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ABSTRACT 

Type 2 diabetes (T2DM) is a persistent metabolic disorder characterized by its complex 

interaction with both environmental factors and genetic predisposition. It poses a 

significant global health challenge, steadily increasing in prevalence and presenting 

substantial difficulties for healthcare systems and individuals alike. Managing T2DM 

effectively requires a comprehensive approach involving lifestyle changes, medications, 

and sometimes insulin therapy to regulate blood sugar levels and mitigate associated 

complications. In Pakistan, the prevalence of Type 2 Diabetes Mellitus (T2DM) has risen 

to concerning levels, posing a formidable health issue nationwide.  

Our study centers on developing a web-based application utilizing a decision tree 

regressor to forecast patients' HbA1c levels and medication adherence. Validation of the 

application includes analyzing gene expression of GLUT4. Additionally, association 

studies involving expression are conducted to potentially integrate this markers into 

future models. 

The model achieved an accuracy of 80% with metrics showing a mean squared error of 

0.143, mean absolute error of 0.15, and an R2 value of 0.88. Future studies could explore 

incorporating GLUT4 expressions to enhance predictive accuracy further. 

 

Keywords: Machine learning models, HbA1c prediction, medication adherence, 

Decision tree regressor, GLUT4 expression, Diabetes prediction by ML
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CHAPTER 1: INTRODUCTION 

The World Health Organization (WHO) reports that over 420 million people are 

currently living with diabetes, a number expected to rise to 578 million by 2030. 

Shockingly, half of adults with type 2 diabetes are undiagnosed. Despite insulin's 

discovery a century ago, roughly half of those who need insulin treatment for type 2 

diabetes still do not get it. (Kaku, 2010). More than 90% of diabetes cases belong to type 

2 diabetes mellitus (T2DM), which is marked by insufficient insulin secretion from 

pancreatic islet β-cells, tissue insulin resistance (IR), and an insufficient compensatory 

insulin response. (Scheen, 2003). Type 2 diabetes mellitus (T2DM) is a multifaceted 

condition influenced by a mix of genetic, epigenetic, and environmental factors. 

(Himanshu et al., 2020; Scheen, 2003). 

In 2019, the International Diabetes Federation (IDF) reported that diabetes caused 

4.2 million deaths and affected 463 million adults aged 20 to 79. This figure is expected 

to rise to around 700 million by 2045.(Kaku, 2010). 

 

1.1 Type 2 Diabetes Mellitus   

The development of Type 2 Diabetes Mellitus (T2DM) is mainly due to two factors: 

impaired insulin secretion by pancreatic β-cells and the inability of insulin-sensitive 

tissues to respond to insulin properly. Insulin resistance, a condition where cells fail to 

respond effectively to insulin, leads to the inhibition of lipoprotein lipase activity and 

changes in lipid and apolipoprotein metabolism. This results in increased lipolysis and 

the release of free fatty acids (FFA) into the bloodstream, contributing to the disease's 

progression. Obesity is a significant factor in the development of insulin resistance. Even 

mild obesity (with a BMI over 25) increases the risk of diabetes by 4 to 5 times. 

(Goldstein, 2002). Additionally, there is a significant genetic predisposition to T2DM, 

with the risk increasing by up to 40% if a close relative has the condition. This risk 

doubles if the mother has the disease. Dysfunctional β-cells also contribute to reduced 
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insulin secretion, which is insufficient to maintain normal blood glucose levels. (Galicia-

Garcia et al., 2020).  

 

Figure 1-1 Insulin in T2DM, pancreatic β-cells are damaged by hyperglycemia, 

hyperlipidemia, cytokines, and amyloids. Although pancreatic β-cells produce insulin, the 

insulin level is insufficient to compensate for insulin resistance, resulting in a relative 

insulin deficiency, leading to hyperglycemia. 

There are numerous risk factors associated with Type 2 Diabetes, including: 

1. Stress-related factors: 

   - Overeating, particularly excessive consumption of simple sugars 

   - Smoking 

   - Increased alcohol intake 

   - Nervous and endocrine system disorders, such as elevated cortisol levels and 

abnormalities in sex hormone secretion 

2. Reduced energy expenditure due to lack of exercise 

3. Genetic predisposition 

4. Aging 
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1.2 Pathophysiology of Type 2 diabetes mellitus 

Cellular integrity and well-regulated mechanisms are essential for proper β-cell function. 

β-cells create pre-proinsulin, which is converted into proinsulin during synthesis. Mature 

insulin is stored in granules and released in response to high glucose levels. Glucose 

enters β-cells through glucose transporter 2 (GLUT2), initiating glucose catabolism, 

raising the intracellular ATP/ADP ratio, and allowing Ca2+ entry. This triggers the 

exocytosis, priming, and fusion of insulin-containing granules to the plasma membrane. 

Several cellular signals influence insulin release from β-cells, including the ryanodine 

receptor (RYR), which amplifies Ca2+ signals and mediates Ca2+-driven Ca2+ release. 

Other significant players in the insulin secretion process are cAMP, extracellular ATP, 

and purinergic signaling via P2Y and P2X receptors. RYR enhances Ca2+ signals when 

activated by messenger molecules from food metabolism or ligand binding. Additionally, 

P2Y receptors can mediate intracellular Ca2+ mobilization in response to the synthesis of 

inositol-1,4,5-triphosphate. (Ostenson, 2001).  

The traditional link between β-cell malfunction and β-cell death is likely due to a 

complex network of interactions between environmental factors and various molecular 

pathways in cell biology. In conditions like obesity, hyperglycemia, and hyperlipidemia, 

which favor insulin resistance and chronic inflammation, β-cells are particularly 

vulnerable to islet integrity loss due to their genetic predisposition to stress. Toxic 

stresses such as inflammation, ER stress, metabolic/oxidative stress, and amyloid stress 

can compromise β-cell function. 

Obesity-related lipotoxicity, glucose toxicity, and glucolipotoxicity induce oxidative and 

metabolic stress that damage β-cells. High levels of saturated FFAs can trigger the 

unfolded protein response (UPR) pathway by inhibiting sarco/endoplasmic reticulum 

Ca2+ ATPase (SERCA), which is essential for ER Ca2+ mobilization, activating IP3 

receptors, or directly disrupting ER homeostasis. Prolonged high glucose levels in β-cells 

increase proinsulin biosynthesis and islet amyloid polypeptides (IAAP), leading to the 

accumulation of misfolded insulin and IAAP, as well as increased reactive oxygen 

species (ROS) formation through oxidative protein folding. 
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These alterations disrupt the normal mobilization of ER Ca2+, promoting proapoptotic 

signals, degradation of proinsulin mRNA, and the release of IL-1, which attracts 

macrophages and exacerbates local islet inflammation.(Chatterjee et al., 2017; Galicia-

Garcia et al., 2020).  

 

 

 

 
Figure 1-2: Signaling pathways involved in insulin secretion in β-cells in physiological 

conditions.  
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Figure 1.3. Insulin secretion in pancreatic β-cells is a regulated process involving 

several signaling pathways under normal conditions. When glucose levels rise, glucose 

enters β-cells through GLUT2 transporters on the cell membrane. Inside the cell, glucose 

is converted to glucose-6-phosphate (G6P) by glucokinase. G6P undergoes glycolysis to 

produce pyruvate, which enters the mitochondria and generates ATP via the TCA cycle. 

This increase in ATP levels raises the ATP/ADP ratio, causing closure of ATP-dependent 

potassium channels and membrane depolarization. Depolarization prevents potassium 

efflux, leading to calcium influx into the cell. Elevated calcium levels trigger insulin 

granule exocytosis, releasing insulin into the bloodstream. 

1.3 Diagnosis test for Diabetes mellitus. 

In order to monitor blood glucose levels and evaluate glycemic control, a number of tests 

are frequently employed in the diagnosis of type 2 diabetes mellitus (T2DM). To 

diagnose type 2 diabetes mellitus and evaluate glycemic control in people with diabetes 
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who are already diagnosed, these diagnostic tests are utilized in conjunction with clinical 

symptoms and risk factors. Depending on variables like patient characteristics, clinical 

presentation, and local recommendations, several tests may be selected. It's crucial to 

consult medical experts about appropriate testing and result interpretation (Florkowski, 

2013). 

 
 Hemoglobin A1C Fasting Blood 

Sugar Test 

Oral Glucose 

Tolerance Test 

(OGTT) 

Random 

Blood Sugar 

Test 

Normal Less than 5.7% 

(39 mmol/mol 

Less than 100 

mg/dL (5.6 

mmol/L) 

A 2-hour blood 

glucose level of 

less than 140 

mg/dL (7.8 

mmol/L) 

 

Prediabetes 5.7-6.4% (39-47 

mmol/mol) 

100-125 mg/dL 

(5.6-6.9 

mmol/L) 

A 2-hour blood 

glucose level of 

140-199 mg/dL 

(7.8-11.0 

mmol/L) 

 

Diabetes 6.5% (48 

mmol/mol) or 

higher on 2 

separate occasions 

126 mg/dL (7 

mmol/L) or 

higher on 2 

separate tests 

A 2-hour blood 

glucose level of 

200 mg/dL (11.1 

mmol/L) or 

higher 

200 mg/dL 

(11.1 mmol/L) 

or higher 

Table 1.1 Diagnosis tests for Diabetes mellitus 
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1.4 Medication Adherence. 

Diabetes management is a challenging, lifelong procedure that calls for significant patient 

effort. More than any other healthcare professional, the patient is the key to effective 

management. A few significant problems might arise from poor management. Due to 

this, diabetes patients' non-adherence to therapeutic regimens has remained a challenge 

for both patients and healthcare professionals.  

 The quick and cost-effective data production caused by the significant expansion of 

biotechnology and high throughput computing has pushed computational biology 

research into the big data sphere.  

The capacity of the appropriate viewpoints to discover the data model formation 

contributes to the efficacy and consistency of these procedures. Diabetes mellitus (DM) is 

a life-threatening disease that can lead to a variety of other health issues. (Lindenmeyer et 

al., 2006). 

In order to enhance glycemic control, prevent complications, and lower total health 

expenditures, people with T2DM must adhere to their medications well, according to 

studies. Medication adherence can be greatly increased by interventions like integrative 

health coaching. Medication adherence in T2DM patients may be influenced by a variety 

of variables, such as the severity of the condition, mental health, anxiety, sadness, 

irritability, smoking, cost, and so forth. These variables change depending on the study's 

design and geographic location. That may be resulted from the differences in the 

selection of variables, patients’ income levels, education levels, cultural characteristics, 

living habits, and so on (Brunton & Polonsky, 2017).  

Higher risk of type 2 diabetes is linked to higher body weight. Increased morbidity and 

mortality are linked to both type 2 diabetes and obesity. Although food modification, 

exercise, and lifestyle changes can help manage type 2 diabetes, there are additional 

There are various medication options available to help maintain desired blood sugar 

levels in the treatment of Type 2 Diabetes Mellitus (T2DM), which primarily focus on: 
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1. Raising insulin levels: 

• Oral medications that stimulate insulin secretion: These include insulin 

secretagogues like sulfonylureas. 

• Direct insulin administration. 

2. Increasing tissue sensitivity: 

• Insulin sensitizers: These include biguanide metformin and thiazolidinediones 

(TZDs). 

3. Reducing the rate of carbohydrate absorption from the gastrointestinal tract: 

• α-glucosidase inhibitors: Such as acarbose. 

• Agents that decrease gastric motility (Tanase et al., 2020). 

 

 
Mechanism of 

action 

Molecular target % Decrease in 

HbA1c 

Sulfonylurea 

(SU)/repaglinide 

Increase in 

insulin secretion 

SU receptor/ATP-

K+ channel 

1.5–2.0 

Metformin 
Increase in 

muscle insulin 

sensitivity; 

decrease in 

hepatic glucose 

output 

Unknown 1.5–2.0 

Troglitazone 

(T)/rosiglitazone 

Increase in 

muscle insulin 

sensitivity; 

PPARγ 1.0–1.2 
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(R)/pioglitazone decrease in 

hepatic glucose 

output 

Acarbose 
Decrease in GI 

absorption 

α-glucosidase 0.7–1.0 

Table 1.2. Common medication prescribed for diabetes. 

1.5. Metformin 

The biguanide antihyperglycemic medication metformin is used to manage blood sugar 

levels in Type 2 Diabetes Mellitus (T2DM) in conjunction with diet and exercise. As the 

first-line treatment for T2DM, metformin is valued for its ability to lower blood glucose 

levels without causing hypoglycemia, classifying it as an antihyperglycemic medication. 

Often referred to as an "insulin sensitizer," metformin effectively reduces insulin 

resistance and plasma fasting insulin levels in a clinically relevant manner. Another 

notable benefit of metformin is its association with modest weight loss, making it an 

attractive option for obese T2DM patients. Metformin received FDA approval in the 

United States in 1995, after initially being approved in Canada in 1972.(Rena et al., 2013, 

2017). 

The mechanisms of action of metformin differ from those of other oral hypoglycemic 

medications. Metformin lowers blood sugar levels and improves insulin sensitivity by: 

1. Reducing intestinal glucose absorption. 

2. Decreasing hepatic glucose production (gluconeogenesis). 

3. Enhancing peripheral glucose uptake and utilization. 

Metformin is known to inhibit mitochondrial complex I activity, which is believed to be a 

key factor in its potent anti-diabetic effects. These actions collectively lower blood sugar 

levels, helping to manage Type 2 Diabetes Mellitus and improve glycemic 

control.(Grisouard et al., 2010; Hundal et al., 2000). 
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1.5.1. Mechanism of action against diabetes 

After consumption, metformin is taken up into hepatocytes (liver cells) by the organic 

cation transporter-1 (OCT1). Due to its positive charge, metformin accumulates in cells 

and mitochondria, driven by the membrane potentials between the plasma membrane and 

the mitochondrial inner membrane. By inhibiting mitochondrial complex I, metformin 

reduces mitochondrial ATP production, raising cytoplasmic ADP: ATP and AMP:ATP 

ratios. These changes activate AMP-activated protein kinase (AMPK), an enzyme crucial 

for regulating glucose metabolism. Additionally, AMPK can be activated through a 

lysosomal mechanism involving other activators. (Klip & Leiter, 1990; LaMoia & 

Shulman, 2021). 

Increased AMP:ATP ratios lead to the inhibition of fructose-1,6-bisphosphatase, which 

suppresses gluconeogenesis. This also results in the inhibition of adenylate cyclase, 

reducing cyclic adenosine monophosphate (cAMP) production, a molecule involved in 

cell signaling. Metformin's activation of AMPK inhibits fat production and promotes fat 

oxidation by phosphorylating two isoforms of the acetyl-CoA carboxylase enzyme, 

which lowers hepatic lipid storage and improves insulin sensitivity in the liver. 

Metformin also enhances anaerobic glucose metabolism in enterocytes (intestinal cells), 

reducing net glucose absorption and increasing lactate transport to the liver. Recent 

studies suggest that the gut may be the primary site of action for metformin, rather than 

the liver, in patients with Type 2 Diabetes Mellitus. Additionally, metformin may 

stimulate glucose metabolism by increasing glucagon-like peptide-1 (GLP-1) levels and 

improving gastrointestinal glucose utilization. (Hundal et al., 2000; Jackson et al., 1987). 

In addition to the pathways mentioned, metformin's mechanism of action may involve 

other mechanisms that have been extensively studied in recent years. While its primary 

effects are understood, ongoing research continues to explore additional pathways and 

interactions that contribute to its overall impact on glucose metabolism and insulin 

sensitivity. (Foretz et al., 2019). 
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1.6. Artificial intelligence in diabetes treatment 

 

Artificial intelligence (AI) has the potential to significantly enhance diabetes 

management and treatment in several ways: 

1. Risk Identification: AI algorithms can analyze patient data, including medical 

history, genetics, and lifestyle factors, to identify individuals at risk of developing 

diabetes. 

2. Early Diagnosis: By examining blood glucose levels and patient symptoms, 

machine learning models can aid in the early detection of diabetes, allowing for 

prompt intervention and better disease management. 

These applications can lead to more personalized and proactive care, potentially 

improving outcomes and reducing the burden of diabetes. (Ellahham, 2020; Guan et al., 

2023). Machine learning (ML) and deep learning (DL) are prominent AI methodologies 

used in various applications, including diabetes management. In “supervised machine 

learning”, a system is trained using a dataset of labeled examples, which means each data 

point in the training set is already annotated with the correct outcome or classification. 

The models learn from these reference instances to make accurate predictions or 

classifications on new, unseen data based on the patterns they have learned. This 

approach relies on having a well-curated database with relevant and high-quality features 

to enable the system to effectively generalize and apply its learning to new cases. 

(Gautier et al., 2021; Nomura et al., 2021).  

As a result of supervised machine learning, ML algorithms become adept at analyzing 

data and performing tasks based on the knowledge and examples they have been trained 

on. Starting from specific problems, these algorithms can develop an inductive 

hypothesis, which serves as a resolution model for broader issues. 

Deep learning (DL) is based on artificial neural networks, which consist of nodes (or 

neurons) organized in layers. The architecture includes: 

• Input Layer: Receives raw input data, with each input feature corresponding to a 

node. 
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• Hidden Layers: Process the input data by applying weighted sums of inputs from 

the previous layer, generating output signals for the next layer. 

• Output Layer: Produces the final output of the network, which could be a 

classification label, a regression value, a probability distribution, or another type 

of output depending on the network's design. 

The network's performance is optimized through the training process, which involves 

adjusting weights and biases, including a bias term added to the weighted sums. 

DL techniques have been employed to develop noninvasive diabetes risk forecasting 

models by analyzing morphological features, such as tongue or retinal fundus images, or 

by assessing specific patterns of body fat distribution using imaging techniques like 

abdominal computed tomography (CT) or magnetic resonance imaging (MRI) (Contreras 

& Vehi, 2018; Ellahham, 2020). 

 

1.6.  AI and Predictive models in diabetes medication adherence  

AI generally refers to computer systems that replicate mental processes unique to 

humans, such as reasoning, finding meaning, generalizing, or learning from experience, 

to achieve goals without explicit programming for each specific task. AI is commonly 

categorized into three types: 

1. Strong AI: Systems that aim to fully mimic human reasoning and behavior. 

2. Weak AI: Systems that produce outcomes comparable to human performance but may 

use different methods. 

3. "In-Between" AI: Systems that are inspired by or guided by human reasoning, which is 

where much significant work is currently focused. 

 

In medicine, AI is divided into: 

1. Virtual AI: Includes informatics and deep learning systems used for data analysis and 

decision support. 
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2. Physical AI: Encompasses robot-assisted systems that perform physical tasks or 

procedures.AI comprises the use of a computerised system (hardware or software) to 

mimic intelligent behaviour with little human participation. AI has a variety of potential 

applications in the healthcare sector, including supporting the early detection, diagnosis, 

management, and treatment of medical conditions, enhancing patient engagement and 

boosting medication adherence, assisting the elderly, promoting health, providing 

counselling, managing administrative tasks, and even assisting healthcare professionals in 

their education and learning (Alanazi et al., 2018; Ceriello et al., 2014).  

Since the last ten years, predictive models have been employed to forecast the course of 

the disease and inform future choices. Any predictive model's primary goal is to 

accurately forecast the course of a disease. The term "accurate prediction" refers to a 

situation when new disease outcomes can be determined using historical data. The results 

of disease prediction aid medical personnel and clinicians in making decisions in the 

future. Prior to the development of these prediction models, medical professionals and 

doctors used their professional judgement and experiences to estimate or anticipate the 

course of a disease. The earlier predictive techniques have evolved into effective 

predictive models to choose the patient's disease therapy as a result of the development of 

new technology (Adua et al., 2021; Ozery-Flato et al., 2013).  
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CHAPTER 2: LITERATURE REVIEW 

 Diabetes has been recognized since ancient times, with references dating back to 

as early as 1500 BC, noting excessive urination in historical manuscripts. Type 2 

diabetes, labeled a global epidemic by the World Health Organization, is also known as 

adult-onset or non-insulin-dependent diabetes. It arises from the body's inefficient use of 

insulin, leading to chronic metabolic disorder. Factors such as sedentary lifestyle and 

obesity contribute significantly to its prevalence, with genetic predisposition also playing 

a role. While Type 2 diabetes was traditionally associated with adults, recent years have 

seen an alarming rise in cases among children (Himanshu et al., 2020). 

The worldwide incidence of Type 2 diabetes has surged over the decades, with 

approximately 392 million people diagnosed in 2015 compared to a mere 30 million in 

1985. Unlike Type 1 diabetes, symptoms of Type 2 diabetes may be subtler, often leading 

to delayed diagnosis and subsequent complications. These complications encompass a 

range of serious health issues, including cardiovascular disease, strokes, diabetic 

retinopathy, kidney failure, and impaired circulation in the extremities, sometimes 

necessitating amputations (Ma & Tong, 2024). 

Recognizing the gravity of this health crisis, lifestyle modifications and medication are 

crucial for managing diabetes and mitigating its adverse effects. Given its pervasive 

impact, diabetes earns its reputation as a global epidemic (Jude et al., 2022). 
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Figure 2.1. personalized diabetes care. This figure summarizes the key considerations 

that are needed when contemplating the choice of diabetes pharmacotherapy for a 

patient with T2D. 

Type 2 diabetes mellitus (T2DM) arises from abnormalities in the metabolism of 

proteins, lipids, and carbohydrates, often due to either insulin resistance or insufficient 

insulin production. T2DM accounts for over 90% of diabetes cases, surpassing both type 

1 diabetes mellitus (T1DM) and gestational diabetes. Recent advances have deepened our 

understanding of T2DM's onset and progression.  

The primary cause of T2DM is a gradual decline in pancreatic β-cell function, typically 

occurring alongside existing insulin resistance in the liver, adipose tissue, and skeletal 

muscle. Before overt hyperglycemia develops, individuals may experience prediabetes, 

which significantly increases the risk of progressing to T2DM. Prediabetes is 

characterized by impaired glucose tolerance (IGT), elevated glycated hemoglobin A1c 

(HbA1c) levels, and impaired fasting glucose (IFG).  
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IFG is indicated by elevated fasting plasma glucose levels that do not meet diabetes 

criteria and reflects hepatic insulin resistance and diminished early-phase insulin 

secretion. In contrast, IGT involves muscle insulin resistance and reduced late-phase 

insulin secretion following meals. Individuals with prediabetes have HbA1c levels 

ranging from 5.7% to 6.4%, and the annual conversion rate from prediabetes to T2DM 

ranges from 3% to 11%.(Franks et al., 2013; Lin & Sun, 2010). 

2.1 Hemoglobin A1c (HbA1c) as a Marker and Predictor in Type 2 Diabetes 

Mellitus 

 HbA1c, or glycosylated hemoglobin, is frequently used to indicate one's blood 

sugar level. When glycated hemoglobin (HbA1c) was initially identified in diabetic 

patients, it was referred to as an unusual hemoglobin (Sirsikar et al., 2016). The HbA1c 

value reflects the net mean blood glucose level over the preceding 1 or 2 months, and        

does not reflect immediate changes in the blood glucose profile after treatment. 

Hemoglobin A1c, or HbA1c, is a vital marker and predictor in the field of Type 2 

Diabetes Mellitus (T2DM), providing important information about glycemic control and 

long-term disease treatment. Glycated hemoglobin, or HbA1c, is a dependable indicator 

of total glucose management since it shows the average blood glucose levels throughout 

the two to three months prior (Bennett et al., 2007; Vijayakumar et al., 2016). 

The key to understanding the significance of HbA1c is that, in contrast to oral glucose 

tolerance testing or fasting plasma glucose testing, which only provide a moment in time 

view of glucose levels, it can measure glycemic control over a prolonged period. For this 

reason, HbA1c is the recommended method for determining glycemic status and directing 

therapy choices in T2DM. Hemoglobin A1c, or HbA1c, is a vital marker and predictor in 

the field of Type 2 Diabetes Mellitus (T2DM), providing important information about 

glycemic control and long-term disease treatment. Glycated hemoglobin, or HbA1c, is a 

dependable indicator of total glucose management since it shows the average blood 

glucose levels throughout the two to three months prior (Bennett et al., 2007; Florkowski, 

2013). 



CHAPTER 2 LITERATURE REVIEW 

Development of predictive model for diabetes medication adherence using algorithms. 31 

Figure. 2.2. HbA1c to estimated average glucose (MG/DL). Categorizing the medication 

adherence and self-control on the basis of these values. 

2.2. Current Approaches to Medication Adherence in T2DM 

Scholars document an extensive array of impediments to patient adherence, 

encompassing health system, provider, and patient issues.  Psychological distress has 

long been known to have an impact on health results, and depression's effect on 

medication adherence may be one way that mood disorders influence health outcomes. 

Patients with depression have numerous risk factors that could lead to non-adherence, 

including low energy, lack of desire, social disengagement, hopelessness, and altered 

expectations about the advantages or disadvantages of therapy. Patients who are 

depressed may also find it harder to communicate with healthcare providers and feel less 

satisfied with their treatment. (Grenard et al., 2011)  

Adhering to medication is crucial for effectively managing type 2 diabetes mellitus 

(T2DM), as it aids in controlling blood sugar levels and lowers the risk of complications. 
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Here are some contemporary strategies to enhance medication adherence in T2DM: 

(Brunton & Polonsky, 2017). 

2.2.1. Empowering Patients through Education 

Providing comprehensive education to patients about their condition, the importance of 

medication adherence, and the consequences of non-adherence can empower them to take 

control of their health. This includes understanding the purpose of each medication, 

potential side effects, and strategies for managing them (Markovič et al., 2023). 

1. Simplified Regimens: Insulin injection therapy, requiring multiple daily injections, is 

commonly prescribed to patients with type 2 diabetes who exhibit severe hyperglycemia 

(MDI). When on the MDI (multiple daily injections) regimen for years, a significant 

portion of patients have overtreatment, which is defined as administering a treatment 

even when its prospective risks outweigh its benefits. There are no set guidelines, 

however the treatment might be shortened if the glucose toxicity goes away. Adherence 

can be increased by streamlining prescription regimens by lowering the quantity of 

tablets and frequency of doses. Combination medications, which combine several 

prescriptions into one tablet, can lessen the difficulty of taking pills and facilitate patients' 

adherence to their treatment schedule (Taybani et al., 2019). 

2. Personalized Treatment Plans: To achieve target glycemic control, previous guidelines 

for treating individuals with type 2 diabetes mellitus (T2D) primarily depended on strict 

algorithms for the sequential addition of pharmacotherapies. Newer guidelines advocate 

for a more personalized approach to diabetes treatment to improve quality of life, 

medication adherence, patient satisfaction, and overall health outcomes. Clinicians should 

collaborate with patients to develop individualized treatment plans that address weight 

management, targeted glycemic control, comorbidity prevention and treatment, and 

avoiding complications such as hypoglycemia. The Italian Association of Medical 

Diabetologists has developed a novel tailored algorithm for type 2 diabetes management, 

available online. In Pakistan, creating specific care plans is not very common. (Williams 

et al., 2022). 

3. Use of Technology: Medication adherence, according to the World Health Organization 

(WHO), is a complex phenomenon involving individuals, their healthcare professionals, 
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and the act of taking medication. Over the past ten years, information technology (IT) has 

become more and more important in the field of health care. It has been demonstrated 

that a number of cutting-edge IT tools, including electronic health records (EHRs), e-

prescribing, and electronic drug monitoring (EDM) for clinicians to track patients' 

medication adherence, are useful in offering seamless and efficient solutions for 

enhancing diabetes patient outcomes and healthcare practices (Shrivastava et al., 2023). 

Apps are also made to help individuals take their medications more consistently. The 

apps employed e-dairy, learning instructions, reminders, communication with a 

healthcare practitioner, and medication adherence promotion strategies. Reminding 

patients to take their medications via a reminder or a motivational activity with patient 

education features was offered by four applications (Islam et al., 2022). 

4. Behavioral Interventions: Cognitive-behavioral therapy, problem-solving skills 

training, and motivational interviewing are a few behavioral interventions that can assist 

address psychological barriers to drug adherence, including fear of side effects, 

pharmaceutical beliefs, and forgetfulness (Lambrinou et al., 2019; Lindenmeyer et al., 

2006). 

5. Regular Follow-up and Monitoring: Diabetes management requires routine blood 

glucose monitoring and follow-up care. To attain glycemic control and stop the course of 

the condition, doctors need to know the results of blood glucose monitoring to prescribe 

the right medication and offer personalized lifestyle recommendations (Li et al., 2022). 

DSME is an ongoing process that assists patients in acquiring the competencies, know-

how, and skills necessary to effectively manage their diabetes on their own. It has been 

demonstrated to improve patient outcomes and is a crucial part of diabetic therapy. 

Physical activity, a healthy diet, medication adherence, monitoring, problem-solving, risk 

reduction, and healthy coping are the seven self-care behaviors that the American 

Association of Diabetes Educators (AADE) has identified as trustworthy outcome 

measures of diabetes self-management education (DSME). By employing a combination 

of these approaches, healthcare providers can help improve medication adherence and 

ultimately enhance the management of T2DM (Brunton & Polonsky, 2017; Lindenmeyer 

et al., 2006).  
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2.2.2. Role of Gene Expression Analysis in Predictive Models 

Gene expression analysis plays a crucial role in diabetes prediction models by providing 

insights into the molecular mechanisms underlying the disease and identifying 

biomarkers associated with diabetes risk. Here are several keyways gene expression 

analysis contributes to diabetes prediction models  (Franks et al., 2013). 

 

Figure 2.2. A systems epidemiology approach investigates how interactions between the 

exposome (comprising all non-genetic exposures) and measurable components of the 

human physiome contribute to our understanding. 

Identification of Biomarkers: Using gene expression analysis, it is possible to pinpoint 

genes whose expression levels are linked to the onset of diabetes. Through gene 

expression profile comparisons between individuals with and without diabetes, 

researchers can identify differentially expressed genes that may be linked to an increased 

risk of developing the illness (Fan et al., 2021). 

Subtyping Diabetes: Diabetes is a diverse illness with several subtypes that are 

identified by unique molecular markers. Based on their molecular profiles, individuals 

can be classified into several subtypes with the aid of gene expression analysis, allowing 

for the development of more specialized prediction models aimed at particular subgroups 

(Keller et al., 2008). 
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Predictive Modeling: Clinical and demographic data can be combined with gene 

expression data to create more precise predictive models for diabetes risk assessment. 

Gene expression patterns and other pertinent characteristics can be analyzed by machine 

learning algorithms to predict an individual's risk of getting diabetes within a specific 

time frame (Adua et al., 2021; Ozery-Flato et al., 2013). 

Understanding Pathophysiology: Understanding the underlying molecular mechanisms 

involved in the etiology of diabetes is possible through the investigation of gene 

expression. Researchers can gain a better understanding of the mechanisms behind the 

course of disease and discover new treatment targets by clarifying how gene expression 

patterns alter in response to metabolic imbalance (Adua et al., 2021; Szabo et al., 2018). 

Early Detection and Prevention: Even before clinical symptoms appear, changes in 

gene expression may take place in the early stages of diabetes development. Thus, gene 

expression analysis can help identify people who are at a high risk of getting diabetes 

early on, enabling prompt intervention and the development of preventative measures to 

slow the progression of the illness (Samsom et al., 2016). 

Monitoring Treatment Response: Gene expression profiling can be used to track an 

individual's response to medication or lifestyle modifications employed in the treatment 

of diabetes. Clinicians can evaluate the effectiveness of treatment and customize 

therapeutic approaches for specific patients by monitoring changes in gene expression 

after the start of treatment (Thipsawat, 2021). 

Overall, molecular insights into disease causes, individualized risk assessment, and 

therapeutic intervention guidance for better patient outcomes are some of the ways that 

gene expression analysis improves the accuracy and usefulness of diabetes prediction 

models. 

2.2.3. Existing Predictive Models for T2DM Medication Adherence 

Several predictive models exist for Type 2 Diabetes Mellitus (T2DM) medication 

adherence, aiming to enhance patient outcomes through improved adherence rates. Here 

are some common approaches: 

1. Machine Learning Models: Machine learning techniques, such as decision trees, 

random forests, support vector machines, and neural networks, have been employed to 



CHAPTER 2 LITERATURE REVIEW 

Development of predictive model for diabetes medication adherence using algorithms. 36 

predict medication adherence. These models utilize patient demographic data, clinical 

variables (e.g., HbA1c levels, comorbidities), medication history, and psychosocial 

factors (e.g., depression, health literacy) to forecast adherence behavior (Fregoso-

Aparicio et al., 2021; Xiong et al., 2019). 

2. Health Behavior Models: These models integrate health behavior theories, such as the 

Health Belief Model or Social Cognitive Theory, to understand and predict medication 

adherence. They assess factors like perceived susceptibility to complications, perceived 

benefits of adherence, self-efficacy, and social support to predict patient adherence 

behavior (Karimy et al., 2016; Velu et al., 2023). 

3. Electronic Health Records (EHR) Based Models: Leveraging data from electronic 

health records, these models identify patterns and predictors of medication adherence. 

They utilize patient demographics, clinical variables, medication history, and healthcare 

utilization patterns to predict adherence behavior (Nguyen et al., 2019; Zheng et al., 

2017). 

4. Mobile Health (mHealth) Apps: Mobile apps and wearable devices are increasingly 

used to monitor medication adherence in real-time(Istepanian et al., 2017). These apps 

collect data on medication intake, physical activity, glucose levels, and other relevant 

parameters to predict adherence behavior. Machine learning algorithms may be employed 

to analyze this data and provide personalized adherence predictions (Årsand et al., 2012; 

Muralidharan et al., 2017). 

5. Natural Language Processing (NLP) Models: NLP techniques analyze unstructured 

data, such as patient-provider communication or social media posts, to identify predictors 

of medication adherence. By extracting relevant information from textual data, NLP 

models can predict patient adherence behavior based on linguistic cues and contextual 

factors (Misra-Hebert et al., 2020; Vidyadharan et al., 2021). 

6. Patient Engagement Models: These models focus on patient engagement strategies to 

promote medication adherence. By analyzing patient engagement metrics, such as app 

usage patterns, communication frequency with healthcare providers, and participation in 

educational programs, these models predict adherence behavior and recommend tailored 

interventions to improve adherence rates (Fioravanti et al., 2015). 
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7. Integrated Care Models: Integrated care models combine clinical data with patient-

reported outcomes and behavioral assessments to predict medication adherence. These 

models often involve interdisciplinary care teams, including physicians, nurses, 

pharmacists, and behavioral health specialists, to address the multifaceted determinants of 

adherence behavior (Silva et al., 2020). 

Each of these predictive models offers unique advantages and may be tailored to specific 

patient populations or healthcare settings to optimize medication adherence and improve 

T2DM management outcomes. 

2.3.  Dysregulation of GLUT4 Expression in Type 2 Diabetes Mellitus (T2DM) 

Insulin-responsive facilitative glucose transporter GLUT4 is mostly expressed in 

skeletal muscle, cardiac muscle, and adipose tissue. In muscle and fat cells, GLUT4 is 

sequestered in intracellular vesicles when insulin levels are low. Insulin causes GLUT4 to 

translocate from these vesicles to the plasma membrane, which causes a sharp rise in 

glucose uptake (Alam et al., 2016). GLUT4 transporters are introduced and made 

available for transferring glucose as the vesicles fuse with the plasma membrane, 

increasing the absorption of glucose. Whole-body insulin-mediated glucose homeostasis 

and GLUT4 expression levels are connected, and studies have linked GLUT4 expression 

dysregulation to diabetes and obesity. Mice carrying the GLUT4 heterozygous mutant 

allele (GLUT4±) exhibit elevated blood glucose and insulin levels, decreased muscle 

glucose absorption, hypertension, and diabetic liver and heart histopathologies. The role 

of GLUT4 in the development of diabetes was demonstrated by the ability of 

overexpression of GLUT4 to partially improve in vivo glucose tolerance in diabetic mice 

(Galicia-Garcia et al., 2020; Kaku, 2010). 

 

2.4.  Metformin's Mechanisms: Enhancing Glucose Metabolism Through GLUT4 

Translocation 

GLUT4 is a glucose transporter primarily found in adipose tissue and skeletal muscle 

cells. Its translocation to the cell membrane allows for the uptake of glucose from the 

bloodstream into these cells, thereby lowering blood glucose levels. Here's how 

metformin induces GLUT4 translocation and affects metabolism: 
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1. AMP-activated Protein Kinase (AMPK) Activation: Metformin activates AMPK, a 

key cellular energy sensor. AMPK activation leads to various metabolic effects, including 

increased glucose uptake and utilization in skeletal muscle cells. AMPK activation also 

stimulates GLUT4 translocation to the cell membrane, enhancing glucose uptake 

(Jackson et al., 1987). 

2. Insulin Sensitization: Metformin improves insulin sensitivity in peripheral tissues, such 

as skeletal muscle and adipose tissue. By enhancing insulin sensitivity, metformin 

promotes GLUT4 translocation in response to insulin, allowing for efficient glucose 

uptake into cells. 

3. Reduction of Hepatic Glucose Production: Metformin inhibits hepatic 

gluconeogenesis, the process by which the liver produces glucose. By reducing hepatic 

glucose production, metformin decreases blood glucose levels, which in turn may lead to 

decreased insulin secretion and improved insulin sensitivity, facilitating GLUT4 

translocation (Hundal et al., 2000). 

4. Mitochondrial Effects: Metformin alters mitochondrial function, leading to changes in 

cellular energy metabolism. These changes can indirectly influence GLUT4 translocation 

and glucose uptake by modulating cellular energy status and signaling pathways involved 

in glucose metabolism. 

5. Adiponectin Secretion: Metformin has been shown to increase adiponectin secretion 

from adipose tissue. Adiponectin is an adipokine that plays a role in regulating glucose 

and lipid metabolism. Increased adiponectin levels may enhance insulin sensitivity and 

promote GLUT4 translocation in target tissues (Foretz et al., 2019; Jackson et al., 1987). 

Overall, metformin induces GLUT4 translocation and improves glucose metabolism 

through multiple mechanisms, including AMPK activation, insulin sensitization, 

reduction of hepatic glucose production, mitochondrial effects, and modulation of 

adipokine secretion. These effects contribute to the therapeutic efficacy of metformin in 

the management of T2DM. 
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Figure 2.3. Metformin treatment led to inhibited glucose uptake, which was 

demonstrated through the use of phloretin, an inhibitor of glucose transporters (data not 

shown). There was no observed change in GLUT-1 mRNA expression due to metformin 

treatment (Fig. 3A). However, GLUT-4 mRNA expression increased significantly by 4.2 ± 

0.5-fold (p < 0.01 compared to basal levels) (Fig. 3B). Similarly, at the protein level, 

metformin did not alter the amount of GLUT-1 (Fig. 3C and E), whereas GLUT-4 protein 

content showed a notable increase of up to 2.6-fold (p < 0.01 compared to basal levels) 

(Fig. 3D and F). 
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CHAPTER 3: METHODOLY  

3.1. Sampling and Data Collection 

Study protocols were scrutinized by Institutional Review Board ASAB and 

Ethical Committee of Federal Government polyclinic hospital, Islamabad. A total of 513 

patients were interviewed to fill the questionnaires designed to access the medication 

adherence of the patients. Also 65 blood samples were collected from the patients who 

met the inclusion criteria of the study.  

3.1.1. Data analysis 

Patients from all districts of Pakistan and AJK were included in the study. Weight 

in kilograms and height in feet were recorded to calculate BMI. Patients with previous 

gestational diabetes, type 1 diabetes (distinguished from T2DM by age at onset and 

ketoacidosis), and other forms of diabetes were excluded from the final analysis. Each 

patient underwent a thorough interview to collect information on their medical history, 

demographics, and clinical details. This included age, sex, disease duration, family 

medical history, treatment type, weight, height, body mass index (BMI), blood pressure, 

overall health status, any existing micro- and macro-vascular complications, hypertension 

(defined as patients already on hypertension medication or with blood pressure >140/80 

mm Hg), medication compliance, and self-management practices. Statistical analysis was 

performed using Microsoft Excel data analysis tools. 

3.2 Expression Analysis 

3.2.1 RNA Extraction 

For RNA extraction, 200 µL of blood sample was added to a 1.5 mL Eppendorf 

tube, followed by the addition of 750 µL of Trizol reagent. The solution was vortexed for 

a few seconds to achieve a homogenized mixture. The tube was then centrifuged at 
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12,000 rpm for 10 minutes at 4°C. The middle pink layer containing Trizol was 

transferred to a new 1.5 mL microcentrifuge tube. This mixture was incubated for 5 

minutes at room temperature, and 20 µL of 5N glacial acetic acid was added. After 

mixing vigorously for 15 seconds, the mixture was incubated for another 5 minutes at 

room temperature. Next, 200 µL of chloroform was added, mixed vigorously for 15 

seconds, and incubated for 10 minutes at room temperature. The mixture was centrifuged 

at 12,000 rpm for 15 minutes at 4°C. The supernatant containing RNA was transferred to 

a new microcentrifuge tube, and 500 µL of isopropanol was added and vortexed. The 

mixture was centrifuged at 12,000 rpm for 10 minutes at 4°C. The supernatant was 

removed, and the pellet was washed by adding 1 mL of 75% ethanol followed by 

centrifugation at 7500 rcf for 5 minutes at room temperature. After centrifugation, the 

ethanol was removed, and the pellet was air-dried. Finally, the pellet was dissolved in 20 

µL of Diethylpyrocarbonate (DEPC) treated water. The RNA was quantified using a 

Thermo Scientific NanoDrop 2000.(Heidary & Kakhki, 2014). 

3.2.2 Complementary DNA (cDNA) synthesis 

The extracted RNA was converted into cDNA using RevertAid Reverse Transcriptase 

(Thermo Scientific). The reaction mixture contained the following components: 

• 1 µL of template RNA 

• 1 µL Oligo dT primers 

• 1 µL RiboLock RNase inhibitor 

• 4 µL of 5X reaction buffer 

• 2 µL of 10 mM dNTPs mixture 

• 1 µL reverse transcriptase 

The total volume was brought up to 20 µL with nuclease-free water. The mixture 

tube was given a short spin and then incubated at 37°C for 5 minutes. The reaction 

conditions in the thermocycler were set to 60 minutes at 37°C followed by 10 minutes at 

70°C. After the reaction was completed, the cDNA was stored at -20°C. (Mannhalter et 

al., 2000). 

3.2.3 Semi quantitative PCR 

Semi-quantitative PCR was performed to confirm the synthesis of cDNA, using primers 

for β-actin. The reaction mixture included the following components: 



CHAPTER 3 METHODOLOGY 

Development of predictive model for diabetes medication adherence using algorithms. 42 

 

• 0.5 μL of cDNA template 

• 2.5 μL of 10X Taq buffer 

• 2.0 μL of 25 mM MgCl2 

• 0.5 μL of 2 mM dNTP mix 

• 1 μL of each primer (forward and reverse, 1 μM) 

• 0.4 μL of Taq DNA polymerase (Thermo Scientific) 

• Volume raised to 20 μL with PCR-grade water 

The reaction profile in the thermocycler was set as follows: 

1. Initial denaturation at 95°C for 3 minutes 

2. 35 cycles of: 

▪ Denaturation at 95°C for 20 seconds 

▪ Annealing at 60°C for 35 seconds 

▪ Extension at 72°C for 35 seconds 

3. Final extension at 72°C for 10 minutes(Mannhalter et al., 2000). 

3.2.4 Gel Electrophoresis 

Semi quantitative PCR product of β actin specific region was confirmed by gel 

electrophoresis. For this, 2% agarose gel was prepared by dissolving 1g of agarose in 50 

mL 1X TAE. Ethidium bromide 3 μL was added into it for staining of DNA. Three 

microliters of PCR product was mixed with 1 μL of loading dye and loaded into the well. 

The amplicon size was compared with 100 bp ladder, which was run along with sample, 

on Dolphin doc gel documentation system (Mannhalter et al., 2000). 

3.2.5 Primers 

Primers for ẞ-Actin has already been reported in literature. Primers for GLUT 4 

has been designed using NCBI Primer Blast software 

(https://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?INPUT_SEQUENCE=%20E

U563945.2LINK_LOC=nuccore). The mRNA sequences were taken from the NCBI. 

After checking the self-complementarity and other properties. Using USCS in-silico PCR 

https://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?INPUT_SEQUENCE=%20EU563945.2LINK_LOC=nuccore
https://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?INPUT_SEQUENCE=%20EU563945.2LINK_LOC=nuccore


CHAPTER 3 METHODOLOGY 

Development of predictive model for diabetes medication adherence using algorithms. 43 

the primers were confirmed for non-specific binding (https://genome.ucsc.edu/cgi-

bin/hgPcr). 

3.2.6 Real Time PCR 

For gene expression analysis, real time PCR was performed on 7300 Real Time 

PCR System (Applied Biosystems) with fluorescence based SYBR Green assay. To 

normalize the data, β actin was used as reference gene. The reaction mixture included 40 

ng/μL (final concentration) template, 0.25 μL (10 μM) of each forward and reverse 

primer, 6.25 μL of Maxima SYBR Green qPCR master mix (Thermo Scientific), and 

total volume was raised up to 12.5 μL by adding nuclease free water. Thermal profile was 

set as 95°C for 10 min, followed by 40 cycles of 95°C for 20 seconds, annealing at 55°C 

(for GLUT 4) and 60°C (for β actin) for 35 seconds and extension at 72°C for 35 

seconds. Dissociation stage profile was added for melt curve analysis as 95°C for 15 

seconds, 60°C for 30 seconds and 95°C for 15 seconds. Each sample reaction was done in 

duplicates. 

3.2.7. Statistical analysis and Results validation 

ΔCt was obtained using excel and after analysis of app results graph was plotted.  

3.3. Web based application Development 

3.3.1. Import essential dependencies for data analysis/preprocessing and machine 

learning 

For python different libraries were imported for data analysis, preprocessing and 

machine learning using different commands. 

3.3.2. Read the .csv file (read the data set) 

To read a CSV file into a Pandas DataFrame, we used the read_csv() function. 

3.3.3. Printing the head of the dataset 

  Using .head() method to get the idea of how our dataset look like.  

 

https://genome.ucsc.edu/cgi-bin/hgPcr
https://genome.ucsc.edu/cgi-bin/hgPcr
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3.3.4. Dimensions of dataset (Rows, Columns) 

  By using the .shape attribute of the DataFrame the dimensions of the dataset 

(i.e., the number of rows and columns) were retrieved. 

3.3.5. Statistics of dataset of each column 

By using the .describe() method generated descriptive statistics of the 

numerical columns in our DataFrame. This displayed various statistics such as count, 

mean, standard deviation, minimum, maximum, and quartiles for each numerical column 

in dataset. The dataset containing non-numeric columns, will be excluded from the output 

of .describe(). 

3.3.6. Dropping rows having null values from your dataset 

First and foremost part of the data-analysis is Dropping rows having null values 

from your dataset. 

3.3.7. Encoding 

 Replaced the string text with a number, e.g Male will be replaced with 1 and 

female will be replaced with 0, to give it float/integer. 

3.3.8. Converting all dataset into float type 

  By using .astype() method ( because if we don't it'll rise an error that datatype 

doesn't match with output feature ( which is in float ) ). 

Using .astype() method is a common approach to convert data types in a Pandas 

DataFrame. If you have a DataFrame named df and you want to convert all columns to 

float type. 

3.3.9. Separating the output feature and input features 

To separate the output feature (often referred to as the target variable or 

dependent variable) from the input features (independent variables), you can use pandas 

indexing. Assuming your DataFrame has columns representing both input features and 

the output feature. 
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3.3.10. Machine learning model 

Divided the whole dataset into 2 parts (Train and Test ) ( Train part should be 

more like 70-80-90 percent ). We defined variables for four part (Train >> Input Feature , 

Train >> Output Feature ; Test >> Input Feature , Test >> Output Feature). Once defined 

these, Initiatialize ML model (Our ML model is DecisionTreeRegressor, it gives good 

score in our case ( continous input, output feature ). Using .fit() to fit ( parsing the input 

output TRAIN only features ). 

3.3.11. Checking the credibility  

We're using certain metrices and parameters i.e Mean Squared Error, Mean 

Absolute Error, R2 Score etc (Remember these metrices are for CONTINOUS TYPE OF 

DATA only, If our data would've been Discrete (integer ) we would use `Accuracy` 

metrix ).  

3.3.12. Prediction system  

Created a prediction system for Command Line Interface (non-GUI based). 

Created a .py file which transforms the whole notebook (ML Model) into a file with 

extension `.joblib`. because we want to freeze/saved the ML Model which can be used for 

further uses and transform it to an executable, so we won't have to run notebook 

everytime unless we want to change something in our model). 

3.3.13. Created a streamlit app 

Created a streamlit web app and added input fields and prediction button. Also 

created a session to save the progress of all pervious predictions. 

3.4. Accuracy of application  

To evaluate the accuracy of the application, a dataset comprising 515 patients was 

utilized. The predicted values generated by the application were compared with the actual 

HbA1c values of these patients. The standard deviation was calculated to assess the 
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dispersion of the prediction errors, and a graph was plotted to visualize the comparison 

between the predicted and actual HbA1c values. 
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CHAPTER 4: RESULTS 

4.1. Demographic and clinical characteristics of study subject 

 

 

Figure 4.2. Comparison of HbA1c and frequency of complications. 
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Figure 4.3. Relative frequency of complications in diabetes patients 

 

Figure 4.4. Age distribution of patients with T2DM 
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Figure 5.4. Comparison of glycemic control in patients diagnosed with T2DM 

 

 

Figure 4.6. Comparison between insulin dependency and HbA1c levels 
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Figure 4.7. Comparison of compliance to the medication and HbA1c levels in 

patients 
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Figure 4.8. Relation of dosage adjustment and HbA1c levels 

 

Figure 4.9. Comparison of HbA1c levels in male and female 
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Figure 4.10. Comparison between self-management and HbA1c levels. 

 

Figure 4.11. comparison of physical activity and HbA1c levels. 

4.2. Statistics of the selected categorical predictors 

The selected data had 9 parameters. Total of 513 patients participated from 

Pakistan in our study and total of 0.1 million records were selected from the Kaggle 

database. The 513 records from Pakistan were used to study different correlations and 

trends in the Pakistani population of different factors. The following 9 factors were 

selected based on those trends. 
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Figure 4.11. Dimensions of dataset (gender (Male, female, other), age, hypertension( 

0,1), heart disease (1,0), smoking history (never, current, former, not current), body mass 

index( BMI), diabetes status) 

 
Figure 4.12. Descriptive statistics of the dataset, count of the instances, mean, STD, min, 

max 25%, 50%, 75%, max values of all the factors 

 

4.3. Prediction performance of the ML model 

The prediction performance of the ML models were assessed on the major three 

parameters mean squared error mean absolute error and R2 values. Decision tree 

regressor gave the best results for our provided data. Mean squared, mean absolute errors 

should be closer to zero as close as possible (ours are 0.143, 0.15 ish). R2 score should be 

closer 1.00 as close as possible (ours is 0.88). 
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ML model Mean squared 

error 

Mean absolute 

error 

R2 

Decision tree 

regressor  

0.143 0.143 0.88 

Table 3 Performance of the decision tree regressor. 

 

4.4. Development of application 

An application was developed using the decision tree regressor model, which 

serves as an effective tool for predicting HbA1c levels. Based on these predictions, 

results are categorized into four levels of medication adherence ranging from poor to 

excellent. 

 
Figure 4.13. Image of the website to predict HbA1c levels and make medication 

adherence prediction by integrating decision tree model using Gender, BGLs, Age, 

smoking history, hypertension, BMI, and heart disease status. 

4.5. Primer designing 

The primers were designed using primer3 plus and by using primer BLAST and 

UCSC In-silico PCR sequence homology of both primers were confirmed. 

4.5.1. Primers  
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Oligo name  Sequence (5’ to 3’) Product 

size  

Le

ngt

h  

Tm 

(°C) 

GC 

content  

H SLC2A4 R 

HSLC2A4 F 

 

 

CTGTTTTGCCCCTCAGTCATT 

TTCCTTCTATTTGCCGTCCТС 

195 21 60.6 

 

 

47.62 

47.62 
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4.5.2. Primer optimization 

The primers were optimized using two main approaches: varying the concentration of 

cDNA and adjusting the annealing temperature. For GLUT4, the optimal annealing 

temperature was determined to be 60.6°C. Additionally, a 1:100 concentration of cDNA 

was found to be necessary for RT-PCR. 

 

Figure 12. Figure of gel containg ladder of 1kbp in 1st well and beta actin in 2nd to 

4th well while Glut-4 in 12th to 14th wells. 

4.6.  Expression analysis by Real time PCR 

For expression analysis, five samples were run in triplicate using real-time PCR. The 

results obtained are as follows: 

Patients 1 and 5: High ΔCt values (6.4), high HbA1c (10.7, 10.6) suggest poor GLUT4 

expression and poor glycemic control showing poor medication adherence. 

Patient 3: Moderate ΔCt (5.5), moderate HbA1c (9.5) indicates moderate GLUT4 

expression and glycemic control showing Fair medication adherence. 

β-actin 
GLUT-4 



CHAPTER 4 RESULTS 

Development of predictive model for diabetes medication adherence using algorithms. 57 

Patient 4: Low ΔCt (-2.0), low HbA1c (6.2) suggests high GLUT4 expression and good 

glycemic control as well as good medication adherence. 

Patient 2: Low ΔCt (0.8), relatively low HbA1c (7.7) indicates high GLUT4 expression 

and good glycemic control and medication adherence. 

  beta 

actin 

(Ct)  

Glut-4  

(Ct) 

Delta 

Ct 

HbA1c 

1 23.1 29.5 6.4 10.7 

2 22.7 23.5 0.8 7.7 

3 22.5 28 5.5 9.5 

4 23 21 -2 6.2 

5 23.1 29.5 6.4 10.6 

These results indicate that GLUT4 expression may serve as an additional marker for 

assessing patient adherence to prescribed medication regimens. The observed relationship 

between GLUT4 expression levels and HbA1c values suggests that GLUT4 expression 

could provide insights into whether patients are following their treatment plans 

effectively. Lower GLUT4 expression is associated with poorer glycemic control, which 

may signal issues with medication adherence, while higher GLUT4 expression correlates 

with better glycemic control and potentially better adherence. Therefore, GLUT4 
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expression could be a useful biomarker for evaluating and improving patient adherence to 

diabetes management strategies. 

4.7. Incorporation in application 

HbA1c delta 
CT 

Medication 
Adherence 

Predicted by App 

10.7 6.4 Poor 10, Poor 
Adherence 

7.7 0.8 Poor 7.7, Good 
Adherence 

9.5 5.5 Fair 9.5, Fair Adherence 
6.2 -2 Good 5.9, Good 

Adherence 
10.6 6.4 Good 10.6, Poor 

Adherence 

 

 

Expression profiling indicates that HbA1c levels are influenced by GLUT4 expression. 

Additionally, medication adherence significantly affects GLUT4 expression. Patients 

who adhere properly to their prescribed medication regimen typically exhibit higher 

GLUT4 expression. Conversely, those with poor adherence often show reduced GLUT4 

Poor 
Adherence

Good 
Adherence

Fair Adherence

Good 
Adherence

Poor 
Adherence
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expression. Thus, effective medication adherence is associated with better GLUT4 

expression. Based on the observed relationship between GLUT4 expression and 

medication adherence, we can hypothesize that GLUT4 may serve as a key factor in the 

development of future applications designed to monitor and improve medication 

adherence. 

4.8. Success rate of application  

By comparing the actual and predicted values of HbA1c, the following graph illustrates 

the deviation of the predicted values from the actual values. The predicted values 

exhibited a mean deviation of 0.20, indicating that the app achieved a success rate of 

80%. 
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CHAPTER 5: DISSCUSION  

Numerous studies have investigated machine learning (ML) models for predicting 

diabetes, employing diverse algorithms and techniques to improve prediction accuracy. 

Comparative analyses have shown that logistic regression, (Joshi & Dhakal, 2021; 

Rajendra & Latifi, 2021) artificial neural networks (ANNs) (Bukhari et al., 2021; Butt et 

al., 2021), and decision tree models achieve accuracies ranging from 73% to 78% in 

predicting diabetes or prediabetes using common risk factors. Gradient boosting 

algorithms, such as Friedman's gradient boosting decision tree method, have 

demonstrated success in clinical settings by accurately predicting variables like BMI with 

an accuracy of 0.91 (Nusrat et al., 2020; Rufo et al., 2021; Seto et al., 2022). 

Ensemble learning methods, including decision tree and decision forest regression, have 

also exhibited strong performance in predicting continuous variables such as blood 

glucose levels (Mahesh et al., 2022). Deep learning models, such as convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), excel in capturing complex 

patterns within large datasets. Support vector machines (SVMs) and random forest 

models have proven effective in classifying individuals as diabetic or non-diabetic. 

Furthermore, longitudinal data analysis leveraging RNNs has played a critical role in 

forecasting diabetes onset by identifying temporal patterns (Afsaneh et al., 2022; Gupta et 

al., 2022; Refat et al., 2021). These studies underscore ongoing efforts to enhance the 

accuracy and reliability of ML models for diabetes prediction through diverse 

methodologies and continuous advancements in research. 

In our study, we conducted an analysis using a decision tree regressor, which emerged as 

the most effective model among those evaluated. Our research leveraged health records 

from a substantial cohort of 100,513 patients. Emphasizing usability and accessibility, we 

carefully selected the most pertinent parameters to ensure practical application of the 

model. 

The decision tree model we developed represents a robust tool for predicting HbA1c 

levels and elucidating correlations with medication adherence among patients. This 
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predictive capability holds significant promise for enhancing patient care outcomes and 

optimizing healthcare resource allocation. 

As a pivotal aspect of our initiative, we have transformed this model into a web 

application, as depicted in Figure. We envision this application as a valuable asset that 

will deliver substantial benefits to both patients and the broader healthcare system. By 

facilitating streamlined access to predictive insights, healthcare providers can make 

informed decisions promptly, thereby improving patient management and treatment 

outcomes. 

Furthermore, our endeavor underscores a commitment to advancing precision medicine 

through innovative technological solutions. By harnessing the power of machine learning 

and data-driven approaches, we aim to empower healthcare professionals with tools that 

facilitate personalized and proactive patient care. 

In conclusion, the deployment of our decision tree regressor model as a web application 

marks a significant milestone in bridging the gap between research findings and practical 

healthcare applications. We are optimistic that this initiative will contribute positively to 

the ongoing evolution of healthcare delivery, ultimately benefiting patient health and 

well-being on a broader scale. 
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