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Abstract

This thesis explores the domain of fractional calculus, with a particular focus on generalized
fractional calculus and weighted fractional calculus with respect to functions.

The core research focuses on further exploring the existing theory of weighted fractional
calculus with respect to functions. This theory seeks to prove important results for fractional
differential equations of weighted Caputo fractional derivatives with respect to functions that
have not yet been explored. By investigating the fundamental principles of these operators,
we establish mean value theorems, Taylor’s theorems, and integration by parts formulas. Our
study extends to the Leibniz rule for weighted Riemann–Liouville derivatives with respect
to functions. Additionally, we establish the existence and uniqueness theorems for a class
of initial value problems involving weighted Caputo fractional derivatives with respect to
functions in the Sobolev space.
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Chapter 1

Introduction

Fractional calculus (FC) has grown to be a subject of considerable attention by scientists
over the last few decades due to its deep theoretical base and its continuously expanding
applicability [1, 2]. It generalizes classical calculus by introducing fractional order of differ-
integration, allowing for a more comprehensive understanding of complex systems exhibit-
ing non-integer order behaviour. FC is widely applicable in various fields such as pure and
applied sciences, engineering, and biology [3–7].

Unlike classical calculus, FC offers many different possible ways of defining operators of
non-integer order. Since its establishment in 1695, several definitions of fractional differin-
tegral operators have been developed. Detailed studies in this field can be found in the works
of well-known authors such as Samko et al. [8], Kiryakova [11], Diethelm [9], Podlubny
[10], Kilbas et al. [12], Hilfer [6], and Tarasov [13].

Over time, definitions of fractional operators have evolved significantly, leading to nu-
merous ways to generalize dn

dxn
f(x) for non-integer n, starting with two main types, the RL

and the CFD. The RL derivative, introduced in the early 19th century, is historically the first
and has a well-established mathematical foundation. However, it poses certain challenges
when applied to real-world problems. To address these challenges, the Caputo derivatives
was developed. Although it is related to the RL concept, it includes modifications which
make it more suitable for some applied problems. More recent studies have further ex-
panded the scope of fractional operators, including Hadamard, tempered, and weighted frac-
tional calculus (WFC), to name just a few [14–16]. A broad class of fractional operators in
this field is the class of FC with analytic kernels proposed by Fernandez et al. [17]. Recent
advancements in the field included the introduction of general fractional derivatives with So-
nine kernels by Luchko in 2021 [18], the development of operational calculus for general
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fractional derivatives of any order by Al-Kandari et al. [19] in 2022, the generalization of
FC with Sonine kernels through conjugation relations by Al-Refai and Fernandez [20] in
2023, and the study of operational calculus for general conjugated fractional derivatives by
Fernandez in the same year [21].

Furthermore, an important class usually called FC with respect to functions, represents
a broad and significant area within the field of FC. The concept was first introduced by Li-
ouville in 1835, who suggested fractional integration with respect to functions [22]. Later,
in 1865, Holmgren formally proposed the notion of fractional integrals in this context [23].
Gradually, the idea of this generalized class in FC gained significant attention in several
subsequent papers. Notably, Erdélyi made significant contributions in 1964 [24] and 1970
[25], followed by Talenti in 1965 [26]. In 1971, Chrysovergis examined some fundamental
properties of integral operators of this generalized class [27]. Subsequently, many renowned
researchers, such as Osler in 1970 [28, 29] and Samko et al. [8], further advanced the study
of this topic. Recent work by Fahad et al. [30] focuses on algebraic expressions of conju-
gation relations between the original classical operators and their corresponding generalized
versions, offering valuable perspectives for both theoretical and practical developments in
FC.

WFC with respect to functions, is another important class of FC. This concept was ini-
tially addressed by Agrawal in 2012 [31, 32]. In his work, he introduced a type of operator
called weighted (also reffered as scaled) FC with respect to functions. He also discussed
how these operators can be applied in probabilistic modeling and variational calculus [32].
Recent studies have thoroughly examined the theoretical properties and corresponding frac-
tional differential equations of these weighted fractional operators (WFO) [33–36].

Our work in this article focuses on WFC with respect to functions, extending the work
by Fernandez and Fahad [16], and providing a foundation for future research in the area of
WFC. Fahad and Fernandez examined conjugation relations, provided illustrative examples,
and investigated Laplace transforms and convolutions in the context of a general class of
WFC with respect to functions. This general class includes special cases such as Hadamard-
type and tempered operators with respect to functions, which have also been extensively
researched for their detailed properties [15, 37]. Motivated by the work of researchers such
as Diethelm [38], who studied the mean value theorem (MVT) for fractional operators, Ri-
cardo in 2017 [39], who examined the MVT and integration by parts formulae for CFD with
respect to functions, and Osler’s formulation of the Leibniz rule for RL fractional derivatives
with respect to functions in 1970 [28], our contribution in this paper lies in generalizing
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these concepts within the framework of WFC with respect to functions, which has not been
previously addressed in the literature. Furthermore, Trujillo et al. [40] derived the general-
ized Taylor’s formula in the setting of RL fractional operators, and Mali et al. [37] recently
discussed Taylor theorems for ψ–tempered fractional derivatives. Many researchers have
extensively investigated Taylor’s theorem, its generalizations, and their diverse applications
[41–43]. Drawing inspiration from these contributions, we explore the generalized Taylor’s
formulae tailored for WFO with respect to functions.

In recent years, significant research has been done into the initial value problems (IVPs)
of FDEs. Various fixed-point theorems have been utilized to derive interesting results related
to the existence, uniqueness, and stability of IVPs of Caputo FDEs with respect to functions
[37, 44, 45]. In contrast, our article focuses on establishing the existence and uniqueness
of the IVP for weighted Caputo FDEs with respect to functions within the framework of
Sobolev spaces. Inspired by the work of [45], our approach provides a distinct perspective in
determining the existence and uniqueness solutions for such IVPs of weighted Caputo FDE
without requiring the continuity of the function.

In this thesis, the content is organized as follows: Chapter 2 is related to the historical
background of FC, providing essential preliminaries. This chapter reviews key milestones
and contributions of mathematicians who have shaped the field. It also introduces essential
concepts, including function spaces and foundational principles that are essential for under-
standing the definitions of fractional operators. In the Chapter 3, the focus shifts to FC with
respect to functions along with their properties, offering a thorough understanding of the
operator.

Chapter 4, the main chapter of this thesis, is divided into several sections. Section 4.1
introduces weighted FC, detailing its unique properties. Section 4.2 provides detailed in-
formation about WFC with respect to functions. Section 4.3 presents the MVT for WFO
with respect to functions, including the MVT for generalized RL fractional operators using
conjugation relations. Section 4.4 includes Taylor’s theorem for weighted Caputo and RL
fractional derivatives with respect to functions. Section 4.5 establishes the integration by
parts formulae in the context of this operator. Section 4.6 covers the Leibniz rule formu-
lae for RL fractional derivatives with respect to functions, weighted calculus, and weighted
RL fractional derivatives with respect to functions using conjugation relations. Section 4.7
addresses the IVP of weighted Caputo FDEs with respect to functions, focusing on the ex-
istence and uniqueness within a Sobolev space framework. The final chapter provides a
summary of the main results and concluding statements.
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Chapter 2

Fractional calculus

This chapter focuses on the historical development of FC and provides detailed informa-
tion about special functions, such as the gamma, beta, and Mittag–Leffler (M–L) function,
along with their properties. Following this, we discuss the function spaces associated with
FC, which help us understand the behaviour of fractional operators. We then define these
operators and examine their key properties, such as linearity, the semigroup property, and
composition relations.

2.1 Historical development of fractional calculus

FC originated in correspondence between Leibniz and L’Hospital in 1695. In a letter from
1695, L’Hospital asked Leibniz about the meaning of a non-integer order derivative. Leibniz
responded, describing it as an apparent paradox that might yield valuable results someday.
This exchange sparked interest among many renowned mathematicians, including Lacroix,
Laplace, Euler, Fourier, Abel, Riemann, and Liouville, all of whom contributed to the devel-
opment of FC [46]

In 1819, Lacroix developed the formula for the nth order derivatives. He started with the
function u(x) = xk where k is a positive integer, and derived the kth derivative [46].

Dnu(x) =
k!xk−n

(k − n)!
, n ≤ k,

Dnu(x) =
Γ(k + 1)xk−n

Γ(k − n+ 1)
.
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where, D = d
dx

. Since the above expression can be defined for non-integer numbers by
replacing integers k and m by σ and ς respectively.

Dσu(x) =
Γ(ς + 1)xς−σ

Γ(ς − σ + 1)
.

By setting n = 1 and σ = 1
2
, Lacroix obtained

D
1
2x =

Γ(2)

Γ
(

3
2

)x1/2 = 2

√
x

π
.

In 1823, Abel used FC to solve the tautochrone problem, demonstrating the practical utility
of these concepts. Later, Liouville made significant advances by defining fractional deriva-
tives for exponential and power functions, as shown in his two formulas [46].

Dσeax = aσeax,

Dσx−a =
(−1)σΓ(a+ σ)

Γ(a)xa+σ
.

The RL fractional integral, developed in the late 19th century, provided a unifying defi-
nition that encompassed earlier work by Lacroix and Liouville. This definition remains one
of the most widely used in FC today.

Throughout the 19th and 20th centuries, FC expanded rapidly, with contributions from
mathematicians such as Grunwald, Letnikov, and Riesz. For detailed history and additional
references, see [8, 46, 47].

Although FC was just recently formalized as a mathematical field, its foundational ideas
date back thousands of years. FC concepts are somewhat similar to Archimedes’ work on
the geometric methods he used to calculate areas and volumes. Significant progress was
achieved in the study of non-integer derivatives in the seventeenth century. Fractional order
derivatives were studied by the Swiss mathematician Johann Bernoulli, mainly in relation to
infinite series and differential equations [47].

Gottfried Wilhelm Leibniz, a German mathematician, and philosopher best recognized
for his contributions to the invention of calculus, attempted in the beginning to expand the
calculus framework to encompass non-integer orders. The concept of "transcendental calcu-
lus" proposed by Leibniz suggested that fractional derivatives may be handled, although his
work was still mostly theoretical [48].
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In the mid-19th century, mathematicians such as Joseph Liouville and Bernhard Riemann
played significant roles in formalizing FC. Riemann introduced the RL fractional integral
operator, which provided a rigorous foundation for fractional integration. Building on Rie-
mann’s work, Liouville defined fractional derivatives, laying the groundwork for the field
now known as FC [47].

The late 20th century saw a rise in interest in FC due to developments in mathematical
analysis and its applications in various scientific fields. Scientists realized how useful FC
is for simulating intricate phenomena with memory, non-locality, and aberrant behaviour
[49]. Applications for FC have emerged in several disciplines in recent decades, including
signal processing, physics, engineering, biology, and finance [3, 5–7]. Theoretical advances,
computational methods, and real-world applications of FC in complicated problem-solving
are still being investigated in ongoing research [49].

2.1.1 Distinction from integer-order calculus

FC distinguishes itself from classical integer-order calculus by extending the concepts of
differintegration to fractional order. While integer-order calculus deals with derivatives and
integrals of integer orders FC generalizes these operations to include arbitrary fractional
orders. This extension allows FC to capture complex phenomena that exhibit non-local be-
haviour, which is not adequately described by classical calculus. In integer-order calculus,
derivatives represent rates of change or slopes of functions, while integrals correspond to
accumulation or area under the curves. In contrast, fractional differintegrals introduce non-
local effects, where the value of a function at a certain point depends not only on its local
behavior but also on its history over a specific interval. This distinction enables FC to pro-
vide more accurate models for systems with long-range interactions, anomalous diffusion,
and fractional dynamics, making it a valuable tool in various scientific and engineering ap-
plications.

2.2 Special functions

Certain mathematical functions are assigned unique notations and names because of their
significant roles in mathematical analysis, physics, and other fields. In this context, we will
discuss some special functions relevant to our work, such as the gamma, beta function, error,
and M–L Function.
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2.2.1 Gamma function

Swiss mathematician Leonhard Euler developed the gamma function in the 18th century to
extend the concept of factorials to include non-integers. This mathematical extension allows
for the calculation of factorials for any positive real number, rather than just whole numbers.

The factorial function extended to complex numbers is denoted by the Gamma function,
denoted by Γ(ζ) and defined by [9]

Γ(ζ) =

∫ ∞
0

sζ−1e−s ds ζ > 0, (2.1)

where Re(ζ) denotes the real part of ζ , which is called Euler’s integral of the second kind
and Euler’s Gamma function. The Gamma function has several important properties and
applications in various fields of mathematics, including complex analysis, number theory,
and probability theory.

2.2.1.1 Properties of gamma function

The following are some of the properties of gamma function [9]

(i) If ζ > 0 then, Γ(ζ + 1) = ζΓ(ζ), known as functional equation for gamma function.

Proof. Putting ζ = ζ + 1 in the definition of Gamma function (2.1), we have

Γ(ζ + 1) =

∫ ∞
0

sζe−s ds. (2.2)

Integrating by parts, we get

Γ(ζ + 1) = −sζe−s
∣∣∣∣s=∞
s=0

+

∫ ∞
0

ζsζ−1e−x dx. (2.3)

The first term on the right side of (2.3) now goes to 0 in the case where ζ > 0. The
required result was obtained by applying the definition of gamma function. However,
the first term on the right side of (2.3) is undefined in the case where ζ < 0. Therefore,
the integral formula doesn’t work for a negative ζ . To evaluate the gamma function for
ζ < 0 aside from the non-positive integers, we thus use the mathematical analytical
approach known as analytic continuation.
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(ii) The function Γ(ζ) can be extended analytically to be meromorphic across the entire
complex plane, exhibiting simple poles at the non-positive integers. The residues at
these poles are given by (Γ,−n) = (−1)n

n!
.

(iii) For positive integers ζ , the gamma function satisfies Γ(ζ) = (ζ − 1)!.

Proof. The proof uses the mathematical induction technique. First, in the base case
when ζ = 1, we get that Γ(1) = 0! = 1, as it satisfied by property (i). Before moving
on to the induction stage, we make use of the property (i) as well as the assumption
that comes from the induction process.

Γ(ζ + 1) = ζΓ(ζ) = ζ(ζ − 1)! = ζ!.

The desired outcome is reached by following this process.

(iv) Γ(1) = 1.

Proof. This property is straightforward. By substituting ζ = 1 into the property (iii),
we directly obtain this result.

(v) Γ(ζ) = lim
n→∞

n!nζ

ζ(ζ+1)(ζ+2)···(ζ+n)
, which is called Guass’s product formula.

2.2.1.2 Extension domain of gamma function

The Gamma function can be extended to a larger domain using the following property:

ζΓ(ζ) = Γ(ζ + 1)

Γ(ζ) =
Γ(ζ + 1)

ζ
. (2.4)

This allows us to define the Gamma function for ζ ∈ C \ {0,−1,−2, . . .}, where it has
simple poles. Furthermore, by recursively applying Equation (2.4), we obtain

Γ(ζ) =
Γ(ζ + n)

ζ(ζ + 1)(ζ + 2) · · · (ζ + n− 1)
for ζ ∈ C \ {0,−1,−2, . . . }, (2.5)

where n is a positive integer. Thus the gamma function is extended for all real numbers
except ζ = 0,−1,−2, . . .

8



2.2.2 Beta function

The beta function, denoted as B(ζ, η), is a special function in mathematics that is closely
associated with the gamma function. It was first studied by Leonhard Euler, a Swiss mathe-
matician, and Adrien–Marie Legendre, a French mathematician. The beta function as defined
[9], involves the integrating the product of two power functions over the interval [0, 1] as∫ 1

0

xζ−1(1− x)η−1dx =
Γ(ζ)Γ(η)

Γ(ζ + η)
,

where ζ, η ∈ R+. The relation between beta and gamma function can be written as

B(ζ, η) =
Γ(ζ)Γ(η)

Γ(ζ + η)
.

The integral in the first equation is known as Euler’s integral of the first kind or Euler’s Beta
function B(ζ, η).

2.2.3 Mittag–Leffler function

Extensive research has focused on the M-L function, which is named after the Swedish math-
ematician Gosta Magnus Mittag-Leffler, and has been generalized in various ways. Wiman
[50] was the first to introduce a generalization of this function, and it was later rediscovered
and thoroughly analyzed by Humbert and Agarwal in 1953 [51].

Dzherbashian [52] introduced integral representations for the two-parametric M–L func-
tion and established formulas for its asymptotic behaviour at infinity. These formulas were
then employed to develop Fourier-type integrals and establish theorems regarding the point-
wise convergence of these integrals. The details of the M–L function can be found in [52]
and the references included there.

One parameter Mittag–Leffler function. It is a special function, known as the one–
parameter M–L function, which is defined by the series

Eζ(s) =
∞∑
=0

s

Γ(ζ+ 1)
, (2.6)

where ζ > 0, z ∈ C

9



Gosta Mittag–Leffler’s work on this function has led to various generalizations and
applications, particularly in the fields of mathematical analysis, integral equations, and FC.

The M–L function satisfies specific relations for special cases [52], as outlined below:

E1(±s) =
∞∑
=0

(±1)
s

Γ(+ 1)
= e±s,

E2(−s2) =
∞∑
=0

(−1)
s2

Γ(2j + 1)
= cos(s),

E2(s2) =
∞∑
=0

s2j

Γ(2+ 1)
= cosh(s),

E 1
2
(±s1/2) =

∞∑
=0

(±1)
s/2

Γ(1
2
+ 1)

= es
√
π(1± erf(±s1/2)) = eserfc(∓s1/2).

In this context, the symbols erf(s) reffered as error function and erfc(s) stand for the
complementary error function.

Two parameter Mittag–Leffler function The two-parameter M–L function is a generaliza-
tion of the classical M–L function 2.6, defined as

Eζ,η(s) =
∞∑
=0

s

Γ(ζ+ η)
(ζ > 0, η ∈ C). (2.7)

And, 2.6 is a special case of 2.7, where η = 1, denoted as Eζ,1(s) = Eζ(s).

2.3 Function spaces

Certain function spaces are introduced here, which will be utilized in the sequal.

Definition 2.3.1. [8] Let ξ = [c, d], and r ≥ 1. The Lebesgue space denoted by Lr, is the set
of all measurable function z, such that, {z : ‖z‖r <∞}, where

‖z‖Lr(ξ) =

(∫ d

c

|z(τ)|r dτ

) 1
r

,

If r =∞ then, we have
‖z‖L∞(ξ) = esssup

τ∈ξ
|z(τ)|

where esssup is the essential supremum of a function z.
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Definition 2.3.2. The set of functions represented by ACn[c, d] contains functions which
posses derivatives up to order (n− 1)th on the interval [a, b] and are absolutely continuous.
This means that for a function u, there is a corresponding function z in L1[c, d] such that the
following holds

u(n−1)(x) = u(n−1)(c) +

∫ x

c

z(τ) dτ,

where, z = u(n).

Russian mathematician Sergei Lvovich Sobolev defined the Sobolev spaces, denoted by
Wm,r(c, d), in the 1930s. These spaces consist of functions whose generalized derivatives
up to the mth order belong to the Lr(c, d) space and whose partial derivatives satisfy specific
integrability conditions.

Definition 2.3.3. [65–67] Let 1 ≤ r ≤ ∞, m be an arbitrary non-negative integer and (c, d)

be an open set in Rn . Then, we have the following definition of Sobolev space

Wm,r(c, d) =
{

z ∈ Lr(c, d) : Dσz ∈ Lr(c, d), 0 ≤ |σ| ≤ m
}
.

2.4 Fundamentals of fractional calculus

This section will discuss the fundamentals of FC, including the definition of fractional oper-
ators and their properties.

2.4.1 RL fractional integrals and differential operators

The RL fractional integral operators extend the classical Riemann integrals to the case of
non-integer order. It is defined on the space of Lebesgue integrable functions L1[c, d].

Definition 2.4.1. [8, 9] If σ > 0, c ≤ x ≤ d, and u ∈ L1[c, d]. Then, then left and right RL
fractional integral operators are defined as

RL
c+ Iσxu(x) =

1

Γ(σ)

∫ x

c

u(s)(x− s)σ−1 ds, x > c,

RL
x Iσd−u(x) =

1

Γ(σ)

∫ d

x

u(s)(s− x)σ−1 ds, x < d,

respectively. When the order σ of the integral operator is set to zero, then it corresponds to
the identity operator as RLc+ I0

x = RL
x I0

d− = I .
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These operators extend the concept of integration to fractional orders, providing a power-
ful tool for various applications in mathematical analysis and applied fields. Next, we define
RL fractional differential operators, which extend integer-order differentiation to noninteger
(fractional) orders in FC.

Definition 2.4.2. [8, 9] The left and right RL fractional differential operators of order σ > 0

of a function u ∈ ACn[c, d], can be expressed as

RL
c+ Dσxu(x) =

1

Γ(n− σ)
(D)n

∫ x

c

u(s)

(x− s)σ−n+1
ds,

RL
x Dσd−u(x) =

1

Γ(n− σ)
(−D)n

∫ d

x

u(s)

(s− x)σ−n+1
ds,

respectively, where Dn = d
dx

and n = bσc+ 1.

Notice that the RL fractional derivatives defined in Definition 2.4.2 can be seen as an
analytic continuation of the RL fractional integrals outlined in Definition 2.4.1. This means
that the RL fractional derivatives in Definition 2.4.2 can be considered an extension of the
RL fractional integrals in Definition 2.4.1 through analytic continuation as follows

RL
c+ Dσxu(x) = RL

c+ I−σx u(x), σ > 0, x > c, (2.8)
RL
x Dσd−u(x) = RL

x I−σd− u(x), σ > 0, x < d. (2.9)

Using analytic continuation principles, we can extend the findings from fractional integrals
to include fractional derivatives.

Example 2.4.1. [8, 9] If κµ and γµ be power functions, where κ = (x − c), γ = (d − x),
α > −1 and σ > 0. Then, we have the following power rule formulae

RL
c+ Iσxκµ =

Γ(1 + µ)

Γ(1 + µ+ σ)
κσ+µ, (2.10)

RL
x Iσd−γµ =

Γ(1 + µ)

Γ(1 + µ+ σ)
γσ+µ.

Proof. Using the definition of RL integrals, we obtain

RL
c+ Iσxκµ =

1

Γ(σ)

∫ x

c

κµ

(x− s)1−σ ds,

12



substitute s = c + t(κ) =⇒ ds = dt(κ), where t → 1 as s → x and t → 0 as s → c, then
we have

RL
c+ Iσxκµ =

1

Γ(σ)

∫ 1

0

(tκ)µ(κ)

((κ)(1− t))1−σ dt

=
1

Γ(σ)

∫ 1

0

κσ+µtµ

(1− t)1−σ dt

=
κσ+µ

Γ(σ)

∫ 1

0

tµ

(1− t)1−σ dt.

By the definition of the beta function, we obtain

=
κσ+µ

Γ(σ)
B(µ+ 1, σ) =

Γ(µ+ 1)κσ+µ

Γ(µ+ σ + 1)
.

Similarly, we can do this for the second identity and by using the fact analytic continuation,
we can obtain the result for the derivatives of RL as follows

RL
c+ Dσxκµ =

Γ(µ+ 1)

Γ(µ− σ + 1)
κµ−σ, σ > 0, µ > −1.

Using the power rule, we can easily evaluate the integral and differentials of constant
functions and other simple power functions.

Example 2.4.2. Consider σ=3
2

and µ = 0 in Example. (2.4.1), we get

RL
c+ I

3
2
x x

0 =
1

Γ(3
2

+ 1)
x

3
2 =

x
3
2

Γ(5
2
)

=
4

3
√
π
x

3
2 .

Theorem 2.4.3. [8] If u ∈ Lr(c, d), v ∈ Lq(c, d), 1
r

+ 1
q
≤ 1 + σ with r 6= 1, q 6= 1 in case

of 1
r

+ 1
q

= σ + 1. Then the following formulae holds∫ d

c

u(x)RLc+ Iσx (v) dx =

∫ d

c

v(x)RLx Iσd−(u) dx,∫ d

c

u(x)RLc+ Dσx(v) dx =

∫ d

c

v(x)RLx Dσd−(u) dx. (2.11)

To ensure that functions u, v satisfies (2.11), a simple sufficient condition is that both func-
tions are the elements of spaceC[c, d]. Furthermore it required that the fractional derivatives
RL
c+ Dσx and RL

x Dσd− exists for every x ∈ [c, d].

13



2.4.2 Properties of fractional integrals and derivatives

This subsection discusses some fundamental properties of fractional differintegrals, includ-
ing semigroup properties and composition relations.

Lemma 2.4.4. [8, 9, 12] If σ1, σ2 > 0 and u ∈ Lr[c, d]. Then, the following properties hold
almost everywhere on x ∈ [c, d]

RL
c+ Iσ1x RL

c+ Iσ2x u(x) = RL
c+ Iσ1+σ2

x u(x),

RL
x I

σ1
d−

RL
x I

σ2
d−u(x) = RL

x I
σ1+σ2
d− u(x).

Additionally, if u ∈ C[c, d], then the properties hold to the entire interval [c, d].

Theorem 2.4.5. [8, 9, 12] Assume that two functions u1 and u2 on interval [c, d], with RL
fractional integrals and derivatives existing almost everywhere, and constant ζ1, ζ2 ∈ R.
Then RL

c+ Iσx (ζ1u1 + ζ2u2), RLx Dσd−(ζ1u1 + ζ2u2) exists and

RL
c+ Iσx (ζ1u1 + ζ2u2) = ζ1

RL
c+ Iσxu1 + ζ2

RL
c+ Dσxu2,

RL
c+ Dσx(ζ1u1 + ζ2u2) = ζ1

RL
c+ Dσxu1 + ζ2

RL
c+ Dσxu2,

which shows the linearity of fractional operators.

The next results describe the compositions of RL fractional integral operators with the
RL fractional differential operators. The RL fractional derivatives are the left inverse of RL
fractional integrals, but the converse is not true.

Lemma 2.4.6. [8, 9, 12] If σ > 0, then for the function u ∈ Lr[c, d], the following relation
holds

RL
c+ Dσx RL

c+ Iσxu(x) = u(x),

RL
x Dσd− RL

x Iσd−u(x) = u(x),

almost everywhere on [c, d].

Lemma 2.4.7. [12] If σ1 > σ2 > 0, then for 1 ≤ r < ∞ the function u(x) ∈ Lr[c, d], the
following relations hold

RL
c+ Dσ1x RL

c+ Iσ2x u(x) = RL
c+ Iσ2−σ1x u(x),

RL
x D

σ1
d−

RL
x I

σ2
d−u(x) = RL

x I
σ2−σ1
d− u(x).

14



almost everywhere on [c, d]. Additionally, if σ1 = n ∈ N, where D = d
dx

, σ2 > n, then the
following relations holds

Dn RL
c+ Iσ2x u(x) = RL

c+ Iσ2−nx u(x),

Dn RL
x I

σ2
d−u(x) = (−1)nRLx I

σ2−n
d− u(x).

Lemma 2.4.8. [12] Assume that σ > 0, n ∈ N, and the fractional derivatives RLc+ Dσx , RLx Dσd− ,
RL
c+ Dn+σ

x and RL
x Dn+σ

d− exists. Then

Dn RL
c+ Dσxu(x) = RL

c+ Dσ−nx u(x),

Dn RL
x Dσd−u(x) = (−1)nRLx Dσ−nd− u(x).

Proposition 2.4.9. [8, 9, 12] If u ∈ ACn[c, d], where n = bσc+ 1. The following composi-
tion relation holds true for order σ > 0

RL
c+ Iσx RL

c+ Dσxu(x) = u(x)−
n−1∑
=0

(x− c)σ−

Γ(σ − + 1)
· lim
x→c+

Dσ−u(x),

RL
x Iσd− RL

x Dσd−u(x) = u(x)−
n−1∑
=0

(d− − x)σ−

Γ(σ − + 1)
· lim
x→d−

Dσ−u(x),

for 0 < σ < 1,

RL
c+ Iσx RL

c+ Dσxu(x) = u(x)− (x− c)σ−1

Γ(σ + 1)
lim
x→c+

Dσ−1u(x),

RL
x Iσd− RL

x Dσd−u(x) = u(x)− (d− − x)σ−1

Γ(σ + 1)
lim
x→d−

Dσ−1u(x).

2.4.3 Caputo fractional derivatives and their properties

The CFD was studied by Michele Caputo in 1967, while investigatingn a solution to bound-
ary value problems in viscoelasticity theory [74]. It has a primary advantage in that its initial
and boundary conditions are similar to those of integer-order differential equations, mak-
ing for easier interpretation. It is widely used for solving fractional differential equations in
practical applications due to its ability to simplify the modelling process.
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Definition 2.4.10. [9] The left and right CFD of order σ > 0 of a function u ∈ ACn, can be
defined as

C
c+Dσxu(x) =

1

Γ(n− σ)

∫ x

c

Dnu(s)

(x− s)σ−n+1
ds, x > c,

C
xDσd−u(x) =

(−1)n

Γ(n− σ)

∫ d

x

Dnu(s)

(s− x)σ−n+1
ds, x < d,

where n = bσc+ 1, and D = dn

dxn
.

Example 2.4.3. [9] If κµ is the power function, where κ = x − c+. Then, for µ ≥ 0,
n = bσc+ 1, we have the following power rule

C
c+Dσx(κ)µ =

0, if µ ∈ {0, 1, 2, . . . , n− 1} ,
Γ(µ+1)

Γ(µ−σ+1)
(κ)µ−σ , if µ ∈ N and µ ≥ n or µ /∈ N and µ > n− 1.

By the Definition 2.4.10, it is clear that Dn(κ(x))µ = 0, if α = 0, 1, 2, . . . , n − 1. Thus
C
c+Dσx = 0. Similarly, when µ ∈ N and µ ≥ n or µ /∈ N and µ > n− 1, we have

Dn(κ(x))µ =
Γ(µ+ 1)

Γ(µ− n+ 1)
(κ)µ−n. (2.12)

Substituiting (2.12) in Definition 2.4.10, we get

C
c+Dσx(κ)µ =

Γ(µ+ 1)

Γ(µ− n+ 1)

(
1

Γ(n− σ)

∫ x

c

(κ)α−n

(x− s)µ−n+1
ds

)
=

Γ(µ+ 1)

Γ(µ− n+ 1)
RL
c+ In−σx (κ)µ−n =

Γ(µ+ 1)

Γ(µ− σ + 1)
(κ)µ−σ, by (2.10).

Next, we will present some basic properties of CFD and the composition relation of RL
integrals and Caputo derivatives.

The CFD is also a left inverse of the RL integral but not the right inverse of the RL
integral.

Lemma 2.4.11. [9, 12] If σ > 0 and function u is continuous. Then, we have

C
c+DσxRLc+ Iσxu(x) = u(x),

C
xDσd−RLx Iσd−u(x) = u(x).
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Proposition 2.4.12. [9, 12] Assume that σ ≥ 0 and function u ∈ ACn[c, d], where n =

bσc+ 1. Then

RL
c+ Iσx Cc+Dσxu(x) = u(x)−

n−1∑
=0

Du(c)

!
(x− c),

RL
x Iσd−CxDσd−u(x) = u(x)−

n−1∑
=0

(−1)nDu(d−)

!
(d− − x).

Additionally, for 0 < α < 1, u ∈ AC[c, d] or u ∈ C[c, d], then

RL
c+ Iσx Cc+Dσxu(x) = u(x)− u(c),

RL
x Iσd CxDσd−u(x) = u(x)− u(d).
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Chapter 3

Fractional calculus with respect to
functions

The concept of FC extends the ideas of differintegration to non-integer orders. Several types
of FC operators have been proposed and can be categorized into general classes. FC with
respect to functions, is a significant and important area within the field of FC. The concept
was first introduced by Liouville in 1835, who suggested fractional integration with respect
to functions [22]. Later, in 1865, Holmgren formally proposed the notion of fractional in-
tegrals in this context [23]. Gradually, the idea of operators of FC with respect to functions
gained attention in several subsequent papers. Notably, Erdélyi made significant contribu-
tions in 1964 [24] and 1970 [25], followed by Talenti in 1965 [26]. In 1971, Chrysovergis
examined some fundamental properties of integral fractional operators with respect to func-
tions [27]. Subsequently, many renowned researchers, such as Osler in 1970 [28, 29] and
Samko et al. [8], further advanced the study of this topic.

In 2017 [39], Almeida defined CFD with respect to functions, explored their properties,
and presented various miscellaneous results. Later on, Sousa et al. presented the ψ–Hilfer
fractional derivatives, which combines the ψ–RL and Caputo derivatives. Almeida et al.
[55] in 2018, considered equations with ψ–CFD and their applications. In 2019, Almeida
[58] described additional properties of fractional integrals and derivatives and conducted
a numerical study with ψ–CFD, describing fractional relaxation oscillation. Almeida and
Malinowska in 2021 [59] studied systems of equations with ψ-CFD.

In recent studies, Fahad et al. [30] have contributed to the field by studying this class
of fractional operators. They focus on algebraic expressions of conjugation relations (which
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were first mentioned by Samko et al. [8] and in the book by Kilbas et al. [12]) between the
original classical operators and their corresponding generalized versions, offering valuable
perspectives for both theoretical and practical developments in FC.

This chapter focuses on a generalized class of FC known as ϕ–FC. We aim to establish
a base by introducing spaces and key definitions that will be utilized and interconnected
throughout the chapter. We recall the generalizations of L space, denoted by Lrϕ(c, d), which
have been discussed in the literature. Here, we simply start this chapter with the definition
of spaces without an explanation of its properties or application. Throughout this chapter,
the following notations will be adopted: RLc+ Iσϕ and RL

ϕ Iσd− denote the left and right fractional
integrals with respect to functions, respectively. Similarly, RLc+ Dσϕ, RLϕ Dσd− , Cc+Dσϕ, and C

ϕDσd−
denote the left and right RL and CFD with respect to functions, respectively.

3.1 Function spaces

First, we mention the definitions of Lrϕ(c, d) space (r-integrable functions with respect to a
function ϕ) and ACn

ϕ .

Definition 3.1.1. [62] The Lrϕ(c, d) space is a collection of functions defined on [c, d] that

are integrable with respect to the function ϕ that is Lrϕ(c, d) =
{

z : ‖z‖Lrϕ <∞
}

, where
1 ≤ r <∞, where

‖z‖Lrϕ =

(∫ d

c

|z(s)|rϕ′(s) ds

) 1
r

,

and

‖z‖∞ϕ = esssup
c≤x≤d

|u(s)|.

Definition 3.1.2. The space ACn
ϕ [c, d] is defined as

ACn
ϕ [c, d] =

{
z : [c, d]→ R :

(
1

ϕ′(s)

d

ds

)n
z(s) ∈ AC[c, d]

}
.

Note that, Lrϕ(c, d) = Lr(c, d), ifϕ′ is bounded on [c, d]. Moreover, by making the change
of variable in the definition ofϕ–RL integral asϕ(s) = ξ, we establish a relationship between
these spaces. Specifically, a function u belongs to Lrϕ(c, d) if and only if the composition
u ◦ ϕ−1 belongs to Lrϕ(c), ϕ(d)).
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Lemma 3.1.3. [62] For any u ∈ Lrϕ(c, d), r ∈ [1,∞), we have

RL
c+ Iσϕu(x) = (RLIσϕ(c+)u ◦ ϕ−1) ◦ ϕ(x).

Proof. We start with the definition of RLc+ Iσϕu(x)

Iσϕu(x) =
1

Γ(σ)

∫ x

c

ϕ′(s)(ϕ(x)− ϕ(s))σ−1u(s) ds.

By making the change of variable ϕ(s) = ξ, the integral transforms. Specifically, we
substitute s with ϕ−1(ξ), and the differential ds changes accordingly. Let ξ = ϕ(s), then
dξ = ϕ′(s) ds. As, s = c =⇒ ξ = ϕ(c+), s = x =⇒ ξ = ϕ(x). Thus, the integral
becomes

RL
c+ Iσϕu(x) =

1

Γ(σ)

∫ ϕ(x)

ϕ(c+)

(ϕ(x)− ξ)σ−1u(ϕ−1(ξ)) dξ.

This integral now looks like the definition of the original RL fractional integral Iσϕ(c+) but
applied to the function u ◦ ϕ−1:

RL
c+ Iσϕu(x) =

(
RL
ϕ(c+)Iσ(u ◦ ϕ−1)

)
(ϕ(x)).

This means that the fractional integral RL
c+ Iσϕ , can be expressed as the standard fractional

integral RLϕ(c+)Iσϕ of the function u ◦ ϕ−1, evaluated at ϕ(x). Therefore

RL
c+ Iσϕu(x) =

(
RL
ϕ(c+)Iσ(u ◦ ϕ−1)

)
(ϕ(x)).

This completes the proof by showing that the ϕ–fractional integral is equivalent to the origi-
nal integral of a transformed function.

Theorem 3.1.4. [62] If 0 < σ < 1 and 1 ≤ r <∞, then the following statements are valid

(i) The operators RLc+ Iσϕ , RLϕ Iσd− are continuous from Lrϕ[c, d] to Lqϕ[c, d] for every 1 ≤ q <
r

1−σr , if 1 ≤ r < 1
σ

.

(ii) The fractional operators RL
c+ Iσϕ , RL

ϕ Iσd− are continuous from Lrϕ[c, d] to Lqϕ[c, d] for
every 1 ≤ q <∞, if σ = 1

r
.

(ii) The fractional operators RL
c+ Iσϕ , RLϕ Iσd− are continuous from Lrϕ[c, d] to C[c, d], if 1

r
<

σ < 1. Additionally, the operators RL
c+ Iσϕ , RL

ϕ Iσd− are continuous from Lrϕ[c, d] to
Lqϕ[c, d] for every r ≤ q ≤ ∞.
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3.2 Fractional operators with respect to functions

In this section, we mention the key definitions with suitable function spaces.

Definition 3.2.1. [30] Let u be an integrable function and ϕ ∈ C[c, d], with ϕ be an increas-
ing positive montone function on the interval [c, d], such that, for all x ∈ [c, d] ϕ 6= 0. Then
the operators RLc+ Iσϕu(x) and RL

ϕ Iσd−u(x), of order σ > 0, are defined as

RL
c+ Iσϕu(x) =

1

Γ(σ)

∫ x

c

u(s)ϕ′(s)

(ϕ(x)− ϕ(s))1−σ ds, x > c,

RL
ϕ Iσd−u(x) =

1

Γ(σ)

∫ d

x

u(s)ϕ′(s)

(ϕ(s)− ϕ(x))1−σ ds, x < d,

respectively.

Definition 3.2.2. [30] If σ > 0 and ϕ ∈ Cn[c, d]. Then the operators RL
c+ Dσϕu(x) and

RL
c+ Dσϕu(x) can be define as

RL
c+ Dσϕu(x) = Dnϕ

(
RL
c+ In−σϕ u(x)

)
, x > c,

RL
ϕ Dσd−u(x) = (−1)nDnϕ

(
RL
ϕ In−σd− u(x)

)
, x < d,

where Dϕ = 1
ϕ′(x)

d
dx

.

Also, the ϕ–RL derivatives in Definition 3.2.2 is the analytic continuation of the ϕ–RL
integrals 3.2.1. Therefore, we can efine both RL

c+ Iσϕ and RL
c+ Dσϕ for all values of σ > 0, as

previously menioned.

Definition 3.2.3. [30, 39] Let σ > 0, −∞ ≤ c < d ≤ ∞, u, ϕ be two functions in
space Cn[c, d], where ϕ be an increasing positive monotone function in interval [c, d] and
ϕ′(x) 6= 0, n = bσc+ 1. Then the operators Cc+Dσϕ and C

c+Dσϕ of order σ can be defined as

C
c+Dσϕu(x) = C

c+In−σϕ

(
Dnϕu(x)

)
, x > c,

C
ϕDσd−u(x) = (−1)nCϕIn−σd−

(
Dnϕu(x)

)
, x < d.

where Dϕ = 1
ϕ′(x)

d
dx
.

When ϕ(x) = x in the above definitions, they coincides with the original RL operators
as defined in Definition 2.4.1, 2.4.2 and 2.4.10. These generalized fractional operators can
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be expressed as the conjugation of the original fractional operators with the operation of
composition with the function ϕ. This is obtained using the functional operator Qϕ, defined
as

Qϕu(x) = u(ϕ(x)).

Proposition 3.2.4. [8, 12, 30] The operators in 3.2.1, 3.2.2, and 3.2.3 can be expressed as
the conjugation of the original RL fractional operators

RL
c+ Iσϕ = Qϕ ◦ RLϕ(c+)Iσx ◦ Q−1

ϕ , RL
ϕ Iσd− = Qϕ ◦ RLx Iσϕ(d−) ◦ Q−1

ϕ , (3.1)
RL
c+ Dσϕ = Qϕ ◦ RLϕ(c+)Dσx ◦ Q−1

ϕ
RL
ϕ Dσd− = Qϕ ◦ RLx Dσϕ(d−) ◦ Q−1

ϕ , (3.2)
C
c+Dσϕ = Qϕ ◦ Cϕ(c+)Dσx ◦ Q−1

ϕ
C
ϕDσd− = Qϕ ◦ CxDσϕ(d−) ◦ Q−1

ϕ . (3.3)

Many properties of generalized fractional operators can be difficult to establish directly.
However, the concept of conjugation relations, introduced in works like Kilbas et al. [12]
and samko et al.[8], offers a powerful tool. These relations connect a generalized operator
to well studied classical operators, such as the RL and Caputo operators. This connection
allows us to efficiently prove properties in the generalized setting by utilizing the existing
knowledge from the classical framework.

Example 3.2.1. [8, 12] Assume that the power functions are given by κα and ρα, where
κ = ϕ(x)− ϕ(c), ρ = ϕ(d)− ϕ(x). Then for σ > 0 and α > −1, the power rules for ϕ–RL
fractional operators can be expressed as

RL
c+ Iσϕκα =

Γ(1 + α)

Γ(α + σ + 1)
κσ+α,

RL
ϕ Iσd−ρα =

Γ(1 + α)

Γ(α + σ + 1)
ρσ+α,

RL
c+ Dσϕκα =

Γ(1 + α)

Γ(α− σ + 1)
κα−σ,

RL
ϕ Dσd−ρα =

Γ(1 + α)

Γ(α− σ + 1)
ρα−σ.
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We can easily verify this power rule by using conjugation relations as

RL
c+ Iσϕκα = Qϕ ◦ RLϕ(c+)Iσx ◦ Q−1

ϕ κα

= Qϕ ◦
[
RL
ϕ(c+)Iσx (x− ϕ(c))α

]
= Qϕ ◦

[
Γ(α + 1)

Γ(α + σ + 1)
(x− ϕ(c))α+σ

]
=

Γ(α + 1)

Γ(α + σ + 1)
κα+σ.

Similarly, the other three relations, the right ϕ–RL integrals power rule, and the left and
right ϕ–RL derivatives power rule can be derived using analogous methods. By applying the
original results and the conjugation relations, we can find or show the remaining relations.

Example 3.2.2. Consider the power functions κα and ρα, where κ = ϕ(x) − ϕ(c), ρ(x) =

ϕ(d)− ϕ(x) and α ≥ 0. Then for σ > 0, we have

C
c+Dσϕκα =

0, if α ∈ {0, 1, 2, . . . , n− 1} ,
Γ(α+1)

Γ(α−σ+1)
κα−σ, if α ∈ N and α /∈ N or α ≥ n and α > n− 1,

C
ϕDσd−ρα =

0, if α ∈ {0, 1, 2, . . . , n− 1} ,
Γ(α+1)

Γ(α−σ+1)
ρα−σ, if α ∈ N and α /∈ N or α ≥ n and α > n− 1.

We have already proved the left ϕ–RL integral power rule using the conjugation relation.
Similarly, we have conjugation relations for the left and right ϕ–CFD, as

C
c+Dσϕκα = Qϕ ◦ Cϕ(c+)Dσx ◦ Q−1

ϕ κα,

C
ϕDσd−ρα = Qϕ ◦ CxDσϕ(d−) ◦ Q−1

ϕ ρα,

for n − 1 < α /∈ N or n ≤ α ∈ N. We can verify this by using a similar method as we
have done in the above example. And Dnϕκα = Dnϕρα = 0, if α = 0, 1, 2, . . . , n − 1. Thus,
C
c+Dσϕκα = C

d−Dσxρα = 0.

Example 3.2.3. For the function ϕ(x) = x in Definitions 3.2.1, 3.2.2, and 3.2.3, the resulting
operators are the RL fractional integral, derivatives, and Caputo derivatives of order σ, as
mentioned in Definitions 2.4.1, 2.4.2, and 2.4.10.

Example 3.2.4. Consider the function ϕ(x) = log(x) in Definitions 3.2.1, 3.2.2, and 3.2.3,
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we have the following Hadamard fractional operators

H
c+Iσlogu(x) =

1

Γ(σ)

∫ x

c

u(s)

(log(x
s
))1−σ

ds

s
, x > c,

H
logIσd−u(x) =

1

Γ(σ)

∫ d

x

u(s)

(log( s
x
))1−σ

ds

s
, x < d,

called left and right Hadamard fractional integrals, respectively. The corresponding left and
right Hdamard fractional derivatives are

H
c+Dσlogu(x) =

(
x
d

dx

)n
H
c+In−σlog u(x), x > c,

H
logDσd−u(x) =

(
−x d

dx

)n
RL
logIn−σd− u(x), x < d,

respectively.

C
c+Dσlogu(x) = C

c+In−σlog

(
x
d

dx

)n
u(x), x > c,

C
logDσd−u(x) = C

ϕIn−σd−

(
−x d

dx

)n
u(x), x < d,

called left and right Caputo–Hadamard fractional derivatives respectively.

3.3 Properties

This section provides some fundamental properties of generalized fractional operators by
using conjugation relations.

Lemma 3.3.1. Let σ1, σ2 > 0, u ∈ L1[c, d], ϕ ∈ C1[c, d] and an increasing monotonic
function. Then the following semigroup property hold

RL
c+ Iσ1ϕ RL

c+ Iσ2ϕ u(x) = RL
c+ Iσ1+σ2

ϕ u(x),

RL
ϕ I

σ1
d−

RL
ϕ I

σ2
d−u(x) = RL

ϕ I
σ1+σ2
d− u(x).
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Proof. We will prove semigroup properties by using conjugation relations as follows

RL
c+ Iσ1+σ2

ϕ u(x) = Qϕ ◦ RLϕ(c+)Iσ1+σ2
x ◦ Q−1

ϕ u(x);

u : x→ u(x);

Q−1
ϕ (u) : x→ u(ϕ−1(x));

ϕ(c+)Iσ1+σ2
x ◦ Q−1

ψ (u) : x→ ϕ(c+)Iσ1x ϕ(c+)Iσ2x u(ϕ−1(x));

Qϕ ◦ ϕ(c+)Iσ1+σ2
x ◦ Q−1

ϕ (u) : x→ Qϕ
(
ϕ(c+)Iσ1x ϕ(c+)Iσ2x Q−1

ϕ u(x)
)

;

: x→ Qϕ
(
ϕ(c+)Iσ1x

(
Q−1
ϕ Qϕ

)
ϕ(c+)Iσ2x Q−1

ϕ u(x)

)
;

Qϕ ◦ ϕ(c+)Iσ1+σ2
x ◦ Q−1

ϕ (u) : x→ Qψ
(
ϕ(c+)Iσ1x

(
Q−1
ϕ Qϕ

)
ϕ(c+)Iσ2x Q−1

ϕ u(x)

)
;

: x→
(
Qϕϕ(c+)Iσ1x Q−1

ϕ

)(
Qϕϕ(c+)Iσ2x Q−1

ϕ

)
u(x).

By using relation (3.1) we get,

RL
c+ Iσ1+σ2

ϕ u(x) = c+Iσ1ϕ(x)c
+Iσ2ϕ(x)u(x).

We can obtain the same result by using the same method in a slightly different way, as follows

RL
c+ Iσ1ϕ RL

c+ Iσ2ϕ u(x) =
(
Qϕ ◦ RLϕ(c+)Iσ1x ◦ Q−1

ϕ

)(
Qϕ ◦ RLϕ(c+)Iσ2x u(x) ◦ Q−1

ϕ

)
u(x)

= Qϕ ◦ RLϕ(c+)Iσ1x RL
ϕ(c+)Iσ2x ◦ Q−1

ϕ u(x).

Since we have a semigroup property for original RL integrals as mentioned in Lemma 2.4.4

RL
c+ Iσ1ϕ RL

c+ Iσ2ϕ u(x) =
(
Qϕ ◦ RLϕ(c+)Iσ1+σ2

x ◦ Q−1
ϕ

)
u(x) = RL

c+ Iσ1+σ2
ϕ u(x).

The properties of fractional operators were summarized in the previous chapter. The
properties of ϕ–fractional operators can be immediately derived using conjugation rela-
tions. Specifically, the semigroup property for ϕ–fractional integrals has been demonstrated
through this relation. This conjugation relation serves as the main tool for deriving the prop-
erties of generalized operators. To avoid repetition, the remaining properties, which are
straightforward to prove, have been omitted.

Lemma 3.3.2. For n ∈ N, σ > 0. Then the integer order ϕ–derivatives and ϕ–RL intgerals
have a semigroup property as follow

c+Dnϕ RL
c+ Dσϕu(x) = RL

c+ Dn+σ
ϕ u(x).
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Once again, we find that the ϕ–RL and ϕ–CFD of a function act as a left inverse of the
ϕ–RL fractional integrals. However, the ϕ–RL and ϕ–CFD are not the right inverse of ϕ–RL
fractional integrals.

Lemma 3.3.3. Let σ > 0, function u, ϕ ∈ C[c, d]. Then, for an increasing positive function
ϕ, we have

RL
c+ Dσϕ RL

c+ Iσϕu(x) = u(x)

RL
ϕ Dσd−RLϕ Iσd−u(x) = u(x).

Lemma 3.3.4. Let σ > 0, ϕ be an increasing positive function and u ∈ Cn[c, d]. Then
C
c+Dσϕ RL

c+ Iσϕu(x) = u(x),

C
ϕDσd−RLϕ Iσd−u(x) = u(x).

Theorem 3.3.5. If σ > 0, ϕ be an increasing positive function and u, ϕ ∈ Cn[c, d] such that

RL
c+ Iσϕ RL

c+ Dσϕu(x) = u(x)−
n−1∑
=0

lim
x→c+

I−σu(x) · (ϕ(x)− ϕ(c))σ−

Γ(σ − + 1)
,

RL
ϕ Iσd−RLϕ Dσd−u(x) = u(x)−

n−1∑
=0

lim
x→d−

I−σu(x) · (ϕ(d)− ϕ(x))σ−

Γ(σ − + 1)
.

Additionally, for 0 < σ < 1, we have

RL
c+ Iσϕ RL

c+ Dσϕu(x) = u(x)− (ϕ(x)− ϕ(c))σ−1

Γ(σ)
lim
x→c+

I1−σu(x),

RL
ϕ Iσd−RLϕ Dσd−u(x) = u(x)− (ϕ(d)− ϕ(x))σ−1

Γ(σ)
lim
x→d−

I1−σu(x).

Proposition 3.3.6. Let functions u, ϕ ∈ Cn[c, d]. Then for σ > 0, we have

RL
c+ Iσϕ C

c+Dσϕu(x) = u(x)−
n−1∑
=0

lim
x→c+

Dϕu(x) · (ϕ(x)− ϕ(c))

!
,

RL
ϕ Iσd−CϕDσd−u(x) = u(x)−

n−1∑
=0

lim
x→d−

Dϕu(x) · (−1)(ϕ(d)− ϕ(x))

!
.

Additionally, for 0 < σ < 1 =⇒ n = 1, we have the following composition relations
RL
c+ IσϕCc+Dσϕu(x) = u(x)− u(c),

RL
ϕ Iσd−CϕDσd−u(x) = u(d)− u(x).

Proof. Proof of these composition relations is straightforward via conjugation of the original
RL operators in Theorem 2.4.9.
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Chapter 4

Weighted fractional calculus

Weighted fractional calculus (WFC) and WFC with respect to functions is another general-
ized class of FC that extends the original FC. In 2012, Agrawal introduced the concept of
weighted/scaled fractional differintegrals with respect to functions, marking the inception of
scaled FC. This work, detailed in his studies [31, 32], explored the applications of these op-
erators in variational calculus and probabilistic modelling [32]. This approach can be viewed
as a combination of FC of a function by functions and WFC.

In 2020, significant progress was made in this field. Abdeljawad et al. [33, 35] investi-
gated WFOs with respect to functions, studied their properties, proposing a modified Laplace
transform suitable for these operators, and investigating the existence of positive solutions
for WF order differential equations. Al-Refai [34] examined weighted Atangana–Baleanu
fractional operators in the same year. Then, in 2021, Liu et al. [36] provided some general
results related to the weighted CFD, further advancing the mathematical framework for these
operators.

In 2022, Fahad et al. [16] presented a comprehensive study on WFC and its extension
to WFC with respect to functions. Their work emphasized the significance of conjugation
relations with classical fractional operators and studied various fundamental properties. They
explored some special cases of these operators named as Erdélyi-Kober, Hadamard-type, and
tempered operators and suggested modifications to the Laplace transform and convolution
operations. Additionally, they effectively dealt with ODEs within the framework of these
general operator classes.

In 2023, a new weighted fractional operator was introduced by Sabri T.M. Thabet et al.
[72]. This operator was based on a modified generalized M–L law. Their research, centred
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on the study of generalized WF derivatives and integrals in the Caputo and RL sense. The
research also identified various special cases and key properties such as series versions and
weighted Laplace transforms.

This chapter provides the definitions, properties, and some new insights related to these
operators. Throughout this chapter, the following notations will be adopted: RL

c+ Iσϕ;ω and
RL
ϕ Iσd−;ω denote the left and right WF integrals with respect to functions, respectively. Simi-
larly, RLc+ Dσϕ;ω, RLϕ Dσd−;ω, Cc+Dσϕ;ω, and C

ϕDσd−;ω denote the left and right weighted RL and CFD
with respect to functions, respectively.

4.1 Weighted fractional calculus

In this section we mentioned the definitions and properties of weighted fractional calculus.

Definition 4.1.1. [16, 32] If function u ∈ L1(c, d) and σ > 0, then the operators RLc+ Iσx;ω and
RL
x Iσd−;ω can be defined as

RL
c+ Iσx;ωu(x) =

1

ω(x)Γ(σ)

∫ x

c

ω(s)u(s) (x− s)σ−1 ds, x > c,

RL
x Iσd−;ωu(x) =

ω(x)

Γ(σ)

∫ d

x

u(s) (s− x)σ−1

ω(s)
ds, x < d,

respectively, where ω ∈ L∞(c, d).

Definition 4.1.2. [16, 31, 32] If ω, u ∈ ACn[c, d]. Then the operators RL
c+ Dσx;ω and RL

x Dσd−;ω

of order σ > 0 can be defined as

RL
c+ Dσx;ωu(x) =

(
ω(x)−1 d

dx
ω(x)

)n
RL
c+ In−σx;ω u(x),

RL
x Dσd−;ωu(x) =

(
−ω(x)

d

dx
ω(x)−1

)n
RL
x In−σd−;ωu(x),

respectively, where σ > 0 and n = bσc+ 1.

Definition 4.1.3. [16, 31, 32] Let u ∈ Cn[c, d], weight function ω with ω 6= 0. Then the
operators Cc+Dσx;ω and C

xDσd−;ω are defined as

C
c+Dσx;ωu(x) = RL

c+ In−σx;ω

(
ω(x)−1 d

dx
ω(x)

)n
u(x),

C
xDσd−;ωu(x) = RL

x In−σd−;ω

(
−ω(x)

d

dx
ω(x)−1

)n
u(x),

respectively, where σ > 0 and n = bσc+ 1.
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The above definitions can be wriiten as conjugations with the original RL and Caputo
fractional operators as following.

Proposition 4.1.4. The operators defined in Definition 4.1.1, 4.1.2, and 4.1.3 can be repre-
sented as the result of conjugating the original left and right RL fractional operators with
the operatorMω, whereMωu(x) = ω(x)u(x).

RL
c+ Iσx;ω =M−1

ω ◦ RL
c+ Iσx ◦Mω,

RL
c+ Dσx;ω =M−1

ω ◦ RL
c+ Dσx ◦Mω,

C
c+Dσx;ω =M−1

ω ◦ C
c+Dσx ◦Mω.

In the case of right WFO with respect to functions, conjugation relations are given by

RL
x Iσd−;ω =Mω ◦ RLx Iσd− ◦M−1

ω ,

RL
x Dσd−;ω =Mω ◦ RLx Dσd− ◦M−1

ω ,

C
xDσd−;ω =Mω ◦ CxDσd− ◦M−1

ω .

The weighted RL derivative extends the concept of the weighted RL integral of order
σ > 0, where integrals of negative order are interpreted as derivatives of positive order as
RL
c+ Dσx;ω = RL

c+ I−σx;ω. This property allows both of these operators to define all values of σ > 0.

Proof. The conjugation relations for the left WFO have been comprehensively proven in
Fahad’s work [16]. Now, we extend this by proving the conjugation relations for the right
WFO as follows The initial result RLx Iσd−;ω = Mω ◦ RLx Iσd− ◦M−1

ω is straightforward. Both
types of WF derivatives involve the composition of the WF integral with the operator d

dx
− ω′

ω
,

repeated n times. It is enough to demonstrate that this integer-order operator also satisfies
the conjugation relation d

dx
− ω′

ω
=Mω ◦ d

dx
◦M−1

ω .

Mω ◦
d

dx
◦M−1

ω u(x) =Mω ◦

[
d

dx

(
u(x)

ω(x)

)]
=Mω ◦

1

(ω(x))2

[
ω(x) · u′(x)− u(x)ω′(x)

]
= u′(x)− u(x)

ω(x)
· ω′(x) =

(
d

dx
− ω′(x)

ω(x)

)
u(x).
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Example 4.1.1. If κ(x) = (x−c)µ
ω(x)

, σ > 0 and µ > −1, then

RL
c+ Iσx;ωκ(x) =

Γ(1 + µ)

Γ(1 + µ+ σ)

(x− c)µ+σ

ω(x)
,

RL
c+ Dσϕ;ωκ(x) =

Γ(1 + µ)

Γ(1 + µ− σ)

(x− c)µ−σ

ω(x)
.

And for some µ ≥ bσc, we have

C
c+Dσx;ωκ(x) =

0, if µ ∈ {0, 1, 2, . . . , n− 1} ,
Γ(1+µ)

Γ(1+µ−σ)
(x−c)µ−σ
ω(x)

, otherwise.
(4.1)

Proposition 4.1.5. If σ > 0 and u(x) = κµ, where κ = x − c for some µ > −1, then we
have the following power rules for weighted RL operators

RL
c+ Iσx;ωu(x) =

∞∑
`=0

ς`Γ(1 + µ+ `)

`!Γ(1 + σ + µ+ `)

(κ)σ+µ+`

ω(x)
,

RL
c+ Dσx;ωu(x) =

∞∑
`=0

ς`Γ(1 + µ+ `)

`!Γ(1 + µ− σ + `)

(κ)µ−σ+`

ω(x)
,

where for ` = 0, 1, 2, . . ., ς` = lim
x→c+

D`xω(x) satisfies the following infinite series

ω(x) =
∞∑
`=0

ς`
`!

(κ)`. (4.2)

Proof. By using conjugation relations together with (4.4), we can write

RL
c+ Iσx;ω (κ)µ =M−1

ω ◦ RLc+ Iσx ◦Mωκ
µ

=M−1
ω ◦

[
RL
c+ Iσxω(x)(κ)µ

]
=M−1

ω ◦

RL
c+ Iσx

∞∑
`=0

ς`
`!

(κ)`(κ)µ


=M−1

ω ◦

 ∞∑
`=0

ς`
`!
RL
c+ Iσxκµ+`


=M−1

ω ◦

 ∞∑
`=0

ς`Γ(1 + µ+ `)

`!Γ(1 + σ + µ+ `)
κσ+µ+`


=
∞∑
`=0

ς`Γ(1 + µ+ `)

`!Γ(1 + σ + µ+ `)

κσ+µ+`

ω(x)
.
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We have successfully proven the first identity with the detailed steps provided above. The
second identity can be derived directly from the first by using analytic continuation [16].

We obtain the following corollary by putting µ = 0 in the above proposition.

Corollary 4.1.6. If σ > 0, then for κ = x− c, we have

RL
c+ Iσx;ω(1) =

∞∑
`=0

ς`
Γ(1 + σ + `)

κσ+`

ω(x)
,

RL
c+ Dσx;ω(1) =

∞∑
`=0

ς`
Γ(1 + `− σ)

κ`−σ

ω(x)
.

Proof. By setting µ = 0 in Proposition 4.2.7, we get

RL
c+ Iσx;ω(1) =

∞∑
`=0

ς`
Γ(1 + σ + `)

κσ+`

ω(x)
.

Similarly, we get the result for the second part by using analytic continuation.

4.1.1 Properties

This subsection outlines the essential properties of WFC, including the semigroup property
and composition relations.

Lemma 4.1.7. [16] For σ1 > 0, σ2 > 0, and u ∈ L1(c, d) the WFO have the following
semigroup properties

RL
c+ Iσ1x;ω

RL
c+ Iσ2x;ωu(x) = RL

c+ Iσ1+σ2
x;ω u(x),

RL
x I

σ1
d−;ω

RL
x I

σ2
d−;ωu(x) = RL

x I
σ1+σ2
d−;ω u(x)

Lemma 4.1.8. [16] For σ1 > 0, σ2 > 0, and u ∈ ACn+bσ1c+1[c, d], we have

DnRL
c+Dσ1x;ωu(x) = RL

c+Dn+σ1
x;ω u(x), σ1 > 0, n ∈ N,

Proposition 4.1.9. [16] For the weighted RL fractional integrals, the following composition
property is valid when the semigroup property is not

RL
c+ Iσx;ω

RL
c+ Dσx;ωu(x) = u(x)−

n∑
`=1

(x− c)σ−`

Γ(σ − `+ 1)
· ω(c)

ω(x)
· lim
x→c+

RL
c+ Dσ−`x;ω u(x),

RL
x Iσd−;ω

RL
x Dσd−;ωu(x) = u(x)−

n∑
`=1

(d− x)σ−`

Γ(σ − `+ 1)
· ω(x)

ω(d)
· lim
x→d−

RL
x Dσ−`d−;ω(x)u(x)
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where σ > 0 and n = bσc + 1. The function u can be any function for which the relevant
expressions are well-defined. In particular, it is sufficient for u to belong to Cn[c, d].

Proposition 4.1.10. [16] For the Caputo weighted derivatives, the following composition
relations are valid when the semigroup properties are not

RL
c+ Iσx;ω

C
c+Dσx;ωu(x) = u(x)−

n−1∑
`=0

(x− c)`

`!
· ω(c)

ω(x)
· lim
x→c+

(
d

dx
+
ω′

ω

)`
u(x),

RL
x Iσd−;ω

C
xDσd−;ωu(x) = u(x)−

n−1∑
`=0

(d− x)`

`!
· ω(x)

ω(d−)
· lim
x→d−

(
d

dx
− ω′

ω

)`
u(x)

where σ > 0, n = bσc+ 1 and u ∈ Cn[c, d] is sufficient.

4.2 Weighted fractional Calculus with respect to functions

This sections explore the definition, properperties and some new insights related to this gen-
eralized class.

Definition 4.2.1. [33] The generalized weighted Lebesgue space Lrϕ;ω(c, d) as the class of

measurable function z, is defined as Lrϕ;ω(c, d) =
{

z : ‖z‖Lrϕ;ω <∞
}

, where

‖z‖Lrϕ;ω =

(∫ d

c

|ω(s)z(s)|rϕ′(s) ds

) 1
r

,

and when r =∞, then

‖z‖∞ϕ;ω = esssup
c≤x≤d

|z(s)|,

where weight function ω 6= 0 and ϕ be a strictly increasing function on interval [c, d].

Considering ϕ(s) = s, ω(s) = 1 in above the definition, the space Lrϕ;ω(c, d) concides
with the Lebesgue space Lr(c, d) [8].

Next, we define the WFO with respect to functions.

Definition 4.2.2. [16, 31, 32] If u ∈ L1
ϕ(c, d) and σ > 0. Then the operators RL

c+ Iσϕ;ω and
RL
ϕ Iσd−;ω are defined as

RL
c+ Iσϕ;ωu(x) =

1

Γ(σ)ω(x)

∫ x

c

ω(s)u(s)ϕ′(s)
(
ϕ(x)− ϕ(s)

)σ−1
ds, x > c,

RL
ϕ Iσd−;ωu(x) =

ω(x)

Γ(σ)

∫ d

x

u(s)ϕ′(s)ω(s)−1
(
ϕ(s)− ϕ(x)

)σ−1
ds, x < d,
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respectively, where ϕ ∈ C1[c, d] and is strictly increasing function and ω ∈ L∞(c, d) is a
weight function.

Definition 4.2.3. [16, 31, 32] If u, ω ∈ ACn
ϕ [c, d] where ϕ is an increasing positive function

with ϕ′ > 0. Then the operators RLc+ Dσϕ;ω and RL
ϕ Dσd−;ω of order σ > 0 are defined as

RL
c+ Dσϕ;ωu(x) =

(
ω(x)−1

ϕ′(x)
· d
dx
ω(x)

)n

RL
c+ In−σϕ;ω u(x),

RL
ϕ Dσd−;ωu(x) =

(
− ω(x)

ϕ′(x)
· d
dx
ω(x)−1

)n
RL
ϕ In−σd−;ωu(x),

respectively, where σ > 0 and n = bσc+ 1. Additionally, for 0 < σ < 1, we have

RL
c+ Dσϕ;ωu(x) =

(
1

ω(x)ϕ′(x)
· d
dx
ω(x)

)
RL
c+ I1−σ

ϕ;ω u(x),

RL
ϕ Dσd−;ωu(x) =

(
− ω(x)

ϕ′(x)
· d
dx

1

ω(x)

)
RL
ϕ I1−σ

d−;ωu(x),

Definition 4.2.4. [16, 31, 32] Let u ∈ Cn
ϕ [c, d], weight function ω and increasing function ϕ

are in Cn
ϕ [c, d] with ϕ′ > 0 and ω 6= 0. Then the operators C

c+Dσϕ;ω and C
ϕDσd−;ω of order σ >

are defined as

C
c+Dσϕ;ωu(x) = RL

c+ · In−σϕ;ω

(
ω(x)−1

ϕ′(x)
· d
dx
ω(x)

)n

u(x),

C
ϕDσd−;ωu(x) = RL

ϕ In−σd−;ω

(
− ω(x)

ϕ′(x)
· d
dx
ω(x)−1

)n
u(x),

respectively, where σ > 0 and n = bσc+ 1. Additionally, for 0 < σ < 1, we have

C
c+Dσϕ;ωu(x) = RL

c+ I1−σ
ϕ;ω

(
ω(x)−1

ϕ′(x)
· d
dx
ω(x)

)
u(x),

C
ϕDσd−;ωu(x) = RL

ϕ I1−σ
d−;ω

(
− ω(x)

ϕ′(x)
· d
dx
ω(x)−1

)
u(x),

Remark 1. [16] By defining operators of WFC through conjugation relations, as described
in Section §4.2.1, we can recover the existing fractional operators by appropriately choosing
the weight functions ω and the functions ϕ. This framework provides a unified approach to
studying and generalizing various special cases, including

• when ω(x) = 1 or any constant k and ϕ(x) = x, the Definitions 4.2.2, 4.2.3, 4.2.4
reduce to the original RL and Caputo fractional operators [8, 9].
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• the tempered fractional operators obtained as a special case using ω(x) = eη and
ϕ(x) = x. This definition can be found [37] and the references listed therein.

• when the functions ω(x) = eη and ϕ(x) = log(x) are used, they gives the Hadamard-
type FC, as mentioned in the literature [14, 15].

• when the function ω(x) = 1, it can be simplified to the ϕ–fractional operators [8, 30]

• ω(x) = eηϕ(x), permits the ϕ–tempered fractional operators [15, 37].

• when ω(x) = eηζ and ϕ(x) = xη, we obtain the operators Erdelyi–Kober FC [8, 12].

• when ϕ(x) = log(ϕ(x)) and ω(x)=ϕ(x)λ, it gives the Hadamard–type fractional op-
erators with respect to functions [15].

4.2.1 Conjugation relations and their importance

Conjugation relations play a significant role in FC, facilitating the understanding of new gen-
eralized operators and their relationships. In the context of WFC with respect to functions,
the operators involve conjugation relations. Fahad and Fernandez [16] provide a detailed
analysis of left WFOs in the context of generalized WFC. In the case of right WFOs with
respect to functions, a conjugation relation is established by dividing by the weight function
ω, applying the ϕ–fractional operators with of the same order, and then multiplying by the
weight function ω again. One of the advantages of conjugation relations is their ability to
serve as a powerful tool for establishing properties and proving fundamental results for nu-
merous generalized fractional operators in terms of certain fundamental fractional operators.

Proposition 4.2.5. [16, 30] The operators in Definition 4.2.2, 4.2.3 and 4.2.4 can be ex-
pressed by conjugation of the original left and right RL fractional operators or ϕ–fractional
operators with the operatorMω defined asMωu(x) = ω(x)u(x)

RL
c+ Iσϕ;ω =M−1

ω ◦ RL
c+ Iσϕ ◦Mω,

RL
c+ Dσϕ;ω =M−1

ω ◦ RL
c+ Dσϕ ◦Mω,

C
c+Dσϕ;ω =M−1

ω ◦ C
c+Dσϕ ◦Mω.
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In the case of right WFO with respect to functions, conjugation relations are given by

RL
ϕ Iσd−;ω =Mω ◦ RLϕ Iσd− ◦M−1

ω ,

RL
ϕ Dσd−;ω =Mω ◦ RLϕ Dσd− ◦M−1

ω ,

C
ϕDσd−;ω =Mω ◦ CϕDσd− ◦M−1

ω .

4.2.2 Examples and properties

This subsection examines the properties of WFOs with respect to functions. Many properties
have been extensively studied in previous works [16, 31, 33]. We will discuss some of these
established properties as well as new results specific to these operators. Previous studies
typically focused on power rules that include weight in the denominator and composition
relations for σ > 0. However, this work introduces the power rule of these operators without
including any weight in the denominator and composition relations for 0 < σ < 1. These
new results are used to derived the main results.

Proposition 4.2.6. [16] Let u(x) = κµ

ω(x)
be a power function, where κ = ϕ(x) − ϕ(c) and

σ > 0 and µ > −1, then

RL
c+ Iσϕ;ωu(x) =

Γ(1 + µ)

Γ(1 + µ+ σ)

κµ+σ

ω(x)
,

RL
c+ Dσϕ;ωu(x) =

Γ(1 + µ)

Γ(1 + µ− σ)

κµ−σ

ω(x)
.

And for some µ ≥ bσc, we have

C
c+Dσϕ;ωu(x) =

0, if µ ∈ {0, 1, 2, . . . , n− 1} ,
Γ(1+µ)

Γ(1+µ−σ)
κµ−σ

ω(x)
, otherwise.

(4.3)

Proposition 4.2.7. Consider a power function κµ, where κ = ϕ(x) − ϕ(c) and σ > 0 for
some µ > −1, then

RL
c+ Iσϕ;ωκ

µ =
∞∑
`=0

ς`Γ(µ+ `+ 1)

`!Γ(σ + µ+ `+ 1)

κσ+µ+`

ω(x)
,

RL
c+ Dσϕ;ωκ

µ =
∞∑
`=0

ς`Γ(µ+ `+ 1)

`!Γ(µ− σ + `+ 1)

κµ−σ+`

ω(x)
,

35



where for ` = 0, 1, 2, . . ., ς` = lim
x→c+

D`ϕω(x) satisfies the following infinite series

ω(x) =
∞∑
`=0

ς`
`!
κ`. (4.4)

Proof. By using conjugation relations together with (4.4), we can write

RL
c+ Iσϕ;ωκ

µ =M−1
ω ◦ RLc+ Iσϕ ◦Mωκ

µ

=M−1
ω ◦

[
RL
c+ Iσϕω(x)κµ

]
=M−1

ω ◦

RL
c+ Iσϕ

∞∑
`=0

ς`
`!
κ`κµ


=M−1

ω ◦

 ∞∑
`=0

ς`
`!
RL
c+ Iσϕκµ+`


=M−1

ω ◦

 ∞∑
`=0

ς`Γ(1 + µ+ `)

`!Γ(1 + σ + µ+ `)
κσ+µ+`


=
∞∑
`=0

ς`Γ(1 + µ+ `)

`!Γ(1 + σ + µ+ `)

κσ+µ+`

ω(x)
.

We have successfully proven the first identity with the detailed steps provided above. The
second identity can be derived directly from the first by using analytic continuation [16].

By putting µ = 0 in the above proposition, we get the following corollary.

Corollary 4.2.8. If σ > 0, then for κ(x) = ϕ(x)− ϕ(c)

RL
c+ Iσϕ;ω(1) =

∞∑
`=0

ς`
Γ(1 + σ + `)

κσ+`

ω(x)
,

RL
c+ Dσϕ;ω(1) =

∞∑
`=0

ς`
Γ(1 + `− σ)

κ`−σ

ω(x)
.

Proof. By setting µ = 0 in Proposition 4.2.7, we get

RL
c+ Iσϕ;ω(1) =

∞∑
`=0

ς`
Γ(1 + σ + `)

κσ+`

ω(x)
.

Similarly, we get the result for the second part by using analytic continuation.
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Lemma 4.2.9. For σ1 > 0, σ2 > 0, u ∈ L1
ϕ(c, d) the following semi-group properties hold

for WFO with respect to functions

RL
c+ Iσ1ϕ;ω

RL
c+ Iσ2ϕ;ωu(x) = RL

c+ Iσ1+σ2
ϕ;ω u(x),

RL
ϕ I

σ1
d−;ω

RL
ϕ I

σ2
d−;ωu(x) = RL

ϕ I
σ1+σ2
d−;ω u(x).

The composition relations of WFO with respect to functions also referred to as the right
inverse property, which have been already studied [16, 33].

Proposition 4.2.10. [16] If u, ω ∈ Cn
ϕ [c, d], and κ = ϕ(x)−ϕ(c), where ϕ is an increasing

positive function, then the following composition properties for WFO holds

RL
c+ Iσϕ;ω

RL
c+ Dσϕ;ωu(x) = u(x)−

n∑
`=1

κσ−`

Γ(σ − `+ 1)
· ω(c)

ω(x)
· lim
x→c+

RL
c+ Dσ−`ϕ;ω u(x),

RL
c+ Iσϕ;ω

C
c+Dσϕ;ωu(x) = u(x)−

n−1∑
`=0

κ`

`!
· ω(c)

ω(x)
· lim
x→c+

D`ϕ;ωu(x).

If 0 < σ < 1, then

RL
c+ Iσϕ;ω

RL
c+ Dσϕ;ωu(x) = u(x)− lim

x→c+
RL
c+ I1−σ

ϕ;ω u(x) · (κ)σ−1

Γ(σ)
· ω(c)

ω(x)
·,

RL
c+ Iσϕ;ω

C
c+Dσϕ;ωu(x) = u(x)− ω(c)

ω(x)
u(c).

Proof. As this result has already been addressed in [16], we follow similar steps of proof
presented in that paper, but here we follow for 0 < σ < 1. Since n = bσc + 1, this implies
that n = 1.

4.3 Mean value theorem

The MVT for fractional operators provides a generalization of the classical MVT to the field
of FC, enabling the analysis of functions with non-integer order. The classical and fractional
forms of this theorem are further detailed in [38]. This section aims to prove the MVT for
WFO with respect to functions. Before presenting our main results, we will first review some
preliminary findings that will be helpful in proving our main theorems.
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Theorem 4.3.1. [[57], Theorem 4.2d] If y, z are integrable, then convolution product y ∗ z
exists and is integrable ∫

|y ∗ z| =
∫
|y|
∫
|z| .

Remark 2. Since y and z are integrable with a strictly monotonic increasing function ϕ

and continuous on a closed interval then by [[56], Theorem 7.2.7–8], y◦ϕ is also integrable.
Since the inverse of a strictly increasing function is also an increasing function, and the
inverse of a continuous function is also continuous then by [[56], Theorem 7.3.14], y ◦ ϕ−1

is also integrable. Then by Theorem 4.3.1 ϕ-convolution y ∗ϕ z is integrable, where y ∗ϕ z
is defined as

y ∗ϕ z = Qϕ
(
∗
(
y ◦ ϕ−1, z ◦ ϕ−1

))
.

Generalized MVT in terms of classical integral calculus [38] can be expressed as

∫ d

c

y(x)z(x) dx = y(ζ)

∫ d

c

z(x) dx, (4.5)

where some constant ζ ∈ (c, d), y ∈ C[c, d], z is Lebesgue integrable on closed interval [c, d]

and is sign consistent in [c, d].

Theorem 4.3.2. Let σ > 0, ϕ ∈ C1[c, d] be an increasing function, z be Lebesgue integrable
on [c, d] and sign consistent in the interval (c, d]. Assume that y ∈ C[c, d], then ∀ x ∈ (c, d]

∃ some constant ζ ∈ (c, x), sucn that the MVT for RLc+ Iσϕ can be written as

RL
c+ Iσϕz(x)y(x) = y(ζ)Iσϕz(x). (4.6)

If σ ≥ 1 and z ∈ C[c, d], then this result holds for every x ∈ (c, d].

Proof. By using the definition of RLc+ Iσϕ , we get

RL
c+ Iσϕy(x)z(x) =

1

Γ(σ)

∫ x

c

y(s)z(s)ϕ′(s)(
ϕ(x)− ϕ(s)

)1−σ ds.

Assume that σ ≥ 1 and x ∈ (c, d], then
(
ϕ(x)− ϕ(s)

)1−σ is continuous. Thus, the function

h(s) =
(ϕ(x)−ϕ(s))

σ−1
z(s)ϕ′(s)

Γ(σ)
is integrable and has a consistent value in the interval (c, d],

then we get

RL
c+ Iσϕz(x)y(x) =

∫ x

c

y(s)h(s) ds.
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By the classical generalized MVT, we obtain

RL
c+ Iσϕz(x)y(x) = y(ζ)

∫ x

c

h(s) ds = y(ζ)Iσϕz(x). (4.7)

Here, further, we have two cases.

(i) If 0 < σ < 1 and function z and ϕ are continuous then the same line of proof works.

(ii) If 0 < σ < 1 and function z is only integrable and ϕ is a continuous strictly monotone
increasing function ϕ then by Remark 2 integrability of function h holds for almost all
x.

If we consider ϕ(x) = x, then (4.6) reduces to the RL fractional MVT mentioned in [38].
If we put z(x) = 1 in Theorem 4.3.2, we get the following relation

RL
c+ Iσϕy(x) = y(ζ)

(
ϕ(x)− ϕ(c)

)σ
Γ(σ + 1)

. (4.8)

Theorem 4.3.3. Assume the hypothesis of Theorem 4.3.2 and the weight function ω ∈
C[c, d]. If x ∈ (c, d], then there exists some constant c ∈ (c, x), such that the MVT for
RL
c+ Iσϕ;ω can be written as

RL
c+ Iσϕ;ωz(x)y(x) = y(ζ)RLc+ Iσϕ;ωz(x). (4.9)

Proof. We prove the MVT for RLc+ Iσϕ;ω by using conjugation relations

RL
c+ Iσϕ;ω =M−1

ω ◦ RLc+ Iσϕ ◦Mω.

We begin by applying the operatorMω to the product z(x)y(x)

Mωz(x)y(x) = ω(x)z(x)y(x).

Now, applying the integral operator RLc+ Iσϕ , we obtain

RL
c+ IσϕMωz(x)y(x) = RL

c+ Iσϕω(x)z(x)y(x).

Assume that h(x) = ω(x)z(x) then, we get

RL
c+ IσϕMωz(x)y(x) = RL

c+ Iσϕh(x)y(x).
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Then, by the MVT (4.6), we have

RL
c+ IσϕMωz(x)y(x) = y(ζ)RLc+ Iσϕh(x) = y(ζ)RLc+ Iσϕz(x)ω(x).

Finally, applying the operatorM−1
ω yields the MVT for RLc+ Iσϕ;ω as follow

M−1
ω

RL
c+ IσϕMωz(x)y(x) =M−1

ω y(ζ)RLc+ Iσϕz(x)ω(x)

= y(ζ)M−1
ω

RL
c+ IσϕMωz(x)

= y(ζ)RLc+ Iσϕ;ωz(x).

As a special case, if we set ω(x) = 1 in the above theorem, we recover the MVT for the
operator RLc+ Iσϕ . Furthermore, if we take z(x) = 1 in Theorem 4.3.3 and apply Corollary
4.2.8, we obtain the following simplified relation

RL
c+ Iσϕ;ωy(x) = y(ζ)

∞∑
`=0

ς`
Γ(σ + `+ 1)

(ϕ(x)− ϕ(c))σ+`

ω(x)
. (4.10)

By taking ω(x) = eλϕ(x) in (4.10), we recover the MVT for tempered fractional integrals
with respect to functions, as established in [37]. This shows that our result includes the
tempered fractional integrals with respect to functions as a special case.

Proposition 4.3.4. If σ > 0, p ∈ N, and u ∈ ACn+p
ϕ [c, d], then ∀ q ∈ N, and for some

ζ ∈ (c, x) ⊂ (c, d), δ ∈ (x, d) ⊂ (c, d), we get the following expressions(
RL
c+ Iσϕ;ω

)q (
RL
c+ Dσϕ;ω

)r
u(x) =

(
RL
c+ Dqσϕ;ω

)r
u(ζ)

∞∑
`=0

ς`
Γ(`+ qσ + 1)

(ϕ(x)− ϕ(c))`+qσ

ω(x)
,

(
RL
ϕ Iσd−;ω

)q (
RL
ϕ Dσd−;ω

)r
u(x) =

(
RL
ϕ Dσd−;ω

)r
u(δ)

∞∑
`=0

ς`
Γ(`+ qσ + 1)

ω(x)(ϕ(d−)− ϕ(x))`+qσ.

Proof. By using the semigroup property for fractional integrals, we can write

RL
c+ Iσϕ;ω ◦ · · · ◦ RLc+ Iσϕ;ω = RL

c+ Iqσϕ;ω︸ ︷︷ ︸
q−time

.
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Utilizing the Definition 4.2.2 together with (4.10), we have(
RL
c+ Iσϕ;ω

)q (
RL
c+ Dσϕ;ω

)r
u(x) = RL

c+ Iqσϕ;ω

(
RL
c+ Dσϕ;ω

)r
u(x)

=
1

ω(x)Γ(qσ)

∫ x

c

ω(s)
(
RL
c+ Dσϕ;ω

)r
u(s)ϕ′(s)(

ϕ(x)− ϕ(s)
)1−qσ ds

=
(
RL
c+ Dσϕ;ω

)r
u(ζ)RLc+ Iqσϕ;ω(1).

=
(
RL
c+ Dqσϕ;ω

)r
u(ζ)

∞∑
`=0

ς`
Γ(`+ qσ + 1)

(ϕ(x)− ϕ(c))`+qσ

ω(x)
,

with this final step, our proof is complete. Similarly, the second part can be proved by using
a similar strategy used to prove the first part.

Theorem 4.3.5. Assume the hypothesis of Theorem 4.3.3 with 0 < σ < 1. Then, ∀
x ∈ (c, d], ∃ some constant ζ ∈ (c, x), such that the MVT for Cc+Dσϕ;ω can be written as

C
c+Dσϕ;ωy(ζ) =

ω(x)y(x)− ω(c)y(c)∑∞
`=0

ς`
Γ(`+σ+1)

(ϕ(x)− ϕ(c))`+σ
. (4.11)

Proof. Using the Definition 4.2.2 together with MVT (4.10), we get

RL
c+ Iσϕ;ω

C
c+Dσϕ;ω = C

c+Dσϕ;ωy(ζ)
1

Γ(σ)ω(x)

∫ x

c

ω(s)ϕ′(s)(
ϕ(x)− ϕ(s)

)1−σ ds

= C
c+Dσϕ;ωy(ζ)

∞∑
`=0

ς`
Γ(`+ σ + 1)

(ϕ(x)− ϕ(c))σ+`

ω(x)
.

By using Proposition 4.2.10, we obtain

y(x)− ω(c)

ω(x)
y(c) = C

c+Dσϕ;ωy(ζ)
∞∑
`=0

ς`
Γ(`+ σ + 1)

(ϕ(x)− ϕ(c))`+σ

ω(x)

ω(x)y(x)− ω(c)y(c) = C
c+Dσϕ;ωy(ζ)

∞∑
`=0

ς`
Γ(`+ σ + 1)

(ϕ(x)− ϕ(c))`+σ

=
ω(x)y(x)− ω(c+)y(c+)∑∞

`=0
ς`

Γ(`+σ+1)
(ϕ(x)− ϕ(c))σ+`

.

This concludes the proof.
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Theorem 4.3.6. Assume the hypothesis of Theorem 4.3.3 with 0 < σ < 1. Then, ∀ x ∈ (c, d],

∃ c ∈ (c, x), such that the MVT for RLc+ Dσϕ;ω can be written as

RL
c+ Dσϕ;ωy(ζ) =

(
ω(x)y(x)− (ϕ(x)−ϕ(c))σ−1

Γ(σ)
ω(c+) lim

x→c+
RL
c+ I1−σ

ϕ;ω y(x)

)
∑∞

`=0
ς`(ϕ(x)−ϕ(c))`+σ

Γ(`+σ+1)

. (4.12)

Proof. By using the Definition 4.2.2 and (4.10), we obtain

RL
c+ Iσϕ;ω

RL
c+ Dσϕ;ωy(x) = RL

c+ Dσϕ;ωy(ζ)
1

Γ(σ)ω(x)

∫ x

c

ω(s)ϕ′(s)(
ϕ(x)− ϕ(s)

)1−σ ds

= RL
c+ Dσϕ;ωy(ζ)c+Iσϕ;ω(1) = RL

c+ Dσϕ;ωy(ζ)
∞∑
`=0

ς`(ϕ(x)− ϕ(c))`+σ

ω(x)Γ(`+ σ + 1)
.

By using Proposition 4.2.10, we have

y(x)−
(
ϕ(x)− ϕ(c)

)σ−1

Γ(σ)
· ω(c)

ω(x)
· lim
x→c+

RL
c+ Iσ−1

ϕ;ω y(x)

=RL
c+ Dσϕ;ωy(ζ)

∞∑
`=0

ς`(ϕ(x)− ϕ(c))`+σ

ω(x)Γ(`+ σ + 1)

ω(x)y(x)− (ϕ(x)− ϕ(c))σ−1

Γ(σ)
·ω(c+) lim

x→c+
RL
c+ I1−σ

ϕ;ω y(x)

=RL
c+ Dσϕ;ωy(ζ)

∞∑
`=0

ς`(ϕ(x)− ϕ(c))`+σ

Γ(`+ σ + 1)

RL
c+ Dσϕ;ωy(ζ) =

(
ω(x)y(x)− (ϕ(x)−ϕ(c))σ−1

Γ(σ)
ω(c+) lim

x→c+
RL
c+ I1−σ

ϕ;ω y(x)

)
∑∞

`=0
ς`(ϕ(x)−ϕ(c))`+σ

Γ(`+σ+1)

.

This completes the proof.

Remark 3. The results presented in this section extend the classical mean value theorems
to the context of fractional operators. Specifically, we have demonstrated that these general-
ized theorems hold for a broader class of functions and operators. Specifically, if we consider
σ = 1, ω = 1, ϕ = x, the results reduce to the classical mean value theorems. Chossing
ϕ = x and ω = 1, the results reduces to the fractional operators [38, 41]. Setting the weight
function ω = 1, the results simply reduces to the ϕ– fractional operators [39]. Additionally,
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when ω(x) = eλϕ(x) our results corresponds to the ϕ–tempered fractional operators [37],
incorporating an exponential tempering effect. These special cases demonstrate the flexibil-
ity and consistency of our generalized approach, providing a coherent link to classical and
modern results in fractional calculus.

4.4 Taylor’s theorem

This section presents Taylor’s theorem for weighted CFD and RL derivatives with respect
to functions, which represents a more generalized form of Taylor’s theorem. Many different
types of generalizations of Taylor’s theorem have been explored in the literature [37, 39, 40,
63], including RL and Caputo fractional operators.

Theorem 4.4.1. Assume that 0 < σ < 1, m ∈ N, and y be any function such that Cc+D`σϕ;ωy

exists and is continuous ∀ ` = 0, 1, 2, . . . ,m + 1. Then, ∀ x ∈ [c, d] and for some constant
ζ ∈ (c, x), we have

y(x) =
1

ω(x)

(Cc+Dσϕ;ω

)m+1

y(ζ)
∞∑
`=0

ς`(ϕ(x)− ϕ(c))`+σ(m+1)

Γ(1 + `+ σ(m+ 1))

+ ω(c)
m∑
`=0

(
C
c+Dσϕ;ω

)`
y(c)

(ϕ(x)− ϕ(c))`σ

Γ(1 + `σ)

 .

Proof. For different values of `, we find the difference between the given function, by using
the semigroup property, we get(

RL
c+ Iσϕ;ω

)` (
C
c+Dσϕ;ω

)`
y(x)−

(
RL
c+ Iσϕ;ω

)`+1 (
C
c+Dσϕ;ω

)`+1

y(x)

=RL
c+ I`σϕ;ω

[(
C
c+Dσϕ;ω

)`
y(x)− RL

c+ Iσϕ;ω
C
c+Dσϕ;ω

((
C
c+Dσϕ;ω

)`
y(x)

)]
.
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By using Proposition 4.2.10, we get(
RL
c+ Iσϕ;ω

)` (
C
c+Dσϕ;ω

)`
y(x)−

(
RL
c+ Iσϕ;ω

)`+1 (
C
c+Dσϕ;ω

)`+1

y(x)

= RL
c+ I`σϕ;ω

[(
C
c+Dσϕ;ω

)`
y(x)−

{(
C
c+Dσϕ;ω

)`
y(x)− ω(c)

ω(x)

(
C
c+Dσϕ;ω

)`
y(c)

}]

= ω(c)
(
C
c+Dσϕ;ω

)`
y(c) · RLc+ I`σϕ;ω

(
1

ω(x)

)
= ω(c)

(
C
c+Dσϕ;ω

)`
y(c) · 1

ω(x)
RL
c+ I`σϕ(x)(1)

=
(
C
c+Dσϕ;ω

)`
y(c) · ω(c)

ω(x)

(
ϕ(x)− ϕ(c)`σ

Γ(`σ + 1)

)
.

Summing this result over ` from 0 to m, we obtain

y(x)−
(
RL
c+ Iσϕ;ω

)m+1 (
C
c+Dσϕ;ω

)m+1

y(x) =
ω(c)

ω(x)

m∑
`=0

(
C
c+Dσϕ;ω

)`
y(c) · (ϕ(x)− ϕ(c))`σ

Γ(1 + `σ)
.

(4.13)

By using the MVT (4.10), we get

RL
c+ Iσ(m+1)

ϕ;ω

(
C
c+Dσϕ;ω

)m+1

y(x) =
(
C
c+Dσϕ;ω

)m+1

y(ζ)

∞∑
`=0

ς`
Γ(`+ σ(m+ 1) + 1)

(ϕ(x)− ϕ(c))`+σ(m+1)

ω(x)
. (4.14)

Substituting (4.14) in (4.13), we obtain

y(x) =
(
C
c+Dσϕ;ω

)m+1

y(ζ)
∞∑
`=0

ς`
Γ(`+ σ(m+ 1) + 1)

(ϕ(x)− ϕ(c))`+σ(m+1)

ω(x)

+
ω(c)

ω(x)

m∑
`=0

(
C
c+Dσϕ;ω

)`
y(c)

(ϕ(x)− ϕ(c))`σ

Γ(`σ + 1)
.

Thus, we obtain the desired result.

Theorem 4.4.2. Assume that m ∈ N, 0 < σ < 1 and y be any function such that RLc+ D`σϕ;ωy

exists and is continuous ∀ ` = 0, 1, 2, . . . ,m+ 1. Then, ∀ x ∈ [c, d] and for some ζ ∈ (c, d),
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we have

y(x) =
1

ω(x)

(RLc+ Dσϕ;ω

)m+1

y(ζ)
∞∑
`=0

ς`(ϕ(x)− ϕ(c))`+σ(m+1)

Γ(`+ σ(m+ 1) + 1)

+
m∑
`=0

(
ϕ(x)− ϕ(c)

)σ(`+1)−1

Γ(σ(`+ 1))
ω(c) lim

x→c+
RL
c+ I1−σ

ϕ;ω

(
RL
c+ Dσϕ;ω

)`
y(x)

 .

Proof. Initially, we find the difference between the function for different values of `, by
using semi-group property, we get(

RL
c+ Iσϕ;ω

)` (
RL
c+ Dσϕ;ω

)`
y(x)−

(
RL
c+ Iσϕ;ω

)`+1 (
RL
c+ Dσϕ;ω

)`+1

y(x)

= RL
c+ I`σϕ;ω

[(
RL
c+ Dσϕ;ω

)`
y(x)− RL

c+ Iσϕ;ω
RL
c+ Dσϕ;ω

((
RL
c+ Dσϕ;ω

)`
y(x)

)]
.

By using Proposition 4.2.10, we get(
RL
c+ Iσϕ;ω

)` (
RL
c+ Dσϕ;ω

)`
y(x)−

(
RL
c+ Iσϕ;ω

)`+1 (
RL
c+ Dσϕ;ω

)`+1

y(x)

=RL
c+ I`σϕ;ω

[(
RL
c+ Dσϕ;ω

)`
y(x)

−

(RLc+ Dσϕ;ω

)`
y(x)−

(
ϕ(x)− ϕ(c)

)σ−1

Γ(σ)
· ω(c)

ω(x)
· lim
x→c+

RL
c+ I1−σ

ϕ;ω

(
RL
c+ Dσϕ;ω

)`
y(x)




=RL
c+ I`σϕ;ω

(ϕ(x)− ϕ(c)
)σ−1

Γ(σ)
.
ω(c)

ω(x)
. lim
x→c+

RL
c+ I1−σ

ϕ;ω

(
RL
c+ Dσϕ;ω

)`
y(x)


=RL
c+ I`σϕ;ω

(ϕ(x)− ϕ(c)
)σ−1

ω(x)

 ω(c)

Γ(σ)
· lim
x→c+

RL
c+ I1−σ

ϕ;ω

(
RL
c+ Dσϕ;ω

)`
y(x)

=

(ϕ(x)− ϕ(c)
)σ(`+1)−1

ω(x)Γ(σ(`+ 1))

ω(c) · lim
x→c+

RL
c+ I1−σ

ϕ;ω

(
RL
c+ Dσϕ;ω

)`
y(x).

Summing this result over ` from 0 to m, we get

y(x)−
(
RL
c+ Iσϕ;ω

)m+1 (
RL
c+ Dσϕ;ω

)m+1

y(x)

=
m∑
`=0

(
ϕ(x)− ϕ(c

)σ(`+1)−1

ω(x)Γ(σ(`+ 1))
ω(c) lim

x→c+
RL
c+ I1−σ

ϕ;ω

(
RL
c+ Dσϕ;ω

)`
y(x). (4.15)
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By using (4.10), we get(
RL
c+ Iσϕ;ω

)m+1 (
RL
c+ Dσϕ;ω

)m+1

y(x) =
(
RL
c+ Dσϕ;ω

)m+1

y(ζ)
∞∑
`=0

ς`(ϕ(x)− ϕ(c))σ(m+1)+`

ω(x)Γ(`+ σ(m+ 1) + 1)
.

(4.16)

Using (4.16) in (4.15), we get

y(x) =
(
RL
c+ Dσϕ;ω

)m+1

y(ζ)
∞∑
`=0

ς`(ϕ(x)− ϕ(c))`+σ(m+1)

ω(x)Γ(`+ σ(m+ 1) + 1)

+
m∑
`=0

(
ϕ(x)− ϕ(c)

)σ(`+1)−1

ω(x)Γ(σ(`+ 1))
ω(c) lim

x→c+
RL
c+ I1−σ

ϕ;ω

(
RL
c+ Dσϕ;ω

)`
y(x),

which is the required result.

Remark 4. In this section, we have proved Taylor’s theorem for WFOs with respect to
functions, which represents the generalization of both classical Taylor’s theorem and the
fractional Taylor’s theorem. When we consider σ = 1 with ϕ(x) = x and the weight function
ω(x) = 1, the theorems reduces to the classical Taylor’s theorem. This reduction confirms
the correctness of our generalization, as it aligns with the well-established classical result. By
setting ω(x) = 1 and ϕ(x) = x, the theorem reduces to the Taylor’s theorem for fractional
operators. When ω(x) = 1, the theorem simplifies to the ϕ–fractional operators. Moreover,
considering ω(x) = eλϕ(x), the theorem corresponds to the ϕ-tempered fractional operators,
demonstrating the inclusion of tempered fractional calculus as yet another special cases.
These reductions illustrate the correctness of our generalization, as it seamlessly integrates
and extends existing mathematical frameworks.

4.5 Integration by parts

Fractional integration by parts generalizes the classical integration by parts formula to han-
dle fractional derivatives and integrals. In classical calculus, integration by parts simplifies
the integral of a product of functions by integrating one function and differentiating the
other. Fractional integration by parts extends this concept to fractional orders, allowing for
a more flexible approach in modeling complex systems. Love and Young [64] obtained the
fractional generalization of integration by parts for Lebesgue integrals, Riemann–Stieltjes
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integrals, and generalized Stieltjis integrals. Fractional and generalized fractional versions
of integration by parts formulae are commonly used in literature. They have a significant im-
pact on the generalized fractional variational formulation [8, 39, 60, 61]. While Agrawal [32]
has already covered the result for weighted RL fractional operators with respect to functions
and their applications. In this section we revisit the theorem and provide a comprehensive
proof for both weighted RL and CFD with respect to functions. In this section, we derive
the results of integration by parts for Cc+Dσϕ;ω and RL

c+ Dσϕ;ω in Theorem 4.5.2 and 4.5.3, respec-
tively.

Lemma 4.5.1. Let σ > 0 and ω 6= 0 be a continuous function with an increasing positive
monotone function ϕ, on a closed interval [c, d] ⊂ R and r ≥ 1, q ≥ 1 with 1

r
+ 1

q
≤

1 + σ (r 6= 1, q 6= 1 in case of 1
r

+ 1
q

= 1 + σ). If u ∈ Lrϕ;ω(c, d) and v ∈ Lqϕ;ω(c, d), then the
following relation holds∫ d

c

ϕ′(x)u(x) RLc+ Iσϕ;ωv(x) dx =

∫ d

c

ϕ′(x)v(x)RLϕ Iσd−;ωu(x) dx. (4.17)

Proof. Using the Definition 4.2.2 in (4.17), we obtain∫ d

c

u(x)ϕ′(x)RLc+ Iσϕ;ωv(x) dx =

∫ d

c

ϕ′(x)u(x)

Γ(σ)ω(x)

∫ x

c

ω(s)v(s)ϕ′(s)

(ϕ(x)− ϕ(s))1−σ ds dx.

We change the order of integration by using Fubini’s theorem∫ d

c

ϕ′(x)u(x)RLc+ Iσϕ;ωv(x) dx =

∫ d

c

ϕ′(s)v(s)
ω(s)

Γ(σ)

∫ d

s

u(x)ϕ′(x)

ω(x)(ϕ(x)− ϕ(s))1−σ dx ds

=

∫ d

c

ϕ′(s)v(s)RLϕ Iσd−;ωu(s)ds =

∫ d

c

ϕ′(x)v(x)RLϕ Iσd−;ωu(x) dx.

This completes the proof.

When we consider ω(x) = 1, then the above relation reduces to the ψ–fractional integrals
[60].

Remark 5. [33] The space Lrϕ;ω(c, d), 1 ≤ r ≤ ∞ is the set of all weighted Lebesgue
measurable function u defined on a closed interval [c, d] for which ‖u‖Lrϕ,w(c,d) < ∞. One
should observe that u ∈ Lrϕ;ω(c, d), if and only if ω(x)u(x)(ϕ′(x))

1
r ∈ Lr(c, d) for 1 ≤ r <

∞ and u ∈ L∞ϕ;ω(c, d), if and only if ω(x)u(x)(ϕ′(x))
1
r ∈ L∞(c, d).
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Theorem 4.5.2. Assume that σ > 0, n = bσc + 1 with an increasing positive monotone
function ϕ on closed interval [c, d], and 1 ≤ r ≤ ∞. If u ∈ Lrϕ;ω(c, d) and v ∈ ACn

ϕ;ω[c, d],
then the following integration by parts formula for Cc+Dµϕ;ω holds∫ d

c

u(x)Cc+Dσϕ;ωv(x) dx =

∫ d

c

ϕ′(x)v(x)RLϕ Dσd−;ω

(
u(x)

ϕ′(x)

)
dx

+

n−1∑
j=0

ϕDjd−;ωϕI
n−σ
d−;ω

(
u(x)

ϕ′(x)

)
c+Dn−j−1

ϕ;ω v(x)

d
c

,

∫ d

c

u(x)CϕDσd−;ωv(x) dx =

∫ d

c

ϕ′(x)v(x)RLc+ Dσϕ;ω

(
u(x)

ϕ′(x)

)
dx

+

n−1∑
j=0

(−1)n−jc+Djϕ;ωc+In−σϕ;ω

(
u(x)

ϕ′(x)

)
ϕDn−j−1

d−;ω v(x)

d
c

,

where c+Dϕ;ω(·) =
(

1
ϕ′ω
· d
dx
· ω
)

(·) and ϕDd−;ω(·) =
(
ω
ϕ′
· d
dx

1
ω

)
(·).

Proof. By using Definition 4.2.4, we get∫ d

c

u(x)Cc+Dσϕ;ωv(x) dx =

∫ d

c

u(x)RLc+ In−σϕ;ω c+Dnϕ;ωv(x) dx

=

∫ d

c

ϕ′(x)
u(x)

ϕ′(x)
· RLc+ In−σϕ;ω

(
c+Dnϕ;ωv(x)

)
dx.

By using Lemma 4.5.1, we have∫ d

c

u(x)Cc+Dσϕ;ωv(x) dx =

∫ d

c

ϕ′(x)c+Dnϕ;ωv(x) · RLϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx

=

∫ d

c

ϕ′(x)

(
1

ϕ′(x)ω(x)

d

dx
ω(x)

)
c+Dn−1

ϕ;ω v(x) RLϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx

=

∫ d

c

d

dx

(
ω(x)c+Dn−1

ϕ;ω v(x)
)
· 1

ω(x)
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx.
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Integrating by parts, we get

∫ d

c

u(x)Cc+Dσϕ;ωv(x) dx =

[
1

ω(x)
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· ω(x)c+Dn−1

ϕ;ω v(x)

]d
c

−
∫ d

c

ω(x)c+Dn−1
ϕ;ω v(x) · d

dx

1

ω(x)
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx

=

[
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−1

ϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)c+Dn−1
ϕ;ω v(x) ·

(
− ω(x)

ϕ′(x)

d

dx

1

ω(x)

)
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx

=

[
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−1

ϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)c+Dn−1
ϕ;ω v(x) · ϕD1

d−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx

=

[
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−1

ϕ;ω v(x)

]d
c

+

∫ d

c

d

dx

(
ω(x)c+Dn−2

ϕ;ω v(x)
)
· 1

ω(x)
ϕD1

d−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx.

Again integrating by parts, we get

∫ d

c

u(x)Cc+Dσϕ;ωv(x) dx =

[
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−1

ϕ;ω v(x)

]d
c

+

[
1

ω(x)
ϕD1

d−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· ω(x)c+Dn−2

ϕ;ω v(x)

]d
c

−
∫ d

c

ω(x)c+Dn−2
ϕ;ω v(x) · d

dx

(
1

ω(x)
ϕD1

d−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

))
dx
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=

[
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−1

ϕ;ω v(x)

]d
c

+

[
ϕD1

d−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−2

ϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)c+Dn−2
ϕ;ω v(x) ·

(
− ω(x)

ϕ′(x)

d

dx

1

ω(x)

)
ϕD1

d−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx

=

[
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−1

ϕ;ω v(x)

]d
c

+

[
ϕD1

d−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−2

ϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)c+Dn−2
ϕ;ω v(x) · ϕD2

d−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
dx.

After applying integration by parts n times, we obtain the following result

∫ d

c

u(x)Cc+Dσϕ;ωv(x) dx =

n−1∑
j=0

ϕDjd−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−j−1

ϕ;ω v(x)

d
c

+

∫ d

c

ϕ′(x)v(x)ϕDnd−;ωϕIn−σd−;ω

(
u(x)

ϕ′(x)

)
dx

=

n−1∑
j=0

ϕDjd−;ω
RL
ϕ In−σd−;ω

(
u(x)

ϕ′(x)

)
· c+Dn−j−1

ϕ;ω v(x)

d
c

+

∫ d

c

ϕ′(x)v(x) RLϕ Dσd−;ω

(
u(x)

ϕ′(x)

)
dx,

which is required. Similarly, the proof of the second part of the theorem follows steps similar
to those of the first part; therefore, it is not explicitly stated here.

If we consider ω(x) = 1, the result reduces to the integration by parts formula for the
C
c+Dσϕ [39].

Theorem 4.5.3. Let σ > 0, n = bσc + 1 with an increasing positive monotone function ϕ
on a closed interval [c, d] and 1 ≤ p ≤ ∞. If u ∈ ACn

ϕ;ω[c, d] and v ∈ Lrϕ;w(c, d), then the

50



following integration by parts for RLc+ Dσϕ;w holds∫ d

c

u(x)RLc+ Dσϕ;ωv(x) dx =

∫ d

c

ϕ′(x)v(x) CϕDσd−;ω

(
u(x)

ϕ′(x)

)
dx

+
n−1∑
j=0

[
ϕDjd−;ω

(
u(x)

ϕ′(x)

)
RL
c+ Ij−σ+1

ϕ;ω v(x)

]d
c

,

=
n−1∑
j=0

[
(−1)n−jc+Djϕ;ω

(
u(x)

ϕ′(x)

)
RL
ϕ I

j−σ+1
d−;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)v(x)Cc+Dσϕ;ω

(
u(x)

ϕ′(x)

)
dx.

Proof. Starting with the definition of RLDσϕ;ω∫ d

c

u(x)RLc+ Dσϕ;ωv(x) dx =

∫ d

c

u(x)c+Dnϕ;ω
RL
c+ In−σϕ;ω v(x) dx

=

∫ d

c

(
u(x)

ϕ′(x)ω(x)

)
· d
dx
ω(x)

(
1

ϕ′(x)ω(x)

d

dx
ω(x)

)n−1
RL
c+ In−σϕ;ω v(x) dx.

Integrating by parts, we get

∫ d

c

u(x)RLϕ Dσd−;ωv(x) dx =

[(
u(x)

ϕ′(x)ω(x)

)
ω(x)

(
1

ϕ′(x)ω(x)

d

dx
ω(x)

)n−1
RL
c+ In−σϕ;ω v(x)

]d
c

−
∫ d

c

ω(x)

(
1

ϕ′(x)ω(x)

d

dx
ω(x)

)n−1
RL
c+ In−σϕ;ω v(x) ·

(
d

dx

(
u(x)

ϕ′(x)ω(x)

))
dx

=

[(
u(x)

ϕ′(x)

)(
1

ϕ′(x)ω(x)

d

dx
ω(x)

)n−1
RL
c+ In−σϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)

(
1

ϕ′(x)ω(x)

d

dx
ω(x)

)n−1
RL
c+ In−σϕ;ω v(x) ·

(
− ω(x)

ϕ′(x)

d

dx

1

ω(x)

)(
u(x)

ϕ′(x)

)
dx
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=

[(
u(x)

ϕ′(x)

)
c+Dn−1

ϕ;ω
RL
c+ In−σϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)c+Dn−1
ϕ;ω

RL
c+ In−σϕ;ω v(x)ϕD1

d−;ω

(
u(x)

ϕ′(x)

)
dx

=

[(
u(x)

ϕ′(x)

)
c+Dn−1

ϕ;ω
RL
c+ In−σϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)

(
1

ϕ′(x)ω(x)

d

dx
ω(x)

)
c+Dn−2

ϕ;ω
RL
c+ In−σϕ;ω v(x)ϕD1

d−;ω

(
u(x)

ϕ′(x)

)
dx

=

[(
u(x)

ϕ′(x)

)
c+Dn−1

ϕ;ω
RL
c+ In−σϕ;ω v(x)

]d
c

+

∫ d

c

(
d

dx
ω(x)c+Dn−2

ϕ;ω
RL
c+ In−σϕ;ω v(x)

)
· 1

ω(x)
ϕD1

d−;ω

(
u(x)

ϕ′(x)

)
dx.

Again applying integrating by parts, we get

=

[(
u(x)

ϕ′(x)

)
c+Dn−1

ϕ;ω
RL
c+ In−σϕ;ω v(x)

]d
c

+

[
dD1

ϕ;ω

(
u(x)

ϕ′(x)

)
c+Dn−2

ϕ;ω
RL
c+ In−σϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)c+Dn−2
ϕ;ω

RL
c+ In−σϕ;ω v(x)ϕD2

d−;ω

(
u(x)

ϕ′(x)

)
dx.

Applying integration by parts n times, we get∫ d

c

u(x)RLϕ Dσd−;ωv(x) dx =
n−1∑
j=0

[
dDjϕ;ω

(
u(x)

ϕ′(x)

)
c+Dn−j−1

ϕ;ω
RL
c+ In−σϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)RLc+ In−σϕ;ω v(x)ϕDnd−;ω

(
u(x)

ϕ′(x)

)
dx.

Using Lemma 4.5.1 on the integral from the right–hand side∫ d

c

u(x)RLϕ Dσd−;ωv(x) dx =
n−1∑
j=0

[
ϕDjd−;ω

(
u(x)

ϕ′(x)

)
Dn−j−1
ϕ;ω

RL
c+ In−σϕ;ω v(x)

]d
c

+

∫ d

c

ϕ′(x)v(x) RLϕ In−σd−;ω ϕDnd−;ω

(
u(x)

ϕ′(x)

)
dx

=
n−1∑
j=0

[
ϕDjd−;ω

(
u(x)

ϕ′(x)

)
RL
c+ Ij−σ+1

ϕ;ω v(x) dx

]d
c

+

∫ d

c

v(x)CϕDσd−;ω

(
u(x)

ϕ′(x)

)
ϕ′(x) dx.
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which completes the proof. Similarly, the proof of the second part of this theorem follows a
similar approach as the proof of the first part.

Remark 6. When the fractional order σ = 1, ω = 1, and ϕ(x) = x, the fractional integration
by parts formula simplifies to the classical result. This demonstrates how fractional calculus
builds on and extends traditional methods. Additionally, setting ω = 1 and ϕ(x) = x reduces
the formulae to standard fractional operators [8], while considering ω = 1 aligns the formula
with ϕ–fractional operators [39]. This unified approach ensures that fractional integration
by parts encompasses classical principles and provides a broader framework for handling
non-integer orders.

4.6 Leibniz’ rule

Leibniz’ rule, also known as the product rule in classical calculus, provides a method for
differentiating the product of two functions. In the setting of fractional operators, a rich lit-
erature on Leibniz’ rule can be found in [9]. In this section, we focus on the generalized
Leibniz rule already discussed in [28] but present a different approach utilizing conjugation
relations here. After that, we set up the proof for weighted Leibniz’ rule for integer orders,
subsequently extending it to the generalized case that is RLc+ Dσϕ;w. We will prove Leibniz’ rule
for RLc+ Dσϕ in Proposition 4.6.1, weighted derivatives of integer order in Proposition 4.6.2, and
RL
c+ Dσϕ;ω in Proposition 4.6.3.

Leibniz rule for RL fractional derivatives

Let σ > 0 and assume that u and v are analytic functions on (a− h, a+ h)with some h > 0.
Then,

RL
c+ Dσx(u(x)v(x)) =

bσc∑
`=0

(
σ

`

)
c+D`u(x)RLc+ Dσ−`x v(x) +

∞∑
`=bσc+1

(
σ

`

)
D`u(x)RLc+ I`−σx v(x),

(4.18)
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where ` is non-negative integer. Since Iσ = D−σ we can write relation (4.18) as,

RL
c+ Dσx(u(x)v(x)) =

bσc∑
`=0

(
σ

`

)
c+
D`u(x)RLc+ Dσ−`x v(x) +

∞∑
`=bσc+1

(
σ

`

)
c+
D`u(x)RLc+ Dσ−`x v(x)

=

 bσc∑
`=0

+
∞∑

`=bσc+1

(σ
`

)
c+
D`u(x)RLc+ Dσ−`x v(x)

=
∞∑
`=0

(
σ

`

)
D`u(x)RLc+ Dσ−`x v(x). (4.19)

Proposition 4.6.1. Assume that u and v are analytic functions on [c, d] with an increasing
monotonic positive function ϕ, which is also an analytic function on [c, d], then for σ > 0,
we have

RL
c+ Dσϕ(u(x)v(x)) =

∞∑
`=0

(
σ

`

)
c+D`ϕ(u(x))RLc+ Dσ−`ϕ (v(x)).

Proof. We use the conjugation relations to prove Leibniz’ rule for RLc+ Dσϕ. To begin, we apply
Q−1
ϕ to the product of functions u and v, as follows

Q−1
ϕ (u(x)v(x)) = u(ϕ−1(x))v(ϕ−1(x)).

Applying RL
ϕ(c+)Dσx on both sides, and by using the Leibniz’ rule for RL fractional derivatives

[9], we obtain

RL
ϕ(c+)Dσx ◦ Q−1

ϕ (u(x)v(x)) = RL
ϕ(c+)Dσx(u(ϕ−1(x))v(ϕ−1(x)))

=
∞∑
`=0

(
σ

`

)
ϕ(c+)D`xu(ϕ−1(x))RLϕ(c+)Dσ−`x v(ϕ−1(x)).

Now applying Qϕ on both sides

Qϕ ◦ RLϕ(c+)Dσx ◦ Q−1
ϕ (u(x)v(x)) = Qϕ

 ∞∑
`=0

(
σ

`

)
ϕ(c+)D`xu(ϕ−1(x))RLϕ(c+)Dσ−`x v(ϕ−1(x))


=
∞∑
`=0

(
σ

`

)(
Qϕϕ(c+)D`xu(ϕ−1(x))

)(
QϕRLϕ(c+)Dσ−`x v(ϕ−1(x))

)
=
∞∑
`=0

(
σ

`

)(
Qϕϕ(c+)D`xQ−1

ϕ

)
u(x)

(
QϕRLϕ(c+)Dσ−`x Q−1

ϕ

)
v(x)

RL
c+ Dσϕ(x)(u(x)v(x)) =

∞∑
`=0

(
σ

`

)
c+D`ϕ(u(x))RLc+ Dσ−`ϕ (v(x)),
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and this completes the proof.

Proposition 4.6.2. Let u and v be analytic functions with weight function ω which is also
analytic on the interval [c, d], then for n ∈ N and x ∈ (c, d), we have the classical Leibniz’
rule for weighted derivatives, as follows

Dnω
(
u(x)v(x)

)
=

n∑
`=0

(
n

`

)
Dn−`ω v(x)u(`)(x), (4.20)

where Dω =
(
d
dx

+ ω′

ω

)
and u(`) = d`

dx`
u.

Proof. We will prove this result by induction.
Basic step: When n = 1, (4.20) becomes

D1
ω

(
u(x)v(x)

)
=

(
d

dx
+
ω′(x)

ω(x)

)(
u(x)v(x)

)
=

d

dx

(
u(x)v(x)

)
+
ω′(x)

ω(x)
u(x)v(x)

= v(x)(u′(x)) + u(x)v′(x) +
ω′(x)

ω(x)
u(x)v(x)

= v(x)(u′(x)) + u(x)

(
d

dx
+
ω′(x)

ω(x)

)
v(x)

= u(x)Dω
(
v(x)

)
+ v(x)u′(x) =

1∑
`=0

(
n

`

)
D1−`
ω v(x)(u(`)(x)).

Thus (4.20) is true for n = 1. Now assume that the (4.20) is true for n = m

Dmω
(
u(x)v(x)

)
=

m∑
`=0

(
m

`

)
Dm−`ω v(x)u(`)(x).

For n = m+ 1, we have

Dm+1
ω

(
u(x)v(x)

)
= D1

ω

(
Dmω

(
u(x)v(x)

))
= D1

ω

 m∑
`=0

(
m

`

)
Dm−`ω v(x)u(`)(x)


=

m∑
`=0

(
m

`

)
D1
ω

(
Dm−`ω v(x)u(`)(x)

)
.

Since the formula holds for n = 1, thus, we obtain

Dm+1
ω

(
u(x)v(x)

)
=

m∑
`=0

(
m

`

)(
u(`)(x)Dm−`+1

ω v(x) +Dm−`ω v(x)u(`+1)(x)
)
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=
m∑
`=0

(
m

`

)
u(`)(x)Dm−`+1

ω v(x) +
m∑
`=0

(
m

`

)
Dm−`ω v(x)u(`+1)(x)

=
m∑
`=0

(
m

`

)
u(`)(x)Dm−`+1

ω v(x) +
m+1∑
`=1

(
m

`− 1

)
Dm−`+1
ω v(x)u(`)(x)

=u(x)Dm+1
ω v(x) +

m∑
`=1

(
m

`

)
u(`)(x)Dm−`+1

ω v(x) +
m+1∑
`=1

(
m

`− 1

)
Dm−`+1
ω v(x)u(`)(x)

=u(x)Dm+1
ω v(x) +

m∑
`=1

(
m

`

)
u(`)(x)Dm−`+1

ω v(x)

+
m∑
`=1

(
m

`− 1

)
Dm−`+1
ω v(x)u(`)(x) +

(
m

m

)
v(x)u(m+1)(x)

=u(x)Dm+1
ω v(x) +

m∑
`=1

((
m

`

)
+

(
m

`− 1

))
Dm−`+1
ω v(x)u(`)(x) + v(x)u(m+1)(x).

Using relation (
m+ 1

`

)
+

(
m

`− 1

)
=

(
m+ 1

`

)
,

we get

Dm+1
ω

(
u(x)v(x)

)
= u(x)Dm+1

ω v(x) + v(x)u(m+1)(x) +
m∑
`=1

(
m+ 1

`

)
Dm−`+1
ω v(x)u(`)(x)

=
m+1∑
`=0

(
m+ 1

`

)
Dm−`+1
ω v(x)u(`)(x).

Hence, the result holds for all n ∈ N.

The next result is Leibniz’ rule for the RL
c+ Dσϕ;ω, which will be proved by using conjugation

relations.

Proposition 4.6.3. Assume the hypothesis of Proposition 4.6.1. Let ω be an analytic function
on [c, d], then the following formulae hold true

RL
c+ Dσϕ;ω(u(x)v(x)) =

∞∑
`=0

(
σ

`

)
c+D`ϕ;ω(u(x))RLc+ Dσ−`ϕ (v(x)), (4.21)

RL
c+ Dσϕ;ω(u(x)v(x)) =

∞∑
`=0

(
σ

`

)
c+D`ϕ(u(x))RLc+ Dσ−`ϕ;ω (v(x)). (4.22)
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Proof. We will prove Leibniz’ rule for WFOs with respect to functions by using conjugation
relations

RL
c+ Dσϕ;ω(u(x)v(x)) =M−1

ω ◦ RLc+ Dσϕ ◦Mω(u(x)v(x)).

ApplyingMω to the product of u and v, as follows

Mω(u(x)v(x)) = ω(x)u(x)v(x).

Now applying RL
c+ Dσϕ on both sides, then by Proposition 4.6.1, we get

RL
c+ DσϕMω(u(x)v(x)) = RL

c+ Dσϕ(ω(x)u(x)v(x))

=
∞∑
`=0

(
σ

`

)
c+D`ϕ(ω(x)u(x))RLc+ Dσ−`ϕ (v(x)).

ApplyingM−1
ω on both sides

M−1
ω

(
RL
c+ DσϕMω

(
u(x)v(x)

))
=M−1

ω

 ∞∑
`=0

(
σ

`

)
c+D`ϕ(ω(x)u(x))RLc+ Dσ−`ϕ (v(x))


=
∞∑
`=0

(
σ

`

)(
M−1

ω(x)c
+D`ϕMω(x)

)
u(x)RLc+ Dσ−`ϕ (v(x))

=
∞∑
`=0

(
σ

`

)
c+D`ϕ;ω(u(x))RLc+ Dσ−`ϕ (v(x)).

Two formulae are presented in this proposition, both of which are nearly identical, differing
only in the way of multiplication of weight function. Using a similar approach of (4.21), we
can prove the (4.22) by multiplying the weight function ω with v.

Remark 7. If we consider ω = 1, ϕ(x) = x, the formula reduces to the RL fractional
operators. In the context of the Leibniz formula for RL operators, the binomial coefficient(
σ
`

)
is zero for ` > σ due to the definition of binomial coefficients, which is defined as(

σ

`

)
=

Γ(σ + 1)

Γ(σ − `+ 1)Γ(`+ 1)

For σ is an integer and ` > σ, the Gamma function Γ(σ − ` + 1) becomes undefined (since
it involves the Gamma of a negative number), which by convention makes

(
σ
`

)
= 0. This

property ensures that when ` > σ, the terms in the series with
(
σ
`

)
automatically vanish,

simplifying the expression.
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This property is significant because it allows the weighted RL fractional Leibniz for-
mula with respect to functio ϕ to the classical product rule when σ is an integer, ω = 1

and ϕ(x) = x eliminating the additional terms introduced by fractional differentiation. This
illustrates that while the Leibniz rule for weighted RL operators with respect to functions in-
cludes these extra terms when using fractional orders, they naturally disappear when dealing
with integer orders, maintaining consistency with classical calculus. This seamless transi-
tion is essential in fractional calculus, as it provides a unified approach to understanding and
applying differentiation across different contexts.

4.7 Existence and uniqueness

In this section, we develop the existence and uniqueness solution for IVP of weighted Caputo
fractional differential equation with respect to functions within the framework of Sobolev
space [65–67]. Our approach, motivated by the work of [45], studied the solution of the
IVP of Cc+Dσϕ;ω without requiring the continuity for a function with respect to an independent
variable x. By building upon the equivalence with an integral equation under appropriate
conditions, we prove an existence theorem in the space Wm,r

ϕ;ω (c, d). Particularly, our result
allows the weak singularities and discontinuities. Before presenting the main results, we will
define a function space and examine some additional results, which will be required to prove
our main results.

Definition 4.7.1. Fixed point theorem[9]. Let (X , d) be a complete metric space. Assume
that the mapping T : X → X satisfies the inequality

d(T u, T v) ≤ σd(u, v), for every u, v ∈ X , 0 ≤ σ < 1,

Then, mapping T has a unique fixed point.

Definition 4.7.2. Schauder’s fixed point theorem [9]. Assume that (X , d) be a complete
metric space and U be a closed convex subset of X . Assume that, mapping T ;U → U such
that the set having fixed point T u = u is aa relatively compact in X . Then T has at least
one fixed point.

Definition 4.7.3. Relatively Compact [9]. Assume that (X , d) be a metric space and Y ⊂ X .
Then, the set Y is relatively compact in X , if the closure of Y is a compact subset (Y is said
to be compact if and only if every class of open sets which covers Y has finite subclass which
also covers Y ) of X .
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Definition 4.7.4. Let y, ω ∈ Lrϕ;ω(c, d) with ω 6= 0, φ be a test function (smooth function
with compact support that is used to define weak derivatives) [54] with an increasing positive
monotone function ϕ then, Dϕ;ω( y

w
) is called weighted weak derivative of y, if∫ d

c

Dϕ;ω

(
φ(x)

ω(x)

)
y(x)ω(x)ϕ′(x) dx = −

∫ d

c

Dϕ;ω

(
y(x)

ω(x)

)
φ(x)ω(x)ϕ′(x) dx, (4.23)

where Dϕ;ωf(x) = 1
ϕ′(x)ω(x)

· d
dx

(ω(x)f(x)).

Definition 4.7.4 introduces the concept of weak derivatives in the context of weighted
derivatives with respect to functions. They have a significant role in the study of PDEs. Since
not all functions have classical derivatives, weak derivatives provide a necessary extension,
enabling us to define a notion of derivative for functions that may not be differentiable in the
classical sense. In the above definition, we consider φ to be a test function, which means that
φ is a smooth function with compact support (infinitely differentiable and vanishes outside
of a compact set). If we consider ϕ(x) = x, ω(x) = 1, then the definition coincides with the
usual definition of weak derivatives in [68, 69].

Definition 4.7.5. Letm be a non-negative integer, 1 ≤ r <∞, and ϕ be a strictly increasing
function in the interval [c, d]. Then the generalized weighted Sobolev space is defined by

Wm,r
ϕ;ω (c, d) =

{
y ∈ Lrϕ;ω(c, d) : Dmϕ;ωy ∈ Lrϕ;ω(c, d),m = 1, 2, 3, . . .

}
.

The norm of this space is defined by

‖y‖Wm,r
ϕ;ω (c,d) =

 m∑
i=1

‖Diϕ;ωy‖Lrϕ;ω(c,d)

 1
r

, (4.24)

for 1 ≤ r <∞.

This space is a generalization of the classical Sobolev space [65, 66], where the deriva-
tives are understood in weighted ordinary derivatives. The weighted Sobolev space is essen-
tial for subsequent proofs of existence and uniqueness results for weighted Caputo fractional
differential equations with respect to functions.

Lemma 4.7.6. Let function y ∈ Lrϕ;ω(c, d), r ≥ 1. Then c+Dϕ;ω c+Iϕ;ωy = y and c+Iϕ;ωy ∈
W 1,r
ϕ;ω(c, d).
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Proof. Using the definition of c+Dϕ;ω, c+Iϕ;ω and Dirichlet formula, we get∫ d

c

ω(x)2ϕ′(x)c+Dϕ;ω

(
φ(x)

ω(x)

)
c+Iϕ;ωy(x) dx =

∫ d

c

d

dt
φ(x)

∫ x

c

ω(s)y(s)ϕ′(s) ds dx

=

∫ d

c

∫ d

s

d

dx
φ(x)ω(s)y(s)ϕ′(s) dx ds =

∫ d

c

∫ d

x

d

ds
φ(s)ω(x)y(x)ϕ′(x) ds dx

=

∫ d

c

ω(x)y(x)ϕ′(x)(φ(d)− φ(x)) dx

= −
∫ d

c

ω(x)y(x)φ(x)ϕ′(x) dx, φ ∈ C∞ċ (c, d), so φ(d) = 0

thus, we have c+Dϕ;ωc+Iϕ;ωy = y in a weak sense. Therefore, c+Iϕ;ωy ∈ W 1,r
ϕ;ω(c, d).

Lemma 4.7.7. Let 0 < σ < 1, y ∈ Lrϕ;ω(c, d), where ϕ is an increasing positive monotonic
function and r ≥ 1. Then, we have RL

a Dσϕ;ω
RL
c+ Iσϕ;ωy = y.

Proof. By the definition of RLc+ Dσϕ;ω together with semigroup property and Lemma 4.7.6, we
get

RL
c+ Dσϕ;ω

RL
c+ Iσϕ;ωy(x) = c+Dϕ;ω

RL
c+ I1−σ

ϕ;ω
RL
c+ Iσϕ;ωy(x) = c+Dϕ;ω c+Iϕ;ωy(x) = y(x).

Lemma 4.7.8. Let 0 < σ < 1, y ∈ Lrϕ;ω(c, d), where ϕ be an increasing positive monotonic
function and r ≥ 1. Then C

c+Dσϕ;ω
RL
c+ Iσϕ;ωy = y.

Proof. By the definition of Cc+Dσϕ;ω and semigroup property, we get

RL
c+ Iσϕ;ω

C
c+Dσϕ;ω

RL
c+ Iσϕ;ωy(x) = RL

c+ Iσϕ;ω
RL
c+ I1−σ

ϕ;ω c+Dϕ;ω
RL
c+ Iσϕ;ωy(x)

= RL
c+ Iϕ;ω c+Dϕ;ω

RL
c+ Iσϕ;ωy(x) = RL

c+ Iσϕ;ωy(x).

Applying RL
c+ Dσϕ;ω, and by Lemma 4.7.7, we obtain

RL
c+ Dσϕ;ω

RL
c+ Iσϕ;ω

C
c+Dσϕ;ω

RL
c+ Iσϕ;ωy(x) = RL

c+ Dσϕ;ω
RL
c+ Iσϕ;ωy(x),

C
c+Dσϕ;ω

RL
c+ Iσϕ;ωy(x) = y(x),

which is required.
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Lemma 4.7.9. Let 0 < σ < 1, y ∈ Lrϕ;ω(c, d) with ω(x) 6= 0, r > 1
σ

. Then RL
c+ Iσϕ;ωy(c+) = 0

and

|RLc+ Iσϕ;ωy(x)| ≤ 1

ω(x)Γ(σ)

(
ϕ(x)− ϕ(c)

)σ− 1
r(

q(σ − 1
r
)
) 1
q

‖y‖rϕ;ω. (4.25)

Proof. By applying limit x→ c+ in the definition of RLc+ Iσϕ;ω, we get

lim
x→c+

RL
c+ Iσϕ;ωy(x) = 0.

By using Holder’s inequality with 1
r

+ 1
q

= 1, x ∈ [c, d], we have

|RLc+ Iσϕ;ωy(x)| = 1

Γ(σ)ω(x)

∫ x

c

|ω(s)y(s)|ϕ′(s)
(ϕ(x)− ϕ(s))1−σ ds

≤ 1

Γ(σ)ω(x)

(∫ x

c

(ϕ(x)− ϕ(s))q(σ−1)ϕ′(s) ds

) 1
q
(∫ x

c

|y(s)ω(s)|rϕ′(s) ds
) 1

r

=
1

Γ(σ)ω(x)

(ϕ(x)− ϕ(c))σ−
1
r(

q(σ − 1
r
)
1
q

) ‖y‖rϕ;ω ≤
(ϕ(b)− ϕ(c+))σ−

1
r

ω(x)Γ(σ)
(
q(σ − 1

r
)
1
q

)‖y‖rϕ;ω,

which is required.

Lemma 4.7.10. [35] Let 0 < σ < 1, y ∈ Lrϕ;ω(c, d), r > 1
σ

. Then, RLc+ Iσϕ;ωy(x) is continuous
function for x ∈ (c, d).

Consider the IVP

C
c+Dσϕ;ωy(x) = g(x, y), x ∈ (c, d], (4.26)

y(c) = yc, 0 < σ < 1. (4.27)

First, we prove that the IVP (4.26, 4.27) is equivalent to the integral equation

y(x) =
ω(c+)

ω(x)
y(c+) +

1

Γ(σ)ω(x)

∫ x

c

ϕ′(s)ω(s)g(s, y(s))

(ϕ(x)− ϕ(s))1−σ ds. (4.28)

Theorem 4.7.11. Let g(x, y(x)) be a function in Lrϕ;ω(c, d) and function y ∈ W 1,r′
ϕ;ω (c, d),

where r > 1
σ

and r′ > 1. Then, y is a solution of the IVP (4.26, 4.27), if and only if y is a
solution of the integral equation (4.28).
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Proof. Let us consider that y ∈ W 1,r′
ϕ;ω (c, d) is a solution of the IVP (4.26, 4.27). Now, apply

the integral operator RLc+ Iσϕ;ω to both sides of (4.26). This yields

RL
c+ Iσϕ;ω

C
c+Dσϕ;ωy(x) = RL

c+ Iσϕ;ωg(x, y)

Afterward, by using the semigroup property together with Proposition 4.2.10, we get

RL
c+ Iσϕ;ω

RL
c+ I1−σ

ϕ;ω c+Dϕ;ωy(x) = RL
c+ Iσϕ;ωg(x, y),

c+Iϕ;ωc+Dϕ;ωy(x) = RL
c+ Iσϕ;ωg(x, y),

y(x)− ω(c+)

ω(x)
y(c+) = RL

c+ Iσϕ;ωg(x, y).

Conversely, assume that y ∈ W 1,r′
ϕ;ω (c, d) is solution of integral equation (4.28). First, it

follows from the Proposition 4.2.10 that RLc+ Iσϕ;ω
C
c+Dσϕ;ωy(x) = RL

c+ Iσϕ;ωf(x, y(x)). Then by
using the semigroup property, we obtain

RL
c+ Iσϕ;ω

RL
c+ I1−σ

ϕ;ω c+Dϕ;ωy(x) = RL
c+ Iσϕ;ωg(x, y),

RL
c+ Dσϕ;ω

RL
c+ Iσϕ;ω

RL
c+ I1−σ

ϕ;ω c+Dϕ;ωy(x) = RL
c+ Dσϕ;ω

RL
c+ Iσϕ;ωg(x, y),

RL
c+ I1−σ

ϕ;ω c+Dϕ;ωy(x) = g(x, y),

C
c+Dσϕ;ωy(x) = g(x, y).

Furthermore, from Lemma 4.7.9 and integral equation (4.28), we see that y(c) =c .

Theorem 4.7.12. Let d′ ≥ ω(c)y(c) + 1
Γ(σ)

. Assume that when |y|| 1
w
| ≤ d′, the following

conditions hold

(i) there exist some r > 1
σ

such that g(x, y(x)), w(x, y) ∈ Lrϕ;ω(c, d);

(ii) for x ∈ [c, d], (ϕ(x)− ϕ(c))σg(x, y) is y–dependently continuous;

(iii) there exist some r′ > 1 such that RLc+ Iσϕ;ωg(x, y) ∈ W 1,r′
ϕ;ω (c, d).

Then, the IVP (4.26, 4.27) has a solution y in a space W 1,r′
ϕ;ω (c, ξ), where ξ ∈ (c, x] ⊂ [c, d]

such that zσ

(q(σ− 1
r

))
1
q
‖y‖Lrϕ;ω ≤ 1 where z = (ϕ(ξ)− ϕ(c).

Proof. Let X =
{
y ∈ C[c, d] : |y| ≤ d′

}
be a closed convex subset of Banach space C[c, ξ].

Define the map T ∈ X

T y(x) =
1

ω(x)

{
ω(c)y(c) +

1

Γ(σ)

∫ x

c

ω(s)ϕ′(x)g(s, y(s))

(ϕ(x)− ϕ(s))1−σ ds

}
.
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From condition (i), Lemma 4.7.9 and Lemma 4.7.10, we observe that T y ∈ C[c, d] and

|T y(x)| ≤ | 1
w
|

|ω(c)y(c)|+ 1

Γ(σ)

z(σ− 1
r

)

(q(1− 1
r
))

1
q

‖y‖Lrϕ;ω

 ≤ d′, ξ ∈ (c, x]. (4.29)

Now, for ε > 0 and using condition (ii), when |y−y′| ≤ δ, we have (ϕ(x)−ϕ(c))σ|g(x, y)−
g(x, y′)| ≤ ε, then for all T y, T y′ ∈ X

|T y − T y′| ≤ 1

ω(x)Γ(σ)

∫ x

c

(ϕ(x)− ϕ(s))σ−1ω(s)ϕ′(s)
(ϕ(s)− ϕ(c+))σ

(ϕ(s)− ϕ(c+))σ
|g(s, y)− g(s, y′)| ds

≤ 1

ω(x)Γ(σ)

∫ x

c

(ϕ(x)− ϕ(s))σ−1ω(s)ϕ′(s)(ϕ(s)− ϕ(c+))−σε ds

≤ RL
c+ Iσϕ;ω(ϕ(x)− ϕ(c))−σε = Γ(1− σ)ε

which shows that the map T is equicontinuous, as the continuity of mapping T is uniform
with respect to x into set X . According to condition (iii), we have T y = ω(c)

ω(x)
y(c) +

RL
c+ Iσϕ;ωg ∈ W 1,r′

ϕ;ω (c, d). This yields that

‖T y‖
W 1,r′
ϕ;ω (c,d)

≤ ‖ω(c)

ω(x)
y(c)‖

W 1,r′
ϕ;ω (c,d)

+ ‖Iσϕ;ωg‖W 1,r′
ϕ;ω (c,d)

≤M

which shows that image of y ∈ X , that is, T y is a bounded in W 1,r′
ϕ;ω (c, d) and the space

W 1,r′
ϕ;ω (c, d) compactly embeds intoC[c, d]. Thus, by the Arzela–Ascoli theorem, the operator
T is relatively compact and maps T into itself. Then by the Schauder fixed point theorem, T
has a fixed point, that is, y = T y in set X , which implies that y is a local solution of integral
equation (4.28). Then by the equivalence theorem, since y ∈ W 1,r′

ϕ;ω (c, d), y is also solution
of IVP (4.26, 4.27).

Theorem 4.7.12 guarantees the existence of a local solution, while the subsequent result
guarantees the global existence of the solution.

Theorem 4.7.13. Assume the hypothesis of Theorem 4.7.12, and replace the condition |y| ≤
d′ by |y| <∞. Then the IVP (4.26, 4.27) has a solution y ∈ W 1,r′

ϕ;ω (c, d).

Proof. Consider the mapping T defined in Theorem 4.7.12

T y(x) =
ω(c+)

ω(x)
y(c+) +

1

ω(x)Γ(σ)

∫ x

c

ω(s)g(s, y(s))ϕ′(s)

(ϕ(x)− ϕ(s))1−σ ds.
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From the proof of Theorem 4.7.12, we know that T is a compact map from C[c, d] into itself,
T takes bounded sets inC[c, d] to relatively compact sets. Now, for any parameter 0 ≤ ρ ≤ 1

, we introduce the map Tρ defined as Tρy = ρTy. We can observe that Tρ is a compact map
from C[c, d] into itself. Tρ takes bounded sets in C[c, d] to relatively compact sets, due to the
compactness of T . The motivation for introducing the map Tρ is that it will allow us to apply
a suitable fixed point theorem to establish the existence of a solution. However, we need to
find a bound M for all y ∈ C[c, d] satisfying Tρy = y, by inequality (4.29), we have

|Tρy(x)| = |ρT y(x)| ≤ |T y(x)| = ω(c+)

ω(x)
y(c+) +

1

ω(x)Γ(σ)

∫ x

c

ω(s)g(s, y(s))ϕ′(s)

(ϕ(x)− ϕ(s))1−σ ds < M.

Therefore, for any y ∈ [c, d] satisfying y = Tρy, we have |Tρy| < M . Since Tρ is compact
by Theorem 4.7.12 and we have found a boundM for all y ∈ [c, d] satisfying y = Tρy. Thus,
the Leray-Schauder fixed point theorem can be applied. This theorem ensures the existence
of a fixed point y ∈ C[c, d] such that y = Tρy for some ρ ∈ [0, 1]. Finally, from condition
(iii) in Theorem 4.7.12, we have that y(x) = T y(x) = ω(c+)

ω(x)
y(c+) + 1

ω(x)Γ(σ)

∫ x
c

(ϕ(x) −
ϕ(s))σ−1ω(s)ϕ′(s)g(s, y(s)) ds ∈ W 1,r′

ϕ;ω (c, d), which means y is a global solution of the
fractional problem 4.26. This signifies the conclusion of the proof.

In the following theorem, we establish the conditions necessary for the uniqueness of the
solution to the IVP (4.26, 4.27).

Theorem 4.7.14. Assume that the conditions in Theorem 4.7.12 are satisfied, except that
condition (ii) is replaced by a Lipchitz-like condition.

(ϕ(x)− ϕ(c))σ|g(x, y)− g(x, y′)| ≤ L|y − y′|, x ∈ [c, d], (4.30)

where L ≤ 1
Γ(1−σ)

< 1 is a constant and y, y′ are bounded within the closed interval
[−d′, d′]. Then, the IVP (4.26, 4.27) has a unique solution in W 1,r′

ϕ,w (c, d).

Proof. Assume that y and y′ are the two solutions of the IVP (4.26, 4.27). Assume that the
condition (ii) in Theorem 4.7.12 satisfied and condition (4.30) holds, then by the integral
equation (4.28), we obtain

‖y − y′‖∞ ≤
1

ω(x)Γ(σ)

∫ x

c

(ϕ(x)− ϕ(s))σ−1ϕ′(s)ω(s)
(ϕ(x)− ϕ(c))σ

(ϕ(x)− ϕ(c))σ
‖g(s, y)− g(s, y′)‖∞ dx

≤ RL
c+ Iσϕ;ω(ϕ(s)− ϕ(c+))−σL‖y − y′‖∞ = Γ(1− σ)L‖y − y′‖∞ < ‖y − y′‖∞.

there can only be one solution because the maximum absolute difference between y and y′ is
strictly less than itself, which is a contradiction.
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Example 4.7.1. Consider an IVP

C
c+Dσϕ;ωy(x) =

(ϕ(x)− ϕ(c))−µ

ω(x)
, x ∈ (c, d], 0 < µ < σ < 1,

y(c+) = yc+ ,

where g(x, y) = (ϕ(x)−ϕ(c))−µ

ω(x)
is singular at x = c+.

Clearly, function g(x, y) satisfies the conditions in Theorem 4.7.12 and 4.7.13 with 1
σ
< r <

1
µ

and 1 < r′ < 1
µ−σ+1

. Then the unique solution of this problem is y(x) = ω(c+)
ω(x)

y(c+) +
Γ(1−µ)

Γ(σ−µ+1)
· (ϕ(x)−ϕ(c))σ−µ

ω(x)
.
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Chapter 5

Conclusion

The thesis thoroughly investigated FC, specifically focusing on WFC with respect to func-
tions. It explored historical developments, special functions, and function spaces to built a
foundation for understanding fractional operators and their properties. The core of the re-
search focused on the extension theory of WFC with respect to functions, which present a
generalized class of FC. We derived several fundamental theorems, including the MVT and
Taylor’s theorem, for the operators of WFC. Furthermore, we have derived the result of inte-
gration by parts formulae as initially addressed by Agrawal [32]. However, our contribution
includes detailed proof of these results, thoroughly examining the function spaces. Consid-
ering suitable function spaces ensures that under which conditions the integration by parts
formulae hold, providing a thorough understanding of the formulae. After that, we estab-
lished Leibniz’ rule for weighted RL fractional derivatives, building on the work of Osler
[28] but utilizing a different approach to derive this result. Moreover, we have studied the
Leibniz rule for classical weighted integer order derivatives and generalized weighted RL
fractional derivatives with respect to functions.

Finally, we addressed the existence and uniqueness solutions for the IVP of the weighted
Caputo fractional differential equation with respect to functions within a framework of Sobolev
space. By utilizing the concept of weak derivatives, we demonstrated that this approach has
the significant advantage of not requiring any continuity assumptions on the function with
respect to the independent variable x. This allowed us to ensure the existence of weak so-
lutions for discontinuous functions in the Sobolev space, expanding the applicability of the
theory.

Overall, the developed theory and derived results have implications for further research
and applications, particularly in areas such as the calculus of variations, where WFC finds
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significant utility. Future studies have the potential to explore more intricate systems and
diverse fractional operators, thereby advancing both the theoretical framework and practical
applications of WFC.
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[24] Erdèlyi, A. (1964). An integral equation involving Legendre functions. Journal of the
Society for Industrial and Applied Mathematics, 12(1), 15–30.
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