(I(Dn,t) : en)) = n(1 + t), (4.61)

depth(P/(L : fn)) = n(1 + t) + t− 1, (4.62)

depth(P/(L, fn)) = n(1 + t). (4.63)

By using Lemma 2.1.4,

depth(P/I(L)) ≥ n(t+ 1). (4.64)
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Also since x1 /∈ L and depth (P/(L : e1)) = n(1 + t),

so By using Lemma 2.1.2,

depth(P/(I(L)) ≤ n(t+ 1).

So

depth(P/(I(L)) = n(t+ 1). (4.65)

By using the depth lemma on Eqs. 4.61 and 4.65,

depth(P/(I(Dn,t)) = n(t+ 1).

For Stanley depth, we use lemma 2.2.2 instead of lemma 2.1.4.
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