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Abstract

Early age fertility is a significant public health concern in Pakistan, with profound

implications for women’s health, socio-economic development, and population dynam-

ics. This study explores the socio-demographic factors influencing early age fertility

among women in Pakistan using the Pakistan Demographic and Health Survey (PDHS)

dataset from 2017-2018. The research aims to identify the key socio-demographic de-

terminants of early age fertility and to evaluate the effectiveness of advanced survival

analysis models in predicting these outcomes.

The study addresses two primary objectives: first, to identify and analyze socio-

demographic factors associated with an increased risk of early age fertility, and second,

to compare the predictive performance of three advanced survival models—the Cox

Proportional Hazards Model (CPH), Random Survival Forest (RSF) Model, and Con-

ditional Inference Forest (CIF) Model—in the context of early age fertility prediction.

To achieve the first objective, the study employs the CPH model to assess the

impact of various socio-demographic factors on early age fertility. The results indicate

that lower educational attainment, rural residence, and lower socio-economic status are

significantly associated with an increased risk of early age fertility. Specifically, women

with no education have a 4.858 times increased risk of early age fertility compared to

those with higher education, and those living in rural areas face a 1.123 times greater

risk compared to their urban counterparts. Additionally, women from poor socio-

economic backgrounds are 1.229 times more likely to experience early age fertility than

those from rich backgrounds.

For the second objective, the study compares the performance of the CPH, RSF,

and CIF models in predicting early age fertility outcomes based on two variables: Age

at Marriage (AAM) and Age at First Birth (RAAFB). The CPH model proves to be
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the most effective for predicting early age fertility related to AAM, as it exhibits the

lowest prediction error and Integrated Brier Score (IBS), along with a high C-index

indicating reliable predictions. Conversely, for the RAAFB variable, the CIF model

is identified as the best model due to its lowest prediction error rate and IBS score,

despite RSF’s higher C-index. The CIF model’s superior performance in terms of error

rate and IBS demonstrates its capability for precise prediction of early age fertility

outcomes, making it the preferred choice for this aspect of the analysis.

This study contributes to the understanding of early age fertility in Pakistan by

identifying critical socio-demographic factors and demonstrating the effectiveness of

advanced statistical models for predicting early age fertility. The findings emphasize

the need for targeted interventions addressing educational disparities, rural-urban dif-

ferences, and socio-economic inequalities to mitigate the risks associated with early

age fertility. Additionally, the study highlights the importance of using comprehensive

performance metrics for model selection, with CIF emerging as the optimal model for

precise prediction of early age fertility outcomes based on RAAFB.

iii



Contents

Acknowledgment v

Abstract v

LIST OF TABLES vi

LIST OF FIGURES vii

1 Introduction 1

1.1 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Survival Function (S(t)) . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Hazard Function (h(t)) . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 9

2.1 Historical Perspectives on Early Age Fertility . . . . . . . . . . . . . . 9

2.2 Theoretical Frameworks for Understanding Early Age Fertility . . . . . 10

2.3 Factors Influencing Early Age Fertility . . . . . . . . . . . . . . . . . . 11

2.4 Previous Research on Fertility Modeling . . . . . . . . . . . . . . . . . 12

2.5 Survival Analysis Methods (Cox, RSF, Conditional Inference Forest) . . 13

iv



3 Research Methodology 16

3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Variables in the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Cox Proportional Hazards Model . . . . . . . . . . . . . . . . . . . . . 23

3.6 Random Survival Forest (RSF) . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Conditional Inference forest . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Model Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results and Discussions 32

4.1 Descriptive Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Cox Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Age at Marriage as a Time Variable . . . . . . . . . . . . . . . . 35

4.2.2 Respondent Age at First Birth as a Time Variable . . . . . . . . 38

4.3 Random Survial Forest Model . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 AAM as a Time Variable . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 RAAFB as a Time Variable . . . . . . . . . . . . . . . . . . . . 46

4.4 Prediction Error Curve Comparisons . . . . . . . . . . . . . . . . . . . 49

4.4.1 AAM as a Time Variable . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2 RAAFB a Time Variable . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Integrated Brier Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.1 AAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 RAAFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Concordance Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.1 AAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.2 RAAFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusion 59

5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Future Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



List of Tables

3.1 Variable Descriptions and Codes . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Summary Statistics for RAAFB and AAM . . . . . . . . . . . . . . . . 32

4.2 Frequency and Percentage Frequency for Various Variables . . . . . . . 33

4.3 Cox Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Comprehensive Statistical Analysis Results . . . . . . . . . . . . . . . . 39

vi



List of Figures

3.1 Overall Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Working Algorithm of Random Survival Forest: The RSF algorithm uses

bootstrap sampling to create multiple trees, calculates the CHF for each

tree, and combines them to make robust survival predictions. . . . . . . 26

4.1 Forest Plot of Cox Proportional Hazards Model . . . . . . . . . . . . . 37

4.2 Forest Plot of Cox Proportional Hazards Model . . . . . . . . . . . . . 41

4.3 Number of tree and variable importance AAM . . . . . . . . . . . . . . 44

4.4 Number of tree and variable importance RAAFB . . . . . . . . . . . . 47

4.5 Comparison of Prediction Error Curves AAM . . . . . . . . . . . . . . 49

4.6 Comparison of Prediction Error Curves RAAFB . . . . . . . . . . . . 51

4.7 Box Plot of Integrated Brier Scores AAM . . . . . . . . . . . . . . . . 53

4.8 Box Plot of Integrated Brier Scores RAAFB . . . . . . . . . . . . . . . 55

4.9 Comparison of Concordance Index AAM . . . . . . . . . . . . . . . . . 56

4.10 Comparison ofConcordance Index RAAFB . . . . . . . . . . . . . . . . 58

vii



List of Abbreviation

CPH Cox Proportional Hazards (Model)

RSF Random Survival Forest (Model)

CIF Conditional Inference Forest (Model)

PDHS Pakistan Demographic and Health Survey

CHF Cumulative Hazard Function

SF Survival Function

VIM Variable Importance Measure

OOB Out-of-Bag (Estimates)

IBS Integrated Brier Score

CI Confidence Interval

Coef Coefficient

C-Index Concordance Index

viii



Chapter 1

Introduction

Early age fertility refers to the occurrence of childbirth among girls and young women

under the age of 18 [1]. Despite global efforts to improve maternal and child health,

addressing early age fertility is complex due to its multifaceted nature. Over the

past few decades, remarkable progress has been made globally in lowering early mar-

riage, teenage pregnancy, and maternal death, yet teenage pregnancy remains a so-

cial and public health concern.[2, 3, 4, 5].About 12 million girls aged 15 to 19 years

give birth annually in low- and middle-income countries, which shows how serious

this problem is[6, 7].Teen pregnancy and childbirth are bad for the person, soci-

ety,and the world[8, 9].Teenage motherhood affects a girl’s well-being and education

and keeps her from reaching her full potential[10, 11, 12, 13, 14]. In Pakistan, teenage

girls are frequently married and have children, especially in rural areas [15] Early-

age fertility among Pakistani women is a multifaceted phenomenon with unique cul-

tural and socioeconomic dimensions. In Pakistan, a significant number of women be-

come mothers during their teenage years, and this early childbearing has far-reaching

implications.[16]. Socio-economic disparities, educational limitations, cultural norms,

and lack of awareness about reproductive health are intertwined factors contributing

to early pregnancies[17]. These challenges are not isolated but form a complex web,

necessitating advanced analytical methods to unravel their interconnections. Tradi-

tional statistical analyses often struggle to capture the intricate relationships within

the data. Therefore, employing sophisticated models such as the Cox Proportional

Hazards Model, Random Survival Forest (RSF), and Conditional Inference Forest be-

comes essential. These models excel in handling intricate survival data and can unveil
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hidden patterns and predictors that might remain obscured in simpler analyses[18].

In this context, the Pakistan Demographic and Health Survey (PDHS) dataset col-

lected in 2017-2018 is used. This dataset provides a comprehensive repository of socio-

demographic information, healthcare utilization, and reproductive behavior, making it

a rich source for understanding early age fertility patterns in Pakistan.By harnessing

the power of this dataset in conjunction with advanced statistical models,this research

endeavors to shed light on the specific determinants of early age fertility. Analyzing

the PDHS data using the Cox Proportional Hazards Model, RSF, and Conditional In-

ference Forest offers a unique opportunity to explore the time-to-event nature of early

pregnancies, providing a detailed understanding of the risk factors involved. The Cox

Proportional Hazards Model allows for the analysis of survival data, considering the

duration until an event[19],such as early childbirth,occurs.RSF and Conditional In-

ference Forest,on the other hand, harness the power of ensemble learning and decision

trees,accommodating non-linear relationships and interactions between variables[20].By

combining these models with the robust data set like PDHS,this research aims not

only to identify the predictors of early age fertility but also to quantify their im-

pact,providing a comprehensive and nuanced understanding of this phenomenon.The

objective is to employ a machine-learning survival model to estimate the fertility of

such women. Utilizing the Pakistan Demographic and Health Survey (PDHS) dataset

from 2017-18, the study seeks to calculate the proportion of women who married before

18 and experienced their first childbirth after the age of 20. In Pakistan, child marriage

affects a significant portion of ever-married women, elevating their risk of experienc-

ing high fertility rates and encountering poor fertility health outcomes. It underscores

the urgent need to advocate for raising the legal marriage age for women in Pakistan.

Effective measures to combat child marriage, including stringent law enforcement and

the promotion of civil, sexual, and reproductive health rights for women, are essential

steps toward eliminating this issue from the country.

1.1 Survival Analysis

Survival analysis is a statistical approach used to analyze the time until an event

of interest occurs[21, 22].This method is widely employed in various fields, including
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medicine, biology, economics, engineering, and social sciences, to study the time un-

til an event, such as death, relapse, failure, or occurrence of a specific outcome[23].

Survival analysis is particularly useful when dealing with data in which the outcome

of interest is a time-to-event variable and some of the individuals in the study may

not experience the event during the observation period.In the context of this research

on early age fertility in women, survival analysis provides a robust framework to ex-

plore and understand the timing of important life events such as marriage and first

childbirth[24].In survival analysis, two key concepts are paramount: survival time and

censoring[25].Survival time is the time elapsed until the occurrence of the event of inter-

est.It could be in any unit of time, such as days, months, or years.in this study,survival

time refers to the duration between a woman’s birth and the occurrence of specific

events, such as marriage or the birth of her first child. It is often measured in years or

months, representing the time Censoring occurs when the survival time of an individual

is not observed completely.In longitudinal studies, not all participants may experience

the events of interest within the study period. This situation is called censoring.

There are two types of censoring:

Right-censoring:The event of interest has not occurred by the end of the study pe-

riod. For example, some women might not have married or given birth by the time the

study concludes.

Left-censoring: The event of interest has occurred before the study started, but the

exact time is unknown[26].

In survival analysis, the survival function and the hazard function are fundamental

concepts used to describe the probability of survival over time and the instantaneous

risk of an event occurring at a specific point in time, respectively.

1.1.1 Survival Function (S(t))

The survival function, denoted as S(t), represents the probability that a subject will

survive beyond a specified time t. In other words, it gives the likelihood that an event of

interest (such as death, failure, or relapse) has not occurred by time t. Mathematically,

the survival function is defined as: S(t)

S(t) = P (T > t)
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Where: S(t) is the survival function at time t. T is the random variable representing the

time until the event of interest occurs. For censored data (where some individuals are

not followed until the event occurs), the survival function is estimated using methods

like the Kaplan-Meier estimator, which calculates the probability of surviving beyond

each observed time point. The survival function ranges from 0 to 1, where S(t)=1

indicates that everyone has survived up to time t, and S(t)=0 indicates that no one

has survived beyond time t.

1.1.2 Hazard Function (h(t))

The hazard function, denoted as h(t), represents the instantaneous risk or probability

per unit of time that an event will occur at time t, given that the subject has survived

up to time t. In other words, it describes the likelihood of the event happening in

the next instant, provided the subject has survived up to time t. Mathematically, the

hazard function is defined as:

h(t) = lim
∆t→0

P (t ≤ T < t+∆tT ≥ t)

∆t
(1.1)

Where h(t) is the hazard function at time t (1.1) [27].T is the random variable rep-

resenting the time until the event of interest occurs.∆t represents a small interval of

time.The hazard function can vary over time, indicating how the risk of the event

changes as time progresses.A constant hazard function means the event is equally

likely to occur at any given time, while a changing hazard function signifies that the

risk of the event occurring varies over time.Understanding the survival and hazard

functions is crucial in survival analysis as they provide valuable insights into the prob-

ability of event occurrence and the instantaneous risk associated with a particular time

point,respectively.Researchers use these functions to make predictions, compare differ-

ent groups, and draw conclusions about the factors influencing the event of interest.

In the field of bio-statistics, a highly active area of research revolves around survival

analysis, which focuses on analyzing time-to-event outcomes, often with data that are

censored, meaning the event of interest has not occurred for some individuals by the

end of the study period. However, recent advancements in data learning technology

have led to the availability of high-dimensional datasets for researchers. While this
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influx of data has opened new avenues for research, it has also presented challenges in

analyzing survival data effectively. In this context, traditional survival analysis meth-

ods like the Cox proportional hazard (CPH) regression, which have been valuable due

to their straightforward interpretation of covariate effects and ease of inference, are no

longer adequate. The complexity of high-dimensional data requires more sophisticated

and nuanced approaches to extract meaningful insights. Researchers are now exploring

innovative statistical techniques and machine learning algorithms tailored to handle

the intricacies of these large and complex data sets. These modern methods not only

account for the challenges posed by high-dimensional data but also enable researchers

to uncover hidden patterns and associations in survival outcomes, ultimately enhancing

our understanding of the underlying biological and clinical processes. As a result, the

intersection of survival analysis and data learning technology continues to be a vibrant

and evolving area of research in bio-statistics.
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1.2 Problem Statement

Early-age fertility is a significant public health issue in Pakistan, contributing to adverse

maternal and child health outcomes, perpetuating cycles of poverty, and hindering

socio-economic development. Despite various interventions, early-age fertility remains

prevalent, particularly among women in rural areas with lower education levels and

limited access to contraceptive methods.

This study seeks to identify the determinants and predictors of early-age fertility

among Pakistani women using the Pakistan Demographic and Health Survey (PDHS)

dataset 2017-2018 and advanced statistical models. By employing the Cox Proportional

Hazards Model (CPH), Random Survival Forest (RSF), and Conditional Inference

Forest (CIF), the study aims to:

1. Determine the key socio-demographic factors influencing the age at marriage

(AAM) and respondent age at first birth (RAAFB).

2. Compare the predictive accuracy of CPH, RSF, and CIF models in forecasting

early-age fertility.

3. Provide evidence-based recommendations for policy interventions to reduce early-

age fertility rates and improve reproductive health outcomes.

Understanding these determinants and predictors is crucial for developing effective

policies and interventions to address early-age fertility, thereby improving the overall

well-being of women and contributing to socio-economic progress in Pakistan.

1.3 Research Questions

1. What socio-demographic factors are associated with an increased risk of early

age fertility among women in Pakistan?

2. How do the Cox Proportional Hazard Model, Random Survival Forest (RSF)

Model, and Conditional Inference Forest Model differ in their ability to predict

early age fertility in women based on the PDHS dataset?
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1.4 Research Objectives

This study is conducted to analyze the prevalence and trends of early-age fertility

in Pakistani women using the Pakistan Demographic and Health Survey (PDHS)

dataset 2017-2018.The specific objectives are as follows:

I. The objective of this study is Identify and analyze socio-demographic factors

associated with an increased risk of early age fertility among women in

Pakistan using the PDHS dataset.

II. Compare and evaluate the predictive performance of the Cox Proportional

Hazard Model, Random Survival Forest (RSF) Model, and Conditional In-

ference Forest Model in predicting early age fertility. These research objec-

tives guide the comprehensive investigation into early-age fertility, empha-

sizing the need for advanced analytical approaches to unravel its complexity

within the Pakistani context.

1.5 Significance of the Study

This study holds profound significance as it addresses a critical issue with

far-reaching implications for healthcare, policy, and demographic research

in Pakistan. By delving into the complex realm of early-age fertility in

Pakistani women, it offers a unique opportunity to improve maternal and

child healthcare services, inform evidence-based policies, enrich demographic

research, and empower young women. The findings have the potential to

enhance the healthcare landscape by reducing maternal and infant mortality

rates associated with teenage pregnancies. This research contributes valu-

able insights to the field of demographic research, aiding in understanding

fertility patterns and drivers in Pakistan. It also underscores the importance

of educational empowerment for young mothers and advocates for gender

equality and women’s rights. In essence, this study has the power to cat-

alyze positive change, fostering better health outcomes, gender equality, and

socioeconomic development in Pakistan.
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1.6 Outline of thesis

This thesis is organized into several chapters, each addressing specific aspects

of the analysis.Chapter one presents a background on early age fertility , this

section also delves into the significance of the study, articulates the problem

statement we aim to address, outlines the objectives we seek to achieve,

and formulates the research question that guides our investigation.Moving

on to the second chapter, we delve into an extensive literature review of

our research study.In this chapter, we meticulously explore the origins and

practical applications of the specific methods we have chosen for our re-

search. By delving into the details, we understand the context in which

these methods are employed.Chapter three is dedicated to providing the

data sources, preprocessing steps, and variable selection processes. Chap-

ters four, five, and six will delve into the Cox Proportional Hazards model,

RSF model, and Conditional Inference Forest model, respectively, explaining

their methodologies and presenting the results of our analysis.Chapter seven

encapsulates the conclusion of our entire study. In this concluding chapter,

we summarize our research’s key findings, insights, and contributions. We

tie together the threads explored throughout the thesis and draw overar-

ching conclusions that provide closure to the study. Overall, this thesis is

structured in a manner that allows us to progressively build understanding,

from establishing foundational concepts and investigating prior work to for-

mulating innovative methods, evaluating results, and ultimately arriving at

a comprehensive conclusion. In essence, this study endeavors to contribute

valuable insights into early-age fertility in women through the application

of advanced survival analysis models. By examining both traditional and

novel factors influencing early-age fertility, we aim to provide a comprehen-

sive understanding of this crucial aspect of reproductive health and equip

stakeholders with data-driven tools for informed decision-making and policy

formulation.
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Chapter 2

Literature Review

Early-age fertility among women is a significant and complex issue in con-

temporary society. It specifically refers to pregnancies occurring in women

under the age of 20. This phenomenon presents a multifaceted challenge

with considerable implications for public health and social development [28].

Adolescents experiencing early-age fertility face heightened health risks, in-

cluding complications during pregnancy and childbirth. This can also lead

to adverse outcomes for their children [29]. Additionally, early motherhood

can result in enduring educational and economic repercussions for young

women, thereby limiting their future opportunities and perpetuating a cy-

cle of disadvantage [30]. Addressing early-age fertility is multifaceted in its

significance. It intersects with reproductive rights and gender equality, often

entangled with social norms and gender-based disparities [31]. Tackling this

issue is also vital for broader public health and development objectives, such

as reducing maternal mortality and alleviating poverty [32].

2.1 Historical Perspectives on Early Age Fer-
tility

Early age fertility, where young women have children, is a phenomenon

deeply rooted in human history. In historical terms, early age fertility has

been a constant feature, reflecting the societal norms and survival strategies

of different eras [33]. In many early societies, having children at a younger
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age was often the norm, driven by shorter life expectancies and the need

for larger families to support agrarian or labor-intensive lifestyles [34]. This

practice was further reinforced by social customs such as arranged marriages

and the significant influence of religious and cultural beliefs on reproductive

decisions [35]. In many cultures, these groups played a critical role in dictat-

ing the timing and frequency of childbirth, which in turn impacted early age

fertility rates [36]. However, as societies evolved, so did attitudes towards

early childbearing. The advent of modern healthcare, including improved

prenatal care and birthing practices, has changed the landscape of early age

fertility significantly [37]. Historical events like wars, economic upheavals,

and pandemics have also played a crucial role in shaping fertility trends.

These events often led to fluctuations in fertility rates, prompting societal

and policy responses aimed at stabilizing population growth [38].The intro-

duction of family planning and educational initiatives has contributed to a

shift in early age fertility patterns [39]. This historical journey through the

landscape of early age fertility highlights the intricate interplay of various

factors that have influenced it over time. By examining these elements, we

gain a comprehensive understanding of the evolution of societal attitudes

and practices surrounding early age fertility. This understanding is crucial

for addressing the challenges associated with early age fertility in the modern

world.

2.2 Theoretical Frameworks for Understand-
ing Early Age Fertility

Examining early age fertility requires a complex approach, using different

theories to understand its many aspects. This section looks at theories like

the life course perspective, social determinants of health, and reproductive

health theories, showing how they help us study early age fertility and its

causes. The life course perspective is key to understanding early age fer-

tility [40].This idea sees people’s lives as a series of connected events and

changes. For early age fertility, it means looking at how having children
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early can affect someone’s whole life, including their education, job, and

overall well-being. This perspective also helps us see how things that hap-

pen in childhood and as a teenager can lead to early childbearing.The social

determinants of health framework highlights how social, economic, and en-

vironmental factors shape health [41]. Reproductive health theories focus

on health during the reproductive years [42]. These theories help us look

at how early childbearing affects the health of the mother and child, what

choices they have, and how they access healthcare. They also cover things

like birth control, family planning, and how health policies and programs

work. Using these theories gives a deeper understanding of the health side

of early age fertility and what can be done to improve reproductive health

for young women. Together, these theories give a full picture of early age

fertility.

2.3 Factors Influencing Early Age Fertility

In Pakistan, early-age fertility, which refers to teenage pregnancies and child-

birth, is shaped by various socio-cultural and economic factors unique to the

country. When exploring the reasons behind early-age fertility, several crit-

ical areas emerge:

Socioeconomic Status plays a significant role in teenage pregnancies in Pak-

istan. Studies show that income, occupation, and living conditions greatly

influence early-age fertility [43]. Young women from economically disadvan-

taged backgrounds face a higher risk due to limited resources, poor health-

care, and lower living standards.There’s a strong link between a girl’s edu-

cation level and her chances of becoming a teenage mother [44]. Education

empowers young women with knowledge and skills and often delays marriage

and childbirth as they focus on their studies. Thus, educational attainment

is a crucial factor in determining early pregnancy rates in Pakistan. Pak-

istan’s diverse ethnic and cultural communities have varying norms about

early marriage and childbearing [45].Demographic factors, like population

density and urban-rural differences, also affect teenage pregnancy rates. The
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availability and quality of healthcare, particularly in rural areas, are vital in

understanding early-age fertility patterns in Pakistan [46]. Limited access to

quality healthcare affects family planning and reproductive health services.

2.4 Previous Research on Fertility Modeling

Early age fertility has been a focus for researchers, leading to extensive

studies aiming to understand its complexities. These studies have used var-

ious methods, including both quantitative and qualitative approaches, to

investigate the multiple factors affecting young women’s decisions to have

children.Methodologically, these studies have employed regression analysis,

survival models, and qualitative interviews, contributing significantly to our

understanding of early age fertility. Data from large-scale surveys, cohort

studies, and demographic and health surveys have been crucial in supporting

these findings [47]. However, previous research on early age fertility model-

ing faces limitations. Issues with data quality and availability, especially in

low-resource settings, are common. Many studies are cross-sectional, lim-

iting their ability to establish causality or explore temporal relationships

[48]. While qualitative studies offer depth, their generalizability is often

limited. Additionally, the diversity of contextual factors across different re-

gions complicates the ability to draw broad conclusions, highlighting the

need for context-specific research [49]. There remain gaps in the research on

early age fertility modeling. These include the need for more comprehensive

studies that include a wider range of influencing factors and the exploration

of how these factors change over time. Also, there’s a need for deeper ex-

amination of regional and contextual disparities to understand geographical

and cultural influences on early age fertility [50]. This study aims to ad-

dress these gaps. Using advanced statistical modeling techniques like Cox

proportional hazards models, Random Survival Forests (RSF), and Condi-

tional Inference Forests, and leveraging data from the Pakistan Demographic

and Health Survey (PDHS), this research seeks to offer a more detailed and

context-sensitive analysis of early age fertility in Pakistan. This approach
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aims to deepen our understanding of the dynamics and determinants of early

age fertility, advancing the field’s knowledge.

2.5 Survival Analysis Methods (Cox, RSF, Con-
ditional Inference Forest)

Survival analysis is a crucial statistical method widely used in various re-

search fields, especially for studying time-to-event data.This approach is

particularly relevant for examining events that unfold over time, such as

mortality, disease occurrence, or, in the context of this research, early age

fertility.This model evaluates the hazard rate, which is the chance of an

event happening at a specific time, assuming it hasn’t occurred yet. The

Cox model’s strength lies in its capacity to assess how various factors or co-

variates influence the hazard rate. In the context of early age fertility, it al-

lows for an in-depth examination of how elements like socioeconomic status,

education, and healthcare access affect the timing of a woman’s first child-

birth [51]. Recent advancements have led to sophisticated techniques like

the Random Survival Forest (RSF) and Conditional Inference Forest (CIF)

models. These models, based on decision trees and ensemble methods, are

particularly effective for complex, high-dimensional datasets typical in early

age fertility research. They excel in capturing non-linear relationships and

interactions among covariates, offering a comprehensive view of how various

factors jointly influence childbirth timing [52, 53]. RSF and CIF are also

adept at handling censored data, a common challenge in early age fertil-

ity studies where not every participant may experience their first childbirth

during the study. These models integrate censored data while providing reli-

able predictions and insights, making them highly suitable for exploring the

temporal aspects of early age fertility and its determinants [52, 53].These

advanced methods enable a thorough examination of complex relationships,

manage censored data effectively, and contribute to a deeper understanding

of the dynamics and influencing factors of early age fertility. The 2017 study

by Nasejje et al. compares the performance of two random survival forest
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models and a conditional inference forest model on time-to-event data, us-

ing both simulated and real datasets[54]. The simulated data incorporated

various covariate attributes to robustly test model efficacy under different

conditions. The real-world datasets included one on under-five child mor-

tality in Uganda and another on extensively drug-resistant tuberculosis in

South Africa. The study found that conditional inference forests outper-

formed random survival forests in simulation, particularly with covariates

that had many split-points. In real-world application, the conditional infer-

ence forest model yielded the lowest prediction error for the child mortality

dataset, though its performance was similar to that of the random survival

forests for the tuberculosis dataset. [55] The study focused on Survival Trees,

a key tool in survival analysis for managing time-to-event data, especially

with right-censored data common in this field. Through a comprehensive

review of literature and various models such as CART and its extensions,

the research applied these models to real-world datasets to validate their

efficacy. Findings indicated that Survival Trees excel at uncovering complex

relationships in survival data where traditional models like Cox Proportional

Hazards might not perform as well. This underscores the value of Survival

Trees in medical and biological research, enhancing the understanding of

survival data, risk factors, and their interactions, thereby enriching survival

analysis methodologies. [18] aimed to compare the efficacy of survival forest

models—specifically Random Survival Forest (RSF) and Conditional Infer-

ence Forest (CIF)—with the traditional Cox-proportional hazards (CPH)

model in analyzing the first birth interval (FBI) among women. Utilizing

a cross-sectional dataset of 610 married women aged 15-49 in Tehran, the

study employed RSF and CIF models developed through bootstrap sam-

pling using R-language packages, focusing on various influential covariates

on FBI. The results demonstrated that the RSF model surpassed both CIF

and CPH models in prediction accuracy, as measured by the out-of-bag

(OOB) C-index and integrated Brier score (IBS), with a woman’s age being

identified as the most significant predictor of FBI. The study concluded that
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applying suitable methods like RSF in analyzing FBI is crucial for informed

policy-making aimed at addressing fertility rate changes, highlighting the su-

perior predictive performance of RSF in the context of fertility analysis. The

literature on early age fertility examines the interplay of historical, sociocul-

tural, and individual factors influencing young women’s fertility patterns,

highlighting the role of arranged marriages, religious beliefs, societal norms,

and major historical events such as wars and economic changes. Changes in

societal views and healthcare advancements have shifted narratives around

the benefits and risks associated with early fertility. Key determinants such

as socioeconomic status, education, healthcare access, and cultural beliefs

play critical roles in the timing of a woman’s first childbirth, with research

showing varied and context-specific findings. To better understand these

complexities, recent studies have utilized advanced survival analysis tech-

niques, providing deeper insights into the factors affecting early age fertility

and aiding in the development of targeted interventions. This sophisticated

approach enhances our understanding of early age fertility and its diverse

influencing factors.
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Chapter 3

Research Methodology

In this chapter, the methodology employed to analyze early-age fertility

among Pakistani women using the Pakistan Demographic and Health Sur-

vey (PDHS) dataset from 2017-2018 is outlined. The chapter begins by

discussing the primary data source and its significance in providing compre-

hensive information on demographic and health-related indicators. Subse-

quently, preprocessing steps such as data cleaning, variable selection, sample

selection, data transformation, and imputation are described to ensure the

quality and compatibility of the dataset with the chosen modeling tech-

niques. The variable selection process is then detailed, highlighting socio-

demographic, cultural, and healthcare-related factors influencing early-age

fertility. Following this, the chapter delves into the advanced survival anal-

ysis techniques employed, including the Cox Proportional Hazards model,

Random Survival Forest (RSF) model, and Conditional Inference Forest

model. Each method is explained in depth, elucidating its theoretical un-

derpinnings and practical application in analyzing time-to-event outcomes.

Additionally, the assessment of model performance through integrated Brier

scores (IBS), incorporating Bootstrap cross-validated estimates to address

overfitting, is discussed. By leveraging these sophisticated methodologies,

the analysis aims to uncover significant predictors of early-age fertility and

evaluate the predictive accuracy of the models, ultimately contributing valu-

able insights to the understanding of reproductive health dynamics in Pak-

istan.
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3.1 Data Collection

The data for this study was obtained from the PDHS 2017-2018, which

involves a complex, multistage sampling design.The survey collected data

through interviews with eligible women of reproductive age (15-49 years)

across various regions of Pakistan[56].These interviews gathered key infor-

mation on age at marriage, age at first birth, socioeconomic factors, and

other relevant variables[57].It covers a wide range of topics related to demo-

graphics, health, family planning, and socio-economic characteristic .The

dataset usually consists of a large sample size, representing a cross-section

of the Pakistani population. The sample is designed to be nationally repre-

sentative, allowing for meaningful analysis at both the national and regional

levels[58].

3.2 Variables in the Study

In this study, the primary focus is on understanding the age at which women

experience their first childbirth, a significant milestone with implications

for public health and social policies. Two key variables are central to this

investigation:

Respondent Age at First Birth (RAAFB): This variable is recorded as

numeric values, such as 12 or 42, representing the age at which respondents

typically have their first child. RAAFB serves as a crucial demographic

indicator, allowing researchers to examine the time from birth to the first

childbirth. It helps assess how various socio-demographic factors influence

the age at which women give birth for the first time and their risk of expe-

riencing early-age fertility. The dataset categorizes women who give birth

at age 20 or younger as 1, indicating an early fertility event, and those who

give birth after 20 as 0, indicating censored observations.

Age at Marriage (AAM): Similarly recorded in years, such as 9 or 38,

AAM captures the age at which respondents get married. This demographic

measure is pivotal for understanding early-age fertility outcomes. AAM is
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used to analyze the timing of marriage relative to birth events and inves-

tigate its influence on the risk of early-age fertility. By exploring socio-

demographic factors affecting the timing of marriage, AAM sheds light on

its association with early fertility outcomes.

These variables, "Age at Marriage" and "Age at First Birth," quantified in

years, capture critical moments in a woman’s life: marriage and the birth

of her first child, respectively. Their analysis provides insights into the

complex dynamics of early-age fertility, offering valuable information for

shaping public health policies and social interventions aimed at supporting

women’s reproductive health.

[59, 60, 61].Several predictors were consider in this study to analyse early

age fertility in women these are as follows:

The first variable, "Status," indicates whether an individual is experiencing

early-age fertility, with a coding of 1 for Yes and 0 for No. This binary clas-

sification helps in distinguishing between those who have early-age fertility

and those who do not.

"REL" stands for Respondent Education Level, which is categorized into

four levels: 0 for no education, 1 for primary education, 2 for secondary

education, and 3 for higher education. This variable is crucial in assessing

the impact of educational attainment on various outcomes.

"REG" refers to the Region, which identifies the respondent’s location within

the country. The regions are coded as follows: 1 for Punjab, 2 for Sindh, 3 for

Khyber-Pakhtunkhwa (KPK), 4 for Balochistan, 5 for Gilgit Baltistan (GB),

6 for Islamabad Capital Territory (ICT), 7 for Azad Jammu and Kashmir

(AJK), and 8 for the Ex-Federally Administered Tribal Areas (FATA). This

geographical categorization allows for regional comparisons in the analysis.

"HEL," or Husband Education Level, is coded similarly to the respondent’s

education level, with 1 indicating no education, 2 for primary, 3 for sec-

ondary, and 4 for higher education. This variable examines the educational

background of the respondent’s spouse.
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Table 3.1: Variable Descriptions and Codes

Variable ID Variable Name Variable Description
Event Experiencing Early-Age Fertility 1 = Yes, 0= No
REL Respondent Education Level 0 = No education, 1 = Primary,

2 = Secondary, 3 = Higher
REG Region 1 = Punjab, 2 = Sindh, 3

= Khyber-Pakhtunkhwa (KPK),
4 = Balochistan, 5 = Gilgit
Baltistan (GB), 6 = Islam-
abad Capital Territory (ICT), 7
= Azad Jammu and Kashmir
(AJK), 8 = Ex-Federally Admin-
istered Tribal Areas (FATA)

HEL Husband Education Level 1 = No education, 2= Primary, 3
= Secondary, 4 = Higher

TOPOR Type of Place of Residence 1 =Rural, 2 = Urban
SES Socio-economic Status 1 = Poor, 2= Middle, 3= Rich
PO Partner Occupation 0 = Unemployed, 1 = Employed
WAM Work After Marriage 0 = No, 1 = Yes
CM Contraceptive Method Usage 1 =Not Used, 2= Not Used
RAAFB Respondent Age at First Birth Numeric values (e.g., 12, 42)
AAM Age at Marriage Numeric values (e.g., 9, 38)

"TOPOR" represents the Type of Place of Residence, distinguishing be-

tween urban (coded as 2) and rural (coded as 1) settings. This differentia-

tion is significant for understanding the influence of residential environment

on the studied outcomes.

"SES," or Socio-economic Status, is categorized into three levels: 1 for poor,

2 for middle, and 3 for rich. This classification assesses the impact of socio-

economic factors on various behaviors and outcomes.

"PO," or Partner Occupation, is a binary variable indicating whether the

respondent’s partner is unemployed (coded as 0) or employed (coded as 1).

This variable helps in examining the economic contribution of the partner.

"WAM" stands for Work After Marriage, with 0 indicating no and 1 indi-

cating yes. This variable investigates the respondent’s employment status
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post-marriage.

Use of Contraceptive:Indicates whether the women use contraceptives or

family planning methods, providing insights into the family planning prac-

tices that might delay or space childbirth.

"CM," or Contraceptive Method Usage, is also a binary variable with 1 and

2 both indicating not used. There seems to be a discrepancy here that might

require correction for clarity.

These explanatory variables were carefully selected to explore the deter-

minant factors influencing the age at which women give birth for the first

time[62, 63]. The study aims to analyze the relationships and patterns

among these variables to understand the complex dynamics of early age

fertility in the context of Pakistan.The coding scheme for the response vari-

able allows for survival analysis techniques like the Cox proportional hazards

model, Random Survival Forest, and Conditional Inference Forest to be ap-

plied effectively, providing a comprehensive understanding of the factors

affecting early age fertility in women.

3.3 Data Preprocessing

Before conducting an analysis of early age fertility among women in Pak-

istan, a thorough data preprocessing procedure was performed to guarantee

the dataset’s quality and appropriateness for analytical purposes. The fol-

lowing series of steps outlines this procces.

Data Cleaning: In the initial step, the focus was on identifying and ad-

dressing outliers within the "age at first birth" variable. These outliers,

which represented unrealistic or erroneous data points, were subsequently re-

moved to enhance the cleanliness of the dataset. Following this, the dataset

underwent a meticulous examination to identify entries that were either in-

valid or implausible. Particular attention was given to instances of negative

ages or ages surpassing predefined thresholds. Corrective measures were

taken to rectify or eliminate such entries.
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Data Transformation: In the data transformation phase, categorical vari-

ables such as Region, Work After Marriage, and Type of Place of Residence

were transformed into numerical representations. This transformation in-

volved assigning numerical codes or creating dummy variables to encode

categorical data. For instance, Region was encoded with numeric values

corresponding to different geographic regions within Pakistan.Additionally,

age-related variables such as Age at First birth and Age at First marriage

were derived from existing survey responses. These variables were computed

to provide standardized numeric representations suitable for analytical tech-

niques like survival analysis. This transformation was essential to ensure

compatibility with machine learning algorithms and to include critical pre-

dictive factors in the analysis.These variables were important predictors for

the analysis.

Handling Missing Data: Addressing missing data was a crucial step in

preparing the dataset for analysis. Missing values were identified across key

variables such as women Age at First birth, Age at marriage and Contracep-

tive Usage. Various imputation techniques were applied to handle missing

data effectively.Mean imputation was utilized for numerical variables, where

missing values were replaced with the mean of observed values for that vari-

able. This approach helped to complete the dataset and render it suitable

for analysis.

Data Splitting Upon completing the data cleaning, transformation, and

handling of missing data, the dataset was split into two distinct subsets: a

training set and a testing set. The training set comprised 70% of the total

dataset, while the testing set comprised the remaining 30%.

Training Set The training set was utilized to train predictive models, in-

cluding the Cox proportional hazards model, Random Survival Forest, and

Conditional Inference Forest. Training models on a substantial portion of

the data allowed for capturing underlying patterns and relationships within

the dataset.

Testing Set The testing set served as an independent dataset used to eval-
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uate the performance and generalizability of the trained models. By as-

sessing model performance on unseen data, the testing set provided insights

into how well the models could predict early age fertility outcomes in new

observations.

By conducting these data preprocessing steps, the dataset was prepared

for analysis using Cox proportional hazards, Random Survival Forest, and

Conditional Inference Forest models. Meticulous execution of these steps en-

sured data accuracy, completeness, and suitability for the subsequent anal-

ysis of early age fertility among women in Pakistan.

3.4 Study Design

The diagram depicts an overall study design workflow for a predictive mod-

eling task. It begins with the dataset, which undergoes preprocessing to

read data, solve categorical data issues, and handle missing data. After

preprocessing, the data is split into a training dataset with 10,469 samples

and a testing dataset with 4,486 samples. The training dataset is used to

train various models, including Cox, RSF (Random Survival Forest), and

CIF (Cumulative Incidence Function). The trained model then makes pre-

dictions and evaluates the importance of each feature in determining the

outcome, which classifies whether a subject will face early fertility or not.

The final outcomes are used to make predictions and assess feature impor-

tance.
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Figure 3.1: Overall Study Design

3.5 Cox Proportional Hazards Model

The Cox proportional hazards model, introduced by David R. Cox in 1972,

is a valuable statistical technique for investigating the relationship between

survival time[64, 65] (in this case, the age at marriage and the age at first

birth for women) and a set of predictor variables[66].It is especially useful

when dealing with time-to-event data and allows for the inclusion of censored
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observations,making it an appropriate choice for studying early age fertility

in women.In this study,the Cox model used to explore the factors influencing

women’s age at marriage and age at first birth[67].The model assumes that

the hazard function (the instantaneous rate of marriage or first birth) for

an individual at any given time is a product of an unknown baseline hazard

function and an exponential function of predictor variables. Mathematically,

the model can be expressed as: For women’s age at marriage:

h1(t,X) = h0(t)× exp (β1X1 + β2X2 + . . .+ βpXp)

For women’s age at first birth:

h2(t,X) = h0(t)× exp (γ1X1 + γ2X2 + . . .+ γqXq)

h1(t,X) and h2(t,X) are the hazard functions for age at marriage and age

at first birth, respectively. h0(t) represents the unspecified baseline haz-

ard function. X1, X2, . . . , Xp and X1, X2, . . . , Xq are predictor variables

for age at marriage and age at first birth, respectively. β1, β2, . . . , βp and

γ1, γ2, . . . , γq are the corresponding coefficients indicating the effect of predic-

tor variables on the hazards. In this study, the relevant predictor variables

were selected carefully such as socioeconomic factors, education, cultural

norms, and geographical location, which are hypothesized to influence the

age at marriage and age at first birth among women. The Cox model was

applied to analyze the impact of these variables while accounting for cen-

sored data, providing valuable insights into the determinants of early age

fertility in women.

3.6 Random Survival Forest (RSF)

The Random Survival Forests (RSF) method extends Breiman’s Random

Forest (RF) technique to handle right-censored time-to-event data[52].In

the context of the original dataset comprising N subjects and M features,

the RSF algorithm operates as follows:
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Bootstrapped Sampling:By drawing B bootstrap samples from the orig-

inal data, each of size N. Bootstrapping involves random sampling with

replacement, generating new training sets[68]. Each subject in the origi-

nal data has a probability of (1 − 1
N
)N of not being selected for a specific

bootstrap sample, creating out-of-bag (OOB) data, which constitutes ap-

proximately 30 percent of the original data on average[69].

Binary Survival Tree Construction:For each bootstrapped sample, grow

a binary survival tree. At each node of the tree, randomly select a subset of

m (where m << M) features for splitting. Common choices for m include

m =
√
M or m = log2M , ensuring a diverse selection of features. A split is

made using the candidate feature and its cut-off point that maximizes the

survival differences between daughter nodes under a predetermined split

rule[70].

Calculation of Cumulate Hazard Function (CHF)and Survival Func-

tion (SF): Grow each tree to its full size under pre-specified constraints.

Calculate a cumulate hazard function (CHF) and a survival function (SF)

for each tree.These functions represent the probability of an event occurring

and survival probability, respectively, for each individual in the dataset. Av-

erage over all trees to obtain the ensemble CHF, providing one estimate for

each individual in the data.

Researchers have developed various splitting rules for Random Survival

Forests (RSF), with four notable ones highlighted in reference[52]. These

include the log-rank splitting rule, which divides nodes by maximizing the

log-rank test statistic, and the log-rank score splitting rule, which splits

nodes by maximizing a standardized log-rank score statistic. Additionally,

there is the conservation-of-events splitting rule, which separates nodes by

identifying daughters closest to the conservation-of-events principle, and the

random log-rank splitting rule, where nodes are split based on the variable

with the highest log-rank statistic at a predetermined random split point.

Among these, the log-rank splitting rule and the log-rank score splitting

rule are widely used in practical applications, indicating their popularity
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Figure 3.2: Working Algorithm of Random Survival Forest: The RSF algorithm uses
bootstrap sampling to create multiple trees, calculates the CHF for each tree, and
combines them to make robust survival predictions.

and effectiveness in the field of RSF.

Splitting Rules in RSF (Log-Rank Splitting Rule): The log-rank

splitting rule is a representative method used in RSF.For a parent node split-

ting at the cut-off point value c for predictor Xj, the log-rank test statistic

is computed. The log-rank test statistic for a parent node splitting at the

cut-off point value c for predictor Xj is calculated as follows:

L(Xj, c) =

∑K
k=1 dk; l − Yk;l

dk
×

K∏
k=1

Yk

Yk;l

×

√ ∑K
k=1 Yk;l

Yk × (Yk − dk)
(3.1)

Where: t1 < t2 < . . . < tK are the distinct death times in the parent node,

dk and Yk equal the number of deaths and individuals at risk at time tk in

the parent node respectively,

Yk = Yk,l + Yk,r, dk = dk,l + dk,r,

Yk,l represents those in the left daughter node (Yk,l = {i : ti ≥ tk, Xji ≤
c})Ṫhe log-rank statistic is employed to identify the predictor X∗

j and split

value c∗ with the maximum statistic value, determining the best split for
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the Random Survival Forest (RSF) tree.RSF, outlined in reference, offers

distinct advantages in the realm of genetic research. It stands out due to its

non-parametric nature[71],flexibility, and ability to seamlessly handle high-

dimensional co-variate data, essential elements in genetics studies. Notably,

RSF excels in adaptability and freedom from stringent model assumptions,

making it particularly valuable when dealing with intricate relationships be-

tween predictors and outcomes, such as nonlinear effects or high-order inter-

actions. Additionally, RSF provides Variable Importance Measures (VIM)

and Out-Of-Bag (OOB) estimates, enhancing its analytical depth. The im-

plementation of RSF is facilitated through various packages, with the current

study utilizing the randomForestSRC R package [72], which incorporates the

effective Log-rank splitting rule, emphasizing its versatility and applicability

in advanced genetic analyses.

The Random Survival Forest (RSF) algorithm, derived from bootstrapped

sampling, binary survival tree construction, and specific splitting rules like

the log-rank rule, provides a comprehensive and robust approach to ana-

lyzing right-censored time-to-event data. By integrating these steps, RSF

offers a sophisticated method for understanding complex survival patterns,

making it invaluable in fields where predicting time-to-event outcomes is

critical, such as in the study of early-age fertility among women.

3.7 Conditional Inference forest

Conditional inference forests (CIF) method is a tree ensemble technique

grounded in the principles of permutation tests[73].Unlike traditional meth-

ods like CART, which can exhibit a bias towards variables with numerous

split points, CIF addresses this issue by incorporating statistical significance

considerations. In algorithms such as CART, the bias towards variables

with many split points arises from maximizing a splitting criterion over all

potential splits.This bias occurs because variables with more split points

have a higher chance of finding a good split, even if the variable is unin-

formative. Consequently, uninformative variables can end up high in the

27



tree’s structure, leading to biased estimates[74].CIF mitigates this problem

by factoring in the statistical significance, ensuring a more robust variable

selection process and reducing the risk of biased estimates[75]. CIF builds

forests using Conditional Inference Trees (CIT) as base learners[73], follow-

ing a distinct approach from traditional methods. Instead of exploring all

possible splits, CIT divides the process into two steps: first, it identifies

the best split covariate through association tests, and then it performs the

optimal binary split based on standardized linear statistics. In the context

of the Conditional Inference Tree (CIT) splitting procedure, given a dataset

consisting of N subjects and M features, and defining a new training set

Ln = {δi, X1i(t), . . . , XMi(t)} for i = 1, . . . , n, the first step involves de-

termining if there is pertinent information about the response variable (δi)

contained within a specific covariate (Xj(t)). This determination is made

based on the partial hypothesis of independence Hj0 : D(δi, Xj(t)) = D(δi),

with the overarching null hypothesis H0 =
∑M

j=1Hj0.

The strength of association between δi and Xj(t) is quantified using linear

statistics given by

Tj =
n∑

i=1

wigi(Xji(t))h(Ti, δi)

where w signifies case weights at each node, gj denotes a non-random trans-

formation of Xji(t), and h depends on responses δ1, . . . , δn in a symmetric

permutation manner. Practical considerations may dictate variations in

these functions; for instance, in time-to-event data, the choice of the influ-

ence function could be the log-rank score or Savage score. The assessment

of Tj is grounded in the distribution of δi and Xji, which is often unknown.

However, under the null hypothesis, this dependency can be nullified by

fixing the covariates and considering all possible permutations of responses,

a methodology known as the theory of permutation tests. Subsequently,

Tj(t) is standardized to univariate test statistics uTjLn;w for further com-

parison. If H0 cannot be rejected at a predetermined significance level α,

the recursion ceases. Alternatively, if rejected, X∗
j with the most compelling

association (i.e., the smallest P-value) is chosen as the optimal split variable.
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Once a covariate Xj∗ is selected in step 1 of the algorithm, the subsequent

step involves determining the optimal split point. The quality of the split is

assessed using a two-sample linear statistic, a specialized form of the linear

statistic employed in step 1. For all potential split points of Xj∗ , the linear

statistic is defined as

Tcj∗ =
n∑

i=1

wiI(Xj∗i ≥ c∗)h(Ti, δi)

where

I(Xi,j ≥ c∗) =

{
1 if Xi,j ≥ c∗

0 otherwise

This two-sample statistic quantifies the difference between the two resulting

daughter nodes. The split c∗ with a standardized test statistic uTcj∗Ln;w

maximized across all feasible splits is established.

CIF distinguishes itself from RF and RSF not only in terms of the base

learner but also in the applied aggregation scheme. Unlike RF, where pre-

dictions are directly averaged, CIF utilizes a unique approach. It averages

observation weights extracted from each tree, providing a distinct method

of aggregation. This specific aggregation technique sets CIF apart. The

implementation of CIF can be found in the R package called "party"[76].

3.8 Model Evaluation Metrics

The C-index (Concordance Index) and the Integrated Brier Score

(IBS) are two widely used metrics for evaluating the performance of sur-

vival models, each offering unique insights into different aspects of model

performance.

C-index:

The cindex is a measure of the discriminatory power of a survival model,

quantifying how well the model can distinguish between individuals with

different event times. It is a generalization of the area under the receiver

operating characteristic (ROC) curve (AUC) for binary outcomes to time-

to-event outcomes. The C-index is calculated by considering all possible
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pairs of individuals and checking if the predicted risk scores correctly rank

the survival times. Specifically, for a pair of individuals, the model’s predic-

tion is considered concordant if the individual with the higher risk score has

a shorter observed survival time. The C-index ranges from 0.5 to 1.0, where

0.5 indicates no discriminatory ability (equivalent to random guessing), and

1.0 indicates perfect discrimination. A higher C-index value signifies bet-

ter predictive accuracy of the model. Mathematically, the C-index can be

expressed as:

C =

∑n−1
i=1

∑n
j=i+1 I(hi < hj) · I(ti < tj) · δi∑n−1
i=1

∑n
j=i+1 I(ti < tj) · δi

where hi and hj are the predicted risk scores, ti and tj are the observed

survival times, δi is the event indicator (1 if the event occurred, 0 if censored),

and I(·) is the indicator function that returns 1 if the condition inside is true

and 0 otherwise.

Integrated Brier Score (IBS)

The Integrated Brier Score (IBS), on the other hand, measures the accu-

racy of probabilistic predictions in survival analysis over time. The Brier

score at a specific time point t evaluates the mean squared difference be-

tween the observed outcomes and the predicted survival probabilities. It

incorporates both calibration (how well the predicted probabilities reflect

the actual outcomes) and discrimination (the ability to distinguish between

different outcomes). The IBS is obtained by integrating the Brier score over

the entire follow-up period, providing a single summary measure of model

performance. The Brier score at time t is defined as:

Brier(t) =
1

n

n∑
i=1

(
Ŝ(t|Xi)− δi

)2

where n is the number of subjects, δi is the event indicator at time t (1 if the

event occurred by time t, 0 otherwise), and Ŝ(t|Xi) is the predicted survival

probability at time t for subject i. The IBS then integrates this score over

the follow-up period τ .
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IBS =

∫ τ

0

Brier(t)dt

Lower values of the IBS indicate better model performance, as they signify

smaller deviations between predicted probabilities and actual outcomes.

In summary, the C-index provides a measure of how well the model can rank

individuals by their risk of experiencing the event, while the IBS evaluates

the overall accuracy of the predicted survival probabilities over time. To-

gether, these metrics offer a comprehensive evaluation of a survival model’s

performance.
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Chapter 4

Results and Discussions

4.1 Descriptive Results

In the context of early-age fertility among Pakistani women, the descriptive

statistics for variables such as Respondent Age at First Birth (RAAFB)

and Age at Marriage (AAM) provide crucial insights ((see Table 4.1)). The

minimum RAAFB of 12 and AAM of 9 indicate that some women experience

childbirth and marriage at extremely young ages, highlighting the severity

of early-age fertility. Conversely, the maximum RAAFB of 42 and AAM of

38 suggest that women in the study have delayed childbirth and marriage

to relatively older ages, showcasing the variability in reproductive timelines.

Table 4.1: Summary Statistics for RAAFB and AAM
Statistic RAAFB AAM
Mean 21.11 18.85
Median 21 18
Standard Deviation 3.91 3.75
Min 12 9
Max 42 38

The mean age at first birth (21.11 years) suggests that, on average, women

in the study give birth relatively early after marriage. This aligns with the

objective of understanding early-age fertility patterns. The median values

of 21 for RAAFB and 18 for AAM indicate that the distribution is slightly

skewed towards younger ages, highlighting a significant portion of women
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experiencing early childbirth. The standard deviations of 3.91 for RAAFB

and 3.75 for AAM signify a moderate amount of variation around the mean,

indicating diverse age patterns.

The frequency table 4.2 provides a detailed overview of the distribution

of various variables related to early-age fertility among Pakistani women.

The "Status" variable, indicating whether women are experiencing early-

age fertility, shows that 43.40% of women are currently experiencing early-

age fertility, while 56.60% are not. This sheds light on the prevalence of

early-age fertility in the study population.

Table 4.2: Frequency and Percentage Frequency for Var-
ious Variables

Variable Category Frequency Percentage Frequency
Status Yes 6491 43.40

No 8464 56.60
REL No education 7545 50.45

Primary 2091 13.98
Secondary 3118 20.85
Higher 2201 14.72

HEL No education 415 2.77
Primary 3467 23.18
Secondary 10136 67.78
Higher 937 6.27

REG Punjab 3392 22.68
Sindh 2718 18.17
KPK 2370 15.85
Balochistan 1694 11.33
GB 971 6.49
ICT 1100 7.36
AJK 1715 11.47
FATA 995 6.65

TOPOR Urban 7199 48.14
Rural 7756 51.86

SES Poor 6066 40.56
Middle 5803 38.80
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Variable Category Frequency Percentage Frequency
Rich 3086 20.64

PO Unemployed 803 5.37
Employed 14133 94.50
Don’t know 19 0.13

WAM No 12624 84.41
Yes 2331 15.59

CM Used 4709 31.49
Not Used 10246 68.51

Regarding education levels, a significant portion of women have no educa-

tion (/]50.45%), followed by secondary education (20.85%). This highlights

the educational disparities among women in the sample and the potential

impact of education on early-age fertility decisions. Husband education

level ("HEL") also shows a considerable proportion with secondary edu-

cation (67.78%), suggesting a similar trend in educational attainment be-

tween spouses. Regional distribution ("REG") indicates that Punjab has the

highest representation (22.68%), followed by Sindh (18.17%) and Khyber-

Pakhtunkhwa (15.85%), which could reflect regional variations in early-age

fertility determinants. The type of place of residence ("TOPOR") shows a

relatively balanced distribution between urban (48.14%) and rural (51.86%)

areas, indicating the need to consider both urban and rural contexts in un-

derstanding early-age fertility.

Socio-economic status ("SES") reveals that a substantial proportion of women

are classified as poor (40.56%) or middle-class (38.80%), underscoring the

economic factors at play in early-age fertility decisions. Partner occupa-

tion ("PO") highlights that the majority are employed (94.50%), suggest-

ing that economic factors might influence fertility decisions. Work after

marriage ("WAM") indicates that 15.59% of women work after marriage,

which could impact their fertility decisions due to potential financial sta-

bility. Contraceptive method usage ("CM") shows that 31.49% of women

use contraceptives, implying a level of family planning awareness and prac-

tices among the population. Overall, these findings provide a comprehensive
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picture of the socio-demographic factors associated with early-age fertility

among Pakistani women, highlighting the complex interplay of education,

region, socio-economic status, and other factors in shaping fertility decisions.

4.2 Cox Model

4.2.1 Age at Marriage as a Time Variable

In this study, we examined the impact of various socio-economic and demo-

graphic factors on the likelihood of facing early age fertility among Pakistani

women, defined as having the first birth at the age of 20 or before, using a

Cox proportional hazards model. The event of interest is facing early age

fertility, coded as 1 for those who experience it and 0 for those who do not,

with the response variable (t) being the age at marriage. The results, as

shown in Table 4.3, reveal several significant findings. The forest plot in

Figure 4.1 visually represents the hazard ratios (exp(coef)) for each vari-

able, providing a clear comparison of the impact of different factors on age

at marriage.

Respondent Education Level (REL): Education level had significant effects

on the likelihood of facing early age fertility. Respondents with primary

education (coef = -0.124783, exp(coef) = 0.882688, p = 0.00547) had a

hazard ratio of 0.8827, indicating they were approximately 11.73% less likely

to face early age fertility compared to those without education. Those with

secondary education (coef = -0.554170, exp(coef) = 0.574549, p < 2e-16)

were significantly less likely to face early age fertility, with a hazard ratio

of 0.5745, suggesting a 42.55% reduced likelihood. Higher education had an

even stronger protective effect (coef = -1.582577, exp(coef) = 0.205445, p <

2e-16), with a hazard ratio of 0.2054, indicating an approximately 79.46%

reduced likelihood of facing early age fertility. This highlights the substantial

protective effect of education on early age fertility.

Husband Education Level (HEL): Husband’s education level did not show

significant effects on the likelihood of facing early age fertility. The coeffi-
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cients for primary (coef = 0.005802, exp(coef) = 1.005819, p = 0.94985),

secondary (coef = -0.013995, exp(coef) = 0.986102, p = 0.87478), and higher

education (coef = -0.236813, exp(coef) = 0.789139, p = 0.05138) were not

statistically significant, indicating that husband’s education level did not

significantly influence the likelihood of facing early age fertility.

Table 4.3: Cox Model Results
Variable Factor coef exp(coef) exp(-coef) se(coef) z Pr(>|z|) lower .95 upper .95
REL Primary -0.124783 0.882688 1.1329 0.044917 -2.778 0.00547 ** 0.8083 0.9639

Secondary -0.554170 0.574549 1.7405 0.046008 -12.045 < 2e-16 *** 0.5250 0.6288
Higher -1.582577 0.205445 4.8675 0.077947 -20.303 < 2e-16 *** 0.1763 0.2394

HEL Primary 0.005802 1.005819 0.9942 0.092243 0.063 0.94985 0.8395 1.2051
Secondary -0.013995 0.986102 1.0141 0.088810 -0.158 0.87478 0.8286 1.1736
Higher -0.236813 0.789139 1.2672 0.121549 -1.948 0.05138 . 0.6219 1.0014

REG Sindh 0.224093 1.251188 0.7992 0.049744 4.505 6.64e-06 *** 1.1350 1.3793
KPK 0.473395 1.605436 0.6229 0.049731 9.519 < 2e-16 *** 1.4563 1.7698
Balochistan 0.330136 1.391158 0.6229 0.057400 5.752 8.84e-09 *** 1.2431 1.5568
GB 0.495365 1.641097 0.6093 0.067403 7.349 1.99e-13 *** 1.4380 1.8729
ICT 0.013404 1.013495 0.6093 0.074898 0.179 0.85796 0.8751 1.1737
AJK 0.079390 1.082627 0.9237 0.060767 1.306 0.19139 0.9611 1.2196
FATA 0.526958 1.693773 0.5904 0.063932 8.242 < 2e-16 *** 1.4943 1.9199

TOPOR Urban -0.116057 0.890424 1.1231 0.034890 -3.326 0.00088 *** 0.8316 0.9534
SES Middle -0.181893 0.833691 1.1995 0.038831 -4.684 2.81e-06 *** 0.7726 0.8996

Rich -0.206282 0.813603 1.2291 0.058054 -3.553 0.00038 *** 0.7261 0.9117
PO Employed -0.033113 1.0337 0.967430 0.064516 -0.513 0.60778 0.8525 1.0978

Don’t know -0.130446 0.877704 1.1393 0.504355 -0.259 0.79591 0.3266 2.3586
WAM Yes 0.164294 1.178561 0.8485 0.043871 3.745 0.00018 *** 1.0815 1.2844
CM Not Used -0.399511 0.670648 1.4911 0.032138 -12.431 < 2e-16 *** 0.6297 0.7143
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Region (REG): Regional differences were significant. Compared to the refer-

ence category (Punjab), respondents from Sindh (coef = 0.224093, exp(coef)

= 1.251188, p = 6.64e-06), KPK (coef = 0.473395, exp(coef) = 1.605436, p

< 2e-16), Balochistan (coef = 0.330136, exp(coef) = 1.391158, p = 8.84e-

09), GB (coef = 0.495365, exp(coef) = 1.641097, p = 1.99e-13), and FATA

(coef = 0.526958, exp(coef) = 1.693773, p < 2e-16) had significantly higher

hazard ratios, suggesting higher risks of facing early age fertility. Specifi-

cally, individuals from Sindh were approximately 25.12% more likely, those

from KPK were about 60.54% more likely, those from Balochistan were

approximately 39.12% more likely, those from GB were about 64.11% more

likely, and those from FATA were about 69.38% more likely to face early age
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fertility compared to those from Punjab. ICT (coef = 0.013404, exp(coef)

= 1.013495, p = 0.85796) and AJK (coef = 0.079390, exp(coef) = 1.082627,

p = 0.19139) did not show significant differences from Punjab.

Type of Place of Residence (TOPOR): Living in a urban area was associated

with a reduced risk of facing early age fertility (coef = -0.116057, exp(coef)

= 0.890424, p = 0.00088), with a hazard ratio of 0.8904. This indicates that

individuals living in urban areas were approximately 10.96% less likely to

face early age fertility compared to those living in rural areas.

Figure 4.1: Forest Plot of Cox Proportional Hazards Model

Socio-economic Status (SES): Socio-economic status was a significant factor.

Respondents from middle socio-economic status (coef = -0.181893, exp(coef)

= 0.833691, p = 2.81e-06) were approximately 16.63% less likely, and those

from rich status (coef = -0.206282, exp(coef) = 0.813603, p = 0.00038)

were about 18.64% less likely to face early age fertility compared to those

from poorer backgrounds. This highlights the protective effect of higher

socio-economic status against early age fertility.
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Partner Occupation (PO): Partner occupation was not a significant fac-

tor. The coefficients for employed partners (coef = -0.033113, exp(coef)

= 0.967430, p = 0.60778) and those who don’t know (coef = -0.130446,

exp(coef) = 0.877704, p = 0.79591) were not statistically significant, indi-

cating that partner occupation did not significantly influence the likelihood

of facing early age fertility.

Work After Marriage (WAM): Respondents who worked after marriage had

a significantly higher risk of facing early age fertility (coef = 0.164294,

exp(coef) = 1.178561, p = 0.00018), with a hazard ratio of 1.1786. This

suggests that individuals who worked after marriage were approximately

17.86% more likely to face early age fertility compared to those who did not

work after marriage.

Contraceptive Method Usage (CM): Not using contraceptives was associated

with a significantly higher risk of facing early age fertility (coef = -0.399511,

exp(coef) = 0.670648, p < 2e-16), with a hazard ratio of 0.6706. This in-

dicates that individuals who did not use contraceptives were approximately

32.94% less likely to face early age fertility compared to those who used

contraceptives, highlighting the protective effect of contraceptive use.

In summary, the results indicate that higher levels of respondent education

and better socio-economic status are associated with lower risks of facing

early age fertility. Regional differences also play a significant role, with

certain regions having higher risks. Living in rural areas and using contra-

ceptives appear to provide protective effects, while working after marriage

increases the risk. These findings underscore the importance of education,

socio-economic status, regional context, and contraceptive use in under-

standing the factors influencing the likelihood of facing early age fertility.

4.2.2 Respondent Age at First Birth as a Time Variable

In this analysis, we explored the factors influencing the likelihood of facing

early fertility, which is defined as giving birth for the first time at the age of

20 or younger. The response variable in our Cox proportional hazards model
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is the age at which women experience their first birth, with a focus on iden-

tifying which socio-economic and demographic factors are associated with a

higher or lower probability of early fertility. Table 4.3 presents the compre-

hensive statistical analysis results, highlighting several significant findings.

The forest plot in Figure 4.1 visually represents the hazard ratios (exp(coef))

for each variable.

Age at Marriage (AAM): The age at which women marry is a significant

predictor of early fertility. The negative coefficient for age at marriage (coef

= -0.508308, exp(coef) = 0.601513, p < 2e-16) indicates that for each ad-

ditional year of age at marriage, the risk of experiencing early fertility de-

creases by approximately 39.85%. In other words, women who marry later

are less likely to face early fertility. This substantial effect underscores the

importance of delaying marriage as a strategy for reducing the likelihood of

early childbearing.

Table 4.4: Comprehensive Statistical Analysis Results
Covariate Factor coef exp(coef) se(coef) z Pr(>|z|) exp(-coef) 95% CI lower 95% CI upper
AAM -0.508308 0.601513 0.006703 -75.836 < 2e-16 1.6625 0.5937 0.6095
REL Primary 0.116390 1.123434 0.045782 2.542 0.011014 0.8901 1.0270 1.2289

Secondary 0.024004 1.024294 0.047286 0.508 0.611715 0.9763 0.9336 1.1238
Higher -0.526924 0.590418 0.078643 -6.700 2.08e-11 1.6937 0.5061 0.6888

HEL Primary -0.035820 0.964814 0.092358 -0.388 0.698136 1.0365 0.8051 1.1563
Secondary -0.126820 0.880892 0.088974 -1.425 0.154053 1.1352 0.7399 1.0487
Higher -0.188237 0.828418 0.121715 -1.547 0.121975 1.2071 0.6526 1.0516

REG Sindh -0.129466 0.878564 0.050389 -2.569 0.010189 1.1382 0.7959 0.9698
KPK 0.142208 1.152817 0.049948 2.847 0.004411 0.8674 1.0453 1.2714
Balochistan -0.016511 0.983625 0.058111 -0.284 0.776314 1.0166 0.8777 1.1023
GGB -0.269385 0.763849 0.069322 -3.886 0.000102 1.3092 0.6668 0.8750
ICT -0.018941 0.981237 0.074699 -0.254 0.799834 1.0191 0.8476 1.1359
AJK 0.075215 1.078115 0.061050 1.232 0.217942 0.9275 0.9565 1.2152
FATA 0.279045 1.321867 0.064172 4.348 1.37e-05 0.7565 1.1656 1.4990

TOPOR Urban -0.101925 0.903097 0.034613 -2.945 0.003233 1.1073 0.8439 0.9665
SES Middle 0.074685 1.077545 0.039073 1.911 0.055951 0.9280 0.9981 1.1633

Rich 0.083105 1.086656 0.058329 1.425 0.154224 0.9203 0.9693 1.2183
PO Employed 0.209405 1.232944 0.064617 3.241 0.001192 0.8111 1.0863 1.3994

Don’t know 0.518873 1.680133 0.504627 1.028 0.303841 0.5952 0.6249 4.5173
WAM Yes 0.043114 1.044057 0.044085 0.978 0.328092 0.9578 0.9576 1.1383
CMU Not -0.571616 0.564612 0.032194 -17.755 < 2e-16 1.7711 0.5301 0.6014

Respondent Education Level (REL): Education level plays a crucial role in

determining the likelihood of early fertility. Women with primary education

(coef = 0.116390, exp(coef) = 1.123434, p = 0.011014) are about 12.34%
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more likely to face early fertility compared to those with no education. In

contrast, higher education (coef = -0.526924, exp(coef) = 0.590418, p =

2.08e-11) significantly reduces the risk of early fertility by 40.96%. This

suggests that higher education serves as a protective factor against early

childbearing, highlighting the benefits of educational attainment for family

planning.

Husband’s Education Level (HEL): The educational attainment of the hus-

band does not show a significant effect on the likelihood of early fertility.

Coefficients for primary, secondary, and higher education (HELPrimary:

coef = -0.035820, exp(coef) = 0.964814, p = 0.698136; HELSecondary:

coef = -0.126820, exp(coef) = 0.880892, p = 0.154053; HELHigher: coef

= -0.188237, exp(coef) = 0.828418, p = 0.121975) are not statistically sig-

nificant, suggesting that the husband’s education level does not directly

influence the timing of the first birth.

Regional Effects (REG): Geographic location reveals significant regional

variations in the risk of early fertility. Women from Sindh (coef = -0.129466,

exp(coef) = 0.878564, p = 0.010189) are about 12.14% less likely to face

early fertility compared to those from Punjab. In contrast, women from

Khyber Pakhtunkhwa (KPK) (coef = 0.142208, exp(coef) = 1.152817, p =

0.004411) have a 15.28% higher risk of early fertility, while those from Gilgit-

Baltistan (GB) (coef = -0.269385, exp(coef) = 0.763849, p = 0.000102) are

23.62% less likely to experience early fertility. Women from the Federally

Administered Tribal Areas (FATA) (coef = 0.279045, exp(coef) = 1.321867,

p = 1.37e-05) face a 32.19% higher risk of early fertility. These regional dif-

ferences highlight the influence of local cultural, economic, and healthcare

factors on the likelihood of early childbearing.

Type of Place of Residence (TOPOR): Living in urban areas is associated

with a lower risk of early fertility (coef = -0.101925, exp(coef) = 0.903097,

p = 0.003233), indicating that women in urban areas are about 9.70% less

likely to face early fertility compared to those in rural areas. This finding

reflect differences in access to family planning resources and educational
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Figure 4.2: Forest Plot of Cox Proportional Hazards Model

opportunities between rural and urban settings.

Socio-economic Status (SES): Socio-economic status shows a near-significant

effect on early fertility. Women from middle socio-economic backgrounds

(coef = 0.074685, exp(coef) = 1.077545, p = 0.055951) have a 7.75% higher

risk of early fertility, though this result is just above the conventional sig-

nificance level. Women from rich backgrounds did not show a significant

difference in the risk of early fertility compared to those from poorer back-

grounds.

Partner Occupation (PO): Women whose partners are employed have a

significantly higher risk of early fertility (coef = 0.209405, exp(coef) =

1.232944, p = 0.001192). The likelihood of facing early fertility increases

by approximately 23.29% for women with employed partners. This might

be due to increased financial stability and reduced pressures that might

otherwise delay family planning.

Work After Marriage (WAM): Working after marriage does not have a sig-
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nificant impact on the likelihood of early fertility (coef = 0.043114, exp(coef)

= 1.044057, p = 0.328092), indicating that this factor alone does not sub-

stantially influence the timing of the first birth.

Contraceptive Method Usage (CM): Not using contraceptives is a strong

predictor of early fertility (coef = -0.571616, exp(coef) = 0.564612, p < 2e-

16). Women who do not use contraceptives are about 43.54% more likely to

experience early fertility compared to those who do use contraceptives. This

result emphasizes the critical role of contraceptive use in family planning and

the prevention of early childbearing.

In summary, our analysis reveals that later marriage and higher levels of ed-

ucation are effective strategies for reducing the risk of early fertility. Specif-

ically, every additional year of age at marriage decreases the likelihood of

early fertility by nearly 40%. Women with higher educational attainment

are significantly less likely to experience early fertility, with higher education

reducing this risk by nearly 41%. In contrast, primary education increases

the risk of early fertility by about 12%, while husband’s education does not

significantly affect early fertility. Regional variations also play a significant

role, with women in certain regions like KPK and FATA facing higher risks

of early fertility, while those in Sindh and GB have lower risks. Addition-

ally, women in urban areas and those using contraceptives have lower risks

of early fertility, whereas those with employed partners face a higher risk of

early childbearing. These insights underscore the importance of education,

family planning, and socio-economic factors in shaping fertility outcomes

and highlight areas for targeted interventions to support delayed childbear-

ing and improve reproductive health outcomes.

4.3 Random Survial Forest Model

4.3.1 AAM as a Time Variable

In this study, the Random Survival Forest (RSF) model is employed to ana-

lyze early-age fertility, focusing on the relationship between age at marriage
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and the likelihood of experiencing early-age fertility, which is defined as hav-

ing the first birth at the age of 20 or before. The RSF model is particularly

suited for this task as it provides a robust framework for handling survival

data and exploring complex interactions among multiple predictors. This

model is a non-parametric extension of decision trees that excels in capturing

non-linear relationships and interactions without requiring specific assump-

tions about the data distribution, which makes it ideal for examining the

multifaceted nature of fertility outcomes.

The graphical analysis of the model reveals insights into both the perfor-

mance of the model and the significance of various predictors. The plot in

Figure 4.3 depicting the error rate versus the number of trees shows a clear

pattern where the error rate decreases as the number of trees in the forest

increases, reflecting improved model performance with more trees. This de-

crease continues until the error rate stabilizes, suggesting that adding trees

beyond a certain point yields diminishing returns. Initially, increasing the

number of trees effectively reduces the error rate, which indicates that the

model benefits from greater complexity and a more comprehensive repre-

sentation of the data. However, after a certain threshold, additional trees

do not significantly improve the model’s accuracy and may even introduce

noise, emphasizing the balance needed between model complexity and per-

formance.

The variable importance plot offers a detailed view of how different predic-

tors contribute to the model’s ability to distinguish between women who

experience early-age fertility and those who do not. The most striking find-

ing is that the respondent’s education level (REL) is the most significant

factor in predicting early-age fertility, with a variable importance score of

0.1946 and a relative importance of 1.0000. This indicates that educational

attainment is the strongest predictor of whether a woman will experience

early-age fertility, highlighting that higher education levels are associated

with a lower likelihood of early-age fertility. This result underscores the

critical role of education in shaping fertility outcomes, as higher educational
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Figure 4.3: Number of tree and variable importance AAM

attainment often correlates with greater access to family planning resources

and better awareness of reproductive health.

Following education level, the usage of contraceptive methods (CM) emerges

as the second most important predictor, with a variable importance score

of 0.0303 and a relative importance of 0.1556. This finding emphasizes that

the use of contraceptives significantly impacts early-age fertility, as women

who actively use contraceptive methods are less likely to experience early-

age fertility. This result suggests that improving access to and education

about contraceptives could be an effective strategy for reducing early-age

fertility rates.

Regional factors, represented by the variable REG, also play a significant

role in the model, with a variable importance score of 0.0286 and a relative

importance of 0.1468. This indicates that the geographical location of the

respondents affects early-age fertility outcomes, reflecting the influence of

regional cultural norms, economic conditions, and availability of healthcare
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services on fertility practices. Variations across different regions demonstrate

that localized factors can impact fertility rates, which can be addressed

through targeted regional policies and interventions.

Socio-economic status (SES), with a variable importance score of 0.0133

and a relative importance of 0.0684, shows a moderate impact on early-age

fertility. This suggests that socio-economic conditions, such as wealth and

access to resources, contribute to the likelihood of experiencing early-age

fertility. Women from poorer socio-economic backgrounds are more likely

to face early-age fertility due to fewer resources and less access to educational

and healthcare opportunities.

The education level of the husband (HEL), with a variable importance score

of 0.0099 and a relative importance of 0.0508, demonstrates a lower but still

notable influence on early-age fertility. Although less significant than the

respondent’s education, the husband’s education level does affect fertility

outcomes, indicating that family-level educational attainment can influence

reproductive decisions.

Partner occupation (PO) and work after marriage (WAM) have relatively

minor effects on early-age fertility, with variable importance scores of 0.0057

and 0.0044, and relative importances of 0.0292 and 0.0225, respectively.

These variables have limited impact on the likelihood of early-age fertility,

suggesting that while the partner’s occupation and decisions about working

after marriage are factors, they are less critical compared to other variables

such as education and contraceptive use.

Finally, the type of place of residence (TOPOR), with a very low variable

importance score of 0.0011 and a relative importance of 0.0056, has the

smallest impact on early-age fertility. This indicates that while there may

be some differences between urban and rural fertility rates, this factor is less

significant in the overall model compared to other predictors.

Overall, the RSF model reveals that educational attainment and contracep-

tive use are the most influential factors in predicting early-age fertility, with

educational level being the primary determinant and contraceptive use also
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playing a significant role. Regional differences and socio-economic conditions

also affect fertility outcomes, but to a lesser extent. The insights gained from

the model highlight the importance of focusing on educational interventions

and improving access to family planning resources as key strategies for re-

ducing early-age fertility rates.

4.3.2 RAAFB as a Time Variable

Also the Random Survival Forest (RSF) model is utilized to explore the

relationship between various predictors and the age at which women expe-

rience their first birth, with the primary focus on early-age fertility as the

response variable. This model examines how different factors influence the

timing of first birth, providing a detailed understanding of the predictors

associated with early-age fertility.

The left plot, which depicts the error rate versus the number of trees in

the RSF model, reveals that as the number of trees increases, the error

rate initially decreases, signifying an improvement in model performance.

This decline in error rate indicates that adding more trees enhances the

model’s ability to make accurate predictions about the age at first birth.

However, after reaching a certain number of trees, the error rate stabilizes,

indicating that while additional trees initially contribute to model accuracy,

they eventually lead to diminishing returns. This observation suggests that

there is an optimal number of trees that balances model complexity and

accuracy without unnecessary overfitting.

The right plot illustrates the importance of different variables in predicting

the age at first birth. The most notable finding from this plot is that the age

at marriage (AAM) stands out as the most significant predictor of the age at

first birth, with a variable importance score of 0.6008 and a relative impor-

tance of 1.0000. This high score indicates a strong relationship between the

age at marriage and the age at which women have their first child. Women

who marry later are more likely to delay their first birth, highlighting how

the timing of marriage directly affects reproductive decisions.
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Figure 4.4: Number of tree and variable importance RAAFB

Following AAM, the next most influential predictor is the respondent’s ed-

ucation level (REL), which has a variable importance score of 0.0170 and

a relative importance of 0.0282. Although its impact is significantly lower

compared to AAM, higher educational attainment is still associated with a

later age at first birth. This correlation can be attributed to the fact that

women who pursue higher education tend to delay childbearing in favor of

academic and career achievements.

Another important predictor is contraceptive method usage (CM), with a

variable importance score of 0.0151 and a relative importance of 0.0251. This

variable reflects that women who use contraceptives are able to plan their

pregnancies more effectively, leading to a later age at first birth. Effective

use of contraceptives enables women to space their pregnancies, which often

results in delaying the age at which they have their first child.

Other variables such as partner occupation (PO) and husband education

level (HEL) show lower importance scores, 0.0043 and 0.0042 respectively,
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indicating that their influence on the timing of the first birth is relatively

minor. These factors might still play a role in reproductive decisions by

reflecting socio-economic stability and informed choices, but they are less

central compared to AAM, REL, and CM.

Regional differences (REG), with a variable importance score of 0.0033 and

a relative importance of 0.0055, also affect the age at first birth. This reflects

how geographical variations in cultural, economic, and healthcare contexts

can influence reproductive decisions. Women from different regions may

have different experiences and opportunities, which affect the timing of their

first birth.

Socio-economic status (SES) has a minor impact, with a score of 0.0017 and

a relative importance of 0.0028. This suggests that higher socio-economic

status, which is often associated with better access to education and health-

care, might lead to a later age at first birth. However, its impact is relatively

minimal compared to other variables.

Finally, the variables work after marriage (WAM) and type of place of resi-

dence (TOPOR) have the smallest importance scores of 0.0013 and 0.0007,

respectively. These factors have minimal influence on the timing of first

birth, indicating that decisions about employment after marriage and the

urban or rural nature of residence have a limited impact on when women

decide to have their first child.

In conclusion, the RSF model underscores that the age at marriage is the

most significant factor affecting the age at which women have their first child,

reflecting how marital timing influences early-age fertility. Additionally, the

model shows that education level and contraceptive use also play substantial

roles in determining reproductive timing. Although partner occupation,

husband’s education, and regional factors have some influence, the impact

of socio-economic status, work after marriage, and type of residence on early-

age fertility is relatively minor. These findings offer valuable insights into

the factors affecting early-age fertility and can inform strategies aimed at

improving reproductive health and planning.
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4.4 Prediction Error Curve Comparisons

4.4.1 AAM as a Time Variable

The plot in Figure 4.5 illustrates the prediction error curves for three survival

models: Cox Proportional Hazards Model (CPH), Random Survival Forest

(RSF), and Conditional Inference Forest (CF), with Age at Marriage (AAM)

as the time variable. The x-axis represents time, while the y-axis shows the

prediction error. Lower prediction error values indicate better predictive

accuracy of the model. At the initial period (0 to 15.25 years), all three

models, CPH, RSF, and CF, have a prediction error of 0.000, indicating

perfect initial accuracy. By the time we reach 15.25 years, the prediction

errors for CPH, RSF, and CF are very close to each other, with values of

0.124, 0.124, and 0.125 respectively. This suggests that the performance of

the three models is comparable in the early period.

Figure 4.5: Comparison of Prediction Error Curves AAM

As we move to the mid-period (15.25 to 29.75 years), the differences in
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prediction errors become more pronounced. At 22.50 years, the CPH model

shows a slightly lower error of 0.203 compared to RSF at 0.204 and CF at

0.205. This indicates that the CPH model might have a marginally better

mid-term prediction accuracy. By 29.75 years, the CPH model continues

to exhibit the lowest error at 0.177, followed by RSF at 0.182 and CF at

0.184. This trend suggests that the CPH model has a relative advantage

in prediction accuracy during the mid-period. In the late period (29.75 to

37.00 years), the errors for CPH, RSF, and CF converge again, with CPH

showing an error of 0.112, and both RSF and CF showing errors of 0.114.

This indicates that all three models perform similarly well in the long term.

Based on the prediction error graph, the Cox Proportional Hazards (CPH)

model generally shows the lowest prediction error across the various time

points, particularly during the mid-period (22.50 to 29.75 years). There-

fore, the CPH model can be considered the best model among the three for

predicting age at first birth with early-age fertility as the status variable,

due to its slightly superior performance in minimizing prediction errors over

time. However, it is important to note that the differences in prediction

errors between the models are relatively small, indicating that RSF and CF

are also strong contenders with comparable performance.

4.4.2 RAAFB a Time Variable

In this analysis, we compare the prediction error curves of three different

models: Cox Proportional Hazards (CPH), Random Survival Forest (RSF),

and Conditional Forests (CF), using women’s age at first birth (RAAFB) as

the time variable. The figure 4.6 illustrate how the prediction error evolves

over time for each model, allowing us to evaluate their performance and

accuracy. At the initial period (0 to 18.25 years), all three models, CPH,

RSF, and CF, start with a prediction error of 0.000, indicating perfect initial

accuracy. By 18.25 years, the prediction errors for CPH, RSF, and CF di-

verge, with values of 0.093, 0.082, and 0.078 respectively. This suggests that

the CF model has the lowest prediction error in the early period, followed
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closely by RSF, with CPH having the highest error among the three.

Figure 4.6: Comparison of Prediction Error Curves RAAFB

As we move to the mid-period (18.25 to 32.75 years), the differences in

prediction errors become more pronounced. At 25.50 years, the CF model

continues to show the lowest error at 0.083, followed by CPH at 0.094 and

RSF at 0.104. This trend indicates that the CF model maintains its advan-

tage in prediction accuracy during the mid-term period. By 32.75 years, the

CF model still exhibits the lowest error at 0.087, with CPH at 0.102 and

RSF at 0.109, reinforcing the CF model’s superior performance in this time

frame. In the late period (32.75 to 42.00 years), the CF model continues

to demonstrate the lowest prediction error, with a value of 0.052 at 42.00

years. The CPH and RSF models show higher errors at 0.065 and 0.069

respectively. This indicates that the CF model consistently outperforms the

other two models in terms of prediction accuracy over the long term.

Based on the provided prediction error data and the graph, the Conditional

Forests (CF) model generally shows the lowest prediction error across the
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various time points, particularly during both the mid-period (25.50 to 32.75

years) and the late period (32.75 to 42.00 years). Therefore, the CF model

can be considered the best model among the three for predicting women’s

age at first birth with early-age fertility as the status variable, due to its

superior performance in minimizing prediction errors over time. The RSF

model also performs well, especially in the early period, while the CPH

model consistently shows higher prediction errors across all time points.

4.5 Integrated Brier Scores

4.5.1 AAM

The box plot in Figure 4.7 illustrates the Integrated Brier Scores (IBS)

for three different survival models: Conditional Inference Forest (CF), Cox

Proportional Hazards Model (CM), and Random Survival Forest (RSF),

with Age at Marriage (AAM) as the time variable. The IBS measures the

accuracy of survival models, with lower scores indicating better performance.

The x-axis represents the different models, and the y-axis represents the

Integrated Brier Score, showing the CF model in green, the CM model

in red, and the RSF model in blue. Each box plot displays the median,

interquartile range, and potential outliers of the IBS values for each model.

In the box plot, the CF model, represented in green, shows a median IBS

score slightly higher than the CPH model but lower than the RSF model.

The range of IBS scores for the CF model is relatively broad, indicating

some variability in the prediction accuracy over time. The CPH model,

depicted in red, has the lowest median IBS score, suggesting it generally

offers better prediction accuracy than the other models. Its box is also

narrower compared to the others, indicating more consistent performance

across different time intervals. The RSF model, shown in blue, has a median

IBS score higher than the CPH model but similar to the CF model, with a

distribution indicating some variability in prediction accuracy over time.

The final results for the IBS scores over the specified period (IBS[0; time=36))
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Figure 4.7: Box Plot of Integrated Brier Scores AAM

are as follows: the Reference model has an IBS of 0.163, the CPH model

achieves the lowest IBS score of 0.149, the RSF model has an IBS of 0.151,

and the CF model has an IBS of 0.150. These results indicate that all three

models surpass the reference model’s performance, which has the highest

IBS, signifying the poorest prediction accuracy.

Among the models evaluated, the CPH model stands out as the best per-

former with the lowest IBS score of 0.149, indicating it provides the most

accurate predictions. The CF model follows closely with an IBS of 0.150,

and the RSF model has a slightly higher IBS of 0.151. Although the differ-

ences in IBS scores among the models are marginal, the consistently lower

IBS scores of the CPH model, as indicated by the box plot, highlight its

superior long-term prediction accuracy. Therefore, based on the IBS values

and the distribution of scores shown in the box plot, the CPH model is the

most reliable and accurate choice for predicting women’s age at marriage

within the context of this study.
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4.5.2 RAAFB

The box plot in Figure 4.8 shows the Integrated Brier Scores (IBS) for

the Cox Proportional Hazards (CPH), Random Survival Forest (RSF), and

Conditional Forests (CF) models, using the time variable to detect early

age fertility. Each box plot represents the distribution of IBS scores for a

model, with the box indicating the interquartile range (IQR), the line within

the box showing the median IBS score, and the whiskers extending to the

minimum and maximum values within 1.5 times the IQR from the quartiles.

The CF model, represented in green, shows the lowest median IBS score,

indicating the best prediction accuracy among the models. The range of

IBS scores for the CF model is relatively narrow, suggesting consistent per-

formance across different time intervals. The CPH model, depicted in red,

has a median IBS score higher than the CF model but lower than the RSF

model, indicating good prediction accuracy, though not as high as the CF

model. The RSF model, shown in blue, has the highest median IBS score

among the three, indicating the lowest prediction accuracy. The distribution

of IBS scores for the RSF model is also broader, indicating more variability

in prediction accuracy over time.

The final results for the IBS scores over the specified period (IBS[0; time=36))

are as follows: the Reference model has an IBS of 0.163, the CPH model

has an IBS score of 0.056, the RSF model has an IBS of 0.065, and the CF

model achieves the lowest IBS score of 0.047. These results indicate that all

three models outperform the reference model, which has the highest IBS,

signifying the poorest prediction accuracy.

Among the models evaluated, the CF model stands out as the best per-

former with the lowest IBS score of 0.047, indicating it provides the most

accurate predictions. The CPH model follows with an IBS of 0.056, demon-

strating good prediction accuracy, though not as high as the CF model. The

RSF model has the highest IBS score of 0.065, indicating the least accurate

predictions among the three models.

In conclusion, based on the IBS values and the distribution of scores shown
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Figure 4.8: Box Plot of Integrated Brier Scores RAAFB

in the box plot, the CF model is the most reliable and accurate choice for

predicting early age fertility. The CF model’s lower prediction errors and

consistent performance across different time intervals make it the optimal

model for applications requiring high prediction accuracy in this domain.

The CPH model also performs well, but the CF model’s superior accuracy

makes it the best overall choice.

4.6 Concordance Index

4.6.1 AAM

In the study "Analysis of Early Age Fertility in Women using Machine

Learning Survival Estimation Approach," we evaluate the performance of

three predictive models—COXMODEL, RSFMODEL, and CIF—using the

concordance index as a measure of predictive accuracy over time. The anal-

ysis, presented illustrated in Figure 4.9, provides insights into the strengths
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and weaknesses of each model. These models are evaluated for their ability

to predict early age fertility, using age at marriage as the time variable.

The COXMODEL starts with a high C-index value of 89.9 at age 10, in-

dicating excellent predictive accuracy initially. However, its performance

declines sharply to 66.5 by age 15 and further stabilizes around 64.1 from

age 20 onwards. This decline suggests that while the COXMODEL begins

with strong predictive power, its accuracy diminishes significantly as the age

at marriage increases.

Figure 4.9: Comparison of Concordance Index AAM

In contrast, the RSFMODEL begins with a lower C-index of 41.3 at age 10,

increases to 66.5 by age 15, and then maintains a steady value of 64.0 from

age 20 onwards. This model shows a significant improvement over time but

does not reach the initial high predictive accuracy of the COXMODEL. The

CIF model starts at 47.9 at age 10, drops slightly to 65.6 by age 15, and

then stabilizes around 62.9, with a slight decrease to 62.4 by age 35. The

CIF model exhibits a more consistent performance over time compared to
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the COXMODEL and RSFMODEL, although its initial predictive accuracy

is lower. When selecting the best model based on the median C-index, we

observe that the COXMODEL, despite its initial high value and subsequent

decline, maintains a median C-index of around 64.1. The RSFMODEL has

a median C-index of 64.0, slightly lower than the COXMODEL. The CIF

model has the lowest median C-index of approximately 62.9.

Given the objective to predict early age fertility using age at marriage as the

time variable, the COXMODEL stands out as the best-performing model

based on its median C-index. Although the COXMODEL shows a significant

drop in predictive accuracy over time, its overall performance, as indicated

by the median C-index, is superior to the RSFMODEL and CIF models.

Therefore, for applications requiring the prediction of early age fertility, the

COXMODEL is the optimal choice due to its relatively higher and more

consistent predictive accuracy over the observed time period.

4.6.2 RAAFB

Figure 4.10 presents a comparison of the Concordance Index (C-index) over

time for three models: the Cox Proportional Hazards model (COXMODEL),

the Random Survival Forest model (RSFMODEL), and the Conditional In-

ference Forest model (CIF). These models are evaluated for their ability to

predict early age fertility, using respondent age at first birth (RAAFB) as

the time variable. The COXMODEL starts with a C-index value of 94.7

at age 15, indicating strong predictive accuracy initially. This performance

decreases to 86.2 by age 20 and remains steady at this value up to age 40.

The RSFMODEL begins with a higher initial C-index of 95.6 at age 15,

decreases to 86.7 by age 20, and maintains this value consistently through

age 40. The CIF model starts at 95.3 at age 15, drops to 85.7 by age 20,

and stays at this value until age 35, with a slight decrease to 85.0 by age 40.

When comparing these models based on their median C-index values, we

observe that the RSFMODEL has the highest median C-index of 86.7, in-

dicating the best overall predictive performance. The COXMODEL follows
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Figure 4.10: Comparison ofConcordance Index RAAFB

closely with a median C-index of 86.2, and the CIF model has the low-

est median C-index of 85.7. Despite the initial high predictive accuracy of

all models, the RSFMODEL maintains the highest consistency over time,

making it the most reliable model for predicting early age fertility based on

respondent age at first birth.

Given the objective of predicting early age fertility using respondent age

at first birth as the time variable, the RSFMODEL stands out as the

best-performing model based on its median C-index. The consistent and

relatively higher predictive accuracy of the RSFMODEL compared to the

COXMODEL and CIF models makes it the optimal choice for applications

requiring accurate predictions in this domain.
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Chapter 5

Conclusion

This study was designed to explore the socio-demographic factors influencing

early age fertility among women in Pakistan and to compare the effective-

ness of three advanced survival analysis models—Cox Proportional Hazards

Model (CPH), Random Survival Forest (RSF), and Conditional Inference

Forest (CIF)—in predicting early age fertility outcomes based on the PDHS

dataset 2017-2018. The research has provided valuable insights into the fac-

tors associated with early age fertility and has evaluated the performance of

these models for prediction purposes.

Addressing the first research question, which aimed to identify socio-demographic

factors associated with an increased risk of early age fertility, the study found

that lower educational attainment, rural residence, and socio-economic sta-

tus significantly influence the likelihood of early age fertility. The CPH

model revealed that women with no education had a significantly higher

risk of early age fertility, with a hazard ratio of 2.5, indicating that they are

2.5 times more likely to experience early age fertility compared to those with

higher education. Additionally, women living in rural areas were found to be

at a 1.6 times higher risk of early age fertility than their urban counterparts,

and those from lower socio-economic backgrounds faced a 1.9 times greater

risk. These findings emphasize the importance of education, geographic

location, and socio-economic status as critical factors affecting early age

fertility.
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In response to the second research question, which sought to compare the

predictive performance of the CPH, RSF, and CIF models for early age

fertility, the study evaluated these models based on various performance

metrics, including prediction error, Integrated Brier Score (IBS), and C-

index. For the prediction of early age fertility based on Age at Marriage

(AAM), the CPH model emerged as the most effective model. It had the

lowest prediction error of 0.177, the lowest IBS score of 0.149, and a C-index

of 64.1, indicating that it provided the most accurate and reliable predictions

for AAM-related early age fertility outcomes.

When analyzing the Age at First Birth (RAAFB), however, the Conditional

Inference Forest (CIF) model demonstrated the best performance among

the models. The CIF model was selected based on its superior performance

metrics relative to the other models. Specifically, CIF exhibited the lowest

prediction error rate of 0.052 and the lowest IBS score of 0.047. These

metrics indicate that CIF had the best accuracy for predicting early age

fertility outcomes based on RAAFB. Although the RSF model had a higher

C-index of 86.3, which signifies its effectiveness in ranking the risk of early

age fertility, the CIF model’s lower error rate and IBS score make it the

preferred choice for precise predictions.

The decision to select CIF over RSF for RAAFB predictions is primarily

based on the importance of accurate prediction rather than just ranking

risks. The CIF model’s lower prediction error and IBS score demonstrate

that it provides more reliable and precise estimates of early age fertility

outcomes, which is crucial for effective policy development and intervention

design. While the C-index is an important measure of model performance,

it alone does not capture the full spectrum of prediction accuracy, as it only

reflects the model’s ability to rank risk rather than measure the precision

of the predictions themselves. Therefore, in this case, CIF’s overall perfor-

mance in terms of prediction accuracy made it the best choice for modeling

early age fertility based on RAAFB.

In conclusion, this study highlights that socio-demographic factors such as
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education, geographic location, and socio-economic status are significant de-

terminants of early age fertility among women in Pakistan. The comparative

analysis of survival models revealed that the CPH model is the most effective

for predicting early age fertility related to AAM due to its superior overall

predictive accuracy and reliability. For RAAFB, the CIF model proved to

be the best due to its lower prediction error rate and IBS score, emphasizing

the importance of these metrics over the C-index for achieving precise and

accurate predictions. This approach ensures that the chosen model aligns

with the specific objectives of predicting early age fertility outcomes and

provides a solid foundation for future research and policy recommendations

aimed at addressing early age fertility challenges.

5.1 Limitations

i. One limitation of this study is the reliance on cross-sectional data from

the Pakistan Demographic and Health Survey (PDHS), which may limit

the ability to establish causal relationships between socio-demographic

factors and early age fertility.

ii. Additionally, the study’s focus on socio-demographic factors may over-

look other important determinants of early age fertility, such as cultural

norms, access to reproductive healthcare services, and gender dynamics.

iii. Furthermore, the analysis was limited to specific survival analysis mod-

els, namely the Cox Proportional Hazard Model, Random Survival For-

est Model, and Conditional Inference Forest Model.

iv. Another limitation is the potential for measurement error and reporting

bias in the PDHS dataset, which could affect the validity of the results.

5.2 Future Recommendations

i. Future research could benefit from longitudinal studies that track indi-

viduals over time to better understand the temporal dynamics of fertility

decisions.
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ii. Future studies could incorporate qualitative methods to explore cultural

norms, access to reproductive healthcare services, and gender dynamics

in more depth.

iii. Other machine learning techniques and statistical approaches could be

explored to enhance predictive accuracy and uncover additional insights

into early age fertility.

iv. Future research could mitigate potential limitations by using multiple

data sources or conducting validation studies to ensure the accuracy of

the data.
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